Powered by Deep Web Technologies
Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Tank Closure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Topics 3 Overview of SRS Tank Closure Program Two Tank Farms - F Area and H Area Permitted by SC as Industrial Wastewater Facilities under the Pollution Control...

2

Tank Closure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Closure Closure Sherri Ross Waste Removal and Tank Closure Waste Disposition Project Programs Division Savannah River Operations Office Presentation to the DOE HLW Corporate Board 2  Overview and Status of SRS Tank Closure Program  Issues/Challenges  Communications  Schedule Performance  Ceasing Waste Removal  Compliance with SC Water Protection Standards  Questions? Topics 3 Overview of SRS Tank Closure Program  Two Tank Farms - F Area and H Area  Permitted by SC as Industrial Wastewater Facilities under the Pollution Control Act  Three agency Federal Facility Agreement (FFA)  DOE, SCDHEC, and EPA  51 Tanks  24 old style tanks (Types I, II and IV)  Do not have full secondary containment  FFA commitments to close by 2022  2 closed in 1997

3

Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS-WD-2010-001 SRS-WD-2010-001 Revision 0 Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site September 30, 2010 Draft Basis for Section 3116 Determination DOE/SRS-WD-2010-001 for Closure of F-Tank Farm Revision 0 at the Savannah River Site September 30, 2010 Page ii REVISION SUMMARY REV. # DESCRIPTION DATE OF ISSUE 0 Initial Issue 09/30/2010 Draft Basis for Section 3116 Determination DOE/SRS-WD-2010-001 for Closure of F-Tank Farm Revision 0 at the Savannah River Site September 30, 2010 Page iii TABLE OF CONTENTS Page REVISION SUMMARY ................................................................................................................................. ii LIST OF TABLES .........................................................................................................................................

4

DOE/EIS-0303D; High-Level Waste Tank Closure Draft Environmental Impact Statement (November 2000)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0303D EIS-0303D DRAFT November 2000 Summary S-iii COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Savannah River Site, High-Level Waste Tank Closure Draft Environmental Impact Statement (DOE/EIS-0303D), Aiken, SC. CONTACT: For additional information or to submit comments on this environmental impact statement (EIS), write or call: Andrew R. Grainger, NEPA Compliance Officer U.S. Department of Energy, Savannah River Operations Office Building 742A, Room 183 Aiken, South Carolina 29802 Attention: Tank Closure EIS Local and Nationwide Telephone: (800) 881-7292 Email: nepa@srs.gov The EIS is also available on the internet at: http://tis.eh.doe.gov/nepa/docs/docs.htm For general information on the process that DOE follows in complying with the National Environmental

5

SRS Tank Closure Regulatory Developments  

Order 435.1 and State-required documents are prepared and in review Tank-specific documents for Tanks 18, 19, 5 and ... Solids Volume (gal) Solids ...

6

RECENT PROGRESS IN DOE WASTE TANK CLOSURE  

SciTech Connect

The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

Langton, C

2008-02-01T23:59:59.000Z

7

ICPP tank farm closure study. Volume 1  

SciTech Connect

The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M. [and others

1998-02-01T23:59:59.000Z

8

Permanent Closure of the TAN-664 Underground Storage Tank  

SciTech Connect

This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

Bradley K. Griffith

2011-12-01T23:59:59.000Z

9

PERFORMANCE OBJECTIVES FOR TANK FARM CLOSURE PERFORMANCE ASSESSMENTS  

Science Conference Proceedings (OSTI)

This report documents the performance objectives (metrics, times of analyses, and times of compliance) to be used in performance assessments of Hanford Site tank farm closure.

MANN, F.M.; CRUMPLER, J.D.

2005-09-30T23:59:59.000Z

10

EIS-0391: Hanford Tank Closure and Waste Management, Richland...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

single-shell tanks (SSTs) and 28 double-shell tanks and closure of the SST system, (2) decommissioning of the Fast Flux Test Facility, a nuclear test reactor, and (3) disposal...

11

CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS  

SciTech Connect

The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

Hommel, S.; Fountain, D.

2012-03-28T23:59:59.000Z

12

EIS-0391: Hanford Tank Closure and Waste Management, Richland, Washington |  

NLE Websites -- All DOE Office Websites (Extended Search)

391: Hanford Tank Closure and Waste Management, Richland, 391: Hanford Tank Closure and Waste Management, Richland, Washington EIS-0391: Hanford Tank Closure and Waste Management, Richland, Washington Summary This EIS evaluates the environmental impacts for the following three key areas: (1) retrieval, treatment, and disposal of waste from 149 single-shell tanks (SSTs) and 28 double-shell tanks and closure of the SST system, (2) decommissioning of the Fast Flux Test Facility, a nuclear test reactor, and (3) disposal of Hanford's waste and other DOE sites' low-level and mixed low-level radioactive waste. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download December 13, 2013 EIS-0391: Record of Decision Final Tank Closure and Waste Management Environmental Impact Statement for

13

ICPP tank farm closure study. Volume 2: Engineering design files  

SciTech Connect

Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

NONE

1998-02-01T23:59:59.000Z

14

EIS-0391: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0391: EPA Notice of Availability of the Draft Environmental Impact Statement Tank Closure and Waste...

15

Draft Tank Closure & Waste Management EIS - Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

recorded of work-related (1) deaths or (2) illnesses or injuries resulting in loss of consciousness, restriction of work or motion, transfer to another job, or required medical...

16

Issuance of the Final Tank Closure and Waste Management Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issuance of the Final Tank Closure and Waste Management Issuance of the Final Tank Closure and Waste Management Environmental Impact Statement Issuance of the Final Tank Closure and Waste Management Environmental Impact Statement December 5, 2012 - 12:00pm Addthis Media Contacts Carrie Meyer, DOE (509) 376-0810 Carrie_C_Meyer@orp.doe.gov Erika Holmes, Ecology (509) 372-7880 Erika.Holmes@ecy.wa.gov Richland, WA - The U.S. Department of Energy (DOE) is issuing its Final Tank Closure and Waste Management Environmental Impact Statement Hanford Site, Richland, Washington" (Final TC & WM EIS, DOE/EIS-0391), prepared in accordance with the National Environmental Policy Act (NEPA). The Environmental Protection Agency (EPA) and Washington State Department of Ecology are cooperating agencies on this Final EIS, which analyzes

17

Underground storage tank 253-D1U1 Closure Plan  

Science Conference Proceedings (OSTI)

This report is a closure plan for a diesel fuel tank at the Lawrence Livermore National Laboratory. Included are maps of the site, work plans, and personnel information regarding training and qualification.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

18

Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Celebrates Historic Closure of Radioactive Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone October 1, 2012 - 12:00pm Addthis U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left, South Carolina Department of Health and Environmental Control Director Catherine Templeton and U.S. Sen. Lindsey Graham (R-SC) unveil a marker to commemorate the closing of waste tanks at the Savannah River Site in South Carolina. U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left,

19

Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Celebrates Historic Closure of Radioactive Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone October 1, 2012 - 12:00pm Addthis U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left, South Carolina Department of Health and Environmental Control Director Catherine Templeton and U.S. Sen. Lindsey Graham (R-SC) unveil a marker to commemorate the closing of waste tanks at the Savannah River Site in South Carolina. U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left,

20

Record of Decision Issued for the Hanford Tank Closure and Waste...  

NLE Websites -- All DOE Office Websites (Extended Search)

Record of Decision Issued for the Hanford Tank Closure and Waste Management EIS Record of Decision Issued for the Hanford Tank Closure and Waste Management EIS December 13, 2013 -...

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Savannah River Site High-Level Waste Tank Closure, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TANK FARM DESCRIPTION AND CLOSURE PROCESS TANK FARM DESCRIPTION AND CLOSURE PROCESS DOE/EIS-0303 Tank Farm Description FINAL May 2002 and Closure Process A-iii TABLE OF CONTENTS Section Page A.1 Introduction........................................................................................................................... A-1 A.2 Overview of SRS HLW Management .................................................................................. A-1 A.3 Description of the Tank Farms ............................................................................................. A-4 A.3.1 Tanks........................................................................................................................ A-4 A.3.2 Evaporator Systems .................................................................................................

22

Single-shell tank closure work plan. Revision A  

SciTech Connect

In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs.

NONE

1995-06-01T23:59:59.000Z

23

RELATIONSHIP BETWEEN FLOWABILITY AND TANK CLOSURE GROUT QUALITY  

Science Conference Proceedings (OSTI)

After completion of waste removal and chemical cleaning operations, Tanks 5-F and 6-F await final closure. The project will proceed with completing operational closure by stabilizing the tanks with grout. Savannah River Remediations (SRR) experience with grouting Tanks 18-F and 19-F showed that slump-flow values were correlated with flow/spread inside these tanks. Less mounding was observed when using grouts with higher slump-flow. Therefore, SRNL was requested to evaluate the relationship between flowability and cured properties to determine whether the slump-flow maximum spread of Mix LP#8-16 could be increased from 28 inches to 30 inches without impacting the grout quality. A request was also made to evaluate increasing the drop height from 5 feet to 10 feet with the objective of enhancing the flow inside the tank by imparting more kinetic energy to the placement. Based on a review of the grout property data for Mix LP#8-16 collected from Tank 18-F and 19-F quality control samples, the upper limit for slump-flow measured per ASTM C 1611 can be increased from 28 to 30 inches without affecting grout quality. However, testing should be performed prior to increasing the drop height from 5 to 10 feet or observations should be made during initial filling operations to determine whether segregation occurs as a function of drop heights between 5 and 10 feet. Segregation will negatively impact grout quality. Additionally, increasing the delivery rate of grout into Tanks 5-F and 6-F by using a higher capacity concrete/grout pump will result in better grout spread/flow inside the tanks.

Langton, C.; Stefanko, D.; Hay, M.

2012-10-08T23:59:59.000Z

24

Relationship Between Flowability And Tank Closure Grout Quality  

SciTech Connect

After completion of waste removal and chemical cleaning operations, Tanks 5-F and 6-F await final closure. The project will proceed with completing operational closure by stabilizing the tanks with grout. Savannah River Remediation's (SRR) experience with grouting Tanks 18-F and 19-F showed that slump-flow values were correlated with flow/spread inside these tanks. Less mounding was observed when using grouts with higher slump-flow. Therefore, SRNL was requested to evaluate the relationship between flowability and cured properties to determine whether the slump-flow maximum spread of Mix LP#8-16 could be increased from 28 inches to 30 inches without impacting the grout quality. A request was also made to evaluate increasing the drop height from 5 feet to 10 feet with the objective of enhancing the flow inside the tank by imparting more kinetic energy to the placement. Based on a review of the grout property data for Mix LP#8-16 collected from Tank 18-F and 19-F quality control samples, the upper limit for slump-flow measured per ASTM C 1611 can be increased from 28 to 30 inches without affecting grout quality. However, testing should be performed prior to increasing the drop height from 5 to 10 feet or observations should be made during initial filling operations to determine whether segregation occurs as a function of drop heights between 5 and 10 feet. Segregation will negatively impact grout quality. Additionally, increasing the delivery rate of grout into Tanks 5-F and 6-F by using a higher capacity concrete/grout pump will result in better grout spread/flow inside the tanks.

Langton, C. A.; Stefanko, D. B.; Hay, M. S.

2012-10-08T23:59:59.000Z

25

Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013  

SciTech Connect

This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.

Kerry L. Nisson

2012-10-01T23:59:59.000Z

26

U. S. Department of Energy Savannah River Operations Office - F and H Tank  

NLE Websites -- All DOE Office Websites (Extended Search)

F and H Tank Farm Closure Documents F and H Tank Farm Closure Documents F and H Tank Farm Closure Documents F Tank Farm Closure Documents F Tank Farm Performance Assessment F Tank Farm Performance Assessment -- Revision 1 Tank 18/Tank 19 Special Analysis Industrial Wastewater General Closure Plan for F-Area Waste Tank System -- Final Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 DOE agreement to cease waste removal SC approval to Closure Module and agreement to cease waste removal EPA agreement to cease waste removal Tanks 17 and 20 Closure Errata Industrial Wastewater Closure Module for the High-Level Waste Tank 17 System Industrial Wastewater Closure Module for the High-Level Waste Tank 20 System Draft Basis for Section 3116 Determination for Closure of F Tank Farm at SRS

27

EIS-0303: Savannah River Site High-Level Waste Tank Closure | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

03: Savannah River Site High-Level Waste Tank Closure 03: Savannah River Site High-Level Waste Tank Closure EIS-0303: Savannah River Site High-Level Waste Tank Closure SUMMARY This EIS evaluates alternatives for closing 49 high-level radioactive waste tanks and associated equipment such as evaporator systems, transfer pipelines, diversion boxes, and pump pits. DOE selected the preferred alternative identified in the Final EIS, Stabilize Tanks-Fill with Grout, to guide development and implementation of closure of the high-level waste tanks and associated equipment at the Savannah River Site. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 5, 2012 EIS-0303: Supplement Analysis Savannah River Site High-Level Waste Tank Closure, SC July 8, 2011 EIS-0303: Notice of Intent to Prepare an Environmental Impact Statement

28

First Draft Performance Assessment for the H-Area Tank Farm at the Savannah  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Draft Performance Assessment for the H-Area Tank Farm at the First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site The PAs are used to assess the long-term fate and transport of residual contamination in the environment and provide the Department Of Energy with reasonable assurance that the removal from service of the Savannah River Site tank farm underground radioactive waste tanks and ancillary equipment will meet defined performance objectives for the protection of human health and the environment into the future. First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 1 First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 2

29

Joint Tank Closure News Release Final.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

RIVER OPERATIONS OFFICE AIKEN, SC 29802 RIVER OPERATIONS OFFICE AIKEN, SC 29802 FOR IMMEDIATE RELEASE September 13, 2012 NEWS MEDIA CONTACTS: Amy Caver, (803) 952-7213 Dean Campbell, (803) 208-8270 Amy.Caver@srs.gov Dean.Campbell@srs.gov Robert Pope, (404) 562-8538 Mark Plowden, (803) 898-9518 pope.robert@epa.gov plowdemw@dhec.sc.gov Savannah River Site Reaches Significant Milestone with Waste Tank Closure AIKEN, S.C. - The Savannah River Site (SRS) achieved a significant milestone this week with the

30

TANK FARM CLOSURE - A NEW TWIST ON REGULATORY STRATEGIES FOR CLOSURE OF WASTE TANK RESIDUALS FOLLOWING NUREG  

Science Conference Proceedings (OSTI)

Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures are different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The purpose of this paper is to discuss implications of NUREG-1854 and to examine the feasibility and potential benefits of applying these provisions to waste determinations and supporting documents such as future performance assessments for tank residuals.

LEHMAN LL

2008-01-23T23:59:59.000Z

31

STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225  

SciTech Connect

The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical Cleaning of Waste Tanks at the Savannah River Site--F Tank Farm Closure Project--Abstract 9114'. To support Tank 5 and Tank 6 cooling coil closure, cooling coil isolation and full scale cooling coil grout testing was completed to develop a strategy for grouting the horizontal and vertical cooling coils. This paper describes in detail the performance of the Mechanical Sludge Removal activities and SMP operational strategies within Tank 5. In addition, it will discuss the current status of Tank 5 & 6 cooling coil isolation activities and the results from the cooling coil grout fill tests.

Jolly, R

2009-01-06T23:59:59.000Z

32

Grouting Operation to Lead to First SRS Waste Tank Closures Since 1997 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grouting Operation to Lead to First SRS Waste Tank Closures Since Grouting Operation to Lead to First SRS Waste Tank Closures Since 1997 Grouting Operation to Lead to First SRS Waste Tank Closures Since 1997 April 1, 2012 - 12:00pm Addthis DOE and Savannah River Remediation team members gather in front of the first cement truck containing grout for Tank 18 at the Savannah River Site. DOE and Savannah River Remediation team members gather in front of the first cement truck containing grout for Tank 18 at the Savannah River Site. A specially formulated grout was poured into a hopper and transferred through lines to Tank 19. A specially formulated grout was poured into a hopper and transferred through lines to Tank 19. The first cement truck with the specially formulated grout arrives at the Savannah River Site earlier this month.

33

DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National Laboratory DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National Laboratory November 20, 2006 - 9:25am Addthis Secretary Bodman Signs Idaho Waste Determination After Consultation with NRC WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman yesterday signed a waste determination for the Idaho Tank Farm Facility clearing the way for the Department of Energy (DOE) to safely and permanently close the 15 waste storage tanks at the Idaho National Laboratory near Arco, Idaho. DOE will begin grouting the first 11 cleaned and emptied tanks at Idaho Nuclear Technology and Engineering Center (INTEC) and plans to complete all 15 tanks by December 2012. Assistant Secretary of Energy for Environmental Management James Rispoli

34

STATUS OF CHEMICAL CLEANING OF WASTE TANKS AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT - 9114  

SciTech Connect

Chemical Cleaning is currently in progress for Tanks 5 and 6 at the Savannah River Site. The Chemical Cleaning process is being utilized to remove the residual waste heel remaining after completion of Mechanical Sludge Removal. This work is required to prepare the tanks for closure. Tanks 5 and 6 are 1950s vintage carbon steel waste tanks that do not meet current containment standards. These tanks are 22.9 meters (75 feet) in diameter, 7.5 meters (24.5 feet) in height, and have a capacity of 2.84E+6 liters (750,000 gallons). Chemical Cleaning adds 8 wt % oxalic acid to the carbon steel tank to dissolve the remaining sludge heel. The resulting acidic waste solution is transferred to Tank 7 where it is pH adjusted to minimize corrosion of the carbon steel tank. The Chemical Cleaning flowsheet includes multiple strikes of acid in each tank. Acid is delivered by tanker truck and is added to the tanks through a hose assembly connected to a pipe penetration through the tank top. The flowsheet also includes spray washing with acid and water. This paper includes an overview of the configuration required for Chemical Cleaning, the planned flowsheet, and an overview of technical concerns associated with the process. In addition, the current status of the Chemical Cleaning process in Tanks 5 and 6, lessons learned from the execution of the process, and the path forward for completion of cleaning in Tanks 5 and 6 will also be discussed.

Thaxton, D; Geoff Clendenen, G; Willie Gordon, W; Samuel Fink, S; Michael Poirier, M

2008-12-31T23:59:59.000Z

35

TECHNOLOGY NEEDS AND STATUS ON CLOSURE OF DOE RADIOACTIVE WASTE TANK ANCILLARY SYSTEMS  

SciTech Connect

This paper summarizes the current state of art of sampling, characterizing, retrieving, transferring and treating the incidental waste and stabilizing the void space in tank ancillary systems and the needs involved with closure of these systems. The overall effort for closing tank and ancillary systems is very large and is in the initial stages of being addressed in a systematic manner. It was recognized in doing this effort, that gaps in both technology and material application for characterization and removal of residual waste and closure of ancillary systems would be identified. Great efficiencies are to be gained by defining the technology need areas early in the closure process and providing recommendations for technical programs to improve the closure strategies. Therefore, this paper will not only summarize the state of closure of ancillary systems but also provide recommendations to address the technology gaps identified in this assessment.

Burns, H; Sharon Marra, S; Christine Langton, C

2009-01-21T23:59:59.000Z

36

Microsoft PowerPoint - 3-03_pt 1_Davis_Waste Removal & Tank Closures.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Removal & Tank Closure Waste Removal & Tank Closure New Technologies Neil Davis Deputy Program Manager Waste Removal & Tank Closure November 16, 2010 Print Close 2 * SRR baseline is to use 2 mechanical and 1 chemical technology on each tank - Large slurry mixer pumps - Hydrolancing/Robotic vacuum system - Oxalic acid * Technologies in hand * Incremental improvements to meet evolving mission needs and to have a defendable Maximum Extent Practical basis Point of View Print Close 3 Program Status Bulk Waste Removal Mechanical Heel Removal Chemical Cleaning Annulus Cleaning Isolation/Final Sampling Grout Tank Cooling Coil Flushing Tanks 4, 7, 9, 10, 11, 12, 13, 14, & 15 in progress 2 tanks closed 15 more in progress Tank 8 being prepped for chemical cleaning Tanks 5, 6 & 16 in progress Tanks 5&6 in progress

37

Summary of Group Development and Testing for Single Shell Tank Closure at Hanford  

Science Conference Proceedings (OSTI)

This report is a summary of the bench-scale and large scale experimental studies performed by Savannah River National Laboratory for CH2M HILL to develop grout design mixes for possible use in producing fill materials as a part of Tank Closure of the Single-Shell Tanks at Hanford. The grout development data provided in this report demonstrates that these design mixes will produce fill materials that are ready for use in Hanford single shell tank closure. The purpose of this report is to assess the ability of the proposed grout specifications to meet the current requirements for successful single shell tank closure which will include the contracting of services for construction and operation of a grout batch plant. The research and field experience gained by SRNL in the closure of Tanks 17F and 20F at the Savannah River Site was leveraged into the grout development efforts for Hanford. It is concluded that the three Hanford grout design mixes provide fill materials that meet the current requirements for successful placement. This conclusion is based on the completion of recommended testing using Hanford area materials by the operators of the grout batch plant. This report summarizes the regulatory drivers and the requirements for grout mixes as tank fill material. It is these requirements for both fresh and cured grout properties that drove the development of the grout formulations for the stabilization, structural and capping layers.

Harbour, John, R.

2005-04-28T23:59:59.000Z

38

Closure Report for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

CAU 127, Areas 25 and 26 Storage Tanks, consists of twelve CASs located in Areas 25 and 26 of the NTS. The closure alternatives included no further action, clean closure, and closure in place with administrative controls. The purpose of this Closure Report is to provide a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

NSTec Environmental Restoration

2008-02-01T23:59:59.000Z

39

Modelling complex draft-tube flows using near-wall turbulence closures  

Science Conference Proceedings (OSTI)

This paper presents a finite-volume method for simulating flows through complex hydroturbine draft-tube configurations using near-wall turbulence closures. The method employs the artificial-compressibility pressure-velocity coupling approach in conjunction with multigrid acceleration for fast convergence on very fine grids. Calculations are carried out for a draft tube with two downstream piers on a computational mesh consisting of 1.2x10{sup 6} nodes. Comparisons of the computed results with measurements demonstrate the ability of the method to capture most experimental trends with reasonable accuracy. Calculated three-dimensional particle traces reveal very complex flow features in the vicinity of the piers, including horse-shoe longitudinal vortices and and regions of flow reversal.

Ventikos, Y.; Sotiropoulos, F. [Georgia Institute of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering; Patel, V.C. [Univ. of Iowa, Iowa City, IA (United States). Iowa Institute of Hydraulic Research

1996-12-31T23:59:59.000Z

40

HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT  

SciTech Connect

The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

Jolly, R; Bruce Martin, B

2008-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Closure Report for Corrective Action Unit 130: Storage Tanks Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 130: Storage Tanks, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 130 are located within Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site. Corrective Action Unit 130 is comprised of the following CASs: 01-02-01, Underground Storage Tank 07-02-01, Underground Storage Tanks 10-02-01, Underground Storage Tank 20-02-03, Underground Storage Tank 20-99-05, Tar Residue 22-02-02, Buried UST Piping 23-02-07, Underground Storage Tank This CR provides documentation supporting the completed corrective action investigations and provides data confirming that the closure objectives for CASs within CAU 130 were met. To achieve this, the following actions were performed: Reviewed the current site conditions, including the concentration and extent of contamination. Implemented any corrective actions necessary to protect human health and the environment. Properly disposed of corrective action and investigation-derived wastes. From August 4 through September 30, 2008, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 130, Storage Tanks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were: Determine whether contaminants of concern (COCs) are present. If COCs are present, determine their nature and extent, implement appropriate corrective actions, confirm that no residual contamination is present, and properly dispose of wastes. Constituents detected during the closure activities were evaluated against final action levels to identify COCs for CAU 130. Assessment of the data generated from closure activities indicates that no further action is necessary because no COCs were identified at any CAU 130 CAS. Debris removal from these CASs was considered a best management practice because no contamination was detected. The DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: No further corrective action is required at all CAU 130 CASs. A Notice of Completion to DOE, National Nuclear Security Administration Nevada Site Office, is requested from the Nevada Division of Environmental Protection for closure of CAU 130. Corrective Action Unit 130 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.

Alfred Wickline

2009-03-01T23:59:59.000Z

42

Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks  

SciTech Connect

Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

Cochran, J.R. Shyr, L.J.

1998-10-05T23:59:59.000Z

43

Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility  

SciTech Connect

The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. This review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.

Bamberger, Judith A; Burks, Barry L; Quigley, Keith D; Falter, Diedre D

2001-09-28T23:59:59.000Z

44

CHEMICAL SLUDGE HEEL REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT 8183  

SciTech Connect

Chemical Sludge Removal (CSR) is the final waste removal activity planned for some of the oldest nuclear waste tanks located at the Savannah River Site (SRS) in Aiken, SC. In 2008, CSR will be used to empty two of these waste tanks in preparation for final closure. The two waste tanks chosen to undergo this process have previously leaked small amounts of nuclear waste from the primary tank into an underground secondary containment pan. CSR involves adding aqueous oxalic acid to the waste tank in order to dissolve the remaining sludge heel. The resultant acidic waste solution is then pumped to another waste tank where it will be neutralized and then stored awaiting further processing. The waste tanks to be cleaned have a storage capacity of 2.84E+06 liters (750,000 gallons) and a target sludge heel volume of 1.89E+04 liters (5,000 gallons) or less for the initiation of CSR. The purpose of this paper is to describe the CSR process and to discuss the most significant technical issues associated with the development of CSR.

Thaxton, D; Timothy Baughman, T

2008-01-16T23:59:59.000Z

45

Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots'' from the concrete vault, and the drilling removal of the cement-lined vault sump. Field activities began on November 28, 2000, and ended on December 4, 2000. After verification samples were collected, the vault was repaired with cement. The concrete vault sump, soil excavated beneath the sump, and compactable hot line trash were disposed at the Area 23 Sanitary Landfill. The vault interior was field surveyed following the removal of waste to verify that unrestricted release criteria had been achieved. Since the site is closed by unrestricted release decontamination and verification, post-closure care is not required.

D. H. Cox

2001-06-01T23:59:59.000Z

46

HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007  

Science Conference Proceedings (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure Plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for the Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

K. Winterholler

2007-01-30T23:59:59.000Z

47

Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington  

Science Conference Proceedings (OSTI)

This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

Not Available

1994-07-01T23:59:59.000Z

48

Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS-WD-2012-001 SRS-WD-2012-001 Revision 0 Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site March 2012 Basis for Section 3116 Determination DOE/SRS-WD-2012-001 for Closure of F-Tank Farm Revision 0 at the Savannah River Site March 2012 Page ii REVISION SUMMARY REV. # DESCRIPTION DATE OF ISSUE 0 Initial Issue March 2012 Basis for Section 3116 Determination DOE/SRS-WD-2012-001 for Closure of F-Tank Farm Revision 0 at the Savannah River Site March 2012 Page iii TABLE OF CONTENTS Page REVISION SUMMARY ................................................................................................................................. ii LIST OF TABLES ........................................................................................................................................ vi

49

HWMA/RCRA Closure Plan for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System (VES-SFE-106)  

Science Conference Proceedings (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Radioactive Solid and Liquid Waste Storage Tank System located in the adjacent to the Sludge Tank Control House (CPP-648), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, was developed to meet the interim status closure requirements for a tank system. The system to be closed includes a tank and associated ancillary equipment that were determined to have managed hazardous waste. The CPP-648 Radioactive Solid and Liquid Waste Storage Tank System will be "cleaned closed" in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods of acheiving those standards for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System.

S. K. Evans

2006-08-15T23:59:59.000Z

50

TRA Closure Plan REV 0-9-20-06 HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007  

Science Conference Proceedings (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump were characterized as having managed hazardous waste. The reactor drain tank and canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

Winterholler, K.

2007-01-31T23:59:59.000Z

51

EIS-0303: Draft Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement Draft Environmental Impact Statement EIS-0303: Draft Environmental Impact Statement High-Level Waste Tank Closure, Savannah River Operations Office, Aiken, SC This EIS evalutes the potential environmental impacts of a proposal to close the high-level waste tanks at the Savannah River Site in accordance with applicable laws and regulations, DOE Orders, and the Industrial Wastewater Closure Plan for F- and H-Area High-Level Waste Tank Systems (approved by the South Carolina Department of Health and Environmental Control), which specifies the management of residuals as waste incidental to reprocessing. The proposed action would begin after bulk waste removal has been completed. This EIS evaluates three alternatives regarding the HLW tanks at the SRS. The three alternatives are the Clean and Stabilize Tanks

52

EIS-0303: Draft Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

03: Draft Environmental Impact Statement 03: Draft Environmental Impact Statement EIS-0303: Draft Environmental Impact Statement High-Level Waste Tank Closure, Savannah River Operations Office, Aiken, SC This EIS evalutes the potential environmental impacts of a proposal to close the high-level waste tanks at the Savannah River Site in accordance with applicable laws and regulations, DOE Orders, and the Industrial Wastewater Closure Plan for F- and H-Area High-Level Waste Tank Systems (approved by the South Carolina Department of Health and Environmental Control), which specifies the management of residuals as waste incidental to reprocessing. The proposed action would begin after bulk waste removal has been completed. This EIS evaluates three alternatives regarding the HLW tanks at the SRS. The three alternatives are the Clean and Stabilize Tanks

53

Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0  

Science Conference Proceedings (OSTI)

This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

Alfred Wickline

2008-01-01T23:59:59.000Z

54

Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order  

Science Conference Proceedings (OSTI)

This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

Evans, S.K.

2002-01-31T23:59:59.000Z

55

Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order  

Science Conference Proceedings (OSTI)

This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

Evans, Susan Kay; Orchard, B. J.

2002-01-01T23:59:59.000Z

56

Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order  

Science Conference Proceedings (OSTI)

This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

Evans, Susan Kay; Orchard, B. J.

2002-01-01T23:59:59.000Z

57

C-104 Solid Phase Characterization of Sample 4C-13-1 From Tank 241-C-104 Closure Sampling Event  

SciTech Connect

One solid grab sample from closure sampling in Riser 7 of tank 214-C-I04 (C-I04) was examined to determine the solid phases that were present. The sample was analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The purpose of this analysis was to see if the presence of hydrated phases could provide a possible explanation for the high moisture content obtained from thermogravimetric analysis (TGA).

Cooke, Gary A.; Pestovich, John A.

