Powered by Deep Web Technologies
Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

PERFORMANCE ANALYSIS OF MECHANICAL DRAFT COOLING TOWER  

SciTech Connect

Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has cross-flow and counter-current MDCT's consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to simulate the cooling tower performance for the counter-current cooling tower and to conduct a parametric study under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model and performed the benchmarking analysis against the integral measurement results to accomplish the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of parametric calculations was performed to investigate the impact of wind speeds and ambient conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was also benchmarked against the literature data and the SRS integral test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be published here.

Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L

2009-02-10T23:59:59.000Z

2

Radiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction of their Absolute Temperature  

E-Print Network (OSTI)

Radiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction CENTER FOR IMAGING SCIENCE Title of Dissertation: Radiometric Modeling of Mechanical Draft Cooling Towers of Mechanical Draft Cooling Towers to Assist in the Extraction of their Absolute Temperature from Remote Thermal

Salvaggio, Carl

3

Numerical modelling of heat and mass transfer and optimisation of a natural draft wet cooling tower.  

E-Print Network (OSTI)

??The main contribution of this work is to answer several important questions relating to natural draft wet cooling tower (NDWCT) modelling, design and optimisation. Specifically,… (more)

Williamson, Nicholas J

2007-01-01T23:59:59.000Z

4

CFD MODELING ANALYSIS OF MECHANICAL DRAFT COOLING TOWER  

Science Conference Proceedings (OSTI)

Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has a MDCT consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to conduct a parametric study for cooling tower performance under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model to achieve the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of the modeling calculations was performed to investigate the impact of ambient and operating conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was benchmarked against the literature data and the SRS test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be presented here.

Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L

2008-03-03T23:59:59.000Z

5

Radiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction of their Absolute Temperature from  

E-Print Network (OSTI)

Radiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction108, Aiken, SC, USA ABSTRACT Determining the internal temperature of a mechanical draft cooling tower is to estimate the temperature of the air exiting a mechanical draft cooling tower (MDCT) through the use

Salvaggio, Carl

6

Radiometric modeling of mechanical draft cooling towers to assist in the extraction of their absolute temperature from remote thermal imagery.  

E-Print Network (OSTI)

??Determination of the internal temperature of a mechanical draft cooling tower (MDCT) from remotely-sensed thermal imagery is important for many applications that provide input to… (more)

Montanaro, Matthew

2009-01-01T23:59:59.000Z

7

The Discussion of a New Exhausting Smoke Solution in Natural Draft Cooling Tower with Flue Gas Injection  

Science Conference Proceedings (OSTI)

First, the three-dimensional model of NDCT with flue gas injection and the boundary conditions was established by GAMBIT2.3 on the basis of structural parameter. On theFLUENT6.3 technology platform with self-designed program, it was found that: The new ... Keywords: NDCT with flue gas injection, jet mechanics numerical simulation, natural draft cooling towers

Yang Shuo; Qing-Jie Qi; Xin-Le Yang; Shi Lei; Chun-Yang Li

2011-02-01T23:59:59.000Z

8

OCCUPATIONAL COOLING TOWERS  

E-Print Network (OSTI)

HEALTH SCIENCES LIBRARY COOLING TOWERS EMPLOYEE HEALTH B C D F E CHILDREN'S ELEVATORS MEDICAL SCHOOL

Crews, Stephen

9

Studies on Mathematical Models for Characterizing Plume and Drift Behavior from Cooling Towers, Volume 2: Mathematical Model for Sin gle Source (Single Tower) Cooling Tower Plume Dispersion  

Science Conference Proceedings (OSTI)

Presents an improved model for plumes from single natural-draft cooling towers. This model is expanded to treat multiple tower plumes in Volume 4.

1981-01-01T23:59:59.000Z

10

Cooling Tower Technology Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems cause significant loss of availability and heat rate degradation in both nuclear and fossil-fired power plants. Twenty-one papers presented at a 2003 conference in Charleston, South Carolina discussed industrial experience and provided case histories of cooling tower problems and solutions.

2003-08-12T23:59:59.000Z

11

Vortex-augmented cooling tower - windmill combination  

DOE Patents (OSTI)

A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

McAllister, J.E. Jr.

1982-09-02T23:59:59.000Z

12

Cooling tower waste reduction  

SciTech Connect

At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

1998-05-01T23:59:59.000Z

13

Advances in the application of passive down-draft evaporative cooling technology in the cooling of buildings.  

E-Print Network (OSTI)

??A passive down-draft evaporative cooling (PDEC) tower is a component that is designed to capture the wind at the top of a tower and cool… (more)

Kang, Daeho

2011-01-01T23:59:59.000Z

14

Cooling Towers, The Debottleneckers  

E-Print Network (OSTI)

Power generating plants and petro-chemical works are always expanding. An on-going problem is to identify and de-bottle neck restricting conditions of growth. The cooling tower is a highly visible piece of equipment. Most industrial crossflow units are large structures, Illustration 1. Big budget money and engineering time goes into gleaming stainless steel equipment and exotic process apparatus, the poor cooling tower is the ignored orphan of the system. Knowledgeable Engineers, however, are now looking into the function of the cooling tower, which is to produce colder water- and question the quality of water discharged from that simple appearing box. These cross-flow structures are quite large, ranging up to 60 feet tall with as many as 6 or more cells in a row. With cells up to 42 feet long so immense in aspect, with fans rotating, operators assume, just by appearances, that all is well, and usually pay no attention to the quality of cold water returning from the cooling tower. The boxes look sturdy, but the function of the cooling tower is repeated ignored production of water as cold as possible.

Burger, R.

1998-04-01T23:59:59.000Z

15

Induced-Draft Cooling Towers and Parallel Wet/Dry Cooling for Combined-Cycle Plants: Design Best Practices and Procurement Specifica tions  

Science Conference Proceedings (OSTI)

This report contains information and examples of best practices for the design and specification of wet and parallel (hybrid) cooling towers for combined-cycle applications. Two reference (template) specifications are includedone for totally wet cooling systems and one for parallel cooling systems with a wet cooling tower and air-cooled condensers (ACC) in parallel. These template specifications are intended to be the starting point from which the utility or developer can "customize" as needed to fit its...

2011-10-14T23:59:59.000Z

16

Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers  

E-Print Network (OSTI)

Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!

Smith, M.

1991-06-01T23:59:59.000Z

17

Proceedings: Cooling Tower Technology Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems performance strongly affect availability and heat rate in fossil and nuclear power plants. Twenty-two papers presented at the 1997 Cooling Tower Technology Conference discuss research results, industry experience, and case histories of cooling tower problems and solutions.

1997-08-13T23:59:59.000Z

18

Proceedings: Cooling Tower and Advanced Cooling Systems Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems performance strongly affects availability and heat rate in fossil and nuclear power plants. Papers presented at EPRI's 1994 Cooling Tower and Advanced Cooling Systems Conference discuss research results, industry experience, and case histories of cooling tower problems and solutions. Specific topics include cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid cooling systems.

1995-03-09T23:59:59.000Z

19

Noise from cooling towers of power parks  

SciTech Connect

A study is presented of the noise pollution problem for large power parks proposed for the future. Such parks might have an area of about 75 sq. miles, and a generating capacity up to 48000 MW. A comparative analysis has been done for natural and mechanical-draft wet towers as the major sources of acoustic power. Noise radiation from single isolated towers as well as from a dispersed array of towers has been considered for both types of cooling systems. Major noise attenuation effects considered are due to the atmospheric absorption and A- weighting. Conditions of 60F and 70 percent relative humidity in a still atmosphere have been assumed. (auth)

Zakaria, J.; Moore, F.K.

1975-10-14T23:59:59.000Z

20

Vortex-augmented cooling tower-windmill combination  

DOE Patents (OSTI)

A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passages to provide power as a by-product.

McAllister, Jr., John E. (Aiken, SC)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cooling Towers, Energy Conservation Strategies  

E-Print Network (OSTI)

Cooling towers, because of their seeming simplicity, are usually orphans of the facilities operation. We are all aware that cooling towers are the step-children of the chemical process plant, electric power generating station, and refrigeration system. While our engineers are pretty well convinced of the importance of their sophisticated equipment, and rightly so, they take the cooling towers and the cold water returning from them for granted. Design Conditions are specified for the particular requirements before a cooling tower is purchased. After it is put on the line and the cold water temperature or volume becomes inadequate, they look to solutions other than the obvious. While all cooling towers are purchased to function at 100% of capability in accordance with the required Design Conditions, in actual on stream employment, the level of operation many times is lower, downwards to as much as 50% due to a variety of reasons: (1) The present service needed is now greater than the original requirements which the tower was purchased for; (2) 'Slippage' due to usage and perhaps deficient maintenance has reduced the performance of the tower over years of operation; (3) The installation could have been originally undersized due to the low bidder syndrome; and (4) New plant expansion needs colder temperatures off the tower.

Burger, R.

1983-01-01T23:59:59.000Z

22

Thermal performance of cooling towers  

SciTech Connect

Wet cooling towers are often used in HVAC applications to reject heat to the atmosphere. Heat rejection is accomplished within the tower by heat and mass transfer between hot water droplets and ambient air. These heat and mass transfer processes and the resulting coefficient of performance are often misunderstood and misinterpreted. To demystify these concepts, the heat and mass transfer exchange at the water droplet level are reviewed. This is followed by an analysis of an idealized spray-type tower to show how cooling tower performance is affected by fill height, water retention time, and air and water mass flow rates. Finally, the so-called coefficient of performance of cooling towers is examined.

Bernier, M.A. [Ecole Polytechnique de Montreal, Quebec (Canada)

1995-04-01T23:59:59.000Z

23

Cooling Towers, Energy Conservation Machines  

E-Print Network (OSTI)

Cooling towers, in all too many industrial plants, are often the neglected units of the process chain which are hidden bonanzas for energy conservation and dollar savings. By lowering the entire systems temperature by the use of colder water returning from the cooling tower, greater chemical product volume can be condensed and less energy is required to run compressors. This paper will discuss two case histories and the rapid cost-effective savings thereby accruing through retrofit.

Burger, R.

1980-01-01T23:59:59.000Z

24

Studies on Mathematical Models for Characterizing Plume and Drift Behavior From Cooling Towers, Executive Report  

Science Conference Proceedings (OSTI)

This report summarizes the contents of a five-volume work on new models for predicting plume rise and drift deposition from single and multiple natural-draft and mechanical-draft cooling towers.

1981-04-01T23:59:59.000Z

25

Oriented spray-assisted cooling tower  

Science Conference Proceedings (OSTI)

Apparatus useful for heat exchange by evaporative cooling when employed in conjunction with a conventional cooling tower. The arrangement includes a header pipe which is used to divert a portion of the water in the cooling tower supply conduit up stream of the cooling tower to a multiplicity of vertical pipes and spray nozzles which are evenly spaced external to the cooling tower so as to produce a uniform spray pattern oriented toward the central axis of the cooling tower and thereby induce an air flow into the cooling tower which is greater than otherwise achieved. By spraying the water to be cooled towards the cooling tower in a region external to the cooling tower in a manner such that the spray falls just short of the cooling tower basin, the spray does not interfere with the operation of the cooling tower, proper, and the-maximum increase in air velocity is achieved just above the cooling tower basin where it is most effective. The sprayed water lands on a concrete or asphalt apron which extends from the header pipe to the cooling tower basin and is gently sloped towards the cooling tower basin such that the sprayed water drains into the basin. By diverting a portion of the water to be cooled to a multiplicity of sprays external to the cooling tower, thermal performance is improved. 4 figs.

Bowman, C.F.

1995-04-18T23:59:59.000Z

26

Proceedings of the Cooling Tower Technology Conference  

Science Conference Proceedings (OSTI)

The performance of cooling towers and associated systems strongly affects availability and heat rate in fossil and nuclear power plants. Twenty-four papers presented at the 2012 Cooling Tower Technology Conference, held August 8–9, 2012, in Pensacola, Florida, discuss research results, industry experience, and case histories of cooling tower problems and solutions. ...

2012-09-13T23:59:59.000Z

27

Cooling Tower Inspection with Scuba  

E-Print Network (OSTI)

A serious problem of scale and other solid material settling in heat transfer equipment was threatening to shut down our ethylene plant. All evidence pointed to the cooling tower as the source of the contamination. Visual inspection of the cooling tower pump suction basin was accomplished by diving into the basin using SCUBA gear. It was possible to see a build-up of debris on the pump suction basket strainers and on the floor of the sumps. Also, it was discovered that one of the four baskets had been installed incorrectly. Photographs of the basket strainers were taken to aid in describing their exact condition. With the aid of SCUBA it was possible to sufficiently clean the pump sumps so that costly downtime was avoided. Likewise, using this technique, steps were taken to greatly reduce the chance for further contamination of the circulating cooling water system.

Brenner, W.

1982-01-01T23:59:59.000Z

28

Cooling Tower Fan Motor Power Optimization Study  

Science Conference Proceedings (OSTI)

Cooling towers are in use at more than 200 major electric generating plants in the United States, representing approximately 800 units and a total of more than 210,000 MW. The auxiliary power consumed by cooling tower fan motors can significantly reduce the net power output of steam-cycle power plants. Cooling tower specifications are established by the economic and operational requirements of maximum unit load and the most demanding environmental conditions expected in the tower’s locale. Since power pl...

2011-11-16T23:59:59.000Z

29

Failure of Cooling Tower West Virginia 1978  

Science Conference Proceedings (OSTI)

... The Willow Island disaster was the collapse of a cooling tower under ... In response to this request, NBS carried out field, laboratory and analytical ...

2011-08-12T23:59:59.000Z

30

Cooling Towers--Energy Conservation Strategies  

E-Print Network (OSTI)

A cooling water system can be optimized by operating the cooling tower at the highest possible cycles of concentration without risking sealing and fouling of heat exchanger surfaces, tube bundles, refrigeration equipment, overhead condensers, and other associates heat rejection equipment.

Matson, J.

1991-06-01T23:59:59.000Z

31

2006 EPRI Cooling Tower Technology Conference Proceedings  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems cause significant loss of availability and heat rate degradation in both nuclear and fossil-fired power plants. Fifteen papers presented at a 2006 Conference in Des Moines, Iowa discussed industrial experience and provided case histories of cooling tower problems and solutions.

2006-08-01T23:59:59.000Z

32

Cooling Tower Report, October 2008 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2008 Electricity Reliability Impacts of a Mandatory Cooling Tower Rule for Existing Steam Generation Units Cooling Tower Report, October 2008 More Documents & Publications...

33

Federal Energy Management Program: Best Management Practice: Cooling Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Tower Management to someone by E-mail Cooling Tower Management to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Facebook Tweet about Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Twitter Bookmark Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Google Bookmark Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Delicious Rank Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Digg Find More places to share Federal Energy Management Program: Best Management Practice: Cooling Tower Management on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance

34

Cooling-tower rebuild, treatment overhaul halt fouling  

SciTech Connect

Partial fixes over a period of time were insufficient to meet cooling requirements at this four-tower powerplant. The eventual remedy involved complete fill replacement and chemistry-program revision. Cooling-tower performance hinges on many factors. Assuming the proper water and air distribution and unhindered operation of spray nozzles, pumps, valves, etc, fill design is the key element. However, a decade of experience at Keystone station (operated by Pennsylvania Electric Co for a consortium of East Coast utilities) showed that more than just changing to a fouling-resistant fill was required to provide and maintain design performance. As described in this article, careful analysis, revision, and continuous monitoring of the chemical water-treatment program were needed as well. At each of Keystone's two units, two natural-draft, hyperbolic towers provide cooling for main-condenser circulating water and service water. The 325-ft-tall towers are counter-current flow, and measure 247 ft across the basin. Film-type fill originally installed in the towers consisted of assemblies of fiber-cement board, 9 ft deep in the center and 7 ft in the peripheral regions. Fiber-cement was also the construction material used in the drift eliminators, and in the piping connected to concrete distribution flumes within the towers.

Gall, G.P.

1993-02-01T23:59:59.000Z

35

Best Management Practice: Cooling Tower Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Cooling Tower Management Best Management Practice: Cooling Tower Management Best Management Practice: Cooling Tower Management October 8, 2013 - 9:39am Addthis Cooling towers regulate temperature by dissipating heat from recirculating water used to cool chillers, air-conditioning equipment, or other process equipment. Heat is rejected from the tower primarily through evaporation. Therefore, by design, cooling towers consume significant amounts of water. Overview The thermal efficiency and longevity of the cooling tower and equipment used to cool depend on the proper management of water recirculated through the tower. Water leaves a cooling tower system in any one of four ways: Evaporation: This is the primary function of the tower and is the method that transfers heat from the cooling tower system to the

36

Radar Measurement of Cooling Tower Drift  

Science Conference Proceedings (OSTI)

A method of radar measurement of drift, generated by the wet cooling towers of power plants, is proposed. The water given off by the evaporative towers consists of two kinds of droplets: the recondensation droplets—generally less than 20 ?m in ...

Henri Sauvageot

1989-09-01T23:59:59.000Z

37

Advanced wet-dry cooling tower concept  

E-Print Network (OSTI)

The purpose of this years' work has been to test and analyze the new dry cooling tower surface previously developed. The model heat transfer test apparatus built last year has been instrumented for temperature, humidity ...

Snyder, Troxell Kimmel

38

On thermal performance of seawater cooling towers  

E-Print Network (OSTI)

Seawater cooling towers have been used since the 1970s in power generation and other industries, so as to reduce the consumption of freshwater. The salts in seawater are known to create a number of operational problems, ...

Sharqawy, Mostafa H.

39

FILES- COOLING TOWER PLUME MODELING  

E-Print Network (OSTI)

Ladies and Gentlemen:? In the referenced letter, Progress Energy Carolinas, Inc. (PEC) noted that the input and output' files for the modeling analysis for cooling tower plumes would be provided under a separate cover. due to the requirements for native file submittal (see NRC RAI # 5.3.3.1-1 and PGN RAI # H-295). The purpose of this letter is to submit these calculation native files. The supplemental information contained in the files on the attached CD is provided to support the NRC's review of the Shearon Harris Nuclear Power Plant Units 2 and 3 (HAR) Environmental Report (ER), but does not comply with the requirements for electronic submission in the NRC Guidance Document. The NRC staff requested the files be submitted in their native formats, required for utilization in the software employed to support the ER development. As discussed with the NRC's environmental project manager responsible for review of the HAR ER, the data provided on the attached CD are of a nature that is not easily convertible to PDF output files. Furthermore, PEC understands that converting the information to PDF output files; would not serve the underlying purpose of the submittal; i.e., to provide the raw, unprocessed data to enable reviewers to evaluate software used in the HAR application. Enclosure 1 provides a list of folders with the requested data files that are included on the attached CD (Attachment 5.3.3.1-1 SACTI Native Files). If you have any further questions, or need additional information, please contact Bob Kitchen at

Garry D. Mi Er

2009-01-01T23:59:59.000Z

40

Cooling Tower Considerations for Energy Optimizations  

E-Print Network (OSTI)

Energy conservation strategies and production economies involve more than examining the cooling tower fan consumption of horse power. Colder water provides vast potentials for savings. Ask yourself, "What is the dollar and energy utilization value if I can obtain 1°F colder water off my cooling tower than I am now getting?" Therefore, let us first examine the elements of the cooling tower to determine the areas of greatest potential improvement to generate that colder water. The air flow generated by the fan should first be looked at In both counterflow or crossflow towers to determine that maximum flow is available through pitching fans up to within the motor plate amperage limitations and fan stall point calculations. If applicable, new fiberglass state of the art fans can be installed and additional motor horse power added. However, the most dramatic improvement that can be obtained in producing colder water is to retrofit modern film fill to replace the old fashioned wood splash bar slats.

Burger, R.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Studies on Mathematical Models for Characterizing Plume and Drift Behavior From Cooling Towers, Volume 1: Review of European Researc h  

Science Conference Proceedings (OSTI)

This report presents the results to date of an effort to develop, improve, and validate mathematical models of plume dispersion from individual and clustered mechanical- and natural-draft cooling towers. This effort is focusing on prediction of visible plume trajectory and deposition of saline droplet drift. The goal is to provide useful tools for assessing the environmental impact of cooling tower plumes. Volume 1 summarizes European research on cooling-tower-plume dispersion.

1981-01-01T23:59:59.000Z

42

IEP - Water-Energy Interface: Cooling Water Intake Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

The types of cooling water systems to be evaluated are: Wet Cooling Tower - The condenser is cooled with water recirculated to a mechanical draft cooling tower. Because there...

43

Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building  

E-Print Network (OSTI)

Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers, without mechanical equipment. A simple computer program was developed to simulate airflow through a wind tower based on tower dimensions and air temperature. The program was compared to experimental results with reasonable agreement. Parametric analysis indicates that interior air temperature approaches outdoor air temperature asymptotically as tower height and cross-sectional area are increased, and that it may be more cost effective to increase the tower?s height than its cross sectional area. The program was then used to simulate hour-by-hour indoor air temperatures of an occupied auditorium in Dayton, OH. The results indicate that a large wind tower was able to keep the temperature of an occupied auditorium at a comfortable level year round.

Seryak, J.; Kissock, J. K.

2002-01-01T23:59:59.000Z

44

Wet/dry cooling tower and method  

DOE Patents (OSTI)

A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

Glicksman, Leon R. (Lynnfield, MA); Rohsenow, Warren R. (Waban, MA)

1981-01-01T23:59:59.000Z

45

Wet cooling towers: rule-of-thumb design and simulation  

DOE Green Energy (OSTI)

A survey of wet cooling tower literature was performed to develop a simplified method of cooling tower design and simulation for use in power plant cycle optimization. The theory of heat exchange in wet cooling towers is briefly summarized. The Merkel equation (the fundamental equation of heat transfer in wet cooling towers) is presented and discussed. The cooling tower fill constant (Ka) is defined and values derived. A rule-of-thumb method for the optimized design of cooling towers is presented. The rule-of-thumb design method provides information useful in power plant cycle optimization, including tower dimensions, water consumption rate, exit air temperature, power requirements and construction cost. In addition, a method for simulation of cooling tower performance at various operating conditions is presented. This information is also useful in power plant cycle evaluation. Using the information presented, it will be possible to incorporate wet cooling tower design and simulation into a procedure to evaluate and optimize power plant cycles.

Leeper, S.A.

1981-07-01T23:59:59.000Z

46

Best Practice for Energy Efficient Cleanrooms: Cooling tower and condenser water optimization  

E-Print Network (OSTI)

Cleanrooms: Cooling Tower and Condenser Water OptimizationCleanrooms: Cooling tower and condenser water optimization2 Cooling tower and condenser water

Xu, Tengfang

2005-01-01T23:59:59.000Z

47

Best Practice for Energy Efficient Cleanrooms: Cooling tower and condenser water optimization  

E-Print Network (OSTI)

Efficient Cleanrooms: Cooling Tower and Condenser WaterEfficient Cleanrooms: Cooling tower and condenser water2 Cooling tower and condenser water

Xu, Tengfang

2005-01-01T23:59:59.000Z

48

Cooling Towers, The Neglected Energy Resource  

E-Print Network (OSTI)

Loving care is paid to the compressors, condensers, and computer programs of refrigeration and air conditioning systems. When problems arise, operators and engineers run around in circles with expensive "fixes" , but historically ignore the poor orphan of the system, the cooling tower perched on the roof or located somewhere in the backyard. When cooling water is too hot, high temperature cut-outs occur and more energy must be provided to the motors to maintain the refrigeration cycle. Cooling towers: 1) are just as important a link in the chain as the other equipment; 2) are an important source of energy conservation; 3) can be big money makers; 4) operators should be aware of the potential of maximising cold water. Most towers were designed over 20 years ago and were inefficiently engineered due to cheap power and the "low bidder gets the sale" syndrome. Operating energy costs were ignored and purchasing criteria was to award the contract to the lowest bidder. All too often the low bidder - even though some of the most respected firms were involved - cut thermal corners for the sale. This paper investigates the internal elements of the typical types of cooling towers currently used, delineates their functions and shows how to upgrade them in the real world for energy savings and profitability of operation. Hard before and after statistics of costs and profits obtained through optimization of colder water by engineered thermal upgrading will be discussed. Salient points will be reenforced with on-the-job, hands-on, slides and illustrations.

Burger, R.

1987-09-01T23:59:59.000Z

49

Wastewater Reuse as Cooling-Tower Makeup  

Science Conference Proceedings (OSTI)

As many parts of the United States begin to face shortages, utilities will look for reliable new water sources. Focusing on the use of wastewater as makeup to cooling towers, this report describes commercially available wastewater treatments for power plant applications and highlights the need for research to control biologic slime and phosphate scale formation.

