Powered by Deep Web Technologies
Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Composite drill pipe  

DOE Patents [OSTI]

A composite pipe segment is formed to include tapered in wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self centering receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces. The distal peripheries of the nested end pieces are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes a contact ring in one pipe assembly pierced by a pointed contact in the other to connect the corresponding leads across the joint.

Leslie, James C. (Fountain Valley, CA); Leslie, II, James C. (Mission Viejo, CA); Heard, James (Huntington Beach, CA); Truong, Liem (Anaheim, CA), Josephson; Marvin (Huntington Beach, CA), Neubert; Hans (Anaheim, CA)

2008-12-02T23:59:59.000Z

2

Drill pipe with helical ridge for drilling highly angulated wells  

SciTech Connect (OSTI)

This patent describes a method for drilling a highly angulated wellbore with a rotary rig having a drill string terminated with a bit which method employs drilling fluid. The improvement comprises: employing a length of drill pipe in the highly angulated drill string which has a helical ridge disposed thereabout, wherein the flight of the helical ridge is wound in the same direction as the rotation of the drill string such as to move drill cuttings in a direction from the bit to the surface upon rotation, and wherein the height of the helical ridge above the circumferential surface of the length of the drill pipe is 1 to 15 percent of the diameter of the drill pipe.

Finnegan, J.E.; Williams, J.G.

1991-08-27T23:59:59.000Z

3

Development and Testing of Insulated Drill Pipe  

SciTech Connect (OSTI)

This project has comprised design, analysis, laboratory testing, and field testing of insulated drill pipe (IDP). This paper will briefly describe the earlier work, but will focus on results from the recently-completed field test in a geothermal well. Field test results are consistent with earlier analyses and laboratory tests, all of which support the conclusion that insulated drill pipe can have a very significant effect on circulating fluid temperatures. This will enable the use of downhole motors and steering tools in hot wells, and will reduce corrosion, deterioration of drilling fluids, and heat-induced failures in other downhole components.

Champness, T.; Finger, J.; Jacobson, R.

1999-07-07T23:59:59.000Z

4

Drill pipe management extends drillstring life  

SciTech Connect (OSTI)

Better handling procedures and frequent drill pipe inspections prolong the life of a drillstring. Crews taught to make quick visual inspections during rig moves and tripping can spot problem pipe early, thus preventing downtime or extensive repairs. Because of escalating costs of drillstring repair and replacement, Global Marine Drilling Co. organized a task force in March 1989 to define problem areas and establish new handling and maintenance procedures. The task force estimated that one 20,000-ft drillstring costs abut $600,000 and has a 7-year life span. Assuming the average rig life is 21 years, each rig will wear out three strings, totaling $1.8 million. The addition of $30,000/year for full rack inspections, repairs and downhole loss brings the total to approximately $2.4 million/rig over the 21 years. A contractor with a fleet of 25 rigs could expend $60 million on drill pipe-the construction cost of a well-equipped, 300-ft jack up rig. The task force reported on in this paper identifies four basic caused of drill pipe failures: Tool joint and tube OD wear, Internal corrosion, Fatigue cracking in the slip and internal upset areas, Physical damage to the tool joint threads and shoulders, and the tube.

Shepard, J.S. (Global Marine Drilling Co., Houston, TX (US))

1991-10-28T23:59:59.000Z

5

Development and Manufacture of Cost Effective Composite Drill Pipe  

SciTech Connect (OSTI)

This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

2006-02-20T23:59:59.000Z

6

Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation  

E-Print Network [OSTI]

known that drill pipe fatigue in oil-gas drilling operations represents more than 30% of the drill pipeStress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation Ngoc Ha Daoa, , Hedi Sellamia aMines ParisTech, 35 rue Saint-Honoré, 77305 Fontainebleau

Paris-Sud XI, Université de

7

Calculating limits for torsion and tensile loads on drill pipe  

SciTech Connect (OSTI)

Drill pipe used for drilling horizontal and extended reach holes experiences much higher torsional and tensile loads than normally seen while drilling vertical holes. This is particularly true for rigs with top drives vs. rigs with rotary tables. When pipe is rotated while pulling out of the hole, which is commonly done on top drive rigs, the drill pipe can experience high tensile and torsional loading simultaneously. These conditions increase the probability of overload on tool joints and require that the drill pipe and tool joint selection process include consideration of combined loading. Calculating the required drill pipe strength for vertical holes is straightforward and spelled out in Section 5 of API RP7G. In vertical hole applications, pipe is almost always selected for its tensile capacity and the torsional strength of the pipe generally does not require special consideration. In Section 4 of API Sec 7, API recommends that the tool joints have a torsional strength of 80% of the pipe`s torsional strength; this is usually adequate. The torsional strength and tensile strength of commonly used drill pipe and tool joint combinations are tabulated in Tables 2 through 10 of API RP7G. Appendix A.8.3 in API RP7G shows a method for plotting a graphical representation of the combined torsional and tensile operational limits of tool joints. How to calculate the limits of the drill pipe tube is shown in Appendix A.9.2. This paper defines terms and limits, and discusses building and using a diagram to determine safe loads.

Bailey, E.I. [Stress Engineering Service Inc., Houston, TX (United States); Smith, J.E. [Grant Prideco, Houston, TX (United States)

1998-02-01T23:59:59.000Z

8

Composite drill pipe and method for forming same  

DOE Patents [OSTI]

A lightweight and durable drill pipe string capable of short radius drilling formed using a composite pipe segment formed to include tapered wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self-aligning receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces and a set of nonconductive sleeves. The distal peripheries of the nested end pieces and sleeves are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes contact rings in the opposed surfaces of the pipe joint for contact together.

Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem V; Josephson, Marvin

2012-10-16T23:59:59.000Z

9

Correct conditions for heat treatment of butt welded oil drilling pipes  

Science Journals Connector (OSTI)

The application of optimum normalization conditions decreases the hardness and increases the impact strength of drilling pipes used in geological survey work by 100% and that of oil drilling pipes by 2530%, the ...

F. N. Tavadze; Z. G. Napetvaridze

1965-10-01T23:59:59.000Z

10

DEVELOPMENT AND MANUFACTURE OF COST EFFECTIVE COMPOSITE DRILL PIPE  

SciTech Connect (OSTI)

This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2003 through September 30, 2004 and contains the following discussions: (1) Direct Electrical Connection for Rotary Shoulder Tool Joints; (2) Conductors for inclusion in the pipe wall (ER/DW-CDP); (3) Qualify fibers from Zoltek; (4) Qualify resin from Bakelite; (5) First commercial order for SR-CDP from Integrated Directional Resources (SR-CDP); and (6) Preparation of papers for publication and conference presentations.

James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Peter Manekas

2005-03-18T23:59:59.000Z

11

NETL: News Release - New Carbon Drill Pipe Signals Technical Achievement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 17, 2004 May 17, 2004 New Carbon Drill Pipe Signals Technical Achievement Technology May Benefit American Energy Production WASHINGTON, DC -- The Department of Energy (DOE) announced today the development of a new "composite" drill pipe that is lighter, stronger and more flexible than steel, which could significantly alter the ability to drain substantially more oil and gas from rock than traditional vertical wells. MORE INFO Read about January, 2003 field test Read about October, 2003 field test - "This is another example of the technology breakthroughs in the arena of domestic energy production being carried out by our Office of Fossil Energy," said Secretary of Energy Spencer Abraham. "To reach and recover untapped domestic oil and gas reserves, we must have the ability to

12

NETL: News Release - Carbon Fiber Drill Pipe Performs Flawlessly in First  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 9, 2003 January 9, 2003 Carbon Fiber Drill Pipe Performs Flawlessly in First Field Test Private Company to Use DOE-Sponsored Technology To Help Restore Domestic Production from Older Oil Wells TULSA COUNTY, OK - A new lightweight, flexible drill pipe engineered from space-age composites rather than steel has passed an important field test in a U.S. Department of Energy project and is now being readied for its first commercial use. - Photo - Composite Drill Pipe Being Bent - The advanced composite drill pipe could enable drillers in the future to bore sharply-curved "short radius" horizontal wells without creating fatigue stress on the drill pipe. The Energy Department's National Energy Technology Laboratory announced that the drill pipe, made from carbon fiber resins by Advanced Composite

13

Composite drill pipe and method for forming same  

DOE Patents [OSTI]

Metal inner and outer fittings configured, the inner fitting configured proximally with an external flange and projecting distally to form a cylindrical barrel and stepped down-in-diameter to form an abutment shoulder and then projecting further distally to form a radially inwardly angled and distally extending tapered inner sleeve. An outer sleeve defining a torque tube is configured with a cylindrical collar to fit over the barrel and is formed to be stepped up in diameter in alignment with the first abutment shoulder to then project distally forming a radially outwardly tapered and distally extending bonding surface to cooperate with the inner sleeve to cooperate with the inner sleeve in forming a annular diverging bonding cavity to receive the extremity of a composite pipe to abut against the abutment shoulders and to be bonded to the respective bonding surfaces by a bond.

Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem; Josephson, Marvin

2014-04-15T23:59:59.000Z

14

Rapid deployment of oil-drilling tools utilizing distribution network and inventory strategies .  

E-Print Network [OSTI]

??DTS is an oil and gas services company that delivers drilling tools to six major customer districts in the continental U.S. After the tools are (more)

Rahim, Ryan

2010-01-01T23:59:59.000Z

15

Distribution network modeling and optimization for rapid and cost-effective deployment of oilfield drilling equipment  

E-Print Network [OSTI]

AAA, a large oil and gas field services company, is in the business of providing drilling services to companies that extract and market hydrocarbons. One of the key success factors in this industry is the ability to provide ...

Martchouk, Alexander

2010-01-01T23:59:59.000Z

16

Rapid deployment of oil-drilling tools utilizing distribution network and inventory strategies  

E-Print Network [OSTI]

DTS is an oil and gas services company that delivers drilling tools to six major customer districts in the continental U.S. After the tools are used at a rig, they are transported to the closest repair and maintenance (MTC) ...

Rahim, Ryan

2010-01-01T23:59:59.000Z

17

RF transmission line and drill/pipe string switching technology for down-hole telemetry  

DOE Patents [OSTI]

A modulated reflectance well telemetry apparatus having an electrically conductive pipe extending from above a surface to a point below the surface inside a casing. An electrical conductor is located at a position a distance from the electrically conductive pipe and extending from above the surface to a point below the surface. Modulated reflectance apparatus is located below the surface for modulating well data into a RF carrier transmitted from the surface and reflecting the modulated carrier back to the surface. A RF transceiver is located at the surface and is connected between the electrically conductive pipe and the electrical conductor for transmitting a RF signal that is confined between the electrically conductive well pipe and the electrical conductor to the modulated reflectance apparatus, and for receiving reflected data on the well from the modulated reflectance apparatus.

Clark, David D. (Santa Fe, NM); Coates, Don M. (Santa Fe, NM)

2007-08-14T23:59:59.000Z

18

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and  

E-Print Network [OSTI]

Pipe · Air Rotary Drilling Rig · Hydraulic Rotary Drilling Rig ­ Barite/Bentonite infused drilling muds A "Thumper Truck" #12;Rigging Up #12;Drilling · The Drill String ­ Diesel Powered ­ Drilling Bit ­ Drilling

Jiang, Huiqiang

19

Well drilling apparatus  

SciTech Connect (OSTI)

A drill rig for drilling wells having a derrick adapted to hold and lower a conductor string and drill pipe string. A support frame is fixed to the derrick to extend over the well to be drilled, and a rotary table, for holding and rotating drill pipe strings, is movably mounted thereon. The table is displaceable between an active position in alignment with the axis of the well and an inactive position laterally spaced therefrom. A drill pipe holder is movably mounted on the frame below the rotary table for displacement between a first position laterally of the axis of the well and a second position in alignment with the axis of the well. The rotary table and said drill pipe holder are displaced in opposition to each other, so that the rotary table may be removed from alignment with the axis of the well and said drill pipe string simultaneously held without removal from said well.

Prins, K.; Prins, R.K.

1982-09-28T23:59:59.000Z

20

oil-emulsion (rotary) drilling fluid  

Science Journals Connector (OSTI)

oil-emulsion (rotary) drilling fluid, oil-emulsion fluid [Used where low fluid-loss, very thin cake, and good lubrication of the drill pipe are of primary importance, such as in directional drilling ...

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Near-Term Developments in Geothermal Drilling  

SciTech Connect (OSTI)

The DOE Hard Rock Penetration program is developing technology to reduce the costs of drilling geothermal wells. Current projects include: R & D in lost circulation control, high temperature instrumentation, underground imaging with a borehole radar insulated drill pipe development for high temperature formations, and new technology for data transmission through drill pipe that can potentially greatly improve data rates for measurement while drilling systems. In addition to this work, projects of the Geothermal Drilling Organization are managed. During 1988, GDO projects include developments in five areas: high temperature acoustic televiewer, pneumatic turbine, urethane foam for lost circulation control, geothermal drill pipe protectors, an improved rotary head seals.

Dunn, James C.

1989-03-21T23:59:59.000Z

22

drilling-tools | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

drilling-tools Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Tally II: Pipe Tally Sheet for Pocket PC allows...

23

Drilling Waste Management Fact Sheet: Drilling Practices That Minimize  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drilling Practices Drilling Practices Fact Sheet - Drilling Practices That Minimize Generation of Drilling Wastes How Are Wells Typically Drilled? The conventional process of drilling oil and gas wells uses a rotary drill bit that is lubricated by drilling fluids or muds. As the drill bit grinds downward through the rock layers, it generates large amounts of ground-up rock known as drill cuttings. This section of the Drilling Waste Management Information System website discusses several alternative drilling practices that result in a lower volume of waste being generated. Oil and gas wells are constructed with multiple layers of pipe known as casing. Traditional wells are not drilled from top to bottom at the same diameter but rather in a series of progressively smaller-diameter intervals. The top interval is drilled starting at the surface and has the largest diameter hole. Drill bits are available in many sizes to drill different diameter holes. The hole diameter can be 20" or larger for the uppermost sections of the well, followed by different combinations of progressively smaller diameters. Some of the common hole diameters are: 17.5", 14.75", 12.25", 8.5", 7.875", and 6.5".

24

Deploying Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovation Deploying Innovation FCI deploys Laboratory technology for enhanced economic impact regionally and nationally. We offer both negotiable and non-negotiable license...

25

Loaded Transducer Fpr Downhole Drilling Component  

DOE Patents [OSTI]

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2005-07-05T23:59:59.000Z

26

The nickel pipes of Vlakfontein and vicinity, western Transvaal  

Science Journals Connector (OSTI)

...feet of pneumaticand diamond drilling) on Vlaldontein and vicinity...the centrallylocatedVredefort dome within the Witwatersrand Basin...NICKEL PIPES' OF VLAKFONTEIN TAtum 4. Microscopicand Microprobe...ft. The orebody,proved by drilling,haddimensionsof about200...

C. F. Vermaak

27

Becker, K., Malone, M.J., et al., 1998 Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 174B  

E-Print Network [OSTI]

(drill-pipe measurement from rig floor, mbrf): 4457.1 Total depth (drill-pipe measurement from rig floor, mbrf): 4526.6 Distance between rig floor and sea level (m): 11.6 Water depth (drill-pipe measurement Program (ODP) Leg 45, and the sediments at the site were not recov- ered well with the rotary core barrel

28

Disposable telemetry cable deployment system  

DOE Patents [OSTI]

A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

Holcomb, David Joseph (Sandia Park, NM)

2000-01-01T23:59:59.000Z

29

Impedance-matched drilling telemetry system  

DOE Patents [OSTI]

A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

Normann, Randy A. (Edgewood, NM); Mansure, Arthur J. (Albuquerque, NM)

2008-04-22T23:59:59.000Z

30

Advanced Seismic While Drilling System  

SciTech Connect (OSTI)

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

31

Drilling of wells with top drive unit  

SciTech Connect (OSTI)

Well drilling apparatus including a top drive drilling assembly having a motor driven stem adapted to be attached to the upper end of a drill string and drive it during a drilling operation, a torque wrench carried by the top drive assembly and movable upwardly and downwardly therewith and operable to break a threated connection between the drill string and the stem, and an elevator carried by and suspended from the top drive assembly and adapted to engage a section of drill pipe beneath the torque wrench in suspending relation. The torque wrench and elevator are preferably retained against rotation with the rotary element which drives the drill string, but may be movable vertically relative to that rotary element and relative to one another in a manner actuating the apparatus between various different operating conditions.

Boyadjieff, G.I.

1984-05-22T23:59:59.000Z

32

Equations shorten pipe collapse calculations  

SciTech Connect (OSTI)

The API suggests collapse pressure equations for long, perfectly round, steel oil field casing, tubing, drill pipe, and line pipe. Operating and service company engineers can substitute two pipe collapse pressure equations for the 12 API equations now in general use. The shorthand results are almost the same as those from the API equations. The shorthand method has the additional advantage of allowing units from any measurement system. The API equations restrict calculations to US units only. The equation box lists the API (Equations 1--12) and the shorthand (Equations 13--14) equations. The API equations are based on work started shortly after the turn of the century.

Avakov, V.A. [Halliburton Energy Services, Duncan, OK (United States)

1995-04-10T23:59:59.000Z

33

PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL AND HIGHLY DEVIATED WELLS  

E-Print Network [OSTI]

Louisiana State University Abstract In oil well drilling, the efficient transport of drilled cuttings from pipe and excessive frictional pressure losses while drilling directional and horizontal oil wellsPREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL

Ullmer, Brygg

34

Downhole pipe selection for acoustic telemetry  

DOE Patents [OSTI]

A system is described for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver. 7 figs.

Drumheller, D.S.

1995-12-19T23:59:59.000Z

35

E-Print Network 3.0 - air drilling system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems, Warren, MI. 6 Gray, V., 1969 "The Rotating Heat Pipe... of Thermosyphon Cooling for Drilling Operation: An Experimental ... Source: Jen, Tien-Chien - Department of...

36

Lowering Drilling Cost, Improving Operational Safety, and Reducing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

via stress cycling. This can occur due to post cementing operations such as drilling and hydraulic fracturing, or thermal stresses. The testing method used a 3" PVC pipe to...

37

MIMO Control during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract A drilling system consists of a rotating drill string, which is placed into the well. The drill fluid is pumped through the drill string and exits through the choke valve. An important scope of the drill fluid is to maintain a certain pressure gradient along the length of the well. Well construction is a complex job in which annular pressures must be kept inside the operational window (limited by fracture and pore pressure). Monitoring bottom hole pressure to avoid fluctuations out of operational window limits is an extremely important job, in order to guarantee safe conditions during drilling. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. In this work, a non linear mathematical model (gas-liquid-solid), representing an oil well drilling system, was developed, based on mass and momentum balances. Besides, for implementing classic control (PI), alternative control schemes were analyzed using mud pump flow rate, choke opening index and weight on bit as manipulated variables in order to control annulus bottomhole pressure and rate of penetration. Classic controller tuning was performed for servo and regulatory control studies, under MIMO frameworks.

Mrcia Peixoto Vega; Marcela Galdino de Freitas; Andr Leibsohn Martins

2014-01-01T23:59:59.000Z

38

Attenuation of sound waves in drill strings  

Science Journals Connector (OSTI)

During drilling of deep wells digital data are often transmitted from sensors located near the drill bit to the surface. Development of a new communication system with increased data capacity is of paramount importance to the drilling industry. Since steel drill strings are used transmission of these data by elastic carrier waves traveling within the drill pipe is possible but the potential communication range is uncertain. The problem is complicated by the presence of heavy?threaded tool joints every 10 m which form a periodic structure and produce classical patterns of passbands and stop bands in the wave spectra. In this article field measurements of the attenuation characteristics of a drill string in the Long Valley Scientific Well in Mammoth Lakes California are presented. Wave propagation distances approach 2 km. A theoretical model is discussed which predicts the location width and attenuation of the passbands. Mode conversion between extensional and bending waves and spurious reflections due to deviations in the periodic spacings of the tool joints are believed to be the sources of this attenuation. It is estimated that attenuation levels can be dramatically reduced by rearranging the individual pipes in the drill string according to length.

Douglas S. Drumheller

1993-01-01T23:59:59.000Z

39

Apparatus for vibrating a pipe string in a borehole  

SciTech Connect (OSTI)

This patent describes an apparatus for vibrating a drill string having a central axis in a borehole. The apparatus comprising means for generating at a downhole location longitudinally directional vibrations along the central axis of the drill string in response to flow of fluid through the interior of the drill string and a shock absorbing element mounted in the drill string between the apparatus and a drill bit carried by the drill string effective to substantially isolate the drill bit from the vibration induced in the drill string. Also described is a method of feeding a drill string through a mon-vertical section of borehole comprising: generating a downhole location a longitudinally directional vibration along the central axis of the drill string by oscillating a body in a axial direction relative to the drill string in response to flow of fluid through the interior of the drill string. The vibrations preventing frictional sticking of the drill string against the borehole wall; isolating a drill bit at the end of the drill string from the effects of the vibration during drilling operations; and moving the pipe longitudinally in the borehole.

Worrall, R.N.; Stulemeijer, I.P.J.M.

1990-01-02T23:59:59.000Z

40

Research and Application of Auger-air Drilling and Sieve Tube Borehole Protection in Soft Outburst-prone Coal Seams  

Science Journals Connector (OSTI)

Abstract Hole accidents during drilling and borehole collapse during extracting are bottlenecks restricting gas drainage efficiency in soft outburst-prone coal seams in China. The auger-air combined drilling technique and sieve tube mounting method are an alternative solution to these technology bottlenecks. The auger-air drilling technique combines the advantages of dry style auger drilling and air drilling. Specially designed blade in drill rod can stir up large particles of coal so that large particles can be brought to ground smoothly using compressed air and is efficient to prevent borehole accidents. After drilling is completed, the sieve tube is tripped in through the inner hole of drilling pipes, and then lifting up drilling pipes, the tube sieve will provide a complete tunnel for gas extraction. Field application proves that with proper drilling parameter selection and appropriate tube install control, it is more promising to double drilling depth and raise gas drainage efficiency.

Ji Qianhui

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Conoco cuts North Sea drilling time by 40%  

SciTech Connect (OSTI)

The record-breaking Murchison platform has slashed development drilling time by an average of 20 days and in the process has attracted the interest of oil men over the world. This article details each aspect of the operation how the rig was modified for speed, mud and casing programs and how they were changed, computer-aided MWD directional program, special conductor pipe and the way straight-hole turbo drilling complemented conventional rotary drilling.

Shute, J.; Alldredge, G.

1982-07-01T23:59:59.000Z

42

Apparatus for stringing well pipe of casing  

SciTech Connect (OSTI)

An apparatus for use in running a string of threaded well pipe or casing in a vertical configuration in a deep well bore which is adapted to convert a top head drive drilling rig for use in running each length of pipe into the well bore. A drive spindle adaptor is provided which may be securely attached in a removably mounted manner to the rotary drive spindle or sub of a top head drive drilling rig. The drive spindle includes a pair of opposing, outwardly extending lugs disposed at a right angle to the axial direction of the spindle and a true centering guide means. A collar is included which is provided with frictional gripping members for removably securing the collar to one end of a length of conventional pipe and a pair of axially extending, spaced ears which cooperate upon engagement with said lugs on said spindle adaptor to transfer rotary motion of said spindle to said length of pipe.

Sexton, J.L.

1984-04-17T23:59:59.000Z

43

Data transmission element for downhole drilling components  

DOE Patents [OSTI]

A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2006-01-31T23:59:59.000Z

44

E-Print Network 3.0 - auto-pipe design system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environment 2, 4 sup- ports the design and deployment... of streaming applications on hybrid systems. Auto-Pipe already contains a feder- ated simulation infrastructure... to...

45

AMF Deployment, Manacapuru, Brazil  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manacapuru, Brazil Manacapuru Deployment AMF Home Manacapuru Home GOAMAZON Website Experiment Planning Abstract and Related Campaigns Science Plan (PDF, 1.4MB) Deployment...

46

AMF Deployment, Hyytiala, Finland  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hyytil, Finland Hyytil Deployment AMF Home Hyytil Home Experiment Planning Abstract and Related Campaigns Science Plan Deployment Operations Baseline Instruments and...

47

WINDExchange: Deployment Activities  

Wind Powering America (EERE)

Development Siting Deployment Activities Recent years have seen major growth in wind energy, and deployment projections indicate this trend will continue for all parts of the...

48

NREL: Technology Deployment - Integrated Deployment Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Deployment Model Integrated Deployment Model NREL's integrated deployment model provides a framework to focus on the national goal of accelerating market adoption of clean energy technologies through local efforts. With support from the U.S. Department of Energy (DOE), NREL developed and applies the integrated deployment model to select projects including disaster recovery, statewide activities, federal agency support, island activities, and community renewable energy deployment. How the Model Works To address the complex challenges of multi-technology, multi-stakeholder, and multi-fuel deployment, NREL created the integrated deployment model to support each technology area separately but also consider the integration points between the technologies. NREL also identifies the cross-cutting

49

Method of drilling and casing a well  

SciTech Connect (OSTI)

A well drilling rig having a rotary table for driving a drill string rotatively and having jacking mechanism for lowering casing into the well after drilling, with the jacking mechanism including fluid pressure actuated piston and cylinder means which may be left in the rig during drilling and which are positioned low enough in the rig to avoid interference with operation of the rotary table. The jacking mechanism also includes a structure which is adapted to be connected to the piston and cylinder means when the casing or other well pipe is to be lowered and which is actuable upwardly and downwardly and carries one of two pipe gripping units for progressively jacking the pipe downwardly by vertical reciprocation of that structure. The reciprocating structure may take the form of a beam extending between two pistons and actuable thereby, with a second beam being connected to cylinders within which the pistons are contained and being utilized to support the second gripping element. In one form of the invention, the rotary table when in use is supported by this second beam.

Boyadjieff, G.I.; Campbell, A.B.

1983-12-20T23:59:59.000Z

50

Vehicle Technologies Office: Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

51

Optimizing drilling performance using a selected drilling fluid  

DOE Patents [OSTI]

To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

2011-04-19T23:59:59.000Z

52

petroleum-cut (drilling) mud  

Science Journals Connector (OSTI)

petroleum-cut (drilling) mud, oil cut (drilling) mud [Drilling mud unintentionally admixed with crude oil, may result from oil entering the mud while drilling or from a drill-stem test of an oil rese...

2014-08-01T23:59:59.000Z

53

Rotary blasthole drilling update  

SciTech Connect (OSTI)

Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

Fiscor, S.

2008-02-15T23:59:59.000Z

54

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

55

Apparatus for rotating and reciprocating well pipe  

SciTech Connect (OSTI)

This patent describes an apparatus for simultaneously rotating and reciprocating well pipe, having an upper end, and mechanically utilizing a rotary table attached to a drilling rig, comprising: a rotating pipe clamp assembly having an irregular cross-sectional mid-member and clamp members for releasably gripping the well pipe connected to the ends of the mid-member for rotation therewith; a square block for fitting to the rotary table square and having a selected grooved interior configuration; a torque transmitting means fitted into the grooves having openings therethrough having the same irregular cross-section as the mid-member cross-section; and a torque limiting means connecting the torque transmitting means and the block for limiting torque applied through the well pipe via the clamp assembly and the torque transmitting means.

Davis, K.D.

1988-04-12T23:59:59.000Z

56

CRAD, Nuclear Facility Construction - Piping and Pipe Supports...  

Office of Environmental Management (EM)

Nuclear Facility Construction - Piping and Pipe Supports Inspection - March 29, 2012 CRAD, Nuclear Facility Construction - Piping and Pipe Supports Inspection - March 29, 2012...

57

Deployment of Emerging Technologies  

Broader source: Energy.gov [DOE]

Presentation covers the FUPWG Deployment of Emerging Technologies. Presented by Brad Gustafson, Department of Energy, held on November 1, 2006.

58

Rotating head for rotary drilling rigs  

SciTech Connect (OSTI)

A rotating head is claimed for a rotary drilling rig which is to be secured to the top of a well pipe having an inner rotating portion with an opening therethrough which permits passage of drill pipe, pipe joints, and Kelly tools; the rotating portion has an annular drive rubber formed integrally with the top portion thereof. A rotating head drive bushing having an opening with a cross-sectional shape generally conforming to the cross-section of the Kelly tool to permit only sliding motion therebetween is provided with helical external ridges which produce a disengagable gripping action with the opening in the drive rubber at the top of the rotating portion of the rotating head. The rotating portion has a conventional stripper rubber at the bottom thereof and is mounted with a double roller bearing to provide low friction motion with respect to the fixed portion of the head. The double roller bearing is lubricated with a viscous lubricating material and paddles are provided between the sets of rollers of the double roller bearing for distributing the viscous lubricating material and in particular propel it onto the upper set of bearings; the upper body portion of the rotating head is readily detachable from the lower sleeve portion which is normally welded to the well conductor pipe.

Adams, J.R.

1983-09-27T23:59:59.000Z

59

ALIGNMENT, LEVELING AND DEPLOYMENT CONSTRAINTS  

E-Print Network [OSTI]

Thermoelectric Generator (RTG) Crew Deployment Description Passive Seismic Experiment (PSE) Crew Deployment and Alignment Central Station Antenna Crew Deployment Description Leveling, Alignment, and Pointing Radioisotope

Rathbun, Julie A.

60

Core Drilling Demonstration  

Broader source: Energy.gov [DOE]

Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Foam drilling simulator  

E-Print Network [OSTI]

Although the use of compressible drilling fluids is experiencing growth, the flow behavior and stability properties of drilling foams are more complicated than those of conventional fluids. In contrast with conventional mud, the physical properties...

Paknejad, Amir Saman

2007-04-25T23:59:59.000Z

62

DRILLING MACHINES GENERAL INFORMATION  

E-Print Network [OSTI]

or quill assembly. The head of the drill press is composed of the sleeve, spindle, electric motor, and feed

Gellman, Andrew J.