2013-06-12T23:59:59.000Z

58

F-Tank Farm Performance Assessment, Rev 1 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F-Tank Farm Performance Assessment, Rev 1 F-Tank Farm Performance Assessment, Rev 1 F-Tank Farm Performance Assessment, Rev 1 Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site. In accordance with NDAA Section 3116, certain waste from reprocessing of spent nuclear fuel is not high-level waste if the Secretary of Energy, in consultation with the NRC, determines that the criteria in NDAA Section 3116(a) are met. This Draft FTF 3116 Basis Document shows that those criteria are satisfied, to support a potential determination by the Secretary pursuant Section 3116. This Draft FTF 3116 Basis Document concerns the stabilized residuals in waste tanks and ancillary structures, those waste tanks, and the ancillary structures (including integral equipment) at the SRS FTF at the time of closure.

59

F-Tank Farm Performance Assessment, Rev 1 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F-Tank Farm Performance Assessment, Rev 1 F-Tank Farm Performance Assessment, Rev 1 F-Tank Farm Performance Assessment, Rev 1 Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site. In accordance with NDAA Section 3116, certain waste from reprocessing of spent nuclear fuel is not high-level waste if the Secretary of Energy, in consultation with the NRC, determines that the criteria in NDAA Section 3116(a) are met. This Draft FTF 3116 Basis Document shows that those criteria are satisfied, to support a potential determination by the Secretary pursuant Section 3116. This Draft FTF 3116 Basis Document concerns the stabilized residuals in waste tanks and ancillary structures, those waste tanks, and the ancillary structures (including integral equipment) at the SRS FTF at the time of closure.

60

An Initial Evaluation Of Characterization And Closure Options For Underground Pipelines Within A Hanford Site Single-Shell Tank Farm  

SciTech Connect

The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and pipeline removal or treatment technologies. The evaluation accounted for the potential high worker risk, high cost, and schedule impacts associated with characterization, removal, or treatment of pipelines within Waste Management Area C for closure. This assessment was compared to the unknown, but estimated low, long-term impacts to groundwater associated with remaining waste residuals should the pipelines be left "as is" and an engineered surface barrier or landfill cap be placed. This study also recommended that no characterization or closure actions be assumed or started for the pipelines within Waste Management Area C, likewise with the premise that a surface barrier or landfill cap be placed over the pipelines.

Badden, Janet W. [Washington River Protection Solutions, LLC, Richland, WA (United States); Connelly, Michael P. [Washington River Protection Solutions, LLC, Richland, WA (United States); Seeley, Paul N. [Cenibark International, Inc., Kennewick (United States); Hendrickson, Michelle L. [Washington State Univ., Richland (United States). Dept. of Ecology

2013-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRR-CWDA-2010-00128 SRR-CWDA-2010-00128 Revision 0 PERFORMANCE ASSESSMENT for the H-AREA TANK FARM at the SAVANNAH RIVER SITE March 2011 Prepared by: Savannah River Remediation LLC Closure & Waste Disposal Authority Aiken, SC 29808 Prepared for U.S. Department of Energy Under Contract No. DE-AC09-09SR22505 Performance Assessment for the SRR-CWDA-2010-00128 H-Area Tank Farm at the Revision 0 Savannah River Site March 2011 Page ii of 864 REVISION SUMMARY REV. # DESCRIPTION DATE OF ISSUE 0a Initial issue to DOE-SR 09/17/2010

62

State of the Art Report on High-Level Waste Tank Closure  

Science Conference Proceedings (OSTI)

This report includes strategies for treating the incidental waste left in the emptied tanks as non-retrievable heels and methods and materials for physically stabilizing the void space in the tanks to prevent future subsidence.

Langton, C.A.

2002-06-18T23:59:59.000Z

63

Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Aboveground Storage Tanks and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: CAS 03-01-03, Aboveground Storage Tank CAS 03-01-04, Tank CAS 15-01-05, Aboveground Storage Tank CAS 29-01-01, Hydrocarbon Stain

NSTec Environmental Restoration

2009-06-30T23:59:59.000Z

64

PERFORMANCE ASSESSMENT TO SUPPORT CLOSURE OF SINGLE-SHELL TANK WASTE MANAGEMENT AREA C AT THE HANFORD SITE  

Science Conference Proceedings (OSTI)

Current proposed regulatory agreements (Consent Decree) at the Hanford Site call for closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C in the year 2019. WMA C is part of the SST system in 200 East area ofthe Hanford Site and is one of the first tank farm areas built in mid-1940s. In order to close WMA C, both tank and facility closure activities and corrective actions associated with existing soil and groundwater contamination must be performed. Remedial activities for WMA C and corrective actions for soils and groundwater within that system will be supported by various types of risk assessments and interim performance assessments (PA). The U.S. Department of Energy, Office of River Protection (DOE-ORP) and the State ofWashington Department of Ecology (Ecology) are sponsoring a series of working sessions with regulators and stakeholders to solicit input and to obtain a common understanding concerning the scope, methods, and data to be used in the planned risk assessments and PAs to support closure of WMA C. In addition to DOE-ORP and Ecology staff and contractors, working session members include representatives from the U.S. Enviromnental Protection Agency, the U.S. Nuclear Regulatory Commission (NRC), interested tribal nations, other stakeholders groups, and members of the interested public. NRC staff involvement in the working sessions is as a technical resource to assess whether required waste determinations by DOE for waste incidental to reprocessing are based on sound technical assumptions, analyses, and conclusions relative to applicable incidental waste criteria.

BERGERON MP

2010-01-14T23:59:59.000Z

65

Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site  

SciTech Connect

This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authority of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40 CFR 300.430(e)(9): ( 1) overall protection of human health and the environment; (2) compliance with applicable or relevant and appropriated requirement: (ARARs); (3) long-term effectiveness and permanence; (4) reduction of toxicity, mobility, or volume through treatment; (5) short-term effectiveness; (6) implementability; (7) cost; (8) state acceptable; and (9) community acceptance. Closure of each tank involves two separate operations after bulk waste removal has been accomplished: (1) cleaning of the tank (i.e., removing the residual contaminants), and (2) the actual closure or filling of the tank with an inert material, (e.g., grout). This process would continue until all the tanks and ancillary equipment and systems have been closed. This is expected to be about year 2028 for Type I, II, and IV tanks and associated systems. Subsequent to that, Type III tanks and systems will be closed.

N /A

1996-07-31T23:59:59.000Z

66

Closure Report for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 330: Areas 6, 22, and 23 Tanks and Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO of 1996), and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site (NTS), Nevada (U.S. Department of Energy, National Nuclear Security Administration Nevada Operation Office [NNSA/NV], 2001). CAU 330 consists of the following four Corrective Action Sites (CASs): 06-02-04, 22-99-06, 23-01-02, and 23-25-05 (Figure 1).

A. T. Urbon

2003-07-01T23:59:59.000Z

67

Ecological Data in Support of the Tank Closure and Waste Management Environmental Impact Statement. Part 2: Results of Spring 2007 Field Surveys  

SciTech Connect

This review provides an evaluation of potential impacts of actions that have been proposed under various alternatives to support the closure of the high level waste tanks on the Hanford Site. This review provides a summary of data collected in the field during the spring of 2007 at all of the proposed project sites within 200 East and 200 West Areas, and at sites not previously surveyed. The primary purpose of this review is to provide biological data that can be incorporated into or used to support the Tank Closure and Waste Management Environmental Impact Statement.

Sackschewsky, Michael R.; Downs, Janelle L.

2007-05-31T23:59:59.000Z

68

Draft environmental assessment -- Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory  

SciTech Connect

The DOE-Idaho Operations Office has prepared an environmental assessment (EA) to analyze the environmental impacts of closing the Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory (INEL). The purpose of the action is to reduce the risk of radioactive exposure and release of radioactive and hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce these risks to human health and the environment and to comply with Resource Conservation and Recovery Act requirements. The WCF closure project is described in the DOE Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (Programmatic EIS). DOE determined in the Programmatic EIS Record of Decision (ROD) that certain actions would be implemented and other actions deferred. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality Regulations. Based on the analysis in the EA, the action will not have a significant effect on the human environment.

Braun, J.B.; Irving, J.S.; Staley, C.S.; Stanley, N.

1996-04-01T23:59:59.000Z

69

Streamlined approach for environmental restoration closure report for Corrective Action Unit No. 456: Underground storage tank release site 23-111-1, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

The underground storage tank (UST) release site 23-111-1 is located in Mercury, Nevada. The site is in Area 23 of the Nevada Test Site, (NTS) located on the north side of Building 111. The tank associated with the release was closed in place using cement grout on September 6, 1990. The tank was not closed by removal due to numerous active underground utilities, a high-voltage transformer pad, and overhead power lines. Soil samples collected below the tank bottom at the time of tank closure activities exceeded the Nevada Administrative Code Action Level of 100 milligrams per kilogram (mg/kg) for petroleum hydrocarbons. Maximum concentrations detected were 119 mg/kg. Two passive venting wells were subsequently installed at the tank ends to monitor the progress of biodegradation at the site. Quarterly air sampling from the wells was completed for approximately one year, but was discontinued since data indicated that considerable biodegradation was not occurring at the site.

NONE

1998-04-01T23:59:59.000Z

70

Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE))

AIKEN, S.C. The EM program at the Savannah River Site (SRS) is filling two radioactive liquid waste tanks with a cement-like grout in an effort to operationally close them this fall.

71

First Draft Performance Assessment for the H-Area Tank Farm at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in a Type III Tank ... 146 Figure 3.2-42: Typical Conical (Umbrella) Type of Deployable Cooling Coil ... 146...

72

First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 4  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

238 of 864 238 of 864 4.0 ANALYSIS OF PERFORMANCE The purpose of this section is to provide the technical basis for the analyses of performance for the closed HTF facilities over time based on the total remaining inventory. Section 4.1 provides an overview of the ICM comprised of three components: 1) closure cap, 2) vadose zone, and 3) saturated zone. Section 4.2 describes the ICM approach for contaminant release.  4.2.1 presents details of the source term release, the analyses performed to estimate the leaching of contaminants from the CZ by the pore fluid, based on solubility controls used for modeling the transport of contaminants from their initial closure locations within the waste tanks and ancillary equipment to the underground aquifers.

73

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Closing the Circle: Closing the Circle: The Department of Energy and Environmental Management 1942-1994 F.G. Gosling and Terrence R. Fehner History Division Executive Secretariat Department of Energy March 1994 Draft Our mission at the Department of Energy is no less significant than trying to close the circle on the splitting of the atom begun a half-century ago by [the Manhattan Project]. -Tom Grumbly Draft * 3 EM Overview Closing the Circle: The Department of Energy and Environmental Management 1942-1994 Table of Contents Part I: Making of the Nuclear Weapons Complex, 1942-1955 1 The Manhattan Project: Genesis of the Complex 1 2 Health and Safety Concerns Environmental and Waste Management Concerns 3 The Atomic Energy Commission: Expansion of the Complex

74

First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 of 864 8 of 864 1.0 EXECUTIVE SUMMARY This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the eventual removal from service of the H-Area Tank Farm (HTF) underground radioactive waste tanks and ancillary equipment. This PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified below for removal from service and eventual final closure of the HTF.  U.S. Department of Energy (DOE) Order 435.1 Change 1  Title 10 Code of Federal Regulations (CFR) Part 61 Subpart C as identified in "Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005," Section 3116  South Carolina Department of Health and Environmental Control (SCDHEC)

75

First Draft Performance Assessment for the H-Area Tank Farm at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at the seeplines of UTR and Fourmile Branch. The waste tank and ancillary equipment inventory of potentially airborne isotopes is used in conjunction with the methodology...

76

DRAFT  

NLE Websites -- All DOE Office Websites (Extended Search)

User Access Policy - Version 1.0 User Access Policy - Version 1.0 DOE NSRC User Access Policy December 9, 2002 page 1 DRAFT General Policies and Procedures for User Access to the DOE Nanoscale Science Research Centers 1. Preamble The mission of the U.S. Department of Energy (DOE) Nanoscale Science Research Centers (NSRCs) is to support users in doing outstanding science in a safe environment. To this end, each Center must have: * An array of state-of-the-art equipment and laboratories for synthesis, fabrication, characterization, and simulation of nanoscale materials and structures * A skilled staff to support this equipment, users, and the associated science but above all * A user scientific program that provides leadership in nanoscale science and technology This document addresses the policies and procedures for user access to the NSRCs.

77

DRAFT  

NLE Websites -- All DOE Office Websites (Extended Search)

⇒ ⇒ DRAFT 19 December 2012⇐= Status of the heaviest elements as of January 2013 Don Groom, Particle Data Group Superheavy elements are normally synthesized by exposing a high-Z target to a 2.5-7.5 MeV/u ion beam such as 48 Ca or 70 Zn. The target can be a stable isotope such as 208 Pb or 209 Bi; in this case the process is called cold fusion. If the target is radioactive (an actinide), it is a "hot fusion" reaction. Targets as heavy as 249 Bk have been used. Since fusion is followed by neutron loss (e.g. 248 Cf( 48 Ca,4n) 292 Lv), the atomic numbers of the beam and target nuclei determine whether the fusion products have even or odd Z. The main laboratories involved are at Dubna, Darmstadt, Berkeley, and RIKEN Nashina Center. Fusion cross sections steadily decrease with increasing Z, and are in the picobarn range for the heaviest elements. The cross section can be optimized for a given

78

EIS-0391: Draft Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement Draft Environmental Impact Statement EIS-0391: Draft Environmental Impact Statement Tank Closure and Waste Management for the Hanford Site, Richland, WA Abstract: The Hanford Site (Hanford), located in southeastern Washington State and situated along the Columbia River, is approximately 1,518 square kilometers (586 square miles) in size. Hanford's mission from the early 1940s to approximately 1989 included defense-related nuclear research, development, and weapons production activities. These activities created a wide variety of chemical and radioactive wastes. Hanford's mission now is focused on the cleanup of those wastes and ultimate closure of Hanford. To this end, several types of radioactive waste are being managed at Hanford: (1) high-level radioactive waste (HLW) as defined in DOE Manual

79

Corrective Action Decision Document/Closure Report for Corrective Action Unit 557: Spills and Tank Sites, Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 557, Spills and Tank Sites, in Areas 1, 3, 6, and 25 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order. Corrective Action Unit 557 comprises the following corrective action sites (CASs): 01-25-02, Fuel Spill 03-02-02, Area 3 Subdock UST 06-99-10, Tar Spills 25-25-18, Train Maintenance Bldg 3901 Spill Site The purpose of this Corrective Action Decision Document/Closure Report is to identify and provide the justification and documentation that supports the recommendation for closure of the CAU 557 CASs with no further corrective action. To achieve this, a corrective action investigation (CAI) was conducted from May 5 through November 24, 2008. The CAI activities were performed as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 557: Spills and Tank Sites, Nevada Test Site, Nevada.

Alfred Wickline

2009-05-01T23:59:59.000Z

80

Nevada test site underground storage tank number 12-13-1: Nevada division of emergency management case number H931130E corrective action unit 450. Closure report  

Science Conference Proceedings (OSTI)

The project site was identified as an abandoned Underground Storage Tank (UST) to be closed under the Department of Energy/Nevada Operations Office (DOE/NV) Environmental Restoration Division (ERD) Program during Fiscal Year 1993. The United States Environmental Protection Agency (EPA) requires that before permanent closure is completed an assessment of the site must take place. The Nevada Division of Environmental Protection (NDEP) requires assessment and corrective actions for a petroleum substance in the soil which exceeds 100 milligrams per kilogram (mg/kg). Subsequent to the tank removal, a hydrocarbon release was identified at the site. The release was reported to the NDEP by DOE/NV on November 30, 1993. Nevada Division of Environmental Management (NDEM) Case Number H931130E was assigned. This final closure report documents the assessment and corrective actions taken for the hydrocarbon release identified at the site. The Notification of Closure, EPA Form 7530-1 dated March 22, 1994, is provided in Appendix A. A 45-day report documenting the notification for a hydrocarbon release was submitted to NDEP on April 6, 1994.

NONE

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Recommended Distribution Coefficients, Kd Values, for Special Analysis Risk Calculations Related to Waste Disposal and Tank Closure on the Savannah River Site  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide a technically defensible list of distribution coefficients, or Kd values, for use in performance assessment (PA) and special analysis (SA) calculations on the SRS. Only Kd values for radionuclides that have new information related to them or that have recently been recognized as being important are discussed in this report. Some 150 Kd values are provided in this report for various waste-disposal or tank-closure environments: soil, corrosion in grout, oxidizing grout waste, gravel, clay, and reducing concrete environments. Documentation and justification for the selection of each Kd value is provided.

Kaplan, D

2005-08-31T23:59:59.000Z

82

Waste Removal & Tank Closure  

Hanford has developed the MARS Explore a marriage between the SRS eductor and the MARS Continue to refine to eductor technology to minimize water addition . 8

83

Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste - 14206 (DRAFT)  

SciTech Connect

A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in ways that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles.

Bauer, Roger E.; Figley, Reed R.; Innes, A. G.

2013-11-11T23:59:59.000Z

84

Memorandum of Understanding Between the United States Department of Energy and the Washington State Department of Ecology for Development of the Hanford Site Tank Closure and Waste Management EIS ("TC&WM EIS")  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE THE UNITED STATES DEPARTMENT OF ENERGY, AND THE WASHINGTON STATE DEPARTMENT OF ECOLOGY, FOR DEVELOPMENT OF THE HANFORD SITE TANK CLOSURE AND WASTE MANAGEMENT EIS ("TC&WM EIS") I. INTRODUCTION The U.S. Department of Energy (DOE) and Washington State Department of Ecology (Ecology) have mutual responsibilities for accomplishing cleanup of the Hanford Site as well as continuing ongoing waste management activities consistent with applicable federal and state laws and regulations. The Hanford Federal Facility Agreement and Consent Order (otherwise called the "Tri-Party Agreement", or "TPA") contains various enforceable milestones that apply to tank waste management activities. DOE is also required to comply with applicable requirements of

85

AX Tank Farm tank removal study  

Science Conference Proceedings (OSTI)

This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

SKELLY, W.A.

1999-02-24T23:59:59.000Z

86

AX Tank Farm tank removal study  

SciTech Connect

This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

SKELLY, W.A.

1998-10-14T23:59:59.000Z

87

First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 3  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

66 of 864 66 of 864 3.0 DISPOSAL FACILITY CHARACTERISTICS Section 3.1 provides information regarding site characteristics including detailed information furnished for those characteristics that influence the contaminant transport modeling assumptions provided in Chapter 4.  Section 3.1.1 provides a general description and layout of the site and the HTF to orient the reader and includes the current (as of 2009) estimated population distribution of the surrounding area as well as future land use planning for information purposes.  Section 3.1.2 describes meteorological and climatological data collection at SRS. This data collection determines appropriate modeling assumptions related to rainfall and temperature to assess the performance of the HTF closure cap presented in SRNL-ESB-

88

Addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: This page that refers the reader to the SIR document for additional information The cover, title, and signature pages of the SIR document The NDEP approval letter The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: 25-25-09, Spill H940825C (from UST 25-3101-1) 25-25-14, Spill H940314E (from UST 25-3102-3) 25-25-15, Spill H941020E (from UST 25-3152-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

Grant Evenson

2009-05-01T23:59:59.000Z

89

Addendum 2 to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: This page that refers the reader to the SIR document for additional information The cover, title, and signature pages of the SIR document The NDEP approval letter The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: 12-25-08, Spill H950524F (from UST 12-B-1) 12-25-10, Spill H950919A (from UST 12-COMM-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

Grant Evenson

2009-05-01T23:59:59.000Z

90

HWMA/RCRA Closure Plan for the Fluorinel Dissolution Process Makeup and Cooling and Heating Systems Voluntary Consent Order SITE-TANK-005 Action Plan Tank Systems INTEC-066, INTEC-067, INTEC-068, and INTEC-072  

Science Conference Proceedings (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the fluorinel dissolution process makeup and cooling and heating systems located in the Fluorinel Dissolution Process and Fuel Storage Facility (CPP-666), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory Site, was developed to meet milestones established under the Voluntary Consent Order. The systems to be closed include waste piping associated with the fluorinel dissolution process makeup systems. This closure plan presents the closure performance standards and methods of achieving those standards.

M.E. Davis

2007-05-01T23:59:59.000Z

91

FINAL CLOSURE PLAN SURFACE IMPOUNDMENTS CLOSURE, SITE 300  

SciTech Connect

Lawrence Livermore National Laboratory of the University of California (LLNL) operates two Class II surface impoundments that store wastewater that is discharged from a number of buildings located on the Site 300 Facility (Site 300). The wastewater is the by-product of explosives processing. Reduction in the volume of water discharged from these buildings over the past several years has significantly reduced the wastewater storage needs. In addition, the impoundments were constructed in 1984, and the high-density polyethylene (HDPE) geomembrane liners are nearing the end of their service life. The purpose of this project is to clean close the surface impoundments and provide new wastewater storage using portable, above ground storage tanks at six locations. The tanks will be installed prior to closure of the impoundments and will include heaters for allowing evaporation during relatively cool weather. Golder Associates (Golder) has prepared this Final Closure Plan (Closure Plan) on behalf of LLNL to address construction associated with the clean closure of the impoundments. This Closure Plan complies with State Water Resources Control Board (SWRCB) Section 21400 of the California Code of Regulations Title 27 (27 CCR {section}21400). As required by these regulations and guidance, this Plan provides the following information: (1) A site characterization, including the site location, history, current operations, and geology and hydrogeology; (2) The regulatory requirements relevant to clean closure of the impoundments; (3) The closure procedures; and, (4) The procedures for validation and documentation of clean closure.

Lane, J E; Scott, J E; Mathews, S E

2004-09-29T23:59:59.000Z

92

Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design Review o WTP potential improvements Report completed and briefed to DOE in September 2010 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 Report completed and briefed to DOE in September 2010 Follow-on scope for TWS identified immediately after briefing to DOE and

93

EVOLUTION OF CHEMICAL CONDITIONS AND ESTIMATED PLUTONIUM SOLUBILITY IN THE RESIDUAL WASTE LAYER DURING POST-CLOSURE AGING OF TANK 18  

SciTech Connect

This document updates the Eh-pH transitions from grout aging simulations and the plutonium waste release model of Denham (2007, Rev. 1) based on new data. New thermodynamic data for cementitious minerals are used for the grout simulations. Newer thermodynamic data, recommended by plutonium experts (Plutonium Solubility Peer Review Report, LA-UR-12-00079), are used to estimate solubilities of plutonium at various pore water compositions expected during grout aging. In addition, a new grout formula is used in the grout aging simulations and apparent solubilities of coprecipitated plutonium are estimated using data from analysis of Tank 18 residual waste. The conceptual model of waste release and the grout aging simulations are done in a manner similar to that of Denham (2007, Rev. 1). It is assumed that the pore fluid composition passing from the tank grout into the residual waste layer controls the solubility, and hence the waste release concentration of plutonium. Pore volumes of infiltrating fluid of an assumed composition are reacted with a hypothetical grout block using The Geochemist's Workbench{reg_sign} and changes in pore fluid chemistry correspond to the number of pore fluid volumes reacted. As in the earlier document, this results in three states of grout pore fluid composition throughout the simulation period that are termed Reduced Region II, Oxidized Region II, and Oxidized Region III. The one major difference from the earlier document is that pyrite is used to account for reducing capacity of the tank grout rather than pyrrhotite. This poises Eh at -0.47 volts during Reduced Region II. The major transitions in pore fluid composition are shown. Plutonium solubilities are estimated for discrete PuO2(am,hyd) particles and for plutonium coprecipitated with iron phases in the residual waste. Thermodynamic data for plutonium from the Nuclear Energy Agency are used to estimate the solubilities of the discrete particles for the three stages of pore fluid evolution. In Denham (2007, Rev. 1), the solubilities in the oxidized regions were estimated at Eh values in equilibrium with dissolved oxygen. Here, these are considered to be maximum possible solubilities because Eh values are unlikely to be in equilibrium with dissolved oxygen. More realistic Eh values are estimated here and plutonium solubilities calculated at these are considered more realistic. Apparent solubilities of plutonium that coprecipitated with iron phases are estimated from Pu:Fe ratios in Tank 18 residual waste and the solubilities of the host iron phases. The estimated plutonium solubilities are shown. Uncertainties in the grout simulations and plutonium solubility estimates are discussed. The primary uncertainty in the grout simulations is that little is known about the physical state of the grout as it ages. The simulations done here are pertinent to a porous medium, which may or may not be applicable to fractured grout, depending on the degree and nature of the fractures. Other uncertainties that are considered are the assumptions about the reducing capacity imparted by blast furnace slag, the effects of varying dissolved carbon dioxide and oxygen concentrations, and the treatment of silica in the simulations. The primary uncertainty in the estimates of plutonium solubility is that little is known about the exact form of plutonium in the residual waste. Other uncertainties include those inherent in the thermodynamic data, pH variations from those estimated in the grout simulations, the effects of the treatment of silica in the grout simulations, and the effect of varying total dissolved carbonate concentrations. The objective of this document is to update the model for solubility controls on release of plutonium from residual waste in closed F-Area waste tanks. The update is based on new information including a new proposed grout formulation, chemical analysis of Tank 18 samples and more current thermodynamic data for plutonium and grout minerals. In addition, minor changes to the modeling of the grout chemical evolution have been made. It shoul

Denham, M.

2012-02-29T23:59:59.000Z

94

Hanford Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

95

Draft Final Phase II Report: Review of Life Cycle and Technology Applications of the Office of Environmental Managements Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A1-1 A1-1 APPENDIX 1 Charge Summary Issue Suggested Activities Expected Output/ Work Product Notes Charge 1 Modeling for Life-Cycle Analysis This task entails reviewing the modeling approaches for determining tank waste remediation life-cycle costs at both SRS and Hanford. This includes evaluating assumptions in system plans for completing tank waste missions at Hanford and SRS, as well as the rigor of the models for identifying activities and costs through the end of each site's program. Recommendation(s) At Hanford, LAW vitrification capital and operating costs are potentially substantially greater than competing technologies. A second LAW vitrification plant is currently part of the baseline in order to treat the balance of the

96

Closure of the 242-F system  

Science Conference Proceedings (OSTI)

This paper describes the closure preparation and proposed closure process of the 242-F Evaporator System at the Savannah River Site. The closure of this system will be a first-of-a-kind for the DOE and is applicable across the Department of Energy (DOE complex and the nuclear industry. The 242-F Evaporator System is part of a nuclear waste storage and management process comprised of tanks and supporting facilities permitted by the South Carolina Pollution Control Act as wastewater treatment facilities. The system has been emptied of residuals to the maximum extent practical given funding levels and has been isolated from all process interfaces. The remaining activities are contingent upon satisfying emergent regulatory requirements. Closure of the 242-F Evaporator System is part of the DOE's stewardship of federally owned and operated facilities. Protecting workers and the general public during and after closure is part of that stewardship that requires careful and methodical planning and execution of closure processes. (authors)

Dixon, G. [East Carolina Univ., Dept. of Engineering, Greenville, NC (United States)

2007-07-01T23:59:59.000Z

97

DRAFT DRAFT DRAFT Forecasting Electricity Demand  

E-Print Network (OSTI)

prices. With the medium natural gas price assumptions, the Council currently is seeing draft spot market for Northwest smelters. Since electricity prices are related to natural gas prices in the long-term, and high natural gas prices are associated with the high economic growth case, it may now make more sense to assume

98

Tanks focus area. Annual report  

SciTech Connect

The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

Frey, J.

1997-12-31T23:59:59.000Z

99

Accelerating cleanup: Paths to closure  

SciTech Connect

This document was previously referred to as the Draft 2006 Plan. As part of the DOE`s national strategy, the Richland Operations Office`s Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established.

Edwards, C.

1998-06-30T23:59:59.000Z

100

HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System  

Science Conference Proceedings (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

K. Winterholler

2007-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Draft Environmental Impact Statement Available for Public Review |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement Available for Public Review Draft Environmental Impact Statement Available for Public Review Draft Environmental Impact Statement Available for Public Review November 25, 2008 - 4:58pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) today announced the issuance of the Draft Environmental Impact Statement (EIS) for the West Valley Demonstration Project in western New York, naming Phased Decisionmaking as the Preferred Alternative. Issuance of this Draft EIS is a significant step forward in cleaning up the site. The document, entitled "Revised Draft Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center (DOE/EIS-0226-D (Revised)), is a revision of the 1996 Cleanup and Closure

102

SRS Waste Tanks 5 and 6 Are Operationally Closed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS Waste Tanks 5 and 6 Are Operationally Closed SRS Waste Tanks 5 and 6 Are Operationally Closed SRS Waste Tanks 5 and 6 Are Operationally Closed December 19, 2013 - 12:00pm Addthis The final amount of grout is poured into Tank 6, marking the operational closure of Tanks 5 and 6. The final amount of grout is poured into Tank 6, marking the operational closure of Tanks 5 and 6. Media Contacts Amy Caver, Amy.Caver@srs.gov, 803-952-7213 Rick Kelley, Rick.Kelley@srs.gov, 803-208-0198 AIKEN, S.C. - Savannah River Remediation (SRR), the liquid waste contractor at the U.S. Department of Energy (DOE) Savannah River Site, has removed from service two more Cold War-era liquid radioactive waste tanks, marking the third and fourth tanks operationally closed by SRR in the last 14 months. Grouting and closure of Tanks 5 and 6 were completed approximately two

103

Final Clean Closure Report Site 300 Surface Impoundments Closure Lawrence Livermore National Laboratory Livermore, California  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory operated two Class II surface impoundments that stored wastewater that was discharged from a number of buildings located on the Site 300 Facility (Site 300). The wastewater was the by-product of explosives processing. Reduction in the volume of water discharged from these buildings over the past several years significantly reduced the wastewater storage needs. In addition, the impoundments were constructed in 1984, and the high-density polyethylene (HDPE) geomembrane liners were nearing the end of their service life. The purpose of this project was to clean close the surface impoundments and provide new wastewater storage using above ground storage tanks at six locations. The tanks were installed and put into service prior to closure of the impoundments. This Clean Closure Report (Closure Report) complies with State Water Resources Control Board (SWRCB) Section 21400 of the California Code of Regulations Title 27 (27 CCR section 21400). As required by these regulations and guidance, this Closure Report provides the following information: (1) a brief site description; (2) the regulatory requirements relevant to clean closure of the impoundments; (3) the closure procedures; and (4) the findings and documentation of clean closure.

Haskell, K

2006-02-14T23:59:59.000Z

104

Draft 2013 Annual Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft 2013 Annual Plan Draft 2013 Annual Plan Section 999: Draft 2013 Annual Plan Section 999 - Draft 2013 Annual Plan...