1987-09-02T23:59:59.000Z

50

Update: Cooling tower and spray pond technology  

SciTech Connect

The 9th Cooling Tower and Spray Pond Symposium, under the auspices of the International Association for Hydraulic Research, took place at the von Karman Institute for Fluid Dynamics, Belgium, in September 1994. Technical topics discussed included cooling system design, performance, operation, environmental effects, modeling and components. Symposium proceedings will not be published. However, information of primary interest to staffs of power plants in the United States is summarized in this article.

Bartz, J.A.

1995-05-01T23:59:59.000Z

51

Cooling Towers, The Neglected Energy Resource  

E-Print Network (OSTI)

Loving care is paid to the compressors, condensers, and computer programs of refrigeration systems. When problems arise, operator: run around in circles with expensive "fixes", but historically ignore the poor orphan, the cooling tower perched on the roof or located somewhere in the backyard. When the cooling water is too hot, high temperature cut-outs occur and more energy must be provided to the motors to maintain the refrigeration cycle. Cooling Towers: 1) . . . are just as important a link in the chain as the other equipment, 2) ... are an important source of energy conservation, 3) ... can be big money makers, and 4 ) .. . operators should be aware of the potential of maximizing cold water. Most towers designed over 20 years ago were inefficiently engineered due to cheap power and the "low bidder" syndrome. Operating energy costs were ignored and purchasing criteria was to award the contract to the lowest bidder. This paper investigates internal elements of typical towers, delineates their functions and shows how to upgrade them in the real world for energy savings and profitability of operation.

Burger, R.

1985-01-01T23:59:59.000Z

52

Evaluation and performance enhancement of cooling tower spray zones.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: The performance of wet cooling towers can be improved by installing spray nozzles that distribute the cooling water uniformly onto the fill whilst… (more)

Roux, Daniel

2012-01-01T23:59:59.000Z

53

Untapped Energy Savings from Cooling Towers  

E-Print Network (OSTI)

A cooling tower is often an overlooked source of easy energy savings. As long as it's running not much thought is usually given to it, but when numbers are applied to how much a degree of colder water is worth it can become a valuable and ready source of energy and monetary savings. Many of these savings can come from simple maintenance or by changing the way the tower is operated. The more dramatic savings can come from changing to advanced fill concepts. Over our 40 years of working in the cooling tower industry we have measured the effects of doing simple maintenance, the effects of blocking air flow with seemingly good ideas like maintenance walkways, the effects of nearby heat sources, and what fill changes are likely to get. We have put numbers to what a degree is worth to a large petrochemical company so you can get an idea of the magnitude of what these sometimes simple changes are actually worth. Also, we've included a way to monitor your tower for changes in performance.

Phelps Jr., P.

2011-01-01T23:59:59.000Z

54

Application of a Cloud Model to Cooling Tower Plumes and Clouds  

Science Conference Proceedings (OSTI)

A steady-state, one-dimensional cloud model has been modified to simulate the growth of plumes (both wet and dry) and clouds from natural and forced draft cooling towers. The modifications to the cloud model are discussed and comparisons are made ...

Harold D. Orville; John H. Hirsch; Laurence E. May

1980-11-01T23:59:59.000Z

55

Side Stream Filtration for Cooling Towers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Side Stream Filtration Side Stream Filtration for Cooling Towers Prepared for the U.S. Department of Energy Federal Energy Management Program By Pacific Northwest National Laboratory X. Duan, J.L. Williamson, K.L McMordie Stoughton and B.K. Boyd October 2012 FEDERAL ENERGY MANAGEMENT PROGRAM i Contact Will Lintner, PE Federal Energy Management Program U.S. Department of Energy 1000 Independence Ave. SW Washington, DC 20585-0121 Phone: (202) 586-3120 E-mail: william.lintner@ee.doe.gov Cover photo: Cooling Towers. Photo from Pacific Northwest National Laboratory ii Acknowledgements The authors of the report would like to thank the following individuals that provided support to

56

Optimal sequencing of a cooling tower with multiple cells  

E-Print Network (OSTI)

This paper evaluates the energy savings potential of multi-cell cooling tower optimal sequencing control methods. Annual tower fan energy usage is calculated for a counter-flow tower with multiple variable-speed fans. Effectiveness-NTU tower model is employed to predict the cooling tower performance at various conditions. Natural convection when the fan is off is accounted by using an assumed airflow rate. The energy savings at five cities representing different typical climates are studied using typical meteorological year data. The results show that, if the tower capacity can be increased by 50% and 100% by running extra tower cells, the annual total fan power usage can be reduced by 44% and 61%, respectively. A cumulative saving percent curve is generated to help estimate the annual total savings percent when extra cooling tower capacity is available during only part of a year.

Zhang, Z.; Liu, J.

2012-01-01T23:59:59.000Z

57

Experiment Study on Tower Cooling Energy-Saving Technology  

Science Conference Proceedings (OSTI)

During the transition season periods the technology of tower cooling is used to cool the internal heat source region in the buildings, which is energy saving and environment friendly technology. To aim at climatic conditions of the transition season ... Keywords: towers cooling, experiments, fluence factors, energy saving

Ji Amin; He Li; Yue Zhiqiang; Jie Li; Gang Yin; Zhang Qinggang

2011-02-01T23:59:59.000Z

58

Performance evaluation of natural draught cooling towers with anisotropic fills.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: In the design of a modern natural draught wet-cooling tower (NDWCT), structural and performance characteristics must be considered. Air flow distortions and resistances… (more)

Reuter, Hanno Carl Rudolf

2010-01-01T23:59:59.000Z

59

Evaluation and performance prediction of cooling tower spray zones.  

E-Print Network (OSTI)

??Cooling tower spray nozzle performance characteristics such as the water distribution onto the fill material, air side pressure drop, pump head, drop size distribution and… (more)

Viljoen, D. J.

2006-01-01T23:59:59.000Z

60

Evaluation and performance prediction of cooling tower rain zones.  

E-Print Network (OSTI)

??Cooling tower rain zone performance characteristics such as the loss coefficient and the Merkel number are evaluated and simulated. To this end the influence of… (more)

Pierce, Darren John

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Comparative evaluation of cooling tower drift eliminator performance  

E-Print Network (OSTI)

The performance of standard industrial evaporative cooling tower drift eliminators is analyzed using experiments and numerical simulations. The experiments measure the

Chan, Joseph Kwok-Kwong

62

Hydraulic Cooling Tower Driver- The Innovation  

E-Print Network (OSTI)

One of the weaknesses of present day cooling tower drives are fan wrecks caused by shaft couplings breaking, gear box malfunctions due to inadequate lubrication, gear tooth wear, and inaccessibility for inspection and routine maintenance. The hydro-drive eliminates these items from the drive train and puts the same electric motor HP at ground level close coupled to a hydraulic pump, filters, and oil reservoir. Hydraulic lines bring oil pressure to the hydraulic motor, which is more than 75% less weight than comparable gear boxes and presents a smooth practically trouble free performance. In this three cell installation, the original 75 horsepower motors and 18’ diameter fans were cooling a total of 14,000 GPM which were CTI tested and 74.7% of capability. The upgrading and retrofit consisted of installing at ground level 100 horse power motors, 22’ diameter fans, 14’ high velocity recovery fan cylinders, “V” PVC splash bars, and high efficiency cellular drift eliminators. Testing after completion indicated a 92% tower now circulating 21,000 GPM instead of the original 14,000.

Dickerson, J. A.

1987-09-01T23:59:59.000Z

63

The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers  

SciTech Connect

Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.

Abedi-Nik, Farhad [SADRA Institute of Higher Education, Tehran (Iran, Islamic Republic of); Sabouri-Ghomi, Saeid [K.N.T University of Technology, Tehran (Iran, Islamic Republic of)

2008-07-08T23:59:59.000Z

64

A Microcomputer Model of Crossflow Cooling Tower Performance  

E-Print Network (OSTI)

The energy use characteristics of evaporative cooling towers are of interest because, although such towers are widely used in industry, they do require a substantial amount of energy. Evaporative cooling towers are basically large heat exchangers that use both sensible heat transfer and mass transfer to cool. The heat and mass transfer process for a crossflow cooling tower has been modeled on an Apple II microcomputer. Various heat loads or weather conditions can be imposed on a given tower to evaluate its response; moreover, a subprogram can evaluate pressure drop and motor/fan characteristics. Determination of the energy required to operate the tower enables its performance to be compared against energy-saving operations such as variable speed drive or changes in fill height or type.

Reichelt, G. E; Jones, J. W.

1984-01-01T23:59:59.000Z

65

User's Manual: Cooling-Tower-Plume Prediction Code  

Science Conference Proceedings (OSTI)

Utilities planning to build generating plants that use evaporative cooling are required to estimate potential seasonal and annual environmental effects of cooling-tower plumes. An easy-to-use computerized method is now available for making such estimates.

1984-04-01T23:59:59.000Z

66

2009 EPRI Cooling Tower Technology Seminar and Symposium  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems cause significant loss of availability and heat rate degradation in both nuclear and fossil-fired power plants. Twenty-five papers presented at a 2009 conference in Cincinnati, Ohio discussed industrial experience and provided case histories of cooling tower problems and solutions.

2009-10-05T23:59:59.000Z

67

Best Practices for Energy Efficient Cleanrooms: Cooling Tower and Condenser Water Optimization  

E-Print Network (OSTI)

LBNL-58634 Best Practices for Energy Efficient Cleanrooms: Cooling Tower and Condenser Water Efficient Cleanrooms: Cooling tower and condenser water optimization Tengfang Xu Contents HVAC WATER SYSTEMS.............................................................................................. 2 Cooling tower and condenser water optimization

68

Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paul Johnston-Knight Introduction Federal laws and regulations require Federal agencies to reduce water use and improve water efficiency. Namely, Executive Order 13514 Federal Leadership in Environmental, Energy, and Economic Performance, requires an annual two percent reduction of water use intensity (water use per square foot of building space) for agency potable water consumption as well as a two percent reduction of water use for industrial, landscaping, and agricultural applica- tions. Cooling towers can be a significant

69

Cooling Towers--Energy Conservation Strategies Preservative Spray Treatment Maintains Cooling Tower  

E-Print Network (OSTI)

Several problems common to most industrial wood framed cooling towers can be easily controlled with annual preservative spray treatment applications to the plenum area framework and drift eliminators. It eliminates the expensive periodic repairs due to wood decay which sooner or later will occur without preservative protection. Preventing or minimizing the destructive effect of internal wood decay of the framework also avoids unexpected down time due to emergency maintenance or unexpected collapse of the main supporting framework.

Reidenback, R.

1991-06-01T23:59:59.000Z

70

Property:CoolingTowerWaterUseWinterConsumed | Open Energy Information  

Open Energy Info (EERE)

search Property Name CoolingTowerWaterUseWinterConsumed Property Type Number Description Cooling Tower Water use (winter average) (afday) Consumed. Retrieved from "http:...

71

Property:CoolingTowerWaterUseSummerConsumed | Open Energy Information  

Open Energy Info (EERE)

Name CoolingTowerWaterUseSummerConsumed Property Type Number Description Cooling Tower Water use (summer average) (afday) Consumed. Retrieved from "http:en.openei.orgw...

72

Property:CoolingTowerWaterUseAnnlAvgConsumed | Open Energy Information  

Open Energy Info (EERE)

Name CoolingTowerWaterUseAnnlAvgConsumed Property Type Number Description Cooling Tower Water use (annual average) (afday) Consumed. Retrieved from "http:en.openei.orgw...

73

Property:CoolingTowerWaterUseSummerGross | Open Energy Information  

Open Energy Info (EERE)

Property Name CoolingTowerWaterUseSummerGross Property Type Number Description Cooling Tower Water use (summer average) (afday) Gross. Retrieved from "http:en.openei.orgw...

74

Performance evaluation of wet-cooling tower fills with computational fluid dynamics.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: A wet-cooling tower fill performance evaluation model developed by Reuter is derived in Cartesian coordinates for a rectangular cooling tower and compared to… (more)

Gudmundsson, Yngvi

2012-01-01T23:59:59.000Z

75

Purification of water from cooling towers and other heat exchange systems  

SciTech Connect

The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.

Sullivan; Enid J. (Los Alamos, NM), Carlson; Bryan J. (Ojo Caliente, NM), Wingo; Robert M. (Los Alamos, NM), Robison; Thomas W. (Stilwell, KS)

2012-08-07T23:59:59.000Z

76

Use of nanofiltration to reduce cooling tower water usage.  

SciTech Connect

Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

Sanchez, Andres L.; Everett, Randy L.; Jensen, Richard Pearson; Cappelle, Malynda A.; Altman, Susan Jeanne

2010-09-01T23:59:59.000Z

77

Use of nanofiltration to reduce cooling tower water consumption.  

Science Conference Proceedings (OSTI)

Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

Altman, Susan Jeanne; Ciferno, Jared

2010-10-01T23:59:59.000Z

78

CFD MODELING AND ANALYSIS FOR A-AREA AND H-AREA COOLING TOWERS  

Science Conference Proceedings (OSTI)

Mechanical draft cooling towers are designed to cool process water via sensible and latent heat transfer to air. Heat and mass transfer take place simultaneously. Heat is transferred as sensible heat due to the temperature difference between liquid and gas phases, and as the latent heat of the water as it evaporates. Mass of water vapor is transferred due to the difference between the vapor pressure at the air-liquid interface and the partial pressure of water vapor in the bulk of the air. Equations to govern these phenomena are discussed here. The governing equations are solved by taking a computational fluid dynamics (CFD) approach. The purpose of the work is to develop a three-dimensional CFD model to evaluate the flow patterns inside the cooling tower cell driven by cooling fan and wind, considering the cooling fans to be on or off. Two types of the cooling towers are considered here. One is cross-flow type cooling tower located in A-Area, and the other is counterflow type cooling tower located in H-Area. The cooling tower located in A-Area is mechanical draft cooling tower (MDCT) consisting of four compartment cells as shown in Fig. 1. It is 13.7m wide, 36.8m long, and 9.4m high. Each cell has its own cooling fan and shroud without any flow communications between two adjacent cells. There are water distribution decks on both sides of the fan shroud. The deck floor has an array of about 25mm size holes through which water droplet falls into the cell region cooled by the ambient air driven by fan and wind, and it is eventually collected in basin area. As shown in Fig. 1, about 0.15-m thick drift eliminator allows ambient air to be humidified through the evaporative cooling process without entrainment of water droplets into the shroud exit. The H-Area cooling tower is about 7.3 m wide, 29.3 m long, and 9.0 m high. Each cell has its own cooling fan and shroud, but each of two corner cells has two panels to shield wind at the bottom of the cells. There is some degree of flow communications between adjacent cells through the 9-in gap at the bottom of the tower cells as shown in Fig. 2. Detailed geometrical dimensions for the H-Area tower configurations are presented in the figure. The model was benchmarked and verified against off-site and on-site test results. The verified model was applied to the investigation of cooling fan and wind effects on water cooling in cells when fans are off and on. This report will discuss the modeling and test results.

Lee, S.; Garrett, A.; Bollinger, J.

2009-09-02T23:59:59.000Z

79

Application of upspray type water distribution systems in cooling towers  

SciTech Connect

The efficient and uniform distribution of the warm circulating water on to the filling of cooling towers has been the continuing goal of the tower designer. The final element in the water distribution system, the sprayer, plays an important role in achieving this objective. This paper discusses the performance and operational characteristics of a sprayer utilized in counterflow towers that directs the water leaving the sprayer nozzle in an upward direction and briefly compares its performance with that of downward sprayers. The discussion also covers relative tower economics and application data of the sprayer.

Fay, H.P.; Hesse, G.

1985-01-01T23:59:59.000Z

80

2010sr27[cooling_tower_complete].doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Friday, September 17, 2010 Friday, September 17, 2010 james-r.giusti@srs.gov Paivi Nettamo, SRNS, (803) 952-6938 paivi.nettamo@srs.gov K Cooling Tower Project Reaches Completion Aiken, S.C. - One of the most visual milestones of cleanup projects underway within the Department of Energy's Office of Environmental Management was the demolition of the K-Reactor Cooling Tower at the Savannah River Site (SRS). Now, this American Recovery and Reinvestment Act project has been

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

International cooling-tower and spray pond symposium  

Science Conference Proceedings (OSTI)

This document contains the manuscripts of sixty-one papers that were presented at the 7th Cooling Tower and Spray Pond Symposium of the International Association for Hydraulic Research, organized by the B.E. Vedeneev Institute (VNIIG) and held in Leningrad, USSR, in June 1990. This report represents a worldwide state-of-the-art survey of recent work on cooling towers and spray ponds. Individual papers are indexed separately on the energy database.

Not Available

1990-09-01T23:59:59.000Z

82

Environmental Impacts from the Operation of Cooling Towers at SRP  

SciTech Connect

An assessment has been made of the environmental effects that would occur from the operation of cooling towers at the SRP reactors. A more realistic numerical model of the cooling tower plume has been used to reassess the environmental impacts. The following effects were considered: (1) the occurrence of fog and ice and their impact on nearby structures, (2) drift and salt deposition from the plume, (3) the length and height of the visible plume, and (4) the possible dose from tritium.

Smith, F.G. III

2001-06-26T23:59:59.000Z

83

Cooling Tower Optimization Study Technical Update for 2012  

Science Conference Proceedings (OSTI)

This report is a technical update on the progress of testing three different configurations of cooling tower fan drives. The particular focus is upon the gear box where most disabling failures are occurring. It will describe the configurations and instrumentation used to track the ongoing operational conditions being monitored.The standard mode of operation for a cooling tower fan motor is either on or off, as it may be cost-effective to take some cells out of service under certain ...

2012-12-20T23:59:59.000Z

84

DRIFT : a numerical simulation solution for cooling tower drift eliminator performance  

E-Print Network (OSTI)

A method for the analysis of the performance of standard industrial evaporative cooling tower drift

Chan, Joseph Kwok-Kwong

85

Best Practice for Energy Efficient Cleanrooms: Cooling tower and condenser water optimization  

E-Print Network (OSTI)

condenser water optimization Tengfang Xu Contents HVAC WATERHVAC Water Systems Cooling tower and condenser water optimization

Xu, Tengfang

2005-01-01T23:59:59.000Z

86

Introducing an Online Cooling Tower Performance Analysis Tool  

E-Print Network (OSTI)

Cooling towers are used extensively for numerous industrial, residential, and commercial applications. Yet despite how common their uses, operators often do not know how to properly evaluate and optimize their performance. This is due to the complex and variable nature of all of the factors that can influence performance; fan speed, wind speed, sump temperature, heat load, ambient temperature, relative humidity, etc. This can be overwhelming for a regular operator resulting in many cooling towers being set to a default operating condition and forgotten. This paper will introduce a web-based cooling tower analysis tool being developed to help users understand and optimize operational efficiency. The calculations, evaluations, and models will be discussed in detail to highlight important design considerations and issues. This will include how the Merkel Theory, psychometric properties, tower types, and historical weather data are incorporated into the analysis.

Muller, M.R.; Muller, M.B.; Rao, P.

2012-01-01T23:59:59.000Z

87

Technical Evaluation of Side Stream Filtration for Cooling Towers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Towers (photo from Pacific Cooling Towers (photo from Pacific Northwest National Laboratory) * Scaling: Scaling is the precipitation of dissolved mineral components that have become saturated in solution, which can lower efficiency of the system. * Fouling: Fouling occurs when suspended particles or biologic growth forms an insulating film on heat transfer surfaces. Common foulants include organic matter, process oils, and silt, which can also lower system performance. * Microbiological Activity: Microbiological activity refers to microorganisms that live and grow in the cooling system that can contribute

88

Technical Evaluation of Side Stream Filtration for Cooling Towers  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Towers (photo from Pacific Cooling Towers (photo from Pacific Northwest National Laboratory) * Scaling: Scaling is the precipitation of dissolved mineral components that have become saturated in solution, which can lower efficiency of the system. * Fouling: Fouling occurs when suspended particles or biologic growth forms an insulating film on heat transfer surfaces. Common foulants include organic matter, process oils, and silt, which can also lower system performance. * Microbiological Activity: Microbiological activity refers to microorganisms that live and grow in the cooling system that can contribute

89

Dry cooling tower operating experience in the LOFT reactor  

SciTech Connect

A dry cooling tower has been uniquely utilized to dissipate heat generated in a small experimental pressurized water nuclear reactor. Operational experience revealed that dry cooling towers can be intermittently operated with minimal wind susceptibility and water hammer occurrences by cooling potential steam sources after a reactor scram, by isolating idle tubes from the external atmosphere, and by operating at relatively high pressures. Operating experience has also revealed that tube freezing can be minimized by incorporating the proper heating and heat loss prevention features.

Hunter, J.A.

1980-01-01T23:59:59.000Z

90

Cooling Towers - Energy Conservation and Money Making Mechanisms  

E-Print Network (OSTI)

The utilization of colder water conserves energy, creates profits, increases product output. In an effort to obtain greater efficiencies and conserve both energy and dollars, all too many engineers neglect the potential of the cooling tower. Many cooling towers in operation are performing at levels as low as 50% of capability. This is energy wasteful and financially foolish. There are many reasons for this deficiency, among them the present service is greater than the original requirements, slippage due to age and deterioration, or the installation could have been originally installed undersized. This paper will investigate the various elements, their functions and methods of upgrading their performance by retrofit with the use of modern technology. Case histories will be examined in three major industries, chemicals, refrigeration and petrochemical illustrating how intelligent rebuilding can produce profits and conserve energy. Actual statistics will be cited showing that the return of investment (ROI) can be quite rapid by optimizing the performance of the cooling tower.

Burger, R.

1981-01-01T23:59:59.000Z

91

Integrated reactor-containment hyperbolic-cooling-tower system  

Science Conference Proceedings (OSTI)

A preliminary feasibility analysis has been conducted to evaluate placing a nuclear reactor containment building inside a large hyperbolic cooling tower, a concept previously suggested for fossil-fired units but for reasons other than those that motivate this evaluation. The geometry of the design, the amount of water available, and the shielding provided by the cooling tower are beneficial to the safety characteristics of the containment under accident conditions. Three means of decay heat management are employed: an initial water spray on the containment exterior, long-term air convection on side of the containment, and creation of a water pool inside the containment. A continuously spraying water tank on top of the containment allows for a completely passive decay heat removal system. An annular air chimney around the containment is effective in long-term removal of {approximately} 1O MW (thermal) through air convection. Five percent of the water inventory in the cooling-tower pond surrounding the containment is sufficient to flood the containment interior to a depth of 14.6 ft, thereby providing an internal containment heat sink. The packing and the height of the tower provide major scrubbing and dispersing sources for any uncontrolled radioactive leak. The cooling tower veil also protects the containment from external events such as lane crashes.

Patel, A.R.; Todreas, N.E.; Driscoll, M.J. [Massachusetts Institute of Technology, Cambridge, MA (United States)

1994-12-31T23:59:59.000Z

92

Property:CoolingTowerWaterUseAnnlAvgGross | Open Energy Information  

Open Energy Info (EERE)

Property Name CoolingTowerWaterUseAnnlAvgGross Property Type Number Description Cooling Tower Water use (annual average) (afday) Gross. Retrieved from "http:en.openei.orgw...

93

The Draft of ASME PTC 19  

NLE Websites -- All DOE Office Websites (Extended Search)

Generators for each of the Gas Turbines and Steam Turbine. * A steam surface condenser with mechanical vacuum pumps for air removal and a mechanical draft cooling tower...

94

Performance analysis of heat transfer processes from wet and dry surfaces : cooling towers and heat exchangers.  

E-Print Network (OSTI)

??The objective of this work is to study the thermal and hydraulic performance of evaporatively cooled heat exchangers, including closed wet cooling towers, and dry… (more)

Hasan, Ala Ali

2005-01-01T23:59:59.000Z

95

Performance Analysis of Heat Transfer Processes from Wet and Dry Surfaces: Cooling Towers and Heat Exchangers.  

E-Print Network (OSTI)

??The objective of this work is to study the thermal and hydraulic performance of evaporatively cooled heat exchangers, including closed wet cooling towers, and dry… (more)

Hasan, Ala Ali

2005-01-01T23:59:59.000Z

96

2011 CERN Waste Heat EN-CV February 28th 2011 Power Dissipated by the Cooling Towers  

E-Print Network (OSTI)

2011 CERN Waste Heat EN-CV February 28th 2012 1 2011 Power Dissipated by the Cooling Towers The cooling circuits at CERN use evaporative open cooling towers to discharge into the atmosphere the heat towers per complex depend on the amount of cooling power required. LHC one cooling tower per even LHC

Wu, Sau Lan

97

No Chemical, Zero Bleed Cooling Tower Water Treatment Process  

E-Print Network (OSTI)

This paper describes a process to treat cooling tower water by means of a fully automated and chemical free mechanical water treatment process. This is an alternative to conventional chemical treatment. Beginning with a suction pump to draw water out of the tower sump, water goes through a permanent magnetic descaler to increase the water solubility and begin the scale inhibition process. This also descales existing scale build-up in the system. Ozone is manufactured from ambient air and injected into the bypass system through a venturi type injector. This kills algae, slime and bacteria and enhances the magnetic descaling process. The final stage filter separates solids from the water to prevent corrosion from impingement. These solids are automatically purged to the sanitary drain. Clarified water is returned to the sump where the process repeats on a 10%-20% by volume side stream basis.