63

HydroPulse Drilling  

SciTech Connect (OSTI)

Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

J.J. Kolle

2004-04-01T23:59:59.000Z

64

Solar Deployment and Policy  

Gasoline and Diesel Fuel Update (EIA)

Solar Deployment and Policy Justin Baca Director of Research Solar Energy Industries Association About SEIA * Founded in 1974 * U.S. National Trade Association for Solar Energy *...

65

Technology Deployment List  

Broader source: Energy.gov [DOE]

Spreadsheet details new and underutilized technologies ranked for Federal deployment by the Federal Energy Management Program. The list was last updated in 2012.

66

Integrated Technology Deployment  

Office of Energy Efficiency and Renewable Energy (EERE)

Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...

67

Remotely Deployed Virtual Sensors  

E-Print Network [OSTI]

Remotely Deployed Virtual Sensors TR-UTEDGE-2007-010 Sanem Kabadayi Christine Julien © Copyright 2007 The University of Texas at Austin #12;Remotely Deployed Virtual Sensors Sanem Kabadayi that run on mobile client devices connect to the sensors of a multihop sensor network. For emerging

Julien, Christine

68

Microhole Drilling Tractor Technology Development  

SciTech Connect (OSTI)

In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly efficient tool that both delivers high level of force for the pressure available and inherently increases downhole reliability because parts are less subject to contamination. The On-Off feature is essential to drilling to allow the Driller to turn off the tractor and pull back while circulating in cleanout runs that keep the hole clean of drilling debris. The gripping elements have wide contact surfaces to the formation to allow high loads without damage to the formation. As part of the development materials evaluations were conducted to verify compatibility with anticipated drilling and well bore fluids. Experiments demonstrated that the materials of the tractor are essentially undamaged by exposure to typical drilling fluids used for horizontal coiled tubing drilling. The design for the MDT was completed, qualified vendors identified, parts procured, received, inspected, and a prototype was assembled. As part of the assembly process, WWT prepared Manufacturing instructions (MI) that detail the assembly process and identify quality assurance inspection points. Subsequent to assembly, functional tests were performed. Functional tests consisted of placing the MDT on jack stands, connecting a high pressure source to the tractor, and verifying On-Off functions, walking motion, and operation over a range of pressures. Next, the Shop Demonstration Test was performed. An existing WWT test fixture was modified to accommodate operation of the 3.38 inch diameter MDT. The fixture simulated the tension applied to a tractor while walking (pulling) inside 4.0 inch diameter pipe. The MDT demonstrated: (1) On-off function, (2) Pulling forces proportional to available differential pressure up to 4000 lbs, (3) Walking speeds to 1100 ft/hour. A field Demonstration of the MDT was arranged with a major oil company operating in Alaska. A demonstration well with a Measured Depth of approximately 15,000 ft was selected; however because of problems with the well drilling was stopped before the planned MDT usage. Alternatively, functional and operational tests were run with the MDT insi

Western Well Tool

2007-07-09T23:59:59.000Z

69

Method of deep drilling  

DOE Patents [OSTI]

Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

1984-01-01T23:59:59.000Z

70

Geothermal Drilling Organization  

SciTech Connect (OSTI)

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

71

Gel Evolution in Oil Based Drilling Fluids.  

E-Print Network [OSTI]

?? Drilling fluids make up an essential part of the drilling operation. Successful drilling operations rely on adequate drilling fluid quality. With the development of (more)

Sandvold, Ida

2012-01-01T23:59:59.000Z

72

Training and Drills  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The volume offers a framework for effective management of emergency response training and drills. Canceled by DOE G 151.1-3.

1997-08-21T23:59:59.000Z

73

Remote drill bit loader  

DOE Patents [OSTI]

A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.

Dokos, James A. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

74

Remote drill bit loader  

DOE Patents [OSTI]

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

Dokos, J.A.

1997-12-30T23:59:59.000Z

75

Earth drill rig  

SciTech Connect (OSTI)

This patent describes an earth drill rig wherein an upwardly and downwardly moving drill-string-turning rotary table is rotated by a kelly bar connected at its lower end to a vertical drive shaft, the kelly bar being journalled for rotation in and fixed against axial movement with respect to a drill frame assembly and the rotary table being mounted for axial movement on and along the drill frame assembly. The drill frame assembly is pivotally mounted on a vehicle on a substantially horizontal axis for pivoting between an upright position and a substantially horizontal position for transportation. The improvement described here comprises the drill frame assembly pivot axis positioned below the lower end of the kelly bar and above the upper end of the vertical drive shaft, and a universal coupling connecting the lower end of the kelly bar and the vertical drive shaft the universal coupling comprising universal joints at opposite ends of an elongated slip joint connector and connected there-by for relative axial movement but driving coupling between the universal joints. The universal joints lie generally on a circle of which the drill frame assembly pivot axis is the center. The drill frame assembly can be moved between the upright and the substantially horizontal positions without disconnecting the kelly bar from the vertical drive shaft, the kelly bar being revolvable by the drive shaft through substantially the entire range of movement of the drill frame assembly.

Rassieur, C.L.

1987-01-27T23:59:59.000Z

76

Determination of petroleum pipe scale solubility in simulated lung fluid  

E-Print Network [OSTI]

referred to as ??scale.?? This thesis is concerned with the presence of 226Ra in scale deposited on the inner surfaces of oil drilling pipes and the internal dose consequences of inhalation of that scale once released. In the process of normal operation...

Cezeaux, Jason Roderick

2005-08-29T23:59:59.000Z

77

Characterization of radioactive contamination inside pipes with the Pipe Explorer{trademark} system. Final report  

SciTech Connect (OSTI)

The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE`s need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer{trademark} system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer{trademark} development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer{trademark} system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer{trademark} and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer{trademark} system in Section 6.

Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

1997-09-30T23:59:59.000Z

78

Deployable Swimming Pool Enclosures  

Science Journals Connector (OSTI)

Deployable enclosures for indoor swimming pools facilities are a common need nowadays. Swimming, a common sport activity concerning overall physical ... climate, especially in cold and windy weather. Swimming pool

E. Karni

2000-01-01T23:59:59.000Z

79

Flexible ocean upwelling pipe  

DOE Patents [OSTI]

In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

Person, Abraham (Los Alamitos, CA)

1980-01-01T23:59:59.000Z

80

Membrane heat pipe development for space radiator applications  

SciTech Connect (OSTI)

A self-deploying membrane heat pipe (SMHP) is being designed and fabricated to operate in an in-cabin experiment aboard a STS flight. The heat pipe comprises a mylar membrane with a woven fabric arterial wick and R-11 as the working fluid. Preliminary results indicate that this SMHP design will successfully expand and retract in response to an applied heat load; the retraction force is provided by a constant force spring.

Woloshun, K.; Merrigan, M.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Drilling deep in South Pole Ice  

E-Print Network [OSTI]

To detect the tiny flux of ultra-high energy neutrinos from active galactic nuclei or from interactions of highest energy cosmic rays with the microwave background photons needs target masses of the order of several hundred cubic kilometers. Clear Antarctic ice has been discussed as a favorable material for hybrid detection of optical, radio and acoustic signals from ultra-high energy neutrino interactions. To apply these technologies at the adequate scale hundreds of holes have to be drilled in the ice down to depths of about 2500 m to deploy the corresponding sensors. To do this on a reasonable time scale is impossible with presently available tools. Remote drilling and deployment schemes have to be developed to make such a detector design reality. After a short discussion of the status of modern hot water drilling we present here a design of an autonomous melting probe, tested 50 years ago to reach a depth of about 1000 m in Greenland ice. A scenario how to build such a probe today with modern technologies...

Karg, Timo

2014-01-01T23:59:59.000Z

82

Using Flexible Pipe (poly-pipe) with Surface Irrigation  

E-Print Network [OSTI]

Aimed at farmers and irrigators who want to irrigate their crops using flexible plastic pipes (commonly called "poly-pipe), this publication highlights (1) advantages of using poly-pipe, (2) factors to consider in selecting such pipe, and (3...

Peries, Xavier; Enciso, Juan

2005-10-05T23:59:59.000Z

83

Drilling optimization using drilling simulator software  

E-Print Network [OSTI]

equipment is being used on some rigs, adding more overall costs to the drilling operation. Other industries facing a similar dilemma-aerospace, airlines, utilities, and the military- have all resorted to sophisticated training and technology... and Gaebler3). Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs ROP,m/h 10 20 7 Fig. 3 shows the five basic processes encountered during the drilling of a well that account for more...

Salas Safe, Jose Gregorio

2004-09-30T23:59:59.000Z

84

Technology Deployment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Deployment Deployment Technology Deployment October 8, 2013 - 2:43pm Addthis The Federal Energy Management Program's (FEMP) Technology Deployment program provides the Federal Government and commercial building sector with unbiased information and guidance about energy-efficient and renewable energy technologies available for deployment. Specifically, this program: Identifies technologies that have high potential energy savings and cost benefits and are ready for rapid deployment Develops and conducts deployment campaigns to raise awareness about energy technologies of the highest priority Educates Federal agencies and the commercial buildings sector about targeted energy-efficient technologies. Learn about: Technology Deployment List: Read about new and underutilized

85

Deployment Commitments | Department of Energy  

Energy Savers [EERE]

actions to advance solar energy deployment. These commitments represent more than 350 private and public sector commitments to deploy 885 megawatts of solar electricity....

86

Drilling continues upward momentum  

SciTech Connect (OSTI)

This paper discusses how the drilling recovery that began during the second half of 1989 is continuing into 1990. On top of this, the Iraqi invasion of Kuwait has caused disarray in oil markets, driving up oil prices, and disrupting access to oil supplies. Potentially, this upheaval could lead to an upward spike in worldwide drilling activity.

Moritis, G.

1990-09-24T23:59:59.000Z

87

Mobility for Offshore Drilling  

Science Journals Connector (OSTI)

Mobility for Offshore Drilling ... New type unit designed by Humble Oil to operate in Gulf of Mexico in 30 to 70 feet deep water ... HUMBLE OIL & REFINING is inviting bids on construction of a new type of mobile drilling platform to be used in offshore operations. ...

1956-03-26T23:59:59.000Z

88

OFFSHORE DRILLING REVISITED  

Science Journals Connector (OSTI)

OFFSHORE DRILLING REVISITED ... Congress and the Obama Administration weigh the benefits and risks of expanded OIL AND GAS PRODUCTION ... ENERGY INDUSTRY OFFICIALS, coastal states, and environmental activists are clashing over whether Congress and the Obama Administration should allow offshore drilling for oil and natural gas in federal waters that until last year were off limits to development. ...

GLENN HESS

2009-03-23T23:59:59.000Z

89

International guide: blasthole drills  

SciTech Connect (OSTI)

This survey is a comprehensive quick reference guide for surface mine operators. It details rotary blasthole drill rigs that are available around the world. More than 60 drills, each with a pulldown of about 125 kN, are included in the survey.

Chadwick, J.R.

1982-01-01T23:59:59.000Z

90

Drilling operations change gear  

SciTech Connect (OSTI)

Predicts that several technological developments (e.g. measurement-while-drilling tools, computer data-gathering systems, improved drill bits, muds, downhole mud motors, and more efficient rigs) will have a major effect on drilling operations in the not-too-distant future. While several companies manufacture MWD systems and most can boast of successful runs, the major problem with the MWD system is cost. Manufacturers continue to make advances in both turbine and positive displacement mud motors. As the life span of downhole mud motors improves, these motors can economically compete with a rotary rig in drilling certain straight-hole intervals. Prototype bit designs include the use of lasers, electronic beams, flames, sparks, explosives, rocket exhaust, chains, projectiles, abrasive jets, and high-pressure erosion. Because drilling fluids are taking a large share of the drilling budget, mud engineers are trying to optimize costs, while maintaining well bore stability and increasing penetration rates. Many companies are taking the strategy of designing the simplest mud program possible and increasing additives only as needed. Air and foam drilling techniques are gaining attention. Concludes that as crude oil prices increase and the rig count begins to rebound, attention will once again turn to drilling technology and methodology.

Moore, S.D.

1982-08-01T23:59:59.000Z

91

Demonstration and Deployment Strategy Workshop | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Demonstration and Deployment Strategy Workshop Demonstration and Deployment Strategy Workshop The Bioenergy Technologies Office's (BETO's) Demonstration and Deployment Strategy...

92

Chapter 4 Drilling Engineering  

Science Journals Connector (OSTI)

Publisher Summary Drilling operations are essentially carried out during all stages of the project life cycle (PLC) and in all types of environments. The main objectives of these operations includes: the acquisition of information and the safeguarding of production. Since the expenditure for drilling represents a large fraction of the total project's capital expenditure, an understanding of the techniques, equipment, and cost of drilling is very significant. This chapter focuses on the drilling activities. The chapter also explores the interactions between the drilling team and the other exploration and production (E&P) functions. Specifically, an initial successful exploration well can establish the presence of a working petroleum system. Following this, the data gathered in the first well is evaluated and the results are documented. The next step includes the appraisal of the accumulation requiring more wells. Finally, if the project is subsequently moved forward, development wells then needs to be engineered.

F. Jahn; M. Cook; M. Grahm

2008-01-01T23:59:59.000Z

93

Advanced drilling systems study.  

SciTech Connect (OSTI)

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

94

Titanium for Offshore Oil Drilling  

Science Journals Connector (OSTI)

Current and future applications for titanium and its alloys for offshore drilling have been examined. Successful applications were shown ... chlorination systems. Future applications especially for deepwater drilling

Dennis F. Hasson; C. Robert Crowe

1982-01-01T23:59:59.000Z

95

Focus on rotary drill rigs  

SciTech Connect (OSTI)

This article discusses the drill rig, focusing on the rotary drill rigs. There are two principal drilling methods - rotary and percussion. In certain situations, percussion drilling is the most practical method, but for most applications, rotary drilling using the rotary-tricone bit with either steel-toothed cones or carbide inserts, is the common and accepted drilling technique. There are four principal reasons for a rotary drill rig: to provide power to the rotary-tricone bit; to provide air to clean the hole; to provide a life-support system for the rotary-tricone bits; and, to provide a stable and efficient platform from which to drill the hole.

Schivley, G.P. Jr.

1987-06-01T23:59:59.000Z

96

CRAD, Nuclear Facility Construction - Piping and Pipe Supports Inspection -  

Broader source: Energy.gov (indexed) [DOE]

Construction - Piping and Pipe Supports Construction - Piping and Pipe Supports Inspection - March 29, 2012 CRAD, Nuclear Facility Construction - Piping and Pipe Supports Inspection - March 29, 2012 March 29, 2012 Nuclear Facility Construction - Piping and Pipe Supports Inspection Criteria, Approach and Lines of Inquiry (HSS CRAD 45-52, Rev. 0) For the purpose of this criteria review and approach, this Criteria Review and Approach Document (CRAD) includes piping and pipe supports and attachments of the pipe supports to structures (concrete, structural steel, or embed plates). Pipe supports include rigid restraints, welded attachments to piping, struts, snubbers, spring cans, and constant supports. Inspection of pipe whip restraints are also included in this CRAD. Selection of nuclear facility piping systems for inspection should be

97

AMF Deployment, Oliktok, Alaska  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alaska Alaska Oliktok Deployment AMF Home Oliktok Home Deployment Operations Baseline Instruments and Data Plots at the Archive Outreach News & Press New Sites Fact Sheet (PDF, 1.6MB) Images Contacts Fred Helsel, AMF Operations Lynne Roeder, Media Contact Hans Verlinde, Principal Investigator AMF Deployment, Oliktok Point, Alaska This view shows the location of the Oliktok, Alaska, ARM Mobile Facility. Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARM's third and newest ARM Mobile Facility, or AMF3.

98

Investigation of the feasibility of deep microborehole drilling  

SciTech Connect (OSTI)

Recent advances in sensor technology, microelectronics, and telemetry technology make it feasible to produce miniature wellbore logging tools and instrumentation. Microboreholes are proposed for subterranean telemetry installations, exploration, reservoir definition, and reservoir monitoring this assumes that very small diameter bores can be produced for significantly lower cost using very small rigs. A microborehole production concept based on small diameter hydraulic or pneumatic powered mechanical drilling, assemblies deployed on coiled tubing is introduced. The concept is evaluated using, basic mechanics and hydraulics, published theories on rock drilling, and commercial simulations. Small commercial drill bits and hydraulic motors were selected for laboratory scale demonstrations. The feasibility of drilling deep, directional, one to two-inch diameter microboreholes has not been challenged by the results to date. Shallow field testing of prototype systems is needed to continue the feasibility investigation.

Dreesen, D.S. [Los Alamos National Lab., NM (United States); Cohen, J.H. [Maurer Engineering, Inc., Houston, TX (United States)

1997-01-01T23:59:59.000Z

99

Remote Systems Design & Deployment  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNLs experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNLs work experiences, and the work of others in the national laboratory complex.

Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

2009-08-28T23:59:59.000Z

100

Blast furnace taphole drill  

SciTech Connect (OSTI)

A blast furnace taphole drill has a flaring head with cutting edges at its cutting end formed by intersecting angled faces. A central bore carries cleaning air to the cutting end. To prevent blockage of the cleaning air bore by debris and possible jamming of the drill, the head has deep radial grooves formed at the bottoms of the valley shapes between the cutting edges. The grooves extend radially from the air bore and conduct the air so that it can get behind or under jammed debris. Reduced taphole drilling times can be achieved.

Gozeling, J.A.; de Boer, S.; Spiering, A.A.

1984-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Deployment & Market Transformation (Brochure)  

SciTech Connect (OSTI)

NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

Not Available

2012-04-01T23:59:59.000Z

102

Missile Deployments Roil Europe  

Science Journals Connector (OSTI)

...reductions in the nuclear arma-ments...Europe-an terrorism. In Europe...existing overall nuclear balance between...INATO's plant to deploy...preemptive attack in the midst...of a Soviet attack on Western...few Soviet nuclear weapons were...cities at risk in or-der...other superior power, but also...

R. JEFFREY SMITH

1984-01-27T23:59:59.000Z

103

Missile Deployments Roil Europe  

Science Journals Connector (OSTI)

...install new nuclear missiles in...reductions in the nuclear arma-ments...Europe-an terrorism. In Europe...existing overall nuclear balance between...INATO's plant to deploy...preemptive attack in the midst...international security affairs office...cities at risk in or-der...other superior power, but also...

R. JEFFREY SMITH

1984-01-27T23:59:59.000Z

104

Rotating mousehole improves top drive/conventional drilling  

SciTech Connect (OSTI)

Top drive speed and efficiency are limited and have not reached full potential because of operation ``bottlenecks`` during makeup or breakout of triple pipe stands and bottomhole assembly (BHA) change out. Operators and contractors analyzed tools to overcome these limitations and found a potential solution from International Tool Co., a supplier of kelly spinners, in a tool that has improved make/break efficiency and rig floor safety. The Phantom Mouse rotating mousehole assembly was developed to improve drilling efficiency on top-drive-equipped rigs. This new device tightens connections so pipe stands can be set back in derricks. Using the system, crews can quickly and efficiently make up and set back DP stands while drilling ahead with top drives. It can also be used to break out and lay down excess DP from the derrick.

NONE

1995-08-01T23:59:59.000Z

105

VERY HIGH-SPEED DRILL STRING COMMUNICATIONS NETWORK  

SciTech Connect (OSTI)

Testing of recent upgrades to the drill pipe telemetry system in a 1000-ft vertical well has shown that the new system can achieve at least 1,000 ft passive transmission distance with sufficient bandwidth to accommodate a digital transmission rate of 2 Mbit/sec. Digitized data from a module at the bottom of the well has been successfully transmitted through the transmission line to the top of the well for a period of approximately one month. Manufacture of 30 prototype range 2 drill pipes has demonstrated greater simplicity of manufacturing and greater consistency of electrical characteristics from part to part, as compared to the first production run previously reported. Further work is needed to improve the high pressure capability of the system and to improve the robustness of the system in a high-vibration environment.

David S. Pixton

2002-08-01T23:59:59.000Z

106

Drilling and production technology symposium  

SciTech Connect (OSTI)

This book presents the papers given at a conference on well drilling. Topics considered at the conference included ice island drilling structures, artificial intelligence, electric motors, mud pumps, bottom hole assembly failures, oil spills, corrosion, wear characteristics of drill bits, two-phase flow in marine risers, the training of drilling personnel, and MWD systems.

Welch, R.

1986-01-01T23:59:59.000Z

107

Rotary torque and rpm indicator for oil well drilling rigs  

SciTech Connect (OSTI)

Monitoring the torque applied by the rotary table to the drill string and the rpm of the drill string is provided. An intermediate adapter is positioned between the drill kelly and the rotary table. A strain gauge is attached to the intermediate adapter to measure torsional deformation and provide an indication of rotary torque. Transmission of torque data is accomplished by radio frequency transmission utilizing a transmitter on the intermediate adapter. A receiver is mounted to the side of the drill rig floor to receive and demodulate the torque signal. The intermediate adapter is rotating at the same rate as the drill string. Detection of the revolutions utilizing the changing R.F. Field strength is accomplished at the edge of the drill rig platform or elsewhere with a stationary sensor which doubles as the torque receiver. A highly directional torque transmitter antenna mounted on the adapter is used with the major lobe lying parallel to the rig floor and perpendicular to the pipe. By detecting the envelope of the radio frequency field strength, each rotation is marked by a peak. This enables continuous torque and rpm monitoring.

Chien, L.C.

1981-08-25T23:59:59.000Z

108

Integrated Deployment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Integrated Deployment Integrated Deployment Integrated Deployment Integrated technology deployment uses a comprehensive approach to implement a variety of efficiency and renewable energy technology solutions in communities and cities, federal agencies, international locations, and states and territories. need_alt Community Renewable Energy Deployment Webinars Hear about successful community renewable energy projects, including the challenges and barriers faced during development. Learn more Integrated Deployment Projects The following projects provide examples of how the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory have used an integrated approach to address various location-specific energy challenges that is both scalable and replicable around the world:

109

HYDRATE CORE DRILLING TESTS  

SciTech Connect (OSTI)

The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large-grain sand in ice. Results with this core showed that the viscosity of the drilling fluid must also be carefully controlled. When coarse sand was being cored, the core barrel became stuck because the drilling fluid was not viscous enough to completely remove the large grains of sand. These tests were very valuable to the project by showing the difficulties in coring permafrost or hydrates in a laboratory environment (as opposed to a field environment where drilling costs are much higher and the potential loss of equipment greater). Among the conclusions reached from these simulated hydrate coring tests are the following: Frozen hydrate core samples can be recovered successfully; A spring-finger core catcher works best for catching hydrate cores; Drilling fluid can erode the core and reduces its diameter, making it more difficult to capture the core; Mud must be designed with proper viscosity to lift larger cuttings; and The bottom 6 inches of core may need to be drilled dry to capture the core successfully.

John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

2002-11-01T23:59:59.000Z

110

Improved practices, synthetic mud drive record 24-hr drilling  

SciTech Connect (OSTI)

Revised and improved drilling practices resulted in increased rate of penetration (ROP), improved hole cleaning, decreased circulating time, fewer instances of stuck pipe and reduced total drilling days. Rig equipment modifications and optimized techniques, combined with olefin-based synthetic fluid, produced significant efficiency improvements and cost reductions. Total-project strategy allows best technologies to be used, even if they are not low bid. In the Gulf of Mexico, a total-project concept helped Marathon drill back-to-back record 24-hr footages. Methods and philosophy described in this article allow drillers to choose optimum technologies, tools, materials and service performance for achieving optimum or lowest cost per foot rather than always using low bid.

Collins, G.J. [Marathon Oil Co., Houston, TX (United States); White, W.W. [Marathon Oil Co., Lafayette, LA (United States)

1995-05-01T23:59:59.000Z

111

Drilling problems don't slow Williston basin operators  

SciTech Connect (OSTI)

In spite of the Williston basin's tough drilling environment, exploration activity has continued to increase, especially around northwestern North Dakota's Nesson anticline. The foremost drilling problem is the Charles slat section, which lies 8000-9000 ft deep; this section requires a salt-saturated mud system with additives, a heavyweight pipe, and a careful cementing job. Nevertheless, big discoveries - such as Texaco Inc.'s gas well in McKenzie Co., which tested at 9.9 million CF/day and 179 bbl/day of condensate - will spur exploration for some time since most of the basin remains untouched. Moreover, drilling engineers will soon be able to mitigate, if not eliminate, the typical difficulties encountered.

Moore, S.D.

1982-01-01T23:59:59.000Z

112

Deployment of Emerging Technologies  

Broader source: Energy.gov (indexed) [DOE]

Deployment of Emerging Deployment of Emerging Technologies FUPWG November 1, 2006 Brad Gustafson Department of Energy Progress To Date: Federal Standard Buildings 80,000 85,000 90,000 95,000 100,000 105,000 110,000 115,000 120,000 125,000 130,000 135,000 140,000 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 FISCAL YEAR Btu per Gross Square Foot 10% Goal - 1995 (NECPA) 20% Goal - 2000 (EPACT 1992) 30% Goal - 2005 (EO 12902) 35% Goal - 2010 (EO 13123) 29.6% Reduction, 2005 (Preliminary Data) Actual Energy Use Annual Goals (EPACT 2005) Although the Federal Government narrowly missed the 2005 goal, it is on track to meet the 2010 goal * To identify promising emerging technologies and accelerate deployment in Federal sector - Meet the Federal Energy Goals - Lead by Example

113

Optimization of Performance Qualifiers during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract An optimization analysis of the drilling process constitutes a powerful tool for operating under desired pressure levels (inside operational window) and, simultaneously, maximizing the rate of penetration, which must be harmonized with the conflicting objective of minimizing the specific energy. The drilling efficiency is improved as the rate of penetration is increased, however, there are conflicts with performance qualifiers, such as down hole tool life, footage, vibrations control, directional effectiveness and hydraulic scenarios. Concerning hydraulic effects, the minimization of the specific energy must be constrained by annulus bottom hole pressure safe region, using the operational window, placed above porous pressure and below fracture pressure. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. The objective being tracked is operating under desired pressure levels, which assures process safety, also reducing costs. In this scenario, optimization techniques are important tools for narrow operational windows, commonly observed at deepwater and pre-salt layer environments. The major objective of this paper is developing an optimization methodology for minimizing the specific energy, also assuring safe operation (inside operational window), despite the inherent process disturbances, under a scenario that maximization of ROP (rate of penetration) is a target.

Mrcia Peixoto Vega; Marcela Galdino de Freitas; Andr Leibsohn Martins

2014-01-01T23:59:59.000Z

114

Four rigs refurbished for West Africa drilling  

SciTech Connect (OSTI)

In April and May 1990, Shell Petroleum Development Co. of Nigeria Ltd. awarded Noble Drilling West Africa Inc. four separate contracts to drill oil and gas wells in the inland waterways of Nigeria. The contracted rigs included a shallow water jack up, the NN-1, and three posted barges, the Gene Rosser, the Chuck Syring, and the Lewis Dugger. The jack up was built in 1978, and the three posted barges are 1980s vintage. Three of the rigs have been idle for a number of years. The Shell Nigeria contracts required major modifications to the rigs before putting them into international service. Noble replaced or refurbished all major pieces of equipment in the drilling, power, and service systems on the rigs. Rig crews serviced all other equipment. A significant amount of general service piping and electrical wiring was replaced. Each rig also required additional motor control centers to support the new drilling and mud processing equipment. Alfa-Laval waste-heat water desalination plants and new sewage treatment units were installed on all four rigs. Because of the tidal variances and high silt conditions expected in the African waterways, all engine cooling systems were converted from heat exchangers to radiators. Rotary tables were made common on all rigs at 37 1/2 in. Noble had all traveling equipment completely inspected and modified as necessary. Strict attention was paid to certification and documentation of all equipment. Safety upgrades conformed to both Shell and Noble standards. Fire and gas detection systems were installed throughout each rig. Water and foam deluge systems were installed in the wellhead areas, and new foam systems and monitors were installed on the helldecks.

Not Available

1991-06-10T23:59:59.000Z

115

Pipe crawler apparatus  

DOE Patents [OSTI]

A pipe crawler apparatus particularly useful for 3-inch and 4-inch diameter pipes is provided. The pipe crawler apparatus uses a gripping apparatus in which a free end of a piston rod is modified with a bearing retaining groove. Bearings, placed within the groove, are directed against a camming surface of three respective pivoting support members. The non-pivoting ends of the support members carry a foot-like gripping member that, upon pivoting of the support member, engages the interior wall of the pipe.

Hovis, Gregory L. (North Augusta, SC); Erickson, Scott A. (Augusta, GA); Blackmon, Bruce L. (Aiken, SC)

2002-01-01T23:59:59.000Z

116

DEVELOPMENT OF NEW DRILLING FLUIDS  

SciTech Connect (OSTI)

The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

David B. Burnett

2003-08-01T23:59:59.000Z

117

An analytical and numerical model to determine stresses in a Rock Melt Drill produced glass liner for potential use on Mars  

E-Print Network [OSTI]

information on the history of Mars. To access the hydrosphere some device must be used to penetrate the surface to depths of 3-5 kilometers. On Earth these depths are routinely achieved in petroleum and natural gas applications by drilling rigs. By far... the most common type of drilling employed on Earth is rotary drilling. Rotary drilling involves the uses of a rotating drill bit, attached to the surface by a long string of steel pipe, that grinds or cuts the rock, and forms a hole in the formation...