105

River Protection Project (RPP) Tank Waste Retrieval and Disposal Mission Technical Baseline Summary Description  

Science Conference Proceedings (OSTI)

This document is one of the several documents prepared by Lockheed Martin Hanford Corp. to support the U. S. Department of Energy's Tank Waste Retrieval and Disposal mission at Hanford. The Tank Waste Retrieval and Disposal mission includes the programs necessary to support tank waste retrieval; waste feed, delivery, storage, and disposal of immobilized waste; and closure of the tank farms.

DOVALLE, O.R.

1999-12-29T23:59:59.000Z

106

Grouting at the Idaho National Laboratory Tank Farm Facility, R. Mark Shaw  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grouting at the Grouting at the Idaho National Laboratory Tank Farm Facility R. Mark Shaw, U. S. Department of Energy safety v performance v cleanup v closure M E Environmental Management Environmental Management 2 Topics/Agenda * Tank Farm Overview * Tank and Vault Grouting * Cooling Coil and Transfer Line Grouting safety v performance v cleanup v closure M E Environmental Management Environmental Management 3 INTEC TANK FARM CLOSURE INTEC TANK FARM CLOSURE VES-WM-103 VES-WM-104 VES-WM-105 VES-WM-106 182 183 185 186 187 189 190 188 184 181 180 Tank Farm Facility Octagon Vaults: WM-180, WM-181 Pillar and Panel Vaults: WM-182, WM-183, WM-184, WM-185, WM-186 Square Vaults: WM-187, WM-188, WM-189, WM-190 GV99 0008 safety v performance v cleanup v closure M E Environmental Management

107

First draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Planning: Planning: Institutional Issues in the West Prepared for The CREPC Transmission Planning and Expansion Work Group By The Regulatory Assistance Project Bob Anderson Associate Draft January 15, 2004 Transmission Planning: Institutional Issues in the West Page i Table of Contents Introduction......................................................................................................................... 1 Background-The Existing Transmission Planning Landscape......................................... 3 Interconnection-wide Transmission Planning ................................................................ 3 Seams Steering Group-Western Interconnection (SSG-WI) ...................................... 3 Western Electricity Coordinating Council (WECC)...................................................

108

Independent Oversight Review, Hanford Tank Farms - November 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review, Hanford Tank Farms - November 2011 Review, Hanford Tank Farms - November 2011 Independent Oversight Review, Hanford Tank Farms - November 2011 November 2011 Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an independent oversight review of the draft amendment to the Hanford Tank Farms safety basis for upgrading the double-shell tank (DST) primary tank ventilation (PTV) systems to safety-significant designation. The Tank Farms are Hazard Category 2 DOE nuclear facilities. The review was performed during the period July 25 - August 12, 2011 by the HSS Office of Enforcement and Oversight's Office of Safety and Emergency Management

109

RETRIEVAL & TREATMENT OF HANFORD TANK WASTE  

SciTech Connect

The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next generation of tanks to be retrieved.

EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

2006-01-20T23:59:59.000Z

110

Tank Waste System Integrated Project Team  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decisional Draft Decisional Draft 1 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained. Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary

111

Tank waste remediation system fiscal year 1998 multi-year work plan WBS 1.1  

Science Conference Proceedings (OSTI)

The TWRS Project Mission is to manage and immobilize for disposal the Hanford Site radioactive tank waste and cesium (Cs)/strontium (Sr) capsules in a safe, environmentally sound, and cost-effective manner. The scope includes all activities needed to (1) resolve safety issues; (2) operate, maintain, and upgrade the tank farms and supporting infrastructure; (3) characterize, retrieve, pretreat, and immobilize the waste for disposal and tank farm closure; and (4) use waste minimization and evaporation to manage tank waste volumes to ensure that the tank capacities of existing DSTs are not exceeded. The TWRS Project is responsible for closure of assigned operable units and D&D of TWRS facilities.

Lenseigne, D.L., Westinghouse Hanford, Richland, WA

1997-09-15T23:59:59.000Z

112

CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315  

SciTech Connect

In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.

Langton, C.; Burns, H.; Stefanko, D.

2012-01-10T23:59:59.000Z

113

Washington Closure Hanford, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CERTIFIED MAIL RETURN RECEIPT REQUESTED Mr. Neil Brosee President Washington Closure Hanford, LLC 2620 Fermi Avenue Richland, Washington 99354 WEA-201 0-02 Dear Mr. Brosee: This...

114

High-Level Liquid Waste Tank Integrity Workshop - 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquid Waste Tank Integrity Liquid Waste Tank Integrity Workshop - 2008 Karthik Subramanian Bruce Wiersma November 2008 High Level Waste Corporate Board Meeting karthik.subramanian@srnl.doe.gov bruce.wiersma@srnl.doe.gov 2 Acknowledgements * Bruce Wiersma (SRNL) * Kayle Boomer (Hanford) * Michael T. Terry (Facilitator) * SRS - Liquid Waste Organization * Hanford Tank Farms * DOE-EM 3 Background * High level radioactive waste (HLW) tanks provide critical interim confinement for waste prior to processing and permanent disposal * Maintaining structural integrity (SI) of the tanks is a critical component of operations 4 Tank Integrity Workshop - 2008 * Discuss the HLW tank integrity technology needs based upon the evolving waste processing and tank closure requirements along with its continued storage mission

115

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

07: Closure of Nonradioactive Dangerous Waste Landfill and 07: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington Summary This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA. Public Comment Opportunities None available at this time. Documents Available for Download August 26, 2011 EA-1707: Revised Draft Environmental Assessment Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington May 13, 2010 EA-1707: Draft Environmental Assessment

116

West Valley Seeks Comment on Draft Waste Evaluation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seeks Comment on Draft Waste Evaluation Seeks Comment on Draft Waste Evaluation West Valley Seeks Comment on Draft Waste Evaluation June 29, 2012 - 12:00pm Addthis Media Contacts Bryan Bower 716-942-4368 Bill Taylor bill.taylor@srs.gov 803-952-8564 West Valley, NY - The U.S. Department of Energy (DOE) today released to the Nuclear Regulatory Commission (NRC), the public and the states of Nevada and Texas, and the Seneca Nation of Indians for review and comment, a Draft Waste Incidental to Reprocessing Evaluation for the concentrator feed makeup tank and the melter feed hold tank (the vessels) at the West Valley Demonstration Project (WVDP). This Draft Evaluation, which may enable the Department to dispose of the vessels as low-level radioactive waste (LLW), is a necessary step in the Department's cleanup efforts at

117

Hanford Tank Waste Retrieval, Treatment and Disposition Framework |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and High-Level Waste Facilities. Hanford Tank Waste Retrieval, Treatment and Disposition Framework More Documents & Publications EIS-0391: Draft Environmental Impact Statement Waste Treatment Plant and Tank Farm Program EIS-0356: Notice of Intent to Prepare an Environmental Impact Statement

118

Hanford Tank Waste Retrieval, Treatment and Disposition Framework |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and High-Level Waste Facilities. Hanford Tank Waste Retrieval, Treatment and Disposition Framework More Documents & Publications EIS-0391: Draft Environmental Impact Statement Waste Treatment Plant and Tank Farm Program EIS-0356: Notice of Intent to Prepare an Environmental Impact Statement

119

ANALYSIS OF SAMPLES FROM TANK 6F CHEMICAL CLEANING  

SciTech Connect

Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. In mechanical sludge removal, personnel add liquid (e.g., inhibited water or supernate salt solution) to the tank to form a slurry. They mix the liquid and sludge with pumps, and transfer the slurry to another tank for further processing. Mechanical sludge removal effectively removes the bulk of the sludge from a tank, but is not able to remove all of the sludge. In Tank 6F, SRR estimated a sludge heel of 5,984 gallons remained after mechanical sludge removal. To remove this sludge heel, SRR performed chemical cleaning. The chemical cleaning included two oxalic acid strikes, a spray wash, and a water wash. SRR conducted the first oxalic acid strike as follows. Personnel added 110,830 gallons of 8 wt % oxalic acid to Tank 6F and mixed the contents of Tank 6F with two submersible mixer pumps (SMPs) for approximately four days. Following the mixing, they transferred 115,903 gallons of Tank 6F material to Tank 7F. The SMPs were operating when the transfer started and were shut down approximately five hours after the transfer started. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 2,400 gallons of solids remained in the tank. SRR conducted the second oxalic acid strike as follows. Personnel added 28,881 gallons of 8 wt % oxalic acid to Tank 6F. Following the acid addition, they visually inspected the tank and transferred 32,247 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,248 gallons of solids remained in the tank. Following the oxalic acid strikes, SRR performed Spray Washing with oxalic acid to remove waste collected on internal structures, cooling coils, tank top internals, and tank walls. The Acid Spray Wash was followed by a Water Spray Wash to remove oxalic acid from the tank internals. SRR conducted the Spray Wash as follows. Personnel added 4,802 gallons of 8 wt % oxalic acid to Tank 6F through the spray mast installed in Riser 2, added 4,875 gallons of oxalic acid through Riser 7, added 5,000 gallons of deionized water into the tank via Riser 2, and 5,000 gallons of deionized water into the tank via Riser 7. Following the Spray Wash, they visually inspected the tank and transferred 22,430 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Following the Spray Wash and transfer, Savannah River Site (SRS) added 113,935 gallons of well water to Tank 6F. They mixed the tank contents with a single SMP and transferred 112,699 gallons from Tank 6F to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,488 gallons of solids remained in the tank. Following the Water Wash, SRR personnel collected a solid sample and submitted it to SRNL for analysis to assess the effectiveness of the chemical cleaning and to provide a preliminary indication of the composition of the material remaining in the tank.

Poirier, M.; Fink, S.

2010-02-02T23:59:59.000Z

120

In-tank/At-tank Characterization for Closure of Hanford Tanks  

Image with Correct Tilt of Fringe Lines and Camera Lens Distortion Correction Reference Image Truth Volume ... analog signal for transmission to the ...

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

F-Area Tank Farm, Savannah River Site Available for Public Comment  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 February 20, 2013 Industrial Wastewater Closure Module for Liquid Waste Tanks 5F and 6F F-Area Tank Farm, Savannah River Site Available for Public Comment Background: The U.S. Department of Energy (DOE) Savannah River Operations Office has requested approval from the South Carolina De- partment of Health and Environmental Control (SCDHEC) of the Industrial Wastewater Closure Module for Waste Tanks 5F and 6F to support removal from service of these subject tanks located in the F-Area Tank Farm (FTF) at the Savannah River Site (SRS). The FTF General Closure Plan, approved on January 24, 2011, established the protocols by which DOE would: (1) close SRS FTF waste tank systems in accordance with South Carolina Regulations R.61-82, "Proper Closeout of Wastewater

122

Tanks focus area multiyear program plan FY97-FY99  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) continues to face a major tank remediation problem with approximately 332 tanks storing over 378,000 ml of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Most of the tanks have significantly exceeded their life spans. Approximately 90 tanks across the DOE complex are known or assumed to have leaked. Some of the tank contents are potentially explosive. These tanks must be remediated and made safe. How- ever, regulatory drivers are more ambitious than baseline technologies and budgets will support. Therefore, the Tanks Focus Area (TFA) began operation in October 1994. The focus area manages, coordinates, and leverages technology development to provide integrated solutions to remediate problems that will accelerate safe and cost-effective cleanup and closure of DOE`s national tank system. The TFA is responsible for technology development to support DOE`s four major tank sites: Hanford Site (Washington), INEL (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: safety, characterization, retrieval, pretreatment, immobilization, and closure.

NONE

1996-08-01T23:59:59.000Z

123

Modeling the Performance of Engineered Systems for Closure and Near-Surface Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

performance cleanup closure performance cleanup closure M E Environmental Management Environmental Management Performance Assessment Community of Practice Technical Exchange July 13-14, 2009 Modeling the Performance of Engineered Systems for Closure and Near-Surface Disposal - Overview and Focused Discussions David S. Kosson CRESP and Vanderbilt University Tank Waste Corporate Board Meeting July 29, 2009 1 safety performance cleanup closure M E Environmental Management Environmental Management Agenda * Overview of DOE Performance Assessment Practices * Focused Discussions - Role of PA Process in Risk Communication and Decisions - Modeling Improvements - PA Assumption Validation - Uncertainty Evaluation - Evolving EPA Developments - Related IAEA Activities * Looking forward

124

Underground Storage Tanks (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tanks (West Virginia) Tanks (West Virginia) Underground Storage Tanks (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install, repair, retrofit,

125

Power Plant Closure Guidebook  

Science Conference Proceedings (OSTI)

Organizations that are planning to decommission an aged power plant face a host of issues that must be addressed and many tasks that must be properly executed in order to ensure a successful closure of the facility.

2010-10-20T23:59:59.000Z

126

Draft General Conformity Determination  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Draft General Conformity Determination U.S. Department of the Interior Minerals Management Service MMS Cape Wind Energy Project January 2009 Final EIS Appendix I Draft General Conformity Determination Draft General Conformity Determination Cape Wind Energy Project Prepared by Minerals Management Service Herndon, VA November 2008 i TABLE OF CONTENTS 1.0 INTRODUCTION TO THE PROPOSED ACTION............................................................... 1 2.0 GENERAL CONFORMITY REGULATORY BACKGROUND .......................................... 2 2.1 GENERAL CONFORMITY REQUIREMENTS.................................................................... 2 2.2 GENERAL CONFORMITY APPLICABILITY.....................................................................

127

Dual Tank Fuel System  

DOE Patents (OSTI)

A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

Wagner, Richard William (Albion, NY); Burkhard, James Frank (Churchville, NY); Dauer, Kenneth John (Avon, NY)

1999-11-16T23:59:59.000Z

128

Lincoln Electric Draft Environmental Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

APPENDIX E. DRAFT EA COMMENTS AND RESPONSES 2 Lincoln Electric Draft Environmental Assessment Comments and Responses Number Commenter Comment Summary Response 1. Euclid Historical...

129

DRAFT Glossary of AFIS Terms  

Science Conference Proceedings (OSTI)

Page 1. DRAFT Glossary of AFIS Terms Latent Print AFIS Interoperability Working Group Page 2. DRAFT Glossary of AFIS Terms 2 ...

2012-05-04T23:59:59.000Z

130

Preliminary Draft EIS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement Draft Environmental Impact Statement January 2012 DOE/EIS-0457 Albany-Eugene 115-kilovolt No. 1 Transmission Line Rebuild Project Draft Environmental Impact Statement Bonneville Power Administration January 2012 Abstract Albany-Eugene 115-kilovolt No. 1 Transmission Line Rebuild Project Draft Environmental Impact Statement i Albany-Eugene 115-kilovolt No. 1 Transmission Line Rebuild Project Responsible Agency: U.S. Department of Energy (DOE), Bonneville Power Administration Title of Proposed Project: Albany-Eugene 115-kilovolt No. 1 Transmission Line Rebuild Project State Involved: Oregon Abstract: Bonneville Power Administration is proposing to rebuild a 32-mile section of the Albany-

131

Enhanced Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce the life-cycle costs and accelerate the cleanup of the Cold War environmental legacy www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 cleanup of the Cold War environmental legacy Shirley J. Olinger Associate Principal Deputy for Corporate Operations EMAB Presentation June 23, 2011 EM Priorities: Activities to maintain a safe, secure, and compliant posture in the EM complex Radioactive tank waste stabilization, treatment, and disposal Spent (used) nuclear fuel storage, receipt, and disposition "To-Go Life-Cycle Costs" ($185B - $218B as of the FY 2012 Request) Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and disposal 38% Excess facilities decontamination and decommissioning

132

Decontamination and inspection plan for Phase 3 closure of the 300 area waste acid treatment system  

SciTech Connect

This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 3 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 3 is the third phase of three WATS closure phases. Phase 3 attains clean closure conditions for WATS portions of the 334 and 311 Tank Farms (TF) and the 333 and 303-F Buildings. This DIP also describes designation and management of waste and debris generated during Phase 3 closure activities. Information regarding Phase 1 and Phase 2 for decontamination and verification activities closure can be found in WHC-SD-ENV-AP-001 and HNF-1784, respectively. This DIP is provided as a supplement to the closure plan (DOE/RL-90-11). This DIP provides the documentation for Ecology concurrence with Phase 3 closure methods and activities. This DIP is intended to provide greater detail than is contained in the closure plan to satisfy Ecology Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 requirement that closure documents describe the methods for removing, transporting, storing, and disposing of all dangerous waste at the unit. The decontamination and verification activities described in this DIP are based on the closure plan and on agreements reached between Ecology and the U.S. Department of Energy, Richland Operations Office (DOE-RL) during Phase 3 closure activity workshops and/or project manager meetings (PMMs).

LUKE, S.N.

1999-02-01T23:59:59.000Z

133

EA-1752: Draft Environmental Assessment | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

52: Draft Environmental Assessment 52: Draft Environmental Assessment EA-1752: Draft Environmental Assessment Pacific Gas and Electric Company (PG&E) Compressed Air Energy Storage (CAES) Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California This EA evaluates the potential environmental impacts of DOE providing a financial assistance grant based on the American Recovery and Reinvestment Act of 2009 (ARRA) to PG&E in a cooperative agreement between PG&E and DOE. The project is co-funded by the federal DOE, California Public Utilities Commission, and the California Energy Commission. If PG&E receives the funding, the company proposes construction, operation, and closure of an injection and withdrawal well, and associated temporary site facilities

134

EA-1793: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Draft Environmental Assessment 3: Draft Environmental Assessment EA-1793: Draft Environmental Assessment Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site The U.S. Department of Energy (DOE) proposes to provide replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017. Historically, INL has disposed of this LLW onsite. However, the existing disposal area located within the INL Radioactive Waste Management Complex will undergo closure as part of ongoing cleanup of INL and will not be available after 2017. The proposed project to establish replacement capability is not a DOE Environmental Management Idaho Cleanup Project

135

EA-1752: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

752: Draft Environmental Assessment 752: Draft Environmental Assessment EA-1752: Draft Environmental Assessment Pacific Gas and Electric Company (PG&E) Compressed Air Energy Storage (CAES) Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California This EA evaluates the potential environmental impacts of DOE providing a financial assistance grant based on the American Recovery and Reinvestment Act of 2009 (ARRA) to PG&E in a cooperative agreement between PG&E and DOE. The project is co-funded by the federal DOE, California Public Utilities Commission, and the California Energy Commission. If PG&E receives the funding, the company proposes construction, operation, and closure of an injection and withdrawal well, and associated temporary site facilities

136

Accelerating cleanup: Paths to closure  

SciTech Connect

This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

NONE

1998-06-01T23:59:59.000Z

137

TANK DEIS TITLE PG.psd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cover Sheet Cover Sheet iii COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Savannah River Site High-Level Waste Tank Closure Environmental Impact Statement (DOE/EIS-0303), Aiken, South Carolina CONTACT: For additional information on this environmental impact statement (EIS), write or call: Andrew R. Grainger, NEPA Compliance Officer U.S. Department of Energy, Savannah River Operations Office Building 730B, Room 2418 Aiken, South Carolina 29802 Attention: Tank Closure EIS Local and Nationwide Telephone: (800) 881-7292 Email: nepa@srs.gov For general information on DOE's National Environmental Policy Act (NEPA), write or call: Ms. Carol M. Borgstrom, Director Office of NEPA Policy and Compliance, EH-42 U.S. Department of Energy 1000 Independence Avenue, S.W.

138

Hanford Site C Tank Farm Meeting Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Notes from 24- 25 February 2009 Office of River Protection Waste Management Area C Performance Assessment Input Meeting Attendees: Representatives from Department of Energy-Office of River Protection (DOE-ORP), DOE Richland Operations Office (DOE-RL), DOE-Headquarters (DOE-HQ), the Washington State Department of Ecology (Ecology), and the U.S. Nuclear Regulatory Commission (NRC), met at the Ecology offices in Richland, Washington on 24 & 25 February 2009. EPA Region X staff participated on 25 February 2009 via teleconference. Discussion: DOE is pursuing closure of Waste Management Area C (WMA-C) located at the Hanford Site. At some point in the future, DOE and NRC will consult on waste determinations for these tank closures; additionally these tanks will be closed in coordination with EPA and

139

TANK DEIS SUMMARY TITLE PG.psd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Summary S-iii COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Savannah River Site High-Level Waste Tank Closure Environmental Impact Statement (DOE/EIS-0303), Aiken, South Carolina. CONTACT: For additional information on this environmental impact statement (EIS), write or call: Andrew R. Grainger, NEPA Compliance Officer U.S. Department of Energy, Savannah River Operations Office Building 730B, Room 2418 Aiken, South Carolina 29802 Attention: Tank Closure EIS Local and Nationwide Telephone: (800) 881-7292 Email: nepa@srs.gov For general information on DOE's National Environmental Policy Act (NEPA) process, write or call: Ms. Carol M. Borgstrom, Director Office of NEPA Policy and Compliance, EH-42 U.S. Department of Energy 1000 Independence Avenue, S.W.

140

Achieving closure at Fernald  

Science Conference Proceedings (OSTI)

When Fluor Fernald took over the management of the Fernald Environmental Management Project in 1992, the estimated closure date of the site was more than 25 years into the future. Fluor Fernald, in conjunction with DOE-Fernald, introduced the Accelerated Cleanup Plan, which was designed to substantially shorten that schedule and save taxpayers more than $3 billion. The management of Fluor Fernald believes there are three fundamental concerns that must be addressed by any contractor hoping to achieve closure of a site within the DOE complex. They are relationship management, resource management and contract management. Relationship management refers to the interaction between the site and local residents, regulators, union leadership, the workforce at large, the media, and any other interested stakeholder groups. Resource management is of course related to the effective administration of the site knowledge base and the skills of the workforce, the attraction and retention of qualified a nd competent technical personnel, and the best recognition and use of appropriate new technologies. Perhaps most importantly, resource management must also include a plan for survival in a flat-funding environment. Lastly, creative and disciplined contract management will be essential to effecting the closure of any DOE site. Fluor Fernald, together with DOE-Fernald, is breaking new ground in the closure arena, and ''business as usual'' has become a thing of the past. How Fluor Fernald has managed its work at the site over the last eight years, and how it will manage the new site closure contract in the future, will be an integral part of achieving successful closure at Fernald.

Bradburne, John; Patton, Tisha C.

2001-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Microsoft Word - DOE-EA-1707D_Revised_Predecisional_EA Closure_NRDWL-SWL08232011.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7D 7D REVISED PREDECISIONAL DRAFT AUGUST 2011 Environmental Assessment Closure of Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL), Hanford Site, Richland, Washington U.S. Department of Energy Richland Operations Office Richland, Washington 99352 DOE/EA-1707D REVISED PREDECISIONAL DRAFT AUGUST 2011 DOE/EA-1707D REVISED PREDECISIONAL DRAFT iii AUGUST 2011 Contents 1 1 Introduction and Purpose and Need ............................................................................................. 1-1 2 1.1 Introduction ............................................................................................................................ 1-1 3 1.2 Purpose and Need ................................................................................................................... 1-2 4

142

General requirements for RCRA regulated hazardous waste tanks  

Science Conference Proceedings (OSTI)

The Resource Conservation and Recovery Act (RCRA), as amended, requires that tanks used for the storage or treatment of hazardous waste (HazW) be permitted, and comply with the requirements contained within the Code of Federal Regulations (CFR) TItle 40 in Subpart J of Part 264/265, unless those tanks have been exempted. Subpart J specifies requirements for the design, construction, installation, operation, inspection, maintenance, repair, release, response, and closure of HazW tanks. Also, the regulations make a distinction between new and existing tanks. Effective December 6, 1995, standards for controlling volatile organic air emissions will apply to non-exempt HazW tanks. HazW tanks will have to be equipped with a cover or floating roof, or be designed to operate as a closed system, to be in compliance with the air emission control requirements. This information brief describes those tanks that are subject to the Subpart J requirements, and will also discuss secondary containment, inspection, restrictions on waste storage, release response, and closure requirements associated with regulated HazW tanks.

NONE

1995-11-01T23:59:59.000Z

143

Closure operators for order structures  

Science Conference Proceedings (OSTI)

We argue that closure operators are fundamental tools for the study of relationships between order structures and their sequence representations. We also propose and analyse a closure operator for interval order structures.

Ryszard Janicki; Dai Tri Man L; Nadezhda Zubkova

2009-09-01T23:59:59.000Z

144

Calcined solids storage facility closure study  

SciTech Connect

The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others

1998-02-01T23:59:59.000Z

145

Tank Waste Corporate Board Meeting 07/29/09 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9/09 9/09 Tank Waste Corporate Board Meeting 07/29/09 The following documents are associated with the Tank Waste Corporate Board Meeting held on July 29th, 2009. Fuel Cycle Research and Development Program Retrieval and Repackaging of RH-TRU Waste - General Presentation Modular Hot Cell Technology Tank Waste System Integrated Project Team Gunite Tanks Waste Retrieval and Closure Operations at Oak Ridge Nattional Laboratory Integrated Facilities Disposition Program Oak Ridge National Laboratory TRU Waste Processing Center Tank Waste Processing Supernate Processing System Chemical Cleaning Program Review Enhanced Chemical Cleaning Hanford Single-Shell Tank Integrity Program Modeling the Performance of Engineered Systems for Closure and Near-Surface Disposal Nuclear Safety R&D in the Waste Processing Technology Development &

146

Design and Drafting  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototyping -- Desktop 3D Printing The Design & Drafting Group has an Objet30 Pro 3D printer that provides the accuracy and versatility of a high-end rapid prototyping machine...

147

NIST Cybersecurity Framework - DRAFT Framework Glossary  

Science Conference Proceedings (OSTI)

DRAFT - Framework Glossary Term Draft Definition Category The logical subdivision of a function; one or more categories comprise a function. ...

2013-06-28T23:59:59.000Z

148

Type I Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

I Tanks I Tanks * 12 Type I tanks were built between 1951-53 * 750,000 gallon capacity; 75 feet in diameter by 24 ½ feet high * Partial secondary containment with leak detection * Contain approximately 10 percent of the waste volume * 7 Type I tanks have leaked waste into the tank annulus; the amount of waste stored in these tanks is kept below the known leak sites that have appeared over the decades of

149

Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data  

Science Conference Proceedings (OSTI)

CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL.

Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

2005-06-03T23:59:59.000Z

150

Format and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans U.S. DEPARTMENT OF ENERGY DOE G 435.1-3 i DRAFT XX-XX-XX LLW Closure Plan Format and Content Guide Revision 0, XX-XX-XX Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans CONTENTS PART A: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. PURPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. ORGANIZATION OF DOCUMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.1 Closure Objectives and Relationship to Other Programs . . . . . . . . . . . . . . . . . . . . . . 2 3.2

151

Washington Closure Hanford, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 19,2010 August 19,2010 CERTIFIED MAIL RETURN RECEIPT REQUESTED Mr. Neil Brosee President Washington Closure Hanford, LLC 2620 Fermi Avenue Richland, Washington 99354 WEA-201 0-02 Dear Mr. Brosee: This letter refers to the Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances surrounding the employee fall that occurred at the Hanford High Bay Testing Facility (336 Building) on July 1, 2009. The worker sustained serious injury to his back and broke bones in both legs. Based on an evaluation of the evidence in this matter, the U.S. Department of Energy (DOE) has concluded that violations of 10 C.F.R. Part 851, Worker Safety and Health Program, by Washington Closure Hanford, LLC (WCH) occurred. Accordingly, DOE is issuing the enclosed Preliminary Notice of

152

Hanford tank residual waste contaminant source terms and release models  

Science Conference Proceedings (OSTI)

Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energys Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less leachable (<10 wt% of the available mass in the waste) than previously predicted. This may be due to the coprecipitation of trace concentrations of Tc in relatively insoluble phases such as Fe oxide/hydroxide solids.

Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

2011-08-23T23:59:59.000Z

153

EA-1707: Draft Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE))

Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

154

OXALATE MASS BALANCE DURING CHEMICAL CLEANING IN TANK 6F  

Science Conference Proceedings (OSTI)

The Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRR personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 6F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate. Some conclusions from this work are: (1) Approximately 65% of the oxalate added as oxalic acid was removed with the decanted liquid. (2) Approximately 1% of the oxalate (added to the tank as oxalic acid) formed precipitates with compounds such as nickel, manganese, sodium, and iron (II), and was dissolved with nitric acid. (3) As much as 30% of the oxalate may have decomposed forming carbon dioxide. The balance does not fully account for all the oxalate added. The offset represents the combined uncertainty in the analyses and sampling.

Poirier, M.; Fink, S.

2011-07-22T23:59:59.000Z

155

NIST Computer Security Publications - Drafts  

Science Conference Proceedings (OSTI)

... 1. DRAFT Guidelines for Smart Grid Cybersecurity: Vol. 1 - Smart Grid Cybersecurity Strategy, Architecture, and High-Level Requirements Vol. ...

156

Nevada Test Site closure program  

SciTech Connect

This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use.

Shenk, D.P.

1994-08-01T23:59:59.000Z

157

Draft Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Draft Environmental Impact Statement for the Proposed Abengoa Biorefinery Project near Hugoton, Stevens County, Kansas Volume 2 - Appendices U.S. Department of Energy Golden Field Office Office of Energy Efficiency and Renewable Energy DOE/EIS-0407D September 2009 Cover photos courtesy of (left to right): Southeast Renewable Fuels, LLC DOE National Renewable Energy Laboratory Public domain Draft Environmental Impact Statement for the Proposed Abengoa Biorefinery Project near Hugoton, Stevens County, Kansas Volume 2 - Appendices U.S. Department of Energy Golden Field Office Office of Energy Efficiency and Renewable Energy DOE/EIS-0407D September 2009 COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) COOPERATING AGENCY: The U.S. Department of Agriculture-Rural Development is a cooperating

158

Draft Enivonmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dear Reader: The enclosed Draft Environmental Assessment (EA) for the Utah Coal and Biomass Fueled Pilot Plant Project, Kanab, Utah , (Draft EA-1870D) was prepared by the U.S. Department of Energy (DOE) in accordance with the Council on Environmental Quality's National Environmental Policy Act (NEPA) implementing regulations (40 CFR Parts 1500 to 1508) and DOE NEPA implementing procedures (10 CFR Part 1021). The Draft EA evaluates the potential environmental impacts of DOE providing cost-shared funding under a cooperative agreement with Viresco Energy, LLC (Viresco) for its design, construction, and testing of a pilot-scale gasification process facility. The objective of Viresco's proposed project is to conduct a pilot- scale evaluation of the Steam Hydrogasification Reaction process to determine the technical

159

HANFORD TANK CLEANUP UPDATE  

SciTech Connect

Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

BERRIOCHOA MV

2011-04-07T23:59:59.000Z

160

Savannah River Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah Savannah River Savannah River Tank Waste Residuals HLW Corporate Board November 6, 2008 1 November 6, 2008 Presentation By Sherri R. Ross Department of Energy Savannah River Operations Office The Issue * How clean is clean? * Ultimate Challenge - Justify highly radioactive radionuclides have been removed to the maximum extent practical? 2 removed to the maximum extent practical? - Building compelling regulatory documentation that will withstand intense scrutiny §3116 Requirements 1. Does not require disposal in deep geological repository 2. Highly radioactive radionuclides removed to the maximum extent practical 3. Meet the performance objectives in 10 CFR Part 3 3. Meet the performance objectives in 10 CFR Part 61, Subpart C 4. Waste disposed pursuant to a State-approved closure plan or permit Note: If it is anticipated that Class C disposal limits will be exceeded, additional

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

SciTech Connect

This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

NSTec Environmental Restoration

2008-01-01T23:59:59.000Z

162

EIS-0391: Supplement Analysis of an Environmental Impact Statement...  