Coke, A. L.

1992-04-01T23:59:59.000Z

98

Cooling Water Systems - Energy Savings/Lower Costs By Reusing Cooling Tower Blowdown  

E-Print Network (OSTI)

Reuse of cooling tower blow down cannot only provide energy conservation, but can provide water conservation and chemical conservation. To be effective, it is critical that the water treatment program be coordinated with the treatment of the blow down for reuse into the cooling tower system. Several plants have been built and operated with considerable difficulty regarding effective operation of the softener due to improper chemical selection. However, other plants have utilized the proper chemicals which not only improve the softener's performance and operation, but also effectively reduces the size of the softener. Thus, initial capital and operating savings are obtained. Detailed information is provided on guidelines and case histories of operating units.

Puckorius, P. R.

1981-01-01T23:59:59.000Z

99

High Flux Isotopes Reactor (HFIR) Cooling Towers Demolition Waste Management  

SciTech Connect

This paper describes the results of a joint initiative between Oak Ridge National Laboratory, operated by UT-Battelle, and Bechtel Jacobs Company, LLC (BJC) to characterize, package, transport, treat, and dispose of demolition waste from the High Flux Isotope Reactor (HFIR), Cooling Tower. The demolition and removal of waste from the site was the first critical step in the planned HFIR beryllium reflector replacement outage scheduled. The outage was scheduled to last a maximum of six months. Demolition and removal of the waste was critical because a new tower was to be constructed over the old concrete water basin. A detailed sampling and analysis plan was developed to characterize the hazardous and radiological constituents of the components of the Cooling Tower. Analyses were performed for Resource Conservation and Recovery Act (RCRA) heavy metals and semi-volatile constituents as defined by 40 CFR 261 and radiological parameters including gross alpha, gross beta, gross gamma, alpha-emitting isotopes and beta-emitting isotopes. Analysis of metals and semi-volatile constituents indicated no exceedances of regulatory limits. Analysis of radionuclides identified uranium and thorium and associated daughters. In addition 60Co, 99Tc, 226Rm, and 228Rm were identified. Most of the tower materials were determined to be low level radioactive waste. A small quantity was determined not to be radioactive, or could be decontaminated. The tower was dismantled October 2000 to January 2001 using a detailed step-by-step process to aid waste segregation and container loading. The volume of waste as packaged for treatment was approximately 1982 cubic meters (70,000 cubic feet). This volume was comprised of plastic ({approx}47%), wood ({approx}38%) and asbestos transite ({approx}14%). The remaining {approx}1% consisted of the fire protection piping (contaminated with lead-based paint) and incidental metal from conduit, nails and braces/supports, and sludge from the basin. The waste, except for the asbestos, was volume reduced via a private contract mechanism established by BJC. After volume reduction, the waste was packaged for rail shipment. This large waste management project successfully met cost and schedule goals.

Pudelek, R. E.; Gilbert, W. C.

2002-02-26T23:59:59.000Z

100

Coagulation chemistries for silica removal from cooling tower water.  

SciTech Connect

The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.

Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Program on Technology Innovation: Review of Advanced Cooling Tower Technologies with Reduced Cooled Water Temperature and Evaporatio  

Science Conference Proceedings (OSTI)

This report reviews current technologies and solutions for advanced cooling towers with reduced cooled water temperature and evaporation losses. This is the first report for the dew-point cooling tower fill development project, funded by the Electric Power Research Institute (EPRI) Program on Technology Innovation, Water Conservation program. It is prepared by the Gas Technology Institute (GTI).This review is based on a literature and patent survey; it summarizes advancements in cooling ...

2013-03-29T23:59:59.000Z

102

A case history of a coal gasification wastewater cooling tower at the Great Plains coal gasification project  

SciTech Connect

This paper describes the conceptual process design of the Great Plains cooling water system, the fouling history of the cooling tower, and the results of the design modifications. In addition, general design guidelines for future wastewater reuse cooling towers are recommended. By following these guidelines, design engineers can minimize the risk of fouling that could impair a wastewater cooling tower's thermal performance.

Crocker, B.R.; Bromel, M.C.; Pontbriand, M.W.

1987-01-01T23:59:59.000Z

103

Flue gas injection control of silica in cooling towers.  

Science Conference Proceedings (OSTI)

Injection of CO{sub 2}-laden flue gas can decrease the potential for silica and calcite scale formation in cooling tower blowdown by lowering solution pH to decrease equilibrium calcite solubility and kinetic rates of silica polymerization. Flue gas injection might best inhibit scale formation in power plant cooling towers that use impaired makeup waters - for example, groundwaters that contain relatively high levels of calcium, alkalinity, and silica. Groundwaters brought to the surface for cooling will degas CO{sub 2} and increase their pH by 1-2 units, possibly precipitating calcite in the process. Recarbonation with flue gas can lower the pHs of these fluids back to roughly their initial pH. Flue gas carbonation probably cannot lower pHs to much below pH 6 because the pHs of impaired waters, once outgassed at the surface, are likely to be relatively alkaline. Silica polymerization to form scale occurs most rapidly at pH {approx} 8.3 at 25 C; polymerization is slower at higher and lower pH. pH 7 fluids containing {approx}220 ppm SiO{sub 2} require > 180 hours equilibration to begin forming scale whereas at pH 8.3 scale formation is complete within 36 hours. Flue gas injection that lowers pHs to {approx} 7 should allow substantially higher concentration factors. Periodic cycling to lower recoveries - hence lower silica concentrations - might be required though. Higher concentration factors enabled by flue gas injection should decrease concentrate volumes and disposal costs by roughly half.

Brady, Patrick Vane; Anderson, Howard L., Jr.; Altman, Susan Jeanne

2011-06-01T23:59:59.000Z

104

Nuclear Maintenance Applications Center: Guideline for Cooling Tower Inspection and Maintenance  

Science Conference Proceedings (OSTI)

Cooling tower structural failures have recently become a focus area for the nuclear industry based on events that have resulted in lost generation as well as high repair costs. Environmental concerns regarding thermal pollution and water usage have also recently increased the need for guidance for cooling tower inspection and maintenance.

2011-06-06T23:59:59.000Z

105

Method and system for simulating heat and mass transfer in cooling towers  

DOE Patents (OSTI)

The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

Bharathan, Desikan (Lakewood, CO); Hassani, A. Vahab (Golden, CO)

1997-01-01T23:59:59.000Z

106

Cooling-Tower Performance Prediction and Improvement: Volumes 1 and 2  

Science Conference Proceedings (OSTI)

New data and methods enable engineers to predict and improve the thermal performance of evaporative cooling towers. Current EPRI research focuses on analytic tools that will help utilities avoid costly operating penalties associated with cooling towers that do not meet thermal performance specifications.

1989-12-01T23:59:59.000Z

107

Cooling Tower Energy Conservation Through Hydraulic Fan Drives  

E-Print Network (OSTI)

Many companies offer gearboxes, shafts, and couplings for cooling tower fan drives, with little or no innovation. These companies have traditionally been purchased with an emphasis on cost and not "Return on Investment!" In the past, when energy conservation or "Return on Investment" was emphasized, the only alternative was to add an expensive frequency inverter for variable speed control. This meant expensive rewiring, placing additional controls in an already crowded control room, or constructing a special building for them. However, with H.E.M.'s patented Hydraulic Fan Drive, one receives variable speed control and more efficiency for approximately the price of a mechanical drive. The new, more efficient Hydraulic Drive allows for a variable speed control and the ability to sense water temperature to control fan speed.

Dickerson, J.

1991-06-01T23:59:59.000Z

108

Energy (Cost) Savings by Zero Discharge in Cooling Towers  

E-Print Network (OSTI)

Maximum reuse of cooling tower blowdown by the incorporation of a sidestream softening system to recycle water can allow for significant savings in energy costs for industry. The system design parameters described in this paper are based upon calcium sulfate, calcium carbonate, and silica solubility equations for the resultant high ionic strength of a zero blowdown system. Operational aspects are highlighted in terms of deposition, corrosion, and biofouling potentials as well as currently-practiced, successful treatment procedures. The effects and history of corrosion and scale inhibitors, as well as other treatment chemicals, have been evaluated for numerous plants utilizing zero blowdown, and a summation of this knowledge is presented here. The cost analysis of conventional systems versus recycle systems is based upon a computer model's predictions for makeup waters of various qualities and costs.

Matson, J. V.; Gardiner, W. M.; Harris, T. G.; Puckorius, P. R.

1982-01-01T23:59:59.000Z

109

Adjudication of a Contract for the Construction of the Cooling Tower Complex for the North Experimental Area  

E-Print Network (OSTI)

Adjudication of a Contract for the Construction of the Cooling Tower Complex for the North Experimental Area

1976-01-01T23:59:59.000Z

110

The Binary Cooling Tower Process: An Energy Conserving Water Reuse Technology  

E-Print Network (OSTI)

The Binary Cooling Tower (BCT) harnesses cooling system waste heat to accomplish concentration of waste and process streams. The BCT can also be integrated to isolate and improve the efficiency of critical cooling loops. This paper describes the BCT, its integration into a cooling system, and some energy saving applications

Lancaster, R. L.; Sanderson, W. G.; Cooke, R. L., Jr.

1981-01-01T23:59:59.000Z

111

Some Turbulence and Diffusion Parameter Estimates within Cooling Tower Plumes Derived from Sodar Data  

Science Conference Proceedings (OSTI)

Temperature and velocity fluctuations within a cooling tower plume in stable conditions at the Keystone power plant in Pennsylvania have been measured by use of a calibrated sodar. Monostatic and bistatic systems probed the plume at several ...

R. L. Coulter; K. H. Underwood

1980-12-01T23:59:59.000Z

112

Vertical sampling flights in support of the 1981 ASCOT cooling tower experiments: field effort and data  

DOE Green Energy (OSTI)

During the month of August 1981, three nights of experimental sampling of tracers released into the cooling tower plume of a geothermal power plant were conducted. In these experiments a tethered balloon was used to lift a payload so as to obtain vertical profiles of the cooling tower plume and the entrained tracers. A description of the equipment used, the field effort and the data acquired are presented here.

Gay, G.T.

1982-03-01T23:59:59.000Z

113

Demolition of Cooling Towers from the World's First Commercial Reactors - the Nuclear Factor  

Science Conference Proceedings (OSTI)

The demolition of hyperbolic cooling towers would be a relatively routine demolition project because the method of demolition has been proven straightforward and repeatable with the successful demolition of over 200 similar structures in the last 30 years. This paper will detail the unique aspects of the planning and execution of the cooling tower demolition project due to its location on a nuclear site and proximity to active nuclear operations. (authors)

Foss, D.L. [British Nuclear Group Sellafield Ltd, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom)

2006-07-01T23:59:59.000Z

114

REFRIGERATIONREFRIGERATION ((svsv: Kylteknik): Kylteknik) 424503 E424503 E 20102010 #7#7 --rzrz 7. Air conditioning, cooling towers7. Air conditioning, cooling towersg, gg, g  

E-Print Network (OSTI)

the top of the tower An (earlier) alternative is to use a spray pond to cool water; disadvantages. Air conditioning, cooling towers7. Air conditioning, cooling towersg, gg, g Ron Zevenhoven Ã?Ã?bo, is the hi htemperature at which condensation begins when air is cooled at constant pressurecooled

Zevenhoven, Ron

115

Strategy for the Operation of Cooling Towers with variable Speed Fans  

E-Print Network (OSTI)

Within the SPS Cooling Water Project at CERN aimed at the reduction of water consumption, this primary open cooling loop will be closed and all the primary cooling circuit components will be upgraded to the new required duty and brought to the necessary safety and operability standards. In particular the tower fans will be fitted with variable frequency drives to replace the existing two speed motors. This paper presents a study to optimize the operation of SPS cooling towers taking into account outdoor conditions (wet and dry bulb temperatures) and the entirety of the primary circuit in which they will operate.

Iñigo-Golfín, J

2001-01-01T23:59:59.000Z

116

Study of Operating Control Strategies for Hybrid Ground Source Heat Pump System with Supplemental Cooling Tower  

Science Conference Proceedings (OSTI)

Ground source heat pump for cooling-dominated commercial buildings may utilize supplemental cooling towers to reduce system first cost and to improve system performance. The use of hybrid ground source heat pump (HGSP) can reduce the size of the ground-loop ... Keywords: hybrid ground source heat pump, supplement heat rejection, control strategies, operating performance

Wang Jinggang; Gao Xiaoxia; Yin Zhenjiang; Li Fang

2009-07-01T23:59:59.000Z

117

Thermodynamic modeling and optimization of a screw compressor chiller and cooling tower system  

E-Print Network (OSTI)

This thesis presents a thermodynamic model for a screw chiller and cooling tower system for the purpose of developing an optimized control algorithm for the chiller plant. The thermodynamic chiller model is drawn from the thermodynamic models developed by Gordon and Ng (1996). However, the entropy production in the compressor is empirically related to the pressure difference measured across the compressor. The thermodynamic cooling tower model is the Baker & Shryock cooling tower model that is presented in ASHRAE Handbook - HVAC Systems and Equipment (1992). The models are coupled to form a chiller plant model which can be used to determine the optimal performance. Two correlations are then required to optimize the system: a wet-bulb/setpoint correlation and a fan speed/pump speed correlation. Using these correlations, a "quasi-optimal" operation can be achieved which will save 17% of the energy consumed by the chiller plant.

Graves, Rhett David

2003-12-01T23:59:59.000Z

118

Wind Tunnel Experiment for Predicting a Visible Plume Region from a Nuclear Power Plant Cooling Tower  

Science Conference Proceedings (OSTI)

The current paper introduces a wind tunnel experiment to study the effect of the cooling tower of a Nuclear Power Plant (NPP) on the flow and the characteristics of visible plume regions. The relevant characteristics of the flow field near the ...

Guo Dong-peng; Yao Ren-tai; Fan Dan

119

Marginal Hilbert Spectrum Based on EMD Reconstruction and its Application in Fault Diagnosis of Cooling Tower  

Science Conference Proceedings (OSTI)

HHT (Hilbert-Huang Transform) is one kind of adaptive signal processing method and it is suitable for processing nonlinear and non-stationary signal. Amplitude-frequency characteristics of signal are accurately demonstrated through marginal Hilbert spectrum ... Keywords: Vibration signal, marginal Hilbert spectrum, Reconstruction filter, Fault diagnosis, Cooling tower

He Dhengyun, Yi Ding

2013-01-01T23:59:59.000Z

120

A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE  

SciTech Connect

Legionnaires disease is a pneumonia caused by the inhalation of the bacterium Legionella pneumophila. The majority of illnesses have been associated with cooling towers since these devices can harbor and disseminate the bacterium in the aerosolized mist generated by these systems. Historically, Savannah River Site (SRS) cooling towers have had occurrences of elevated levels of Legionella in all seasons of the year and in patterns that are difficult to predict. Since elevated Legionella in cooling tower water are a potential health concern a question has been raised as to the best control methodology. In this work we analyze available chemical, biological, and atmospheric data to determine the best method or key parameter for control. The SRS 4Q Industrial Hygiene Manual, 4Q-1203, 1 - G Cooling Tower Operation and the SRNL Legionella Sampling Program, states that 'Participation in the SRNL Legionella Sampling Program is MANDATORY for all operating cooling towers'. The resulting reports include L. pneumophila concentration information in cells/L. L. pneumophila concentrations >10{sup 7} cells/L are considered elevated and unsafe so action must be taken to reduce these densities. These remedial actions typically include increase biocide addition or 'shocking'. Sometimes additional actions are required if the problem persists including increase tower maintenance (e.g. cleaning). Evaluation of 14 SRS cooling towers, seven water quality parameters, and five Legionella serogroups over a three-plus year time frame demonstrated that cooling tower water Legionella densities varied widely though out this time period. In fact there was no one common consistent significant variable across all towers. The significant factors that did show up most frequently were related to suspended particulates, conductivity, pH, and dissolved oxygen, not chlorine or bromine as might be expected. Analyses of atmospheric data showed that there were more frequent significant elevated Legionella concentrations when the dew point temperature was high--a summertime occurrence. However, analysis of the three years of Legionella monitoring data of the 14 different SRS Cooling Towers demonstrated that elevated concentrations are observed at all temperatures and seasons. The objective of this study is to evaluate the ecology of L. pneumophila including serogroups and population densities, chemical, and atmospheric data, on cooling towers at SRS to determine whether relationships exist among water chemistry, and atmospheric conditions. The goal is to more fully understand the conditions which inhibit or encourage L. pneumophila growth and supply this data and associated recommendations to SRS Cooling Tower personnel for improved management of operation. Hopefully this information could then be used to help control L. pneumophila growth more effectively in SRS cooling tower water.

Smith, C.; Brigmon, R.

2009-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Calder Hall Cooling Tower Demolition: Landmark Milestone for Decommissioning at Sellafield  

Science Conference Proceedings (OSTI)

September 2007 saw a very visible change to the Sellafield site following the culmination of a major decommissioning project; the demolition of the four Calder Hall cooling towers. A key part of the UK's nuclear industrial heritage, Calder Hall, the world's first commercial nuclear power station, was opened by Her Majesty Queen Elizabeth II in October 1953 and continued to generate electricity until its closure in 2003. Following the decision to decommission the Calder Hall site, explosive demolition was identified as the safest and most cost effective route for the removal of the towers. The technique, involving the placement of explosive in 60% of the circumference of both shell and legs, is a tried and tested method which had already been used successfully in more than 200 cooling towers in the UK in the last 30 years. The location and composition of the four 88 metre high towers also created additional challenges. Situated only 40 metres away from the UK's only nuclear Fuel Handling Plant, as well as other sensitive structures on the Sellafield site, the project had to address the impact of a number of key areas, including dust, ground vibration and air over pressure, to ensure that the demolition could be carried out safely and without significant impact on other operational areas on the site. At the same time, the towers had to be prepared for demolition in a way that minimised the amounts of radioactive or hazardous waste materials arising. This paper follows the four year journey from the initial decision to demolish the towers right through to the demolition itself as well as the clean up of the site post demolition. It will also consider the massive programme of work necessary not only to carry out the physical work safely but also to gain regulatory confidence and stakeholder support to carry out the project successfully. In summary: The demolition of the four Calder Hall cooling towers was a highly visible symbol of the changes that are occurring on the Sellafield site as it moves forward towards a decommissioning future. Although in itself the demolition was both straightforward and standard, the various complexities posed by the towers situation at Sellafield introduced an entirely new element to the project, with a number of complex challenges which had to be overcome or resolved before the demolition could take place. It is a testament to the skill and dedication of the project team and its associated contractors that the project was delivered safely and successfully without a single accident, injury or event throughout the entire four years, and with minimal impact on both site operations and the local community. (authors)

Williamson, E.J. [Nuclear Decommissioning and Major Projects Group, Sellafield Ltd, Seascale, Cumbria (United Kingdom)

2008-07-01T23:59:59.000Z

122

The Worlds First Ever Cooling Tower Acceptance Test Using Process Data Reconciliation  

Science Conference Proceedings (OSTI)

The cooling capacity of cooling towers is influenced by multiple constructive and atmospheric parameters in a very complex way. This leads to strong variations of the measured cold-water temperature and causes unacceptable unreliability of conventional acceptance tests, which are based on single point measurements. In order to overcome this lack of accuracy a new approach to acceptance test based on process data reconciliation has been developed by BTB Jansky and applied at a nuclear power plant. This approach uses process data reconciliation according to VDI 2048 to evaluate datasets over a long period covering different operating conditions of the cooling tower. Data reconciliation is a statistical method to determine the true process parameters with a statistical probability of 95% by considering closed material-, mass-and energy balances. Datasets which are not suitable for the evaluation due to strong transient gradients are excluded beforehand, according to well-defined criteria. The reconciled cold-water temperature is then compared, within a wet bulb temperature range of 5 deg. C to 20 deg. C to the manufacturer's guaranteed temperature. Finally, if the average deviation between reconciled and guaranteed value over the evaluated period is below zero, the cooling tower guarantee is fulfilled. (authors)

Magnus Langenstein; Jan Hansen-Schmidt [BTB-Jansky GmbH, Gerlingerstrasse 151, D-71229 Leonberg (Germany)

2006-07-01T23:59:59.000Z

123

Proposal for the award of a contract for the upgrade of the SPS cooling towers  

E-Print Network (OSTI)

This document concerns the award of a contract for the upgrade of the SPS cooling towers. Following a market survey carried out among 56 firms in sixteen Member States, a call for tenders (IT-2740/ST/SPS) was sent on 14 February 2000 to 10 firms in six Member States. By the closing date, CERN had received seven tenders from seven firms. The Finance Committee is invited to agree to the negotiation of a contract with SPIG (IT), the lowest bidder, for the upgrade of the SPS cooling towers, for an amount of 1 073 757 Swiss francs, not subject to revision. SPIG has indicated the following distribution by country of the contract value covered by this adjudication proposal: IT-73%; FI-24%; DE-3%.

2000-01-01T23:59:59.000Z

124

Proposal for the award of a contract for the construction of cooling-tower structures  

E-Print Network (OSTI)

This document concerns the award of a contract for the construction of reinforced-concrete cooling-tower structures at LHC Point 1. Following a market survey carried out among 79 firms in 17 Member States, a call for tenders (IT-2710/ST/LHC) was sent on 13 August 1999 to eight firms and two consortia, both consisting of three firms, in eight Member States. By the closing date, CERN had received four tenders. The Finance Committee is invited to agree to the negotiation of a contract for the construction of reinforced-concrete cooling towers at LHC Point 1 with the consortium PAT (AT), BARESEL (DE) and ZSCHOKKE LOCHER (CH), the lowest bidder complying with the specification, for an amount of 3 393 493 Swiss francs, not subject to revision. The consortium has indicated the following distribution by country of the supply covered by this adjudication proposal: BE-60%, AT-18%, CH-11% and DE-11%.

1999-01-01T23:59:59.000Z

125

Evaluation of cooling tower and wastewater treatment operations at the Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

The objective of this study was to provide a technical assessment of the Great Plains Coal Gasification Plant Wastewater Treatment System. This Scope of Work consisted of five primary tasks described as follows: Task 1 - Determine the quantity of hydantoins in the stripped gas liquor (SGL), their precursors, and the kinetics of their formation in condensed liquor for the Great Plains Gasification Associates (GPGA) gasification facility. The University of North Dakota Energy Research Center (UNDERC) has measured a high concentration of hydantoins in the gas liquor from their slagging gasifier. UNDERC has tested the use of SGL in a pilot cooling tower and they witnessed some adverse effects in the cooling tower and heat exchanger systems. Task 2 - Investigate the adverse Department of Energy (DOE) findings at UNDERC with regard to corrosion, foaming, biological and organic fouling, chemical attack on concrete and organic emissions resulting from the use of SGL in a pilot plant cooling tower. Task 3 - Validate the heat load on the cooling tower for both summer and winter operation and determine the adequacy of the surge pond to store the maximum predicted amount of excess water accumulated during winter operation. Task 4 - Assess potential fouling, foaming and organic carry-over problems associated with operability of the multiple-effect evaporator and develop recommendations on possible alternate use of evaporator condensate to alleviate possible problems in disposing of excess wastewater. Task 5 - Provide DOE with recommendations on the wastewater treatment backup design and test program already committed to by GPGA. This paper presents Fluor's findings regarding the five primary tasks. 12 refs., 4 figs., 15 tabs.

Lang, R.A.

1984-12-01T23:59:59.000Z

126

Floating power optimization studies for the cooling system of a geothermal power plant  

DOE Green Energy (OSTI)

The floating power concept was studied for a geothermal power plant as a method of increasing the plant efficiency and decreasing the cost of geothermal power. The stored cooling concept was studied as a method of reducing the power fluctuations of the floating power concept. The studies include parametric and optimization studies for a variety of different types of cooling systems including wet and dry cooling towers, direct and indirect cooling systems, forced and natural draft cooling towers, and cooling ponds. The studies use an indirect forced draft wet cooling tower cooling system as a base case design for comparison purposes.

Shaffer, C.J.