McConnell, Joshua B

2000-01-01T23:59:59.000Z

118

Proper planning improves flow drilling  

SciTech Connect (OSTI)

Underbalanced operations reduce formation damage, especially in horizontal wells where zones are exposed to mud for longer time periods. Benefits, risks, well control concerns, equipment and issues associated with these operations are addressed in this paper. Flow drilling raises many concerns, but little has been published on horizontal well control and flow drilling operations. This article covers planning considerations for flow drilling, but does not address horizontal ''overbalanced'' drilling because considerations and equipment are the same as in vertical overbalanced drilling and many references address that subject. The difference in well control between vertical and horizontal overbalanced drilling is fluid influx behavior and how that behavior affects kill operations.

Collins, G.J. (Marathon Oil Co., Houston, TX (United States))

1994-10-01T23:59:59.000Z

119

EIA Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Drilling Productivity Report Drilling Productivity Report For Center on Global Energy Policy, Columbia University October 29, 2013 | New York, NY By Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources Adam Sieminski, EIA Drilling Productivity Report October 29, 2013 2 0 5 10 15 20 25 30 35 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 2000 2002 2004 2006 2008 2010 2012 Eagle Ford (TX) Bakken (MT & ND) Granite Wash (OK & TX) Bonespring (TX Permian) Wolfcamp (TX Permian) Spraberry (TX Permian) Niobrara-Codell (CO) Woodford (OK)

120

Customer-Focused Deployment  

Broader source: Energy.gov (indexed) [DOE]

Customer-Focused Customer-Focused Deployment SAM RASHKIN Chief Architect Building Technologies Program February 29, 2012 Building America Meeting 2 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov 'Good Government' As-A-System IECC Code: Mandates technologies and practices proven reliable and cost- effective ENERGY STAR: Recognizes Builders Who Deliver Significantly Above Code Performance Builders Challenge: Recognizes Leading Builders Applying Proven Innovations and Best Practices Building America: Develops New Innovations and Best Practices 3 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov Disseminating Research Results: Building America Resource Tool 4 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ARM - News from the Hyytil, Finland, Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FinlandNews from the Hyytil, Finland, Deployment Hyytil Deployment AMF Home Hyytil Home Experiment Planning Abstract and Related Campaigns Science Plan Deployment...

122

Vehicle Technologies Office: Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home and the situation is getting worse. Domestic oil production has been dropping steadily for over 20 years, and experts predict that by 2025, about 70% of our oil will be imported. The U.S. Department of Energy's (DOE's) Vehicle Technologies Office supports research and development (R&D) that will lead to new technologies that reduce our nation's dependence on imported oil, further decrease vehicle emissions, and serve as a bridge from today's conventional powertrains and fuels to tomorrow's hydrogen-powered hybrid fuel cell vehicles. The Vehicle Technologies Office also supports implementation programs that help to transition alternative fuels and vehicles into the marketplace, as well as collegiate educational activities to help encourage engineering and science students to pursue careers in the transportation sector. Following are some of the activities that complement the Vehicle Technologies Office's mission.

123

Managed Pressure Drilling Candidate Selection  

E-Print Network [OSTI]

. Rodolphe Leschot invented and patented the earliest form of diamond core drills. T. F. Rowland patented an ?offshore rotary drilling rig?. Captain Lucas, with his Spindletop field wells, Earle Halliburton with his cementing service company, inventors... is the ancient water and brine wells drilled from the prehistoric eras to not so modern times. The second stage is the drilling of the earliest oil wells, and development of basic derricks, rigs, and cable tool rigs. The third stage is the development of rotary...

Nauduri, Anantha S.

2010-07-14T23:59:59.000Z

124

Naming chemical compounds: Calculator drill  

Science Journals Connector (OSTI)

36. Bits and pieces, 13. A calculator can be programmed to drill students on chemical compound naming rules.

David Holdsworth; Evelyn Lacanienta

1983-01-01T23:59:59.000Z

125

Proposed Drill Sites  

SciTech Connect (OSTI)

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

2013-06-28T23:59:59.000Z

126

Proposed Drill Sites  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

127

invert(ed) (oil) emulsion (drilling) mud  

Science Journals Connector (OSTI)

invert(ed) (oil) emulsion (drilling) mud, water-in-oil (drilling) mud ? Wasser-in-l-(Bohr)...m, (f)

2014-08-01T23:59:59.000Z

128

water-in-oil (drilling) mud  

Science Journals Connector (OSTI)

water-in-oil (drilling) mud, invert(ed) (oil) emulsion (drilling) mud ? Wasser-in-l-(Bohr)...m, (f)

2014-08-01T23:59:59.000Z

129

Drilling subsurface wellbores with cutting structures  

DOE Patents [OSTI]

A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

Mansure, Arthur James (Alburquerque, NM); Guimerans, Rosalvina Ramona (The Woodlands, TX)

2010-11-30T23:59:59.000Z

130

NREL: Technology Deployment - Solar Deployment and Market Transformation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Deployment and Market Transformation Solar Deployment and Market Transformation NREL enables faster, easier, and less expensive solar installations by applying our expertise and knowledge to projects that addresses challenges, inefficiencies, and market barriers to solar technology deployment. Northeast Denver Housing Center Solarize Grassroots Movement Drives Down Solar Prices 30% in Portland, Oregon Solarize Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Our technical experts work with policymakers, program administrators, regulators, utilities, transmission organizations, technology developers, financial organizations, and insurance companies to help break down barriers to solar technology deployment by: Developing and delivering policy and market design trainings

131

Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploration Drilling Details Activities (0) Areas (0) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling‎ Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole

132

Development Drilling | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Development Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Development Drilling Details Activities (1) Areas (1) Regions (0) NEPA(9) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

133

Cost effectiveness of sonic drilling  

SciTech Connect (OSTI)

Sonic drilling (combination of mechanical vibrations and rotary power) is an innovative environmental technology being developed in cooperation with DOE`s Arid-Site Volatile Organic Compounds Integrated Demonstration at Hanford and the Mixed Waste Landfill Integrated Demonstration at Sandia. This report studies the cost effectiveness of sonic drilling compared with cable-tool and mud rotary drilling. Benefit of sonic drilling is its ability to drill in all types of formations without introducing a circulating medium, thus producing little secondary waste at hazardous sites. Progress has been made in addressing the early problems of failures and downtime.

Masten, D.; Booth, S.R.

1996-03-01T23:59:59.000Z

134

Solar Photovoltaic Financing: Residential Sector Deployment ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Photovoltaic Financing: Residential Sector Deployment Solar Photovoltaic Financing: Residential Sector Deployment This report presents the information that homeowners and...

135

Experimental study of dynamic barite sag in oil-based drilling fluids using a modified rotational viscometer and a flow loop  

Science Journals Connector (OSTI)

During drilling operations, control of the sub-surface pressure is of utmost importance. High density minerals, such as barite and hematite, are used to increase the density of drilling fluids and thereby control these pressures. However, contributing factors, such as the gravitational force, cause the weighting material particles to settle out of the suspension. This is designated as sag within the drilling industry and can lead to a variety of major drilling problems, including lost circulation, well control difficulties, poor cement jobs, and stuck pipes. The study of this phenomenon, including ways to mitigate its effects, has long been of interest. In this paper several methods for evaluating dynamic barite sag in oil-based drilling fluids are examined in a flow loop with the use of a rotational viscometer modified by the addition of a sag shoe (MRV). Tests using the MRV in the range of 0100RPM were conducted, and the effects of rotation speed on sag were correlated with flow loop tests performed by varying the inner pipe rotation speed. The combined effects of eccentricity and pipe rotation on dynamic barite sag in oil-based drilling fluids are also described in this paper. Flow loop test results indicate that pipe rotation has a greater impact on reducing sag when the pipe is eccentric rather than concentric. Additionally, results in the MRV indicate a strong correlation between the test RPM and the degree of measured sag.

Tan Nguyen; Stefan Miska; Mengjiao Yu; Nicholas Takach; Ramadan Ahmed; Arild Saasen; Tor Henry Omland; Jason Maxey

2011-01-01T23:59:59.000Z

136

Flexible ultrasonic pipe inspection apparatus  

DOE Patents [OSTI]

Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

Jenkins, C.F.; Howard, B.D.

1994-01-01T23:59:59.000Z

137

Research, Development, Demonstration, and Deployment  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office's research, development, demonstration, and deployment (RDD&D) efforts are organized around five key technical and three cross-cutting elements. The first two...

138

Accelerating Combined Heat & Power Deployment  

Broader source: Energy.gov (indexed) [DOE]

ACCELERATING COMBINED HEAT & POWER DEPLOYMENT An Industry Consultation by the United States Energy Association August 31, 2011 Cover Photograph: CHP Plant at the Mueller Energy...

139

CHP Deployment | Department of Energy  

Office of Environmental Management (EM)

Business Solution - Increasing efficiency, reducing business costs, and creating green-collar jobs Local Energy Solution - Deployable throughout the United States...

140

Top drive drilling systems  

SciTech Connect (OSTI)

This patent describes a well apparatus which consists of: a back-up tool for holding the upper end of a string of pipe against rotating as an additional section of pipe is connected thereto; and powered means for moving the tool to engage the upper end of the string: the powered means being operable through a predetermined range of movement, and acting to move the back-up tool vertically during an initial portion of the range of movement and then move the tool between an active position at the axis of the well and a retracted position offset to a side of the axis at the end of the range of movement.

Boyadjieff, G.I.

1986-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ultrasonic inspection and deployment apparatus  

DOE Patents [OSTI]

An ultrasonic inspection apparatus for the inspection of metal structures, especially installed pipes. The apparatus combines a specimen inspection element, an acoustical velocity sensing element, and a surface profiling element, all in one scanning head. A scanning head bellows contains a volume of oil above the pipe surface, serving as acoustical couplant between the scanning head and the pipe. The scanning head is mounted on a scanning truck which is mobile around a circular track surrounding the pipe. The scanning truck has sufficient motors, gears, and position encoders to allow the scanning head six degrees of motion freedom. A computer system continually monitors acoustical velocity, and uses that parameter to process surface profiling and inspection data. The profiling data is used to automatically control scanning head position and alignment and to define a coordinate system used to identify and interpret inspection data. The apparatus is suitable for highly automated, remote application in hostile environments, particularly high temperature and radiation areas.

Michaels, Jennifer E. (Ithaca, NY); Michaels, Thomas E. (Ithaca, NY); Mech, Jr., Stephen J. (Pasco, WA)

1984-01-01T23:59:59.000Z

142

Measurement-while-drilling (MWD) development for air drilling  

SciTech Connect (OSTI)

The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC`s existing electromagnetic (e-m) ``CABLELESS``{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

Rubin, L.A.; Harrison, W.H.

1992-06-01T23:59:59.000Z

143

Use of Clays as Drilling Fluids and Filters  

Science Journals Connector (OSTI)

In geotechnical engineering, drilling fluid is a fluid used to drill boreholes into the earth. In drilling rigs, drilling fluids help to do drill for exploration of oil and natural gas. Liquid drilling fluid is o...

Swapna Mukherjee

2013-01-01T23:59:59.000Z

144

Characterization of Pipes, Drain Lines, and Ducts using the Pipe Explorer System  

Office of Scientific and Technical Information (OSTI)

MC/30172-97/C0803 MC/30172-97/C0803 Title: Characterization of Pipes, Drain Lines, and Ducts Using the Pipe Explorer System TM Authors: C.D. Cremer D.T. Kendrick E. Cramer Contractor: Science and Engineering Associates, Inc. 6100 Uptown Blvd, NE Albuquerque, NM 87100 Contract Number: DE-AC21-93MC30172 Conference: Industry Partnerships to Deploy Environmental Technology Conference Location: Morgantown, West Virginia Conference Dates: October 22-24, 1996 Conference Sponsor: Morgantown Energy Technology Center Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

145

Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Drilling Systems Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Drilling Systems 2 Geothermal ARRA Funded Projects for Drilling Systems Geothermal Lab Call Projects for Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

146

Drill Program Ensures Emergency Preparedness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

underground event. Drill scenarios have included a full evacuation of the WIPP underground facility and responding to radiological incidents and a variety of emergencies on the...

147

Portable drilling mud system  

SciTech Connect (OSTI)

A portable well drilling mud storage and recirculation unit includes a mud storage tank mounted on an over-the-road semi-trailer having an engine driven circulating pump mounted onboard and adapted to withdraw mud from the tank for circulation to the well and for recirculation through a set of mud agitating nozzles disposed in the bottom of the tank. A mud degassing vessel, a solids separator unit and an additive blending unit are all mounted above the tank. The degassing vessel is supported by hydraulic cylinder actuators for movement between a retracted transport position and a vertically elevated working position.

Etter, R. W.; Briggs, J. M.

1984-10-02T23:59:59.000Z

148

Apparatus for moving a pipe inspection probe through piping  

DOE Patents [OSTI]

A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.

Zollinger, W.T.; Appel, D.K.; Lewis, G.W.

1995-07-18T23:59:59.000Z

149

Deploying Emerging Technologies in ESPC  

Broader source: Energy.gov [DOE]

Presentationgiven at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meetingdiscusses emerging technologies and how to deploy them using an energy savings performance contract (ESPC).

150

Rapid deployment intrusion detection system  

SciTech Connect (OSTI)

A rapidly deployable security system is one that provides intrusion detection, assessment, communications, and annunciation capabilities; is easy to install and configure; can be rapidly deployed, and is reusable. A rapidly deployable intrusion detection system (RADIDS) has many potential applications within the DOE Complex: back-up protection for failed zones in a perimeter intrusion detection and assessment system, intrusion detection and assessment capabilities in temporary locations, protection of assets during Complex reconfiguration, and protection in hazardous locations, protection of assets during Complex reconfiguration, and protection in hazardous locations. Many DOE user-need documents have indicated an interest in a rapidly deployable intrusion detection system. The purpose of the RADIDS project is to design, develop, and implement such a system. 2 figs.

Graham, R.H.

1997-08-01T23:59:59.000Z

151

Oil and Gas Drilling Bit Tribology  

Science Journals Connector (OSTI)

A drilling bit is used in petroleum exploration to drill a wellbore through various layers of rock formations to access oil or natural gas resources. It is engineered...1). A roller cone drill bit is categorized ...

Dr. Chih Lin Ph.D.

2013-01-01T23:59:59.000Z

152

oil-base(d) (rotary) drilling fluid  

Science Journals Connector (OSTI)

oil-base(d) (rotary) drilling fluid, oil-base(d) fluid [Used primarily for drilling-in or recomputing wells in formations subject ... with low formation pressures. See remark under drilling fluid] ...

2014-08-01T23:59:59.000Z

153

Managed pressure drilling techniques and tools  

E-Print Network [OSTI]

these problems, the economics of drilling the wells will improve, thus enabling the industry to drill wells that were previously uneconomical. Managed pressure drilling (MPD) is a new technology that enables a driller to more precisely control annular pressures...

Martin, Matthew Daniel

2006-08-16T23:59:59.000Z

154

Relating horsepower to drilling productivity  

SciTech Connect (OSTI)

Many technological advancements have been made in explosive products and applications over the last 15 years resulting in productivity and cost gains. However, the application of total energy (engine horsepower) in the majority of rotary drilling technology, has remained virtually unchanged over that period. While advancements have been made in components, efficiency, and types of hydraulic systems used on drills, the application of current hydraulic technology to improve drilling productivity has not been interactive with end users. This paper will investigate how traditional design assumptions, regarding typical application of horsepower in current rotary drill systems, can actually limit productivity. It will be demonstrated by numeric analysis how changing the partitioning of available hydraulic energy can optimize rotary drill productivity in certain conditions. Through cooperative design ventures with drill manufacturers, increased penetration rates ranging from 20% to 100% have been achieved. Productivity was increased initially on some rigs by careful selection of optional hydraulic equipment. Additional gains were made in drilling rates by designing the rotary hydraulic circuit to meet the drilling energies predicted by computer modeling.

Givens, R.; Williams, G.; Wingfield, B.

1996-12-31T23:59:59.000Z

155

February 2002 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

February 2002 OCEAN DRILLING PROGRAM LEG 204 SCIENTIFIC PROSPECTUS DRILLING GAS HYDRATES ON HYDRATE 1000 Discovery Drive College Station TX 77845-9547 USA -------------------------------- Dr. Carl Drive College Station TX 77845-9547 USA #12;PUBLISHER'S NOTES Material in this publication may be copied

156

Drilling Methods | Open Energy Information  

Open Energy Info (EERE)

Drilling Methods Drilling Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Methods Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Exploration Sub Group: None Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Drilling Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques CA-170-02-15 EA Mammoth Pacific Long Valley Caldera Geothermal Area BLM BLM Central California District Office BLM Bishop Field Office BLM Geothermal/Exploration Drilling Methods

157

OM300 Direction Drilling Module  

SciTech Connect (OSTI)

OM300 Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1 Inclination and Tool Face, 0.5 Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

MacGugan, Doug

2013-08-22T23:59:59.000Z

158

low-solids oil emulsion (drilling) mud  

Science Journals Connector (OSTI)

low-solids oil emulsion (drilling) mud, low-solids oil-in-water (drilling) mud ? l-in-Wasser-(Bohr)...m, (f) mit geringem Feststoffanteil

2014-08-01T23:59:59.000Z

159

Hydraulic Pulse Drilling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE 0 4/13/2004 Final Report Author: J. Kolle Hunter/Theimer 4/13/2004 Document No.: TR- 053 HydroPulse(tm) Drilling Final Report Prepared by J.J. Kolle April 2004 U.S. Department of Energy Cooperative Development Agreement No. DE-FC26-FT34367 Tempress Technologies, Inc. 18858 - 72 ND Ave S. Kent, WA 98032 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

160

Conducted Electrical Weapon Deployed Probe Wounds  

Science Journals Connector (OSTI)

Deployment of probes is a common method of use for some handheld conducted electrical weapons (CEWs). Probe deployment allows for greater...

Donald M. Dawes M.D.; Jeffrey D. Ho M.D.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Electric Drive Vehicle Infrastructure Deployment | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Infrastructure Deployment Electric Drive Vehicle Infrastructure Deployment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

162

Community Renewable Energy Deployment Provides Replicable Examples...  

Office of Environmental Management (EM)

Community Renewable Energy Deployment Provides Replicable Examples of Clean Energy Projects Community Renewable Energy Deployment Provides Replicable Examples of Clean Energy...

163

Chicago Area Alternative Fuels Deployment Project (CAAFDP) |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting arravt061tibingham2012o.pdf More Documents & Publications Chicago Area Alternative Fuels Deployment Project (CAAFDP) Chicago Area Alternative Fuels Deployment Project...

164

Commercial Building Demonstration and Deployment Overview - 2014...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstration and Deployment Overview - 2014 BTO Peer Review Commercial Building Demonstration and Deployment Overview - 2014 BTO Peer Review Presentation: Kristen Taddonio, U.S....

165

Demonstrating and Deploying Integrated Retrofit Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstrating and Deploying Integrated Retrofit Technologies and Solutions - 2014 BTO Peer Review Demonstrating and Deploying Integrated Retrofit Technologies and Solutions - 2014...

166

Deepwater pipeline-repair system deployed to Mediterranean  

SciTech Connect (OSTI)

The latest phase in development of a deepwater pipeline-repair system received full-scale trials earlier this summer in Norway and has been deployed on standby for the Trans-Mediterranean pipeline by operator SNAM. In Stavanger harbor in June, Sonsub International Inc.`s Arcos diverless repair system underwent successful shallow-water trials that employed all the system`s equipment. (Arcos is an Italian acronym for attrezzaturre per la riparazione di condotte sottomarine-subsea pipe repair tooling.) The system is the most recent development in an evolution of efforts to develop a diverless pipeline-repair system for deepwater use. The prototype PRS (pipeline repair system) received deepwater (300m) trials offshore southern Italy in 1992. It used two work-class ROVs. In 1995, a modified PRS, renamed the DSRS (diverless sealine repair system), underwent shallow-water trials, also offshore southern Italy, that led to a modification of its pipe-lifting system. In 1997, the DSRS underwent more shallow-water trials, this time in Stavanger, which led to improvement in the spool-installation module. According to Sonsub, this refined version of the Arcos employs a low-force modular concept that is ROV supported and can be adapted quickly and easily to a wide range of pipe sizes.

True, W.R.

1998-11-16T23:59:59.000Z

167

1982 geothermal well drilling summary  

SciTech Connect (OSTI)

This summary lists all geothermal wells spudded in 1982, which were drilled to a depth of at least 2,000 feet. Tables 1 and 2 list the drilling information by area, operator, and well type. For a tabulation of all 1982 geothermal drilling activity, including holes less than 2,000 feet deep, readers are referred to the February 11, 1983, issue of Petroleum Information's ''National Geothermal Service.'' The number of geothermal wells drilled in 1982 to 2,000 feet or more decreased to 76 wells from 99 ''deep'' wells in 1981. Accordingly, the total 1982 footage drilled was 559,110 feet of hole, as compared to 676,127 feet in 1981. Most of the ''deep'' wells (49) completed were drilled for development purposes, mainly in The Geysers area of California. Ten field extension wells were drilled, of which nine were successful. Only six wildcat wells were drilled compared to 13 in 1980 and 20 in 1981, showing a slackening of exploration compared to earlier years. Geothermal drilling activity specifically for direct use projects also decreased from 1981 to 1982, probably because of the drastic reduction in government funding and the decrease in the price of oil. Geothermal power generation in 1982 was highlighted by (a) an increase of 110 Mw geothermal power produced at The Geysers (to a total of 1,019 Mw) by addition of Unit 17, and (b) by the start-up of the Salton Sea 10 Mw single flash power plant in the Imperial Valley, which brought the total geothermal electricity generation in this area to 31 Mw.

Parmentier, P.P.

1983-08-01T23:59:59.000Z

168

Drilling Waste Management Fact Sheet: Slurry Injection of Drilling Wastes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Slurry Injection Slurry Injection Fact Sheet - Slurry Injection of Drilling Wastes Underground Injection of Drilling Wastes Several different approaches are used for injecting drilling wastes into underground formations for permanent disposal. Salt caverns are described in a separate fact sheet. This fact sheet focuses on slurry injection technology, which involves grinding or processing solids into small particles, mixing them with water or some other liquid to make a slurry, and injecting the slurry into an underground formation at pressures high enough to fracture the rock. The process referred to here as slurry injection has been given other designations by different authors, including slurry fracture injection (this descriptive term is copyrighted by a company that provides slurry injection services), fracture slurry injection, drilled cuttings injection, cuttings reinjection, and grind and inject.

169

Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(20) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

170

Deploying Emerging Technologies in ESPC  

Broader source: Energy.gov (indexed) [DOE]

Deploying Emerging Technologies in Deploying Emerging Technologies in ESPC Charles Williams with Mike Holda and Anthony Radspieler Lawrence Berkeley National Laboratory For More Information * Would you like to know more about this presentation? * Charles Williams * Lawrence Berkeley National Laboratory * One Cyclotron Road, MS90R3111 Berkeley CA 94720 * CHWilliams@lbl.gov Deploying Emerging Technologies * Goals/Objective * Define emerging technologies * Examples of emerging technologies in ESPC projects - lessons learned * Describe actions taken to incorporate ET in ESPCs * Results to date * Feedback, suggestions Emerging Technologies in ESPCs Goal/Objective: -Tool to help reach Executive Order 13423, EPACT 2005 and EISA energy use reduction goals -Means to acquire energy savings otherwise not attainable, and build larger

171

AMF Deployment, Black Forest, Germany  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Germany Germany Black Forest Deployment AMF Home Black Forest Home Data Plots and Baseline Instruments CERA COPS Data University of Hohenheim COPS Website COPS Update, April 2009 Experiment Planning COPS Proposal Abstract and Related Campaigns Science Plan (PDF, 12.4M) Outreach COPS Backgrounder (PDF, 306K) Posters AMF Poster, German Vesion Researching Raindrops in the Black Forest News Campaign Images AMF Deployment, Black Forest, Germany Main Site: 48° 32' 24.18" N, 08° 23' 48.72" E Altitude: 511.43 meters In March 2007, the third deployment of the ARM Mobile Facility (AMF) will take place in the Black Forest region of Germany, where scientists will study rainfall resulting from atmospheric uplift (convection) in mountainous terrain, otherwise known as orographic precipitation. ARM

172

Rational Deployment of CSP Heuristics  

E-Print Network [OSTI]

Heuristics are crucial tools in decreasing search effort in varied fields of AI. In order to be effective, a heuristic must be efficient to compute, as well as provide useful information to the search algorithm. However, some well-known heuristics which do well in reducing backtracking are so heavy that the gain of deploying them in a search algorithm might be outweighed by their overhead. We propose a rational metareasoning approach to decide when to deploy heuristics, using CSP backtracking search as a case study. In particular, a value of information approach is taken to adaptive deployment of solution-count estimation heuristics for value ordering. Empirical results show that indeed the proposed mechanism successfully balances the tradeoff between decreasing backtracking and heuristic computational overhead, resulting in a significant overall search time reduction.

Tolpin, David

2011-01-01T23:59:59.000Z

173

Quarterly Nuclear Deployment Scorecard- January 2015  

Broader source: Energy.gov [DOE]

Includes news updates on nuclear power deployment including: vermont yankee closure, possible vogtle construction delay.

174

NREL: Technology Deployment - Clean Cities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Cities Clean Cities NREL assists the U.S. Department of Energy's Clean Cities program in supporting local actions to reduce petroleum use in transportation by providing technical assistance, educational and outreach publications, and coordinator support. Clean Cities is a national network of nearly 100 coalitions that bring together stakeholders in the public and private sectors to deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, idle-reduction measures, and new transportation technologies as they emerge. Technical Assistance NREL engineers and researchers provide hands-on technical assistance to help Clean Cities coalitions, stakeholders, manufacturers, and fuel providers overcome obstacles to deploying alternative fuels and advanced

175

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN  

E-Print Network [OSTI]

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY;PREFACE Attached is the "REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN" that will be used for ODP coring and drilling operations on legs where hydrogen sulfide is likely to be encountered. Prior

176

Technology Deployment List | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Deployment » Technology Deployment List Deployment » Technology Deployment List Technology Deployment List October 8, 2013 - 2:44pm Addthis Technology Ranking Criteria Technologies featured in the Technology Deployment List were ranked by: Federal Impact: Combination of energy savings potential and applicability in the Federal market (50% weighting) Cost Effectiveness: Relative cost of the implementation and average expected return typically reported in case studies as simple payback period (30% weighting) Probability of Success: Combination of the qualitative characteristics scored separately and averaged to determine probability of success. Criteria include strength of supply chain, knowledge base, implementation difficulty, and customer acceptance (20% weighting). The Federal Energy Management Program's (FEMP) Technology Deployment List

177

Federal Energy Management Program: Technology Deployment List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

List to someone by E-mail List to someone by E-mail Share Federal Energy Management Program: Technology Deployment List on Facebook Tweet about Federal Energy Management Program: Technology Deployment List on Twitter Bookmark Federal Energy Management Program: Technology Deployment List on Google Bookmark Federal Energy Management Program: Technology Deployment List on Delicious Rank Federal Energy Management Program: Technology Deployment List on Digg Find More places to share Federal Energy Management Program: Technology Deployment List on AddThis.com... Energy-Efficient Products Technology Deployment Technology Deployment List Solid-State Lighting Working Group Renewable Energy Technology Deployment List Technology Ranking Criteria Technologies featured in the Technology Deployment List were ranked by:

178

Guidable pipe plug  

DOE Patents [OSTI]

A plugging device for closing an opening defined by an end of a pipe with sealant comprises a cap, an extension, an inner seal, a guide, and at least one stop. The cap has an inner surface which defines a chamber adapted for retaining the sealant. The chamber is dimensioned slightly larger than the end so as to receive the end. The chamber and end define a gap therebetween. The extension has a distal end and is attached to the inner surface opposite the distal end. The inner seal is attached to the extension and sized larger than the opening. The guide is positioned forward of the inner seal and attached to the distal end. The guide is also dimensioned to be inserted into the opening. The stop is attached to the extender, and when the stop is disposed in the pipe, the stop is movable with respect to the conduit in one direction and also prevents misalignment of the cap with the pipe. A handle can also be included to allow the cap to be positioned robotically.

Glassell, Richard L. (Knoxville, TN); Babcock, Scott M. (Farragut, TN); Lewis, Benjamin E. (Farragut, TN)

2001-01-01T23:59:59.000Z

179

Pipe-to-pipe impact analysis - Nuclear Engineering Multimedia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pipe-to-pipe impact analysis Pipe-to-pipe impact analysis Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Engineering Analysis Multimedia Bookmark and Share EA Multimedia, a collection of videos and audios featuring activities related to the Engineering Analysis Department Pipe-to-pipe impact analysis Quicktime video Quicktime Format - High Bandwidth | Size: 12 MB | Bit Rate:

180

DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto  

E-Print Network [OSTI]

;1. INTRODUCTION A drill-string is a slender structure used in oil wells to penetrate the soil in search of oilDRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto R. Sampaio thiagoritto Descartes, 77454 Marne-la-Vallée, France Abstract. The influence of the drilling fluid (or mud) on the drill

Boyer, Edmond

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Drill rig hook  

SciTech Connect (OSTI)

A hook for suspending a pipe string or other load in a well rig, including a tubular outer body supported by a first connector structure which is attachable to a suspending line, a tubular inner body which supports a second connector structure preferably taking the form of a hook, with the inner body being received within the outer body and being yieldingly urged upwardly relative thereto by a resilient unit or assembly located within the inner body, and with a structure within the inner body bearing upwardly against and supporting the resilient assembly and attached to the first connector structure. A cam mechanism between the inner and outer bodies automatically cams the inner body to a predetermined rotary position upon upward movement, with a locking device or devices serving to retain the inner body in fixed rotary position and/or to lock the camming mechanism in a fixed position in a manner determining the rotary setting to which the inner body returns upon upward movement. The mentioned first and/or second connectors may each consist of two parts receivable within one of the tubular bodies and held in operative connecting engagement therewith by a spacer between the two parts. A link suporting member may be formed separately from the load suporting hook, to be detachable therefrom for a repair or replacement.