NLE Websites -- All DOE Office Websites (Extended Search)

of an Environmental Impact Statement Draft Tank Closure and Waste Management for the Hanford Site, Richland, WA Based on the analyses in this SA, DOE concluded that updated,...

163

Tank 241-AW-101 tank characterization plan  

DOE Green Energy (OSTI)

The first section gives a summary of the available information for Tank AW-101. Included in the discussion are the process history and recent sampling events for the tank, as well as general information about the tank such as its age and the risers to be used for sampling. Tank 241-AW-101 is one of the 25 tanks on the Flammable Gas Watch List. To resolve the Flammable Gas safety issue, characterization of the tanks, including intrusive tank sampling, must be performed. Prior to sampling, however, the potential for the following scenarios must be evaluated: the potential for ignition of flammable gases such as hydrogen-air and/or hydrogen-nitrous oxide; and the potential for secondary ignition of organic-nitrate/nitrate mixtures in crust layer initiated by the burning of flammable gases or by a mechanical in-tank energy source. The characterization effort applicable to this Tank Characterization Plan is focused on the resolution of the crust burn flammable gas safety issue of Tank AW-101. To evaluate the potential for a crust burn of the waste material, calorimetry tests will be performed on the waste. Differential Scanning Calorimetry (DSC) will be used to determine whether an exothermic reaction exists.

Sathyanarayana, P.

1994-11-22T23:59:59.000Z

164

RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM  

SciTech Connect

Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spent zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North and South hemispheres is currently supported by a single Mantis rover sample in each hemisphere. A floor scrape sample was obtained from a compact region near the center riser slightly in the South hemisphere and has been analyzed for a shortened list of key analytes. There is not enough additional material from the floor scrape sample material for completing the full suite of constituents. No floor scrape samples have been previously taken from the North hemisphere. The criterion to determine the number of additional samples was based on the practical reduction in the uncertainty when a new sample is added. This was achieved when five additional samples are obtained. In addition, two archived samples will be used if a contingency such as failing to demonstrate the comparability of the Mantis samples to the floor scrape samples occurs. To complete sampling of the Tank 19 residual floor material, four additional samples should be taken from the North hemisphere and four additional samples should be taken from the South hemisphere. One of the samples from each hemisphere will be archived in case of need. Three of the four additional samples from each hemisphere will be analyzed. Once the results are available, differences between the Mantis and three floor scrape sample results will be evaluated. If there are no statistically significant analyte concentration differences between the Mantis and floor scrape samples, those results will be combined and then UCL95%s will be calculated. If the analyte concentration differences between the Mantis and floor scrape samples are statistically significant, the UCL95%s will be calculated without the Mantis sample results. If further reduction in the upper confidence limits is needed and can be achieved by the addition of the archived samples, they will be analyzed and included in t

Harris, S.; Shine, G.

2009-12-14T23:59:59.000Z

165

Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington  

SciTech Connect

This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

Freeman-Pollard, J.R.

1994-03-02T23:59:59.000Z

166

THE RETRIEVAL KNOWLEDGE CENTER EVALUATION OF LOW TANK LEVEL MIXING TECHNOLOGIES FOR DOE HIGH LEVEL WASTE TANK RETRIEVAL 10516  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation & Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation & Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same technology have proven to be difficult. Through the RKC, DOE-EM funded an evaluation of adaptable commercial technologies that could assist with the removal of the tank heels. This paper will discuss the efforts and results of developing the RKC to improve communications and discussion of tank waste retrieval through a series of meetings designed to identify technical gaps in retrieval technologies at the DOE Hanford and Savannah River Sites. This paper will also describe the results of an evaluation of commercially available technologies for low level mixing as they might apply to HLW tank heel retrievals.

Fellinger, A.

2009-12-08T23:59:59.000Z

167

Oxalate Mass Balance During Chemical Cleaning in Tank 5F  

SciTech Connect

The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 5F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate.

Poirier, M.; Fink, S.

2011-07-08T23:59:59.000Z

168

Tank 241-S-107 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board (DNFSB) has advised the Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues (Conway 1993). The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process``. This document satisfies that requirement for tank 241-S-107 (S-107) sampling activities. The report gives a summary of descriptive information available on Tank S-107. Included are the present status and physical description of the tank, its age, process history, and expected tank contents from previous sampling and analytical data. The different types of waste, by layer, for Tank S-107 will also be discussed. As of December 1994, Tank S-107 has been categorized as sound and was partially isolated in December 1982. It is a low-heat load tank and is awaiting stabilization. Tank S-107 is expected to contain two primary layers of waste. The bottom layer should contain a mixture of REDOX waste and REDOX cladding waste. The second layer contains S1 saltcake (waste generated from the 242-S evaporator/crystallizer from 1973 until 1976), and S2 salt slurry (waste generated from the 242-S evaporator-crystallizer from 1977 until 1980).

Jo, J.

1995-04-06T23:59:59.000Z

169

Septic Tanks (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

A license from the Department of Environmental Quality is required for cleaning or pumping of septic tanks or holding tanks and disposing of sewage or septage. The rules for the license are...

170

Dampers for Natural Draft Heaters: Technical Report  

E-Print Network (OSTI)

vented natural-draft gas-fired storage water heater. Thevented natural?draft gas?fired storage water heater. Thevented natural?draft gas?fired storage water heater. The

Lutz, James D.

2009-01-01T23:59:59.000Z

171

Tank 241-U-111 tank characterization plan  

Science Conference Proceedings (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-U-111.

Carpenter, B.C.

1995-01-24T23:59:59.000Z

172

Tank 241-B-112 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.`` This document satisfies that requirement for tank 241-B-112 (B-112). Tank B-112 is currently a non-Watch List tank; therefore, the only applicable DQO as of January 1995 is the Tank Safety Screening Data Quality Objective, which is described below. Tank B-112 is expected to have three primary layers. A bottom layer of sludge consisting of second-cycle waste, followed by a layer of BY saltcake and a top layer of supernate.

Schreiber, R.D. [Westinghouse Hanford Co., Richland, WA (United States)

1995-02-06T23:59:59.000Z

173

DIESEL FUEL TANK FOUNDATIONS  

DOE Green Energy (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

174

Hanford Site C Tank Farm Meeting Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3622, Rev. 0 3622, Rev. 0 Summary Notes from 1 - 3 September 2009 Office of River Protection Waste Management Area C Tank Farm Performance Assessment Input Meeting MP Connelly Washington River Protection Solutions LLC Richland, WA 99352 U.S. Department of Energy Contract DE-AC27-08RV1 4800 EDT/ECN: DRF UC: Cost Center: Charge Code: B&R Code: Total Pages: 13 Key Words: Waste Management Area C, Performance Assessment, tank closure, waste inventory Abstract: Summary of meeting between DOE-ORP and Hanford Site regulators/stakeholders regarding Waste Management Area C performance assessment TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

175

Hanford Site C Tank Farm Meeting Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1878, Rev. 0 1878, Rev. 0 Summary Notes from 5 - 7 May 2009 Office of River Protection Waste Management Area C Tank Farm Performance Assessment Input Meeting MP Connelly Washington River Protection Solutions LLC Richland, WA 99352 U.S. Department of Energy Contract DE-AC27-08RV14800 EDT/EON: DRF UC: Cost Center: Charge Code: B&R Code: Total Pages: 15 Key Words: Waste Management Area C, Performance Assessment, tank closure, waste inventory Abstract: Summary of meeting between DOE-ORP and Hanford Site regulators/stakeholders regarding Waste Management Area C performance assessment TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

176

The Integration of the 241-Z Building Decontamination and Decommissioning Under Cercla with RCRA Closure at the Plutonium Finishing Plant  

SciTech Connect

The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA) and Washington State Hazardous Waste Management Act, RCW 70.105, , have been deactivated and are being actively decommissioned under the provisions of the Hanford Federal Facility Agreement and Consent Order (HFFACO), RCRA and Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 42 U.S.C. 9601 et seq. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground piping from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions will address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the Hanford Facility Dangerous Waste Closure Plan, 241-Z Treatment and Storage Tanks. Under the RCRA closure plan, the 241-Z TSD unit is anticipated to undergo clean closure to the performance standards of the State of Washington with respect to dangerous waste contamination from RCRA operations. The TSD unit will be clean closed if physical closure activities identified in the plan achieve clean closure standards for all 241-Z locations. Clean closed 241-Z treatment and storage tanks, equipment and/or structures will remain after RCRA clean closure for future disposition in conjunction with PFP decommissioning activities which are integrated with CERCLA. (authors)

Mattlin, E.; Charboneau, S. [U.S. Department of Energy, Richland Operations Office, Richland WA (United States); Johnston, G.; Hopkins, A.; Bloom, R.; Skeels, B.; Klos, D.B. [Fluor Hanford, Inc., Richland WA (United States)

2007-07-01T23:59:59.000Z

177

Tank 241-AZ-102 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters.

Schreiber, R.D.

1995-02-06T23:59:59.000Z

178

Tank 241-AZ-101 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters.

Schreiber, R.D.

1995-02-06T23:59:59.000Z

179

HWMA/RCRA Closure Plan for the CPP-602 Laboratory Lines  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure (HWMA/RCRA) Plan for the CPP-602 laboratory lines was developed to meet the tank system closure requirements of the Idaho Administrative Procedures Act 58.01.05.008 and 40 Code of Federal Regulations 264, Subpart G. CPP-602 is located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The lines in CPP-602 were part of a liquid hazardous waste collection system included in the Idaho Nuclear Technology and Engineering Center Liquid Waste Management System Permit. The laboratory lines discharged to the Deep Tanks System in CPP-601 that is currently being closed under a separate closure plan. This closure plan presents the closure performance standards and the methods for achieving those standards. The closure approach for the CPP-602 laboratory lines is to remove the lines, components, and contaminants to the extent practicable. Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Site CPP-117 includes the CPP-602 waste trench and the area beneath the basement floor where waste lines are direct-buried. Upon completion of rinsing or mopping to remove contamination to the extent practicable from the waste trench and rinsing the intact buried lines (i.e., stainless steel sections), these areas will be managed as part of CERCLA Site CPP-117 and will not be subject to further HWMA/RCRA closure activities. The CPP-602 building is being decontaminated and decommissioned under CERCLA as a non-time critical removal action in accordance with the Federal Facility Agreement/Consent Order. As such, all waste generated by this CERCLA action, including closure-generated waste, will be managed in coordination with that CERCLA action in substantive compliance with HWMA/RCRA regulations. All waste will be subject to a hazardous waste determination for the purpose of supporting appropriate management and will be managed in accordance with this plan. ii

Idaho Cleanup Project

2009-09-30T23:59:59.000Z

180

Closure report for N Reactor  

SciTech Connect

This report has been prepared to satisfy Section 3156(b) of Public Law 101-189 (Reports in Connection with Permanent Closures of Department of Energy Defense Nuclear Facilities), which requires submittal of a Closure Report to Congress by the Secretary of Energy upon the permanent cessation of production operations at a US Department of Energy (DOE) defense nuclear facility (Watkins 1991). This closure report provides: (1) A complete survey of the environmental problems at the facility; (2) Budget quality data indicating the cost of environmental restoration and other remediation and cleanup efforts at the facility; (3) A proposed cleanup schedule.

Not Available

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Draft Advanced Fossil Solicitation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Fossil Solicitation Federal loan guarantee solicitation announcement -- Advanced Fossil Energy Projects. Microsoft Word - Draft Advanced Fossil Solicitation Final Draft.1...

182

DUF6 Draft EIS Public Hearing Transcripts  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Draft EIS Public Hearing Transcripts Transcripts from the DUF6 Conversion Draft EIS Public Hearings The following transcripts are from the DUF6 Conversion...

183

Design and Drafting  

NLE Websites -- All DOE Office Websites (Extended Search)

Email Portal (Zimbra)* Email Portal (Zimbra)* * Operations Logbook* * Project Proposal System* * ICMS * Safety and Training * ANL ESQ Training * APS Phone Directory * Resources & Information* * Internal link Design and Drafting Group The Advanced Photon Source (APS) at Argonne National Laboratory is a national synchrotron-radiation research facility funded by the U.S. Department of Energy. Using high-brilliance x-ray beams from the APS, an international community of scientists conducts forefront basic and applied research in the fields of material science, biological science, physics, chemistry, environmental, geophysical and planetary science. The AES Design and Drafting Group supports the ASD and AES divisions' continued improvement of the accelerator as well as the scientific

184

Draft Genome Sequence  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Draft Genome Sequence of Serratia sp. Strain ATCC 39006, a Model Bacterium for Analysis of the Biosynthesis and Regulation of Prodigiosin, a Carbapenem, and Gas Vesicles Peter C. Fineran, a Marina C. Iglesias Cans, a Joshua P. Ramsay, b Nabil M. Wilf, b Desiree Cossyleon, a Matthew B. McNeil, a Neil R. Williamson, b Rita E. Monson, b S. Anette Becher, c Jo-Ann L. Stanton, d Kim Brügger, e Steven D. Brown, f George P. C. Salmond b Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand a ; Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom b ; AgResearch Ltd., Invermay Agricultural Centre, Mosgiel, New Zealand c ; Department of Anatomy, University of Otago, Dunedin, New Zealand d ; EASIH, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom e ; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge,

185

Closure Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Closure Sites Closure Sites Closure Sites View a list of the compliance agreements for the many EM closure sites, such as Mound and Rocky Flats, below. Associated summaries are also included. Pinellas Remediation Agreement Pinellas Remediation Agreement Summary Maxey Flats Consent Decree -Part 1, April 18, 1996 Maxey Flats Consent Decree -Part 2, April 18, 1996 Maxey Flats Consent Decree April 18, 1996 Summary Monticello Mill site Federal Facility Agreement, December 22, 1988 Monticello Mill site Federal Facility Agreement, December 22, 1988 Summary Battelle Columbus Laboratories Director's Final Findings and Orders, October 4, 1995 Battelle Columbus Laboratories Director's Final Findings and Orders, October 4, 1995 Summary Fernald Environmental Management Project Consent Agreement and Final Order,

186

STAFF DRAFT GUIDEBOOK RENEWABLES PORTFOLIO  

E-Print Network (OSTI)

California Energy Commission STAFF REPORT POWER SOURCE DISCLOSURE PROGRAM PRERULEMAKING DRAFT REGULATIONS SECOND DRAFT APRIL 2011 CEC3002011003SD #12;CALIFORNIA ENERGY COMMISSION Lorraine Gonzalez Staff members of the California Energy Commission prepared this report. As such, it does not necessarily

187

Photogrammetry and Laser Imagery Tests for Tank Waste Volume Estimates: Summary Report  

SciTech Connect

Feasibility tests were conducted using photogrammetry and laser technologies to estimate the volume of waste in a tank. These technologies were compared with video Camera/CAD Modeling System (CCMS) estimates; the current method used for post-retrieval waste volume estimates. This report summarizes test results and presents recommendations for further development and deployment of technologies to provide more accurate and faster waste volume estimates in support of tank retrieval and closure.

Field, Jim G. [Washington River Protection Solutions, LLC, Richland, WA (United States)

2013-03-27T23:59:59.000Z

188

Tank waste remediation system nuclear criticality safety program management review  

SciTech Connect

This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.

BRADY RAAP, M.C.

1999-06-24T23:59:59.000Z

189

RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM  

SciTech Connect

Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape sample was obtained from a compact region near the northeast riser and has been analyzed for a shortened list of key analytes. Since the unused portion of the floor scrape sample material is archived and available in sufficient quantity, additional analyses need to be performed to complete results for the full suite of constituents. The characterization of the full suite of analytes in the South hemisphere is currently supported by a single Mantis rover sample; there have been no floor scrape samples previously taken from the South hemisphere. The criterion to determine the number of additional samples was based on the practical reduction in the uncertainty when a new sample is added. This was achieved when five additional samples are obtained. In addition, two archived samples will be used if a contingency such as failing to demonstrate the comparability of the Mantis samples to the floor scrape samples occurs. To complete sampling of the Tank 18 residual floor material, three additional samples should be taken from the North hemisphere and four additional samples should be taken from the South hemisphere. One of the samples from each hemisphere will be archived in case of need. Two of the three additional samples from the North hemisphere and three of the four additional samples from the South hemisphere will be analyzed. Once the results are available, differences between the Mantis and three floor scrape samples (the sample previously obtained near NE riser plus the two additional samples that will be analyzed) results will be evaluated. If there are no statistically significant analyte concentration differences between the Mantis and floor scrape samples, those results will be combined and then UCL95%s will be calculated. If the analyte concentration differences between the Mantis and floor scrape samples are statistically significant, the UCL95%s will be calculated without the Mantis sample results. If further reduction in the upper confidence limits is needed and can be achieved by the addition of the archived samples, they will be analyzed and included in the stati

Shine, G.

2009-12-14T23:59:59.000Z

190

U.S. Department of Energy Miamisburg Closure Project  

Office of Legacy Management (LM)

Miamisburg Closure Project 1075 Mound Road Miamisburg, Ohio 45342 Mr. Tim Fischer U.S. Environmental Protection Agency 77 W. Jackson Boulevard, SR-6J Chicago, JL 60604 MAY 5 2005 Mr. Brian Nickel Ohio Environmental Protection Agency 401 E. Fifth Street Dayton, OH 45402 Dear M r . Fischer & Mr..Nickel: r/ MCP-20 1-05 Enclosed please find the "Phase I Remedy (Monitored Natural Attenuation) Groundwater Monitoring Plan (Final, dated September 29,2004)." As you know, this monitoring plan was prepared in accordance with the Phase I Parcel Record of Decision (ROD), and was approved by the Mound 2000 Core Team on September 29,2004. The enclosed plan requires DOE to submit a draft annual report to the regulators, by March 3 1st of each year, that documents the progress of the M

191

Closure Report for Corrective Action Unit 516: Septic Systems and Discharge Points  

SciTech Connect

Corrective Action Unit (CAU) 516 is located in Areas 3, 6, and 22 of the Nevada Test Site. CAU 516 is listed in the Federal Facility Agreement and Consent Order of 1996 as Septic Systems and Discharge Points, and is comprised of six Corrective Action Sites (CASs): {sm_bullet} CAS 03-59-01, Bldg 3C-36 Septic System {sm_bullet} CAS 03-59-02, Bldg 3C-45 Septic System {sm_bullet} CAS 06-51-01, Sump and Piping {sm_bullet} CAS 06-51-02, Clay Pipe and Debris {sm_bullet} CAS 06-51-03, Clean Out Box and Piping {sm_bullet} CAS 22-19-04, Vehicle Decontamination Area The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 06-51-02 and 22-19-04 is no further action. The NDEP-approved corrective action alternative for CASs 03-59-01, 03-59-02, 06-51-01, and 06-51-03 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)-impacted septic tank contents, septic tanks, distribution/clean out boxes, and piping. CAU 516 was closed in accordance with the NDEP-approved CAU 516 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 516 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 516 closure activities. During closure activities, approximately 186 tons of hydrocarbon waste in the form of TPH-impacted soil and debris, as well as 89 tons of construction debris, were generated and managed and disposed of appropriately. Waste minimization techniques, such as field screening of soil samples and the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure work.

NSTec Environmental Restoration

2007-02-01T23:59:59.000Z

192

HSS Work Group Telecom (Draft Charters) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting SummaryActionsParticipants Draft Proposed Charter Template Draft Work Group Matrix Draft Work Group Guidance More Documents & Publications HSS Focus Group Meeting...

193

Minutes of the Tank Waste Science Panel meeting, July 20, 1990  

DOE Green Energy (OSTI)

The second meeting of the Tank Waste Science Panel was held July 20, 1990. Science Panel members discussed the prioritization of various analyses to be performed on core samples from tank 101-SY, and were asked to review and comment on the draft Westinghouse Hanford Company document Analytical Chemistry Plan.'' They also reviewed and discussed the initial contributions to the report titled Chemical and Physical Processes in Tank 101-SY: A Preliminary Report. Science Panel members agreed that a fundamental understanding of the physical and chemical processes in the tank is essential, and strongly recommended that no remediation measures be taken until there is a better understanding of the chemical and physical phenomena that result in the episodic gas release from tank 101-SY. 1 ref.

Strachan, D.M.; Morgan, L.G. (comps.)

1991-02-01T23:59:59.000Z

194

Tank 48 Treatment Process  

-Reduce elutriation of particulates containing coal System planning: Sludge batch planning/DWPF WAC-Evaluate Tank Farm and DWPF coal capability

195

Design and Drafting  

NLE Websites -- All DOE Office Websites (Extended Search)

Design & Drafting Work Request Form Design & Drafting Work Request Form Please complete and submit the following form to request service from the AES/D&D Group Please fill out this form as complete as possible. Please do not use any special characters such as / or \ use a dash -. Project Name: Project Division is for: AES ASD XSD BEAMLINE APS APS-Upgrade LCLS NSLS-II Specify the APS Division the Project will be built for. WBS: Requesting Engineer: Last Name First Name Requesters Badge Number: Requesters Phone: E-mail: @aps.anl.gov Requesters Group: AES-ADM AES-BC AES-BSC AES-CF AES-CS AES-CTL AES-DD AES-IS AES-IT AES-MED AES-MIS AES-MOM AES-PRO AES-SA AES-SI AES-UES ASD-ADM ASD-AP ASD-DIA ASD-IAG ASD-MD ASD-OA ASD-PS ASD-RF LCLS USR-APS XSD-ADM XSD-BTS XSD-CEP XSD-IXN XSD-MC XSD-MM XSD-OFM XSD-TRR XSD-UAS XSD-XMI XSD-XOR

196

Single Shell Tank (SST) Retrieval Project Plan for Tank 241-C-104 Retrieval  

Science Conference Proceedings (OSTI)

In support of the SST Interim Closure Project, Project W-523 ''Tank 241-C-104 Waste Retrieval System'' will provide systems for retrieval and transfer of radioactive waste from tank 241-C-104 (C-104) to the DST staging tank 241-AY-101 (AY-101). At the conclusion of Project W-523, a retrieval system will have been designed and tested to meet the requirements for Acceptance of Beneficial Use and been turned over to operations. Completion of construction and operations of the C-104 retrieval system will meet the recently proposed near-term Tri-Party Agreement milestone, M-45-03F (Proposed Tri-Party Agreement change request M-45-00-01A, August, 30 2000) for demonstrating limits of retrieval technologies on sludge and hard heels in SSTs, reduce near-term storage risks associated with aging SSTs, and provide feed for the tank waste treatment plant. This Project Plan documents the methodology for managing Project W-523; formalizes responsibilities; identifies key interfaces required to complete the retrieval action; establishes the technical, cost, and schedule baselines; and identifies project organizational requirements pertaining to the engineering process such as environmental, safety, quality assurance, change control, design verification, testing, and operational turnover.

DEFIGH PRICE, C.

2000-09-20T23:59:59.000Z

197

Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: CAS 03-04-02, Area 3 Subdock Septic Tank CAS 03-59-05, Area 3 Subdock Cesspool CAS 12-59-01, Drilling/Welding Shop Septic Tanks CAS 12-60-01, Drilling/Welding Shop Outfalls Closure activities were conducted from September to November 2009 in accordance with the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 563. The corrective action alternatives included No Further Action and Clean Closure.

NSTec Environmental Restoration

2010-02-28T23:59:59.000Z

198

Alarm sensor apparatus for closures  

DOE Patents (OSTI)

An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or framework and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

Carlson, J.A.; Stoddard, L.M.

1984-01-31T23:59:59.000Z

199

Alarm sensor apparatus for closures  

DOE Patents (OSTI)

An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or frame work and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

Carlson, James A. (Thornton, CO); Stoddard, Lawrence M. (Arvada, CO)

1986-01-01T23:59:59.000Z

200

Closure Report for Corrective Action Unit 224: Decon Pad and Septic Systems, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 224 is located in Areas 02, 03, 05, 06, 11, and 23 of the Nevada Test Site, which is situated approximately 65 miles northwest of Las Vegas, Nevada. CAU 224 is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Decon Pad and Septic Systems and is comprised of the following nine Corrective Action Sites (CASs): CAS 02-04-01, Septic Tank (Buried); CAS 03-05-01, Leachfield; CAS 05-04-01, Septic Tanks (4)/Discharge Area; CAS 06-03-01, Sewage Lagoons (3); CAS 06-05-01, Leachfield; CAS 06-17-04, Decon Pad and Wastewater Catch; CAS 06-23-01, Decon Pad Discharge Piping; CAS 11-04-01, Sewage Lagoon; and CAS 23-05-02, Leachfield. The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 02-04-01, 03-05-01, 06-03-01, 11-04-01, and 23-05-02 is no further action. As a best management practice, the septic tanks and distribution box were removed from CASs 02-04-01 and 11-04-01 and disposed of as hydrocarbon waste. The NDEP-approved correction action alternative for CASs 05-04-01, 06-05-01, 06-17-04, and 06-23-01 is clean closure. Closure activities for these CASs included removing and disposing of radiologically and pesticide-impacted soil and debris. CAU 224 was closed in accordance with the NDEP-approved CAU 224 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 224 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2005). This Closure Report documents CAU 224 closure activities. During closure activities, approximately 60 cubic yards (yd3) of mixed waste in the form of soil and debris; approximately 70 yd{sup 3} of sanitary waste in the form of soil, liquid from septic tanks, and concrete debris; approximately 10 yd{sup 3} of hazardous waste in the form of pesticide-impacted soil; approximately 0.5 yd{sup 3} of universal waste in the form of fluorescent light bulbs; and approximately 0.5 yd{sup 3} of low-level waste in the form of a radiologically impacted fire hose rack were generated, managed, and disposed of appropriately. Waste minimization techniques, such as the utilization of laboratory analysis and field screening to guide the extent of excavations, were employed during the performance of closure work.

NSTec Environmental Restoration

2007-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Near Tank Treatment System  

Hanford High Level Waste: S/SX Tanks TEM Images of Actual Waste Boehmite 7 (a) 0.2 m (b) 0.2 m (c) 0.5 m (d) 0.2 m U and Mn particles . Near Tank Treatment System

202

Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C.

NSTec Environmental Restoration

2008-04-01T23:59:59.000Z

203

Tank characterization reference guide  

Science Conference Proceedings (OSTI)

Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-09-01T23:59:59.000Z

204

Closures Used in Zonally Averaged Ocean Models  

Science Conference Proceedings (OSTI)

There are at least three substantially different closures presently being used in two-dimensional ocean models. The main purpose of this paper is to clarify the assumptions that are implicit in these closures. Two of these formulations arise from ...

Daniel G. Wright; Thomas F. Stocker; Douglas Mercer

1998-05-01T23:59:59.000Z

205

Draft Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment Environmental Assessment for the GILA-NORTH GILA TRANSMISSION LINE REBUILD AND UPGRADE PROJECT (DOE/EA-1948) December 2013 Prepared for U.S. Department of Energy Western Area Power Administration, Desert Southwest Region Prepared by Cooperating Agencies U.S. Bureau of Reclamation, Yuma Area Office U.S. Army Corps of Engineers, Los Angeles District DRAFT Gila to North Gila Transmission Line Rebuild and Upgrade Project Environmental Assessment Prepared for: U.S. Department of Energy Western Area Power Administration Desert Southwest Region Cooperating Agencies: U.S. Bureau of Reclamation Yuma Area Office U.S. Army Corps of Engineers Los Angeles District Prepared by: December 2013 Gila to North Gila Transmission Line Rebuild and Upgrade Project

206

Draft Supplemental Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Al Al b any, OR * Mo rg antow n , WV * Pitt, bu rg h , PA August 12, 20 II Dear Reader: The enclosed document, Draft Supplemental Environmental Assessment for General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative (supplemental EA; DOElEA- I 723S), was prepared by the U.S. Department of Energy (DOE) in accordance with the Council on Environmental Quality's National Environmental Policy Act (NEPA) implementing regulations (40 CFR Parts 1500 to 1508) and DOE NEPA implementing procedures (10 CFR Part 1021). DOE prepared this supplemental EA to evaluate the potential environmental consequences of providing financial assistance under the American Recovery and Reinvestment Act of 2009 (Recovery Act; Public Law 111-5, 123 Stat. liS) to General Motors Limited Liability Company (GM) for its proposed project

207

Tank 241-U-202 tank characterization plan  

Science Conference Proceedings (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-U-202.

Schreiber, R.D.

1995-02-21T23:59:59.000Z

208

Tank 241-BY-106 tank characterization plan  

Science Conference Proceedings (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, PNL 325 Analytical Chemistry Laboratory, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-106.

Schreiber, R.D.

1995-01-24T23:59:59.000Z

209

Tank 241-C-102 tank characterization plan  

SciTech Connect

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-C-102.

Schreiber, R.D.

1995-01-01T23:59:59.000Z

210

Framework Draft for Networked Appliances using  

E-Print Network (OSTI)

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at

S. Moyer; D. Marples; S. Tsang; J. Katz; P. Gurung; T. Cheng; A. Dutta; H. Schulzrinne

2001-01-01T23:59:59.000Z

211

Pressurizer tank upper support  

DOE Patents (OSTI)

A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

Baker, T.H.; Ott, H.L.