1977-08-01T23:59:59.000Z

127

"Hot" for Warm Water Cooling  

E-Print Network (OSTI)

liquid cooling, dry cooler, cooling tower 1. INTRODUCTIONsolutions for cooling. Substituting cooling towers,hybrid cooling towers, or dry coolers that provide warmer

Coles, Henry

2012-01-01T23:59:59.000Z

128

Investigation of Microbial Respirometry for Monitoring Natural Sulfide Abatement in Geothermal Cooling Tower Basins  

DOE Green Energy (OSTI)

Geothermal plant operators are interested in investigating the ability of micro-organisms found in the cooling tower basin to metabolize and cycle sulfide to less toxic sulfur compounds. If the growth or activity of the organisms participating in sulfur-oxidation could be selectively enhanced, then hydrogen sulfide could be naturally abated in the cooling basin, substantially reducing the costs associated with the chemicals used for abatement. The use of respirometry has been proposed as a technique for monitoring the response of the microbial populations found in geothermal cooling towers to various conditions, including the addition of nutrients such as nitrogen and phosphorus. Respiro-metry is a manometric measurement of dissolved gases that are in equilibrium in a con-fined sample volume. Since microbes expire varying amounts of carbon dioxide or oxygen as they metabolize nutrients, this technique can be used to evaluate their activities in process streams. This report describes a series of experiments designed to determine the suitability of respirometry for tracking microbial activity for evaluating and enhancing natural abatement processes in geothermal cooling basins.

Peter A. Pryfogle

2005-09-01T23:59:59.000Z

129

Proposal for the Award of a Contract for the Civil Engineering Work on the Extensions to the Cooling Towers at LEP Points 2, 4, 6 and 8  

E-Print Network (OSTI)

Proposal for the Award of a Contract for the Civil Engineering Work on the Extensions to the Cooling Towers at LEP Points 2, 4, 6 and 8

1991-01-01T23:59:59.000Z

130

Optimizing Cooling Tower Performance Refrigeration Systems, Chemical Plants, and Power Plants All Have A Resource Quietly Awaiting Exploitation-Cold Water!!  

E-Print Network (OSTI)

Cooling towers, because of their seeming simplicity, are usually orphans of the facilities operation. We are all aware that cooling towers are the step-children of the chemical process plant, electric power generating station, and refrigeration system. While engineers are pretty well convinced of the importance of their sophisticated equipment, and rightly so, they take the cooling towers and the cold water returning from them for granted. Design Conditions are specified for the particular requirements before a cooling tower is purchased. This relates to the volume of circulating water, hot water temperature on the tower, cold water discharge, and wet bulb temperature (consisting of ambient temperature and relative humidity). After the tower is put on the line and the cold water temperature or volume becomes inadequate, engineers look to solutions other than the obvious. While all cooling towers are purchased to function at 100% of capability in accordance with the required Design Conditions, in actual on-stream employment, the level of operation many times is lower, downwards to as much as 50% due to a variety of reasons: 1. The present service needed is now greater than the original requirements which the tower was purchased for. 2. “Slippage” due to usage and perhaps deficient maintenance has reduced the performance of the tower over years of operation. 3. The installation could have been originally undersized due to the low bidder syndrome. 4. New plant expansion needs additional water volume and possibly colder temperatures off the tower.

Burger, R.

1991-06-01T23:59:59.000Z

131

Optimizing Cooling Tower Performance- Refrigeration Systems, Chemical Plants, and Power Plants all Have A Resource Quietly Awaiting Exploitation-Cold Water!!  

E-Print Network (OSTI)

Cooling towers, because of their seeming simplicity, are usually orphans of the facilities operation. We are all aware that cooling towers are the step-children of the chemical process plant, electric power generating station, and refrigeration system. While engineers are pretty well convinced of the importance of their sophisticated equipment, and rightly so, they take the cooling towers and the cold water returning from them for granted. Design Conditions are specified for the particular requirements before a cooling tower is purchased. This relates to the volume of circulatlng water, hot water temperature on the tower, cold water temperature discharge, and wet bulb temperature (consisting of ambient temperature and relative humidity). After the tower is put on the line and the cold water temperature or volume becomes inadequate, engineers look to solutions other than the obvious. While all cooling towers are purchased to function at 100% of capability in accordance with the required Design Conditions, in actual on-stream employment, the level of operation many times is lower, downwards to as much as 50% due to a variety of reasons: 1. The present service needed is now greater than the original requirements which the tower was purchased for. 2. "Slippage" due to usage and perhaps deficient maintenance has reduced the performance of the tower over years of operation. 3. The installation could have been originally undersized due to the low bidder syndrome (1). 4. New plant expansion needs additional water volume and possibly colder temperatures off the tower.

Burger, R.

1990-06-01T23:59:59.000Z

132

Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates  

E-Print Network (OSTI)

cooling (TABS) with a cooling tower providing chilled waterevaporative cooling (cooling tower) for radiant ceiling slabradiant cooling with a cooling tower providing chilled water

Feng, Jingjuan; Bauman, Fred

2013-01-01T23:59:59.000Z

133

Fuzzy Logic Application for Optimization of the Cooling Towers Control System  

E-Print Network (OSTI)

The control system for the SPS-BA6 cooling towers station is considered in order to introduce the concept of a multivariable process. Multivariable control means the maintenace of several controlled variables at independent set points. In a single-variable system, to keep the single process variables within their critical values is considered a rather simple operation. In a complex multivariable system, the determination of the optimal operation point results in a combination of all set values of the variables. Control of a multivariable system requires therefore a more complex analysis. As the solution based on a mathematical model of the process is far beyond acceptable complexity, most mathematical models involve extensive simplifications and linearizations to optimize the resulting controllers. In this report the author will demonstrate how fuzzy logic might provide elegant and efficient solutions in the design of multivariable control based on experimental results rather than on mathematical models.

Blanc, D

2000-01-01T23:59:59.000Z

134

Unusual Decommissioning of Contaminated Facilities at the Savannah River Site - The Demolition of Cooling Towers 285-H and 285-F  

Science Conference Proceedings (OSTI)

Savannah River Site is an 800-square kilometer (310-square mile) U.S. Department of Energy (DOE) industrial facility located in Aiken, Allendale, and Barnwell Counties in South Carolina. The site is dedicated to environmental cleanup, developing and deploying technologies to support the cleanup mission, processing and storing nuclear materials, and supporting national security missions. The current focus in environmental management is on the cleanup of legacy materials, facilities and wastes left from the Cold War. In 2002 the DOE initiated actions to expedite cleanup focusing on significant risk reduction coupled with reducing costs. SRS published the Savannah River Site Environmental Management Integrated Deactivation and Decommissioning Plan in 2003 which addressed the final disposition and physical end state of all 1,013 Environmental Management facilities on site by the year 2025. Included in this list of facilities are reactors, fabrication facilities, process facilities and the support facilities that were required during the past 50 years. By the end of FY06, over 200 facilities had been decommissioned. This paper describes the demolition of two facilities, cooling towers 285-H and 285-F that were associated with the operation of the process canyons. Because of the circumstances surrounding these decommissions, unique and unusual techniques were safely employed to demolish and remove the cooling towers. Both 285-H and 285-F were safely felled by pulling the columns remotely to weaken the internal portion of the structure so it would collapse inwards into the basin. Cooling tower 285-H fell in less than 1 second after approximately two-thirds of the columns had been broken. See Figure 3 for a photo of 285-H after its collapse. 285-F, which was larger than 285-H, fell in three sections, two cells at a time. Once the towers were felled conventional demolition equipment was used to segregate and remove the debris. All protective measures used to protect surrounding equipment and structures were successful and the basins were cleaned out and returned to service in less than two weeks. The demolition of both cooling towers 285- H and 285-F was completed safely and timely using unconventional means to fell the towers due to structural degradation, height, limited access, radiological and asbestos hazards, and a requirement to protect equipment on all sides of the facility as well as preservation of the basins. During felling operations personnel were required to stay outside the fall zone equivalent to a distance of 150% of the height of the towers. Remote operations outside the fall zone required a tracked vehicle to pull cables attached to the columns in a predetermined sequence so as to fell the tower straight down into the basin. Once the towers fell traditional demolition equipment segregated and removed the waste. Wooden cooling towers of this vintage present a difficult challenge to traditional demolition techniques. Because of the height and potential instability of these types of facilities, considerable effort is placed on reducing the potential energy to a point where heavy equipment can reach safely without endangering the operators. The column-pulling technique chosen for both 285-H and 285-F cooling towers proved to be a safe and efficient method for demolition of these types of facilities.

Austin, William E.; Baldwin, Guy R. [Washington Savannah River Company, Aiken, SC 29808 (United States)

2008-01-15T23:59:59.000Z

135

Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys  

DOE Green Energy (OSTI)

At the present time all experimental towers (chimneys) are completed and operating. This consists of both a solar updraft and a natural-evaporative downdraft tower retrofitted to an existing residence structure and a greenhouse. The residential, experimental, natural-draft cooling system was completed in May, 1985, and five months of summer data on a Hewlet Packard 85 data acquisition computer with a digital voltmeter were acquired. The cooling tower and solar chimney on the experimental greenhouse became operational in September of 1985. A conceptual drawing of both the greenhouse and the residence natural-draft towers is included in the appendix along with the September 85 progress report.

Cunningham, W.A.; Mignon, G.V.

1986-01-01T23:59:59.000Z

136

AUTOMATED DEAD-END ULTRAFILTRATION FOR ENHANCED SURVEILLANCE OF LEGIONELLA 2 PNEUMOPHILA AND LEGIONELLA SPP. IN COOLING TOWER WATERS  

DOE Green Energy (OSTI)

Detection of Legionella pneumophila in cooling towers and domestic hot water systems involves concentration by centrifugation or membrane filtration prior to inoculation onto growth media or analysis using techniques such as PCR or immunoassays. The Portable Multi-use Automated Concentration System (PMACS) was designed for concentrating microorganisms from large volumes of water in the field and was assessed for enhancing surveillance of L. pneumophila at the Savannah River Site, SC. PMACS samples (100 L; n = 28) were collected from six towers between August 2010 and April 2011 with grab samples (500 ml; n = 56) being collected before and after each PMACS sample. All samples were analyzed for the presence of L. pneumophila by direct fluorescence immunoassay (DFA) using FITC-labeled monoclonal antibodies targeting serogroups 1, 2, 4 and 6. QPCR was utilized for detection of Legionella spp. in the same samples. Counts of L. pneumophila from DFA and of Legionella spp. from qPCR were normalized to cells/L tower water. Concentrations were similar between grab and PMACS samples collected throughout the study by DFA analysis (P = 0.4461; repeated measures ANOVA). The same trend was observed with qPCR. However, PMACS concentration proved advantageous over membrane filtration by providing larger volume, more representative samples of the cooling tower environment, which led to reduced variability among sampling events and increasing the probability of detection of low level targets. These data highlight the utility of the PMACS for enhanced surveillance of L. pneumophila by providing improved sampling of the cooling tower environment.

Brigmon, R.; Leskinen, S.; Kearns, E.; Jones, W.; Miller, R.; Betivas, C.; Kingsley, M.; Lim, D.

2011-10-10T23:59:59.000Z

137

Program on Technology Innovation: Feasibility Study of Using a Thermosyphon Cooler Hybrid System to Reduce Cooling Tower Water Consu mption  

Science Conference Proceedings (OSTI)

This Technical Update describes the initial work accomplished by a feasibility study for using a newly developed Thermosyphon Cooler (TSC) Hybrid System to reduce cooling-tower water consumption at steam power plants. The report outlines the overall project and then details the applicable codes and standards that would apply to this technology. It also briefly touches on the literature and patents relating to this field. It describes the rationale and constraints involved in setting up the ...

2012-11-19T23:59:59.000Z

138

Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-01-01T23:59:59.000Z

139

Establish feasibility for providing passive cooling with solar updraft and evaporate downdraft chimneys  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some applications.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-01-01T23:59:59.000Z

140

Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Progress report, October 1985--February 1986  

DOE Green Energy (OSTI)

At the present time all experimental towers (chimneys) are completed and operating. This consists of both a solar updraft and a natural-evaporative downdraft tower retrofitted to an existing residence structure and a greenhouse. The residential, experimental, natural-draft cooling system was completed in May, 1985, and five months of summer data on a Hewlet Packard 85 data acquisition computer with a digital voltmeter were acquired. The cooling tower and solar chimney on the experimental greenhouse became operational in September of 1985. A conceptual drawing of both the greenhouse and the residence natural-draft towers is included in the appendix along with the September 85 progress report.

Cunningham, W.A.; Mignon, G.V.

1986-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Numerical modelling of heat and mass transfer and optimisation of a natural draft wet cooling tower.  

E-Print Network (OSTI)

??This thesis was digitised for the purposes of Document Delivery. It has been made available on open access by Sydney eScholarship and may only be… (more)

Williamson, Nicholas J

2008-01-01T23:59:59.000Z

142

Radar Observation of Snowfall from a Natural-Draft Cooling Tower Plume  

Science Conference Proceedings (OSTI)

One of the potential atmospheric effects of energy dissipation at large power parks is the mesoscale modification of the precipitation field. Meteorological conditions favorable for such an influence mainly correspond to naturally precipitating ...

Henri Sauvageot

1987-11-01T23:59:59.000Z

143

Waste-heat vertical tube foam evaporation for cooling tower blowdown renovation/recycle. Project summary report  

SciTech Connect

A prototype waste-heat vertical tube foam evaporation (WH-VTFE) plant was designed, constructed, and field-tested for reducing power plant cooling tower blowdown to a small residual volume of solids slurried in brine, while producing distilled water for reuse. Facility design was based on previously-developed pilot plant test data. The WH-VTFE facility was constructed for initial parametric testing in upflow/downflow evaporation modes with boiler steam. The field test/demonstration phase was conducted at a power plant site using turbine exhaust steam for the up to 50-fold cooling tower blowdown concentration in a foamy-flow seed-slurried mode of downflow vertical tube evaporation. The VTFE heat transfer coefficient ranged between 5600 to 9000 W/sq m/degree, over 4-fold the level considered as acceptable in another study. Further, a sufficient temperature difference is available within a typical power plant heat rejection system to operate a WH-VTFE when the plant load is above 50% of its design capacity. Scale formed from inadequate brine recycle rates was readily removed by recycling fresh water through the evaporator to restore the high heat transfer performance of the WH-VTFE. It was concluded that WH-VTFE was demonstrated as feasible and commercially viable.

Sephton, H.H.; Someahsaraii, K.

1982-02-01T23:59:59.000Z

144

Establish feasibility for providing passive cooling with solar updraft and evaporate downdraft chimneys. Final report, June 15, 1984--December 31, 1987  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some applications.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-12-31T23:59:59.000Z

145

Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Final report, June 15, 1984--December 31, 1987  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-12-31T23:59:59.000Z

146

Cool roof Q+A 011.doc 29 July 2009 Cool Roof Q & A (draft)  

E-Print Network (OSTI)

thermal radiation. Thus, a cool roof should have both high "solar reflectance" (ability to reflect, also measured on a scale of 0 to 1). The solar reflectance and thermal emittance of a surface are called its "radiative" properties because they describe its abilities to reflect solar radiation and emit

147

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Closing the Circle: Closing the Circle: The Department of Energy and Environmental Management 1942-1994 F.G. Gosling and Terrence R. Fehner History Division Executive Secretariat Department of Energy March 1994 Draft Our mission at the Department of Energy is no less significant than trying to close the circle on the splitting of the atom begun a half-century ago by [the Manhattan Project]. -Tom Grumbly Draft * 3 EM Overview Closing the Circle: The Department of Energy and Environmental Management 1942-1994 Table of Contents Part I: Making of the Nuclear Weapons Complex, 1942-1955 1 The Manhattan Project: Genesis of the Complex 1 2 Health and Safety Concerns Environmental and Waste Management Concerns 3 The Atomic Energy Commission: Expansion of the Complex

148

Combined thermal storage pond and dry cooling tower waste heat rejection system for solar-thermal steam-electric power plants. Final report  

DOE Green Energy (OSTI)

The thermal performance and economics of the combined thermal storage pond and dry cooling tower waste heat rejection system concept for solar-thermal steam-electric plants have been evaluated. Based on the computer simulation of the operation of southwest-sited solar-thermal plants, it has been determined that the combined pond-tower concept has significant cost and performance advantages over conventional dry cooling systems. Use of a thermal storage pond as a component of the dry cooling system allows a significant reduction in the required dry cooling heat exchange capacity and the associated parasitic power consumption. Importantly, it has been concluded that the combined pond-tower dry cooling system concept can be employed to economically maintain steam condensing temperatures at levels normally achieved with conventional evaporative cooling systems. An evaluation of alternative thermal storage pond design concepts has revealed that a stratified vertical-flow cut-and-fill reservoir with conventional membrane lining and covering would yield the best overall system performance at the least cost.

Guyer, E.C.; Bourne, J.G.; Brownell, D.L.; Rose, R.M.

1979-02-28T23:59:59.000Z

149

DRAFT  

NLE Websites -- All DOE Office Websites (Extended Search)

User Access Policy - Version 1.0 User Access Policy - Version 1.0 DOE NSRC User Access Policy December 9, 2002 page 1 DRAFT General Policies and Procedures for User Access to the DOE Nanoscale Science Research Centers 1. Preamble The mission of the U.S. Department of Energy (DOE) Nanoscale Science Research Centers (NSRCs) is to support users in doing outstanding science in a safe environment. To this end, each Center must have: * An array of state-of-the-art equipment and laboratories for synthesis, fabrication, characterization, and simulation of nanoscale materials and structures * A skilled staff to support this equipment, users, and the associated science but above all * A user scientific program that provides leadership in nanoscale science and technology This document addresses the policies and procedures for user access to the NSRCs.

150

A bottom-up engineering estimate of the aggregate heating and cooling loads of the entire U.S. building stock  

E-Print Network (OSTI)

furnaces, chillers, and cooling towers, including the energyheating, chiller and cooling towers. Gas Plant Factors in

Huang, Yu Joe; Brodrick, Jim

2000-01-01T23:59:59.000Z

151

NASA Marshall Space Flight Center Improves Cooling System Performance: Best Management Practice Case Study #10: Cooling Towers (Fact Sheet)  

SciTech Connect

National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

Not Available

2011-02-01T23:59:59.000Z

152

DRAFT  

NLE Websites -- All DOE Office Websites (Extended Search)

⇒ ⇒ DRAFT 19 December 2012⇐= Status of the heaviest elements as of January 2013 Don Groom, Particle Data Group Superheavy elements are normally synthesized by exposing a high-Z target to a 2.5-7.5 MeV/u ion beam such as 48 Ca or 70 Zn. The target can be a stable isotope such as 208 Pb or 209 Bi; in this case the process is called cold fusion. If the target is radioactive (an actinide), it is a "hot fusion" reaction. Targets as heavy as 249 Bk have been used. Since fusion is followed by neutron loss (e.g. 248 Cf( 48 Ca,4n) 292 Lv), the atomic numbers of the beam and target nuclei determine whether the fusion products have even or odd Z. The main laboratories involved are at Dubna, Darmstadt, Berkeley, and RIKEN Nashina Center. Fusion cross sections steadily decrease with increasing Z, and are in the picobarn range for the heaviest elements. The cross section can be optimized for a given

153

Heat Transfer Performance of a Dry and Wet / Dry Advanced Cooling Tower Condenser  

E-Print Network (OSTI)

This paper describes an EPRI-funded experimental evaluation of advanced air-cooled ammonia condensers for a phase. Change dry/wet cooling system for power plants. Two condenser surfaces with different air-side augmentation were tested in an ammonia phase change pilot plant (0.6 MWth) located at UCC/Linde. The first unit consisted of integral shaved-fin-extruded aluminum tubing designed for dry operation. Heat transfer and air-side pressure loss characteristics were measured under varying air face velocities (1 to 5 m/s) and initial temperature differences, ITD (11 to 33K). Measured overall heat transfer coefficients, U, ranged between 40 and 49 J /m2 S.K (based on air-side surface). The second configuration constituted an aluminum plate-fin/tube assembly, which was tested in both dry and wet (water deluge) modes at 1 to 4 m/s air face velocities and ITD's of 5 to 33K. Deluge rates varied from 1 to 6 m3/s per meter of core width. In the dry mode, U ranged from 42 to 63 J/m2 .S.K. Water deluge enhanced the heat rejection up to 4.5 times over dry operation.

Fricke, H. D.; Webster, D. J.; McIlroy, K.; Bartz, J. A.

1981-01-01T23:59:59.000Z

154

Assessment of Energy Use and Comfort in Buildings Utilizing Mixed-Mode Controls with Radiant Cooling  

E-Print Network (OSTI)

can often be met by cooling towers, heat exchange with theradiant surfaces, and cooling towers that chill water toby evaporative chillers or cooling towers) and/or night

Borgeson, Samuel Dalton

2010-01-01T23:59:59.000Z

155

Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers  

E-Print Network (OSTI)

chilled water plant or cooling tower plant. This study hastemperature (e.g. , cooling tower system, or chilled wateravailable from the plant (cooling tower or chiller), the

Xu, TengFang

2009-01-01T23:59:59.000Z

156

Lawrence Livermore National Laboratory (LLNL) Experimental Test Site (Site 300) Salinity Evaluation and Minimization Plan for Cooling Towers and Mechanical Equipment Discharges  

SciTech Connect

This document was created to comply with the Central Valley Regional Water Quality Control Board (CVRWQCB) Waste Discharge Requirement (Order No. 98-148). This order established new requirements to assess the effect of and effort required to reduce salts in process water discharged to the subsurface. This includes the review of technical, operational, and management options available to reduce total dissolved solids (TDS) concentrations in cooling tower and mechanical equipment water discharges at Lawrence Livermore National Laboratory's (LLNL's) Experimental Test Site (Site 300) facility. It was observed that for the six cooling towers currently in operation, the total volume of groundwater used as make up water is about 27 gallons per minute and the discharge to the subsurface via percolation pits is 13 gallons per minute. The extracted groundwater has a TDS concentration of 700 mg/L. The cooling tower discharge concentrations range from 700 to 1,400 mg/L. There is also a small volume of mechanical equipment effluent being discharged to percolation pits, with a TDS range from 400 to 3,300 mg/L. The cooling towers and mechanical equipment are maintained and operated in a satisfactory manner. No major leaks were identified. Currently, there are no re-use options being employed. Several approaches known to reduce the blow down flow rate and/or TDS concentration being discharged to the percolation pits and septic systems were reviewed for technical feasibility and cost efficiency. These options range from efforts as simple as eliminating leaks to implementing advanced and innovative treatment methods. The various options considered, and their anticipated effect on water consumption, discharge volumes, and reduced concentrations are listed and compared in this report. Based on the assessment, it was recommended that there is enough variability in equipment usage, chemistry, flow rate, and discharge configurations that each discharge location at Site 300 should be considered separately when deciding on an approach for reducing the salt discharge to the subsurface. The smaller units may justify moderate changes to equipment, and may benefit from increased cleaning frequencies, more accurate and suitable chemical treatment, and sources of make up water and discharge re-use. The larger cooling towers would be more suitable for automated systems where they don't already exist, re-circulation and treatment of blow down water, and enhanced chemical dosing strategies. It may be more technically feasible and cost efficient for the smaller cooling towers to be replaced by closed loop dry coolers or hybrid towers. There are several potential steps that could be taken at each location to reduce the TDS concentration and/or water use. These include: sump water filtration, minimization of drift, accurate chemical dosing, and use of scale and corrosion coupons for chemical calibration. The implementation of some of these options could be achieved by a step-wise approach taken at two representative facilities. Once viable prototype systems have been proven in the field, systematic implementation should proceed for the remaining systems, with cost, desired reduction, and general feasibility taken into consideration for such systems.

Daily III, W D

2010-02-24T23:59:59.000Z

157

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network (OSTI)

Involvement in Passive Solar Heating and Cooling Section C:performance of passive solar heating and cooling systems.the design of passive solar heating and cooling systems, J

Authors, Various

2012-01-01T23:59:59.000Z

158

Cooling Towers Make Money  

E-Print Network (OSTI)

Question:-Why is the low bidder system a sacred cow? If contractors understand, by specifications, that the second low bidder will be awarded the contract all bidders will do their best to provide 100% performing equipment. If corners are cut, that will produce a low bid which will not be awarded the contract. Case histories are delineated indicated how low bidders by cutting quality, caused facility many times greater losses in dollars than the difference between the low bid and the second low bid. Changing the established low bid system, takes on the task of being Don Quixote. Nobody listens.

Burger, R.

1995-04-01T23:59:59.000Z

159

Model Predictive Control for the Operation of Building Cooling Systems  

E-Print Network (OSTI)

of the chillers and cooling towers, the thermal storage tankthe chillers and cooling towers, the thermal storage tank,of thermal energy storage in building cooling systems.