Zimmermann, A.

1985-02-12T23:59:59.000Z

182

Forecast of geothermal drilling activity  

SciTech Connect (OSTI)

The numbers of each type of geothermal well expected to be drilled in the United States for each 5-year period to 2000 AD are specified. Forecasts of the growth of geothermally supplied electric power and direct heat uses are presented. The different types of geothermal wells needed to support the forecasted capacity are quantified, including differentiation of the number of wells to be drilled at each major geothermal resource for electric power production. The rate of growth of electric capacity at geothermal resource areas is expected to be 15 to 25% per year (after an initial critical size is reached) until natural or economic limits are approached. Five resource areas in the United States should grow to significant capacity by the end of the century (The Geysers; Imperial Valley; Valles Caldera, NM; Roosevelt Hot Springs, UT; and northern Nevada). About 3800 geothermal wells are expected to be drilled in support of all electric power projects in the United States between 1981 and 2000 AD. Half of the wells are expected to be drilled in the Imperial Valley. The Geysers area is expected to retain most of the drilling activity for the next 5 years. By the 1990's, the Imperial Valley is expected to contain most of the drilling activity.

Brown, G.L.; Mansure, A.J.

1981-10-01T23:59:59.000Z

183

Tool Wear in Friction Drilling  

SciTech Connect (OSTI)

This study investigated the wear of carbide tools used in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a hard tungsten carbide tool used for friction drilling a low carbon steel workpiece has been investigated. Tool wear characteristics were studied by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectroscopy was applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size were measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11000 holes, but observations also indicate progressively severe abrasive grooving on the tool tip.

Miller, Scott F [ORNL; Blau, Peter Julian [ORNL; Shih, Albert J. [University of Michigan

2007-01-01T23:59:59.000Z

184

Vibratory Drilling of Oil Wells  

Science Journals Connector (OSTI)

Vibratory drilling refers to the process of drilling into rock by vibrating the drilling tool at audio?frequencies. The basic mechanism of vibratory drilling was ascertained by preliminary laboratory experimentation to consist of a series of impacts on the rock at the frequency of vibration. A fundamental study of this basic mechanism made by dropping weighted chisels on rock showed that the primary parameter which determined the rate of penetration was the mechanical power input to the rock per unit cross section of hole; the values of the vibration frequency and of other variables were of minor consequence over wide ranges. A theoretical analysis was made of the vibration of an elongated magnetostrictiontransducer capable of generating the required power level taking into account the distributed nature of the generation of vibrations. Intermediate power transducers have been built and tested and a high?power transducer for down?hole operation is under construction. [The material for this presentation is based on work carried out at the Battelle Memorial Institute under the sponsorship of Drilling Research Inc. an organization formed by a group of major companies engaged in various phases of oil production for the purpose of investigating novel methods of rock drilling.

Ralph Simon

1956-01-01T23:59:59.000Z

185

HCPV deployment by Aerojet Rocketdyne  

Science Journals Connector (OSTI)

Aerojet Rocketdyne (AR) with essential support from HCPV module supplier Semprius is implementing a HCPV commercialization process by deploying HCPV systems of increasing scope and size. The process is designed to gather field data create learning opportunities and reduce risk while leading to large scale commercial field of HCPV systems. The process steps key lessons learned performance data and design decisions are presented.

2014-01-01T23:59:59.000Z

186

Drill bit having a failure indicator  

SciTech Connect (OSTI)

A lubrication system is described to indicate a decrease in lubricant volume below a predetermined level in a rotary drill bit having a bit body adapted to receive drilling fluid at a high first pressure from a suspended drill string, and adapted to discharge the drilling fluid therefrom in a void space between the bit body and an associated well bore with the drilling fluid in the space being at a low second pressure.

Daly, J.E.; Pastusek, P.E.

1986-09-09T23:59:59.000Z

187

JOIDES Resolution Drill Ship Drill into Indian Ridge MOHO Hole Cleaning Study  

E-Print Network [OSTI]

The Integrated Ocean Drilling Program (IODP) uses a variety of technology for use in its deep water scientific research, including the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Resolution (JR) drill ship. The JR drill ship...

Lindanger, Catharina

2014-05-03T23:59:59.000Z

188

Deploying  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2009. 2. perfSONAR Architecture 2.1. Overview perfSONAR is an example of a Service Oriented Architecture (SOA), which offers the ability for specialized, autonomous services to...

189

Damping in LMFBR pipe systems  

SciTech Connect (OSTI)

LMFBR pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on FFTF pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use an increased damping value for both the OBE and DBE seismic events in design of LMFBR pipe systems.

Anderson, M.J.; Barta, D.A.; Lindquist, M.R.; Renkey, E.J.; Ryan, J.A.

1983-06-01T23:59:59.000Z

190

Downhole Temperature Prediction for Drilling Geothermal Wells  

SciTech Connect (OSTI)

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

191

Nuclear Deployment Scorecards | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Scorecards Nuclear Deployment Scorecards October 31, 2013 Quarterly Nuclear Deployment Scorecard - October 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. August 8, 2013 Quarterly Nuclear Deployment Scorecard - July 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. May 1, 2013 Quarterly Nuclear Power Deployment Scorecard - April 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, and new plant construction progress.

192

Rehabilitating underground pipes  

SciTech Connect (OSTI)

Nearly 500,000 miles of industrial pipeline in the US are almost three times older than their expected usefulness. And aging pipes that are improperly maintained can cause a variety of environmental problems. It is essential for facilities to have a system of planned maintenance procedures to prevent structural failures related to inflow/infiltration and exfiltration. Trenchless repair methods, often referred to as pipeline rehabilitation, require the plant engineer to consider a range of activities, including demand projection, system performance assessment, investigation, evaluation of defects and deficiencies, remedial options, and implementation. Two methods of pipeline rehabilitation, slip lining and cured-in-place, are described.

Sorrell, P. [Insituform Technologies, Inc., Memphis, TN (United States)

1995-06-05T23:59:59.000Z

193

AMF Deployment, Steamboat Springs, Colorado  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Colorado Colorado Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and Related Campaigns Science Plan NWS Forecasting Plots STORMVEX Website Outreach STORMVEX Backgrounder (PDF, 1.6MB) News AMF2 STORMVEX Blog Images Contacts Gerald Mace AMF Deployment, Steamboat Springs, Colorado This view shows the instrument locations for the STORMVEX campaign. At the westernmost site is the Valley Floor. Heading east up the mountain is Christy Peak, Thunderhead, and Storm Peak Laboratory at the far east. Valley Floor: 40° 39' 43.92" N, 106° 49' 0.84" W Thunderhead: 40° 39' 15.12" N, 106° 46' 23.16" W Storm Peak: 40° 27' 18.36" N, 106° 44' 40.20" W

194

Drill wear: its effect on the diameter of drilled holes  

E-Print Network [OSTI]

drills are made of oae of two differeat materials. The most common material in use today 1s aa 18-4-1 type of high speed steel. This steel contains about O. VS per cent carboa, 18. 00 per eeet tungstea, 4. 00 per cent chromium, and 1. 10 per eeet... vanadium. The primary advaatage of steel of this type is its ability to maintain its cutt1ng edge and haxdaess at high tempexatures. Besides beiag used for drills, this steel finds applicntioa in waay other tools such as willing cutters, taps, reamers...

Reichert, William Frederick

2012-06-07T23:59:59.000Z

195

April 25, 1997: Yucca Mountain exploratory drilling | Department...  

Office of Environmental Management (EM)

April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997 Workers...

196

BOA: Pipe-asbestos insulation removal robot system  

SciTech Connect (OSTI)

This paper describes the BOA system, a mobile pipe-external crawler used to remotely strip and bag (possibly contaminated) asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations across the DOE weapons complex. The mechanical removal of ACLIM is very cost-effective due to the relatively low productivity and high cost involved in human removal scenarios. BOA, a mechanical system capable of removing most forms of lagging (paper, plaster, aluminum sheet, clamps, screws and chicken-wire), and insulation (paper, tar, asbestos fiber, mag-block) uses a circular cutter and compression paddles to cut and strip the insulation off the pipe through compression, while a HEPA-filter and encapsulant system maintain a certifiable vacuum and moisture content inside the system and on the pipe, respectively. The crawler system has been built and is currently undergoing testing. Key design parameters and performance parameters are developed and used in performance testing. Since the current system is a testbed, we also discuss future enhancements and outline two deployment scenarios (robotic and manual) for the final system to be designed and completed by the end of FY `95. An on-site demonstration is currently planned for Fernald in Ohio and Oak Ridge in Tennessee.

Schempf, H.; Bares, J.; Mutschler, E. [and others

1995-12-31T23:59:59.000Z

197

Vapor spill pipe monitor  

DOE Patents [OSTI]

The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

Bianchini, G.M.; McRae, T.G.

1983-06-23T23:59:59.000Z

198

Smaller Footprint Drilling System for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-03NT15401 Final Report Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling Submitted by: TerraTek, A Schlumberger Company 1935 Fremont Drive Salt Lake City, UT 84104 Prepared for: United States Department of Energy National Energy Technology Laboratory 2 February 2010 Office of Fossil Energy Feasibility of Ultra-High Speed Diamond Drilling DE-FC26-03NT15401 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

199

RECIPIENT:Potter Drilling Inc  

Broader source: Energy.gov (indexed) [DOE]

Potter Drilling Inc Potter Drilling Inc u.s. DEPARTUEN T OF ENERG¥ EERE PROJECT MANAGEMENT CENT ER NEPA DEIERl\IINATION PROJECr TITLE: Development of a Hydrothermal Spallation Drilling System for EGS Page 1 0[2 STATE: CA Funding Opportunity Announ<:ement Number Procurement Instrument Number NEPA Control Number CID Number OE·PS36-09G099016 OE· EE0002746 ~FO . 10 - [r,,~ G02746 Based on my review of the information concerning the proposed action, as NEPA ComplianC:f Offkrr (authorized under DOE Order 451.IA), I have made the following determination: ex. EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited 10, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

200

Sustainability of Large Photovoltaic Deployment: Environmental Research  

E-Print Network [OSTI]

Sustainability of Large Photovoltaic Deployment: Environmental Research Sustainability of Large Photovoltaic Deployment: Environmental ResearchEnvironmental ResearchEnvironmental Research Vasilis Fthenakis and Te from Cadmium Telluride Photovoltaic Manufacturing Scrap, Progress in Photovoltaics: Research

Homes, Christopher C.

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Investigation of deployable structures and their actuation  

E-Print Network [OSTI]

Deployable Structures had not been designed for use in the oil field industry, and additionally have not been designed as devices to perform mechanical work. By analyzing deployable structures a detailed understanding of ...

Munro, Logan

2007-01-01T23:59:59.000Z

202

Optimal Deployment of Direction-finding Systems  

E-Print Network [OSTI]

-finding system. The first part of this dissertation is to prescribe DF deployment to maximize the effectiveness with which transmitter positions are estimated in an area of interest (AOI). Three methods are presented to prescribe DF deployment. The first method...

Kim, Suhwan

2013-03-27T23:59:59.000Z

203

Deployment-Based security for grid applications  

Science Journals Connector (OSTI)

Increasing complexity of distributed applications and commodity of resources through grids are making harder the task of deploying those applications. There is a clear need for a versatile deployment of distributed applications. In the same time, a security ...

Isabelle Attali; Denis Caromel; Arnaud Contes

2005-05-01T23:59:59.000Z

204

Geothermal district piping - A primer  

SciTech Connect (OSTI)

Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

Rafferty, K.

1989-11-01T23:59:59.000Z

205

Prometheus Hot Leg Piping Concept  

SciTech Connect (OSTI)

The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

Gribik, Anastasia M. [Bechtel Bettis, Inc., Bettis Atomic Power Laboratory, West Mifflin, PA 15122 (United States); DiLorenzo, Peter A. [KAPL, Inc., Knolls Atomic Power Laboratory, Schenectady, NY 12301 (United States)

2007-01-30T23:59:59.000Z

206

Subterranean well pipe guiding apparatus  

SciTech Connect (OSTI)

A pipe guiding apparatus is described for vertically aligning pipe section joints in a derrick having a worktable and an elevator for vertically suspending at least one pipe section above the worktable. The apparatus is comprised of a rotary axle for horizontal attachment in the derrick, a frame attached to the rotary axle, a power cylinder for rotating the rotary axle, a pair of guide jaws pivotally attached to the forward end of the frame, and a cylinder for moving the guide jaws between open and closed positions. The power cylinder for rotating the axle and the cylinder for moving the guide jaws between open and closed positions. The power cylinder for rotating the axle and the cylinder for moving the guide jaws are remotely operated so that the frame can be selectively moved to a position whereby the guide jaws are adjacent a vertically suspended pipe section and the guide jaws thereafter are closed on the pipe section. 6 claims.

Scaggs, O.C.

1981-06-23T23:59:59.000Z

207

Flexible ultrasonic pipe inspection apparatus  

DOE Patents [OSTI]

A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

Jenkins, Charles F. (Aiken, SC); Howard, Boyd D. (Augusta, GA)

1998-01-01T23:59:59.000Z

208

Federal Incentives for Wind Power Deployment  

Broader source: Energy.gov [DOE]

This factsheet lists some of the major federal incentives for wind power deployment as of September 2014.

209

Definition: Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search Dictionary.png Drilling Techniques There are a variety of drilling techniques which can be used to sink a borehole into the ground. Each has its advantages and disadvantages, in terms of the depth to which it can drill, the type of sample returned, the costs involved and penetration rates achieved. There are two basic types of drills: drills which produce rock chips, and drills which produce core samples.[1] View on Wikipedia Wikipedia Definition Well drilling is the process of drilling a hole in the ground for the extraction of a natural resource such as ground water, brine, natural gas, or petroleum, for the injection of a fluid from surface to a subsurface reservoir or for subsurface formations evaluation or monitoring.

210

Acoustic data transmission through a drill string  

DOE Patents [OSTI]

Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

Drumheller, D.S.

1988-04-21T23:59:59.000Z

211

Downhole drilling network using burst modulation techniques  

DOE Patents [OSTI]

A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

2007-04-03T23:59:59.000Z

212

RSG Deployment Case Testing Results  

SciTech Connect (OSTI)

The RSG deployment case design is centered on taking the RSG system and producing a transport case that houses the RSG in a safe and controlled manner for transport. The transport case was driven by two conflicting constraints, first that the case be as light as possible, and second that it meet a stringent list of Military Specified requirements. The design team worked to extract every bit of weight from the design while striving to meet the rigorous Mil-Spec constraints. In the end compromises were made primarily on the specification side to control the overall weight of the transport case. This report outlines the case testing results.

Owsley, Stanley L.; Dodson, Michael G.; Hatchell, Brian K.; Seim, Thomas A.; Alexander, David L.; Hawthorne, Woodrow T.

2005-09-01T23:59:59.000Z

213

Advanced Drilling Systems for EGS  

Broader source: Energy.gov [DOE]

Project objectives: Apply Novateks Stinger and JackBit technology in the development of an innovative; durable fixed bladed bit and improved roller cone bit that will increase ROP by three times in drilling hard rock formations normally encountered in developing EGS resources.

214

Potential impacts of artificial intelligence expert systems on geothermal well drilling costs:  

SciTech Connect (OSTI)

The Geothermal research Program of the US Department of Energy (DOE) has as one of its goals to reduce the cost of drilling geothermal wells by 25 percent. To attain this goal, DOE continuously evaluates new technologies to determine their potential in contributing to the Program. One such technology is artifical intelligence (AI), a branch of computer science that, in recent years, has begun to impact the marketplace in a number of fields. Expert systems techniques can (and in some cases, already have) been applied to develop computer-based ''advisors'' to assist drilling personnel in areas such as designing mud systems, casing plans, and cement programs, optimizing drill bit selection and bottom hole asssembly (BHA) design, and alleviating lost circulation, stuck pipe, fishing, and cement problems. Intelligent machines with sensor and/or robotic directly linked to AI systems, have potential applications in areas of bit control, rig hydraulics, pipe handling, and pipe inspection. Using a well costing spreadsheet, the potential savings that could be attributed to each of these systems was calculated for three base cases: a dry steam well at The Geysers, a medium-depth Imerial Valley well, and a deep Imperial Valley well. Based on the average potential savings to be realized, expert systems for handling lost circulations problems and for BHA design are the most likely to produce significant results. Automated bit control and rig hydraulics also exhibit high potential savings, but these savings are extremely sensitive to the assumptions of improved drilling efficiency and the cost of these sytems at the rig. 50 refs., 19 figs., 17 tabs.

Satrape, J.V.

1987-11-24T23:59:59.000Z

215

NREL: Energy Systems Integration - Integrated Deployment Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Deployment Workshop Integrated Deployment Workshop The Energy Systems Integration Facility workshop, Integrated Deployment, was held August 21 - 23, 2012 at the National Renewable Energy Laboratory in Golden, Colorado. Each day of the workshop, which included a tour of the Energy Systems Integration Facility, focused on a different topic: Day 1: Utility-Scale Renewable Integration Day 2: Distribution-Level Integration Day 3: Isolated and Islanded Grid Systems The agenda and presentations from the workshop are below. Agenda Energy Systems Integration Facility Overview ESIF Technology Partnerships Integrated Deployment Model Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings Printable Version Energy Systems Integration Home Research & Development

216

Buildings Technologies Deployment | Clean energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Technologies Deployment Building Technologies Deployment SHARE Building Technologies Deployment benchmarking commercial buildings Once building technologies emerge and become commercially available, only in exceptional cases does robust market uptake automatically follow. Additional efforts remain to ensure that emerging and under-utilized technologies are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use in residential, commercial, and industrial sectors through applications research, technical assistance, and a variety of deployment strategies. The team's comprehensive knowledge of buildings and energy use spans multi-building sites, whole-buildings, systems, components, and multi-level

217

Federal Incentives for Wind Power Deployment | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Federal Incentives for Wind Power Deployment Federal Incentives for Wind Power Deployment Document that lists some of the major federal incentives for wind power deployment....

218

Chapter 9 - In-Home Deployments  

Science Journals Connector (OSTI)

Abstract In-home deployments can be used to study current behavior patterns or to evaluate prototype systems. Compared to other options such as lab studies, interviews, or surveys, in-home deployments offer unparalleled realism due to the in-situ nature of the deployment as part of the participants normal lives. However, in-home deployments require careful planning and considerable effort. This chapter will help in the planning and successful execution of home deployment studies by sharing insights drawn from our combined experience running many different studies in the home, and by using the deployment of the PreHeat prototype as a concrete example. Among the lessons we highlight are the importance of carefully considering the minimum viable prototype to build for deployment, the value of remote monitoring to catch problems, and the importance of flexibility and robustness in deployed systems to cope with unexpected issues in the home environment. By discussing the challenges we faced and the lessons we learned, we hope that others will be able to more easily conduct in-home deployments and gather the rich and informative data they provide. Our experiences have led us to develop and open source two platforms that strive to reduce the engineering effort required for deployments: .NET Gadgeteer (http://www.netmf.com/gadgeteer/), a prototyping platform for custom devices, and Lab of Things (http://www.lab-of-things.com/), an SDK (software development kit) that provides features such as remote monitoring and updates for home deployments.

A.J. Brush; Brian Meyers; James Scott

2015-01-01T23:59:59.000Z

219

Optical coherence tomography guided dental drill  

DOE Patents [OSTI]

A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

DaSilva, Luiz B. (Danville, CA); Colston, Jr., Bill W. (Livermore, CA); James, Dale L. (Tracy, CA)

2002-01-01T23:59:59.000Z

220

Heat Pipes: An Industrial Application  

E-Print Network [OSTI]

This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

Murray, F.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Chemical Speciation of Chromium in Drilling Muds  

SciTech Connect (OSTI)

Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.

Taguchi, Takeyoshi [X-ray Research Laboratory, RIGAKU Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666 (Japan); Yoshii, Mitsuru [Mud Technical Center, Telnite Co., Ltd., 1-2-14 Ohama, Sakata-shi, Yamagata 998-0064 (Japan); Shinoda, Kohzo [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577 (Japan)

2007-02-02T23:59:59.000Z

222

Jamaican red clay tobacco pipes  

E-Print Network [OSTI]

JAMAICAN RED CLAY TOBACCO PIPES A Thesis by KENAN PAUL HEIDTKE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF ARTS December 1992 Major Subject...: Anthropology JAMAICAN RED CLAY TOBACCO PIPES A Thesis by KENAN PAUL HEIDTKE Approved as to style and content by: Dorm L. Hamilton (Chair of Committee) Frederick H. van Doorninck, J (Member) enry C. Schmidt (Member) Vaughn M. Bryant (Head...

Heidtke, Kenan Paul

2012-06-07T23:59:59.000Z

223

NREL: Technology Deployment Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Decathlon 2013 Heading to California Solar Decathlon 2013 Heading to California U.S. Coast Guard Saves Energy, Money Training Results in Decreased Energy Use and Costs for Sector Guam Standard Work Specifications Tool Now Available Standard Work Specifications Tool Now Available Weatherization industry can save specifications online and streamline work NREL Federal Fueling Station Data Supports Sandy Recovery NREL Federal Fueling Station Data Supports Sandy Recovery Decision Makers Able to Coordinate Access to Fuel NREL works with federal, state, and local government and private industry and organizations to deploy commercially available energy efficiency and renewable energy technologies. Our experts help prepare the market for emerging technologies by removing barriers to adoption. Use our technology

224

High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System  

SciTech Connect (OSTI)

A high temperature water heat pipes radiator design is developed for a space power system with a sectored gas-cooled reactor and three Closed Brayton Cycle (CBC) engines, for avoidance of single point failures in reactor cooling and energy conversion and rejection. The CBC engines operate at turbine inlet and exit temperatures of 1144 K and 952 K. They have a net efficiency of 19.4% and each provides 30.5 kWe of net electrical power to the load. A He-Xe gas mixture serves as the turbine working fluid and cools the reactor core, entering at 904 K and exiting at 1149 K. Each CBC loop is coupled to a reactor sector, which is neutronically and thermally coupled, but hydraulically decoupled to the other two sectors, and to a NaK-78 secondary loop with two water heat pipes radiator panels. The segmented panels each consist of a forward fixed segment and two rear deployable segments, operating hydraulically in parallel. The deployed radiator has an effective surface area of 203 m2, and when the rear segments are folded, the stowed power system fits in the launch bay of the DELTA-IV Heavy launch vehicle. For enhanced reliability, the water heat pipes operate below 50% of their wicking limit; the sonic limit is not a concern because of the water, high vapor pressure at the temperatures of interest (384 - 491 K). The rejected power by the radiator peaks when the ratio of the lengths of evaporator sections of the longest and shortest heat pipes is the same as that of the major and minor widths of the segments. The shortest and hottest heat pipes in the rear segments operate at 491 K and 2.24 MPa, and each rejects 154 W. The longest heat pipes operate cooler (427 K and 0.52 MPa) and because they are 69% longer, reject more power (200 W each). The longest and hottest heat pipes in the forward segments reject the largest power (320 W each) while operating at {approx} 46% of capillary limit. The vapor temperature and pressure in these heat pipes are 485 K and 1.97 MPa. By contrast, the shortest water heat pipes in the forward segments operate much cooler (427 K and 0.52 MPa), and reject a much lower power of 45 W each. The radiator with six fixed and 12 rear deployable segments rejects a total of 324 kWth, weights 994 kg and has an average specific power of 326 Wth/kg and a specific mass of 5.88 kg/m2.

El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States)

2006-01-20T23:59:59.000Z

225

:- : DRILLING URANIUM BILLETS ON A  

Office of Legacy Management (LM)

'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO - 886 Metals, Ceramics and Materials (TID-4500, 22nd Ed.) DRILLING URANIUM BILLETS ON A LEBLOND-CARLSTEDT RAPID BORER By R. J. Jansen* TECHNICAL DIVISION NATIONAL LEAD COMPANY OF OHIO Date of Issuance: September 13, 1963 Approved By: Approved By: Technical Director Head, Metallurgical Department *Mr. Jansen is presently

226

Technology Deployment List | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Technology Deployment List Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Deployment List Agency/Company /Organization: Federal Energy Management Program Sector: Energy Focus Area: Renewable Energy Phase: Create a Vision Topics: Implementation User Interface: Website Website: www1.eere.energy.gov/femp/technologies/newtechnologies_matrix.html#cat OpenEI Keyword(s): EERE tool, Technology Deployment List Language: English References: Technology Deployment List[1] Identify emerging-and underused-energy-saving technologies, including building envelope; heating, ventilation, and air conditioning; lighting; water heating; and refrigeration, computer power management, and vending

227

Community Renewable Energy Deployment: Sacramento Municipal Utility  

Open Energy Info (EERE)

Deployment: Sacramento Municipal Utility Deployment: Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects Agency/Company /Organization US Department of Energy Focus Area Agriculture, Economic Development, Greenhouse Gas, Renewable Energy, Biomass - Anaerobic Digestion, Solar - Concentrating Solar Power, Solar, - Solar Pv, Biomass - Waste To Energy Phase Bring the Right People Together, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2/2/2011 Website http://www1.eere.energy.gov/co Locality Sacramento Municipal Utility District, CA References Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects[1]

228

Buildings Technologies Deployment | Clean energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use...

229

Community Renewable Energy Deployment Provides Replicable Examples...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

million in funding from DOE for an integrated renewable energy deployment plan using a biogas generation facility and solar photovoltaics (PV) to provide heating, cooling, and...

230

Sandia National Laboratories: high PV deployment level  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

deployment level ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

231

Sandia National Laboratories: increase PV deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

increase PV deployment ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

232

Quarterly Nuclear Deployment Scorecard - April 2014 | Department...  

Energy Savers [EERE]

April 2014 Quarterly Nuclear Deployment Scorecard - April 2014 News Updates On February 20, Secretary Moniz announced the issuance of loan guarantees totalling approximately 6.5...

233

Quarterly Nuclear Deployment Scorecard - July 2014 | Department...  

Office of Environmental Management (EM)

July 2014 Quarterly Nuclear Deployment Scorecard - July 2014 News Updates * The NRC Atomic Safety and Licensing Board (ASLB) has ruled that Toshiba's participation in Nuclear...

234

Accelerating CHP Deployment, United States Energy Association...  

Broader source: Energy.gov (indexed) [DOE]

Materials: April 15 - 16, 2002 Strategies for the Commercialization & Deployment of GHG Intensity-Reducing Technologies & Practices Meeting Materials: May 18-19, 2004 Advanced...

235

Mobile Traffic Management System Test Deployment  

E-Print Network [OSTI]

BERKELEY Mobile Traf?c Management System Test DeploymentHIGHWAYS MOBILE TRAFFIC MANAGEMENT SYSTEM TEST DEPLOYMENTMobile Transportation Management System (MTMS). This new and

Gerfen, Jeffrey Brian

2005-01-01T23:59:59.000Z

236

Featured Publications on Integrated Technology Deployment  

Office of Energy Efficiency and Renewable Energy (EERE)

Information on the analysis and technical assistance conducted through the integrated deployment effort to help various locations around the world address specific energy challenges. Includes case...

237

Integrated Deployment Success Stories | Department of Energy  

Office of Environmental Management (EM)

stories about how DOE has helped states, cities, tribes, islands, campuses, and utilities apply an integrated technology deployment approach to achieve clean energy goals....

238

Solar Power for Deployment in Populated Areas.  

E-Print Network [OSTI]

??The thesis presents background on solar thermal energy and addresses the structural challenges associated with the deployment of concentrating solar power fields in urban areas. (more)

Hicks, Nathan Andrew

2009-01-01T23:59:59.000Z

239

Grid Engineering for Accelerated Renewable Energy Deployment  

Broader source: Energy.gov [DOE]

The SunShot Grid Engineering for Accelerated Renewable Energy Deployment (GEARED) program supports increased power system research, development, and analytical capacity while simultaneously growing...

240

CRAD, Nuclear Facility Construction- Piping and Pipe Supports Inspection- March 29, 2012  

Broader source: Energy.gov [DOE]

Nuclear Facility Construction - Piping and Pipe Supports Inspection Criteria, Approach and Lines of Inquiry (HSS CRAD 45-52, Rev. 0)

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Pipe crawler with extendable legs  

DOE Patents [OSTI]

A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

Zollinger, W.T.

1992-06-16T23:59:59.000Z

242

Pipe crawler with extendable legs  

DOE Patents [OSTI]

A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.

Zollinger, William T. (3927 Almon Dr., Martinez, GA 30907)

1992-01-01T23:59:59.000Z

243

Toward Effective Vaccine Deployment: A Systematic Study  

Science Journals Connector (OSTI)

Vaccination is a commonly-used epidemic control strategy based on direct antiviral immunization and indirect reduction of virus transmissibility. There exist three factors related to the efficacy of vaccine deployment; they are: (1) vaccine coverage, ... Keywords: Age-specific compartmental model, Epidemic control, H1N1 influenza, Vaccine deployment strategy

Jiming Liu; Shang Xia

2011-10-01T23:59:59.000Z

244

PMU Deployment for Optimal State Estimation Performance  

E-Print Network [OSTI]

the benefits from data aggregation. Phasor Measurement Unit (PMU) is such an advanced device capablePMU Deployment for Optimal State Estimation Performance Yue Yang, Student Member IEEE, and Sumit are anticipated; however, due to the high cost of PMU installation, their deployment will continue to be selective

Roy, Sumit

245

AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program  

E-Print Network [OSTI]

the earlier successes of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs for either the riserless or riser vessel, such as near the shoreline in shallow-water areas

246

Category:Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Category Edit History Facebook icon Twitter icon Category:Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the...

247

High Temperature 300C Directional Drilling System  

Broader source: Energy.gov [DOE]

Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300C; and at depths of 10; 000 meters.

248

Offshore Drilling and Production: A Short History  

Science Journals Connector (OSTI)

Drilling in Louisianas marshes and shallow waters ... or worse the expanding presence of the oil and gas industry has changed everyones...