1994-01-11T23:59:59.000Z

212

Pressurizer tank upper support  

DOE Patents (OSTI)

A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

Baker, Tod H. (O' Hara Township, Allegheny County, PA); Ott, Howard L. (Kiski Township, Armstrong County, PA)

1994-01-01T23:59:59.000Z

213

Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Tank Waste Treatment and Immobilization Plant - - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report This is a comprehensive review ofthe Hanford WTP estimate at completion - assessing the project scope, contract requirements, management execution plant, schedule, cost estimates, and risks. Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report More Documents & Publications TBH-0042 - In the Matter of Curtis Hall

214

Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR Tank Waste Treatment and Immobilization Plant - Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Full Document and Summary Versions are available for download Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Summary - Flowsheet for the Hanford Waste Treatment Plant More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

215

TFA Tank Focus Area - multiyear program plan FY98-FY00  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 80 tanks are known or assumed to have leaked. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE`s Office of Environmental Management`s (EM`s) national technology development program for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE`s technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE`s four major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across organizations that fund tank technology development EM, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50).

NONE

1997-09-01T23:59:59.000Z

216

TFA Tanks Focus Area Multiyear Program Plan FY00-FY04  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 68 tanks are known or assumed to have leaked contamination to the soil. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE Office of Environmental Management's (EM's) national technology development program. for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE's technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE's five major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), Savannah River Site (SRS) (South Carolina), and West Valley Demonstration Project (WVDP) (New York). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across EM organizations that fund tank technology development, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50 or OST).

BA Carteret; JH Westsik; LR Roeder-Smith; RL Gilchrist; RW Allen; SN Schlahta; TM Brouns

1999-10-12T23:59:59.000Z

217

EA-1707: Revised Draft Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE))

Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

218

San Luis Rio Colorado Project Draft EIS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft EIS Draft EIS i CONTENTS Acronyms and Abbreviations ........................................................................................................ xi S Summary ................................................................................................................................. I S.1 Purpose and Need for Agency Action ............................................................................II S.2 Applicants' Purpose and Goals..................................................................................... III S.3 Public Participation....................................................................................................... IV S.4 Alternatives ................................................................................................................

219

Tank 48 - Chemical Destruction  

SciTech Connect

Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

2013-01-09T23:59:59.000Z

220

Rulison Site Surface Closure Report  

Office of Legacy Management (LM)

Nevada Operations Office Nevada Operations Office DOE/NV- -510 UC-700 Nevada Environmental Restoration Project Rulison Site Surface Closure Report July 1998 Environmental Restoration Division DOE/NV--510 UC-700 RULISON SITE SURFACE CLOSURE REPORT DOE Nevada Operations Office Las Vegas, Nevada July 1998 This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161, telephone (703) 487-4650. i Table of Contents List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

HWMA/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA-604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO-5.8 D REVISION2  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan VCO-5.8.d. The TRA-604 laboratory components addressed in this closure plan were deferred from the TRA-630 Catch Tank System closure plan due to ongoing laboratory operations in the areas requiring closure actions. The TRA-604 laboratory components include the TRA-604 laboratory warm wastewater drain piping, undersink drains, subheaders, and the east TRA-604 laboratory drain header. Potentially contaminated surfaces located beneath the TRA-604 laboratory warm wastewater drain piping and beneath the island sinks located in Laboratories 126 and 128 (located in TRA-661) are also addressed in this closure plan. The TRA-604 laboratory components will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, Subparts G and J. This closure plan presents the closure performance standards and the methods for achieving those standards.

KIRK WINTERHOLLER

2008-02-25T23:59:59.000Z

222

DRAFT Outline - Preliminary Framework to Reduce Cyber ...  

Science Conference Proceedings (OSTI)

Page 1. 1 DRAFT Outline - Preliminary Framework to Reduce Cyber Risks to Critical Infrastructure, July 1, 2013 NOTES ...

2013-07-02T23:59:59.000Z

223

Renewable Energy Annual DRAFT - Energy Information Administration  

U.S. Energy Information Administration (EIA)

and for biofuel production. DRAFT. EIA-22M, Monthly Biodiesel Production Survey Page 7 Permanently Ceased Operations (operating status): ...

224

Tank Waste Remediation System fiscal year 1996 multi-year program plan WBS 1.1. Revision 1, Appendix A  

Science Conference Proceedings (OSTI)

This document is a compilation of data relating to the Tank Waste Remediation System Multi-Year Program. Topics discussed include: management systems; waste volume, transfer and evaporation management; transition of 200 East and West areas; ferricyanide, volatile organic vapor, and flammable gas management; waste characterization; retrieval from SSTs and DSTs; heat management; interim storage; low-level and high-level radioactive waste management; and tank farm closure.

NONE

1995-09-01T23:59:59.000Z

225

Cryogenic Fuel Tank Draining  

E-Print Network (OSTI)

One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection inside a horizontal cylinder are compared with model results. Finally, cryogenic tank draining calculations are performed with three different wall heat fluxes to demonstrate the effect of wall heat flux on the internal tank flow field.

Analysis Model Donald; Donald Greer

1999-01-01T23:59:59.000Z

226

Microsoft Word - EA_Draft 051110_final_acl.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

707D 707D May 2010 DOE/EA-1707D Draft Environmental Assessment iii May 2010 Summary 1 Introduction. This Environmental Assessment (EA) provides information and analyses of proposed 2 U.S. Department of Energy (DOE) activities associated with closure of the DOE Hanford Site's 3 Nonradioactive Dangerous Waste Landfill (NRDWL) and the Solid Waste Landfill (SWL). 4 Purpose and Need. The DOE needs to close the non-operating NRDWL. This facility has not received 5 waste since 1988 (i.e., a non-operating facility), and would be closed according to Resource Conservation 6 and Recovery Act of 1976 (RCRA) requirements as implemented through the Hazardous Waste 7 Management Act and Washington State Dangerous Waste Regulations (WAC 173-303). To achieve 8

227

Analysis of the Tank 5F Feed and Bleed Residual Solids  

SciTech Connect

Savannah River Remediation (SRR) is preparing Tank 5F for closure. As part of Tank 5F Closure Mechanical Cleaning, SRR conducted a 'Feed and Bleed' process in Tank 5F. Following this 'Feed and Bleed' Mechanical Cleaning in Tank 5F, SRR collected two tank heel samples (referred to as sample 1 and sample 2) under Riser 5 to determine the composition of the material remaining in the tanks. This document describes sample analysis results. The conclusions from this analysis follow. (1) The anions measured all had a concentration less than 250 mg/kg, except for oxalate, which had a concentration of 2100-2400 mg/kg. (2) The measured cations with the highest concentration were iron (432,000-519,000 mg/kg), nickel (54,600-69,300 mg/kg), and manganese (35,200-42,100 mg/kg). All other cations measured less than 13,000 mg/kg. (3) The radionuclides present in the highest concentration are {sup 90}Sr (3.0 x 10{sup 10} dpm/g), {sup 137}Cs (6.8 x 10{sup 8} dpm/g), and {sup 241}Am (1.4 x 10{sup 8} - 1.8 x 10{sup 8} dpm/g). (4) The particle size analysis shows a large fraction of particles greater than 100 {micro}.

Poirier, M.; Diprete, D.: Coleman, C.; Washington, A.

2011-07-07T23:59:59.000Z

228

IN-TANK ELUTRIATION TEST REPORT AND INDEPENDENT ASSESSMENT  

SciTech Connect

The Department of Energy (DOE) Office of Environmental Management (EM) funded Technology Development and Deployment (TDD) to solve technical problems associated with waste tank closure for sites such as Hanford Site and Savannah River Site (SRS). One of the tasks supported by this funding at Savannah River National Laboratory (SRNL) and Pacific Northwest Laboratory (PNNL) was In-Tank Elutriation. Elutriation is the process whereby physical separation occurs based on particle size and density. This report satisfies the first phase of Task WP_1.3.1.1 In-Tank Elutriation, which is to assess the feasibility of this method of separation in waste tanks at Hanford Site and SRS. This report includes an analysis of scoping tests performed in the Engineering Development Laboratory of SRNL, analysis of Hanford's inadvertent elutriation, the viability of separation methods such as elutriation and hydrocyclones and recommendations for a path forward. This report will demonstrate that the retrieval of Hanford salt waste tank S-112 very successfully decreased the tank's inventories of radionuclides. Analyses of samples collected from the tank showed that concentrations of the major radionuclides Cs-136 and Sr-90 were decreased by factors of 250 and 6 and their total curie tank inventories decreased by factors of 60,000 and 2000. The total tank curie loading decreased from 300,000 Ci to 55 Ci. The remaining heel was nearly all innocuous gibbsite, Al(OH){sub 3}. However, in the process of tank retrieval approximately 85% of the tank gibbsite was also removed. Significant amounts of money and processing time could be saved if more gibbsite could be left in tanks while still removing nearly all of the radionuclides. There were factors which helped to make the elutriation of Tank S-112 successful which would not necessarily be present in all salt tanks. 1. The gibbsite particles in the tank were surprisingly large, as much as 200 {micro}m. The gibbsite crystals had probably grown in size over a period of decades. 2. The radionuclides were apparently either in the form of soluble compounds, like cesium, or micrometer sized particles of actinide oxides or hydroxides. 3. After the initial tank retrieval the tank contained cobble which is not conducive to elutriation. Only after the tank contents were treated with thousands of gallons of 50 wt% caustic, were the solids converted to sand which is compatible with elutriation. Discussions between SRNL and PNNL resulted in plans to test elutriation in two phases; in Phase 1 particles would be separated by differences in settling velocity in an existing scaled tank with its associated hardware and in Phase 2 additional hardware, such as a hydrocyclone, would be added downstream to separate slow settling partciels from liquid. Phase 1 of in-tank elutriation was tested for Proof of Principle in theEngineering Development Laboratory of SRNL in a 41" diameter, 87 gallon tank. The tank had been previously used as a 1/22 scale model of Hanford Waste Tank AY-102. The objective of the testing was to determine which tank operating parameters achieved the best separation between fast- and slow-settling particles. For Phase 1 testing a simulated waste tank supernatant, slow-settling particles and fast-settling particles were loaded to the scaled tank. Because this was a Proof of Principle test, readily available solids particles were used that represented fast-settling and slow-settling particles. The tank contents were agitated using rotating mixer jet pumps (MJP) which suspended solids while liquids and solids were drawn out of the tank with a suction tube. The goal was to determine the optimum hydraulic operating conditions to achieve clean separation in which the residual solids in the tank were nearly all fast-settling particles and the solids transferred out of the tank were nearly all slow-settling particles. Tests were conducted at different pump jet velocities, suction tube diameters and suction tube elevations. Testing revealed that the most important variable was jet velocity which tr

Burns, H.; Adamson, D.; QURESHI, Z.; STEEPER, T.

2011-04-13T23:59:59.000Z

229

Characterization of Samples from Old Solvent Tanks S1 through S22  

Science Conference Proceedings (OSTI)

The Old Radioactive Waste Burial Ground (ORWBG, 643-E) contains 22 old solvent tanks (S1 - S22) which were used to receive and store spent PUREX solvent from F- and H-Canyons. The tanks are cylindrical, carbon-steel, single-wall vessels buried at varying depths. A detailed description of the tanks and their history can be found in Reference 1. A Sampling and Analysis Plan for the characterization of the material contained in the old solvent tanks was developed by the Analytical Development Section (ADS) in October of 19972. The Sampling and Analysis Plan identified several potential disposal facilities for the organic and aqueous phases present in the old solvent tanks which included the Solvent Storage Tank Facility (SSTF), the Mixed Waste Storage Facilities (MWSF), Transuranic (TRU) Pad, and/or the Consolidated Incineration Facility (CIF). In addition, the 241-F/H Tank Farms, TRU Pads, and/or the MWSF were identified as potential disposal facilities for the sludge phases present in the tanks. The purpose of this sampling and characterization was to obtain sufficient data on the material present in the old solvent tanks so that a viable path forward could be established for the closure of the tanks. Therefore, the parameters chosen for the characterization of the various materials present in the tanks were based upon the Waste Acceptance Criteria (WAC) of the SSTF3, TRU Pads4, MWSF5, CIF6, and/or 241-F/H Tank Farms7. Several of the WAC's have been revised, canceled, or replaced by new procedures since October of 1997 and hence where required, the results of this characterization program were compared against the latest revision of the appropriate WAC.

Leyba, J.D.

1999-03-25T23:59:59.000Z

230

Risk and Performance Analyses Supporting Closure of WMA C at the Hanford Site in Southeast Washington  

SciTech Connect

The Office of River Protection under the U.S. Department of Energy (DOE) is pursuing closure of the Single-Shell Tank (SST) Waste Management Area 0NMA) C as stipulated by the Hanford Federal Facility Agreement and Consent Order (HFFACO) under federalrequirements and work tasks will be done under the State-approved closure plans and permits. An initial step in meeting the regulatory requirements is to develop a baseline risk assessment representing current conditions based on available characterization data and information collected at the WMA C location. The baseline risk assessment will be supporting a Resource Conservation and Recovery Act of 1976 (RCRA) Field Investigation (RFI)/Corrective Measures Study (CMS) for WMA closure and RCRA corrective action. Complying with the HFFACO conditions also involves developing a long-term closure Performance Assessment (PA) that evaluates human health and environmental impacts resulting from radionuclide inventories in residual wastes remaining in WMA C tanks and ancillary equipment. This PAis being developed to meet the requirements necessary for closure authorization under DOE Order 435.1 and Washington State Hazardous Waste Management Act. To meet the HFFACO conditions, the long-term closure risk analysis will include an evaluation of human health and environmental impacts from hazardous chemical inventories along with other performance Comprehensive Environmental Response, Compensation, and Liability Act Appropriate and Applicable Requirements (CERCLA ARARs) in residualwastes left in WMA C facilities after retrieval and removal. This closure risk analysis is needed to needed to comply with the requirements for permitted closure. Progress to date in developing a baseline risk assessment of WMA C has involved aspects of an evaluation of soil characterization and groundwater monitoring data collected as a part of the RFI/CMS and RCRA monitoring. Developing the long-term performance assessment aspects has involved the construction of detailed numericalmodels of WMA C using the Subsurface Transport Over Multiple Phases (STOMP(C)) computer code, the development of a technical approach for abstraction of a range of representative STOMP(C) simulations into a system-level modelbased on the GoldSim0 system-levelmodelsoftware. The STOMP(C)-based models will be used to evaluate local-scale impacts and closed facility performance over a sufficient range of simulations to allow for development of the system-level model of the WMA C. The GoldSim0-based system-level model will be used to evaluate overall sensitivity of modeled parameters and the estimate the uncertainty in potentialfuture impacts from a closed WMA C facility.

Eberlein, Susan J.; Bergeron, Marcel P.; Kemp, Christopher J.

2013-11-11T23:59:59.000Z

231

Tank Waste Remediation System decisions and risk assessment  

SciTech Connect

The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize the highly radioactive Hanford Site tank wastes and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost effective manner. Additionally, the TWRS conducts, as part of this mission, resolution of safety issues associated with the wastes within the 177 underground radioactive waste tanks. Systems engineering principles are being applied to determine the functions and establish requirements necessary for accomplishing the TWRS mission (DOE 1994 draft). This systematic evaluation of the TWRS program has identified key decisions that must be executed to establish mission scope, determine requirements, or select a technical solution for accomplishing identified functions and requirements. Key decisions identified through the systematic evaluation of the TWRS mission are presented in this document. Potential alternative solutions to each decision are discussed. After-discussion and evaluation of each decision with effected stakeholder groups, the US Department of Energy (DOE) will select a solution from the identified alternatives for implementation. In order to proceed with the development and execution of the tank waste remediation program, the DOE has adopted a planning basis for several of these decisions, until a formal basis is established. The planning bases adopted by the DOE is continuing to be discussed with stakeholder groups to establish consensus for proceeding with proposed actions. Technical and programmatic risks associated with the planning basis adopted by the DOE are discussed.

Johnson, M.E.

1994-09-01T23:59:59.000Z

232

Post-Closure Benefits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Post-Closure Benefits Post-Closure Benefits Post-Closure Benefits The Legacy Management Post-Closure Benefits (PCB) Program includes the development, implementation, and oversight of the Department's policy concerning the continuation of contractor pension and medical benefits after the closure of applicable DOE sites/facilities. This includes oversight of the administration and management of legacy contractor benefits in a fiscally responsible and effective manner. The primary program objective is to ensure a seamless transition of benefits administration after closure. The Benefit Continuity Team (BCT) within Legacy Management is responsible for this program. Legacy PCBs are benefits earned and accrued by contractor employees while in active employment at DOE facilities and are payable after their

233

Thermodynamic Model for Uranium Release from Hanford Site Tank Residual Waste  

Science Conference Proceedings (OSTI)

A thermodynamic model of U phase solubility and paragenesis was developed for Hanford tank residual waste that will remain after tank closure. The model was developed using a combination of waste composition data, waste leach test data, and thermodynamic modeling of the leach test data. The testing and analyses were conducted using actual Hanford tank residual waste. Positive identification of the U phases by X-ray diffraction (XRD) was generally not possible because solids in the waste were amorphous, or below the detection limit of XRD for both as-received residual waste and leached residual waste. Three leachant solutions were used in the studies, dionized water, CaCO3 saturated solution, and Ca(OH)2 saturated solution. Thermodynamic modeling verified that equilibrium between U phases in the initial residual waste samples and the leachants was attained in less than a month. The paragenetic sequence of secondary phases that occur as waste leaching progresses for two closure scenarios was identified. These results have significant implications for tank closure design.

Cantrell, Kirk J.; Deutsch, William J.; Lindberg, Michael J.

2011-01-26T23:59:59.000Z

234

Feasibility study of tank leakage mitigation using subsurface barriers. Revision 1  

SciTech Connect

This document reflects the evaluations and analyses performed in response to Tri-Party Agreement Milestone M-45-07A - {open_quotes}Complete Evaluation of Subsurface Barrier Feasibility{close_quotes} (September 1994). In addition, this feasibility study was revised reflecting ongoing work supporting a pending decision by the DOE Richland Operations Office, the Washington State Department of Ecology, and the US Environmental Protection Agency regarding further development of subsurface barrier options for SSTs and whether to proceed with demonstration plans at the Hanford Site (Tri-Party Agreement Milestone M-45-07B). Analyses of 14 integrated SST tank farm remediation alternatives were conducted in response to the three stated objectives of Tri-Party Agreement Milestone M-45-07A. The alternatives include eight with subsurface barriers and six without. Technologies used in the alternatives include three types of tank waste retrieval, seven types of subsurface barriers, a method of stabilizing the void space of emptied tanks, two types of in situ soil flushing, one type of surface barrier, and a clean-closure method. A no-action alternative and a surface-barrier-only alternative were included as nonviable alternatives for comparison. All other alternatives were designed to result in closure of SST tank farms as landfills or in clean-closure. Revision 1 incorporates additional analyses of worker safety, large leak scenarios, and sensitivity to the leach rates of risk controlling constituents. The additional analyses were conducted to support TPA Milestone M-45-07B.

Treat, R.L.; Peters, B.B.; Cameron, R.J. [Enserch Environmental, Inc., Richland, WA (United States)] [and others

1995-01-01T23:59:59.000Z

235

Tank characterization for Double-Shell Tank 241-AP-102  

SciTech Connect

This document provides the characterization information and interprets the data for Double-Shell Tank AP-102.

DeLorenzo, D.S.; DiCenso, A.T.; Amato, L.C.; Weyns-Rollosson, M.I.; Smith, D.J. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Simpson, B.C.; Welsh, T.L. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

236

SAVANNAH RIVER SITE TANK 18 AND TANK 19 WALL SAMPLER PERFORMANCE  

SciTech Connect

A sampling tool was required to evaluate residual activity ({mu}Curies per square foot) on the inner wall surfaces of underground nuclear waste storage tanks. The tool was required to collect a small sample from the 3/8 inch thick tank walls. This paper documents the design, testing, and deployment of the remotely operated sampling device. The sampler provides material from a known surface area to estimate the overall surface contamination in the tank prior to closure. The sampler consisted of a sampler and mast assembly mast assembly, control system, and the sampler, or end effector, which is defined as the operating component of a robotic arm. The mast assembly consisted of a vertical 30 feet long, 3 inch by 3 inch, vertical steel mast and a cantilevered arm hinged at the bottom of the mast and lowered by cable to align the attached sampler to the wall. The sampler and mast assembly were raised and lowered through an opening in the tank tops, called a riser. The sampler is constructed of a mounting plate, a drill, springs to provide a drive force to the drill, a removable sampler head to collect the sample, a vacuum pump to draw the sample from the drill to a filter, and controls to operate the system. Once the sampler was positioned near the wall, electromagnets attached it to the wall, and the control system was operated to turn on the drill and vacuum to remove and collect a sample from the wall. Samples were collected on filters in removable sampler heads, which were readily transported for further laboratory testing.

Leishear, R.; Thaxton, D.; Minichan, R.; France, T.; Steeper, T.; Corbett, J.; Martin, B.; Vetsch, B.

2009-12-19T23:59:59.000Z

237

Tank Waste Corporate Board Meeting 11/18/10 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18/10 18/10 Tank Waste Corporate Board Meeting 11/18/10 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 18th, 2010. High-Level Waste Corporate Board Meeting Agenda Journey to Excellence Goal 2 and Enhanced Tank Waste Strategy Introduction to Tc/I in Hanford Flowsheet Fate of Tc99 at WTP and Current Work on Capture Technetium Retention During LAW Vitrification Impacts of Feed Composition and Recycle on Hanford Low-Activity Waste Glass Mass Secondary Waste Forms and Technetium Management Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification Salt Waste Processing Initiatives Recap and Conclusions to Tc/I in Hanford Flowsheet Presentations Tank Closure More Documents & Publications

238

Remedial Action Work Plan Amchitka Island Mud Pit Closures  

Science Conference Proceedings (OSTI)

This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

DOE /NV

2001-04-05T23:59:59.000Z

239

Closure Report for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5 Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

The following site closure activities were performed at the CAU 428 site located at the TTR and are documented in this report: Preplanning and site preparation; Excavating and removing impacted soil; Removing septic tank contents; Closing septic tanks by filling them with clean soil; Collecting verification samples to verify that COCs have been removed to approved levels; Backfilling the excavations to surface grade with clean soil; Disposal of excavated materials following applicable federal, state, and DOE/NV regulations in accordance with Section 2.3 of the CAP (DOE/NV, 2000); and Decontamination of equipment as necessary. Closure was accomplished following the approved CAP (DOE/NV, 2000). Verification sample data demonstrate that all COCs were removed to the remediation standards. Therefore, the site is clean-closed.

D. H. Cox

2001-06-01T23:59:59.000Z

240

Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations  

Science Conference Proceedings (OSTI)

Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: 1) physically stabilize the final landfill by filling the empty volume in the tanks with a non-compressible material; 2) provide a barrier for inadvertent intrusion into the tank; 3) reduce contaminant mobility by a) limiting the hydraulic conductivity of the closed tank and b) reducing contact between the residual waste and infiltrating water; and 4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: 1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). 2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. 3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix design. 4) Prepare samples for hydraulic property measurements for comparison to the values in the F and H- Tank Farm Performance Assessments (PAs). 5) Identify a grout mix for the Tanks 18-F and 19-F Grout Procurement Specification [Forty, 2011 a, b, c]. Results for two flowable zero bleed structural fill concepts containing 3/8 inch gravel (70070 Series and LP#8 Series) and a sand only mix (SO Series) are provided in this report. Tank Farm Engineering and SRNL Project Management selected the 70070 mix as the base case for inclusion in Revision 0 of the Tanks 18-F and 19-F grout procurement specification [Forty 2011 a] and requested admixture recommendations and property confirmation for this formulation [Forty, 2011 b]. Lower cementitious paste mixes were formulated because the 70070 mix is over designed with respect to strength and generates more heat from hydration reactions than is desirable for mass pour application. Work was also initiated on a modification of the recommended mix which included shrinkage compensation to mitigate fast pathways caused by shrinkage cracking and poor physical bonding to the tank and ancillary equipment. Testing of this option was postponed to FY12. Mix, LP#8-16 is recommended for inclusion in the specification for furnishing and delivering tank closure grout for Tanks 18-F and 19-F [Forty, 2011 c]. A shrinkage compensating variation of this mix, LP#16C, has not been fully developed and characterized at this time.

Langton, C. A.; Stefanko, D. B.

2013-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ADDENDUM TO "EXISTENTIALLY COMPLETE CLOSURE ALGEBRAS"  

E-Print Network (OSTI)

of closure in a topological space. McKinsey and Tarsky [1] announced that the (first-order) theory of closure after [2] had been printed, but only now we have written down the details. References. [1] McKinsey, A

Lipparini, Paolo

242

Underground Storage Tank Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

243

TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS  

SciTech Connect

The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste and heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement and performance properties; (3) Design up to 2 additional grout systems for filling the Tank 18-F and Tank 19-F equipment; (4) Prepare samples of candidate grouts and measure fresh properties, thermal properties and cured properties; (5) Recommend a grout for the Tier 1A equipment fill mock up - ADMP 4 foot high mock up, 1 inch and 2 inch pipes; (6) Support procurement of materials for the Tier 1A equipment fill mock up test; (7) Prepare samples of the recommended grout for hydraulic property measurements which can be used for comparison to values used in the F- Tank Farm Performance Assessment (PA); and (8) Document equipment fill grout data and recommendations in a report.

Stefanko, D.; Langton, C.

2011-12-15T23:59:59.000Z

244

Closure for milliliter scale bioreactor  

DOE Patents (OSTI)

A closure for a microreactor includes a cap that is configured to be inserted into a well of the microreactor. The cap, or at least a portion of the cap, is compliant so as to form a seal with the well when the cap is inserted. The cap includes an aperture that provides an airway between the inside of the well to the external environment when the cap is inserted into the well. A porous plug is inserted in the aperture, e.g., either directly or in tube that extends through the aperture. The porous plug permits gas within the well to pass through the aperture while preventing liquids from passing through to reduce evaporation and preventing microbes from passing through to provide a sterile environment. A one-way valve may also be used to help control the environment in the well.

Klein, David L. (Palo Alto, CA); Laidlaw, Robert D. (Albany, CA); Andronaco, Gregory (Palo Alto, CA); Boyer, Stephen G. (Moss Beach, CA)

2010-12-14T23:59:59.000Z

245

Hanford Tanks 241-AY-102 and 241-BX-101: Sludge Composition and Contaminant Release Data  

SciTech Connect

This report describes the results of testing sludge samples from Hanford tanks 241-AY-102 (AY-102) and 241-BX-101 (BX-101). These tests were conducted to characterize the sludge and assess the water leachability of contaminants from the solids. This work is being conducted to support the tank closure risk assessments being performed by CH2M HILL Hanford Group, Inc. for the U.S. Department of Energy. This is the first report of testing of BX-101 sludge and the second report of testing of AY-102. Lindberg and Deutsch (2003) described the first phase of testing on AY-102 material.

Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.; Cantrell, Kirk J.; Hess, Nancy J.; Schaef, Herbert T.; Arey, Bruce W.

2004-05-01T23:59:59.000Z

246

Sludge Heel Removal Analysis for Slurry Pumps of Tank 11  

SciTech Connect

Computational fluid dynamics methods were used to develop and recommend a slurry pump operational strategy for sludge heel removal in Tank 11. Flow patterns calculated by the model were used to evaluate the performance of various combinations of operating pumps and their orientation. The models focused on removal of the sludge heel located at the edge of Tank 11 using the four existing slurry pumps. The models and calculations were based on prototypic tank geometry and expected normal operating conditions as defined by Tank Closure Project (TCP) Engineering. Computational fluid dynamics models of Tank 11 with different operating conditions were developed using the FLUENT(tm) code. The modeling results were used to assess the efficiency of sludge suspension and removal operations in the 75-ft tank. The models employed a three-dimensional approach, a two-equation turbulence model, and an approximate representation of flow obstructions. The calculated local velocity was used as a measure of sludge removal and mixing capability. For the simulations, a series of the modeling calculations was performed with indexed pump orientations until an efficient flow pattern near the potential location of the sludge mound was established for sludge removal. The calculated results demonstrated that the existing slurry pumps running at 1600 rpm could remove the sludge mound from the tank with a 103 in. liquid level, based on a minimum sludge suspension velocity of 2.27 ft/sec. In this case, the only exception is the region within about 2 ft. from the tank wall. Further results showed that the capabilities of sludge removal were affected by the indexed pump orientation, the number of operating pumps, and the pump speed. A recommended operational strategy for an efficient flow pattern was developed to remove the sludge mound assuming that local fluid velocity can be used as a measure of sludge suspension and removal. Sensitivity results showed that for a given pump speed, a higher tank level and a lower pump nozzle elevation would result in better performance in suspending and removing the sludge. The results also showed that the presence of flow obstructions such as valve housing structure were advantageous for certain pump orientations.

Lee, S.Y.

2003-09-30T23:59:59.000Z

247

DOE Issues Two Draft National Interest Electric Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Issues Two Draft National Interest Electric Transmission Corridor Designations DOE Issues Two Draft National Interest Electric Transmission Corridor Designations U.S....

248

EA-1886: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment EA-1886: Draft Environmental Assessment Big Sky Regional Carbon Sequestration Partnership - Phase III: Kevin Dome Carbon Storage Project, Shelby,...

249

EIS-0323-S1: Draft Supplement Environmental Impact Statement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-S1: Draft Supplement Environmental Impact Statement EIS-0323-S1: Draft Supplement Environmental Impact Statement Sacramento Area Voltage Support Construction and operation has...

250

New Draft of Cybersecurity Risk Management Process (RMP) Guideline...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft of Cybersecurity Risk Management Process (RMP) Guideline Now Available for Public Comment (March 2012) New Draft of Cybersecurity Risk Management Process (RMP) Guideline Now...

251

Systems/Component Design, Engineering and Drafting - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Drafting Capabilities Engineering Computation and Design Engineering and Structural Mechanics SystemsComponent Design, Engineering and Drafting Heat Transfer and Fluid Mechanics...

252

EIS-0350: Draft Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement EIS-0350: Draft Environmental Impact Statement Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National...

253

EIS-0271: Draft Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Draft Environmental Impact Statement EIS-0271: Draft Environmental Impact Statement The Department of Energy (DOE) limits electronic access to certain NEPA documents on this...

254

EA-1917: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment EA-1917: Draft Environmental Assessment Wave Energy Test Facility Project, Newport, OR This EA evaluates Northwest National Marine Renewable...

255

Draft Chapter 3: Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Chapter 3: Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs...

256

EIS-0379: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0379: EPA Notice of Availability of the Draft Environmental Impact Statement Libby (FEC) to Troy Section...