Ma, Yudong

2010-01-01T23:59:59.000Z

160

Utilization of Rainwater as a Supplementary Water Source for Cooling Tower Makeup: A Sustainability Strategy for Potable Water Use Reduction.  

E-Print Network (OSTI)

?? The use of rainwater as a supplementary water source for cooling water makeup was explored in an effort to reduce the potable water demand… (more)

Costello, Elizabeth Stassun

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Convection towers  

DOE Patents (OSTI)

Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

Prueitt, Melvin L. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

162

Convection towers  

DOE Patents (OSTI)

Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

Prueitt, M.L.

1996-01-16T23:59:59.000Z

163

Convection towers  

DOE Patents (OSTI)

Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

Prueitt, Melvin L. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

164

Convection towers  

DOE Patents (OSTI)

Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

Prueitt, Melvin L. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

165

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network (OSTI)

etc. Heat Exchangers Heat Pipes & Thermal Diodes ConceptJ. Heat Exchangers K. Heat Pipes & Thermal Diodes A. Conceptwith two control, one heat pipe, and one cooling study. In

Authors, Various

2012-01-01T23:59:59.000Z

166

Numerical Simulation of a Rain Shower Affected by Waste Energy Released from a Cooling Tower Complex in a Calm Environment  

Science Conference Proceedings (OSTI)

An axisymmetric cloud model is used to investigate the evolution of convective cells and associated rain showers that develop due to the sensible and latent heat released into a calm atmosphere from an industrial cooling complex. The simulated ...

S. Guan; G. W. Reuter

1995-01-01T23:59:59.000Z

167

Model Predictive Control for the Operation of Building Cooling Systems  

E-Print Network (OSTI)

of the chillers and cooling towers, the thermal storage tankin parallel), an array of cooling towers, a 7000 m 3 chilledthe chillers and cooling towers, the thermal storage tank,

Ma, Yudong

2010-01-01T23:59:59.000Z

168

GROUND WATER USE FOR COOLING: ASSOCIATED AQUIFER TEMPERATURE CHANGES  

E-Print Network (OSTI)

expensive or scarce, cooling towers or ponds are employed.~-1), for dry and wet cooling tower systems, respectively.condenser cooling sys terns such as towers or ponds are

Lippmann, Marcelo J.

2012-01-01T23:59:59.000Z

169

Convection towers  

DOE Patents (OSTI)

Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

Prueitt, M.L.

1994-02-08T23:59:59.000Z

170

Final draft: IEA Task 1. Report on Subtask D, optimization of solar heating and cooling systems  

DOE Green Energy (OSTI)

A review of general techniques and specific methods useful in the optimization of solar heating and cooling systems is undertaken. A discussion of the state-of-the-art and the principal problems in both the simplified thermal performance analysis and economic analysis portions of the optimization problem are presented. Sample economic analyses are performed using several widely used economic criteria. The predicted thermal results of one typical, widely used simplified method is compared to detailed simulation results. A methodology for and the results of a sensitivity study of key economic parameters in the life cycle cost method are presented. Finally, a simple graphical optimization technique based on the life cycle cost method is proposed.

Freeman, T.L. (ed.)

1981-03-01T23:59:59.000Z

171

A computer simulation appraisal of non-residential low energy cooling systems in California  

E-Print Network (OSTI)

greater direct use of cooling towers to reduce the use ofcoil, chiller and cooling tower in the baseline system wereoption is to use cooling tower water directly, without the

Bourassa, Norman; Haves, Philip; Huang, Joe

2002-01-01T23:59:59.000Z

172

ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE  

E-Print Network (OSTI)

Alternatives are wet cooling towers (either mechanical draftor natural draft), cooling ponds, and dry cooling towers.the exception of dry cooling towers, all of these require

Davidson, M.

2010-01-01T23:59:59.000Z

173

LBNL's Novel Approach to Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

systems department, chilled water, cooling water tower, double exchanger cooling, dual heat exchanger, high tech and industrial systems group, inrow, lawrence berkeley national...

174

Cooling Towers: Understanding Key Components of Cooling Towers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction Federal laws and regulations require Federal agencies to reduce water use and improve water efficiency. Namely, Executive Order 13514 Federal Leadership in...

175

towers of Hanoi  

Science Conference Proceedings (OSTI)

NIST. towers of Hanoi. (classic problem). Definition: Given three posts (towers) and n disks of decreasing sizes, move the ...

2013-08-23T23:59:59.000Z

176

MANAGEMENT OF BLOWDOWN FROM CLOSED LOOP COOLING SYSTEMS USING IMPAIRED WATERS.  

E-Print Network (OSTI)

??Management of cooling tower blowdown is one of the key components in cooling tower operation and usually requires treatment to meet local, state or federal… (more)

Feng, Yinghua

2010-01-01T23:59:59.000Z

177

Cooling Water System Optimization  

E-Print Network (OSTI)

During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower performance. To understand the importance of the optimization techniques, cooling tower theory will be discussed first.

Aegerter, R.

2005-01-01T23:59:59.000Z

178

Process Cooling Systems  

E-Print Network (OSTI)

Cooling towers have been on the scene for more than 50 years. It is because they have proven to be an economic choice for waste heat dissipation. But it seems, for some reason, that after installation very little attention is paid to the cooling-tower and its effect on plant operating efficiency and production. This paper will describe the value of working with a cooling tower specialist to establish the physical and thermal potential of an existing cooling tower. It also demonstrates that a repair and thermal upgrade project to improve efficiency will have a better than average return on investment.

McCann, C. J.

1983-01-01T23:59:59.000Z

179

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network (OSTI)

exchanger pinch points and cooling tower approach set equalforced draft wet cooling towers) is included with condenser

Pope, W.L.

2011-01-01T23:59:59.000Z

180

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network (OSTI)

20: Natural Draft Parabolic Cooling Tower Diagram (Adaptedwater vapor through cooling towers, for example). Irrigatedthe bottom of the cooling tower and flows upward while

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Concentrating Solar Power Tower System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrating Solar Power Tower System Basics Concentrating Solar Power Tower System Basics Concentrating Solar Power Tower System Basics August 20, 2013 - 5:06pm Addthis In power tower concentrating solar power systems, numerous large, flat, sun-tracking mirrors, known as heliostats, focus sunlight onto a receiver at the top of a tall tower. A heat-transfer fluid heated in the receiver is used to generate steam, which, in turn, is used in a conventional turbine generator to produce electricity. Some power towers use water/steam as the heat-transfer fluid. Other advanced designs are experimenting with molten nitrate salt because of its superior heat-transfer and energy-storage capabilities. Individual commercial plants can be sized to produce up to 200 megawatts of electricity. Illustration of a power tower power plant. Sunlight is shown reflecting off a series of heliostats surrounding the tower and onto the receiver at the top of the tower. The hot heat-transfer fluid exiting from the receiver flows down the tower, into a feedwater reheater, and then into a turbine, which generates electricity that is fed into the power grid. The cool heat-transfer fluid exiting the turbine flows into a steam condenser to be cooled and sent back up the tower to the receiver.

182

Theoretical analysis of natural-convection towers for solar-energy conversion  

DOE Green Energy (OSTI)

A theoretical study of solar-powered natural convection tower (chimney) performance is presented. Both heated and cooled towers are analyzed, the latter using evaporating water as the cooling mechanism. The results, which are applicable to any open-cycle configuration, show that the ideal conversion efficiencies of both heated and cooled natural convection towers are linear functions of height. The performance of a heated tower in an adiabatic atmospheric ideally approaches the Carnot efficiency limit of approx. 3.4%/km(1.0%/1000 ft). Including water pumping requirements, the ideal limit to cooled tower performance is approx. 2.75%/km(0.85%/1000 ft). Ambient atmospheric conditions such as vertical temperature gradient (lapse rate) and relative humidity can have significantly adverse effects on natural convection tower performance. The combined effects of lapse rate and ambient relative humidity are especially important for cooled natural convection towers.

Lasier, D.D.; Jacobs, E.W.

1983-05-01T23:59:59.000Z

183

Modelling magnetically dominated and radiatively cooling jets  

E-Print Network (OSTI)

Using 3D-MHD Eulerian-grid numerical simulations, we study the formation and evolution of rising magnetic towers propagating into an ambient medium. The towers are generated from a localized injection of pure magnetic energy. No rotation is imposed on the plasma. We compare the evolution of a radiatively cooling tower with an adiabatic one, and find that both bend due to pinch instabilities. Collimation is stronger in the radiative cooling case; the adiabatic tower tends to expand radially. Structural similarities are found between these towers and the millimeter scale magnetic towers produced in laboratory experiments.

Huarte-Espinosa, Martin; Blackman, Eric

2010-01-01T23:59:59.000Z

184

Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors  

E-Print Network (OSTI)

buildings cool. Minarets are tall towers with windows at thetall N ATURAL C IRCULATION - I NTEGRAL E FFECTS T ESTS towers,

Scarlat, Raluca Olga

2012-01-01T23:59:59.000Z

185

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling Evaporative Cooling (Redirected from Hybrid Cooling) Jump to: navigation, search Dictionary.png Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can

186

Tower Design Load Verification on a 1-kW Wind Turbine: Preprint  

DOE Green Energy (OSTI)

Wind turbine testing at the National Wind Technology Center (NWTC) has been done to characterize both tower top loads and thrust loads for small wind turbines, which is part of an ongoing effort to model and predict small wind turbine behavior and the resulting stresses imposed on the supporting tower. To these ends, a 1-kW furling wind turbine mounted on a 10-meter tower was instrumented and monitored via a data acquisition system for nearly a year. This test was conducted to verify the design loads as predicted by the simple design equations provided in the draft revision of the International Electrotechnical Commission (IEC) Small Wind Turbine Safety Standard 61400-02 CDV (hereafter called ''the draft Standard''). Data were captured for several operating conditions covered by the draft Standard. This paper addresses the collected data and what conclusions can be made from it.

Prascher, D.; Huskey, A.

2004-11-01T23:59:59.000Z

187

DRAFT DRAFT DRAFT Forecasting Electricity Demand  

E-Print Network (OSTI)

prices. With the medium natural gas price assumptions, the Council currently is seeing draft spot market for Northwest smelters. Since electricity prices are related to natural gas prices in the long-term, and high natural gas prices are associated with the high economic growth case, it may now make more sense to assume

188

Side Stream Filtration for Cooling Towers  

NLE Websites -- All DOE Office Websites (Extended Search)

treatment in addition to the side stream filtration, mechanical cleaning of the heat exchangers can be reduced and efficiency increased (Wymore, 2003). 7 2 Side Stream...

189

Microsoft Word - Cooling Tower Report.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(February, 2004). 5 established categorical requirements (not standards) for new offshore oil and gas extraction facilities. Relevant to a substantial portion of the existing...

190

Draft 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration Project and its associated research and development programs), Small Modular Reactors, Sodium-cooled Reactors, Salt-cooled Reactors, Light Water Reactors, and...

191

Geography Department Safety HandbookSafety HandbookSafety HandbookSafety Handbook  

E-Print Network (OSTI)

.............................................................................................................211 7.1.2. Cooling Towers.2: Mechanical Forced-Draft Cooling Tower ........................................................214 Figure 7.........................................................................................267 Figure 8.10: Sprayed Coil Dehumidifier

Hickman, Mark

192

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling: Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can reduce the amount of water required for a power plant as well as reduce the

193

Steam-Electric Power-Plant-Cooling Handbook  

SciTech Connect

The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

1982-02-01T23:59:59.000Z

194

China Solar Tower Development | Open Energy Information  

Open Energy Info (EERE)

Tower Development Jump to: navigation, search Name China Solar Tower Development Place China Sector Solar Product Joint venture for development of solar towers in China, announced...

195

Evaluation of models for predicting evaporative water loss in cooling impoundments  

E-Print Network (OSTI)

Cooling impoundments can offer a number of advantages over cooling towers for condenser water cooling at steam electric power plants. However, a major disadvantage of cooling ponds is a lack of confidence in the ability ...

Helfrich, Karl Richard

1982-01-01T23:59:59.000Z

196

Solar power towers  

DOE Green Energy (OSTI)

The high desert near Barstow, California, has witnessed the development of this country's first two solar power towers. Solar One operated successfully from 1982 to 1988 and proved that power towers work efficiently to produce utility-scale power from sunlight. Solar Two was connected to the utility grid in 1996 and is operating today. Like its predecessor, Solar Two is rated at 10 megawatts. An upgrade of the Solar One plant, Solar Two demonstrates how solar energy can be stored in the form of heat in molten salt for power generation on demand. The experience gained with these two pilot power towers has established a foundation on which industry can develop its first commercial plants. These systems produce electricity on a large scale. They are unique among solar technologies because they can store energy efficiently and cost effectively. They can operate whenever the customer needs power, even after dark or during cloudy weather.

NONE

1998-04-01T23:59:59.000Z

197

Solar power towers  

DOE Green Energy (OSTI)

The high desert near Barstow, California, has witnessed the development of this country`s first two solar power towers. Solar One operated successfully from 1982 to 1988 and proved that power towers work efficiently to produce utility-scale power from sunlight. Solar Two was connected to the utility grid in 1996 and is operating today. Like its predecessor, Solar Two is rated at 10 megawatts. An upgrade of the Solar One plant, Solar Two demonstrates how solar energy can be stored in the form of heat in molten salt for power generation on demand. The experience gained with these two pilot power towers has established a foundation on which industry can develop its first commercial plants. These systems produce electricity on a large scale. They are unique among solar technologies because they can store energy efficiently and cost effectively. They can operate whenever the customer needs power, even after dark or during cloudy weather.

Not Available

1998-04-01T23:59:59.000Z

198

Draft 2013 Annual Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft 2013 Annual Plan Draft 2013 Annual Plan Section 999: Draft 2013 Annual Plan Section 999 - Draft 2013 Annual Plan...

199

Predict particle collection in spray towers  

SciTech Connect

Spray tower wet scrubbers are used for control of particulates (as well as gaseous pollutants). The author has found that in cocurrent spray scrubbers, the most important parameter in determining particle collection efficiency is inlet dust particle size, followed by (in decreasing order of importance) gas velocity, collector droplet size, liquid-to-gas ratio, and length of scrubber. In countercurrent scrubbers, the most important parameters are collector droplet size, liquid-to-gas ratio, length of scrubber, and gas velocity. Note that some of these factors are directly related to collection, and some are related indirectly. This article provides equations, based on theoretical considerations and empirical data, for predicting particle collection efficiencies. The parameter ranges covered are typical of those encountered in the practical operation of conventional spray towers that use a ``cool`` (or cooled) inlet gas stream, so the equations are applicable to many industrial spray tower systems. The results are limited based on the ranges of the parameters evaluated, and while it may be possible to extrapolate beyond that, this has not been verified. (The initial model was for a flue-gas desulfurization system at a large power station that requires both particulate removal and SO{sub 2} absorption.)

Hesketh, H.E. [Southern Illinois Univ., Carbondale, IL (United States)

1995-10-01T23:59:59.000Z

200

Influence of Different Cooling Structure on Surface Crack of HSLA ...  

Science Conference Proceedings (OSTI)

Presentation Title, Influence of Different Cooling Structure on Surface Crack of .... of Si3N4-SiC Heat Absorption Ceramic Material Used for Tower Type Solar ...

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

Natural-Draft Dry-Cooling Tower • Power-Generation SubsystemSubsystem Costs Cost a, b, Dry-Cooling Tower Costs c, II.Steam Wet-Cooling Tower Costs Turbine~Generator STORAGE UNIT

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

202

THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE  

E-Print Network (OSTI)

to a forced draft wet cooling tower. All major parasiticpinch points and cooling tower approach temperatureP @ Pinch point AT Q Cooling tower T Condensing T point AT 0

Pope, William L.

2012-01-01T23:59:59.000Z

203

Pueblo Towers | Open Energy Information  

Open Energy Info (EERE)

Towers Towers Jump to: navigation, search Name Pueblo Towers Facility Pueblo Towers Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Vestas Towers Developer Vestas Towers Energy Purchaser Vestas Towers Location CO Coordinates 38.205834°, -104.588141° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.205834,"lon":-104.588141,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Eastgate seen from the south-east, in front of Harare's glass and concrete towers  

E-Print Network (OSTI)

Eastgate seen from the south-east, in front of Harare's glass and concrete towers #12;Eastgate officesEastgate offices Level two #12;Sections showing the passive cooling system #12;Cooling the office the degree of internal cooling achieved during April 1998 #12;· The termitary model · The termitary is an i f

Behmer, Spencer T.

205

Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate  

E-Print Network (OSTI)

. Additional energy savings could be achieved by installing cooling towers in order to obtain free cooling to the chilled water loop for much of the year. However, cooling towers are generally not used in the U1 Energy consumption and comfort analysis for different low- energy cooling systems in a mild

Chen, Qingyan "Yan"

206

First draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Planning: Planning: Institutional Issues in the West Prepared for The CREPC Transmission Planning and Expansion Work Group By The Regulatory Assistance Project Bob Anderson Associate Draft January 15, 2004 Transmission Planning: Institutional Issues in the West Page i Table of Contents Introduction......................................................................................................................... 1 Background-The Existing Transmission Planning Landscape......................................... 3 Interconnection-wide Transmission Planning ................................................................ 3 Seams Steering Group-Western Interconnection (SSG-WI) ...................................... 3 Western Electricity Coordinating Council (WECC)...................................................

207

Economic and design analysis of daylighting a commercial tower in a hot and humid climate  

E-Print Network (OSTI)

A forty story commercial office tower in Tampa, Florida was redesigned for daylighting. The methods are outlined and results illustrated, A cooling load comparison is done to determine the economic feasibility of such a ...

Roscow, Robert F

1981-01-01T23:59:59.000Z

208

Abstract On the Automorphism Tower  

E-Print Network (OSTI)

In this thesis I study the automorphism tower of free nilpotent groups. Our main tool in studying the automorphism tower is to embed every group as a lattice in some Lie group. Using known rigidity results the automorphism group of the discrete group can be embedded into the automorphism group of the Lie group. This allows me to lift the description of the derivation tower of the free nilpotent Lie algebra to obtain information about the automorphism tower of the free nilpotent group. The main result in this thesis states that the automorphism tower of the free nilpotent group ?(n, d) on n generators and nilpotency class d, stabilizes after finitely many steps. If the nilpotency class is small compared to the number of generators we have that the height of the automorphism tower is at most

Of Free Nilpotent Groups; Martin Dimitrov Kassabov

2003-01-01T23:59:59.000Z

209

Seismic analysis of lattice towers.  

E-Print Network (OSTI)

??In the absence of specific guidelines for the seismic analysis of self-supporting telecommunication towers, designers may be tempted to apply simplified building code approaches to… (more)

Khedr, Mohamed Abdel Halim.

1998-01-01T23:59:59.000Z

210

Flux Sampling Errors for Aircraft and Towers  

Science Conference Proceedings (OSTI)

Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower ...

L. Mahrt

1998-04-01T23:59:59.000Z

211

FLORIDA TOWER FOOTPRINT EXPERIMENTS  

SciTech Connect

The Florida Footprint experiments were a series of field programs in which perfluorocarbon tracers were released in different configurations centered on a flux tower to generate a data set that can be used to test transport and dispersion models. These models are used to determine the sources of the CO{sub 2} that cause the fluxes measured at eddy covariance towers. Experiments were conducted in a managed slash pine forest, 10 km northeast of Gainesville, Florida, in 2002, 2004, and 2006 and in atmospheric conditions that ranged from well mixed, to very stable, including the transition period between convective conditions at midday to stable conditions after sun set. There were a total of 15 experiments. The characteristics of the PFTs, details of sampling and analysis methods, quality control measures, and analytical statistics including confidence limits are presented. Details of the field programs including tracer release rates, tracer source configurations, and configuration of the samplers are discussed. The result of this experiment is a high quality, well documented tracer and meteorological data set that can be used to improve and validate canopy dispersion models.

WATSON,T.B.; DIETZ, R.N.; WILKE, R.; HENDREY, G.; LEWIN, K.; NAGY, J.; LECLERC, M.

2007-01-01T23:59:59.000Z

212

Improving the Efficiency of Your Process Cooling System  

E-Print Network (OSTI)

Many industries require process cooling to achieve desired outcomes of specific processes. This cooling may come from cooling towers, once-through water, mechanical refrigeration, or cryogenic sources such as liquid nitrogen or dry ice. This paper deals primarily with mechanically-based process cooling. Based on the author's experiences, this category provides the greatest opportunity for energy efficiency improvement.

Baker, R.

2005-01-01T23:59:59.000Z

213

OUT Success Stories: Power Towers  

DOE Green Energy (OSTI)

Power towers convert the thermal energy of the sun to electricity. They are large-scale power plants producing clean energy and suited for operation in sunny, semi-arid regions of the world.

Jones, J.

2000-08-31T23:59:59.000Z

214

Tower Temperature and Humidity Sensors (TWR) Handbook  

Science Conference Proceedings (OSTI)

Three tall towers are installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee forest site (E21), and a 40-meter triangular tower at the North Slope of Alaska (NSA) Barrow site. The towers are used for meteorological, radiological, and other measurements.

Cook, DR

2010-02-01T23:59:59.000Z

215

Establishing Tower-Top Equipotential Zones--Case-Study of Incidents  

Science Conference Proceedings (OSTI)

The Occupational Safety and Health Administration (OSHA) requires employers to provide protection and training for workers who perform work on de-energized and energized lines. This Technical Update report contains the draft script of a new training video on DVD under development on establishing tower-top equipotential zones. The script contains case studies and analysis of specific selected incidents that have occurred in the field. It also includes recommendations for minimizing risks and avoiding elec...

2008-11-30T23:59:59.000Z

216

EIS-0440: Draft Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement Draft Environmental Impact Statement EIS-0440: Draft Environmental Impact Statement Quartzsite Solar Energy Project and Proposed Yuma Field Office Resource Management Plan Amendment (November 2011) Quartzsite Solar Energy proposes to construct a 100-megawatt solar-powered electrical generation facility in La Paz County, Arizona.The proposed project would use a solar field made up of heliostats, which are a collection of mirrors, a 653-foot tower to capture and concentrate the sun's heat to make steam, and a thermal energy storage system. Steam produced by the facility would power traditional steam turbine generators. The project is proposed for an area about 10 miles north of Quartzsite and adjacent to Arizona State Route 95. The generation plant, power line and

217

EIS-0421: Draft Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement Draft Environmental Impact Statement EIS-0421: Draft Environmental Impact Statement Big Eddy-Knight Transmission Project, Wasco County, OR and Klickitat County, WA BPA is considering three routing alternatives and a no action alternative for the proposed transmission line. The transmission line routing alternatives all would use a combination of existing BPA and new 150 foot wide right-of-way. The routing alternatives range from about 27 to 28 miles long. BPA is considering different tower combination options (single-circuit and double-circuit) including paralleling existing transmission lines. Two substation sites are being considered for the proposed Knight Substation; the sites are on adjacent properties along an existing BPA transmission line. Two fiber optic cable options are also

218

SMUD Kokhala Power Tower Study  

DOE Green Energy (OSTI)

Kokhala is the name of a new hybridized power tower design which integrates a nitrate-salt solar power tower with a gas turbine combined-cycle power plant. This integration achieves high value energy, low costs, and lower investor risk than a conventional solar only power tower plant. One of the primary advantages of this system is that it makes small power tower plants much more economically competitive with conventional power generation technologies. This paper is an overview of a study that performed a conceptual evaluation of a small (30 MWe) commercial plant suitable for the Sacramento Municipal Utility District`s (SMUD) Rancho Seco power plant site near Sacramento, California. This paper discusses the motivation for using a small hybrid solar plant and provides an overview of the analysis methodology used in the study. The results indicate that a power tower integrated with an advanced gas turbine, combined with Sacramento`s summer solar resource, could produce a low- risk, economically viable power generation project in the near future.

Price, Henry W. [National Renewable Energy Laboratory, Golden, CO (United States); Whitney, Daniel D.; Beebe, H.I. [Sacramento Municipal Utility District, CA (United States)

1997-06-01T23:59:59.000Z

219

Draft General Conformity Determination  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Draft General Conformity Determination U.S. Department of the Interior Minerals Management Service MMS Cape Wind Energy Project January 2009 Final EIS Appendix I Draft General Conformity Determination Draft General Conformity Determination Cape Wind Energy Project Prepared by Minerals Management Service Herndon, VA November 2008 i TABLE OF CONTENTS 1.0 INTRODUCTION TO THE PROPOSED ACTION............................................................... 1 2.0 GENERAL CONFORMITY REGULATORY BACKGROUND .......................................... 2 2.1 GENERAL CONFORMITY REQUIREMENTS.................................................................... 2 2.2 GENERAL CONFORMITY APPLICABILITY.....................................................................