Joseph A. Tainter; Tadeusz W. Patzek

2012-01-01T23:59:59.000Z

249

International guide: blasthole drills. [For blastholes  

SciTech Connect (OSTI)

This survey is a comprehensive, quick reference guide for surface mine operators. It details what rotary blasthole drill rigs are available around the world. The survey covers over 60 drills, each with a pulldown of about 125 kilonewtons (27,500 pounds). They are manufactured by companies in eight different countries. Drill rigs continue to grow in size and power as larger diameter blastholes increase drilling economy. With a range of units costing from approximately $200,000 to over $1,000,000 each, careful selection based on the requirements of specific mines is essential.

Chadwick, J.R.

1982-01-01T23:59:59.000Z

250

Analysis of drill stem test data  

E-Print Network [OSTI]

constructed to illustrate the effects of changes in Kh/p, , well bore damage, and pro duction rate on the geometry of the drill stem test pressure buildup curve. To formulate the hypothetical drill stem test, certain reser- voir rock and fluid properties... constructed to illustrate the effects of changes in Kh/p, , well bore damage, and pro duction rate on the geometry of the drill stem test pressure buildup curve. To formulate the hypothetical drill stem test, certain reser- voir rock and fluid properties...

Zak, Albin Joseph

2012-06-07T23:59:59.000Z

251

High Temperature 300C Directional Drilling System  

Broader source: Energy.gov (indexed) [DOE]

300C Directional Drilling System John Macpherson Baker Hughes Oilfield Operations DE-EE0002782 May 19, 2010 This presentation does not contain any proprietary confidential, or...

252

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Deployment Centers Technology Deployment Centers CRF Many of Sandia's unique research centers are available for use by U.S. industry, universities, academia, other laboratories, state and local governments, and the scientific community in general. Technology deployment centers are a unique set of scientific research capabilities and resources. The primary function of technology deployment centers is to satisfy Department of Energy programmatic needs, while remaining accessible to outside users. Contact For more information about Sandia technology deployment centers or for help in selecting a center to meet your needs, contact Mary Monson at mamonso@sandia.gov, (505) 844-3289. Advanced Power Sources Laboratory Combustion Research Facility Design, Evaluation, and Test Technology Facility

253

Federal Energy Management Program: Technology Deployment List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment List Deployment List Technology Ranking Criteria Technologies featured in the Technology Deployment List were ranked by: Federal Impact: Combination of energy savings potential and applicability in the Federal market (50% weighting) Cost Effectiveness: Relative cost of the implementation and average expected return typically reported in case studies as simple payback period (30% weighting) Probability of Success: Combination of the qualitative characteristics scored separately and averaged to determine probability of success. Criteria include strength of supply chain, knowledge base, implementation difficulty, and customer acceptance (20% weighting). The Federal Energy Management Program's (FEMP) Technology Deployment List features information about promising new and underutilized energy-saving technologies available for Federal and commercial building sector deployment. Common considerations and barriers are also outlined.

254

BOA: Asbestos pipe insulation removal robot system. Phase 1  

SciTech Connect (OSTI)

The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

Schempf, H.; Bares, J.E.

1995-02-01T23:59:59.000Z

255

HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING  

SciTech Connect (OSTI)

Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

2008-03-31T23:59:59.000Z

256

Coiled tubing drilling with supercritical carbon dioxide  

DOE Patents [OSTI]

A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

Kolle , Jack J. (Seattle, WA)

2002-01-01T23:59:59.000Z

257

Geothermal energy utilization with heat pipes  

Science Journals Connector (OSTI)

Several variants of heat pipes for utilization of geothermal energy and underground rock heat are studied. An...

L. L. Vasil'ev

1990-09-01T23:59:59.000Z

258

Structural Assessment of Small Bore Feeder Piping  

E-Print Network [OSTI]

Frasheri MIE491 - Capstone Team 9 March 2012 Client: W. Reinhardt Industry Partner: Candu Energy Inc. Supervisor: A. N. Sinclair CASE ONE CANDU REACTORS HAVE 380+ SMALL BORE FEEDER PIPES. THE PIPES PIPES AND VALIDATE COMPUTATIONAL METHODS COMPARED TO FULL SCALE TESTS TO FAILURE. THE CLIENT CANDU

259

Laser Drilling - Drilling with the Power of Light  

SciTech Connect (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

2007-02-28T23:59:59.000Z

260

ARM - News from the Steamboat Springs Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ColoradoNews from the Steamboat Springs Deployment Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and Related Campaigns Science Plan NWS Forecasting Plots STORMVEX Website Outreach STORMVEX Backgrounder (PDF, 1.6MB) News AMF2 STORMVEX Blog Images Contacts Gerald Mace News from the Steamboat Springs Deployment Releases WPSD (Paducah, KY) "STORMVEX Cloud Study" January 19, 2011 The Daily Sentinel, Grand Junction "Steamboat project gives scientists unique, grounded look at clouds" December 12, 2010 Steamboat Pilot & Today "Steamboat cloud study to help create better global climate models" Image Gallery December 12, 2010 Also picked up by:

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Property:DeploymentPrograms | Open Energy Information  

Open Energy Info (EERE)

DeploymentPrograms DeploymentPrograms Jump to: navigation, search Property Name DeploymentPrograms Property Type String Description Depolyment programs as listed in cleanenergysolutions.org Allows the following values: Audit Programs Demonstration & Implementation Green Power/Voluntary RE Purchase High Performance Buildings Industry Codes & Standards Project Development Public Tenders, Procurement, & Lead Examples Public-Private Partnerships Retrofits Ride Share, Bike Share, etc. Technical Assistance Training & Education Voluntary Appliance & Equipment Labeling Voluntary Industry Agreements Subproperties This property has the following 2 subproperties: G Greenhouse Gas Regional Inventory Protocol (GRIP) Website M Methods for Climate Change Technology Transfer Needs Assessments and

262

ESF Consortium for Ocean Drilling White Paper  

E-Print Network [OSTI]

ESF Consortium for Ocean Drilling (ECOD) White Paper An ESF Programme September 2003 #12;The Scotia in 1978 and had previously sailed the world as a top-class oil-exploration vessel. JOIDES, maintains the ship over a specific location while drilling into water depths up to 27,000 feet. A seven

Purkis, Sam

263

Status Report A Review of Slimhole Drilling  

SciTech Connect (OSTI)

This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

Zhu, Tao; Carroll, Herbert B.

1994-09-01T23:59:59.000Z

264

Record geothermal well drilled in hot granite  

Science Journals Connector (OSTI)

Record geothermal well drilled in hot granite ... Researchers there have completed the second of two of the deepest and hottest geothermal wells ever drilled. ... It may become the energy source for a small electrical generating power station serving nearby communities in New Mexico. ...

1981-09-07T23:59:59.000Z

265

OCEAN DRILLING PROGRAM LEG 157 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

." The source area, Gran Canaria, one of the best studied volcanic islands, has a 15-m.y.-long record the Miocene, Pliocene, and Quaternary compositionally evolved volcanic phases on Gran Canaria and neighboringOCEAN DRILLING PROGRAM LEG 157 SCIENTIFIC PROSPECTUS DRILLING INTO THE CLASTIC APRON OF GRAN

266

OCEAN DRILLING PROGRAM LEG 164 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 164 SCIENTIFIC PROSPECTUS GAS HYDRATE SAMPLING ON THE BLAKE RIDGE Drive College Station, Texas 77845-9547 U.S.A. Timothy J.G. Francis Acting Director ODP/TAMU Jack Drilling Program, Texas A&M University Research Park, 1000 Discovery Drive, College Station, Texas, 77845

267

Comparative analysis of core drilling and rotary drilling in volcanic terrane  

SciTech Connect (OSTI)

Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr. (ed.)

1987-04-01T23:59:59.000Z

268

Alpine Geothermal Drilling | Open Energy Information  

Open Energy Info (EERE)

Geothermal Drilling Geothermal Drilling Jump to: navigation, search Logo: Alpine Geothermal Drilling Name Alpine Geothermal Drilling Address PO Box 141 Place Kittredge, Colorado Zip 80457 Sector Geothermal energy Product Geothermal drilling solutions, subsidiary of Rocky Mountain GeoExploration Inc Website http://www.alpinegeothermal.co Coordinates 39.64888°, -105.2984842° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.64888,"lon":-105.2984842,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

270

Definition: Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search Dictionary.png Exploration Drilling Exploratory drilling is the Initial phase of drilling for the purpose of determining the physical properties and boundaries of a reservoir. View on Wikipedia Wikipedia Definition Geothermal Exploration is the exploration of the subsurface in search of viable active geothermal regions with the goal of building a geothermal power plant, where hot fluids drive turbines to create electricity. Exploration methods include a broad range of disciplines including geology, geophysics, geochemistry and engineering. Geothermal regions with adequate heat flow to fuel power plants are found in rift zones, subduction zones and mantle plumes. Hot spots are characterized by four geothermal elements. An active region will have: Heat Source - Shallow

271

Innovative technology summary report: Cryogenic drilling  

SciTech Connect (OSTI)

Environmental drilling is used to conduct site investigations and to install monitoring and remediation wells. Employing conventional drilling techniques to conduct environmental investigations in unconsolidated soils can result in borehole collapse and may also lead to cross-contamination of aquifers and soil formations. For investigations in certain geologic conditions, there are currently no viable conventional drilling techniques available. Cryogenic drilling improves upon conventional air rotary drilling by replacing ambient air with cold nitrogen (either liquid or gas) as the circulating medium. The cold nitrogen gas stream freezes moisture in the ground surrounding the hole. The frozen zone prevents the collapse of the hole and prevents the movement of groundwater or contaminants through and along the hole. The technology, its performance, uses, cost, and regulatory issues are discussed.

NONE

1998-10-01T23:59:59.000Z

272

Bureau of Land Management - Geothermal Drilling Permit | Open...  

Open Energy Info (EERE)

Bureau of Land Management - Geothermal Drilling Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Bureau of Land Management - Geothermal Drilling...

273

Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)  

Broader source: Energy.gov [DOE]

Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

274

WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS.  

E-Print Network [OSTI]

??WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS Applications of waterjeting to drill horizontal wells for the purpose of degassing coalbeds prior to mining (more)

Funmilayo, Gbenga M.

2010-01-01T23:59:59.000Z

275

Laser Drills Could Relight Geothermal Energy Dreams | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laser Drills Could Relight Geothermal Energy Dreams Laser Drills Could Relight Geothermal Energy Dreams December 14, 2012 - 12:26pm Addthis Commercial-grade laser technology is...

276

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

Technology for Geothermal Drilling and Logging Applications Technology Development and Field Trials of EGS Drilling Systems GEA Geothermal Summit Presentation Lauren Boyd...

277

A Strategic Framework for SMR Deployment  

Broader source: Energy.gov (indexed) [DOE]

A Strategic Framework for SMR Deployment February 24, 2012 Introduction A strategy for the successful deployment of small modular reactors (SMRs) must consider what the goals of deployment would entail, the challenges to achieving these goals and the approach to overcome those challenges. This paper will attempt to offer a framework for addressing these important issues at the outset of the program. The deployment of SMRs will be realized by private power companies making the decision to purchase and operate SMRs from private vendors. The government role is to set national priorities for clean energy and national security and create incentives to achieve them. The policy tools the government may choose to use to advance this technology in support of these national objectives will evolve as SMRs advance

278

NREL: Technology Deployment - Alternative Fuels Data Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternative Fuels Data Center Alternative Fuels Data Center NREL developed and manages the Alternative Fuels Data Center (AFDC), the U.S. Department of Energy's comprehensive clearinghouse of information and data related to the deployment of alternative fuels, advanced vehicles, and energy efficiency in transportation for fleets, fuel providers, policymakers, and other stakeholders working to reduce petroleum use in transportation. Interactive Transportation Deployment Tools NREL's large suite of free online tools assist fleets and drivers in selecting and deploying the technologies and strategies that will best help them meet their environmental and energy goals. Fleets and drivers can use calculators, interactive maps, and data searches to evaluate, select, and deploy alternative fuels and advanced vehicles as

279

ARM - News from the Oliktok Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Deployment Operations Baseline Instruments and Data Plots at the Archive Outreach News & Press New Sites Fact Sheet (PDF, 1.6MB) Images Contacts Fred Helsel, AMF Operations...

280

Deployment of EVs in the Federal Fleet  

Broader source: Energy.gov [DOE]

Presentation covers the Deployment of EV's in the Federal Fleet and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Demonstration and Deployment Strategy Workshop: Summary  

Broader source: Energy.gov [DOE]

This report is based on the proceedings of the U.S. DOEs Bioenergy Technologies Office Demonstration and Deployment Strategy Workshop, held on March 1213, 2014, at Argonne National Laboratory.

282

Knowledge Portals: Components, Functionalities, and Deployment Challenges  

E-Print Network [OSTI]

Knowledge Portals: Components, Functionalities, and Deployment Challenges Claudia Loebbecke University of Cologne Kevin Crowston Syracuse University School of Information Studies Abstract Knowledge Portals (KPs) are highly integrative Knowledge Management Systems (KMS) that promise to synthesize widely

Crowston, Kevin

283

Analysis of deployable strut roof structures  

E-Print Network [OSTI]

Deployable structures are structures that can change shape from a compact to an expanded form. Thus, their advantage over conventional structures is adaptability, whether in the sense of adapting to changing environmental ...

Wolfe, Maxwell H. (Maxwell Henry)

2013-01-01T23:59:59.000Z

284

Leading the Nation in Clean Energy Deployment  

Office of Energy Efficiency and Renewable Energy (EERE)

This document summarizes key efforts and projects that are part of the DOE/NREL Integrated Deployment effort to integrated energy efficiency and renewable energy technologies in cities, states, island locations, and communities around the world.

285

Deployment-Based Security for Grid Applications  

Science Journals Connector (OSTI)

Increasing complexity of distributed applications and commodity of resources through grids are making harder the task of deploying ... distributed applications. In the same time, a security architecture must be a...

Isabelle Attali; Denis Caromel; Arnaud Contes

2005-01-01T23:59:59.000Z

286

State perspectives on clean coal technology deployment  

SciTech Connect (OSTI)

State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

Moreland, T. [State of Illinois Washington Office, Washington, DC (United States)

1997-12-31T23:59:59.000Z

287

Reliable Deployment of Component-based Applications into Distributed Environments  

E-Print Network [OSTI]

Reliable Deployment of Component-based Applications into Distributed Environments Abbas Heydarnoori's quality of service properties such as reliability. In distributed sys- tems, the reliability that should be deployed into a large distributed en- vironment, several deployment configurations are typ

Czarnecki, Krzysztof

288

Radiological assessment of BWR recirculatory pipe replacement  

SciTech Connect (OSTI)

Replacement of primary recirculating coolant pipe in BWRs is a major effort that has been carried out at a number of nuclear generating stations. This report reviews the planned or actual pipe replacement projects at six sites: Nine Mile Point-1, Monticello, Cooper, Peach Bottom-2, Vermont Yankee, and Browns Ferry-1. It covers the radiological issues of the pipe replacement, measures taken to reduce doses to ALARA, estimated and actual occupational doses, and lessons learned during the various replacements. The basis for the decisions to replace the pipes, the methods used for preparation and decontamination, the removal of old pipe, and the installation of the new pipe are briefly described. Methods for reducing occupational radiation dose during pipe repairs/replacements are recommended. 32 refs., 12 figs., 17 tabs.

Parkhurst, M.A.; Hadlock, D.E.; Harty, R.; Pappin, J.L.

1986-02-01T23:59:59.000Z

289

Counter-Rotating Tandem Motor Drilling System  

SciTech Connect (OSTI)

Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

Kent Perry

2009-04-30T23:59:59.000Z

290

Synchrophasor Technologies and their Deployment in the Recovery...  

Energy Savers [EERE]

Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid...

291

Electric Vehicle Deployment: Policy Questions and Impacts to...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Deployment: Policy Questions and Impacts to the U.S. Electric Grid - EAC Recommendations (November 2011) Electric Vehicle Deployment: Policy Questions and Impacts to the...

292

Solar Photovoltaic Financing: Deployment on Public Property by...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments Solar Photovoltaic Financing: Deployment on Public Property by State and Local...

293

Development and Deployment of Advanced Emission Controls for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Deployment of Advanced Emission Controls for the Retrofit Market Development and Deployment of Advanced Emission Controls for the Retrofit Market 2003 DEER Conference Presentation:...

294

Energy Department Invests Over $7 Million to Deploy Tribal Clean...  

Energy Savers [EERE]

Energy Department Invests Over 7 Million to Deploy Tribal Clean Energy Projects Energy Department Invests Over 7 Million to Deploy Tribal Clean Energy Projects November 14, 2013...

295

Navigating Roadblocks on the Path to Advanced Biofuels Deployment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Navigating Roadblocks on the Path to Advanced Biofuels Deployment Navigating Roadblocks on the Path to Advanced Biofuels Deployment Breakout Session 2: Frontiers and Horizons...

296

Strategies for the Commercialization & Deployment of GHG Intensity...  

Broader source: Energy.gov (indexed) [DOE]

Strategies for the Commercialization & Deployment of GHG Intensity-Reducing Technologies & Practices Strategies for the Commercialization & Deployment of GHG Intensity-Reducing...

297

Energy Department Actions to Deploy Combined Heat and Power,...  

Broader source: Energy.gov (indexed) [DOE]

Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 -...

298

Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems May 16, 2013 - 12:00am Addthis...

299

Federal Technology Deployment Pilot: Exterior Solid State Lighting...  

Energy Savers [EERE]

Technology Deployment Pilot: Exterior Solid State Lighting Federal Technology Deployment Pilot: Exterior Solid State Lighting Presentation-given at the Fall 2011 Federal Utility...

300

OpenStudio Core Development and Deployment Support - 2014 BTO...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Core Development and Deployment Support - 2014 BTO Peer Review OpenStudio Core Development and Deployment Support - 2014 BTO Peer Review Presenter: Larry Brackney, National...

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick...

302

Dual manifold heat pipe evaporator  

DOE Patents [OSTI]

An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

Adkins, Douglas R. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM)

1994-01-01T23:59:59.000Z

303

Dual manifold heat pipe evaporator  

DOE Patents [OSTI]

An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

Adkins, D.R.; Rawlinson, K.S.

1994-01-04T23:59:59.000Z

304

Bakken shale typifies horizontal drilling success  

SciTech Connect (OSTI)

Given the favorable production response that has been obtained from horizontal drilling in vertical- fractured reservoirs such as the Bakken shale and, more recently, the Austin chalk, industry interest in this technology has mushroomed in the U.S. Indeed, it is difficult to find a good-sized oil company these days that is not involved in a horizontal drilling project or is giving it serious consideration. In response to growing evidence of successful field applications, the realization is dawning on the investment community that horizontal drilling represents a significant technological development with positive implications for both the exploration and production business, and the oilfield services industry.

Leibman, P.R. (Petrie Parkman and Co., Denver, CO (US))

1990-12-01T23:59:59.000Z

305

Hot Leg Piping Materials Issues  

SciTech Connect (OSTI)

With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

V. Munne

2006-07-19T23:59:59.000Z

306

Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); November 2011 Composite Data Products - Deployment (Presentation)  

SciTech Connect (OSTI)

This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). November 2011 Composite Data Products - Deployment November 30, 2011.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

2012-06-01T23:59:59.000Z

307

Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); Quarter 1 2012 Composite Data Products - Deployment (Presentation)  

SciTech Connect (OSTI)

This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). Quarter 1 2012 Composite Data Products - Deployment March 8, 2012.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

2012-06-01T23:59:59.000Z

308

Environmental issues affecting clean coal technology deployment  

SciTech Connect (OSTI)

The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

Miller, M.J. [Electric Power Research Inst., Palo Alto, CA (United States)

1997-12-31T23:59:59.000Z

309

Better practices and synthetic fluid improve drilling rates  

SciTech Connect (OSTI)

Improved drilling practices, combined with the use of olefin-based synthetic drilling fluids, have dramatically reduced drilling time and costs in a difficult drilling area in the Gulf of Mexico. In the South Pass area, Marathon Oil Co. and other operators have had wells with long drilling times and high costs. In addition to the two wells with record penetration rates, routine drilling rates have also increased from the use of synthetic mud and careful drilling practices. Through application of these improved drilling practices, 2,000--3,000 ft/day can be drilled routinely. Marathon achieves this goal by applying the experience gained on previous wells, properly training and involving the crews, and using innovative drilling systems. Improved drilling practices and systems are just one part of successful, efficient drilling. Rig site personnel are major contributors to safely and successfully drilling at high penetration rates for extended periods. The on site personnel must act as a team and have the confidence and proper mental attitude about what is going on downhole. The paper describes the drilling history in the South Pass area, the synthetic drilling fluid used, cuttings handling, hole cleaning, drilling practices, bottom hole assemblies, and lost circulation.

White, W. (Marathon Oil Co., Lafayette, LA (United States)); McLean, A.; Park, S. (M-I Drilling Fluids, Houston, TX (United States))

1995-02-20T23:59:59.000Z

310

Measuring while drilling apparatus mud pressure signal valve  

SciTech Connect (OSTI)

This patent describes a measurement while drilling system for borehole drilling having a downhole instrument connectable in a drill string of a rotary drilling rig including apparatus to sense geological and geophysical parameters and a valve apparatus to pulse modulate drilling fluid flowing in the drill string. A surface apparatus is connected to a drilling fluid flow conductor for extracting intelligence carrying information from the modulated drilling fluid. An improved valve apparatus is described comprising: (a) a drilling fluid flow pulse modulating pressure pulse valve member longitudinally, movably mounted in a body member and movable from a retracted position substantially removed from the drilling fluid flow and an extended position disposed at least partially within the drilling fluid flow thereby temporarily restricting drilling fluid flow within the drill string; and (b) the pulse valve member is a tubular member having a lower end portion displaceable from the body member into the drilling fluid and an upper end portion with opposed fluid pressure force areas thereon being in fluid communication with the drilling fluid flow such that forces due to the drilling fluid acting on the pressure pulse valve member are balanced in a longitudinal direction.

Peppers, J.M.; Shaikh, F.A.

1986-12-09T23:59:59.000Z

311

Limitations of extended reach drilling in deepwater  

E-Print Network [OSTI]

As the worldwide search for hydrocarbons continues into the deepwater of the oceans, drilling extended reach wells have helped to drain the fields in the most cost effective way, thus providing the oil and gas industry the cushion to cope...

Akinfenwa, Akinwunmi Adebayo

2012-06-07T23:59:59.000Z

312

Marine bearing for a downhole drilling apparatus  

SciTech Connect (OSTI)

A bearing supports a rotatable shaft in a fluid environment. The bearing can be utilized to support a drive shaft connected to a drill bit in a downhole drilling apparatus. The drive shaft extends through a housing in which drilling fluid is flowing. Preferably, the bearing includes an inner elastomeric sleeve and an outer rigid sleeve attached to the interior side wall of the housing. The drive shaft has a wear sleeve attached for rotation therewith. The wear sleeve is rotatably received in the bearing inner sleeve. The inner sleeve is relatively short as compared with the drive shaft and absorbs radial loads imposed on the drive shaft. The bearing is lubricated by a portion of the drilling fluid in the housing which flows between the exterior side wall of the wear sleeve and the interior side wall of the inner sleeve.

Beimgraben, H.W.

1984-07-31T23:59:59.000Z

313

Formation damage in underbalanced drilling operations  

E-Print Network [OSTI]

Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation...

Reyes Serpa, Carlos Alberto

2012-06-07T23:59:59.000Z

314

Handbook of Best Practices for Geothermal Drilling  

Broader source: Energy.gov [DOE]

This handbook focuses on the complex process of drilling a geothermal well, including techniques and hardware that have proven successful for both direct use and electricity generation around the world.

315

Fort Bliss exploratory slimholes: Drilling and testing  

SciTech Connect (OSTI)

During November/96 to April/97 Sandia National Laboratories provided consulation, data collection, analysis and project documentation to the U.S. Army for a series of four geothermal exploratory slimholes drilled on the McGregor Range approximately 25 miles north of El Paso, Texas. This drilling was directed toward evaluating a potential reservoir for geothermal power generation in this area, with a secondary objective of assessing the potential for direct use applications such as space heating or water de-salinization. This report includes: representative temperature logs from the wells; daily drilling reports; a narrative account of the drilling and testing; a description of equipment used; a summary and preliminary interpretation of the data; and recommendations for future work.

Finger, J.T.; Jacobson, R.D.

1997-12-01T23:59:59.000Z

316

HP-41CV applied drilling engineering manual  

SciTech Connect (OSTI)

Contents of this manual are as follows: average diameter of an open hole; pump cycle, pump factor, and annulus capacity; drilling-time and penetration rate predictions; nozzle selection; direction well survey; viscosity of drilling fluids; barite requirements with solids dilution; solids analysis and recommended flow properties; evaluation of hydrocyclones; frictional pressure loss; surge and swab pressures; pressure and average density of a gas column; cement additive requirements; kick tolerance, severity, length and density; and pump pressure schedule for well control operations.

Chenevert, M.; Williams, F.; Hekimian, H.

1983-01-01T23:59:59.000Z

317

Hot clamp design for LMFBR piping systems  

SciTech Connect (OSTI)

Thin-wall, large-diameter piping for liquid metal fast breeder reactor (LMFBR) plants can be subjected to significant thermal transients during reactor scrams. To reduce local thermal stresses, an insulated cold clamp was designed for the fast flux test facility and was also applied to some prototype reactors thereafter. However, the cost minimization of LMFBR requires much simpler designs. This paper presents a hot clamp design concept, which uses standard clamp halves directly attached to the pipe surface leaving an initial gap. Combinations of flexible pipe and rigid clamp achieved a self-control effect on clamp-induced pipe stresses due to the initial gap. A 3-D contact and inelastic history analysis were performed to verify the hot clamp concept. Considerations to reduce the initial stress at installation, to mitigate the clamp restraint on the pipe expansion during thermal shocks, and to maintain the pipe-clamp stiffness desired during a seismic event were discussed.

Kobayashi, T.; Tateishi, M. (Nippon MARC Co., Ltd., Tokyo (Japan))

1993-02-01T23:59:59.000Z

318

Piping inspection carriage having axially displaceable sensor  

DOE Patents [OSTI]

A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

Zollinger, William T. (Martinez, GA); Treanor, Richard C. (Augusta, GA)

1994-01-01T23:59:59.000Z

319

AMF Deployment, Niamey, Niger, West Africa  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

West Africa West Africa Niamey Deployment AMF Home Niamey Home Data Plots and Baseline Instruments RADAGAST Website Rainfall Record (PDF) Publications List, (PDF) Experiment Planning RADAGAST Proposal Outreach Fact Sheets RADAGAST (PDF) Annual Climate Cycle in Niger, Africa (PDF) Posters AMF Poster, French Version We're Going to Sample the Sky in Africa! News Campaign Images AMMA International News AMF Deployment, Niamey, Niger, West Africa In 2006, the ARM Mobile Facility is collecting cloud and atmospheric property measurements from a location near the airport in Niamey, Niger, West Africa. Main Site: 13° 28' 39.15" N, 2° 10' 27.62" E Altitude: 205 meters Ancillary Site: 13° 31' 19.14" N, 2° 37' 56.46" E Altitude: 228.29 meters In January 2006, the second deployment of the ARM Mobile Facility (AMF)

320

AMF Deployment, Point Reyes National Seashore, California  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California California Point Reyes Deployment AMF Home Point Reyes Home Data Plots and Baseline Instruments Experiment Planning MASRAD Proposal Abstract and Related Campaigns Outreach Posters Climate Research at Point Reyes National Seashore (horizontal) Climate Research at Point Reyes National Seashore (vertical) News Campaign Images AMF Deployment, Point Reyes National Seashore, California Point Reyes National Seashore, on the California coast north of San Francisco. Shelters: 38° 5' 30.51" N, 122° 57' 19.90" W Instrument Field: 38° 5' 27.6" N, 122° 57' 25.80" W Altitude: 8 meters Point Reyes National Seashore, on the California coast north of San Francisco, was the location of the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The ARM

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Greensburg, Kansas, Deployment Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Greensburg, Kansas, Deployment Project Greensburg, Kansas, Deployment Project Greensburg, Kansas, Deployment Project November 13, 2013 - 10:40am Addthis The U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) have helped Greensburg, Kansas, rebuild as a model green community. On May 4, 2007, a tornado destroyed or damaged 95% of the town's homes and businesses. Greensburg turned disaster into opportunity and created a plan to rebuild as a sustainable community with the help of a diverse group of experts, including DOE and NREL. To help make Greensburg's vision of rebuilding green a reality, DOE and NREL focused on the specific areas listed below. You can also read more in the fact sheet: A Tale of Two Cities: Greensburg Rebuilds as a National Model for Green Communities.

322

Electric Vehicle Charging Infrastructure Deployment Guidelines: British  

Open Energy Info (EERE)

Electric Vehicle Charging Infrastructure Deployment Guidelines: British Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia Agency/Company /Organization: Natural Resources Canada, British Columbia Hydro and Power Authority Focus Area: Vehicles Topics: Best Practices Website: www.bchydro.com/etc/medialib/internet/documents/environment/EVcharging A major component of winning public acceptance for plug-in vehicles is the streamlining of the private electric vehicle charging or supply equipment permitting and installation process as well as the public and commercial availability of charging locations. These guidelines are intended to anticipate the questions and requirements to ensure customer satisfaction.