257

EA-1903: Notice of Availability of Draft Environmental Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Notice of Availability of Draft Environmental Assessment EA-1903: Notice of Availability of Draft Environmental Assessment Kansas State University Zond Wind Energy Project,...

258

EIS-0464: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0464: EPA Notice of Availability of the Draft Environmental Impact Statement Lake Charles Carbon Capture...

259

EIS-0355: EPA Notification of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notification of Availability of the Draft Environmental Impact Statement EIS-0355: EPA Notification of Availability of the Draft Environmental Impact Statement Remediation of the...

260

EIS-0445: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0445: EPA Notice of Availability of the Draft Environmental Impact Statement Mountaineer Commercial Scale...

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EIS-0373: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

73: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0373: EPA Notice of Availability of the Draft Environmental Impact Statement Proposed Consolidation...

262

EIS-0375: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0375: EPA Notice of Availability of the Draft Environmental Impact Statement Disposal of...

263

EIS-0408: EPA Notice of Availability of a Draft Programmatic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of a Draft Programmatic Environmental Impact Statement EIS-0408: EPA Notice of Availability of a Draft Programmatic Environmental Impact Statement Upper...

264

EIS-0409: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0409: EPA Notice of Availability of the Draft Environmental Impact Statement Kemper County Integrated...

265

EIS-0336: DOE Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of the Draft Environmental Impact Statement and Public Hearings EIS-0336: DOE Notice of Availability of the Draft Environmental Impact Statement and...

266

EA-1566: DOE Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of the Draft Environmental Assessment EA-1566: DOE Notice of Availability of the Draft Environmental Assessment Proposed Infrastructure Improvements for...

267

EIS-0394: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0394: EPA Notice of Availability of the Draft Environmental Impact Statement FutureGen Project...

268

EA-1917: Notice of Availability of a Draft Environmental Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Availability of a Draft Environmental Assessment EA-1917: Notice of Availability of a Draft Environmental Assessment Wave Energy Test Facility, Newport, OR DOE announces...

269

EA-1339: DOE Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: DOE Notice of Availability of the Draft Environmental Assessment Addendum EA-1339: DOE Notice of Availability of the Draft Environmental Assessment Addendum Disposition of...

270

EIS-0374: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0374: EPA Notice of Availability of the Draft Environmental Impact Statement Klondike IIIBiglow Canyon...

271

EA-1809: Notice of Availability of a Draft Environmental Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Availability of a Draft Environmental Assessment EA-1809: Notice of Availability of a Draft Environmental Assessment White Earth Nation Wind Energy Project II, Becker and Mahnomen...

272

EIS-0441: EPA Notice of Availability of a Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of a Draft Environmental Impact Statement EIS-0441: EPA Notice of Availability of a Draft Environmental Impact Statement Mohave County Wind Farm Project,...

273

EIS-0478: EPA Notice of Availability of a Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: EPA Notice of Availability of a Draft Environmental Impact Statement EIS-0478: EPA Notice of Availability of a Draft Environmental Impact Statement Antelope Valley Station to...

274

EIS-0451: EPA Notice of Availability of a Draft Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

51: EPA Notice of Availability of a Draft Environmental Impact Statement EIS-0451: EPA Notice of Availability of a Draft Environmental Impact Statement Hooper Springs Project,...

275

EIS-0346: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0346: EPA Notice of Availability of the Draft Environmental Impact Statement Salmon Creek Project,...

276

EIS-0387: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0387: EPA Notice of Availability of the Draft Environmental Impact Statement Y-12 National Security...

277

EIS-0317: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement Supplement EIS-0317: EPA Notice of Availability of the Draft Environmental Impact Statement Supplement...

278

EIS-0422: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0422: EPA Notice of Availability of the Draft Environmental Impact Statement Central Ferry-Lower...

279

EIS-0431: EPA Notice of Availability of Draft Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of Draft Environmental Impact Statement EIS-0431: EPA Notice of Availability of Draft Environmental Impact Statement Hydrogen Energy California's...

280

EIS-0472: EPA Notice of Availability of a Draft Programmatic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of a Draft Programmatic Environmental Impact Statement EIS-0472: EPA Notice of Availability of a Draft Programmatic Environmental Impact Statement...

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EA-1790: DOE Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of the Draft Environmental Assessment EA-1790: DOE Notice of Availability of the Draft Environmental Assessment Heterogeneous Feed Biorefinery Pontotoc,...

282

EIS-0385: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0385: EPA Notice of Availability of the Draft Environmental Impact Statement Site Selection for the...

283

EIS-0399: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0399: EPA Notice of Availability of the Draft Environmental Impact Statement Montana Alberta Tie Ltd....

284

EIS-0353: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement EIS-0353: EPA Notice of Availability of the Draft Environmental Impact Statement South Fork Flathead Watershed Westslope Cutthroat Trout...

285

EIS-0441: Amended Notice of Availability of a Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amended Notice of Availability of a Draft Environmental Impact Statement EIS-0441: Amended Notice of Availability of a Draft Environmental Impact Statement Mohave County Wind Farm...

286

EIS-0444: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement EIS-0444: EPA Notice of Availability of the Draft Environmental Impact Statement Texas Clean Energy Project, Ector County, Texas Notice of...

287

EIS-0361: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement EIS-0361: EPA Notice of Availability of the Draft Environmental Impact Statement Western Greenbier Co-Production Demonstration Project...

288

EA-1656: DOE Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of the Draft Environmental Assessment EA-1656: DOE Notice of Availability of the Draft Environmental Assessment MARET Center Construction Project at...

289

EIS-0409: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

409: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0409: EPA Notice of Availability of the Draft Environmental Impact Statement Kemper County...

290

EA-1929: Notice of Availability of a Draft Environmental Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Availability of a Draft Environmental Assessment EA-1929: Notice of Availability of a Draft Environmental Assessment NorthStar Medical Technologies LLC, Commercial...

291

EA-1919: Notice of Availability of a Draft Programmatic Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Availability of a Draft Programmatic Environmental Assessment EA-1919: Notice of Availability of a Draft Programmatic Environmental Assessment Recycling of Scrap Metals Originating...

292

EA-1922: Notice of Availability of a Draft Environmental Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Availability of a Draft Environmental Assessment EA-1922: Notice of Availability of a Draft Environmental Assessment Combined Power and Biomass Heating System, Fort...

293

EIS-0394: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0394: EPA Notice of Availability of the Draft Environmental Impact Statement FutureGen Project Planning,...

294

EIS-0419: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0419: EPA Notice of Availability of the Draft Environmental Impact Statement Whistling Ridge Energy...

295

EA-1592: GSA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GSA Notice of Availability of the Draft Environmental Assessment EA-1592: GSA Notice of Availability of the Draft Environmental Assessment Modernization of Facilities and...

296

EA-1900: Notice of Availability of a Draft Environmental Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment EA-1900: Notice of Availability of a Draft Environmental Assessment Radiological Work and Storage Building at the Knolls Atomic Power Laboratory...

297

EIS-0469: EPA Notice of Availability of a Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

69: EPA Notice of Availability of a Draft Environmental Impact Statement EIS-0469: EPA Notice of Availability of a Draft Environmental Impact Statement EPA Notice of Availability...

298

EIS-0359: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0359: EPA Notice of Availability of the Draft Environmental Impact Statement Construction and Operation...

299

EIS-0431: DOE Notice of Availability of Draft Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of Draft Environmental Impact Statement EIS-0431: DOE Notice of Availability of Draft Environmental Impact Statement Hydrogen Energy California's...

300

EIS-0444: DOE Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of the Draft Environmental Impact Statement and Notice of Public Hearing EIS-0444: DOE Notice of Availability of the Draft Environmental Impact Statement...

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EIS-0250: EPA Notice of Availability of the Draft Supplemental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Supplemental Environmental Impact Statement EIS-0250: EPA Notice of Availability of the Draft Supplemental Environmental Impact Statement...

302

EIS-0472: DOE Notice of Availability of a Draft Programmatic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: DOE Notice of Availability of a Draft Programmatic Environmental Impact Statement EIS-0472: DOE Notice of Availability of a Draft Programmatic Environmental Impact Statement...

303

EIS-0400: EPA Notice of Availability of a Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of a Draft Environmental Impact Statement EIS-0400: EPA Notice of Availability of a Draft Environmental Impact Statement Grandby Pumping Plant Switchyard...

304

EIS-0408: DOE Notice of Availability of a Programmatic Draft...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of a Programmatic Draft Environmental Impact Statement EIS-0408: DOE Notice of Availability of a Programmatic Draft Environmental Impact Statement DOE...

305

EIS-0421: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement EIS-0421: EPA Notice of Availability of the Draft Environmental Impact Statement Big Eddy-Knight Transmission Project Proposal to Construct,...

306

EIS-0414: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Draft Environmental Impact Statement EIS-0414: EPA Notice of Availability of the Draft Environmental Impact Statement Energia Sierra Juarez U.S. Transmission Line Project,...

307

EIS-0447: DOE Notice of Availability of Draft Environmental Impact...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Availability of Draft Environmental Impact Statement Champlain Hudson Power Express Transmission Line Project, New York DOE announces the availability of a draft EIS to...

308

DRAFT NEPA Guidance on Consideration of the Effects of Climate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT NEPA Guidance on Consideration of the Effects of Climate Change and Greenhouse Gas Emissions DRAFT NEPA Guidance on Consideration of the Effects of Climate Change and...

309

DOE EAC Electricity Adequacy Report. Transmission Chapter DRAFT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Chapter DRAFT- September 18, 2008 DOE EAC Electricity Adequacy Report. Transmission Chapter DRAFT- September 18, 2008 The purpose of this document is to seed...

310

EIS-0458: Draft Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement EIS-0458: Draft Environmental Impact Statement Proposed Loan Guarantee to Support Construction and Startup of the Topaz Solar Farm, San Luis...

311

EIS-0403: EPA Notice of Availability of the Draft Programmatic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Programmatic Environmental Impact Statement Solar Energy Development in Six Southwestern States Notice of Availability, Draft...

312

EA-1922: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment EA-1922: Draft Environmental Assessment Combined Power and Biomass Heating System, Fort Yukon, Alaska This DOE Draft EA, in cooperation with RUS and the...

313

EA-1861: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment EA-1861: Draft Environmental Assessment Frito-Lay Biomass Boiler Project, Beloit, Wisconsin The U.S. Department of Energy (DOE) is proposing to...

314

UNEP Handbook for Drafting Laws on Energy Efficiency and Renewable...  

Open Energy Info (EERE)

Handbook for Drafting Laws on Energy Efficiency and Renewable Energy Resources Jump to: navigation, search Name UNEP Handbook for Drafting Laws on Energy Efficiency and Renewable...

315

EA-1932: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment EA-1932: Draft Environmental Assessment Bass Lake Native Fish Restoration, Eureka, Lincoln County, Montana This EA will evaluate the potential...

316

EIS-0312: Draft Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Draft Environmental Impact Statement EIS-0312: Draft Environmental Impact Statement Fish and Wildlife Implementation Plan This EIS evaluates the environmental impacts associated...

317

EA-1904: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment EA-1904: Draft Environmental Assessment Linac Coherent Light Source-II Draft Environmental Assessment (December 2011) This EA evaluates the environmental...

318

DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas...

319

EIS-0283: Draft Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement EIS-0283: Draft Environmental Impact Statement Surplus Plutonium Disposition Draft Environmental Impact Statement This EIS evaluates the potential...

320

EIS-0447: EPA Notice of Availability of Draft Environmental Impact...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Availability of Draft Environmental Impact Statement Champlain Hudson Power Express Transmission Line Project, New York EPA announces the availability of a draft EIS to...

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EIS-0365: Draft Environmental Impact Statement for the Imperial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

65: Draft Environmental Impact Statement for the Imperial-Mexicali 230-kV Transmission Lines, EIS-0365 (May 2004) EIS-0365: Draft Environmental Impact Statement for the...

322

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in...

323

Tank characterization data report: Tank 241-C-112  

Science Conference Proceedings (OSTI)

Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. It is probable that tank 241-C-112 exceeds the 1,000 g-mol inventory criteria established for the Ferrocyanide USQ; however, extensive energetic analysis of the waste has determined a maximum exothermic value of -9 cal/g dry waste. This value is substantially below any levels of concern (-75 cal/g). In addition, an investigation of potential mechanisms to generate concentration levels of radionuclides high enough to be of concern was performed. No credible mechanism was postulated that could initiate the formation of such concentration levels in the tank. Tank 241-C-112 waste is a complex material made up primarily of water and inert salts. The insoluble solids are a mixture of phosphates, sulfates, and hydroxides in combination with aluminum, calcium, iron, nickel, and uranium. Disodium nickel ferrocyanide and sodium cesium nickel ferrocyanide probably exist in the tank; however, there appears to have been significant degradation of this material since the waste was initially settled in the tank.

Simpson, B.C.; Borsheim, G.L.; Jensen, L.

1993-04-01T23:59:59.000Z

324

CHARACTERIZATION OF TANK 16H ANNULUS SAMPLES  

Science Conference Proceedings (OSTI)

The closure of Tank 16H will require removal of material from the annulus of the tank. Samples from Tank 16H annulus were characterized and tested to provide information to evaluate various alternatives for removing the annulus waste. The analysis found all four annulus samples to be composed mainly of Si, Na, and Al and lesser amounts of other elements. The XRD data indicate quartz (SiO{sub 2}) and sodium aluminum nitrate silicate hydrate (Na{sub 8}(Al{sub 6}Si{sub 6}O{sub 24})(NO{sub 3}){sub 2}.4H{sub 2}O) as the predominant crystalline mineral phases in the samples. The XRD data also indicate the presence of crystalline sodium nitrate, sodium nitrite, gibbsite, hydrated sodium bicarbonate, and muscovite. Based on the weight of solids remaining at the end of the test, the water leaching test results indicate approximately 20-35% of the solids dissolved after three contacts with an approximately 3:1 volume of water at 45 C. The chemical analysis of the leachates and the XRD results of the remaining solids indicate sodium salts of nitrate, nitrite, sulfate, and possibly carbonate/bicarbonate make up the majority of the dissolved material. The majority of these salts were dissolved in the first water contact and simply diluted with each subsequent water contact. The water leaching removed large amounts of the uranium in two of the samples and {approx}1/3 of the {sup 99}Tc from all four samples. Most of the other radionuclides analyzed showed low solubility in the water leaching test. The preliminary data on the oxalic acid leaching test indicate the three acid contacts at 45 C dissolved from {approx}34-47% of the solids. The somewhat higher dissolution found in the oxalic acid leaching test versus the water leaching test might be offset by the tendency of the oxalic acid solutions to take on a gel-like consistency. The filtered solids left behind after three oxalic acid contacts were sticky and formed large clumps after drying. These two observations could indicate potential processing difficulties with solutions and solids from oxalic acid leaching. The gel formation might be avoided by using larger volumes of the acid. Further testing would be recommended before using oxalic acid to dissolve the Tank 16H annulus waste to ensure no processing difficulties are encountered in the full scale process.

Hay, M.; Reboul, S.

2012-04-16T23:59:59.000Z

325

Appendix D Draft Oil Spill Response Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D D Draft Oil Spill Response Plan U.S. Department of the Interior Minerals Management Service MMS Cape Wind Energy Project January 2009 Final EIS Appendix D Draft Oil Spill Response Plan DRAFT Oil Spill Response Plan CAPE WIND ASSOCIATES, LLC BOSTON, MASSACHUSETTS PREPARED FOR Cape Wind Associates, LLC 75 Arlington Street Boston, Massachusetts 02116 PREPARED BY ESS Group, Inc. 401 Wampanoag Trail, Suite 400 East Providence, Rhode Island 02915 Project No. E159-601 December 2005 DRAFT OIL SPILL RESPONSE PLAN Cape Wind Associates, LLC Boston, Massachusetts Prepared For: Cape Wind Associates, LLC 75 Arlington Street Boston, Massachusetts 02116 Prepared By: ESS Group, Inc. 401 Wampanoag Trail, Suite 400

326

EIS-0250: Draft Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain(July 1999)

327

DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

328

Berkeley Lab's "Draft" Sustainability Strategy (Title TBD)  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab's "Draft" Sustainability Strategy (Title TBD) NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be updated until...

329

The Draft of ASME PTC 19  

NLE Websites -- All DOE Office Websites (Extended Search)

Generators for each of the Gas Turbines and Steam Turbine. * A steam surface condenser with mechanical vacuum pumps for air removal and a mechanical draft cooling tower...

330

Chapter 3_Consolidated_DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement March 2013 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Volume 1: Environmental Analyses DOE/EIS-0451 HOOPER SPRINGS TRANSMISSION PROJECT Draft Environmental Impact Statement DOE/EIS - 0451 Bonneville Power Administration Cooperating Agencies U.S. Department of Agriculture, Forest Service, Caribou-Targhee National Forest U.S. Department of Interior, Bureau of Land Management Idaho Office of Energy Resources March 2013 Hooper Springs Transmission Project Responsible Agency: U.S. Department of Energy (DOE), Bonneville Power Administration (BPA) Cooperating Agencies: U.S. Department of Agriculture, Forest Service (USFS), Caribou-Targhee National Forest (C-TNF); U.S. Department of Interior, Bureau of Land Management (BLM); Idaho Office of Energy Resources

331

Draft Report of Policy Subcommittee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee Draft Report of Policy Subcommittee September, 2008 1 DRAFT ONLY; NOT FOR CITATION OR DISTRIBUTION WITHOUT PERMISSION I. Introduction More than 50 years since the launch of the Atoms for Peace initiative, the implications of US nuclear policy, in terms of our Nation's energy, environmental, and national security interests, are greater than ever. The choices the next president will make regarding nuclear energy will therefore be of the utmost importance. The mission of this Subcommittee is to explore the critical choices and implications in US nuclear energy policy, with a view to framing options for the next President to consider. Nuclear energy is just one element of the broader energy picture. One cannot effectively address

332

Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste  

Science Conference Proceedings (OSTI)

The CH2M HILL Hanford Group, Inc. (CH2M HILL) is producing risk/performance assessments to support the closure of single-shell tanks at the U.S. Department of Energy's Hanford Site. As part of this effort, staff at Pacific Northwest National Laboratory were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. Initial work to produce release models was conducted on residual tank sludge using pure water as the leaching agent. The results were reported in an earlier report. The decision has now been made to close the tanks after waste retrieval with a cementitious grout to minimize infiltration and maintain the physical integrity of the tanks. This report describes testing of the residual waste with a leaching solution that simulates the composition of water passing through the grout and contacting the residual waste at the bottom of the tank.

Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

2006-09-01T23:59:59.000Z

333

EA-1488: Draft Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

728D 728D Environmental Assessment Integrated Vegetation Management on the Hanford Site, Richland, Washington U.S. Department of Energy Richland Operations Office Richland, Washington 99352 Approved for Public Release; Further Disseminat ion Uillimited June 2011 DOE/EA-1728D June 2011 1 2 3 4 5 6 This page intentionally left blank. 7 8 U.S. Department of Energy DOE/EA-1728D Draft Environmental Assessment iii June 2011 CONTENTS 1 2 1.0 INTRODUCTION ........................................................................................................................... 1 3

334

ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING  

Science Conference Proceedings (OSTI)

The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were measured by different methods, and the differences in the fraction removed are not statistically significant. (10) Chemical cleaning removed 10-50% of the barium, chromium, iron, magnesium, manganese, and silicon. (11) Chemical cleaning removed only {approx}1% of the nickel.

Poirier, M.; Fink, S.

2011-03-07T23:59:59.000Z

335

TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY  

SciTech Connect

The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy document states that one of the Performance Assessment (PA) requirements for a closed tank is that equipment remaining in the tank be filled to the extent practical and that vertical flow paths 1 inch and larger be grouted. The specific objectives of the Tier 1A equipment grout mock-up testing include: (1) Identifying the most limiting equipment configurations with respect to internal void space filling; (2) Specifying and constructing initial test geometries and forms that represent scaled boundary conditions; (3) Identifying a target grout rheology for evaluation in the scaled mock-up configurations; (4) Scaling-up production of a grout mix with the target rheology (16 second flow cone value) from 0.25 cubic feet to 4.3 cubic feet. (Ten 0.43 cubic batches were produced because full-scale equipment was not available for the Tier 1A test.); (5) Demonstrating continuous gravity filling of the ADMP mock up test form; (6) Demonstrating continuous gravity filling of 1 inch and 2 inch schedule 40 pipe; and (7) Demonstrating filling of 1 inch and 2 inch schedule 40 pipe from the bottom up by discharging through a tube inserted into the pipes. The Tier 1A mock-up test focused on the ADMP and pipes at least one inch in diameter. The ADMP which is located in center riser of Tank 18-F is a concern because the column for this long-shaft (55 ft) pump is unique and modification to the pump prior to placing it in service limited the flow path options for filling by creating a single flow path for filling and venting the ADMP support column. The large size, vertical orientation, and complicated flow path in the ADMP warrants a detailed description of this piece of ancillary equipment.

Stefanko, D.; Langton, C.

2011-11-04T23:59:59.000Z

336

THE INTEGRATION OF THE 241-Z BUILDING DECONTAMINATION & DECOMMISSIONING (D&D) UNDER COMPREHENSIVE ENVIRONMENTAL RESPONSE COMPENSATION & LIABILITY ACT (CERCLA) WITH RESOURCE CONSERVATION & RECOVERY ACT (RCRA) CLOSURE AT THE PLUTONIUM FINISHING PLANT (PFP)  

SciTech Connect

The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and Washington State ''Hazardous Waste Management Act, RCW 70.105'', have been deactivated and are being actively decommissioned. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground mining from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the ''Hanford Facility Dangerous Waste Closure Plant, 241-Z Treatment and Storage Tanks''.

HOPKINS, A.M.

2007-02-20T23:59:59.000Z

337

Post-Closure Inspection Report for Corrective Action Unit 427: Area 3 Septic Waste Systems 2 and 6 Tonopah Test Range, Nevada, Calendar Year 2001  

Science Conference Proceedings (OSTI)

Post-closure inspection requirements for the Area 3 Septic Waste Systems 2 and 6 (Corrective Action Unit [CAU] 427) (Figure 1) are described in Closure Report for Corrective Action Unit 427, Area 3 Septic Waste Systems 2 and 6, Tonopah Test Range, Nevada, report number DOENV-56 1, August 1999. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 16, 1999. The CR (containing the Post-Closure Inspection Plan) was approved by the NDEP on August 27, 1999. As stated in Section 5.1 of the NDEP-approved CR, the annual Post-Closure inspection at CAU 427 consists of the following: (1) Verification of the presence of all leachfield and septic tank below-grade markers. (2) Verification that all warning signs are in-place, intact, and readable. (3) Visual observation of the soil and asphalt cover for indications of subsidence, erosion, and unauthorized use. The site inspections were conducted on May 16, 2001, and November 6, 2001. All inspections were made after NDEP approval of the CR, and were conducted in accordance with the Post-Closure Inspection Plan in the NDEP-approved CR. No maintenance or repairs were conducted at the site. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. Copies of the Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and a copy of the inspection photographs is found in Attachments C.

K. B. Campbell

2002-01-01T23:59:59.000Z

338

Post-Closure Inspection Report for Corrective Action Unit 427: Septic Waste Systems 2 and 6 Tonopah Test Range, Nevada Calendar Year 2000  

Science Conference Proceedings (OSTI)

Post-closure inspection requirements for the Area 3 Septic Waste Systems 2 and 6 (Corrective Action Unit [CAU] 427) (Figure 1) are described in Closure Report for Corrective Action Unit 427. Area 3 Septic Waste Systems 2 and 6. Tonopah Test Range, Nevada, report number DOE/NV-561. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 16, 1999. The CR (containing the Post-Closure Inspection Plan) was approved by the NDEP on August 27, 1999. The annual post-closure inspection at CAU 427 consists of the following: Verification of the presence of all leachfield and septic tank below-grade markers; Verification that the warning signs are in-place, intact, and readable; and Visual observation of the soil and asphalt cover for indications of subsidence, erosion, and unauthorized use. The site inspections were conducted on June 20, 2000, and November 21, 2000. All inspections were made after NDEP approval of the CR and were conducted in accordance with the Post-Closure Inspection Plan in the NDEP-approved CR. No maintenance or repairs were conducted at the site. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. Copies of the Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and a copy of the inspection photographs is found in Attachments C.

K. B. Campbell

2001-06-01T23:59:59.000Z

339

HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

Evans, S. K.

2007-11-07T23:59:59.000Z

340

RPP-PLAN-47325 Revision 0 Radioactive Waste Determination Process Plan for Waste Management Area C Tank  

E-Print Network (OSTI)

This plan describes the radioactive waste determination process that the U.S. Department of Energy (DOE) will use for Hanford Site Waste Management Area C (WMA C) tank waste residuals subject to DOE authority under DOE Order 435.1, Radioactive Waste Management. Preparation of this plan is a required component of actions the DOE-Office of River Protection (ORP) must take to fulfill proposed Hanford Federal Facility Agreement and Consent Order Milestone M-045-80. Waste Management Area C is comprised of various single-shell tanks, encased and direct-buried pipes, diversion boxes, pump pits, and unplanned release sites (sites contaminated as a result of spills of tank waste to the environment). Since operations began in the late 1940s, the tanks in WMA C have continuously stored waste managed as high-level waste (HLW) that was derived from defense-related nuclear research, development, and weapons production activities. Planning for the final closure of WMA C is underway. This radioactive waste determination process plan assumes that tank closure will follow retrieval of as much tank waste as technically and economically practical. It is also assumed for the purposes of this plan that after completion

Waste Residuals; J. R. Robertson

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hanford Tanks 241-C-202 and 241-C-203 Residual Waste Contaminant Release Models and Supporting Data  

SciTech Connect

As directed by Congress, the U. S. Department of Energy (DOE) established the Office of River Protection in 1998 to manage DOE's largest, most complex environmental cleanup project retrieval of radioactive waste from Hanford tanks for treatment and eventual disposal. Sixty percent by volume of the nation's high-level radioactive waste is stored at Hanford in aging deteriorating tanks. If not cleaned up, this waste is a threat to the Columbia River and the Pacific Northwest. CH2M Hill Hanford Group, Inc., is the Office of River Protection's prime contractor responsible for the storage, retrieval, and disposal of Hanford's tank waste. As part of this effort, CH2M HILL Hanford Group, Inc. contracted with Pacific Northwest National Laboratory (PNNL) to develop release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for DOE.

Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Mattigod, Shas V.; Schaef, Herbert T.; Arey, Bruce W.

2007-09-13T23:59:59.000Z

342

AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY2007  

Science Conference Proceedings (OSTI)

The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation and closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address residual wastes that will remain in the tanks and tank-farm infrastructure after closure and potential losses from leaks during waste retrieval. Recharge addresses the impacts of current conditions in the tank farms (i.e. gravel covers that affect infiltration and recharge) as well as the impacts of surface barriers. The geohydrology and geochemistry components address the extent of the existing subsurface contaminant inventory and drivers and pathways for contaminants to be transported through the vadose zone and groundwater. Geochemistry addresses the mobility of key reactive contaminants such as uranium. Modeling addresses conceptual models and how they are simulated in computers. The data gaps will be used to provide input to planning (including the upcoming C Farm Data Quality Objective meetings scheduled this year).

MANN, F.M.

2007-07-10T23:59:59.000Z

343

Extender for securing a closure  

DOE Patents (OSTI)

An apparatus for securing a closure such as door or a window that opens and closes by movement relative to a fixed structure such as a wall or a floor. Many embodiments provide a device for relocating a padlock from its normal location where it secures a fastener (such as a hasp) to a location for the padlock that is more accessible for locking and unlocking the padlock. Typically an extender is provided, where the extender has a hook at a first end that is disposed through the eye of the staple of the hasp, and at an opposing second end the extender has an annulus, such as a hole in the extender or a loop or ring affixed to the extender. The shackle of the padlock may be disposed through the annulus and may be disposed through the eye of a second staple to secure the door or window in a closed or open position. Some embodiments employ a rigid sheath to enclose at least a portion of the extender. Typically the rigid sheath has an open state where the hook is exposed outside the sheath and a closed state where the hook is disposed within the sheath.

Thomas, II, Patrick A.

2012-10-02T23:59:59.000Z

344

MODIFICATIONS TO THE WIPP PANEL CLOSURE  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods Assessment for Run-of-Mine Salt Panel Closures, Interim Report For Scenario 1 Testing, Washington TRU Solutions, Carlsbad New Mexico. Appendix 1-A 1-A-54 of 100 Panel...

345

Closure Modeling of Fully Developed Baroclinic Instability  

Science Conference Proceedings (OSTI)

Simple second-order closure models of quasi-geostrophic turbulence are derived, applying either to two-layer flows within isentropic boundaries, or to Eady-type frontogenesis with vanishing potential vorticity; homogeneity and horizontal isotropy ...

Jean-Michel Hoyer; Robert Sadourny

1982-04-01T23:59:59.000Z

346

River Corridor Closure Project Partnering Performance Agreement  

Energy.gov (U.S. Department of Energy (DOE))

WCH and DOE have a mission to complete the clsoure of the Hanford River Corridor by 2015. Early and efficient completion of this work scope law the River Corridor Closure Contract (DE-AC06...

347

April 29, 2004: Fernald Closure Site  

Energy.gov (U.S. Department of Energy (DOE))

April 29, 2004Demolition crews bring down the Pilot Plant at DOE's Fernald Closure Site in Ohio. The plant was the last to be torn down of ten former uranium production complexes that produced high...

348

Optimal contour closure by superpixel grouping  

Science Conference Proceedings (OSTI)

Detecting contour closure, i.e., finding a cycle of disconnected contour fragments that separates an object from its background, is an important problem in perceptual grouping. Searching the entire space of possible groupings is intractable, and previous ...