220

Preliminary Draft EIS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement Draft Environmental Impact Statement January 2012 DOE/EIS-0457 Albany-Eugene 115-kilovolt No. 1 Transmission Line Rebuild Project Draft Environmental Impact Statement Bonneville Power Administration January 2012 Abstract Albany-Eugene 115-kilovolt No. 1 Transmission Line Rebuild Project Draft Environmental Impact Statement i Albany-Eugene 115-kilovolt No. 1 Transmission Line Rebuild Project Responsible Agency: U.S. Department of Energy (DOE), Bonneville Power Administration Title of Proposed Project: Albany-Eugene 115-kilovolt No. 1 Transmission Line Rebuild Project State Involved: Oregon Abstract: Bonneville Power Administration is proposing to rebuild a 32-mile section of the Albany-

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Lincoln Electric Draft Environmental Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

APPENDIX E. DRAFT EA COMMENTS AND RESPONSES 2 Lincoln Electric Draft Environmental Assessment Comments and Responses Number Commenter Comment Summary Response 1. Euclid Historical...

222

DRAFT Glossary of AFIS Terms  

Science Conference Proceedings (OSTI)

Page 1. DRAFT Glossary of AFIS Terms Latent Print AFIS Interoperability Working Group Page 2. DRAFT Glossary of AFIS Terms 2 ...

2012-05-04T23:59:59.000Z

223

ARM - Campaign Instrument - aerosol-tower-eml  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsaerosol-tower-eml Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : EML Tower based Aerosol...

224

Power Tower Systems for Concentrating Solar Power  

Energy.gov (U.S. Department of Energy (DOE))

In power tower concentrating solar power systems, numerous large, flat, sun-tracking mirrors, known as heliostats, focus sunlight onto a receiver at the top of a tall tower. A heat-transfer fluid...

225

Sorting in Patrick Geddes' Outlook Tower  

E-Print Network (OSTI)

i n g in P a t r i c k Outlook Tower Geddes' JÈ Joyce Barleythree months at the Outlook 'lower in Edinburgh, sorting theand services. • The Outlook Tower was a disused observatory

Earley, Joyce

1991-01-01T23:59:59.000Z

226

GreenTower | Open Energy Information  

Open Energy Info (EERE)

GreenTower Jump to: navigation, search Name GreenTower Place Haiger 6, Germany Zip 35708 Sector Solar Product Developer of a solar chimney technology, with greenhouses for food...

227

Use of Degraded Water Sources as Cooling Water in Power Plants  

Science Conference Proceedings (OSTI)

In electricity production, nearly all thermal power plants reject heat either to a large body of water (once-through cooling) or to the atmosphere via wet cooling towers — the predominant form of cooling in California. These towers, however, use considerable quantities of water. Competing state demands for freshwater have forced California thermal power plants to consider alternative cooling water supplies, though the availability of such supplies and data on their use and impact is limited. In fac...

2003-10-13T23:59:59.000Z

228

The Tower Shielding Facility: Its glorious past  

Science Conference Proceedings (OSTI)

The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports.

Muckenthaler, F.J.

1997-05-07T23:59:59.000Z

229

Data Center Rack Cooling with Rear-door Heat Exchanger  

NLE Websites -- All DOE Office Websites (Extended Search)

they can use treated water from a plate-and-frame heat exchanger connected to a cooling tower. These inherent features of a RDHx help reduce energy use while minimizing maintenance...

230

Hydrogen Storage in Wind Turbine Towers  

DOE Green Energy (OSTI)

Low-cost hydrogen storage is recognized as a cornerstone of a renewables-hydrogen economy. Modern utility-scale wind turbine towers are typically conical steel structures that, in addition to supporting the rotor, could be used to store hydrogen. This study has three objectives: (1) Identify the paramount considerations associated with using a wind turbine tower for hydrogen storage; (2)Propose and analyze a cost-effective design for a hydrogen-storing tower; and (3) Compare the cost of storage in hydrogen towers to the cost of storage in conventional pressure vessels. The paramount considerations associated with a hydrogen tower are corrosion (in the form of hydrogen embrittlement) and structural failure (through bursting or fatigue life degradation). Although hydrogen embrittlement (HE) requires more research, it does not appear to prohibit the use of turbine towers for hydrogen storage. Furthermore, the structural modifications required to store hydrogen in a tower are not cost prohibitive.

Kottenstette, R.; Cotrell, J.

2003-09-01T23:59:59.000Z

231

Segmentally Constructed Prestressed Concrete  

E-Print Network (OSTI)

Segmentally Constructed Prestressed Concrete Hyperboloid Cooling Tower Saml H. Rizkalla Assistant large capacity power plant facilities, the natural draft cooling tower in the fonn of a thin shell concrete natural draft cooling towers is expensive and time-consuming. The cost of the structure

232

Design and Drafting  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototyping -- Desktop 3D Printing The Design & Drafting Group has an Objet30 Pro 3D printer that provides the accuracy and versatility of a high-end rapid prototyping machine...

233

NIST Cybersecurity Framework - DRAFT Framework Glossary  

Science Conference Proceedings (OSTI)

DRAFT - Framework Glossary Term Draft Definition Category The logical subdivision of a function; one or more categories comprise a function. ...

2013-06-28T23:59:59.000Z

234

Spirulina production in brine effluent from cooling towers.  

E-Print Network (OSTI)

??Spirulina is a blue-green, multicellular, filamentous cyanobacterium that can grow to sizes of 0.5 millimetres in length. It is an obligate photoautotroph and has a… (more)

Choonawala, Bilkis Banu

2007-01-01T23:59:59.000Z

235

Upcoming Funding Opportunity for Tower Manufacturing and ...  

... and Lower Cost of Energy" intends to support partnerships leading to innovative designs and processes for wind turbine tower manufacturing and ...

236

SunShot Initiative: CSP Tower Air Brayton Combustor  

NLE Websites -- All DOE Office Websites (Extended Search)

CSP Tower Air Brayton Combustor to someone by E-mail Share SunShot Initiative: CSP Tower Air Brayton Combustor on Facebook Tweet about SunShot Initiative: CSP Tower Air Brayton...

237

Wind turbine tower for storing hydrogen and energy  

DOE Patents (OSTI)

A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

Fingersh, Lee Jay (Westminster, CO)

2008-12-30T23:59:59.000Z

238

Combined-cycle power tower  

DOE Green Energy (OSTI)

This paper evaluates a new power tower concept that offers significant benefits for commercialization of power tower technology. The concept uses a molten nitrate salt centralreceiver plant to supply heat, in the form of combustion air preheat, to a conventional combined-cycle power plant. The evaluation focused on first commercial plants, examined three plant capacities (31, 100, and 300 MWe), and compared these plants with a solar-only 100-MWe plant and with gas-only combined-cycle plants in the same three capacities. Results of the analysis point to several benefits relative to the solar-only plant including low energy cost for first plants, low capital cost for first plants, reduced risk with respect to business uncertainties, and the potential for new markets. In addition, the concept appears to have minimal technology development requirements. Significantly, the results show that it is possible to build a first plant with this concept that can compete with existing gas-only combined-cycle plants.

Bohn, M.S.; Williams, T.A.; Price, H.W.

1994-10-01T23:59:59.000Z

239

NIST Computer Security Publications - Drafts  

Science Conference Proceedings (OSTI)

... 1. DRAFT Guidelines for Smart Grid Cybersecurity: Vol. 1 - Smart Grid Cybersecurity Strategy, Architecture, and High-Level Requirements Vol. ...

240

WIND DATA REPORT WBZ Tower, Hull, MA  

E-Print Network (OSTI)

WIND DATA REPORT WBZ Tower, Hull, MA 9/1/06-11/30/06 Prepared for Department of Energy (DOE) Golden the closest tower leg The data from the SecondWind Nomad2 logger is emailed to the Renewable Energy Research Energy Research Laboratory Page 10 University of Massachusetts, Amherst Amherst, MA 01003 #12;Wind Speed

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building a Better Transmission Tower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

software that helped them build cheaper but sturdier towers for new high-voltage transmission lines. Their new towers are stronger but use less steel. They better...

242

Capacity Assessment of a Transmission Tower under Wind Loading.  

E-Print Network (OSTI)

??Transmission towers play a vital role in power distribution networks and are often subject to strong wind loads. Lattice tower design is often based on… (more)

Mara, Thomas G

2013-01-01T23:59:59.000Z

243

Composite Tower Solutions | Open Energy Information  

Open Energy Info (EERE)

Solutions Solutions Jump to: navigation, search Name Composite Tower Solutions Place Provo, Utah Zip 84604 Sector Wind energy Product Composite Tower Solutions manufactures equipment for wind resource assessment needs, including meteorological towers, weather towers, and data collection and instrumentation towers. Coordinates 40.233765°, -111.668509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.233765,"lon":-111.668509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities  

Science Conference Proceedings (OSTI)

Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC technology could cool process water at cycles of concentration considered highly scale forming for mechanical draft cooling towers. At the completion of testing, there was no visible scale on the heat transfer surfaces and cooling was sustained throughout the test period. The application of the WARMF decision framework to the San Juan Basis showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry) and lead to critical shortages. WARMF-ZeroNet, as part of the integrated ZeroNet decision support system, offers stakeholders an integrated approach to long-term water management that balances competing needs of existing water users and economic growth under the constraints of limited supply and potential climate change.

C. McGowin; M. DiFilippo; L. Weintraub

2006-06-30T23:59:59.000Z

245

Gas-cooled reactors  

SciTech Connect

Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing.

Schulten, R.; Trauger, D.B.

1976-01-01T23:59:59.000Z

246

Draft Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Draft Environmental Impact Statement for the Proposed Abengoa Biorefinery Project near Hugoton, Stevens County, Kansas Volume 2 - Appendices U.S. Department of Energy Golden Field Office Office of Energy Efficiency and Renewable Energy DOE/EIS-0407D September 2009 Cover photos courtesy of (left to right): Southeast Renewable Fuels, LLC DOE National Renewable Energy Laboratory Public domain Draft Environmental Impact Statement for the Proposed Abengoa Biorefinery Project near Hugoton, Stevens County, Kansas Volume 2 - Appendices U.S. Department of Energy Golden Field Office Office of Energy Efficiency and Renewable Energy DOE/EIS-0407D September 2009 COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) COOPERATING AGENCY: The U.S. Department of Agriculture-Rural Development is a cooperating

247

Draft Enivonmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dear Reader: The enclosed Draft Environmental Assessment (EA) for the Utah Coal and Biomass Fueled Pilot Plant Project, Kanab, Utah , (Draft EA-1870D) was prepared by the U.S. Department of Energy (DOE) in accordance with the Council on Environmental Quality's National Environmental Policy Act (NEPA) implementing regulations (40 CFR Parts 1500 to 1508) and DOE NEPA implementing procedures (10 CFR Part 1021). The Draft EA evaluates the potential environmental impacts of DOE providing cost-shared funding under a cooperative agreement with Viresco Energy, LLC (Viresco) for its design, construction, and testing of a pilot-scale gasification process facility. The objective of Viresco's proposed project is to conduct a pilot- scale evaluation of the Steam Hydrogasification Reaction process to determine the technical

248

Passive cooling with solar updraft and evaporative downdraft chimneys  

DOE Green Energy (OSTI)

Computer models have been developed to describe the operation of both solar updraft and evaporative downdraft chimneys. Design studies are being conducted at the present time to use the towers for cooling an experimental, well instrumented, structure to study passive cooling in residential buildings. (MHR)

Mignon, G.V.; Cunningham, W.A.; Thompson, T.L.

1985-01-01T23:59:59.000Z

249

Cooling Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Power Plant Cooling Technologies Cooling Technologies Cooling tower at Steamboat Springs geothermal power plant in Steamboat Springs, NV. Power generation facilities that rely on thermal sources as their energy inputs such as Coal, Natural Gas, Geothermal, Concentrates Solar Power, and Nuclear require cooling technologies to reject the heat that is created. The second law of thermodynamics states: "No process can convert heat absorbed from a reservoir at one temperature directly into work without also rejecting heat to a cooler reservoir. That is, no heat engine is 100% efficient"[1] In the context of power generation from thermal energy, this means that any heat that is created must be rejected. Heat is most commonly rejected in

250

EIS-0440: EPA Notice of Availability of the Draft Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Draft Environmental the Draft Environmental Impact Statement EIS-0440: EPA Notice of Availability of the Draft Environmental Impact Statement Quartzsite Solar Energy Project Quartzsite Solar Energy proposes to construct a 100-megawatt solar-powered electrical generation facility in La Paz County, Arizona.The proposed project would use a solar field made up of heliostats, which are a collection of mirrors, a 653-foot tower to capture and concentrate the sun's heat to make steam, and a thermal energy storage system. Steam produced by the facility would power traditional steam turbine generators. The project is proposed for an area about 10 miles north of Quartzsite and adjacent to Arizona State Route 95. The generation plant, power line and ancillary facilities would be on land administered by the Bureau of Land

251

Water Requirements for Future Energy production in California  

E-Print Network (OSTI)

decreased possibility cooling towers have the potential ofef- fluent Sewage ef- fluent Sewage ef-:- Cooling towersCooling towers Cooling towers Cooling towers Cooling towers

Sathaye, Jayant A.; Ritschard, R.L.

1977-01-01T23:59:59.000Z

252

Water Requirements for Future Energy production in California  

E-Print Network (OSTI)

decreased possibility cooling towers have the potential ofef- fluent Sewage ef- fluent Sewage ef-:- Cooling towersCooling towers Cooling towers Cooling towers Cooling towers

Sathaye, J.A.

2011-01-01T23:59:59.000Z

253

Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants  

Science Conference Proceedings (OSTI)

This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

Ken Mortensen

2011-12-31T23:59:59.000Z

254

Projective preservation : reframing Rudolph's Tower for Boston  

E-Print Network (OSTI)

By 2012, the fate of Paul Rudolph's tower in downtown Boston has been in question for years while a vision of a denser city calls for its demolition. Projected development on the site currently argues that to move forward, ...

Turner, Jessica K

2012-01-01T23:59:59.000Z

255

9th Annual North American Waste to Energy Conference WATER RECLAMATION PRACTICES AT THE PINELLAS COUNTY (FL)  

E-Print Network (OSTI)

.7 million gallons per day (MGD) of makeup water for the cooling tower and up to 200 thousand gallons per day in the cooling towers. Reclaimed water for boiler makeup will require membrane treatment followed by ion exchange cooling is achieved by a circulating water system through a five (5) cell mechanical draft cooling tower

Columbia University

256

Assessment of Tall Wind Tower Technology  

Science Conference Proceedings (OSTI)

Technologies that enable wind turbines to capture more energy at a given site have the potential to reduce the overall cost of energy, thereby making wind power more competitive against conventional power generation. Because wind speed generally increases with height above ground, one way to increase energy capture is to elevate the rotor by means of a taller tower. To exploit this potential, a number of tall tower models are under development or have recently been introduced to the wind energy market. I...

2011-11-08T23:59:59.000Z

257

Dampers for Natural Draft Heaters: Technical Report  

E-Print Network (OSTI)

vented natural-draft gas-fired storage water heater. Thevented natural?draft gas?fired storage water heater. Thevented natural?draft gas?fired storage water heater. The

Lutz, James D.

2009-01-01T23:59:59.000Z

258

Summary of EPRI Cooling System Effects Research 1975-1993  

Science Conference Proceedings (OSTI)

Twenty years of EPRI-sponsored research on cooling system effects have led to substantial cost savings by reducing utility data collection requirements and, in some cases, showing that cooling towers were unnecessary. This document highlights past and current EPRI projects that address environmental concerns related to power plant cooling systems. It will be particularly useful to utility environmental managers responsible for compliance with the Clean Water Act.

1994-11-16T23:59:59.000Z

259

A Regenerative High-Rise Tower in Shreveport, Louisiana  

E-Print Network (OSTI)

Zero Net Energy Buildings are increasingly being designed and constructed in response to the demand for sustainable buildings. But, we must now go beyond merely sustaining our environment for future generations we must provide regenerative designs that restore our natural environment. This paper will document the design of a regenerative high-rise tower in Shreveport, Louisiana, which will serve as a facility to train individuals in a non-profit organization’s renewal strategies and demonstrate by example the pedagogy of regenerative design. The 16-story structure — built in the 1950s and named the Petroleum Tower, reflecting the commodity that then ruled the local economy — was vacant and asbestos-laden when given to the non-profit Community Renewal International (CRI) in 2001. In 2006, funded by a grant from the U.S. Environmental Protection Agency, workers removed the asbestos. Through a follow up grant from the U.S. Department of Energy to support the design process of a new CRI headquarters building, the University of Texas at Austin School of Architecture completed architectural design studies for the building renewal. The principles of this new design include: day lighting, envelope configuration, building integrated photovoltaic systems, green surfaces, ventilation strategies, advanced mechanical cooling systems, regenerative elevator systems, energy management systems, water harvesting, grey water systems, trigeneration systems and a combined heating, hot water and power biodiesel plant.

Garrison, M.

2010-08-01T23:59:59.000Z

260

ON THE STRUCTURE AND STABILITY OF MAGNETIC TOWER JETS  

SciTech Connect

Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales {approx}< 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.

Huarte-Espinosa, M.; Frank, A.; Blackman, E. G. [Department of Physics and Astronomy, University of Rochester, 600 Wilson Boulevard, Rochester, NY 14627-0171 (United States); Ciardi, A. [LERMA, Universite Pierre et Marie Curie, Observatoire de Paris, F-92195 Meudon (France); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Lebedev, S. V.; Chittenden, J. P. [Blackett Laboratory, Imperial College London, SW7 2BW London (United Kingdom)

2012-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Design and Drafting  

NLE Websites -- All DOE Office Websites (Extended Search)

Email Portal (Zimbra)* Email Portal (Zimbra)* * Operations Logbook* * Project Proposal System* * ICMS * Safety and Training * ANL ESQ Training * APS Phone Directory * Resources & Information* * Internal link Design and Drafting Group The Advanced Photon Source (APS) at Argonne National Laboratory is a national synchrotron-radiation research facility funded by the U.S. Department of Energy. Using high-brilliance x-ray beams from the APS, an international community of scientists conducts forefront basic and applied research in the fields of material science, biological science, physics, chemistry, environmental, geophysical and planetary science. The AES Design and Drafting Group supports the ASD and AES divisions' continued improvement of the accelerator as well as the scientific

262

Draft Genome Sequence  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Draft Genome Sequence of Serratia sp. Strain ATCC 39006, a Model Bacterium for Analysis of the Biosynthesis and Regulation of Prodigiosin, a Carbapenem, and Gas Vesicles Peter C. Fineran, a Marina C. Iglesias Cans, a Joshua P. Ramsay, b Nabil M. Wilf, b Desiree Cossyleon, a Matthew B. McNeil, a Neil R. Williamson, b Rita E. Monson, b S. Anette Becher, c Jo-Ann L. Stanton, d Kim Brügger, e Steven D. Brown, f George P. C. Salmond b Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand a ; Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom b ; AgResearch Ltd., Invermay Agricultural Centre, Mosgiel, New Zealand c ; Department of Anatomy, University of Otago, Dunedin, New Zealand d ; EASIH, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom e ; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge,

263

DUF6 Draft EIS Public Hearing Transcripts  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Draft EIS Public Hearing Transcripts Transcripts from the DUF6 Conversion Draft EIS Public Hearings The following transcripts are from the DUF6 Conversion...

264

Draft Advanced Fossil Solicitation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Fossil Solicitation Federal loan guarantee solicitation announcement -- Advanced Fossil Energy Projects. Microsoft Word - Draft Advanced Fossil Solicitation Final Draft.1...

265

The evolution of magnetic tower jets in the laboratory  

E-Print Network (OSTI)

The evolution of laboratory produced magnetic jets is followed numerically through three-dimensional, non-ideal magnetohydrodynamic simulations. The experiments are designed to study the interaction of a purely toroidal field with an extended plasma background medium. The system is observed to evolve into a structure consisting of an approximately cylindrical magnetic cavity with an embedded magnetically confined jet on its axis. The supersonic expansion produces a shell of swept-up shocked plasma which surrounds and partially confines the magnetic tower. Currents initially flow along the walls of the cavity and in the jet but the development of current-driven instabilities leads to the disruption of the jet and a re-arrangement of the field and currents. The top of the cavity breaks-up and a well collimated, radiatively cooled, 'clumpy' jet emerges from the system.

A. Ciardi; S. V. Lebedev; A. Frank; E. G. Blackman; J. P. Chittenden; C. J. Jennings; D. J. Ampleford; S. N. Bland; S. C. Bott; J. Rapley; G. N. Hall; F. A. Suzuki-Vidal; A. Marocchino; T. Lery; C. Stehle

2006-11-14T23:59:59.000Z

266

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy  

Energy.gov (U.S. Department of Energy (DOE))

Case study that summarizes the Wind Tower Systems and its Space Frame tower. Describes their new wind tower design and explains how DOE funding made this possible.

267

Stochastic Cooling  

Science Conference Proceedings (OSTI)

Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

Blaskiewicz, M.

2011-01-01T23:59:59.000Z

268

Design Standards Manual Table of Contents: Part III (Divisions 1 -16)  

E-Print Network (OSTI)

Monitoring and Safety Equipment ­ RESERVED 15641 Open-Circuit, Mechanical Draft Cooling Towers 05/07 15642 Closed-Circuit, Mechanical Draft Cooling Towers ­ RESERVED 15663 Evaporative Condensers ­ RESERVED 15671 Condensing Units 05/07 15672 Air-Cooled Condensers 05/07 15710 Hydronic and Steam Heat Exchangers 05/07 15725

269

Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.  

SciTech Connect

Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and dissolved solids. Makeup water is withdrawn, usually from surface water bodies, to replace the lost water. The volume of makeup water is many times smaller than the volume needed to operate a once-through system. Although neither the final new facility rule nor the proposed existing facility rule require dry cooling towers as the national best technology available, the environmental community and several States have supported the use of dry-cooling technology as the appropriate technology for addressing adverse environmental impacts. It is possible that the requirements included in the new facility rule and the ongoing push for dry cooling systems by some stakeholders may have a role in shaping the rule for existing facilities. The temperature of the cooling water entering the condenser affects the performance of the turbine--the cooler the temperature, the better the performance. This is because the cooling water temperature affects the level of vacuum at the discharge of the steam turbine. As cooling water temperatures decrease, a higher vacuum can be produced and additional energy can be extracted. On an annual average, once-through cooling water has a lower temperature than recirculated water from a cooling tower. By switching a once-through cooling system to a cooling tower, less energy can be generated by the power plant from the same amount of fuel. This reduction in energy output is known as the energy penalty. If a switch away from once-through cooling is broadly implemented through a final 316(b) rule or other regulatory initiatives, the energy penalty could result in adverse effects on energy supplies. Therefore, in accordance with the recommendations of the Report of the National Energy Policy Development Group (better known as the May 2001 National Energy Policy), the U.S. Department of Energy (DOE), through its Office of Fossil Energy, National Energy Technology Laboratory (NETL), and Argonne National Laboratory (ANL), has studied the energy penalty resulting from converting plants with once-through cooling to wet towers or indirect-dry towers. Five l

Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

2006-11-27T23:59:59.000Z

270

STAFF DRAFT GUIDEBOOK RENEWABLES PORTFOLIO  

E-Print Network (OSTI)

California Energy Commission STAFF REPORT POWER SOURCE DISCLOSURE PROGRAM PRERULEMAKING DRAFT REGULATIONS SECOND DRAFT APRIL 2011 CEC3002011003SD #12;CALIFORNIA ENERGY COMMISSION Lorraine Gonzalez Staff members of the California Energy Commission prepared this report. As such, it does not necessarily

271

Radio Towers Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Radio Towers Geothermal Area Radio Towers Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Radio Towers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.03666667,"lon":-115.4566667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

HSS Work Group Telecom (Draft Charters) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting SummaryActionsParticipants Draft Proposed Charter Template Draft Work Group Matrix Draft Work Group Guidance More Documents & Publications HSS Focus Group Meeting...

273

Broadwind Energy Formerly Tower Tech Holdings | Open Energy Information  

Open Energy Info (EERE)

Broadwind Energy Formerly Tower Tech Holdings Broadwind Energy Formerly Tower Tech Holdings Jump to: navigation, search Name Broadwind Energy (Formerly Tower Tech Holdings) Place Manitowoc, Wisconsin Zip 54221-1957 Sector Wind energy Product US-based manufacturer of wind turbine towers, turbine assemblies such as nacelles, and monopiles. References Broadwind Energy (Formerly Tower Tech Holdings)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Broadwind Energy (Formerly Tower Tech Holdings) is a company located in Manitowoc, Wisconsin . References ↑ "Broadwind Energy (Formerly Tower Tech Holdings)" Retrieved from "http://en.openei.org/w/index.php?title=Broadwind_Energy_Formerly_Tower_Tech_Holdings&oldid=343059"

274

Wind Turbine Towers Establish New Height Standards and Reduce...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Case study that...