323

NREL: Technology Deployment - State and Local Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Search More Search Options Site Map NREL helps states and local communities throughout the United States achieve their clean energy goals by supporting renewable energy and energy-saving projects through a variety of technical assistance and technology deployment programs. Analyze Energy Policy Impacts Analyze Energy Policy Impacts Find data to help your state, locality, or region establish beneficial clean energy policies. Learn more. Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player. Technical Assistance Webcast Experts present information on state and local energy projects, financing, policy and more... Renewable Energy Data Book NREL's Cean Energy Policy Analyses Project State of the States 2010 The role of policy in clean energy market transformation

324

Regional Energy Deployment System (ReEDS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Energy Deployment Regional Energy Deployment System (ReEDS) Walter Short, Patrick Sullivan, Trieu Mai, Matthew Mowers, Caroline Uriarte, Nate Blair, Donna Heimiller, and Andrew Martinez Technical Report NREL/TP-6A20-46534 December 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Regional Energy Deployment System (ReEDS) Walter Short, Patrick Sullivan, Trieu Mai, Matthew Mowers, Caroline Uriarte, Nate Blair, Donna Heimiller, and Andrew Martinez Prepared under Task Nos. DOCC.1014, SS10.2210,

325

Demonstration and Deployment Successes: Sapphire Integrated Algal Biorefinery  

Broader source: Energy.gov [DOE]

Demonstration and Deployment Successes Jaime Moreno, Vice President of Projects, Sapphire Energy, Inc.

326

Chapter 2 - Offshore Oil and Gas Drilling Engineering and Equipment  

Science Journals Connector (OSTI)

Abstract This chapter introduces the drilling engineering and equipment in the field of offshore oil and gas.It starts by introducing the drilling platform used in the offshore oil and gas. Then it presents the wellhead and wellhead devices used in the offshore oil and gas. After these two, it begins to introduce the drilling engineer including preparation, working procedure, well completion and so on. Finally, it roughly introduces the new technology in drilling and new drilling rig nowadays.

Huacan Fang; Menglan Duan

2014-01-01T23:59:59.000Z

327

Federal Energy Management Program: Federal Technology Deployment Working  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Deployment Working Group Technology Deployment Working Group Energy Department Announces Interagency Committee to Increase Use of Clean Energy Technologies in Federal Facilities The Senior Executive Committee for Technology Deployment, a subcommittee of the Interagency Technology Deployment Working Group, brings together leaders of technology deployment programs from across the federal government to implement the Obama Administration's comprehensive strategy to reduce energy costs in agency facilities, while boosting American competitiveness in the global clean energy race. Learn more. Technology Briefs Boiler Combustion Control and Monitoring System Doing Time under the Sun Wireless Sensor Networks for Data Centers The Federal Technology Deployment Working Group helps Federal agencies evaluate and deploy new and underutilized technologies.

328

ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS  

E-Print Network [OSTI]

on alternate drilling energy sources which can make entire drilling process economic and environmentally friendly. One of the major ways to reduce the footprint of drilling operations is to provide more efficient power sources for drilling operations...

Verma, Ankit

2010-07-14T23:59:59.000Z

329

Laser Drilling - Drilling with the Power of Light  

SciTech Connect (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation prototype tool. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Brian C. Gahan; Samih Batarseh

2005-09-28T23:59:59.000Z

330

Stress analysis of piping elbows  

SciTech Connect (OSTI)

The problem undertaken in this paper is the investigation of the stresses generated in circular piping elbows of variable thickness, under the influence of uniform internal pressure. It is observed now that the material region and the imposed loading conform to the same axial symmetry. This fact strongly suggests the employment of toroidal coordinates and the Boussinesq-Papkovitch-Neuber (BPN) potential function approach towards obtaining the solution to the above posed problem. The results obtained by this BPN approach are compared with the numerical solution generated by a boundary integral equation approach. The comparison yields a good agreement.

Choi, J.; Rentzepis, G.M. [Georgia Inst. of Tech., Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

1996-12-31T23:59:59.000Z

331

Preserving Privacy in RFID Deployment RVSOcc0401  

E-Print Network [OSTI]

Preserving Privacy in RFID Deployment RVS­Occ­04­01 RVS, Faculty of Technology, University that can preserve privacy. Background RFID technology has its roots in early ``friend or foe'' detection of Bielefeld Jan E. Hennig # Bielefeld, 2004­03­23 Radio Frequency Identification, RFID, is an item

Ladkin, Peter B.

332

Drilling Optimization Utilizing Surface Instrumentaton for Downhole Event Recognition  

SciTech Connect (OSTI)

This DOE project was undertaken to develop and test an instrumented data-acquisition sub that is mounted in a drill string below the top drive and used to detect downhole events. Data recorded at the surface during drilling operations would then be processed and presented to the driller to discern undesirable drilling conditions and help optimize drilling rates and maximize the life of components in the BHA. This instrumented sub was originally conceived and developed solely as a single-point collection center for rig data that would be used in a number of Noble's products. The sub was designed to collect hook load, rotary torque, rotary speed, rotary position, drill pipe pressure, mud temperature, triaxial vibration, and triaxial magnetometer data. The original design and fabrication was by Sandia National Labs under Noble's direction, which was then tested with Sandia's diagnostics-while-drilling downhole package. After initial results were analyzed, the team surmised that important information describing performance and condition of the bottom-hole assembly (BHA) was embedded in the data recorded by the instrumented sub, and began investigating the potential of using surface measurements from the sub to highlight problems occurring downhole before they could be discerned by the driller. Later, a proposal was submitted to DOE for funding to more broadly investigate use of the system for detecting downhole problems while drilling. Soon after DOE awarded this contract, the Noble team responsible for the previous developments was disbanded and their work terminated (due to factors unrelated to the sub development). This change halted the complementary work that Noble had planned to conduct during the DOE project, and necessitated that all the development work be completed by the DOE project. More effort was expended on the project to develop a field-ready prototype than was originally foreseen. The sub's design had to be significantly modified during the project based on results of field tests. The original slip ring for communication was replaced with a radio link, which makes the sub easier to move to different rigs and simplifies the set-up process. In addition, the sub's previous design would prevent it being used on oil and gas rigs due to potential explosion hazard. The sub was redesigned so that during operation all electrical components on the sub are under a blanket of nitrogen. A pressure switch is used so that, should a leak develop, the sub will shut itself down until any problems are repaired. A total of four series of field tests were conducted. The first (mentioned above) was part of the original Noble-sponsored program and in conjunction with Sandia's diagnostics-while-drilling system. Although these tests highlighted important problems, they showed significant promise for the concept, and the sub was returned to Sandia for early repairs and modifications. After the DOE project took possession of the sub, it was tested three more times in the field. The first two DOE tests had the same objective, which was to establish that the sub could function correctly on the rig and deliver usable data, and to develop procedures for setting up and operating the sub and support computer on a rig. During the first test most of the time was spent troubleshooting the sub. Several significant problems were revealed, demonstrating that the current design was not robust enough to survive typical oil field operations. The sub was then redesigned to increase its robustness and allow it to run safely in areas where explosive gases might be present. Once these changes were implemented, the sub was sent to a second shake-down field test. The new design was found to be greatly improved. The sub operated throughout the test, and quality of the data was significantly higher. Near the end of this project, a final field test was conducted with the objective of creating (or simulating) specific problem conditions and recording data to determine if signatures could be recorded and identified that, after analysis, might signify particula

John H. Cohen; Greg Deskins

2006-02-01T23:59:59.000Z

333

Underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents [OSTI]

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

Hampel, Viktor E. (Pleasanton, CA)

1989-01-01T23:59:59.000Z

334

An underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents [OSTI]

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

Hampel, V.E.

1988-05-17T23:59:59.000Z

335

Method and apparatus of assessing down-hole drilling conditions  

DOE Patents [OSTI]

A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

2007-04-24T23:59:59.000Z

336

Asymptotic scaling in turbulent pipe flow  

Science Journals Connector (OSTI)

...obtained in industrial piping such as a transcontinental natural gas pipelines. D is the pipe diameter and is the volume-averaged...Marati, N , C.M Casciola, and R Piva2004Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech...

2007-01-01T23:59:59.000Z

337

Heat pipe with embedded wick structure  

DOE Patents [OSTI]

A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.

Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.

1998-06-23T23:59:59.000Z

338

Dual, rotating stripper rubber drilling head  

SciTech Connect (OSTI)

In a drilling head for a well bore through which a tool string of varying outside diameter is run, the drilling head sealing against fluid flow past the tool string to divert such fluid through a side outlet port, said drilling head including a housing having an axial passageway through which the tool string is run and a bearing assembly to facilitate rotation of the tool string within the axial passageway, the improved drilling head comprising: first and second stripper rubbers rotatably mounted within the drilling head housing in seating contact with the tool string, said stripper rubbers having substantially identical inner diameters through which the tool string extends, said first stripper rubber formed of an abrasive resistant material to divert fluid flow from the axial passageway of the housing to the side outlet port and said second stripper rubber formed on a sealingly resilient material which maintains sealing contact with the tool string extending there through preventing fluid flow past said tool string; said first stripper rubber being corrected to clamping means associated with the bearing assembly through a first drive ring such that said first stripper rubber rotates with the tool string; and said second stripper rubber is rotatably connected to said clamping means associated with the bearing assembly through a second drive ring, said first and second drive rings coaxially mounted within the housing whereby said first stripper rubber is positioned axially below said second stripper rubber in sealing contact with the tool string.

Bailey, T.F.; Campbell, J.E.

1993-05-25T23:59:59.000Z

339

Stability analysis of pipe racks for industrial facilities.  

E-Print Network [OSTI]

??Pipe rack structures are used extensively throughout industrial facilities worldwide. While stability analysis is required in pipe rack design per the AISC Specification for Structural (more)

Nelson, David Aaron

2012-01-01T23:59:59.000Z

340

Effect of nanofluids on thermal performance of heat pipes.  

E-Print Network [OSTI]

?? A relatively new way for utilizing the thermal performance of heat pipes is to use nanofluids as working fluids in the heat pipes. Heat (more)

Ferizaj, Drilon

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Federal Technology Deployment Working Group | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technologies » Technology Deployment » Federal Technology Technologies » Technology Deployment » Federal Technology Deployment Working Group Federal Technology Deployment Working Group October 7, 2013 - 9:11am Addthis Energy Department Announces Interagency Committee to Increase Use of Clean Energy Technologies in Federal Facilities The Senior Executive Committee for Technology Deployment, a subcommittee of the Interagency Technology Deployment Working Group, brings together leaders of technology deployment programs from across the federal government to implement the Obama Administration's comprehensive strategy to reduce energy costs in agency facilities, while boosting American competitiveness in the global clean energy race. Learn more. The Federal Technology Deployment Working Group helps Federal agencies evaluate and deploy new and underutilized technologies.

342

SunShot Initiative: High Penetration Solar Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Penetration Solar Deployment High Penetration Solar Deployment to someone by E-mail Share SunShot Initiative: High Penetration Solar Deployment on Facebook Tweet about SunShot Initiative: High Penetration Solar Deployment on Twitter Bookmark SunShot Initiative: High Penetration Solar Deployment on Google Bookmark SunShot Initiative: High Penetration Solar Deployment on Delicious Rank SunShot Initiative: High Penetration Solar Deployment on Digg Find More places to share SunShot Initiative: High Penetration Solar Deployment on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Research, Development, & Demonstration Competitive Awards Solar Utility Networks: Replicable Innovations in Solar Energy High Penetration Solar Deployment Grid Integration Advanced Concepts

343

Support for Offshore Oil and Gas Drilling among the California Public  

E-Print Network [OSTI]

of support for offshore oil drilling that accompanied thein Support for Offshore Oil Drilling The earliest FieldPoll question about offshore oil drilling was asked in 1977.

Smith, Eric R.A.N.

2003-01-01T23:59:59.000Z

344

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network [OSTI]

Abstract: Offshore oil drilling has been controversial inCalifornia for decades. Oil drilling in national forests hasopinion regarding oil drilling in California's forests. We

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

345

Hydrogen Piping Experience in Chevron Refining  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Piping Piping Experience in Chevron Refining Ned Niccolls Materials Engineer Chevron Energy Technology Company Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Outline 2 Overall perspectives from long term use of hydrogen piping in refining. Piping specifications and practices. The (few) problem areas. Related industry work: American Petroleum Institute corrosion and materials work on high temperature hydrogen attack. Overall Perspectives 3 Few problems with hydrogen piping operating at ambient to at least 800F and pressures up to at least 3000psia as long as we stay within well- defined limits H2S contamination presents many more problems, beyond the scope of this talk We will note a couple of specific vulnerabilities Refining tracks materials performance in

346

Pipe supports and anchors - LMFBR applications  

SciTech Connect (OSTI)

Pipe design and support design can not be treated as separate disciplines. A coordinated design approach is required if LMFBR pipe system adequacy is to be achieved at a reasonable cost. It is particularly important that system designers understand and consider those factors which influence support train flexibility and thus the pipe system dynamic stress levels. The system approach must not stop with the design phase but should continue thru the erection and acceptance test procedures. The factors that should be considered in the design of LMFBR pipe supports and anchors are described. The various pipe support train elements are described together with guidance on analysis, design and application aspects. Post erection acceptance and verification test procedures are then discussed.

Anderson, M.J.

1983-06-01T23:59:59.000Z

347

Ultrasonic guided waves in eccentric annular pipes  

SciTech Connect (OSTI)

This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modes in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.

Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu [Centre for NDE, Indian Institute of Technology - Madras Chennai 600036, T. N. (India)

2014-02-18T23:59:59.000Z

348

Precision micro drilling with copper vapor lasers  

SciTech Connect (OSTI)

The authors have developed a copper vapor laser based micro machining system using advanced beam quality control and precision wavefront tilting technologies. Micro drilling has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratio up to 1:40 have been consistently drilled on a variety of metals with good quality. For precision trepanned holes, the hole-to-hole size variation is typically within 1% of its diameter. Hole entrance and exit are both well defined with dimension error less than a few microns. Materialography of sectioned holes shows little (sub-micron scale) recast layer and heat affected zone with surface roughness within 1--2 microns.

Chang, J.J.; Martinez, M.W.; Warner, B.E.; Dragon, E.P.; Huete, G.; Solarski, M.E.

1994-09-02T23:59:59.000Z

349

Drop pressure optimization in oil well drilling  

Science Journals Connector (OSTI)

In this research work we are interested in minimizing losses existing when drilling an oil well. This would essentially improve the load losses by acting on the rheological parameters of the hydraulic and drilling mud. For this rheological tests were performed using a six-speed rotary viscometer (FANN 35). We used several rheological models to accurately describe the actual rheological behavior of drilling mud oil-based according to the Pearson's coefficient and to the standard deviation. To model the problem we established a system of equations that describe the essential to highlight purpose and various constraints that allow for achieving this goal. To solve the problem we developed a computer program that solves the obtained equations in Visual Basic language system. Hydraulic and rheological calculation was made for in situ application. This allowed us to estimate the distribution of losses in the well.

2014-01-01T23:59:59.000Z

350

Directional Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

Directional Drilling Systems Directional Drilling Systems Jump to: navigation, search Geothermal ARRA Funded Projects for Directional Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":14,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

351

PNNL Technology Planning and Deployment Group | Open Energy Information  

Open Energy Info (EERE)

Planning and Deployment Group Planning and Deployment Group (Redirected from Technology Planning and Deployment) Jump to: navigation, search Logo: Technology Planning and Deployment Name Technology Planning and Deployment Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tpd.pnl.gov/ References Technology Planning and Development [1] "The Technology Planning & Deployment (TP&D) group is part of the Pacific Northwest National Laboratory's (PNNL's) Energy and Environment Directorate. TP&D staff provide customers with a unique combination of experience and expertise with capabilities in economics and regulatory analysis, systems engineering, marketing, technology adaptation and application, policy analysis, and project management."[1]

352

Average deployments versus missile and defender parameters  

SciTech Connect (OSTI)

This report evaluates the average number of reentry vehicles (RVs) that could be deployed successfully as a function of missile burn time, RV deployment times, and the number of space-based interceptors (SBIs) in defensive constellations. Leakage estimates of boost-phase kinetic-energy defenses as functions of launch parameters and defensive constellation size agree with integral predictions of near-exact calculations for constellation sizing. The calculations discussed here test more detailed aspects of the interaction. They indicate that SBIs can efficiently remove about 50% of the RVs from a heavy missile attack. The next 30% can removed with two-fold less effectiveness. The next 10% could double constellation sizes. 5 refs., 7 figs.

Canavan, G.H.

1991-03-01T23:59:59.000Z

353

Deployment Effects of Marin Renewable Energy Technologies  

SciTech Connect (OSTI)

Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The projects scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industrys development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nom

Brian Polagye; Mirko Previsic

2010-06-17T23:59:59.000Z

354

Metals Production Requirements for Rapid Photovoltaics Deployment  

E-Print Network [OSTI]

If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. In this paper, we quantify the effect of PV deployment levels on the scale of metals production. For example, we find that if cadmium telluride {copper indium gallium diselenide} PV accounts for more than 3% {10%} of electricity generation by 2030, the required growth rates for the production of indium and tellurium would exceed historically-observed production growth rates for a large set of metals. In contrast, even if crystalline silicon PV supplies all electricity in 2030, the required silicon production growth rate would fall within the historical range. More generally, this paper highlights possible constraints to the rate of scaling up metals production for some PV technologies, and outlines an approach to assessing projected metals growth requirements against an ensemble of past growth rates from across the metals production sector. The framework developed in this paper may be...

Kavlak, Goksin; Jaffe, Robert L; Trancik, Jessika E

2015-01-01T23:59:59.000Z

355

Independent Statistics & Analysis Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Independent Statistics & Analysis Independent Statistics & Analysis Drilling Productivity Report The six regions analyzed in this report accounted for nearly 90% of domestic oil production growth and virtually all domestic natural gas production growth during 2011-12. December 2013 For key tight oil and shale gas regions U.S. Energy Information Administration Contents Year-over-year summary 2 Bakken 3 Eagle Ford 4 Haynesville 5 Marcellus 6 Niobrara 7 Permian 8 Explanatory notes 9 Sources 10 Bakken Marcellus Niobrara Haynesville Eagle Ford Permian U. S. Energy Information Administration | Drilling Productivity Report 0 400 800 1,200 1,600 2,000 Bakken Eagle Ford Haynesville

356

Delaware-Val Verde gas drilling busy  

SciTech Connect (OSTI)

Deep and not so deep exploration is under way in the southeastern Delaware and northwestern Val Verde basins in West Texas. Northern Terrell County is seeing a good agenda of Permian Wolfcamp development drilling in spite of testy gas prices. This paper reports that none of the drilling appears to be targeted to Ouachita facies along the Marathon portion of the Ouachita Overthrust, although oil production from several of those fields has been respectable. And a number of exploratory tests to 20,000 ft and deeper are under way or on tap in eastern Pecos County and Terrell County.

Petzet, G.A.

1992-01-13T23:59:59.000Z

357

Oil and gas drilling despoils Alaska environment  

Science Journals Connector (OSTI)

Oil and gas drilling despoils Alaska environment ... Oil and gas development on Alaska's North Slope is causing "alarming environmental problems," accompanied by "a disturbing record of industry compliance with environmental laws and regulations," charges a report just released jointly by Trustees for Alaska, the Natural Resources Defense Council, and the National Wildlife Federation. ... Further oil development in the Arctic should be frozen until the environment is safeguarded, NRDC says, rather than yielding to lobbying in Congress to open the Arctic National Wildlife Refuge to drilling. ...

1988-02-01T23:59:59.000Z

358

Dictionary of petroleum exploration, drilling, and production  

SciTech Connect (OSTI)

This book contains more than 20,000 definitions of oil exploration, drilling, and production terms, making this dictionary mandatory for both the experienced industry professional and the nontechnical person. Completing this comprehensive reference are more than 500 detailed illustrations. Appendices include a rotary rig diagram, a cable tool drilling rig, a beam pumping unit, giant oil fields of the world, giant oil, and gas fields of the United States and Canada, a geological time chart, geological map symbols, conversion factors, the Greek alphabet atomic weights and numbers, charts of the geological features of the United States and Canada, plus much, much more.

Hyne, N.J.

1991-01-01T23:59:59.000Z

359

Drilling slated to resume in Honduras  

SciTech Connect (OSTI)

Considered to have major oil reserve potential, yet sparsely explored, the onshore Mosquitia basin and its offshore sector are attracting operators back to Honduras who may drill on a level not seen since the mid-1970s. Exploratory drilling is scheduled to resume after a five-hear hiatus. After concluding seismic shooting on its Brus Laguna concession is eastern Honduras, Houston-based Bonavista Oil and Mining Corporation plans to spud the first of three wildcats to test the Mosquitia by next summer.

Kaya, W.; Abraham, K.S.

1989-01-01T23:59:59.000Z

360

Regional Effort to Deploy Clean Coal Technologies  

SciTech Connect (OSTI)

The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

2009-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Remotely deployable aerial inspection using tactile sensors  

SciTech Connect (OSTI)

For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

MacLeod, C. N.; Cao, J.; Pierce, S. G.; Dobie, G.; Summan, R. [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Sullivan, J. C.; Pipe, A. G. [Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY (United Kingdom)

2014-02-18T23:59:59.000Z

362

Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)  

SciTech Connect (OSTI)

This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

2000-02-01T23:59:59.000Z

363

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas  

SciTech Connect (OSTI)

A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger, and out through the holes in the bottom of the auger into the potentially hazardous area.

McCormick, S.H.; Pigott, W.R.

1998-04-01T23:59:59.000Z

364

ADEPT. aerosol deposition in cylindrical pipes  

SciTech Connect (OSTI)

ADEPT calculates the deposition of aerosols in straight cylindrical pipes during turbulent air flow. Aerosol deposition is calculated in a time-dependent manner based on empirical correlations for turbulent flow in pipes. The calculated deposition during a single time interval is cumulative with that of previous time intervals and results in a decreasing inner diameter of the pipe. The calculated deposition is assumed uniform over the length of the pipe. The entering aerosol distribution is specified by the user in the form of a log-normal distribution of accumulated mass versus particle size and may be time dependent. Entering flow conditions are also specified by the user and may also be time dependent. For simplicity and generality, the geometry implicit in the program is that of a cylindrical pipe with no bends or fittings. The flow is turbulent and monodirectional; only one set of inlet conditions may be applied at a given time. The flow parameters are not calculated along the length of pipe; therefore, the dynamic behavior of the aerosol within the pipe as well as the effects of reentrainment cannot be determined explicitly. A typical problem requires 2 minutes of CPU time.

Fazekas, P.; Tewarson, S.C (Burns and Roe, Oradell, NJ (United States))

1985-01-01T23:59:59.000Z

365

ADEPT. Aerosol Deposition in Cylindrical Pipes  

SciTech Connect (OSTI)

ADEPT calculates the deposition of aerosols in straight cylindrical pipes during turbulent air flow. Aerosol deposition is calculated in a time-dependent manner based on empirical correlations for turbulent flow in pipes. The calculated deposition during a single time interval is cumulative with that of previous time intervals and results in a decreasing inner diameter of the pipe. The calculated deposition is assumed uniform over the length of the pipe. The entering aerosol distribution is specified by the user in the form of a log-normal distribution of accumulated mass versus particle size and may be time dependent. Entering flow conditions are also specified by the user and may also be time dependent. For simplicity and generality, the geometry implicit in the program is that of a cylindrical pipe with no bends or fittings. The flow is turbulent and monodirectional; only one set of inlet conditions may be applied at a given time. The flow parameters are not calculated along the length of pipe; therefore, the dynamic behavior of the aerosol within the pipe as well as the effects of reentrainment cannot be determined explicitly. A typical problem requires 2 minutes of CPU time.

Fazekas, P.; Tewarson, S.C [Burns and Roe, Oradell, NJ (United States)

1985-01-01T23:59:59.000Z

366

Oil-Based Drilling Fluids: Are they an Environmental Risk?  

Science Journals Connector (OSTI)

The use of oil-based drilling fluids has been discouraged in hydrocarbon exploration ... and production in the marine environment but these drilling fluids are presently being used to a ... Sea have demonstrated ...

F. Payne Jerry; L. Fancey; J. Kiceniuk

1987-01-01T23:59:59.000Z

367

Potential use of hollow spheres in dual gradient drilling  

E-Print Network [OSTI]

The increasing number of significant deepwater discoveries has pushed the operator and service oil companies to focus their efforts on developing new technologies to drill in deeper water. Dual gradient drilling (DGD) will allow reaching deeper...

Vera Vera, Liliana

2012-06-07T23:59:59.000Z

368

RECENT DEVELOPMkNTS 1N GEOTHERMAC DRILLING FLUIDS  

Office of Scientific and Technical Information (OSTI)

logging Trouble-free drilling was experience 7,916 feet where a twist-off occurred. The fish was recovered without difficulty and drilling resumed. Mud circul ed from the bottom of...

369

DOE and Navy Collaborate on Geothermal Drilling Technology |...  

Energy Savers [EERE]

PDC drill bit is being re-evaluated and improved to reduce the cost of drilling for geothermal energy. To read the Sandia Labs news release, click on the link below:...

370

Geotechnical Drilling in New-Zealand | Open Energy Information  

Open Energy Info (EERE)

Zealand Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Geotechnical Drilling in New-Zealand Author SonicSampDrill Published Publisher Not Provided,...

371

NNSA Small Business Week Day 2: United Drilling, Inc. | National...  

National Nuclear Security Administration (NNSA)

Inc., a small minority-owned business based in Roswell, N.M. United Drilling drills oil, gas, water, geothermal, and environmental wells throughout the southwestern U.S. The...

372

Oil and Gas Well Drilling | Open Energy Information  

Open Energy Info (EERE)

Not Provided Check for DOI availability: http:crossref.org Online Internet link for Oil and Gas Well Drilling Citation Jeff Tester. 2011. Oil and Gas Well Drilling. NA. NA....

373

NREL: Regional Energy Deployment System (ReEDS) Model - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Energy Deployment System (ReEDS) Model Energy Analysis ReEDS Regional Energy Deployment System Model Regional Energy Deployment System (ReEDS) Model Energy Analysis ReEDS Regional Energy Deployment System Model Search More Search Options Site Map Printable Version Publications The following are publications - including technical reports, journal articles, conference papers, and posters - focusing on the Wind Deployment System (WinDS) and Regional Energy Deployment System (ReEDS) models. Technical Reports Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M. (2013). Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions. 55 pp.; NREL Report No. TP-6A20-55836. Martinez, A.; Eurek, K.; Mai, T.; Perry, A. (2013). Integrated Canada-U.S. Power Sector Modeling with the Regional Energy Deployment System (ReEDS).

374

SunShot Initiative: Deployable Commercial Rooftop Solar Electric System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployable Commercial Rooftop Deployable Commercial Rooftop Solar Electric System to someone by E-mail Share SunShot Initiative: Deployable Commercial Rooftop Solar Electric System on Facebook Tweet about SunShot Initiative: Deployable Commercial Rooftop Solar Electric System on Twitter Bookmark SunShot Initiative: Deployable Commercial Rooftop Solar Electric System on Google Bookmark SunShot Initiative: Deployable Commercial Rooftop Solar Electric System on Delicious Rank SunShot Initiative: Deployable Commercial Rooftop Solar Electric System on Digg Find More places to share SunShot Initiative: Deployable Commercial Rooftop Solar Electric System on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Research, Development, & Demonstration Competitive Awards Solar Utility Networks: Replicable Innovations in Solar Energy

375

Energy Department Invests More Than $7 Million to Deploy Tribal...  

Office of Environmental Management (EM)

Invests More Than 7 Million to Deploy Tribal Clean Energy Energy Department Invests More Than 7 Million to Deploy Tribal Clean Energy November 20, 2013 - 12:00am Addthis The...

376

Dynamic instabilities imparted by CubeSat deployable solar panels  

E-Print Network [OSTI]

In this work, multibody dynamics simulation was used to investigate the effects of solar panel deployment on CubeSat attitude dynamics. Nominal and partial/asymmetric deployments were simulated for four different solar ...

Peters, Eric David

2014-01-01T23:59:59.000Z

377

Nationwide: Slashing Red Tape To Speed Solar Deployment for Homes...  

Energy Savers [EERE]

Slashing Red Tape To Speed Solar Deployment for Homes and Businesses Nationwide: Slashing Red Tape To Speed Solar Deployment for Homes and Businesses January 24, 2014 - 12:00am...

378

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...  

Energy Savers [EERE]

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am...

379

Notice of Intent: Deploying Solutions to Improve the Energy Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

Deploying Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings (FOA-0001168) Notice of Intent: Deploying Solutions to Improve the Energy Efficiency of U.S....

380

DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed...  

Broader source: Energy.gov (indexed) [DOE]

13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) This record from the DOE...

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0: Industry Deployed Fuel Cell Powered Lift Trucks DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks This program record from the U.S....

382

DOE Fuel Cell Technologies Office Record 14009: Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09: Industry Deployed Fuel Cell Backup Power (BuP) DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP) This program record from the U.S....

383

Pipe crawlers: Versatile adaptations for real applications  

SciTech Connect (OSTI)

A problem at the Savannah River Site requires the unique application of a pipe crawler. A number of stainless steel pipes buried in concrete require ultrasonic inspection of the heat affected zones of the welds for detection of flaws or cracks. The paper describes the utilization of an inch-worm motion pipe crawler which negotiates a 90 degree reducing elbow with significant changes in diameter and vertical sections before entering the area of concern. After a discussion of general considerations and problem description, special requirements to meet the objectives and the design approach regarding the tractor, control system, instrument carriage, and radiation protection are discussed. 2 refs., 11 figs. (MB)

Hapstack, M.; Talarek, T.R.

1990-01-01T23:59:59.000Z

384

Evaluation of high rotary speed drill bit performance  

E-Print Network [OSTI]

of this research was to develop a drilling model which would more accurately predict penetration rates with standard drilling parameters. An accurate model was developed using laboratory drilling performance. A secondary result of this research was a qualitative... analysis showed that the model may be used to qualita- tivelyy match drilled formations to offset well logs. The ratio of actual to predicted penetration rate was used in conjunction with the gamma ray log to correlate the location of formations. iv...