Alex Levinshtein; Cristian Sminchisescu; Sven Dickinson

2010-09-01T23:59:59.000Z

349

DRAFT FOR PUBLIC COMMENT STATE OF CALIFORNIA  

E-Print Network (OSTI)

populations. It also provides recommendations for consideration by state agencies related to extreme heatDRAFT FOR PUBLIC COMMENT STATE OF CALIFORNIA EXTREME HEAT ADAPTATION INTERIM GUIDANCE DOCUMENT (CAT) 8/31/2012 #12;DRAFT FOR PUBLIC COMMENT Page 1 STATE OF CALIFORNIA EXTREME HEAT ADAPTATION

350

Closure End States for Facilities, Waste Sites, and Subsurface Contamination  

Science Conference Proceedings (OSTI)

The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOEs Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

2012-11-21T23:59:59.000Z

351

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 130: Storage Tanks, Nevada Test Site, Nevada, Revision 0  

Science Conference Proceedings (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 130, Storage Tanks, identified in the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008). Corrective Action Unit 130 consists of the seven following corrective action sites (CASs) located in Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site: 01-02-01, Underground Storage Tank 07-02-01, Underground Storage Tanks 10-02-01, Underground Storage Tank 20-02-03, Underground Storage Tank 20-99-05, Tar Residue 22-02-02, Buried UST Piping 23-02-07, Underground Storage Tank This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 130 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The sites will be investigated based on the data quality objectives (DQOs) finalized on April 3, 2008, by representatives of NDEP; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 130. The DQO process developed for this CAU identified the following expected closure options: (1) investigation and confirmation that no contamination exists above the final action levels, leading to a no further action declaration; (2) characterization of the nature and extent of contamination, leading to closure in place with use restrictions; or (3) clean closure by remediation and verification. The following text summarizes the SAFER activities that will support the closure of CAU 130: Perform site preparation activities (e.g., utilities clearances, geophysical surveys). Move or remove and dispose of debris at various CASs, as required. Collect environmental samples from designated target populations (e.g., stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. If no COCs are present at a CAS, establish no further action as the corrective action. If COCs exist, collect environmental samples from designated target populations (e.g., clean soil adjacent to contaminated soil) and submit for laboratory analyses to define the extent of COC contamination. If a COC is present at a CAS, either: - Establish clean closure as the corrective action. The material to be remediated will be removed, disposed of as waste, and verification samples will be collected from remaining soil, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. Obtain consensus from NDEP that the preferred closure option is sufficient to protect human health and the environment. Close the underground storage tank(s) and their contents, if any, in accordance with Nevada Administrative Code regulations. Remove the lead brick(s) found at any CAS in accordance with the Resource Conservation and Recovery Act.

Alfred Wickline

2008-07-01T23:59:59.000Z

352

Draft Forecast of Electricity Demand for the 5th  

E-Print Network (OSTI)

products has been below the medium-low. Future natural gas prices are expected to be higher in this power's draft natural gas price forecasts. The medium natural gas price forecast for this plan in 2015 is about Council Document 2001-23, sited above. #12;DRAFT DRAFT DRAFT 11 Table 1 Natural Gas Price Forecasts

353

Tank Waste Retrieval Lessons Learned at the Hanford Site  

SciTech Connect

One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST salt-cake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the Tri- Party Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U.S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 ft{sup 3} in 530,000 gallon or larger tanks; 30 ft{sup 3} in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an exception to the waste retrieval criteria for a specific tank. Tank waste retrieval has been conducted at the Hanford Site over the last few decades using a method referred to as Past Practice Hydraulic Sluicing. Past Practice Hydraulic Sluicing employs large volumes of DST supernatant and water to dislodge, dissolve, mobilize, and retrieve tank waste. Concern over the leak integrity of SSTs resulted in the need for tank waste retrieval methods capable of using smaller volumes of liquid in a more controlled manner. Retrieval of SST waste in accordance with HFFACO requirements was initiated at the Hanford Site in April 2003. New and innovative tank waste retrieval methods that minimize and control the use of liquids are being implemented for the first time. These tank waste retrieval methods replace Past Practice Hydraulic Sluicing and employ modified sluicing, vacuum retrieval, and in-tank vehicle techniques. Waste retrieval has been completed in seven Hanford Site SSTs (C-106, C-103, C-201, C-202, C-203, C-204, and S-112) in accordance with HFFACO requirements. Three additional tanks are currently in the process of being retrieved (C-108, C-109 and S-102) Preparation for retrieval of two additional SSTs (C-104 and C-110) is ongoing with retrieval operations forecasted to start in calendar year 2008. Tank C-106 was retrieved to a residual waste volume of 470 ft{sup 3} using oxalic acid dissolution and modified sluicing. An Appendix H exception request for Tank C-106 is undergoing review. Tank C-103 was retrieved to a residual volume of 351 ft{sup 3} using a modified sluicing technology. This approach was successful at reaching the TPA limits for this tank of less than 360 ft{sup 3}and the limits of the technology. Tanks C-201, C-202, C-203, and C-204 are smaller (55,000 gallon) tanks and waste removal was completed in accordance with HFFACO requirements using a vacuum retrieval system. Residual waste volumes in each of these four tanks were less than 25 ft{sup 3}. Tank S-112 retrieval was completed February 28, 2007, meeting the TPA Limits of less than

Dodd, R.A. [CH2M HILL Hanford Group, Inc., Richland, Washington (United States)

2008-07-01T23:59:59.000Z

354

ENGINEERING SPECIALTY ASSESSMENT OF TANK WASTE COMPATIBILITY REPORTING  

Science Conference Proceedings (OSTI)

This Engineering Specialty Assessment was conducted to review the Tank Farm Waste Transfer Compatibility Program to assess whether the program meets the needs of accelerated retrieval and closure and waste feed delivery and to identify areas and methods for streamlining the program. The assessment was conducted in June 2003 and resulted in two findings and thirteen observations. The assessment results indicate that significant opportunities exist for streamlining the program by reducing the number of criteria requiring evaluation from 21 to 11, with only six of the criteria requiring evaluation for the majority of transfers. The assessment identified areas where existing criteria require strengthening to ensure that the risks of undesirable solids precipitation, from either waste mixing or waste transfer, are minimized. The assessment further identified opportunities for using existing engineering tools to simplify the calculations involved with preparation of waste compatibility assessments. The need to ensure that a revision to the waste compatibility program is prepared to align the program criteria with those that will be implemented with the DSA approval was also identified. Finally, the assessment identified that corrective actions are required to implement a tank-by-tank PCB inventory within the Best Basis Inventory and to ensure that sample data from external waste generators is entered into the TWINS database.

KNIGHT, M.A.

2003-06-30T23:59:59.000Z

355

Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data  

SciTech Connect

This report was revised in May 2007 to correct values in Section 3.4.1.7, second paragraph, last sentence; 90Sr values in Tables 3.22 and 3.32; and 99Tc values Table 4.3 and in Chapter 5. In addition, the tables in Appendix F were updated to reflect corrections to the 90Sr values. The rest of the text remains unchanged from the original report issued in May 2005. CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL.

Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

2007-05-23T23:59:59.000Z

356

LA-UR-07-1983 Closure/Post-Closure Plan for the  

E-Print Network (OSTI)

is as a source of potable water. Closure - Under the RCRA regulations, this term refers to a hazardous or solid & Authorities RA Removal Action RACT Reasonable Available Control Technology RCRA Resource Conservation for high quality groundwater, where the best intended use is as a source of potable water. Closure - Under

357

Business Plan in Brief : Draft.  

SciTech Connect

Competition is revolutionizing the electricity industry, and utilities may never be the same. In the past two decades, government deregulation has transformed the airline, cable television, natural gas, and telecommunications industries. Now, with the passage of new laws which have spurred the growth of independent power and opened up transmission access, the electric utility industry has become the laboratory for change. Here in the Northwest, dramatic changes in the electric industry mean that the Bonneville Power Administration (BPA) is facing real competition. Our customers have more choices than they had in the past. BPA`s draft Business Plan is a direct response to this changing environment. The plan presents how we propose to adapt to the new competitive marketplace. This is a summary of the plan and some of the important issues it raises for regional discussion. The draft plan contains much more detail on all the topics mentioned here. Business Plan is BPA`s first attempt to integrate the long-term strategic plans of the various parts of the agency with a strategic financial plan. Change is evident throughout the plan--change in our operating environment, in our strategic direction, in our customer and constituent relationships, and in BPA itself as an organization.

United States. Bonneville Power Administration.

1994-06-01T23:59:59.000Z

358

Estimating Waste Inventory and Waste Tank Characterization |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

359

Tanks Focus Area Site Needs Assessment - FY 2001  

SciTech Connect

The TFA uses a systematic process for developing its annual program that draws from the tanks science and technology development needs expressed by the five DOE tank waste sites. TFA's annual program development process is iterative and involves the following steps: Collection of site needs; Needs analysis; Development of technical responses and initial prioritization; Refinement of the program for the next fiscal year; Formulation of the Corporate Review Budget (CRB); Preparation of Program Execution Guidance (PEG) for the next FY Revision of the Multiyear Program Plan (MYPP). This document describes the outcomes of the first phase of this process, from collection of site needs to the initial prioritization of technical activities. The TFA received site needs in October - December 2000. A total of 170 site needs were received, an increase of 30 over the previous year. The needs were analyzed and integrated, where appropriate. Sixty-six distinct technical responses were drafted and prioritized. In addition, seven strategic tasks were approved to compete for available funding in FY 2002 and FY 2003. Draft technical responses were prepared and provided to the TFA Site Representatives and the TFA User Steering Group (USG) for their review and comment. These responses were discussed at a March 15, 2001, meeting where the TFA Management Team established the priority listing in preparation for input to the DOE Office of Science and Technology (OST) budget process. At the time of publication of this document, the TFA continues to finalize technical responses as directed by the TFA Management Team and clarify the intended work scopes for FY 2002 and FY 2003.

Allen, Robert W.; Josephson, Gary B.; Westsik, Joseph H.; Nickola, Cheryl L.

2001-04-30T23:59:59.000Z

360

RCRA closure of the Building 3001 Storage Canal  

Science Conference Proceedings (OSTI)

The 3001 Storage Canal is located under portions of Buildings 3001 and 3019 at Oak Ridge National Laboratory (ORNL) and has a capacity of approximately 62,000 gallons of water. The term canal has historically been used to identify this structure, however, the canal is an in-ground reinforced concrete structure satisfying the regulatory definition of a tank. From 1943 through 1963, the canal in Building 3001 was designed to be an integral part of the system for handling irradiated fuel from the Oak Ridge Graphite Reactor. Because one of the main initial purposes of the reactor was to produce plutonium for the chemical processing pilot plant in Building 3019, the canal was designed to be the connecting link between the reactor and the pilot plant. During the war years, natural uranium slugs were irradiated in the reactor and then pushed out of the graphite matrix into the system of diversion plates and chutes which directed the fuel into the deep pit of the canal. After shutdown of the reactor, the canal was no longer needed for its designed purpose. Since 1964, the canal has only been used to store radioisotopes and irradiated samples under a water pool for radiation protection. This report describes closure alternatives.

Etheridge, J.T.; Thompson, W.T.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Characterization of the corrosion behavior of the carbon steel liner in Hanford Site single-shell tanks  

SciTech Connect

Six safety initiatives have been identified for accelerating the resolution of waste tank safety issues and closure of unreviewed safety questions. Safety Initiative 5 is to reduce safety and environmental risk from tank leaks. Item d of Safety Initiative 5 is to complete corrosion studies of single-shell tanks to determine failure mechanisms and corrosion control options to minimize further degradation by June 1994. This report has been prepared to fulfill Safety Initiative 5, Item d. The corrosion mechanisms that apply to Hanford Site single-shell tanks are stress corrosion cracking, pitting/crevice corrosion, uniform corrosion, hydrogen embrittlement, and microbiologically influenced corrosion. The corrosion data relevant to the single-shell tanks dates back three decades, when results were obtained from in-situ corrosion coupons in a few single-shell tanks. Since that time there have been intertank transfers, evaporation, and chemical alterations of the waste. These activities have changed the character and the present composition of the waste is not well characterized. All conclusions and recommendations are made in the absence of relevant laboratory experimental data and tank inspection data. The report attempts to identify the failure mechanisms by a literature survey of carbon steel data in environments similar to the single-shell tank wastes, and by a review of the work performed at the Savannah River Site where similar wastes are stored in similar carbon steel tanks. Based on these surveys, and in the absence of data specific to Hanford single-shell tanks, it may be concluded that the single-shell tanks identified as leakers failed primarily by stress corrosion cracking due to the presence of high nitrate/low hydroxide wastes and residual stresses. In addition, some failures may be attributed to pitting under crevices in low hydroxide locations.

Anantatmula, R.P.; Schwenk, E.B. [Westinghouse Hanford Co., Richland, WA (United States); Danielson, M.J. [Pacific Northwest Lab., Richland, WA (United States)

1994-06-01T23:59:59.000Z

362

DOE/EA-1697 Draft Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment Draft Environmental Assessment for Right-of-Way Maintenance in the San Joaquin Valley, California June 2010 Prepared for: Western Area Power Administration, Sierra Nevada Region San Joaquin Valley ROW Maintenance EA June 2010 iii Draft EA CONTENTS 1.0 PURPOSE AND NEED FOR ACTION ...................................................................... 1-1 1.1 Introduction ............................................................................................. 1-1 1.2 Background ............................................................................................. 1-1 1.3 Purpose and Need for Action .................................................................. 1-3 1.4 Location and Project Area Description .................................................... 1-4

363

Tank Waste Corporate Board | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Corporate Board Tank Waste Corporate Board Tank Waste Corporate Board The Tank Waste Corporate Board is a chartered group of senior DOE, contractor, and laboratory managers and staff that meets approximately semi-annually to formulate and coordinate implementation of an effective and efficient national Tank Waste program. August 1, 2012 Tank Waste Corporate Board Meeting 08/01/12 The following documents are associated with the Tank Waste Corporate Board Meeting held on August 1st, 2012. November 18, 2010 Tank Waste Corporate Board Meeting 11/18/10 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 18th, 2010. July 29, 2009 Tank Waste Corporate Board Meeting 07/29/09 The following documents are associated with the Tank Waste Corporate Board

364

A STRUCTURAL IMPACT ASSESSMENT OF FLAWS DETECTED DURING ULTRASONIC EXAMINATION OF TANK 15  

SciTech Connect

Ultrasonic (UT) inspection of Tank 15 was conducted between April and July 2007 in accordance with the Tank 15 UT inspection plan. This was a planned re-inspection of this tank, the previous one was performed in 2002. Ten cracks were characterized in the previous examination. The re-inspection was performed to verify the present models and understanding for stress corrosion cracking. During this re-examination, one indication that was initially reported as a 'possible perpendicular crack <25% through wall' in 2002, was clearly shown not to be a crack. Additionally, examination of a new area immediately adjacent to other cracks along a vertical weld revealed three new cracks. It is not known when these new cracks formed as they could very well have been present in 2002 as well. Therefore, a total of twelve cracks were evaluated during the re-examination. A critical review of the information describing stress corrosion crack behavior for the SRS waste tanks, as well as a summary review of the service history of Tank 15, was performed. Each crack was then evaluated for service exposure history, consistency of the crack behavior with the current understanding of stress corrosion cracking, and present and future impact to the structural integrity of the tank. Crack instability calculations were performed on each crack for a bounding waste removal loading condition in Tank 15. In all cases, the crack behavior was determined to be consistent with the previous understanding of stress corrosion cracking in the SRS waste tank environment. The length of the cracks was limited due to the short-range nature of the residual stresses near seam, repair and attachment welds. Of the twelve cracks, nine were located in the vapor space above the sludge layer, including the three new cracks. Comparison of the crack lengths measured in 2002 and 2007 revealed that crack growth had occurred in four of the six previously measured vapor space cracks. However, the growth remained within the residual stress zone. None of the three cracks beneath the sludge showed evidence of growth. The impact of the cracks that grew on the future service of Tank 15 was also assessed. Tank 15 is expected to undergo closure activities including sludge waste removal. A bounding loading condition for waste removal of the sludge at the bottom of Tank 15 was considered for this analysis. The analysis showed that the combination of hydrostatic, seismic, pump and weld residual stresses are not expected to drive any of the cracks identified during the Tank 15 UT inspection to instability. Wall thickness mapping for general thinning and pitting was also performed. No significant wall thinning was observed. The average wall thickness values were well above nominal. Two isolated pit-like indications were observed. Both were approximately 30 mils deep. However, the remaining wall thickness was still greater than nominal specified for the original construction plate material. It was recommended that a third examination of selected cracks in Tank 15 be performed in 2014. This examination would provide information to determine whether any additional detectable degradation is occurring in Tank 15 and to supplement the basis for characterization of conditions that are non-aggressive to tank corrosion damage. The in-service inspection program is re-evaluated on a three year periodicity. The Type I and II tanks are not active receipt tanks at present, and are therefore not a part of the In-Service Inspection Program for the Type III Tanks [1]. Changes to the mission for Tank 15 and other Type I and II tanks may be considered by the In-Service Inspection Review Committee (ISIRC) and the program adjusted accordingly.

Wiersma, B; James Elder, J

2008-08-21T23:59:59.000Z

365

TANKS 18 AND 19-F STRUCTURAL FLOWABLE GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS  

SciTech Connect

Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: (1) physically stabilize the final landfill by filling the empty volume in the tanks with a non compressible material; (2) provide a barrier for inadvertent intrusion into the tank; (3) reduce contaminant mobility by (a) limiting the hydraulic conductivity of the closed tank and (b) reducing contact between the residual waste and infiltrating water; and (4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: (1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). (2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. (3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix design. (4) Prepare samples for hydraulic property measurements for comparison to the values in the F and H- Tank Farm Performance Assessments (PAs). (5) Identify a grout mix for the Tanks 18-F and 19-F Grout Procurement Specification [Forty, 2011 a, b, c]. Results for two flowable zero bleed structural fill concepts containing 3/8 inch gravel (70070 Series and LP-8 Series) and a sand only mix (SO Series) are provided in this report. Tank Farm Engineering and SRNL Project Management selected the 70070 mix as the base case for inclusion in Revision 0 of the Tanks 18-F and 19-F grout procurement specification [Forty 2011 a] and requested admixture recommendations and property confirmation for this formulation [Forty, 2011 b]. Lower cementitious paste mixes were formulated because the 70070 mix is over designed with respect to strength and generates more heat from hydration reactions than is desirable for mass pour application. Work was also initiated on a modification of the recommended mix which included shrinkage compensation to mitigate fast pathways caused by shrinkage cracking and poor physical bonding to the tank and ancillary equipment. Testing of this option was postponed to FY12.

Stefanko, D.; Langton, C.

2011-11-01T23:59:59.000Z

366

APPARATUS AND METHOD FOR WELDING END CLOSURE TO CONTAINER  

DOE Patents (OSTI)

A semi-automatic apparatus is described for welding a closure to the open end of a can containing a nuclear fuel slug. An arc is struck at the center of the closure and is shifted to a region near its periphery. Then the assembly of closure, can, and fuel slug is rotated so that the peripheral region of the closure is preheated. Next the arc is shifted to the periphery itself of the closure, and the assembly is rotated so that the closure is welded to the can.

Frantz, C.E.; Correy, T.B.

1959-08-01T23:59:59.000Z

367

Closure device for lead-acid batteries  

DOE Patents (OSTI)

A closure device for lead-acid batteries includes a filter of granulated activated carbon treated to be hydrophobic combined with means for preventing explosion of emitted hydrogen and oxygen gas. The explosion prevention means includes a vertical open-end tube within the closure housing for maintaining a liquid level above side wall openings in an adjacent closed end tube. Gases vent from the battery through a nozzle directed inside the closed end tube against an impingement surface to remove acid droplets. The gases then flow through the side wall openings and the liquid level to quench any possible ignition prior to entering the activated carbon filter. A wick in the activated carbon filter conducts condensed liquid back to the closure housing to replenish the liquid level limited by the open-end tube.

Ledjeff, Konstantin (Schwalbach, DE)

1983-01-01T23:59:59.000Z

368

Mine closures yield fields of green  

SciTech Connect

The cleanup and reclamation of North America's defunct mines or those set for closure will be extremely costly, estimated to be over one trillion dollars within the next ten to twenty years. In Canada, mines are controlled by the provinces and British Columbia began reclamation of major coal mines and hard rock metal mines in 1969. Other provinces have followed suit and in 1991, Ontario ruled that new and existing mines and advanced exploration projects must be designed for closuer. Many US states are enacting similar laws and the EPA plans to require mines to submit closure plans with their permit applications. Cleanup includes the sale of usable equipment, salvage of the rest, dismantling buildings, treatment and disposal of process chemicals, hazardous materials and tainted soils as well as recontouring and revegetation of the sites. Currently, at Elliot Lake in Canada, three of Canada's largest underground uranium mines are undergoing the process of closure.

Jones, S.

1993-01-11T23:59:59.000Z

369

Hanford Patrol Academy demolition sites closure plan  

Science Conference Proceedings (OSTI)

The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

Not Available

1993-09-30T23:59:59.000Z

370

Ohio Closure Projects Ceremony | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio Closure Projects Ceremony Ohio Closure Projects Ceremony Ohio Closure Projects Ceremony January 19, 2007 - 9:59am Addthis Remarks for Energy Secretary Samuel Bodman Thank you, Alan Boeckmann for that kind introduction. It is a privilege to be with you today. I am pleased to be joined by my cabinet colleague Stephen Johnson, the administrator of the Environmental Protection Agency. It's also good to see Sen. George Voinovich. Senator, thank you for your leadership on so many issues critical to America's energy security and for all you've done to make today a reality. I'd also like to recognize the thousands of dedicated people, many of whom are with us today, involved in the cleanup projects here at Fernald and in Ashtabula and Columbus. If not for your tireless efforts, as well as the support of many, federal,

371

Hanford Tanks 241-C-203 and 241 C 204: Residual Waste Contaminant Release Model and Supporting Data  

SciTech Connect

This report was revised in May 2007 to correct 90Sr values in Chapter 3. The changes were made on page 3.9, paragraph two and Table 3.10; page 3.16, last paragraph on the page; and Tables 3.21 and 3.31. The rest of the text remains unchanged from the original report issued in October 2004. This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75 wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy.

Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

2007-05-23T23:59:59.000Z

372

FEMA Think Tank Call Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMA Think Tank Call Meeting FEMA Think Tank Call Meeting Minimize Date: Wednesday, September 25, 2013 Time: 1:00 - 2:30 p.m. (Eastern Time) Location: Y-12 New Hope Center, 602 Scarboro Rd, Oak Ridge, TN 37830 Overview Description: The FEMA Think Tank is a mechanism to formally collect, discuss, evaluate, and develop innovative ideas in the emergency management community - state, local, and tribal governments, as well as members of the public, including the private sector, the disability community, and volunteer groups. It ensures whole community partners and federal employees are motivated and encouraged to innovate, actively solicit and discuss ideas, and oversee the implementation of promising ideas. The FEMA Think Tank is designed to act as a forum where good ideas are shared, discussed, and become innovative solutions. There are currently two components to the think tank. The first, an online component, can be accessed at any time at, http://fema.ideascale.com. The second component is a conference call that includes both a nationwide telephone audience and an audience at the FEMA Think Tank Call site. This second component is described in more detail at the following website: http://www.fema.gov/fema-think-tank.

373

CAMERON LIQUEFACTION PROJECT DRAFT ENVIRONMENTAL IMPACT STATEMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CAMERON LIQUEFACTION PROJECT CAMERON LIQUEFACTION PROJECT DRAFT ENVIRONMENTAL IMPACT STATEMENT TABLE OF CONTENTS EXECUTIVE SUMMARY .................................................................................................... ES-1 PROPOSED ACTION ............................................................................................................... ES-1 PUBLIC INVOLVEMENT ....................................................................................................... ES-3 PROJECT IMPACTS ................................................................................................................ ES-3 ALTERNATIVES CONSIDERED ........................................................................................... ES-7 CONCLUSIONS ....................................................................................................................... ES-8

374

Property:Draft (m) | Open Energy Information  

Open Energy Info (EERE)

Draft (m) Draft (m) Jump to: navigation, search Property Name Draft (m) Property Type String Pages using the property "Draft (m)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 8 + MHK Technologies/Deep Green + 40 + MHK Technologies/Deep water capable hydrokinetic turbine + 5 + MHK Technologies/Electric Buoy + 7 + MHK Technologies/European Pico Pilot Plant + 7 + MHK Technologies/Evopod E35 + 5 + MHK Technologies/Float Wave Electric Power Station + 7 + MHK Technologies/Floating anchored OTEC plant + 530 + MHK Technologies/HyPEG + 20 + MHK Technologies/HydroGen 10 + 1 + MHK Technologies/Hydroflo + 2 + MHK Technologies/ITRI WEC + 13 + MHK Technologies/Microturbine River In Stream + 0.7 + MHK Technologies/OCEANTEC Wave Energy Converter + 5.25 +

375

Electric Motor Predictive Maintenance: Draft Guidelines  

Science Conference Proceedings (OSTI)

Predictive Maintenance can enhance the early detection and avoidance of incipient equipment failures in electric motors. This report provides draft guidelines to support the development of electric motor predictive maintenance (EMPM) programs at utility sites.

1997-10-16T23:59:59.000Z

376

California Energy Commission DRAFT STAFF REPORT  

E-Print Network (OSTI)

on eligibility of hydroelectric and fuel cell facilities, respectively). The Energy Commission recognizesCalifornia Energy Commission STAFF REPORT RENEWABLES PORTFOLIO STANDARD ELIGIBILITY Draft Staff Guidebook Fourth Edition AUGUST 2010 CEC3002010007SD #12;CALIFORNIA ENERGY COMMISSION Kate Zocchetti

377

California Energy Commission DRAFT STAFF REPORT  

E-Print Network (OSTI)

for energy and annual peak load will be met by specific supply resources. Keywords: Electricity) ................................................................ 19 Supply Form S2: Energy Balance Table ...................... California Energy Commission DRAFT STAFF REPORT FORMS AND INSTRUCTIONS FOR SUBMITTING

378

Tank 241-C-103 tank characterization plan. Revision 2  

Science Conference Proceedings (OSTI)

This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-C-103.

Homi, C.S.

1995-10-04T23:59:59.000Z

379

Tank 241-AN-102 tank characterization plan. Revision 1  

Science Conference Proceedings (OSTI)

This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-AN-102

Homi, C.S.

1995-10-04T23:59:59.000Z

380

Tank characterization report for single-shell Tank B-201  

Science Conference Proceedings (OSTI)

The purpose of this report is to characterize the waste in single shell Tank B-201. Characterization includes the determination of the physical, chemical (e.g., concentrations of elements and organic species), and radiological properties of the waste. These determinations are made using analytical results from B-201 core samples as well as historical information about the tank. The main objective is to determine average waste properties: but in some cases, concentrations of analytes as a function of depth were also determined. This report also consolidates the available historical information regarding Tank B-201, arranges the analytical information from the recent core sampling in a useful format, and provides an interpretation of the data within the context of what is known about the tank.

Heasler, P.G.; Remund, K.M.; Tingey, J.M.; Baird, D.B.; Ryan, F.M.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Appendix A DRAFT EIS DISTRIBUTION LIST  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A DRAFT EIS DISTRIBUTION LIST A-1 ADMINISTRATIVE DRAFT EIS DISTRIBUTION LIST Federal Agencies Air Force Real Property Agency, TX Jeffrey Blevins Army Corps of Engineers Office of the Chief of Army Engineers, DC John Furry, Senior Policy Advisor New Orleans District, LA James Little Ronnie Duke, Western Division Manager Army Operations Division, VA Office of the Assistant Chief of Staff for Installation Management

382

Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determines Double-Shell Tank Leaked Waste From Inner Tank Determines Double-Shell Tank Leaked Waste From Inner Tank Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank October 22, 2012 - 12:00pm Addthis Media Contacts Lori Gamache, ORP 509-372-9130 John Britton, WRPS 509-376-5561 RICHLAND - The Department of Energy's Office of River Protection (ORP), working with its Hanford tank operations contractor Washington River Protection Solutions, has determined that there is a slow leak of chemical and radioactive waste into the annulus space in Tank AY-102, the approximately 30-inch area between the inner primary tank and the outer tank that serves as the secondary containment for these types of tanks. This is the first time a double-shell tank (DST) leak from the primary tank into the annulus has been identified. There is no indication of waste in

383

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2005, 11:00 a.m.-12:30 p.m. EST 8, 2005, 11:00 a.m.-12:30 p.m. EST Conference Call Minutes Participants: Co-Chairs: Jay Jones (RW), Alex Thrower (EM) Members: Jane Beetem (MO Department of Natural Resources), Kevin Blackwell (FRA), Ray English (Office of Naval Reactors, DOE), Scott Field (Western Interstate Energy Board [WIEB]), Bob Fronczak (Association of American Railroads), Paul Johnson (ORNL), Doug Larson (Western Interstate Energy Board [WIEB]), Bill Mackie (Western Governors' Association), Roger Mulder (Texas Energy Conservation Office), Ellen Ott (DOE General Counsel), Tammy Ottmer (WIEB-Colorado), Jim Reed (NCSL), Tim Runyon (Illinois Department of Nuclear Safety), Conrad Smith (CSG-East), Ruth Weiner (Sandia National Laboratories) Contractor Support: Ralph Best (BSC), Peter Bolton (BAH)Randy Coppage (BAH),

384

draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 (08-93) U.S. Department of Energy ORDER FOR SUPPLIES OR SERVICES ORDER FOR SUPPLIES OR SERVICES PAGE OF PAGES IMPORTANT: Mark all packages and papers with contract and/or order numbers. 1. DATE OF ORDER 2. CONTRACT NO. (if any) 3. ORDER NO. 4. REQUISITION/REFERENCE NO. 5. ISSUING OFFICE (Address correspondence to) BUYER NO. CODE 6. SHIP TO: (Consignee and address, ZIP Code) SHIP VIA: 7. TO CONTRACTOR (Name, address and ZIP Code) 8. TYPE OF ORDER 9 9 A. PURCHASE - Reference your___________________________ ____________________________________________________________ Please furnish the following on the terms and conditions specified on both sides for this order and on the attached sheets, if any,

385

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wednesday, November 9, 2005, 11:00 a.m.-12:00 p.m. EST Wednesday, November 9, 2005, 11:00 a.m.-12:00 p.m. EST Conference Call Minutes Participants: Co-Chairs: Jay Jones (RW) Members: Kevin Blackwell (DOT/FRA), Pat Brady (BNSF), Anne Clark (WGA), Doug Osborn (Sandia National Laboratories), Ellen Ott (DOE General Counsel), Tim Runyon (CSG-MW),Lisa Sattler (CSG-Midwest), Ruth Weiner (Sandia National Laboratories), Sarah Wochos (CSG-MW) Contractor Support: Ralph Best (BSC), Michele Enders (SAIC), and John Smegal (LEGIN) Summary: The conference call began at 11:00 a.m. Eastern time on Wednesday, November 9, 2005. Jay Jones started the meeting by reviewing the items to be discussed during the call. Jay announced that Alex Thrower just sent out the Security Topic Group (STG) Task Plan. The STG's Task Plan overlaps with the RTG's Task Plan and there may need to be a

386

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DSM programs DSM programs between 1989 and 1999, an average of $1.3 billion per year. 1 Interest in these programs gradually grew in the 1980s and early 1990s, then went through a "hiccup" in the mid- 1990s as many states and utilities cut back on their demand-side efforts in order to prepare for electric industry restructuring. Growth resumed in the late 1990s when many states decided not to restructure. Also, even many restructured states decided that demand-side programs were important and created mechanisms to fund and provide such programs, most notably "public benefits" programs, which in many cases are administered and implemented by non-utility organizations. Since the turn-of-the-century, investments in demand-side resources have steadily

387

-DRAFT-  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/NETL's Mercury Control Technology DOE/NETL's Mercury Control Technology R&D Program for Coal-Fired Power Plants Thomas J. Feeley, III 1. , James Murphy 2. , Jeffrey Hoffmann 2. , and Scott A. Renninger 1. 1. U.S. Department of Energy, National Energy Technology Laboratory 2. Science Applications International Corporation Abstract Mercury exists in trace amounts in coal. In the United States, coal-fired power plants emit about 48 tons of mercury and are the largest point source of emissions. The U.S. Environmental Protection Agency has determined the need to control mercury emissions from power plants. In addition, several legislative proposals have been introduced in the 108 th Congress to reduce mercury emissions from the electric-utility sector. Recognizing the potential for mercury regulations, the U.S. Department of Energy/National

388

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2012 0, 2012 Roland Risser, Director Building Technologies Program U.S. Department of Energy Mail Stop EE-2J 1000 Independence Ave, SW Washington, DC 20585 Subject: Joint Hydraulic Institute/ASAP Letter of March 30 th - Clarification of Point #2 Dear Mr. Risser, We are looking forward to our meeting with you and your staff on May 1 st to present our progress regarding potential energy conservation standards for certain types of pumps. We would like to clarify point #2 in the referenced letter, which addressed potential energy conservation standards for residential circulators. During the joint meeting between Hydraulic Institute and efficiency advocates, we agreed to investigate paths for consideration, and did not specifically agree on a recommended standard

389

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 15, 2005, 11:00 a.m.-12:00 p.m. EST September 15, 2005, 11:00 a.m.-12:00 p.m. EST Conference Call Minutes Participants: Co-Chairs: Jay Jones (RW), Alex Thrower (EM) Members: Jane Beetem (MO Department of Natural Resources), Patrick Brady (BNSF), Sandi Covi (Union Pacific), Scott Field (WIEB-CO), Bob Fronczak (AAR), Eric Huang (DOE Office of Transportation), Paul Johnson (ORNL), Adam Levin (Exelon Generation), Bill Mackie (Western Governors' Association), Ken Niles (WIEB), Doug Osborn (Sandia National Laboratories), Ellen Ott (DOE General Counsel), Lisa Sattler (CSG-Midwest),Conrad Smith (CSG-East), Sarah Wochos (CSG-MW) Contractor Support: Randy Coppage (BAH), Michele Enders (SAIC), Lee Finewood (BAH), and Ron Ross (BSC) Summary: The conference call began at 11:00 a.m. Eastern time on Thursday, September 15, 2005.