275

BOREAS SSA-YJP Tower Flux Data Revised  

NLE Websites -- All DOE Office Websites (Extended Search)

Tower Flux Data Revised A revised version of the BOREAS TF04 tower flux data is now available from the ORNL DAAC. Data providers have revised the data set entitled "BOREAS TF-04...

276

PART III DIVISION 15 PAGE 1 RUTGERS DESIGN STANDARDS MANUAL MAY 2007 DIVISION 15 MECHANICAL  

E-Print Network (OSTI)

. For cooling towers, use 78o F WB design. #12;PART III DIVISION 15 PAGE 4 RUTGERS DESIGN STANDARDS MANUAL MAY OPEN-CIRCUIT, MECHANICAL-DRAFT COOLING TOWERS A. Design Considerations RESERVED B. Special Documentation Requirements RESERVED C. Materials and Methods of Construction 1. Cooling towers shall be packaged

277

Biogenic Potassium Salt Particles as Seeds for Secondary Organic  

E-Print Network (OSTI)

performance computer codes" International Association for Hydraulic Research 7th Cooling tower and spray pond THE NATURAL DRAFT COOLING TOWER PERFORMANCE Ghulam Amur, Brian Milton, John Reizes, Jafar Madadnia, Simon Australia (Ghulam.Amur@uts.edu.au) Abstract The effect of wind on the performance of a cooling tower has

278

Design and Drafting  

NLE Websites -- All DOE Office Websites (Extended Search)

Design & Drafting Work Request Form Design & Drafting Work Request Form Please complete and submit the following form to request service from the AES/D&D Group Please fill out this form as complete as possible. Please do not use any special characters such as / or \ use a dash -. Project Name: Project Division is for: AES ASD XSD BEAMLINE APS APS-Upgrade LCLS NSLS-II Specify the APS Division the Project will be built for. WBS: Requesting Engineer: Last Name First Name Requesters Badge Number: Requesters Phone: E-mail: @aps.anl.gov Requesters Group: AES-ADM AES-BC AES-BSC AES-CF AES-CS AES-CTL AES-DD AES-IS AES-IT AES-MED AES-MIS AES-MOM AES-PRO AES-SA AES-SI AES-UES ASD-ADM ASD-AP ASD-DIA ASD-IAG ASD-MD ASD-OA ASD-PS ASD-RF LCLS USR-APS XSD-ADM XSD-BTS XSD-CEP XSD-IXN XSD-MC XSD-MM XSD-OFM XSD-TRR XSD-UAS XSD-XMI XSD-XOR

279

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Tower Systems to develop the Wind Tower Systems to develop the Space Frame tower, a new concept for wind turbine towers. Instead of a solid steel tube, the Space Frame tower consists of a highly optimized design of five custom-shaped legs and interlaced steel struts. With this design, Space Frame towers can support turbines at greater heights, yet weigh and cost less than traditional steel tube towers. Wind Tower Systems LLC (now

280

Draft Supplemental Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Al Al b any, OR * Mo rg antow n , WV * Pitt, bu rg h , PA August 12, 20 II Dear Reader: The enclosed document, Draft Supplemental Environmental Assessment for General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative (supplemental EA; DOElEA- I 723S), was prepared by the U.S. Department of Energy (DOE) in accordance with the Council on Environmental Quality's National Environmental Policy Act (NEPA) implementing regulations (40 CFR Parts 1500 to 1508) and DOE NEPA implementing procedures (10 CFR Part 1021). DOE prepared this supplemental EA to evaluate the potential environmental consequences of providing financial assistance under the American Recovery and Reinvestment Act of 2009 (Recovery Act; Public Law 111-5, 123 Stat. liS) to General Motors Limited Liability Company (GM) for its proposed project

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Draft Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment Environmental Assessment for the GILA-NORTH GILA TRANSMISSION LINE REBUILD AND UPGRADE PROJECT (DOE/EA-1948) December 2013 Prepared for U.S. Department of Energy Western Area Power Administration, Desert Southwest Region Prepared by Cooperating Agencies U.S. Bureau of Reclamation, Yuma Area Office U.S. Army Corps of Engineers, Los Angeles District DRAFT Gila to North Gila Transmission Line Rebuild and Upgrade Project Environmental Assessment Prepared for: U.S. Department of Energy Western Area Power Administration Desert Southwest Region Cooperating Agencies: U.S. Bureau of Reclamation Yuma Area Office U.S. Army Corps of Engineers Los Angeles District Prepared by: December 2013 Gila to North Gila Transmission Line Rebuild and Upgrade Project

282

Surface and Tower Meteorological Instrumentation at NSA Handbook - January 2006  

SciTech Connect

The Surface and Tower Meteorological Instrumentation at Atqasuk (METTWR2H) uses mainly conventional in situ sensors to measure wind speed, wind direction, air temperature, dew point and humidity mounted on a 10-m tower. It also obtains barometric pressure, visibility, and precipitation data from sensors at or near the base of the tower. In addition, a Chilled Mirror Hygrometer is located at 1 m for comparison purposes. Temperature and relative humidity probes are mounted at 2 m and 5 m on the tower. For more information, see the Surface and Tower Meteorological Instrumentation at Atqasuk Handbook.

MT Ritsche

2006-01-30T23:59:59.000Z

283

Full-Time and Seasonal Closed-Cycle Cooling  

Science Conference Proceedings (OSTI)

This report reviews the results of analyses that examined the issues, practicality, and cost associated with the use of cooling towers for fish protection on a seasonal basisspecifically during the season when entrainable life stages (that is, eggs, larvae, and juvenile fish and shellfish) are present in the source water body.

2012-01-18T23:59:59.000Z

284

Technology to Facilitate the Use of Impaired Water in Cooling...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Research Circle Niskayuna, NY 12309-1027 518-387-5055 whisenhunt@crd.ge.com Technology To FaciliTaTe The Use oF impaired WaTers in cooling ToWers promisprojecT no.:...

285

A COOLING SYSTEM FOR BUIDINGS USING WIND ENERGY  

E-Print Network (OSTI)

A COOLING SYSTEM FOR BUIDINGS USING WIND ENERGY Hamid Daiyan Islamic Azad University - Semnan in dray land, and only uses wind energy for conditioning. It technologies date back over 1000 years. Wind system, Wind energy, Temperature Fig.1 Wind tower of Doulat-Abad garden of Yazd with it's altitude is 33

286

SunShot Initiative: Brayton Cycle Baseload Power Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Brayton Cycle Baseload Power Brayton Cycle Baseload Power Tower to someone by E-mail Share SunShot Initiative: Brayton Cycle Baseload Power Tower on Facebook Tweet about SunShot Initiative: Brayton Cycle Baseload Power Tower on Twitter Bookmark SunShot Initiative: Brayton Cycle Baseload Power Tower on Google Bookmark SunShot Initiative: Brayton Cycle Baseload Power Tower on Delicious Rank SunShot Initiative: Brayton Cycle Baseload Power Tower on Digg Find More places to share SunShot Initiative: Brayton Cycle Baseload Power Tower on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

287

Framework Draft for Networked Appliances using  

E-Print Network (OSTI)

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at

S. Moyer; D. Marples; S. Tsang; J. Katz; P. Gurung; T. Cheng; A. Dutta; H. Schulzrinne

2001-01-01T23:59:59.000Z

288

Status of SACTI Beta Development  

Science Conference Proceedings (OSTI)

The Seasonal/Annual Cooling Tower Impact (SACTI) model, developed by Argonne National Laboratory and the University of Illinois, provides predictions of seasonal and annual cooling tower impacts from any number of mechanical or natural-draft cooling towers. SACTI was used extensively in the 1980s and early 1990s to assess cooling tower impacts associated with fossil and nuclear power production. It was originally designed to be run on a mainframe mini-computer using magnetic tapes—technology ...

2012-12-17T23:59:59.000Z

289

Site Environmental Report for Calendar Year 2010  

E-Print Network (OSTI)

-17 December 2004 Numerical Simulation of Heat and Mass Transfer in a Natural Draft Wet Cooling Tower N draft wet cooling tower using the com- mercial CFD package Fluent has been conducted. The wa- ter droplets in the spray and rain zones are represented with droplet trajectories written in Lagrangian form

Kemner, Ken

290

Best Management Practice: Single-Pass Cooling Equipment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Single-Pass Cooling Equipment Single-Pass Cooling Equipment Best Management Practice: Single-Pass Cooling Equipment October 8, 2013 - 9:37am Addthis Single-pass or once-through cooling systems provide an opportunity for significant water savings. In these systems, water is circulated once through a piece of equipment and is then disposed down the drain. Types of equipment that typically use single-pass cooling include CAT scanners, degreasers, hydraulic equipment, condensers, air compressors, welding machines, vacuum pumps, ice machines, x-ray equipment, and air conditioners. To remove the same heat load, single-pass systems use 40 times more water than a cooling tower operated at five cycles of concentration. To maximize water savings, single-pass cooling equipment should be either modified to

291

San Luis Rio Colorado Project Draft EIS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft EIS Draft EIS i CONTENTS Acronyms and Abbreviations ........................................................................................................ xi S Summary ................................................................................................................................. I S.1 Purpose and Need for Agency Action ............................................................................II S.2 Applicants' Purpose and Goals..................................................................................... III S.3 Public Participation....................................................................................................... IV S.4 Alternatives ................................................................................................................

292

DRAFT Outline - Preliminary Framework to Reduce Cyber ...  

Science Conference Proceedings (OSTI)

Page 1. 1 DRAFT Outline - Preliminary Framework to Reduce Cyber Risks to Critical Infrastructure, July 1, 2013 NOTES ...

2013-07-02T23:59:59.000Z

293

Renewable Energy Annual DRAFT - Energy Information Administration  

U.S. Energy Information Administration (EIA)

and for biofuel production. DRAFT. EIA-22M, Monthly Biodiesel Production Survey Page 7 Permanently Ceased Operations (operating status): ...

294

Notwithstanding our concerns for reliability, the Energy Commission supports efforts to reduce the impacts of once-through cooling on marine and estuarine  

E-Print Network (OSTI)

cooling towers and half of the projects under licensing review at the Energy Commission are using recycled to reduce the impacts of once-through cooling on marine and estuarine environments in California. In our the federal Clean Water Act section 316(b) Phase II rule regulating cooling water intakes for existing, large

295

Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)  

DOE Green Energy (OSTI)

This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

Turchi, C. S.; Heath, G. A.

2013-02-01T23:59:59.000Z

296

Oak Ridge's EM Program Demolishes North America's Tallest Water Tower |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demolishes North America's Tallest Water Demolishes North America's Tallest Water Tower Oak Ridge's EM Program Demolishes North America's Tallest Water Tower August 27, 2013 - 12:00pm Addthis Oak Ridge’s K-1206 F Fire Water Tower falls into an empty field during a recent demolition project. Oak Ridge's K-1206 F Fire Water Tower falls into an empty field during a recent demolition project. OAK RIDGE, Tenn. - Oak Ridge's EM program recently demolished one of the most iconic structures at the East Tennessee Technology Park (ETTP). The 382-foot checkerboard water tower - the tallest in North America - dominated the site's skyline since its construction in 1958. The K-1206 F Fire Water Tower operated as part of the site's fire protection system, but it was drained, disconnected and permanently taken

297

Cooling towers among ivory towers : a comparative analysis of research universities, electricity consumption, and greenhouse gas emissions  

E-Print Network (OSTI)

The rationale for university sustainability and existing international agreements on sustainability in higher education are reviewed in the context of developing a model to determine the linkages between three environmental ...

Keegan, Brian C. (Brian Christopher)

2006-01-01T23:59:59.000Z

298

Cooling towers among ivory towers : a comparative analysis of research universities, electricity consumption, and greenhouse gas emissions.  

E-Print Network (OSTI)

??The rationale for university sustainability and existing international agreements on sustainability in higher education are reviewed in the context of developing a model to determine… (more)

Keegan, Brian C. (Brian Christopher)

2006-01-01T23:59:59.000Z

299

Cooled railplug  

DOE Patents (OSTI)

The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

Weldon, William F. (Austin, TX)

1996-01-01T23:59:59.000Z

300

Competitive Landscape of Mobile Telecommunications Tower Companies in India  

Science Conference Proceedings (OSTI)

With the entry of 3G and WiMAX players, the Indian mobile subscriber base is expected to reach 1110 million by the end of 2015. To meet mobile infrastructure demand, India will require approximately 350,000 to 400,000 mobile telecommunications towers ... Keywords: Business Models, Infrastructure Sharing, Joint Venture Companies, Mobile Network Operators MNO, Mobile Telecommunication Tower Valuation, Mobile Telecommunications Towers, Telecommunication Circles

N.P. Singh

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Chemical Treatment Fosters Zero Discharge by Making Cooling Water Reusable  

E-Print Network (OSTI)

Over the past decade, the water requirements for cooling industrial manufacturing processes have changed dramatically. Once-through cooling has been largely replaced by open recirculating cooling water methods. This approach reduces water consumption by increasing the use of recycled water. Simplistically, the circulating cooling water flows through heat exchanger equipment and is cooled by passing through a cooling tower. The recycled water is cooled by evaporation of some of the circulating water as it passes through the tower. As a result of the evaporation process, the dissolved solids in the water become concentrated. The evaporated water is replaced by fresh makeup water. The dissolved solids content of the water is maintained by the rate of water discharge (blowdown). As the amount of dissolved solids increases, their solubility is exceeded and the solids tend to precipitate from the cooling water. The precipitated scale adheres to heat transfer surfaces and reduces heat transfer efficiency. In order to achieve zero discharge of water, it is paramount that the potential for scale formation and deposition be minimized. This can be accomplished through physical separation of scale-forming ions and particulate matter. Two widely used mechanical methods in this category are lime-soda side stream softening and vapor compression blowdown evaporation. Another approach is chemical treatment to promote scale inhibition and dispersion.

Boffardi, B. P.

1996-04-01T23:59:59.000Z

302

The Formation and Fate of Trihalomethanes in Power Plant Cooling Water Systems  

Science Conference Proceedings (OSTI)

Trihalomethanes (THMs) are semi-volatile compounds that form in water when chlorine or bromine reacts with dissolved organic carbon. This report investigates the formation and fate of THM compounds in power plant cooling water systems, THM health risks, a generalized mechanism of THM formation, and the applicability of existing THM research to power plant cooling. The report presents results of a two-site sampling and analytical program designed to identify THM formation potential in cooling towers using...

2004-03-16T23:59:59.000Z

303

H-FACET: Alignment Tool for Power Tower Heliostats  

H-FACET: Alignment Tool for Power Tower Heliostats ... for the U.S. Department of Energy’s National Nuclear Security Administration. SAND # 2011-4640P

304

Spray tower: the workhorse of flue-gas desulfurization  

Science Conference Proceedings (OSTI)

A recently developed spray tower system for use in a utility flue gas desulfurization system is simple, durable, and capable of achieving very high sulfur dioxide removal efficiencies, possibly approaching 100%. The principles behind the design and operation of the spray tower are discussed. The quality of water used for washing, tower size limitations, construction materials liquid distribution, gas-inlet design, gas distribution, mass transfer, and operating characteristics are examined. Procedures to maintain the reliability and high performance of the spray tower are described. (5 diagrams, 5 photos, 12 references, 1 table)

Saleem, A.

1980-10-01T23:59:59.000Z

305

THE STEEL TOWER: A 21st CENTURY TALL BUILDING.  

E-Print Network (OSTI)

?? This paper outlines the need for a new mixed use high-rise project for the commercial business district of Pittsburgh, Pennsylvania. The proposed tower combines… (more)

Duke, Peter Guldenshuh

2013-01-01T23:59:59.000Z

306

Out of Ashes and Rubble: The Pirelli Tower  

E-Print Network (OSTI)

tower was novel, experimental architecture because it was the first skyscraper to be built in Italy; it was an extremely tall

Ziegler, Claudia J.

2009-01-01T23:59:59.000Z

307

Lattice Tower Design of Offshore Wind Turbine Support Structures.  

E-Print Network (OSTI)

??Optimal design of support structure including foundation and turbine tower is among the most critical challenges for offshore wind turbine. With development of offshore wind… (more)

Gong, W.

2011-01-01T23:59:59.000Z

308

California Code of Regulations, Title 8, Section 1646. Tower...  

NLE Websites -- All DOE Office Websites (Extended Search)

Subchapter 4. Construction Safety Orders Article 22. Scaffolds--Various Types New query 1646. Tower Scaffolds and Rolling Scaffolds, Wood or Metal. (a) The minimum...

309

FOCUS COOLING  

NLE Websites -- All DOE Office Websites (Extended Search)

www.datacenterdynamics.com www.datacenterdynamics.com FOCUS COOLING Issue 28, March/April 2013 LBNL'S NOVEL APPROACH TO COOLING Lawrence Berkeley National Laboratory and APC by Schneider Electric test a unique double-exchanger cooling system LBNL program manager Henry Coles says can cut energy use by half A s part of a demonstration sponsored by the California Energy Commission in support of the Silicon Valley Leadership Group's data center summit, Lawrence Berkeley National Laboratory (LBNL) collaborated with APC by Schneider Electric to demonstrate a novel prototype data center cooling device. The device was installed at an LBNL data center in Berkeley, California. It included two air-to-water heat exchangers. Unlike common single-heat-exchanger configurations, one of these was supplied with

310

Ventilative cooling  

E-Print Network (OSTI)

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graça, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

311

Solar power tower development: Recent experiences  

DOE Green Energy (OSTI)

Recent experiences with the 10 MW{sub e} Solar Two and the 2.5 MW{sub t} TSA (Technology Program Solar Air Receiver) demonstration plants are reported. The heat transfer fluids used in these solar power towers are molten-nitrate salt and atmospheric air, respectively. Lessons learned and suggested technology improvements for next-generation plants are categorized according to subsystem. The next steps to be taken in the commercialization process for each these new power plant technologies is also presented.

Tyner, C.; Kolb, G.; Prairie, M. [and others

1996-12-01T23:59:59.000Z

312

Passive cooling with solar updraft and evaporative downdraft chimneys. Interim report, June 15, 1984--March 1, 1985  

DOE Green Energy (OSTI)

Computer models have been developed to describe the operation of both solar updraft and evaporative downdraft chimneys. Design studies are being conducted at the present time to use the towers for cooling an experimental, well instrumented, structure to study passive cooling in residential buildings. (MHR)

Mignon, G.V.; Cunningham, W.A.; Thompson, T.L.

1985-12-31T23:59:59.000Z

313

A Wind-Tunnel Study of Wind Effects on Air-Cooled Condensers  

Science Conference Proceedings (OSTI)

Due to increasing competition for fresh water supplies in the future, development of power plants that use a minimum of water is crucial. When minimizing water use in a water-constrained environment, direct dry cooling systems are a good alternative to once-through cooling systems with an evaporative wet cooling tower. The core of any direct dry cooling system is an air-cooled condenser (ACC). A number of studies have shown that wind can negatively impact ACC system performance. Based on these observati...

2011-12-15T23:59:59.000Z

314

Microsoft Word - 20060327_Reference_Power_Block_for_IGCC_Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Air-Cooled Generators for the Gas Turbines and Steam Turbine. * A steam surface condenser with a forced draft cooling tower for heat removal. While operating on natural gas,...

315

Refrigerant Phase-Change Stirling-Cycle Solar Power Towers  

Science Conference Proceedings (OSTI)

This paper firstly introduces the principles of Refrigerant Phase-Change Stirling-Cycle solar power towers This heat engines use solar reservoire. When the refrigerant in an engine cylinder absorbs heat from high-temperature heat sources, refrigerant ... Keywords: refrigerant phase-change cycle, heat engines, solar power tower, finite-time thermodynamics

Dezhong Huang

2011-01-01T23:59:59.000Z

316

The cyclic multi-peg Tower of Hanoi  

Science Conference Proceedings (OSTI)

Variants of the classical Tower of Hanoi problem evolved in various directions. Allowing more than 3 pegs, and imposing limitations on the possible moves among the pegs, are two of these. Here, we deal with the case of h?3 pegs arranged on ... Keywords: Multi-peg tower of Hanoi

Daniel Berend; Amir Sapir

2006-07-01T23:59:59.000Z

317

Modification of the Colony Tower for the RIO BLANCO detonation  

SciTech Connect

The tower is a 180-ft tall steel-frame experimental oil shale processing retort structure with heavy process equipment on various levels. The structural response of the tower to the ground motion from Project Rio Blanco is analyzed and the necessary structural modifications described. (TFD)

Blume, J.A.; Lee, L.A.; Freeman, S.A.; Honda, K.K.

1974-04-30T23:59:59.000Z

318

Cooled railplug  

DOE Patents (OSTI)

The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

Weldon, W.F.

1996-05-07T23:59:59.000Z

319

Dynamic analysis of guyed towers subjected to wind loads incorporating nonlinearity of the guys.  

E-Print Network (OSTI)

??Guyed masts are unique civil engineering structures, structurally efficient, selfsupporting lattice towers. High structural efficiency of guyed towers is achieved by the use of pre-tensioned… (more)

Kaul, Rohit

1999-01-01T23:59:59.000Z

320

Hydrogen Storage in Wind Turbine Towers: Design Considerations; Preprint  

DOE Green Energy (OSTI)

The paramount considerations associated with a hydrogen tower are corrosion (in the form of hydrogen embrittlement) and structural failure (through bursting or fatigue life degradation). Although hydrogen embrittlement (HE) requires more research and experimentation, it does not appear to prohibit the use of turbine towers for hydrogen storage. Furthermore, the structural modifications required to store hydrogen in a tower are technically feasible. We discovered that hydrogen towers have a''crossover pressure'' at which their critical mode of failure crosses over from fatigue to bursting. The crossover pressure for many turbine towers is between 10 and 15 atm. The cost of hydrogen storage per unit of storage capacity is lowest near the crossover pressure. Above the crossover pressure, however, storage costs rise quickly.

Kottenstette, R.; Cotrell, J.

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Condon Wind Project Draft Environmental Impact Statement  

DOE Green Energy (OSTI)

BPA needs to acquire resources to meet its customers' load growth. In meeting that need for power, BPA will consider the following purposes: protecting BPA and its customers against risk by diversifying its resource portfolio; assuring consistency with its responsibilities under the Pacific Northwest Electric Power Planning and Conservation Act to encourage the development of renewable resources; meeting customer demand for renewable resources; assuring consistency with its resource acquisition strategy; and meeting the objectives of its Power Business Line's Strategic Plan. The Draft Environmental Impact Statement (DEIS) evaluates the environmental impacts of the Proposed Action (to execute one or more power purchase and transmission services agreements to acquire and transmit up to the full electric output of the proposed Condon Wind Project) and the No Action Alternative. BPA's preferred alternative is the Proposed Action. BPA has also identified the Proposed Action as the environmentally-preferred alternative. The proposed wind project is located on private agricultural land in Gilliam County, Oregon. The 38-acre project site is located within a 4,200-acre study area located on both sides of Oregon Highway 206, approximately 5 miles northwest of the town of Condon. The project would use modern, efficient 600-kilowatt (kW) wind turbines to convert energy in the winds to electricity that would be transmitted over the existing BPA transmission system. The project would consist of one or two phases: the first phase would use 41 wind turbines to yield a capacity of approximately 24.6 megawatts (MW). A second phase (if built) would use 42 wind turbines to yield a capacity of approximately 25.2 MW. For purposes of this DEIS, the size of the project is assumed to be 49.8 MW, built in two phases. Major components of the wind project include wind turbines and foundations, small pad-mounted transformers, an operation and maintenance building, power collection and communication cables, project access roads, meteorological towers on foundations, and a substation. During construction there would also be temporary equipment storage and construction staging areas. The first phase is proposed for construction in late 2001; the second phase could be constructed during spring/summer 2002 or later.

N /A

2001-06-01T23:59:59.000Z

322

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

Science Conference Proceedings (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

323

Tower reactors for bioconversion of lignocellulosic material  

DOE Patents (OSTI)

An apparatus is described for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

Nguyen, Q.A.

1999-03-30T23:59:59.000Z

324

Tower reactors for bioconversion of lignocellulosic material  

DOE Patents (OSTI)

An apparatus is disclosed for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material. The apparatus consists of a tower bioreactor which has mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

Nguyen, Q.A.