Ray, Randy Wayne

2012-06-07T23:59:59.000Z

385

A new type of whole oil-based drilling fluid  

Science Journals Connector (OSTI)

Abstract To meet the demand of ultra-deep well drilling and shale gas well drilling, organic clay and a oil-based filtrate reducer were developed and a whole oil-based drilling fluid formula was optimized. The performance of organic clay, oil-based filtrate reducer and the whole oil-based drilling fluid were evaluated in laboratory, and the whole oil-based drilling fluid was applied in drilling process for further test of its performance. Long carbon chain quaternary ammonium salt was used as modifying agents when synthesizing organobentonites. Oil-based filtrate reducer was synthesized with monomers of lignite and amine class. The laboratory tests show that the organic clay can effectively increase the viscosity of oil-based drilling fluid and the oil-based filtrate reducer can reduce the fluid loss. Their performances were better than additives of the same kind at home and abroad. The organic clay and oil-based filtrate reducer had great compatibility with the other additives in oil-based drilling fluid. Based on the optimal additives addition amount tests, the whole oil-based drilling fluid formula was determined and the test results show that the performances of the whole oil-based drilling fluids with various densities were great. The laboratory tests show that the oil-based drilling fluid developed was high temperature resistant, even at 200 C, as density varies from 0.90 to 2.0 g/cm3, it still held good performance with only a little fluid loss, good inhibition, great anti-pollution, and good reservoir protection performance. Field application result shows that the performance of the oil-based drilling fluid is stable with great ability to maintain wellbore stability and lower density than the water-based drilling fluid; drilling bits can be used much longer and the average penetration rate is increased; the oil-based drilling fluid can satisfy the drilling requirements.

Jiancheng LI; Peng YANG; Jian GUAN; Yande SUN; Xubing KUANG; Shasha CHEN

2014-01-01T23:59:59.000Z

386

Technology Development and Field Trials of EGS Drilling Systems  

Broader source: Energy.gov [DOE]

Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

387

Blind shaft drilling: The state of the art  

SciTech Connect (OSTI)

This report discusses the ``Art`` of blind shaft drilling which has been in a continual state of evolution at the Nevada Test Site (NTS) since the start of underground testing in 1957. Emplacement holes for nuclear devices are still being drilled by the rotary drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. Blind shaft drilling and tunnel construction technologies received increased emphasis with the signing of the LTBT in 1963.

Rowe, P.A.

1993-04-20T23:59:59.000Z

388

Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

A. M Smith; G. E. Matthern; R. H. Meservey

1998-11-01T23:59:59.000Z

389

Lessons Learned from Pit Viper System Deployment  

SciTech Connect (OSTI)

Tele-operated and robotic systems operated in unstructured field environments pose unique challenges for tool design. Since field tasks are not always well defined and the robot work area usually cannot be designed for ease of operation, the tools must be versatile. It's important to carefully consider the orientation of the grip the robot takes on the tool, as it's not easily changed in the field. The stiffness of the robot and the possibility of robot positioning errors encourages the use of non-contact or minimal-contact tooling. While normal hand tools can usually be modified for use by the robot, this is not always the most effective approach. It's desirable to have tooling that is relatively independent of the robot; in this case, the robot places the tool near the desired work location and the tool performs its task relatively independently. Here we consider the adaptation of a number of tools for cleanup of a radioactively contaminated piping junction and valve pit. The tasks to be considered are debris removal (small nuts and bolts and pipe up to 100 mm in diameter), size reduction, surface cleaning, and support of past practice crane-based methods for working in the pits.

Catalan, Michael A.; Alzheimer, James M.; Valdez, Patrick LJ; Bailey, Sharon A.; Baker, Carl P.

2002-04-11T23:59:59.000Z

390

Accelerating CHP Deployment, United States Energy Association (USEA), August 2011  

Broader source: Energy.gov [DOE]

An Industry Consultation by the United States Energy Association (USEA) on Accelerating Combined Heat and Power (CHP) Deployment

391

Readily Available Data Help to Overcome Geothermal Deployment...  

Energy Savers [EERE]

Articles Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development The National Geothermal Data System deploys free,...

392

OCEAN DRILLING PROGRAM LEG 178 PRELIMINARY REPORT  

E-Print Network [OSTI]

A I M E R This publication was prepared by the Ocean Drilling Program, Texas A&M University, USA, Internet: cowanea@appstate.edu) James Daniels, Sedimentologist (School of Earth Sciences, California 94025, USA, Internet: carlota@octopus.wr.usgs.gov) Andrew J. Evans, Physical Properties Specialist

393

OCEAN DRILLING PROGRAM LEG 162 PRELIMINARY REPORT  

E-Print Network [OSTI]

Jansen Co-Chief Scientist, Leg 162 Department of Geology, Section B University of Bergen Allegaten 41 N Drilling Program: Eystein Jansen, Co-Chief Scientist (Department of Geology, University of Bergen, Allegaten 41, N-5007 Bergen, Norway; E-mail: eystein.jansen@geol.uib.no) Maureen Raymo, Co-Chief Scientist

394

Optimising the reward of appraisal drilling  

SciTech Connect (OSTI)

Management of the uncertainties associated with the development of a hydrocarbon resource is essential to minimize economic risk. In many instances these uncertainties can only be reduced by appraisal drilling. This presentation illustrates the efforts being made to manage uncertainty by determining its impact on overall project profitability. The Value of Information (VOI) approach is described. VOI aims at quantifying the benefits of appraisal by determining its economic reward in terms of its contribution to a development plan which is economically robust over the uncertainty range. Appraisal drilling costs can be reduced by combining appraisal and development objectives in one well. The growing use of horizontal drilling technology has resulted in novel approaches to appraisal. As examples, in the Osprey and Brent Fields (UK North Sea) wells were designed to satisfy both appraisal and development objectives. In Osprey, a well was drilled from a central production platform to provide water injection support in a satellite structure while at the same time appraising the saddle area between the two structures. In Brent, horizontal wells are used to appraise and develop the so called slump blocks, characterized by being highly faulted and compartmentalized. Another increasingly common application of horizontal wells is for the flank appraisal of hydrocarbon bearing structure. Examples from the Rabi Field (Gabon) and Batan Field (Nigeria) show how appraisal was achieved by extending the reach of horizontal development wells from the central core of the structures.

Gdula, J.

1996-12-31T23:59:59.000Z

395

Optimising the reward of appraisal drilling  

SciTech Connect (OSTI)

Management of the uncertainties associated with the development of a hydrocarbon resource is essential to minimize economic risk. In many instances these uncertainties can only be reduced by appraisal drilling. This presentation illustrates the efforts being made to manage uncertainty by determining its impact on overall project profitability. The Value of Information (VOI) approach is described. VOI aims at quantifying the benefits of appraisal by determining its economic reward in terms of its contribution to a development plan which is economically robust over the uncertainty range. Appraisal drilling costs can be reduced by combining appraisal and development objectives in one well. The growing use of horizontal drilling technology has resulted in novel approaches to appraisal. As examples, in the Osprey and Brent Fields (UK North Sea) wells were designed to satisfy both appraisal and development objectives. In Osprey, a well was drilled from a central production platform to provide water injection support in a satellite structure while at the same time appraising the saddle area between the two structures. In Brent, horizontal wells are used to appraise and develop the so called slump blocks, characterized by being highly faulted and compartmentalized. Another increasingly common application of horizontal wells is for the flank appraisal of hydrocarbon bearing structure. Examples from the Rabi Field (Gabon) and Batan Field (Nigeria) show how appraisal was achieved by extending the reach of horizontal development wells from the central core of the structures.

Gdula, J.

1996-01-01T23:59:59.000Z

396

Russian techniques for more productive core drilling  

SciTech Connect (OSTI)

This is a short discussion of the trends and technology being used in Russia to increase the production of core drilling. The currently used rigs are given with the plans for improvement in drive methods and to reduce trip time in the recovery of cores. The recommendations by the Russians to improve the core recovery quality and quantity are also given.

Not Available

1984-09-01T23:59:59.000Z

397

OCEAN DRILLING PROGRAM LEG 160 PRELIMINARY REPORT  

E-Print Network [OSTI]

of this report can be found on the ODP Publications Home Page on the World Wide Web at http Consortium for the Ocean Drilling Program (Belgium, Denmark, Finland, Greece, Iceland, Italy, The Netherlands, Budapestlaan 4, 3584 CD Utrecht, The Netherlands; E-mail: gdelange@earth.ruu.nl) Enrico Di Stefano (De

398

Dry Pipe Sprinkler Piping Replacement Project (4588), 4/30/2012  

Broader source: Energy.gov (indexed) [DOE]

Pipe System Sprinkler Piping Replacement Projects (4588) Pipe System Sprinkler Piping Replacement Projects (4588) Program or Field Office: Y-12 Site Office Location(s) (City/County/State): Oak Ridge, Anderson County, Tennessee Proposed Action Description: Submit by E-mail The proposed action is to replace sections of dry pipe system sprinkler piping which include heads, hangers, fittings, and valves. Categorical Exclusion(s) Applied: 81.3- Routine maintenance For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, including the full text of each categorical exclusion, see Subpart D of I 0 CFR Part I 021. Regulatory Requirements in 10 CFR 1021.410(b): (See full text in regulation) [{Jrhe proposal fits within a class of actions that is listed in Appendix A orB to 10 CFR Part 1021, Subpart D.

399

Renewables and CHP Deployment in the UK January 2002  

E-Print Network [OSTI]

Renewables and CHP Deployment in the UK to 2020 Jim Watson January 2002 Tyndall Centre for Climate Change Research Working Paper 21 #12;Renewables and CHP Deployment in the UK to 2020 Jim Watson Energy....................................................................................................6 3. The Deployment of Renewables and CHP to 2020

Watson, Andrew

400

Surface control bent sub for directional drilling of petroleum wells  

DOE Patents [OSTI]

Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.

Russell, Larry R. (6025 Edgemoor, Suite C, Houston, TX 77081)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

KNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING  

E-Print Network [OSTI]

KNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING Combining general and case-specific knowledge of Computer and Information Science. agnar.aamodt@idi.ntnu.no Abstract: Oil well drilling is a complex process. This is followed, in section 3, by an oil well drilling scenario and an example from a problem solving session

Aamodt, Agnar

402

Applications of CBR in oil well drilling "A general overview"  

E-Print Network [OSTI]

Applications of CBR in oil well drilling "A general overview" Samad Valipour Shokouhi1,3 , Agnar successfully. Keywords: Case-based reasoning, oil well drilling 1 Introduction Case-based reasoning (CBR provide to the oil and gas drilling industry. The number of publications on the application of CBR

Aamodt, Agnar

403

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

successes of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs the shoreline in shallow- water areas and in climatically sensitive or ice-covered regions. Three implementing the riserless drilling vessel JOIDES Resolution, Japan's Center for Deep Earth Exploration (CDEX) for the riser

404

RESEARCH PAPER Compaction bands induced by borehole drilling  

E-Print Network [OSTI]

: boreholes are often drilled deep into weak porous sandstone formations for the purpose of extracting oil Introduction Boreholes drilled into the Earth's crust for facilitating the extraction of water, oil, naturalRESEARCH PAPER Compaction bands induced by borehole drilling R. Katsman ? E. Aharonov ? B. C

Einat, Aharonov

405

Los Alamos Drills to Record-breaking Depths  

Broader source: Energy.gov [DOE]

LOS ALAMOS, N.M. The EM-supported Environmental Programs at Los Alamos National Laboratory is pushing the limits of drilling technology with the use of a sonic drill rig to drill coreholes more than 1,100 feet deep in support of a chromium remediation project.

406

A New Method for Calculating the Equivalent Circulating Density of Drilling Fluid in Deepwater Drilling for Oil and Gas  

Science Journals Connector (OSTI)

We have developed a simple and accurate method for calculating the equivalent circulating density for drilling fluid which can be used for deepwater drilling calculations. The calculation takes into account de...

Hui Zhang; Tengfei Sun; Deli Gao

2013-11-01T23:59:59.000Z

407

Liability issues surrounding oil drilling mud sumps  

SciTech Connect (OSTI)

This presentation examines liability issues surrounding oil drilling mud sumps and discusses them in relation to two recent cases that arose in Ventura County, California. Following a brief history of regulatory interest in oil drilling mud and its common hazardous substances, various cause of action arising from oil drilling mud deposits are enumerated, followed by defenses to these causes of action. Section 8002 (m) of the Resource Conservation and Recovery Act is mentioned, as are constituents of oil and gas waste not inherent in petroleum and therefore not exempt from regulation under the petroleum exclusion in the Comprehensive Environmental Response, Compensation and Recovery Act. Key legal words such as hazardous substance, release, public and private nuisance, trespass, responsible parties, joint and several liability, negligence, and strict liability are explained. The effects on liability of knowledge of the deposits, duty to restore land to its original condition, consent to the deposit of oil drilling mud, and noncompliance and compliance with permit conditions are analyzed. The state-of-the-art defense and research to establish this defense are mentioned. The newly created cause of action for fear of increased risk of cancer is discussed. Issues on transfer of property where oil drilling mud has been deposited are explored, such as knowledge of prior owners being imputed to later owners, claims of fraudulent concealment, and as is' clauses. The effects on the oil and gas industry of the California Court of Appeals for the Second District rulings in Dolan v. Humacid-MacLeod and Stevens v. McQueen are speculated.

Dillon, J.J.

1994-04-01T23:59:59.000Z

408

Recent Developments in Geothermal Drilling Fluids  

SciTech Connect (OSTI)

In the past, standard drilling muds have been used to drill most geothermal wells. However, the harsh thermal and chemical environment and the unique geothermal formations have led to such problems as excessive thickening of the fluid, formation damage, and lost circulation. This paper describes three recent development efforts aimed at solving some of these drilling fluid problems. Each of the efforts is at a different stage of development. The Sandia aqueous foam studies are still in the laboratory phase, NL Baroid's polymeric deflocculant is soon to be field tested, and the Mudtech high-temperature mud was field tested several months ago. Low density and the capability to suspend particles at low relative velocities are two factors which make foam an attractive drilling fluid. The stability of these foams and their material properties at high temperatures are presently unknown and this lack of information has precluded their use as a geothermal drilling fluid. The aqueous foam studies being conducted at Sandia are aimed at screening available surfactants for temperature and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260 and 310 C (500 and 590 F), and several of these candidates appear very promising. NL Baroid has developed a polymeric deflocculant for water-based muds which shows promise in retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 260 C (500 F) in laboratory testing. A high-temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed by Mudtech, Inc. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May 1980. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test.

Kelsey, J. R.; Rand, P. B.; Nevins, M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N.

1981-01-01T23:59:59.000Z

409

Dehumidifying Heat Pipes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dehumidifying Heat Pipes Dehumidifying Heat Pipes Dehumidifying Heat Pipes June 24, 2012 - 4:32pm Addthis In order to make a room comfortable in hot, humid climates, an air conditioner must lower the indoor humidity level as well as the air temperature. If an air conditioner fails to lower the humidity adequately, the air will be cool, but will feel uncomfortably damp. Inappropriately sized air conditioners are prone to this problem; large units quickly cool the air, but cycle off before they can properly dehumidify it. In extremely humid climates, even correctly sized air conditioning equipment could fail to maintain a home at a comfortable humidity level. One technology that addresses this problem is the dehumidifying heat pipe, a device that enables an air conditioner to dehumidify better and still

410

Hydraulic fracturing slurry transport in horizontal pipes  

SciTech Connect (OSTI)

Horizontal-well activity has increased throughout the industry in the past few years. To design a successful hydraulic fracturing treatment for horizontal wells, accurate information on the transport properties of slurry in horizontal pipe is required. Limited information exists that can be used to estimate critical deposition and resuspension velocities when proppants are transported in horizontal wells with non-Newtonian fracturing gels. This paper presents a study of transport properties of various hydraulic fracturing slurries in horizontal pipes. Flow data are gathered in three transparent horizontal pipes with different diameters. Linear and crosslinked fracturing gels were studied, and the effects of variables--e.g., pipe size; polymer-gelling-agent concentration; fluid rheological properties; crosslinking effects; proppant size, density, and concentrations; fluid density; and slurry pump rate--on critical deposition and resuspension velocities were investigated. Also, equations to estimate the critical deposition and resuspension velocities of fracturing gels are provided.

Shah, S.N.; Lord, D.L. (Halliburton Services (US))

1990-09-01T23:59:59.000Z

411

Hydrogen Piping Experience in Chevron Refining  

Broader source: Energy.gov [DOE]

Overall Perspectives: Few problems with hydrogen piping operating at ambient to at least 800F and pressures up to at least 3000psia as long as we stay within well-defined limits

412

Fabric composite heat pipe technology development  

SciTech Connect (OSTI)

Testing has been performed on a variety of fabric composite technology feasibility issues. These include an evaluation of the effective radiation heat transfer rate from a heated metallic surface covered by a ceramic fabric with the intent of determining the effective emissivity'' of the combination of materials, studies of the wicking properties of ceramic fabrics, and the construction of fabric composite heat pipes to test their working properties under both steady state and transient conditions. Results of these experiments shown that fabric composite combinations have greatly enhanced effective emissivities'' resulting from the increases surface area of the fabric, ceramic fabrics can work very well as the wick for heat pipes, ceramic fabric heat pipes have been demonstrated to operate under typical space conditions, and large mass reductions are possible by using fabric composite heat pipes for heat rejection radiator systems.

Klein, A.C.; Gulshan-Ara, Z.; Kiestler, W.; Snuggerud, R.; Marks, T.S. (Department of Nuclear Engineering, Oregon State University, Corvallis, Oregon 97331 (United States))

1993-01-10T23:59:59.000Z

413

Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leading the Nation in Clean Energy Deployment Leading the Nation in Clean Energy Deployment The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agen- cies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions. Disaster Recovery DOE and NREL technical experts have helped communities like Greensburg, Kansas, and New Orleans, Louisiana, successfully rebuild following disaster by providing assistance with sustainable community planning, forward-thinking policy development, and

414

Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID)  

Broader source: Energy.gov (indexed) [DOE]

the Nation in Clean Energy Deployment the Nation in Clean Energy Deployment The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agen- cies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions. Disaster Recovery DOE and NREL technical experts have helped communities like Greensburg, Kansas, and New Orleans, Louisiana, successfully rebuild following disaster by providing assistance with sustainable community planning, forward-thinking policy development, and

415

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program  

E-Print Network [OSTI]

large volumes of borehole fluids, and initiate a cross-hole hydrogeologic experiment usingNUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program No.13,April2012 ScientificDrilling ISSN: 1816-8957 Exp. 327: Juan de Fuca Ridge

Fisher, Andrew

416

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect (OSTI)

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

417

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Sciences Experimental Facilities (ESEF) Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Ion Beam Laboratory Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test Technology Facility Research Engineering Sciences Experimental Facilities (ESEF) The ESEF complex contains several independent laboratories for experiments and advanced diagnostics in the fields of thermodynamics, heat transfer,

418

Deployment of EVs in the Federal Fleet  

Broader source: Energy.gov (indexed) [DOE]

Electric Vehicles 101 Electric Vehicles 101 eere.energy.gov The Parker Ranch installation in Hawaii Deployment of EVs in the Federal Fleet FUPWG Rapid City, South Dakota October 20 th , 2010 Amanda Sahl Federal Energy Management Program 2 | Electric Vehicles 101 eere.energy.gov FEMP facilitates the Federal Government"s implementation of sound, cost-effective energy management and investment practices to enhance the nation"s energy security and environmental stewardship. 3 | Electric Vehicles 101 eere.energy.gov Agenda * Overview of the Federal Fleet * Infrastructure Requirements * Current implementation and activity * Ongoing barriers and questions 4 | Electric Vehicles 101 eere.energy.gov Federal Fleet Inventory

419

NREL: Technology Deployment - Building Energy Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Systems Building Energy Systems NREL experts develop comprehensive energy assessments, models, and tools to optimize building systems across energy efficiency and renewable energy while also improving occupant comfort, safety, and productivity. Northeast Denver Housing Center Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Boulder County Housing Authority Boulder County Housing Authority NREL Recommendations Lead to 153 Net Zero Energy Residences Expertise and Knowledge NREL offers technical assistance and project development support by working closely with industry partners to research, develop, and deploy advanced building technologies. Examples include: Building Energy Audits and Assessments NREL provides technical assistance, guidelines, checklists, and data

420

Aerogel Impregnated Polyurethane Piping and Duct Insulation  

Broader source: Energy.gov (indexed) [DOE]

Aerogel Impregnated Polyurethane Aerogel Impregnated Polyurethane Piping and Duct Insulation David M. Hess InnoSense LLC david.hess@innosense.us, 310-530-2011 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Develop an efficient insulation system that will adhere to housing duct work and pipe structures while conforming to complex geometries. New insulations must increase the R-value of existing materials and be easy to apply or retrofit to existing structures.

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Intelligent Transportation Systems Deployment Analysis System | Open Energy  

Open Energy Info (EERE)

Intelligent Transportation Systems Deployment Analysis System Intelligent Transportation Systems Deployment Analysis System Jump to: navigation, search Tool Summary Name: Intelligent Transportation Systems Deployment Analysis System Agency/Company /Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software/modeling tools Website: idas.camsys.com/ Country: United States Northern America References: http://idas.camsys.com/ The ITS Deployment Analysis System (IDAS) is software developed by the Federal Highway Administration that can be used in planning for Intelligent Transportation System (ITS) deployments. State, regional, and local planners can use IDAS to estimate the benefits and costs of ITS investments - which are either alternatives to or enhancements of traditional highway

422

PNNL Technology Planning and Deployment Group | Open Energy Information  

Open Energy Info (EERE)

Deployment Group Deployment Group Jump to: navigation, search Logo: Technology Planning and Deployment Name Technology Planning and Deployment Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tpd.pnl.gov/ References Technology Planning and Development [1] "The Technology Planning & Deployment (TP&D) group is part of the Pacific Northwest National Laboratory's (PNNL's) Energy and Environment Directorate. TP&D staff provide customers with a unique combination of experience and expertise with capabilities in economics and regulatory analysis, systems engineering, marketing, technology adaptation and application, policy analysis, and project management."[1] Primary Services Building and facilities energy utilization assessments, audits,

423

IEA Renewable Energy Technology Deployment | Open Energy Information  

Open Energy Info (EERE)

IEA Renewable Energy Technology Deployment IEA Renewable Energy Technology Deployment Jump to: navigation, search Name IEA Renewable Energy Technology Deployment Agency/Company /Organization International Energy Agency - Renewable Energy Technology Deployment Implementing Agreement Sector Energy Focus Area Renewable Energy Topics Policies/deployment programs Resource Type Publications Website http://www.iea-retd.org Country Canada, Norway, Denmark, Germany, Netherlands, France, United Kingdom, Ireland, Japan Northern America, Northern Europe, Northern Europe, Western Europe, Western Europe, Western Europe, Northern Europe, Northern Europe, Eastern Asia References RETD Homepage [1] This article is a stub. You can help OpenEI by expanding it. "RETD Implementing Agreement is one of the key outcomes from the

424

Thermionic generator module with heat pipes  

SciTech Connect (OSTI)

A thermionic converter module is described comprising: a first heat pipe with an annular casing which has a first surface located on an inside surface of the annular casing, at least part of the first surface of the casing of the first heat pipe having constructed upon it a thermionic converter emitter located so that heat will be transferred by conduction from the first heat pipe casing to the thermionic converter emitter; a second heat pipe with a casing which has a second surface, the second surface being located within the first surface of the annular casing of the first heat pipe so that it is surrounded by the first surface; a thermionic converter collector located so as to transfer heat by conduction to the second surface of the casing of the second heat pipe with the thermionic converter collector being adjacent to the thermionic converter emitter but being separated from the thermionic converter emitter by an inter electrode space; and end fitting structures located so that, with the thermionic converter collector and the thermionic converter emitter, they complete an enclosure around the inter electrode space and form an evacuated enclosure within which are located the thermionic converter collector and the thermionic converter emitter.

Horner-Richardson, K.; Ernst, D.M.

1993-06-15T23:59:59.000Z

425

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

426

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

427

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

428

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

429

Alternative Fuels Data Center: Alternative Fuel Development and Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Development and Deployment Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

430

Regional Energy Deployment System (ReEDS) | Open Energy Information  

Open Energy Info (EERE)

Regional Energy Deployment System (ReEDS) Regional Energy Deployment System (ReEDS) (Redirected from Regional Energy Deployment System) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Regional Energy Deployment System Agency/Company /Organization: NREL Sector: Energy Topics: Pathways analysis, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.nrel.gov/analysis/reeds/ OpenEI Keyword(s): EERE tool, Regional Energy Deployment System, ReEDS References: Regional Energy Deployment System (ReEDS) Web site[1] Regional Energy Deployment System (ReEDS) is a multiregional, multitimeperiod, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. The model, developed by NREL's Strategic Energy Analysis

431

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

432

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

433

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

434

Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands  

SciTech Connect (OSTI)

Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

1997-08-01T23:59:59.000Z

435

GRR/Section 5 - Drilling Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 5 - Drilling Overview GRR/Section 5 - Drilling Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5 - Drilling Overview 05DrillingPermittingOverview.pdf Click to View Fullscreen Contact Agencies BLM Regulations & Policies 30 USC § 1001 Triggers None specified On top of acquiring the correct drilling permits a developer needs to consider issues such as land and mineral ownership and right of way access. 05DrillingPermittingOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 5.1 - Review Potential Construction Permits In addition to drilling permits, the developer may require other

436

NEPA COMPLIANCE SURVEY Project Information Project Title: Liner Drilling Date:  

Broader source: Energy.gov (indexed) [DOE]

Liner Drilling Date: Liner Drilling Date: 4-5-10 DOE Code: 71092 Cont ractor Code: 8067-766 Project Lead: Frank Ingham Project Overview Nothing out of the ordinary for drilling an existing location 1. What are the environmental impacts? NE SW Sec 21 , T39N, R78W (45-3-X-21 well) 2. What is the legal location? 3. What is the duration of the project? Approximately a week 4 . What major equipment will be used if any (work over rig, drilling rig, Drilling Rig etc.)? Will Drill out of 9 5/8 caslng with liner drillng assembly. After drilling approximately 750 to 1000 ft, will test liner hanging assembly set and retrieve multiple times. The table b elow is to be completed by the Project Lead and reviewed by the Environmental Specialis t and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey a

437

TARZAN: A REMOTE TOOL DEPLOYMENT SYSTEM FOR THE WEST VALLEY DEVELOPMENT PROJECT  

SciTech Connect (OSTI)

RedZone Robotics, Inc. undertook a development project to build Tarzan, a Remote Tool Delivery system to work inside nuclear waste storage tanks 8D-1 and 8D-2 at the West Valley Demonstration Project (WVDP). The removal of waste deposits from large storage tanks poses significant challenges during tank operations and closure. Limited access, the presence of chemical, radiological, and /or explosive hazards, and the need to deliver retrieval equipment to all regions of the tank exceed the capabilities of most conventional methods and equipment. Remotely operated devices for mobilizing and retrieving waste materials are needed. Some recent developments have been made in this area. However, none of these developments completely and cost-effectively address tanks that are congested with internal structures (e.g., support columns, cooling coils, fixed piping, etc.). The Tarzan system consists of the following parts: Locomotor which is deployed in the tank for inspection and cleanup; Hydraulic power unit providing system power for the locomotor and deployment unit; and Control system providing the man machine interface to control, coordinate and monitor the system. This document presents the final report on the Tarzan project.

Bruce R. Thompson; James Veri

1999-09-30T23:59:59.000Z

438

Building Energy Software Tools Directory: Pipe-Flo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pipe-Flo Pipe-Flo Pipe-flo logo Flow analysis software used to design, optimize, troubleshoot and simulate the operation of piping systems of any size or configuration. PIPE-FLO provides a total picture of the piping system including the flow and pressures in pipelines, along with the interaction of pumps, control valves, and flow meters. PIPE-FLO products are used worldwide in a variety of applications throughout many industries including HVAC, fire sprinkler, wastewater collection and treatment, mining, ultra-pure water, chemical processing, power generation, pulp & paper and general industrial. Screen Shots Keywords piping analysis, pump selection, piping design, hydraulic analysis, pump sizing, pressure drop calculator, hydraulic modeling, steam distribution,

439

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

SciTech Connect (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed previously. Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in test cast-iron pipe segments. Efforts in the current quarter continued to be focused on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported previously.) Several design issues were identified which need to be implemented in both the small- and large-diameter repair robots for cast-iron pipe to assure their commercial success. For Task 4 (Design, Fabricate and Test Patch Setting Robotic Train), previous problems with bladder design and elastomeric material expansion in the large mains were addressed. A new bladder based on a commercially available design was obtained and tested with success. Minor improvements were highlighted during patch-setting tests and are now being pursued. For Task 5 (Design and Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera), the previous field tests showed clearly that, in mains with low gas velocities, it will be necessary to improve the system's capacity to remove debris from the immediate vicinity of the bell and spigot joints. Otherwise, material removed by the cleaning flails (the flails were found to be very effective in cleaning bell and spigot joints) falls directly to the low side of the pipe and accumulates in a pile. This accumulation can prevent the sleeve from achieving a leak-free repair. Similarly, it is also deemed necessary to design an assembly to capture existing servicetap coupons and allow their removal from the inside of the pipe. Task 6 (Design and Build Surface Control and Monitoring System) was previously completed with the control and computer display functions being operated through LabVIEW. However, this must now be revisited to add control routines for the coupon catcher that will be added. This will most likely include a lift-off/place-on magnet translation function. Task 7 (Design and Fabricate Large Diameter Live Access System) progressed to completing the detailed design for a bolt-on entry fitting for 12-inch diameter cast-iron pipe in the current quarter. The drilling assembly for cutting an access hole through the wall of the gas main was also designed, along with a plug assembly to allow removing all tools from the live main and setting a blind flange on the entry fitting prior to burial. These designs are described in detail in the report. Task 8 (System Integration and Laboratory Validation) continued with the development of the robot module i

Kiran M. Kothari; Gerard T. Pittard

2005-04-01T23:59:59.000Z

440

NREL: Technology Deployment - Solar Technical Assistance Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Assistance Team Technical Assistance Team Strategic Sequencing for State Distributed PV Policies: A Quantitative Analysis of Policy Impacts and Interactions Recent NREL analysis of state policies revealed that the sequence of policy implementation can accelerate solar photovoltaic (PV) markets-and that policy change doesn't have to be costly. Download the full report or summary to learn more, or view the webinar. The Solar Technical Assistance Team (STAT) gathers NREL solar technology and deployment experts to provide information on solar policies, regulations, financing, and other issues for state and local government decision makers. The team provides a variety of technical assistance, including: Quick Response. For state and local governments that require a fast turnaround in response to a time-sensitive question or expert testimony on

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NREL: Technology Deployment - Project Development Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Development Model Project Development Model NREL developed the Project Development Model to evaluate the risks and investment decisions required for successful renewable energy project development. The two-phase iterative model includes elements in project fundamentals and project development based off commercial project development practices supported by tools such as pro formas and checklists. Project Fundamentals or BEPTC(tm) Renewable Energy Project Development Tool For help with the BEPTC phase of your project, check out the Renewable Energy Project Development Tool, developed by NREL for U.S. Department of Energy's Community Renewable Energy Deployment effort. The tool helps you quickly establish the key motivators and feasibility of your project. Strong project fundamentals and an understanding of how a project fits

442

NREL: Technology Deployment - Project Success Stories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Success Stories Project Success Stories NREL's technology deployment best practices, project support, and technical assistance, and technology acceleration activities are resulting in successful renewable energy and energy efficiency implementation in numerous locations. View success stories highlighting NREL's work with: Cities and Communities Greensburg, Kansas Greensburg: Photo of wind turbines in a green field. An International Inspiration for Green Disaster Recovery For 3 years after a devastating tornado struck Greensburg, Kansas, NREL technical experts helped the town rebuild as a model green community completely powered by a 12.5 megawatt wind farm and surrounded by the highest per-capita concentration of LEED-certified buildings in the United States-13 of which are saving $200,000 annually. Learn more.