390

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 3-4, 2003 November 3-4, 2003 Crowne Plaza Hotel, Arlington, Virginia NERAC members present: John Ahearne, Vice Chairman Robert L. Long Thomas B. Cochran William F. Martin, Chairman Joseph R. Comfort Warren F. Miller Michael L. Corradini (Monday only) Sekazi K. Mtingwa Jose Luis M. Cortez Harold B. Ray Allen G. Croff Richard Reba Marvin S. Fertel Joy Lynn Rempe Beverly K. Hartline Michael B. Sellman Silvia S. Jurrison Allen L. Sessoms Andrew C. Klein Daniel C. Sullivan (Monday only) Dale E. Klein Neil E. Todreas NERAC members absent: Steve Fetter Jerry Paul Corbin McNeill Charles E. Till Richard A. Meserve Also participating: Arnold B. Baker, Chief Economist, Sandia National Laboratories

391

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2005, 11:00 a.m.-12:30 p.m. EST 24, 2005, 11:00 a.m.-12:30 p.m. EST Conference Call Minutes Participants: Co-Chairs: Jay Jones (RW), Alex Thrower (EM) Members: Jane Beetem (MO Department of Natural Resources), Kevin Blackwell (FRA), Ray English (Office of Naval Reactors, DOE), Bob Fronczak (Association of American Railroads), Bob Halstead (Nevada Agency for Nuclear Projects), Eric Huang (DOE), Paul Johnson (ORNL), Doug Larson (Western Interstate Energy Board [WIEB]), Adam Levin (Exelon Generation Company), Jim Reed (NCSL), Conrad Smith (CSG-East), Steve Sullivan (American Shortline Railroad Association),Ruth Weiner (Sandia National Laboratories) Contractor Support: Ralph Best (BSC), Randy Coppage (BAH),Ed Davis (BSC), Michele Enders (SAIC), Lee Finewood (BAH),and Ron Ross (BSC)

392

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 24, 2005, 11:00 a.m.-12:30 p.m. EST February 24, 2005, 11:00 a.m.-12:30 p.m. EST Conference Call Minutes Participants: Co-Chairs: Jay Jones (RW), Alex Thrower (EM) Members: Jane Beetem (MO Department of Natural Resources), Kevin Blackwell (FRA), Dennis Brooks (Texas Energy Conservation Office), Patrick Edwards (PA Public Utility Commission), Ray English (Office of Naval Reactors, DOE), Paul Genoa ( Nuclear Energy Institute), Eric Huang (DOE), Paul Johnson (ORNL), Doug Larson (Western Interstate Energy Board [WIEB]), Bill Mackie (Western Governors' Association [WGA]), Roger Mulder (Texas Energy Conservation Office), Ken Niles (WIEB), Jim Reed (NCSL), Lisa Sattler (CSG-Midwest), Conrad Smith (CSG-East), Sara Wochos (CSG-Midwest) Contractor Support: Ralph Best (BSC), Ed Davis (BSC), Michele Enders (SAIC),

393

DRAFT  

NLE Websites -- All DOE Office Websites (Extended Search)

03/1195 03/1195 Healy Clean Coal Project A DOE Assessment Office of Fossil Energy National Energy Technology Laboratory U.S. Department of Energy September 2003 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

394

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation External Coordination Working Group Meeting Transportation External Coordination Working Group Meeting Albuquerque, New Mexico April 21-23, 2004 The U.S. Department of Energy (DOE), Transportation External Coordination Working Group (TEC) held its 22 nd meeting on April 21-23, 2004, in Albuquerque, New Mexico. One hundred thirty-two participants, representing national, State, Tribal, and local government; industry; professional organizations; and other interested parties, met to address a variety of issues related to DOE's radioactive materials transportation activities. The TEC process includes the involvement of these key stakeholders in developing solutions to DOE transportation issues through their actual participation in the work product. These members provide continuing and improved coordination between DOE, other levels of

395

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DSM programs DSM programs between 1989 and 1999, an average of $1.3 billion per year. 1 Interest in these programs gradually grew in the 1980s and early 1990s, then went through a "hiccup" in the mid- 1990s as many states and utilities cut back on their demand-side efforts in order to prepare for electric industry restructuring. Growth resumed in the late 1990s when many states decided not to restructure. Also, even many restructured states decided that demand-side programs were important and created mechanisms to fund and provide such programs, most notably "public benefits" programs, which in many cases are administered and implemented by non-utility organizations. Since the turn-of-the-century, investments in demand-side resources have steadily

396

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

demand-side demand-side programs between 1989 and 1999, an average of $1.3 billion per year. 1 Interest in these programs gradually grew in the 1980s and early 1990s, then went through a "hiccup" in the mid-1990s as many states and utilities cut back on their demand-side efforts in order to prepare for electric industry restructuring. Growth resumed in the late 1990s when many states decided not to restructure. Also, even many restructured states decided that demand-side programs were important and created mechanisms to fund and provide such programs, most notably "public benefits" programs, which in many cases are administered and implemented by non-utility organizations. Since the turn-of-the-century, investments in demand-side resources have steadily

397

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR THE TRANSFER OF THE KANSAS CITY PLANT, KANSAS CITY, MISSOURI U.S. Department of Energy National Nuclear Security Administration May 2013 DOE/EA-1947 CONVERSION FACTORS Metric to English English to Metric Multiply by To get Multiply by To get Area Square kilometers 247.1 Acres Square kilometers 0.3861 Square miles Square meters 10.764 Square feet Concentration Kilograms/sq. meter 0.16667 Tons/acre Milligrams/liter 1 a Parts/million Micrograms/liter 1 a Parts/billion Micrograms/cu. meter 1 a Parts/trillion Density Grams/cu. centimeter 62.428 Pounds/cu. ft. Grams/cu. meter 0.0000624 Pounds/cu. ft. Length Centimeters 0.3937 Inches Meters 3.2808 Feet Micrometers 0.00003937 Inches Millimeters 0.03937 Inches Kilometers 0.62137 Miles

398

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2005, 12:30 p.m.-1:30 p.m. EST 7, 2005, 12:30 p.m.-1:30 p.m. EST Conference Call Minutes Participants: Co-Chairs: Jay Jones (RW), Alex Thrower (EM) Members: Kevin Blackwell (FRA), Patrick Brady (Burlington Northern Santa Fe Railroad), Ray English (Office of Naval Reactors, DOE), Paul Johnson (ORNL), Doug Larson (Western Interstate Energy Board [WIEB]), Bill Mackie (Western Governors' Association [WGA]), Ellen Ott (Office of General Counsel, DOE), Tim Runyon (Illinois Department of Nuclear Safety), Lisa Sattler (CSG-Midwest), Ruth Weiner (SNL), Sara Wochos (CSG-Midwest) Contractor Support: Ralph Best (BSC), Andrea Dravo (BAH), Michele Enders (SAIC), Susan Knisely (BAH ), Julie Offner (BAH), and Ron Ross (BSC) Summary: The conference call began at 12:30 p.m. Eastern time on Thursday, January 27, 2005. Jay

399

-DRAFT-  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Effect of SCR NOx Control of the Effect of SCR NOx Control Technology on Mercury Speciation Thomas J. Feeley, III U.S. Department of Energy National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236 Phone: 412-386-6134 Fax: 412-386-4822 E-mail: thomas.feeley@netl.doe.gov Lynn A. Brickett U.S. Department of Energy National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236 Phone: 412-386-6574 Fax: 412-386-5917 E-mail: lynn.brickett@netl.doe.gov James T. Murphy Science Applications International Corporation 626 Cochrans Mill Road Pittsburgh, PA 15236 Phone: 412-386-4115 Fax: 412-386-4516 E-mail: james.murphy@netl.doe.gov March 2003 Abstract The U.S. Environmental Protection Agency (EPA) performed an Information Collection Request

400

Draft  

E-Print Network (OSTI)

Grenadiers are presently considered unspecified by the NPFMC, which means they are not a part of the groundfish management plans for either the Gulf of Alaska (GOA) or the Bering Sea/Aleutian Islands (BSAI). Therefore, there are no limitations on catch or retention, no reporting requirements, and no official tracking of grenadier catch by management. However, a proposed joint management plan amendment for other species may change grenadiers to a specified status, in which case they would be included as managed groundfish species in the plans. In response to this possibility, an assessment of grenadiers in Alaska was prepared for the first time as an appendix to the 2006 SAFE report (Clausen 2006). For the 2007 SAFE report, it was decided that for many of the other species reports and also for unspecified fish such as grenadiers, a full assessment was not necessary, and that an Executive Summary would suffice. Of the seven species of grenadiers known to occur in Alaska, the giant grenadier appears to be most abundant and also has the shallowest depth distribution on the continental slope. As a result, it is by far the most common grenadier caught in the commercial fishery and in fish surveys. Therefore, the grenadier assessment focuses on giant grenadier. Because of a lack of information on the population dynamics of giant grenadier, this species could be classified into

M. Clausen

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DRAFT  

National Nuclear Security Administration (NNSA)

that DOE will take to achieve its individual GHG-reduction targets, reduce long-term costs, and meet the full range of goals of the order. All SSPPs segregate GHG emissions...

402

draft  

Science Conference Proceedings (OSTI)

Jun 22, 2005 ... Santa Barbara is served by Amtrak Train Service. The Amtrak terminal is located in downtown Santa Barbara and in Goleta. From the terminal...

403

DRAFT  

NLE Websites -- All DOE Office Websites (Extended Search)

Steering Committee. ARCHIVE SAFARI 2000 will establish a Southern African Regional Data Center to provide tools for documenting, storing, searching, and distributing data and...

404

DRAFT  

Science Conference Proceedings (OSTI)

... Robotic Mobility Platform (RMP 400/ INL) ... if they are outfitted in cumbersome protective suits, which ... Jon Nelson Dynamic Protection Solutions ...

2008-05-02T23:59:59.000Z

405

DRAFT  

U.S. Energy Information Administration (EIA)

context of emergency response planning and actual emergencies. SANCTIONS . ... response, including the time of reviewing instructions, searching

406

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a significant utility resource. 5 Electric energy efficiency, load management and demand response programs also have achieved significant levels of demand savings. For...

407

**Draft**  

Science Conference Proceedings (OSTI)

GUIDELINES FOR AOCS SECTION ORGANIZATION (adopted May 2008) Updated November 2009 1 Table of Contents Introduction Definition of a Section Benefits to S

408

DRAFT  

U.S. Energy Information Administration (EIA)

covering the January report period must be received by February 20). ... Option (PEDRO) is a Windows-based application that will enable you to enter data ...

409

DRAFT  

National Nuclear Security Administration (NNSA)

began producing electrical and mechanical weapon components for the U.S. Atomic Energy Commission (a predecessor agency to DOENNSA) in part of the Main Manufacturing...

410

DRAFT  

NLE Websites -- All DOE Office Websites (Extended Search)

031195 Healy Clean Coal Project A DOE Assessment Office of Fossil Energy National Energy Technology Laboratory U.S. Department of Energy September 2003 Disclaimer This report was...

411

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Closing the Circle: The Department of Energy and Environmental Management 1942-1994 F.G. Gosling and Terrence R. Fehner History Division Executive Secretariat Department of Energy...

412

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

dual-use equipment, materials and related technologies. (Reference p); Nuclear Non-Proliferation Treaty Exporters (Zangger) Committee at: http:www.zanggercommittee.org...

413

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

.3 (January 2012) .3 (January 2012) 1 Compliance with U.S. Export Control Laws, Regulations and Policies References a. Federal Acquisition Regulations (FAR) 17.6, Management and Operating Contracts b. Department of Energy Acquisition Regulations (DEAR) 917.6, Management and Operating Contracts c. Atomic Energy Act of 1954 (AEA), as amended, http://www.nrc.gov/reading-rm/doc- collections/nuregs/staff/sr0980/v1/sr0980v1.pdf#page=13 (accessed 9/27/11) d. "Contractor Compliance with Deemed Export Controls," DOE Inspector General (IG) Report DOE/IG-0645, April 2004 e. "Review of Status of Prior Export Control Recommendations at the Department of

414

EA-1919: Notice of Availability of a Draft Programmatic Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Availability of a Draft Programmatic Availability of a Draft Programmatic Environmental Assessment EA-1919: Notice of Availability of a Draft Programmatic Environmental Assessment Recycling of Scrap Metals Originating from Radiological Areas DOE announces the availability for public review and comment of the Draft Programmatic Environmental Assessment (PEA) for the Recycling of Scrap Metals Originating from Radiological Areas. This Draft PEA for the Recycling of Scrap Metals Originating from Radiological Areas analyzes the potential environmental impacts associated with resuming the clearance of scrap metal, originating from DOE radiological areas, for recycling pursuant to improved procedures designed to assure that clearance for release is limited to metals meeting stringent criteria. This Draft PEA

415

Single-Point Closures in a Neutrally Stratified Boundary Layer  

Science Conference Proceedings (OSTI)

Closure assumptions often employed in single-point closure models for boundary-layer applications are evaluated against a neutrally stratified planetary boundary-layer flow generated by large-eddy simulation. The contributions from slow and rapid ...

Anders Andrn; Chin-Hoh Moeng

1993-10-01T23:59:59.000Z

416

Fiscal Year 2006 Washington Closure Hanford Science & Technology Plan  

SciTech Connect

This Washington Closure Hanford science and technology (S&T) plan documents the activities associated with providing S&T support to the River Corridor Closure Project for fiscal year 2006.

K.J. Kroegler, M. Truex, D.J. McBride

2006-01-19T23:59:59.000Z

417

High-Pressure Hydrogen Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

February 8 February 8 th , 2005 Mark J. Warner, P.E. Principal Engineer Quantum Technologies, Inc. Irvine, CA Low Cost, High Efficiency, Low Cost, High Efficiency, High Pressure Hydrogen Storage High Pressure Hydrogen Storage This presentation does not contain any proprietary or confidential information. 70 MPa Composite Tanks Vent Line Ports Defueling Port (optional) Fill Port Filter Check Valve Vehicle Interface Bracket with Stone Shield In Tank Regulator with Solenoid Lock-off Pressure Relief Device Manual Valve Compressed Hydrogen Storage System In-Tank Regulator Pressure Sensor (not visible here) Pressure Relief Device (thermal) In Tank Gas Temperature Sensor Carbon Composite Shell (structural) Impact Resistant Outer Shell (damage resistant) Gas Outlet Solenoid Foam Dome (impact protection)

418

Improvement in LNG storage tanks  

SciTech Connect

To develop and produce natural gas fuel tanks for medium duty truck and transit bus end-use to overcome the weight and range problems inherent in current fuel systems.

NONE

1999-11-20T23:59:59.000Z

419

Hydrogen Storage "Think Tank" Report  

NLE Websites -- All DOE Office Websites (Extended Search)

brainstorming on this critical issue. This "Think Tank" meeting was held in Washington, D.C. on March 14, 2003 and was organized and sponsored by the U.S. Department of...

420

Automatically closing swing gate closure assembly  

DOE Patents (OSTI)

A swing gate closure assembly for nuclear reactor tipoff assembly wherein the swing gate is cammed open by a fuel element or spacer but is reliably closed at a desired closing rate primarily by hydraulic forces in the absence of a fuel charge.

Chang, Shih-Chih (Richland, WA); Schuck, William J. (Richland, WA); Gilmore, Richard F. (Kennewick, WA)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

300 Area Process Trenches Closure Plan  

Science Conference Proceedings (OSTI)

Since 1987, Westinghouse Hanford Company has been a major contractor to the US Department of Energy, Richland Operations Office and has served as co-operator of the 300 Area Process Trenches, the waste management unit addressed in this closure plan. For the purposes of the Resource Conservation and Recovery Act, Westinghouse Hanford Company is identified as ``co-operator.`` The 300 Area Process Trenches Closure Plan (Revision 0) consists of a Resource Conservation and Recovery Act Part A Dangerous Waste Permit Application, Form 3 and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A Permit Application, Form 3 submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and six appendices. The 300 Area Process Trenches received dangerous waste discharges from research and development laboratories in the 300 Area and from fuels fabrication processes. This waste consisted of state-only toxic (WT02), corrosive (D002), chromium (D007), spent halogenated solvents (F001, F002, and F003), and spent nonhalogented solvent (F005). Accurate records are unavailable concerning the amount of dangerous waste discharged to the trenches. The estimated annual quantity of waste (item IV.B) reflects the total quantity of both regulated and nonregulated waste water that was discharged to the unit.

Luke, S.N.

1994-08-15T23:59:59.000Z

422

AerosolCCN Closure at a Semi-rural Site  

Science Conference Proceedings (OSTI)

aerosol size distributions and size-resolved aerosol compositions measured by ... Keywords Cloud condensation nuclei, closure study, organic aerosols, Khler.

423

Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada  

SciTech Connect

This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

NSTec Environmental Restoration

2011-09-29T23:59:59.000Z

424

Mixed waste removal from a hazardous waste storage tank  

Science Conference Proceedings (OSTI)

The spent fuel transfer canal at the Oak Ridge Graphite Reactor was found to be leaking 400 gallons of water per day into the surrounding soil. Sampling of the sediment layer on the floor of the canal to determine the environmental impact of the leak identified significant radiological contamination and elevated levels of cadmium and lead which are hazardous under the Resource Conservation and Recovery Act (RCRA). Under RCRA regulations and Rules of Tennessee Department of Environment and Conservation, the canal was considered a hazardous waste storage tank. This paper describes elements of the radiological control program established in support of a fast-track RCRA closure plan that involved underwater mapping of the radiation fields, vacuuming, and ultra-filtration techniques that were successfully used to remove the mixed waste sediments and close the canal in a method compliant with state and federal regulations.

Geber, K.R.

1993-06-01T23:59:59.000Z

425

UST closure alternative uses patented process  

SciTech Connect

In July 1992, the owner of a Houston restaurant, a converted gasoline service station, decided to close two 8,000-gallon USTs that had been left in the ground onsite. Because most of the restaurant's parking area would have been affected by removing the tanks, the owner opted for abandonment in place. One of the bidders on the project was ELIM-A-TANK Inc., a Houston-based contractor specializing in tank abandonments. ELIM-A-TANK opened for business in November 1991 after developing a proprietary slurry material that can be pumped or poured into USTs through the fill line, eliminating the need for excavation and cold-cutting, as required by API 1604. The company's patented process was reviewed and deemed acceptable by the Texas Water Commission (TWC), the regulating agency in Texas for all UST activities. As required by TWC regulations, an initial subsurface investigation was performed at the site. Several soil borings were installed around the tank pit, and samples of native soils were collected and analyzed for the presence of total petroleum hydrocarbons and BTEX, the aromatic constituents of gasoline. The results were below TWC's action limits, and the site was declared clean.

Not Available

1993-06-01T23:59:59.000Z

426

Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada  

DOE Green Energy (OSTI)

Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

G. N. Doyle

2002-02-01T23:59:59.000Z

427

Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances  

SciTech Connect

In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP is comprised of a number of consultants known for their knowledge of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation Guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects which might employ the TSEP guidelines.

Conrads, T.J.

1993-06-01T23:59:59.000Z

428

Rocky Flats Closure Unit Cost Data  

SciTech Connect

The Rocky Flats Closure Project has completed the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, remediating environmental media and closing the Rocky Flats Site (Site). The project cost approximately $4.1 B and included the decommissioning of over 700 structures including 5 major plutonium facilities and 5 major uranium facilities, shipping over 14,600 cubic meters of transuranic and 565,000 cubic meters of low level radioactive waste, and remediating a 385-acre industrial area and the surrounding land. Actual costs were collected for a large variety of closure activities. These costs can be correlated with metrics associated with the facilities and environmental media to capture cost factors from the project that could be applicable to a variety of other closure projects both within and outside of the Department of Energy's weapons complex. The paper covers four general topics: the process to correlate the actual costs and metrics, an example of the correlated data for one large sub-project, a discussion of the results, and the additional activities that are planned to correlate and make this data available to the public. The process to collect and arrange the project control data of the Closure Project relied on the actual Closure Project cost information. It was used to correlate these actual costs with the metrics for the physical work, such as building area or waste generated, to support the development of parametric cost factors. The example provides cost factors for the Industrial Sites Project. The discussion addresses the strengths and weaknesses of the data, followed by a section identifying future activities to improve and extend the analyses and integrate it within the Department's Environmental Cost Analysis System. (authors)

Sanford, P.C. [1129 Business Parkway South, Westminister, MD (United States); Skokan, B. [United States Department of Energy, Washington, DC (United States)

2007-07-01T23:59:59.000Z

429

Contaminant Release Data Package for Residual Waste in Single-Shell Hanford Tanks  

Science Conference Proceedings (OSTI)

The Hanford Federal Facility Agreement and Consent Order requires that a Resource Conservation and Recovery Act (RCRA) Facility Investigation report be submitted to the Washington State Department of Ecology. The RCRA Facility Investigation report will provide a detailed description of the state of knowledge needed for tank farm performance assessments. This data package provides detailed technical information about contaminant release from closed single-shell tanks necessary to support the RCRA Facility Investigation report. It was prepared by Pacific Northwest National Laboratory (PNNL) for CH2M HILL Hanford Group, Inc., which is tasked by the U.S. Department of Energy (DOE) with tank closure. This data package is a compilation of contaminant release rate data for residual waste in the four Hanford single-shell tanks (SSTs) that have been tested (C-103, C-106, C-202, and C-203). The report describes the geochemical properties of the primary contaminants of interest from the perspective of long-term risk to groundwater (uranium, technetium-99, iodine-129, chromium, transuranics, and nitrate), the occurrence of these contaminants in the residual waste, release mechanisms from the solid waste to water infiltrating the tanks in the future, and the laboratory tests conducted to measure release rates.

Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.

2007-12-01T23:59:59.000Z

430

Tank Waste Remediation System retrieval and disposal mission technical baseline summary description  

SciTech Connect

This document is prepared in order to support the US Department of Energy`s evaluation of readiness-to-proceed for the Waste Retrieval and Disposal Mission at the Hanford Site. The Waste Retrieval and Disposal Mission is one of three primary missions under the Tank Waste Remediation System (TWRS) Project. The other two include programs to characterize tank waste and to provide for safe storage of the waste while it awaits treatment and disposal. The Waste Retrieval and Disposal Mission includes the programs necessary to support tank waste retrieval, wastefeed, delivery, storage and disposal of immobilized waste, and closure of tank farms. This mission will enable the tank farms to be closed and turned over for final remediation. The Technical Baseline is defined as the set of science and engineering, equipment, facilities, materials, qualified staff, and enabling documentation needed to start up and complete the mission objectives. The primary purposes of this document are (1) to identify the important technical information and factors that should be used by contributors to the mission and (2) to serve as a basis for configuration management of the technical information and factors.

McLaughlin, T.J.

1998-01-06T23:59:59.000Z

431

HANFORD TANK FARM RESOURCE CONVERVATION & RECOVERY ACT (RCRA) CORRECTIVE ACTION PROGRAM  

SciTech Connect

As a consequence of producing special nuclear material for the nation's defense, large amounts of extremely hazardous radioactive waste was created at the US Department of Energy's (DOE) Hanford Site in south central Washington State. A little over 50 million gallons of this waste is now stored in 177 large, underground tanks on Hanford's Central Plateau in tank farms regulated under the Atomic Energy Act and the Resource, Conservation, and Recovery Act (RCRA). Over 60 tanks and associated infrastructure have released or are presumed to have released waste in the vadose zone. In 1998, DOE's Office of River Protection established the Hanford Tank Farm RCRA Corrective Action Program (RCAP) to: (1) characterize the distribution and extent of the existing vadose zone contamination; (2) determine how the contamination will move in the future; (3) estimate the impacts of this contamination on groundwater and other media; (4) develop and implement mitigative measures; and (5) develop corrective measures to be implemented as part of the final closure of the tank farm facilities. Since its creation, RCAP has made major advances in each of these areas, which will be discussed in this paper.

KRISTOFZSKI, J.G.

2007-01-15T23:59:59.000Z

432

Data reconcilation study of Tank 241-AN-105 at the Hanford Site  

Science Conference Proceedings (OSTI)

The Project Hanford Management Contractor gave the Los Alamos National Laboratory Nuclear Systems Design and Analysis Group (TSA-10) the task of performing data reconciliation studies on flammable-gas watchlist tanks at the Hanford Site. This task is being performed in support of the flammable-gas programs at the Hanford Site and for closure of the flammable-gas unreviewed safety question. In our data reconciliation studies, we examine all available data from a global point of view. Our goal is to find an explanation, or conceptual model, of the tank behavior that is consistent with all available data. Our primary tool in this study of Tank 241-AN-105 is the maximum likelihood method of data reconciliation, which we have applied successfully to other tanks in the past. This method helps us (1) determine whether a model is consistent with the data, and (2) obtain quantitative estimates that are consistent with the data. A release of a flammable quantity of hydrogen in Tank 241-AN-105 is possible but unlikely at the current time. Any changes to the waste that could cause large releases would be accompanied by a measurable increase in the surface level of the waste. We also theorize that a significant increase in the waste temperature may signal a qualitative change in the behavior of the waste and an increase in the flammability hazard.

Kubic, W.L. Jr.; Pillay, G.

1998-12-31T23:59:59.000Z

433

Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline  

Science Conference Proceedings (OSTI)

This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program.

Gelles, C. M.; Sheppard, F. R.

2002-02-26T23:59:59.000Z

434

Better Buildings Neighborhood Program: Step 5: Draft and Evaluate RFPs  

NLE Websites -- All DOE Office Websites (Extended Search)

5: Draft 5: Draft and Evaluate RFPs to someone by E-mail Share Better Buildings Neighborhood Program: Step 5: Draft and Evaluate RFPs on Facebook Tweet about Better Buildings Neighborhood Program: Step 5: Draft and Evaluate RFPs on Twitter Bookmark Better Buildings Neighborhood Program: Step 5: Draft and Evaluate RFPs on Google Bookmark Better Buildings Neighborhood Program: Step 5: Draft and Evaluate RFPs on Delicious Rank Better Buildings Neighborhood Program: Step 5: Draft and Evaluate RFPs on Digg Find More places to share Better Buildings Neighborhood Program: Step 5: Draft and Evaluate RFPs on AddThis.com... Getting Started Driving Demand Financing Assess the Market Define Finance Program Objectives Identify & Engage Financial Partners Design the Financing Program

435

EIS-0473: EPA Notice of Availability of a Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of a Draft Environmental Impact Statement EIS-0473: EPA Notice of Availability of a Draft Environmental Impact Statement W.A. Parish Post-Combustion CO2...

436

EIS-0450: DOE Notice of Availability of Draft Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of Draft Environmental Impact Statement EIS-0450: DOE Notice of Availability of Draft Environmental Impact Statement TransWest Express 600 kV Direct...

437

EIS-0460: DOE Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of the Draft Environmental Impact Statement EIS-0460: DOE Notice of Availability of the Draft Environmental Impact Statement FutureGen 2.0 Project,...

438

EIS-0450: EPA Notice of Availability of Draft Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: EPA Notice of Availability of Draft Environmental Impact Statement EIS-0450: EPA Notice of Availability of Draft Environmental Impact Statement TransWest Express 600 kV Direct...

439

EIS-0365: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0365: EPA Notice of Availability of the Draft Environmental Impact Statement Imperial-Mexicali 230-kV...

440

EIS-0460: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0460: EPA Notice of Availability of the Draft Environmental Impact Statement FutureGen 2.0 Project,...

Note: This page contains sample records for the topic "draft tank closure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Plug-In Hybrid Electric Vehicle R&D Plan to someone by E-mail Share Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle R&D Plan on Facebook Tweet about...