443

Clean energy deployment: addressing financing cost  

Science Journals Connector (OSTI)

New methods are needed to accelerate clean energy policy adoption. To that end, this study proposes an innovative financing scheme for renewable and energy efficiency deployment. Financing barriers represent a notable obstacle for energy improvements and this is particularly the case for low income households. Implementing a policy such as PACEproperty assessed clean energyallows for the provision of upfront funds for residential property owners to install electric and thermal solar systems and make energy efficiency improvements to their buildings. This paper will inform the design of better policies tailored to the creation of the appropriate conditions for such investments to occur, especially in those countries where most of the population belongs to the lowmiddle income range facing financial constraints.

Nadia Ameli; Daniel M Kammen

2012-01-01T23:59:59.000Z

444

Development of a Hydrothermal Spallation Drilling System for EGS Geothermal  

Open Energy Info (EERE)

Hydrothermal Spallation Drilling System for EGS Geothermal Hydrothermal Spallation Drilling System for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of a Hydrothermal Spallation Drilling System for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description Potter Drilling has recently demonstrated hydrothermal spallation drilling in the laboratory. Hydrothermal spallation drilling creates boreholes using a focused jet of superheated water, separating individual grains ("spalls") from the rock surface without contact between the rock and the drill head. This process virtually eliminates the need for tripping. Previous tests of flame-jet spallation achieved ROP of 50 ft/hr and higher in hard rock with minimal wear on the drilling assembly, but operating this technology in an air-filled borehole created challenges related to cuttings transport and borehole stability. The Potter Drilling system uses a water based jet technology in a fluid-filled borehole and as a result has the potential to achieve similarly high ROP that is uncompromised by stability or cuttings transport issues.

445

Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations  

SciTech Connect (OSTI)

This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.

Michael S. Bruno

2005-12-31T23:59:59.000Z

446

Heat pipes for use in a magnetic field  

DOE Patents [OSTI]

A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

Werner, R.W.; Hoffman, M.A.

1983-07-19T23:59:59.000Z

447

A Strategic Framework for SMR Deployment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Strategic Framework for SMR Deployment A Strategic Framework for SMR Deployment A Strategic Framework for SMR Deployment A strategy for the successful deployment of small modular reactors (SMRs) must consider what the goals of deployment would entail, the challenges to achieving these goals and the approach to overcome those challenges. This paper will attempt to offer a framework for addressing these important issues at the outset of the program. The deployment of SMRs will be realized by private power companies making the decision to purchase and operate SMRs from private vendors. The government role is to set national priorities for clean energy and national security and create incentives to achieve them. The policy tools the government may choose to use to advance this technology in support of these national objectives will evolve as SMRs

448

Regional Energy Deployment System (ReEDS) | Open Energy Information  

Open Energy Info (EERE)

Regional Energy Deployment System (ReEDS) Regional Energy Deployment System (ReEDS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Regional Energy Deployment System Agency/Company /Organization: NREL Sector: Energy Topics: Pathways analysis, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.nrel.gov/analysis/reeds/ OpenEI Keyword(s): EERE tool, Regional Energy Deployment System, ReEDS References: Regional Energy Deployment System (ReEDS) Web site[1] Regional Energy Deployment System (ReEDS) is a multiregional, multitimeperiod, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. The model, developed by NREL's Strategic Energy Analysis Center (SEAC), is designed to conduct analysis of the critical energy

449

SRNL Deploys Innovative Radiation Mapping Device | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SRNL Deploys Innovative Radiation Mapping Device SRNL Deploys Innovative Radiation Mapping Device SRNL Deploys Innovative Radiation Mapping Device November 3, 2011 - 12:00pm Addthis The Savannah River National Laboratory completed successful deployments of the RadBall, a gamma radiation-mapping device. The Savannah River National Laboratory completed successful deployments of the RadBall, a gamma radiation-mapping device. AIKEN, S.C. - The Savannah River National Laboratory (SRNL), EM's national lab, has made strides with remote technology designed to reduce worker exposure while measuring radiation in contaminated areas. uilding on a successful collaboration with the United Kingdom's National Nuclear Laboratory, SRNL completed successful deployments of RadBall, a gamma radiation-mapping device, after testing the technology. The device

450

Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated  

Broader source: Energy.gov (indexed) [DOE]

Leading the Nation in Clean Energy Deployment (Fact Sheet), Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID) Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID) This document summarizes key efforts and projects that are part of the DOE/NREL Integrated Deployment effort to integrated energy efficiency and renewable energy technologies in cities, states, island locations, and communities around the world. id_overview.pdf More Documents & Publications A Tale of Two Cities: Greensburg Rebuilds as a National Model for Green Communities (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact

451

China-International Industrial Energy Efficiency Deployment Project | Open  

Open Energy Info (EERE)

China-International Industrial Energy Efficiency Deployment Project China-International Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name China-International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China Eastern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

452

Community Renewable Energy Deployment Webinars | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Community Renewable Energy Deployment Webinars Community Renewable Energy Deployment Webinars Community Renewable Energy Deployment Webinars Community Renewable Energy Deployment (CommRE) Webinars provide information on successful community renewable energy projects, including the challenges and barriers faced during development. Find past webinars, and download presentations and supporting materials below. Past Webinars April 16, 2013: Community-Scale Anaerobic Digesters This webinar provided information on San Jose, California's, commercial-scale, high solids dry fermentation anaerobic digestion system, and the Forest County Potawatomi Community's anaerobic digester project. March 19, 2013: Renewable Energy Parks This webinar provided information on how two cities in Washington and New York integrated multiple renewable energy technologies to create renewable

453

Community Renewable Energy Deployment Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Deployment Projects Deployment Projects Community Renewable Energy Deployment Projects The selected DOE Community Renewable Energy Deployment (CommRE) projects receive technical assistance from DOE's National Renewable Energy Laboratory in the areas of concepts, best practices, planning, financial approaches, and policy guidance to help achieve specific goals. More than $20.5 million in total Recovery Act funding will be leveraged with approximately $167 million in local government and private industry funding to complete the following projects. City of Montpelier, Montpelier, Vermont Forest County Potawatomi Community, Milwaukee, Wisconsin Haxtun Wind, Phillips County, Colorado Sacramento Municipal Utility District, Sacramento, California University of California at Davis, Davis, California

454

International Industrial Energy Efficiency Deployment Project | Open Energy  

Open Energy Info (EERE)

Industrial Energy Efficiency Deployment Project Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China, India Eastern Asia, Southern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

455

Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

2013-10-01T23:59:59.000Z

456

DOE Supports Renewable Energy Deployment Projects for Forest...  

Broader source: Energy.gov (indexed) [DOE]

(FCPC) has significantly reduced greenhouse gas emissions through the deployment of a biogas generation facility and solar photovoltaic system. In 2011, the Community completed...

457

Report: U.S. Military Accelerates Deployment of Clean Energy...  

Office of Environmental Management (EM)

(GW), enabling the military to meet its goal for the deployment of 3 GW of renewable energy by 2025. Currently, solar photovoltaic and biomass installations are forecast to...

458

Examining the Process of Automation Development and Deployment.  

E-Print Network [OSTI]

??In order to develop a better understanding of the process of development and deployment of automated systems, this thesis examines aspects of project execution and (more)

Barsalou, Edward

2006-01-01T23:59:59.000Z

459

India Solar Resource Data: Enhanced Data for Accelerated Deployment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

India Solar Resource Data Enhanced Data for Accelerated Deployment Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires...

460

ARM - News from the Los Angeles to Hawaii Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigator News from the Los Angeles to Hawaii Deployment Media Coverage Lemont Patch "Argonne Scientists Help Launch MAGIC Climate Study" October 2, 2012 Scientific...

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Evaluation of Imagers in a Biological Sensing Deployment  

E-Print Network [OSTI]

Therefore, we have utilized solar panels to power the entiremonitoring sensors, and solar panel. Main componentssensors - Battery - Solar panel Node Deployment Wireless/

2007-01-01T23:59:59.000Z

462

Fuel Cell Technologies Office Record 14010 ? Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

10 (Rev. 1) Date: 08122014 Title: Industry Deployed Fuel Cell Powered Lift Trucks Originators: Pete Devlin, Kristian Kiuru Approved by: Sunita Satyapal and Rick Farmer Date: 08...

463

NETL: News Release - New Projects to Investigate Smart Drilling Options  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 20, 2004 February 20, 2004 New Projects to Investigate "Smart Drilling" Options Promise Lower Cost, More Reliable Gas Drilling Two additional projects have been selected under a Department of Energy solicitation designed to advance performance when drilling for natural gas. The projects are a key component of the Department's gas exploration and production research program, and support the President's National Energy Policy, which calls for boosting domestic production of natural gas to ensure an adequate future supply at reasonable prices. With shallow and conventional natural gas resources in the United States being depleted, drillers must reach for gas miles below the earth's surface, where temperatures run up to 450 EF and pressures are hundreds of times greater than atmospheric pressure. "Smart drilling" options can increase productivity, improve drilling safety, and lower costs when drilling for these hard-to-reach deep gas supplies.

464

Noise removal from measurements while drilling an oil well  

Science Journals Connector (OSTI)

Systems to acquire borehole data during the drilling of oil and gas wells make use of measurement while drilling (MWD). One feature of this system is that it is able to do real?time measuring from a borehole; therefore there has been a lot of MWD use on drilling sites in recent years. There are a few types of MWD. Mud pulse?type MWD which uses a drilling circuit fluid is superior to the rest because of its reliability accuracy of data and less disturbance of the drilling schedule. The drilling circuit fluid is raised to a high pressure by a mud pump; borehole data which are recorded by the surface measuring system are contaminated by the pumping noise. Therefore it is necessary to remove the pumping noise to get objective data. This report describes the pumping noise removal system and the method used for the telemetry system from 2000 m depth.

Kazuho Hosono; Haruki Moriyama

1996-01-01T23:59:59.000Z

465

Neutron imaging of alkali metal heat pipes  

SciTech Connect (OSTI)

High-temperature heat pipes are two-phase, capillary driven heat transfer devices capable of passively providing high thermal fluxes. Such a device using a liquid-metal coolant can be used as a solution for successful thermal management on hypersonic flight vehicles. Imaging of the liquid-metal coolant inside will provide valuable information in characterizing the detailed heat and mass transport. Neutron imaging possesses an inherent advantage from the fact that neutrons penetrate the heat pipe metal walls with very little attenuation, but are significantly attenuated by the liquid metal contained inside. Using the BT-2 beam line at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, preliminary efforts have been conducted on a nickel-sodium heat pipe. The contrast between the attenuated beam and the background is calculated to be approximately 3%. This low contrast requires sacrifice in spatial or temporal resolution so efforts have since been concentrated on lithium (Li) which has a substantially larger neutron attenuation cross section. Using the CG-1D beam line at the High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, the first neutron images of high-temperature molybdenum (Mo)-Li heat pipes have been achieved. The relatively high neutron cross section of Li allows for the visualization of the Li working fluid inside the heat pipes. The evaporator region of a gravity assisted cylindrical heat pipe prototype 25 cm long was imaged from start-up to steady state operation up to approximately 900 C. In each corner of the square bore inside, the capillary action raises the Li meniscus above the bulk Li pool in the evaporator region. As the operational temperature changes, the meniscus shapes and the bulk meniscus height also changes. Furthermore, a three-dimensional tomographic image is also reconstructed from the total of 128 projection images taken 1.4o apart in which the Li had already cooled and solidified.

Kihm, Ken [University of Tennessee, Knoxville (UTK); Kirchoff, Eric [University of Tennessee, Knoxville (UTK); Golden, Matt [University of Tennessee, Knoxville (UTK); Rosenfeld, J. [Thermacore Inc.; Rawal, S. [Lockheed Martin Space Systems Company; Pratt, D. [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Bilheux, Hassina Z [ORNL; Walker, Lakeisha MH [ORNL; Voisin, Sophie [ORNL; Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

2013-01-01T23:59:59.000Z

466

Drop in drilling hurts oil-field chemicals market  

Science Journals Connector (OSTI)

Drop in drilling hurts oil-field chemicals market ... But events in the past few years have proven that notion faulty, and oil-field chemicals have fallen on hard times as drilling activity declines. ... The consumption of oil-field chemicals is directly related to drilling activity, and two new studies point out how far that market has declined and where opportunities still exist. ...

1985-11-18T23:59:59.000Z

467

Evaluation of potential kick scenarios in riserless drilling  

E-Print Network [OSTI]

when drilling conventionally is somewhat different from the procedures when drilling riserless. The two most common methods of kick killing utilized in conventional drilling, are the "Driller's Method" and the "Wait and Weight Method" (also referred... to as the "Engineers Method" )' . The basic procedure utilized by the Driller's Method is to shut in the well, measure stabilized shut-in drillpipe pressure (SIDPP), shut-in casing pressure (SICP), and pit gain. Circulate the kick up the annulus and out...

Seland, Stig

1999-01-01T23:59:59.000Z

468

Stress analysis of a hybrid composite drilling riser  

E-Print Network [OSTI]

. Validation and Verification of the Model. . . 33 35 38 RESULTS AND DISCUSSION . . 43 SUMMARY 49 Current Analysis . Future Work 49 50 REFERENCES . 52 APPENDIX A TABLES. 56 APPENDIX B FIGURES . . 68 APPENDIX C TENSOR TRANSFORMATIONS. . 107 VITA... serves as a conduit between the drilling platform and the subsea well- head. It provides a protected path for the tools being inserted into the well, and for the drilling mud that circulates from the drilling platform to the wefl bottom. The marine...

Sundstrom, Keith Andrew

1996-01-01T23:59:59.000Z

469

Savings Project: Insulate Hot Water Pipes for Energy Savings | Department  

Broader source: Energy.gov (indexed) [DOE]

Insulate Hot Water Pipes for Energy Savings Insulate Hot Water Pipes for Energy Savings Savings Project: Insulate Hot Water Pipes for Energy Savings Addthis Project Level Medium Energy Savings $8-$12 annually Time to Complete 3 hours for a small house Overall Cost $10-$15 Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating your hot water pipes reduces heat loss and can raise water temperature 2°F-4°F hotter than uninsulated pipes can deliver, allowing for a lower water temperature setting. You also won't have to wait as long for hot water when you turn on a faucet or showerhead, which helps conserve water. Paying for someone to insulate your pipes-as a project on its own-may

470

Evaluating an experimental setup for pipe leak detection  

E-Print Network [OSTI]

An experimental setup with 4 inch inner diameter PVC pipe modules is designed to mimic a real life piping system in which to test possible leak detection mechanisms. A model leak detection mechanism is developed which ...

Garay, Luis I. (Luis Ignacio)

2010-01-01T23:59:59.000Z

471

Smoothing of pipe system completion processes in a shipyard environment/  

E-Print Network [OSTI]

Due to a number of different production issues, the manufacture of template pipes is often delayed. These delays hold up pipe system completion on board the ships in production and can delay payments from the Ministry of ...

Zojwalla, Shaheen J. (Shaheen Joyab), 1977-

2004-01-01T23:59:59.000Z

472

On-Site Wastewater Treatment Systems: Gravel-less Pipe  

E-Print Network [OSTI]

Gravel-less pipe systems distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of gravel-less pipe systems, explains how to maintain them and gives estimates of costs....

Lesikar, Bruce J.

2000-04-10T23:59:59.000Z

473

Statistical estimation of water distribution system pipe break risk  

E-Print Network [OSTI]

The deterioration of pipes in urban water distribution systems is of concern to water utilities throughout the world. This deterioration generally leads to pipe breaks and leaks, which may result in reduction in the water-carrying capacity...

Yamijala, Shridhar

2009-05-15T23:59:59.000Z

474

U. S. Energy Information Administration | Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

December 2013 December 2013 Explanatory notes Drilling Productivity Report The Drilling Productivity Report uses recent data on the total number of drilling rigs in operation along with estimates of drilling productivity and estimated changes in production from existing oil and natural gas wells to provide estimated changes in oil and natural gas production for six key fields. EIA's approach does not distinguish between oil-directed rigs and gas-directed rigs because once a well is completed it may produce both oil and gas; more than half of the wells do that. Monthly additions from one average rig Monthly additions from one average rig represent EIA's estimate of an average rig's

475

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared  

Open Energy Info (EERE)

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Abstract Infrared spectroscopy is particularly good at identifying awide variety of hydrothermally altered minerals with no samplepreparation, and is especially helpful in discrimination amongclay minerals. We have performed several promising pilot studieson geothermal drill core and cuttings that suggest the efficiencyof the technique to sample continuously and provide alterationlogs similar to geophysical logs. We have successfully identifiedlayered silicates, zeolites, opal, calcite, and iron oxides and

476

Semantic technology in the oil and gas drilling domain.  

E-Print Network [OSTI]

??Data integration and knowledge representation in the oil and gas drilling domain are two challenges much work is focused upon. They are important real-world challenges (more)

Over, Lars

2010-01-01T23:59:59.000Z

477

A Telerobotic Drilling Control System with Haptic Feedback.  

E-Print Network [OSTI]

??Drilling a borehole is a common method for extracting oil, gas, and natural resources from beneath the surface of the earth. The main topic of (more)

Shah, Faraz

2012-01-01T23:59:59.000Z

478

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications  

Broader source: Energy.gov [DOE]

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications presentation at the April 2013 peer review meeting held in Denver, Colorado.

479

Chesapeake Bay, Drilling for Oil or Gas Prohibited (Virginia)  

Broader source: Energy.gov [DOE]

Drilling for oil or gas in the waters or within 500 hundred feet from the shoreline of the Chesapeake Bay or any of its tributaries is prohibited.

480

Recent Drilling Activities At The Earth Power Resources Tuscarora...  

Open Energy Info (EERE)

Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Jump to: navigation, search OpenEI Reference LibraryAdd to...

Note: This page contains sample records for the topic "drill pipe deployed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Directional drilling techniques for exploration in-advance of mining  

SciTech Connect (OSTI)

In-seam directionally drilled horizontal boreholes have provided effective solutions in underground coal mines for methane and water drainage and inherently provide an excellent tool for coalbed exploration. Directionally drilled methane drainage boreholes have identified rapid changes in coalbed elevation, coalbed thickness and faults. Specific directional drilling and coring procedures for exploration in-advance of mining are reviewed in this paper, and also other directional drilling applications including in-mine horizontal gob ventilation boreholes, identification of abandoned workings, and water drainage boreholes.

Kravits, S.J.; Schwoebel, J.J. (REI Underground Exploration Inc., Salt Lake City, UT (United States))

1994-01-01T23:59:59.000Z

482

Costs of Crude Oil and Natural Gas Wells Drilled  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003...

483

Idaho Well Construction and Drilling Forms Webpage | Open Energy...  

Open Energy Info (EERE)

Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Well Construction and Drilling Forms Webpage Author Idaho Department of...

484

Technology Development and Field Trials of EGS Drilling Systems  

Broader source: Energy.gov (indexed) [DOE]

Bauer Sandia National Laboratories High Temperature Tools and Sensors, Down-hole Pumps and Drilling May 19, 2010 This presentation does not contain any proprietary...

485

Evaluation of an air drilling cuttings containment system  

SciTech Connect (OSTI)

Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

Westmoreland, J.

1994-04-01T23:59:59.000Z

486

Hydrates represent gas source, drilling hazard  

SciTech Connect (OSTI)

Gas hydrates look like ordinary ice. However, if a piece of such ice is put into warm water its behavior will be different from the ordinary melting of normal ice. In contrast, gas hydrates cause bubbles in the warm water, which indicates the high content of gas in the hydrate crystals. The presence of four components is required: gas itself, water, high pressure, and low temperature. The paper discusses how hydrates form, hydrates stability, South Caspian hydrates, and hydrates hazards for people, ships, pipelines, and drilling platforms.

Bagirov, E. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Lerche, I. [Univ. of South Carolina, Columbia, SC (United States)

1997-12-01T23:59:59.000Z

487

Modeling Drilled Shafts in MSE Block Walls  

E-Print Network [OSTI]

ACKNOWLEDGEMENTS xii ABSTRACT xiii 1 INTRODUCTION 1 2 LITERATURE REVIEW 3 2.1 Physical Testing 3 2.1.1 MSE Wall Design (FHWA) 3 2.1.2 Design of Laterally Loaded Shafts 6 2.1.3 Design of Drilled Shafts Supporting Sound Walls 7 2.1.4 Topics Related to MSE... Wall Interaction with Bridges 8 2.1.5 Lateral Loading of Facing and Retained Soil 9 2.1.6 Physical Test Results 11 2.1.6.1 Construction and Instrumentation of Test Wall 12 2.1.6.2 Physical Testing and Results 17 2.2 Numerical Approaches 22 2...

Pierson, Matthew Charles

2010-09-01T23:59:59.000Z

488

Sound Coiled-Tubing Drilling Practices  

SciTech Connect (OSTI)

This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

Williams, Thomas; Deskins, Greg (Maurer Technology Inc.); Ward, Stephen L. (Advantage Energy Services Ltd); Hightower, Mel

2001-09-30T23:59:59.000Z

489

Sizing safety valve vent pipes for saturated steam  

SciTech Connect (OSTI)

A generalized procedure based on pressure and entropy as independent variables is used to calculate choked flow conditions at the valve orifice, valve pipe outlet and vent pipe outlet. At the third location, the results are independent of whether flow in the vent pipe is supersonic or subsonic. An integral method is used to calculate the vent pipe length required to choke the flow. 16 refs.

Brandmaier, H.E.

1982-01-01T23:59:59.000Z

490

Performance-Oriented Drilling Fluids Design System with a Neural Network Approach  

Science Journals Connector (OSTI)

Drilling fluids play a key role in the minimization of well bore problems when drilling oil or gas wells, usually the design of drilling fluids is depended on many experiments with experience. Rule-based and case-based reasoning drilling fluid system ... Keywords: artificial neural network, drilling fluid, performance-oriented

Yongbin Zhang; Yeli Li; Peng Cao

2009-11-01T23:59:59.000Z

491

Rapid Deployment of Rich Catalytic Combustion  

SciTech Connect (OSTI)

The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

Richard S. Tuthill

2004-06-10T23:59:59.000Z

492

Impacts of Soil and Pipe Thermal Conductivity on Performance of Horizontal Pipe in a Ground-source Heat Pump  

E-Print Network [OSTI]

In this paper the composition and thermal property of soil are discussed. The main factors that impact the soil thermal conductivity and several commonly-used pipe materials are studied. A model of heat exchanger with horizontal pipes of ground...

Song, Y.; Yao, Y.; Na, W.

2006-01-01T23:59:59.000Z

493

Effective epidemic control via strategic vaccine deployment: a systematic approach  

Science Journals Connector (OSTI)

Vaccination is an effective way to control infectious disease spreading and epidemic by adjusting the composite structure of susceptible, infectious and vaccinated populations. There are three factors related to vaccine deployment arrangements; they ... Keywords: disease infection, epidemic spreading dynamics, vaccine deployment

Jiming Liu; Shang Xia

2010-11-01T23:59:59.000Z

494

Shape Recovery of Viscoelastic Deployable Structures and Sergio Pellegrino  

E-Print Network [OSTI]

and opposite sense folding. I. Introduction Deployable structures made of thin carbon fiber reinforced polymerShape Recovery of Viscoelastic Deployable Structures Kawai Kwok and Sergio Pellegrino California Institute of Technology, Pasadena, CA 91125 The paper investigates the shape recovery behavior of a simple

Pellegrino, Sergio

495

Visual Design of Service Deployment in Complex Physical Environments  

E-Print Network [OSTI]

and to the information engineer a suitable service deployment scheme compatible with the environment. The PermissionVisual Design of Service Deployment in Complex Physical Environments Augusto Celentano and Fabio for in- teractive services in complex physical environments using a knowl- edge based approach to define

Celentano, Augusto

496

Deployment and coverage maintenance in mobile sensor networks  

E-Print Network [OSTI]

Deployment of mobile nodes in a region of interest is a critical issue in building a mobile sensor network because it affects cost and detection capabilities of the system. The deployment of mobile sensors in essence is the movement of sensors from...

Lee, Jaeyong

2009-05-15T23:59:59.000Z

497

ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM  

SciTech Connect (OSTI)

This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized.

Unknown

2000-09-15T23:59:59.000Z

498

Development of Next Generation Multiphase Pipe Flow Prediction Tools  

SciTech Connect (OSTI)

The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The basic continuity and momentum equations is established for each phase, and used for both flow pattern and flow behavior predictions. The required closure relationships are being developed, and will be verified with experimental results. Gas-oil-water experimental studies are currently underway for the horizontal pipes. Industry-driven consortia provide a cost-efficient vehicle for developing, transferring, and deploying new technologies into the private sector. The Tulsa University Fluid Flow Projects (TUFFP) is one of the earliest cooperative industry-university research consortia. TUFFP's mission is to conduct basic and applied multiphase flow research addressing the current and future needs of hydrocarbon production and transportation. TUFFP participants and The University of Tulsa are supporting this study through 55% cost sharing.

Cem Sarica; Holden Zhang

2006-05-31T23:59:59.000Z

499

Drilling Waste Management Technology Identification Module  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

you are in this section Technology Identification you are in this section Technology Identification Home » Technology Identification Drilling Waste Management Technology Identification Module The Technology Identification Module is an interactive tool for identifying appropriate drilling waste management strategies for a given well location and circumstances. The Technology Identification Module follows the philosophy of a waste management hierarchy. Waste management options with the lowest environmental impacts are encouraged ahead of those with more significant environmental impacts. The Technology Identification Module helps identify waste management options, but users should also consider their own site-specific costs and waste volumes. How it Works Users will be asked to answer a series of questions about the location of the well site, physical features of the site that may allow or inhibit the use of various options, whether the regulatory agency with jurisdiction allows or prohibits particular options, and whether cost or the user's company policy would preclude any options. Nearly all questions are set up for only "yes" or "no" responses. Depending on how the initial questions are answered, users will face from 15 to 35 total questions. Some of these can be answered immediately, while others may require some additional investigation of other portions of this web site or external information. Suitable options will be identified as users complete the questions, and users will be able to print out a summary of suitable options when the process is completed.

500

Wayne field: A horizontal drilling case study  

SciTech Connect (OSTI)

Beginning in the spring of 1994, studies of Wayne field located on the northeastern flank of the Williston Basin were initiated to determine the feasibility of using horizontal drilling to increase recoverable reserves in the field. The Wayne subinterval is one of several shoaling-upwards cycles within the Mission Canyon Formation of the Mississippian Madison Group. The reservoir pay averages 24% porosity, 100 millidarcys permeability, and 50% water saturation. Vertical wells, since field discovery in 1957, typically IP for 70 bopd and 20% water with a rapid decline within a few months to 10 bopd and 90% water. This type of well performance is characteristic of severe water coning for which horizontal development can help to minimize. In late 1994 and early 1995 the Ballantyne Hedges No.7H and GeoResources O. Fossum No.H1 were drilled. The wells recorded IP`s of 280 bopd/5 bwpd and 390 bopd/80 bwpd respectively. After six months of production both wells stabilized at approximately 110 bopd with a 35% water cut. Projections indicate that each horizontal well will recover 250,000 bbls of oil as compared to 115,000 bbls for an average vertical well and will do so in half the time. These early results provide a significant improvement over the vertical production and would seem to be reducing water coning. Three more horizontal wells are planned for the fourth quarter of 1995.

Jennings, J.B. [GeoResources, Inc., Williston, ND (United States); Johnson, R.P. [Harris, Brown, & Kiemer, Inc., Bismarck, ND (United States)

1996-06-01T23:59:59.000Z