1998-03-31T23:59:59.000Z

325

Tower reactors for bioconversion of lignocellulosic material  

DOE Patents (OSTI)

An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards of downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

Nguyen, Quang A. (16458 W. 1st Ave., Golden, CO 80401)

1998-01-01T23:59:59.000Z

326

Tower reactors for bioconversion of lignocellulosic material  

DOE Patents (OSTI)

An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

Nguyen, Quang A. (16458 W. 1st Ave., Golden, CO 80401)

1999-01-01T23:59:59.000Z

327

Draft Report of Policy Subcommittee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee Draft Report of Policy Subcommittee September, 2008 1 DRAFT ONLY; NOT FOR CITATION OR DISTRIBUTION WITHOUT PERMISSION I. Introduction More than 50 years since the launch of the Atoms for Peace initiative, the implications of US nuclear policy, in terms of our Nation's energy, environmental, and national security interests, are greater than ever. The choices the next president will make regarding nuclear energy will therefore be of the utmost importance. The mission of this Subcommittee is to explore the critical choices and implications in US nuclear energy policy, with a view to framing options for the next President to consider. Nuclear energy is just one element of the broader energy picture. One cannot effectively address

328

Chapter 3_Consolidated_DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement March 2013 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Volume 1: Environmental Analyses DOE/EIS-0451 HOOPER SPRINGS TRANSMISSION PROJECT Draft Environmental Impact Statement DOE/EIS - 0451 Bonneville Power Administration Cooperating Agencies U.S. Department of Agriculture, Forest Service, Caribou-Targhee National Forest U.S. Department of Interior, Bureau of Land Management Idaho Office of Energy Resources March 2013 Hooper Springs Transmission Project Responsible Agency: U.S. Department of Energy (DOE), Bonneville Power Administration (BPA) Cooperating Agencies: U.S. Department of Agriculture, Forest Service (USFS), Caribou-Targhee National Forest (C-TNF); U.S. Department of Interior, Bureau of Land Management (BLM); Idaho Office of Energy Resources

329

Designing a 'Near Optimum' Cooling-Water System  

E-Print Network (OSTI)

Cooling water is expensive to circulate. Reducing its flow - i.e., hiking exchanger outlet temperatures - can cut tower, pump and piping investment as much as one-third and operating cost almost in half. Heat-exchanger-network optimization has been accomplished in large integrated plants, such as petroleum refineries. In many of the chemical process industries, however, a plant contains several individual processes, and network optimization, except on a limited basis, is not feasible. So far, no one has developed similar procedures for designing and optimizing a cooling-water once through-exchanger system. This article attempts to fill the void by presenting a design basis that will produce a 'near optimum' system. A cooling-water system consists of four major components: heat exchangers, cooling towers, circulation piping and pumps. To optimize such a system, one must define the system interactions and apply these relationships to the simultaneous design of the aforementioned equipment. This article develops criteria that for most applications allow one to ignore system interactions, and still design a 'near optimum' system. Cooling-water systems have long been designed by 'rules of thumb' that call for fixing the cool ant temperature-rise across all heat exchangers (usually 20 F) and setting the coolant inlet temperature to the heat exchanger at the site's wet-bulb temperature plus 8 F. These rules produce a workable cooling system; but, by taking the same coolant rise across all exchangers, regardless of the individual process outlet-temperatures, this cannot result in an optimized design. The design method presented in this article replaces the 'rules of thumb' with criteria that are easy to apply and that take into account the effect that the individual exchanger process outlet- temperatures have on cooling-system economics. Economic analyses of actual process have shown that cooling-system investment can be reduced by one third, and cooling-system operating cost by one half, If the proposed design criteria are used instead of the 'rules of thumb.' It has been found that the controlling economic factor for a cooling system is the quantity of water being circulated. Reducing the flow (raising the coolant outlet temperature of heat exchangers) significantly reduces cooling tower, pump and piping investment, and operating cost, and only moderately increases the heat-exchanger investment. The overriding conclusion to be drawn is that cooling water is very expensive, and its conservation can result in significant savings.

Crozier, R. A., Jr.

1981-01-01T23:59:59.000Z

330

EIS-0250: Draft Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain (July 1999)

331

Appendix D Draft Oil Spill Response Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D D Draft Oil Spill Response Plan U.S. Department of the Interior Minerals Management Service MMS Cape Wind Energy Project January 2009 Final EIS Appendix D Draft Oil Spill Response Plan DRAFT Oil Spill Response Plan CAPE WIND ASSOCIATES, LLC BOSTON, MASSACHUSETTS PREPARED FOR Cape Wind Associates, LLC 75 Arlington Street Boston, Massachusetts 02116 PREPARED BY ESS Group, Inc. 401 Wampanoag Trail, Suite 400 East Providence, Rhode Island 02915 Project No. E159-601 December 2005 DRAFT OIL SPILL RESPONSE PLAN Cape Wind Associates, LLC Boston, Massachusetts Prepared For: Cape Wind Associates, LLC 75 Arlington Street Boston, Massachusetts 02116 Prepared By: ESS Group, Inc. 401 Wampanoag Trail, Suite 400

332

Berkeley Lab's "Draft" Sustainability Strategy (Title TBD)  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab's "Draft" Sustainability Strategy (Title TBD) NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be updated until...

333

DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

334

EA-1488: Draft Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

728D 728D Environmental Assessment Integrated Vegetation Management on the Hanford Site, Richland, Washington U.S. Department of Energy Richland Operations Office Richland, Washington 99352 Approved for Public Release; Further Disseminat ion Uillimited June 2011 DOE/EA-1728D June 2011 1 2 3 4 5 6 This page intentionally left blank. 7 8 U.S. Department of Energy DOE/EA-1728D Draft Environmental Assessment iii June 2011 CONTENTS 1 2 1.0 INTRODUCTION ........................................................................................................................... 1 3

335

DOE Issues Two Draft National Interest Electric Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Issues Two Draft National Interest Electric Transmission Corridor Designations DOE Issues Two Draft National Interest Electric Transmission Corridor Designations U.S....

336

EA-1886: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment EA-1886: Draft Environmental Assessment Big Sky Regional Carbon Sequestration Partnership - Phase III: Kevin Dome Carbon Storage Project, Shelby,...

337

EIS-0323-S1: Draft Supplement Environmental Impact Statement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-S1: Draft Supplement Environmental Impact Statement EIS-0323-S1: Draft Supplement Environmental Impact Statement Sacramento Area Voltage Support Construction and operation has...

338

UNEP Handbook for Drafting Laws on Energy Efficiency and Renewable...  

Open Energy Info (EERE)

Handbook for Drafting Laws on Energy Efficiency and Renewable Energy Resources Jump to: navigation, search Name UNEP Handbook for Drafting Laws on Energy Efficiency and Renewable...

339

EA-1932: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment EA-1932: Draft Environmental Assessment Bass Lake Native Fish Restoration, Eureka, Lincoln County, Montana This EA will evaluate the potential...

340

EIS-0312: Draft Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Draft Environmental Impact Statement EIS-0312: Draft Environmental Impact Statement Fish and Wildlife Implementation Plan This EIS evaluates the environmental impacts associated...

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EIS-0271: Draft Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Draft Environmental Impact Statement EIS-0271: Draft Environmental Impact Statement The Department of Energy (DOE) limits electronic access to certain NEPA documents on this...

342

EA-1917: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment EA-1917: Draft Environmental Assessment Wave Energy Test Facility Project, Newport, OR This EA evaluates Northwest National Marine Renewable...

343

Draft Chapter 3: Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Chapter 3: Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs...

344

EIS-0379: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0379: EPA Notice of Availability of the Draft Environmental Impact Statement Libby (FEC) to Troy Section...

345

EA-1903: Notice of Availability of Draft Environmental Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Notice of Availability of Draft Environmental Assessment EA-1903: Notice of Availability of Draft Environmental Assessment Kansas State University Zond Wind Energy Project,...

346

EIS-0464: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0464: EPA Notice of Availability of the Draft Environmental Impact Statement Lake Charles Carbon Capture...

347

EIS-0355: EPA Notification of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notification of Availability of the Draft Environmental Impact Statement EIS-0355: EPA Notification of Availability of the Draft Environmental Impact Statement Remediation of the...

348

EIS-0391: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0391: EPA Notice of Availability of the Draft Environmental Impact Statement Tank Closure and Waste...

349

EIS-0445: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0445: EPA Notice of Availability of the Draft Environmental Impact Statement Mountaineer Commercial Scale...

350

EIS-0373: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

73: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0373: EPA Notice of Availability of the Draft Environmental Impact Statement Proposed Consolidation...

351

EIS-0375: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0375: EPA Notice of Availability of the Draft Environmental Impact Statement Disposal of...

352

EIS-0408: EPA Notice of Availability of a Draft Programmatic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of a Draft Programmatic Environmental Impact Statement EIS-0408: EPA Notice of Availability of a Draft Programmatic Environmental Impact Statement Upper...

353

EIS-0409: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0409: EPA Notice of Availability of the Draft Environmental Impact Statement Kemper County Integrated...

354

EIS-0336: DOE Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of the Draft Environmental Impact Statement and Public Hearings EIS-0336: DOE Notice of Availability of the Draft Environmental Impact Statement and...

355

EA-1566: DOE Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of the Draft Environmental Assessment EA-1566: DOE Notice of Availability of the Draft Environmental Assessment Proposed Infrastructure Improvements for...

356

EIS-0394: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0394: EPA Notice of Availability of the Draft Environmental Impact Statement FutureGen Project...

357

EA-1917: Notice of Availability of a Draft Environmental Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Availability of a Draft Environmental Assessment EA-1917: Notice of Availability of a Draft Environmental Assessment Wave Energy Test Facility, Newport, OR DOE announces...

358

EA-1339: DOE Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: DOE Notice of Availability of the Draft Environmental Assessment Addendum EA-1339: DOE Notice of Availability of the Draft Environmental Assessment Addendum Disposition of...

359

EIS-0374: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0374: EPA Notice of Availability of the Draft Environmental Impact Statement Klondike IIIBiglow Canyon...

360

EA-1809: Notice of Availability of a Draft Environmental Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Availability of a Draft Environmental Assessment EA-1809: Notice of Availability of a Draft Environmental Assessment White Earth Nation Wind Energy Project II, Becker and Mahnomen...

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIS-0441: EPA Notice of Availability of a Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of a Draft Environmental Impact Statement EIS-0441: EPA Notice of Availability of a Draft Environmental Impact Statement Mohave County Wind Farm Project,...

362

EIS-0478: EPA Notice of Availability of a Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: EPA Notice of Availability of a Draft Environmental Impact Statement EIS-0478: EPA Notice of Availability of a Draft Environmental Impact Statement Antelope Valley Station to...

363

EIS-0451: EPA Notice of Availability of a Draft Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

51: EPA Notice of Availability of a Draft Environmental Impact Statement EIS-0451: EPA Notice of Availability of a Draft Environmental Impact Statement Hooper Springs Project,...

364

EIS-0346: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0346: EPA Notice of Availability of the Draft Environmental Impact Statement Salmon Creek Project,...

365

EIS-0387: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0387: EPA Notice of Availability of the Draft Environmental Impact Statement Y-12 National Security...

366

EIS-0317: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement Supplement EIS-0317: EPA Notice of Availability of the Draft Environmental Impact Statement Supplement...

367

EIS-0422: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0422: EPA Notice of Availability of the Draft Environmental Impact Statement Central Ferry-Lower...

368

EIS-0431: EPA Notice of Availability of Draft Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of Draft Environmental Impact Statement EIS-0431: EPA Notice of Availability of Draft Environmental Impact Statement Hydrogen Energy California's...

369

EIS-0472: EPA Notice of Availability of a Draft Programmatic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of a Draft Programmatic Environmental Impact Statement EIS-0472: EPA Notice of Availability of a Draft Programmatic Environmental Impact Statement...

370

EA-1790: DOE Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of the Draft Environmental Assessment EA-1790: DOE Notice of Availability of the Draft Environmental Assessment Heterogeneous Feed Biorefinery Pontotoc,...

371

EIS-0385: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0385: EPA Notice of Availability of the Draft Environmental Impact Statement Site Selection for the...

372

EIS-0399: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0399: EPA Notice of Availability of the Draft Environmental Impact Statement Montana Alberta Tie Ltd....

373

EIS-0353: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement EIS-0353: EPA Notice of Availability of the Draft Environmental Impact Statement South Fork Flathead Watershed Westslope Cutthroat Trout...

374

EIS-0441: Amended Notice of Availability of a Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amended Notice of Availability of a Draft Environmental Impact Statement EIS-0441: Amended Notice of Availability of a Draft Environmental Impact Statement Mohave County Wind Farm...

375

EIS-0444: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement EIS-0444: EPA Notice of Availability of the Draft Environmental Impact Statement Texas Clean Energy Project, Ector County, Texas Notice of...

376

EIS-0361: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement EIS-0361: EPA Notice of Availability of the Draft Environmental Impact Statement Western Greenbier Co-Production Demonstration Project...

377

EA-1656: DOE Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of the Draft Environmental Assessment EA-1656: DOE Notice of Availability of the Draft Environmental Assessment MARET Center Construction Project at...

378

EIS-0409: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

409: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0409: EPA Notice of Availability of the Draft Environmental Impact Statement Kemper County...

379

EA-1929: Notice of Availability of a Draft Environmental Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Availability of a Draft Environmental Assessment EA-1929: Notice of Availability of a Draft Environmental Assessment NorthStar Medical Technologies LLC, Commercial...

380

EA-1919: Notice of Availability of a Draft Programmatic Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Availability of a Draft Programmatic Environmental Assessment EA-1919: Notice of Availability of a Draft Programmatic Environmental Assessment Recycling of Scrap Metals Originating...

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EA-1922: Notice of Availability of a Draft Environmental Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Availability of a Draft Environmental Assessment EA-1922: Notice of Availability of a Draft Environmental Assessment Combined Power and Biomass Heating System, Fort...

382

EIS-0394: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0394: EPA Notice of Availability of the Draft Environmental Impact Statement FutureGen Project Planning,...

383

EIS-0419: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0419: EPA Notice of Availability of the Draft Environmental Impact Statement Whistling Ridge Energy...

384

EA-1592: GSA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GSA Notice of Availability of the Draft Environmental Assessment EA-1592: GSA Notice of Availability of the Draft Environmental Assessment Modernization of Facilities and...

385

EA-1900: Notice of Availability of a Draft Environmental Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment EA-1900: Notice of Availability of a Draft Environmental Assessment Radiological Work and Storage Building at the Knolls Atomic Power Laboratory...

386

EIS-0469: EPA Notice of Availability of a Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

69: EPA Notice of Availability of a Draft Environmental Impact Statement EIS-0469: EPA Notice of Availability of a Draft Environmental Impact Statement EPA Notice of Availability...

387

EIS-0359: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0359: EPA Notice of Availability of the Draft Environmental Impact Statement Construction and Operation...

388

EIS-0431: DOE Notice of Availability of Draft Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of Draft Environmental Impact Statement EIS-0431: DOE Notice of Availability of Draft Environmental Impact Statement Hydrogen Energy California's...

389

EIS-0444: DOE Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of the Draft Environmental Impact Statement and Notice of Public Hearing EIS-0444: DOE Notice of Availability of the Draft Environmental Impact Statement...

390

EIS-0250: EPA Notice of Availability of the Draft Supplemental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Supplemental Environmental Impact Statement EIS-0250: EPA Notice of Availability of the Draft Supplemental Environmental Impact Statement...

391

EIS-0472: DOE Notice of Availability of a Draft Programmatic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: DOE Notice of Availability of a Draft Programmatic Environmental Impact Statement EIS-0472: DOE Notice of Availability of a Draft Programmatic Environmental Impact Statement...

392

EIS-0400: EPA Notice of Availability of a Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of a Draft Environmental Impact Statement EIS-0400: EPA Notice of Availability of a Draft Environmental Impact Statement Grandby Pumping Plant Switchyard...

393

EIS-0408: DOE Notice of Availability of a Programmatic Draft...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of a Programmatic Draft Environmental Impact Statement EIS-0408: DOE Notice of Availability of a Programmatic Draft Environmental Impact Statement DOE...

394

EIS-0421: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement EIS-0421: EPA Notice of Availability of the Draft Environmental Impact Statement Big Eddy-Knight Transmission Project Proposal to Construct,...

395

EIS-0414: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Draft Environmental Impact Statement EIS-0414: EPA Notice of Availability of the Draft Environmental Impact Statement Energia Sierra Juarez U.S. Transmission Line Project,...

396

EIS-0447: DOE Notice of Availability of Draft Environmental Impact...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Availability of Draft Environmental Impact Statement Champlain Hudson Power Express Transmission Line Project, New York DOE announces the availability of a draft EIS to...

397

New Draft of Cybersecurity Risk Management Process (RMP) Guideline...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft of Cybersecurity Risk Management Process (RMP) Guideline Now Available for Public Comment (March 2012) New Draft of Cybersecurity Risk Management Process (RMP) Guideline Now...

398

Systems/Component Design, Engineering and Drafting - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Drafting Capabilities Engineering Computation and Design Engineering and Structural Mechanics SystemsComponent Design, Engineering and Drafting Heat Transfer and Fluid Mechanics...

399

EIS-0350: Draft Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement EIS-0350: Draft Environmental Impact Statement Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National...

400

EIS-0447: EPA Notice of Availability of Draft Environmental Impact...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Availability of Draft Environmental Impact Statement Champlain Hudson Power Express Transmission Line Project, New York EPA announces the availability of a draft EIS to...

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EIS-0365: Draft Environmental Impact Statement for the Imperial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

65: Draft Environmental Impact Statement for the Imperial-Mexicali 230-kV Transmission Lines, EIS-0365 (May 2004) EIS-0365: Draft Environmental Impact Statement for the...

402

DRAFT NEPA Guidance on Consideration of the Effects of Climate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT NEPA Guidance on Consideration of the Effects of Climate Change and Greenhouse Gas Emissions DRAFT NEPA Guidance on Consideration of the Effects of Climate Change and...

403

DOE EAC Electricity Adequacy Report. Transmission Chapter DRAFT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Chapter DRAFT- September 18, 2008 DOE EAC Electricity Adequacy Report. Transmission Chapter DRAFT- September 18, 2008 The purpose of this document is to seed...

404

EIS-0458: Draft Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement EIS-0458: Draft Environmental Impact Statement Proposed Loan Guarantee to Support Construction and Startup of the Topaz Solar Farm, San Luis...

405

EIS-0403: EPA Notice of Availability of the Draft Programmatic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Programmatic Environmental Impact Statement Solar Energy Development in Six Southwestern States Notice of Availability, Draft...

406

EA-1922: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment EA-1922: Draft Environmental Assessment Combined Power and Biomass Heating System, Fort Yukon, Alaska This DOE Draft EA, in cooperation with RUS and the...

407

EA-1861: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment EA-1861: Draft Environmental Assessment Frito-Lay Biomass Boiler Project, Beloit, Wisconsin The U.S. Department of Energy (DOE) is proposing to...

408

EIS-0283: Draft Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement EIS-0283: Draft Environmental Impact Statement Surplus Plutonium Disposition Draft Environmental Impact Statement This EIS evaluates the potential...

409

EA-1904: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment EA-1904: Draft Environmental Assessment Linac Coherent Light Source-II Draft Environmental Assessment (December 2011) This EA evaluates the environmental...

410

DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas...

411

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in...

412

Experimental Investigation of the Padding Tower for Air Dehumidifier  

E-Print Network (OSTI)

Air conditioning with all fresh air is founded on the principle of dehumidifying by liquid desiccant. It has the characteristics of being clean, power-saving, easy to operate, and requiring low-grade heat. It is suitable for applying waste heat, and solar power as the heat source for regeneration. Hence, this system has a great latent potential for energy savings and environmental protection. The system chooses the padding tower as a dehumidifier and regenerator, which are often used in petrochemical industry. The system chooses a padding tower as a dehumidifier, and LiCl-Water as a liquid desiccant. The vapor in the air is absorbed by the spray of the LiCl solution, and then the absorbed vapor will be released by heating the absorbent. These processes form the circle of absorptive refrigeration operating in atmospheric pressure. This paper describes studies on the theory and experiment of the padding tower of the dehumidifying air conditioning, including selecting different padding and measuring the speed of the air flow and the solution flow and the pressure drop between the layers of the padding. The experimental and computational results indicate that the design parameters of the padding tower significantly influence the characteristics of the liquid desiccant air conditioning. Of these design parameters, the framework of the padding tower, ratio of the air and the concentration of the inlet solution is largest through the tower, the temperature and effects of the dehumidifying capability of the tower.

Wang, J.; Liu, J.; Li, C.; Zhang, G.; An, S.

2006-01-01T23:59:59.000Z

413

Power Tower Technology Roadmap and cost reduction plan.  

DOE Green Energy (OSTI)

Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

Mancini, Thomas R.; Gary, Jesse A. (U.S. Department of Energy); Kolb, Gregory J.; Ho, Clifford Kuofei

2011-04-01T23:59:59.000Z

414

Don Ana Sun Tower Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Don Ana Sun Tower Solar Power Plant Don Ana Sun Tower Solar Power Plant Jump to: navigation, search Name Don Ana Sun Tower Solar Power Plant Facility Don Ana Sun Tower Sector Solar Facility Type Concentrating Solar Power Developer NRG Energy/eSolar Location Dona Ana County, New Mexico Coordinates 32.485767°, -106.7234639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.485767,"lon":-106.7234639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

Alpine SunTower Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SunTower Solar Power Plant SunTower Solar Power Plant Jump to: navigation, search Name Alpine SunTower Solar Power Plant Facility Alpine SunTower Sector Solar Facility Type Concentrating Solar Power Developer NRG Energy/eSolar Location Lancaster, California Coordinates 34.6867846°, -118.1541632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.6867846,"lon":-118.1541632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Meteorological Tower Measurements of a Surface Cold Front  

Science Conference Proceedings (OSTI)

measurements from the Boulder Atmospheric Observatory meteorological research tower are used to describe the structure and physical processes of a strong surface cold front. Analysis reveals that the horizontal gradients in temperature and wind ...

M. A. Shapiro

1984-08-01T23:59:59.000Z

417

Advanced Lighting Controls - My Venture from the Ivory Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Lighting Controls - My Venture from the Ivory Tower Speaker(s): Charlie Huizenga Date: June 15, 2012 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: Dragan...

418

Wind Shear Characteristics at Central Plains Tall Towers: Preprint  

SciTech Connect

Conference paper for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing the wind shear characteristics at tall tower sites in the Central Plains of the United States.

Schwartz, M.; Elliott, D.

2006-06-01T23:59:59.000Z

419

Offshore Tower Shading Effects on In-Water Optical Measurements  

Science Conference Proceedings (OSTI)

A field campaign was performed to estimate the shading effect induced on in-water irradiance and radiance measurements taken in the immediate vicinity of the Acqua Alta Oceanographic Tower (AAOT), located in the northern Adriatic Sea, which is ...

Giuseppe Zibordi; John Piero Doyle; Stanford B. Hooker

1999-11-01T23:59:59.000Z

420

Power Tower Systems for Concentrating Solar Power | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

known as heliostats, focus sunlight onto a receiver at the top of a tall tower. A heat-transfer fluid heated in the receiver is used to generate steam, which, in turn, is...

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Economic evaluation of four types of dry/wet cooling applied to the 5-MWe Raft River geothermal power plant  

DOE Green Energy (OSTI)

A cost study is described which compared the economics of four dry/wet cooling systems to use at the existing Raft River Geothermal Plant. The results apply only at this site and should not be generalized without due consideration of the complete geothermal cycle. These systems are: the Binary Cooling Tower, evaporative condenser, Combin-aire, and a metal fin-tube dry cooling tower with deluge augmentation. The systems were evaluated using cooled, treated geothermal fluid instead of ground or surface water in the cooling loops. All comparisons were performed on the basis of a common plant site - the Raft River 5 MWe geothermal plant in Idaho. The Binary Cooling Tower and the Combin-aire cooling system were designed assuming the use of the isobutane/water surface condenser currently installed at the Raft River Plant. The other two systems had the isobutane ducted to the evaporative condensers. Capital credit was not given to the system employing the direct condensing process. The cost of the systems were estimated from designs provided by the vendors. The levelized energy cost range for each cooling system is listed below. The levelized energy cost reflects the incremental cost of the cooling system for the life of the plant. The estimates are presented in 1981 dollars.

Bamberger, J.A.; Allemann, R.T.

1982-07-01T23:59:59.000Z

422

DRAFT FOR PUBLIC COMMENT STATE OF CALIFORNIA  

E-Print Network (OSTI)

populations. It also provides recommendations for consideration by state agencies related to extreme heatDRAFT FOR PUBLIC COMMENT STATE OF CALIFORNIA EXTREME HEAT ADAPTATION INTERIM GUIDANCE DOCUMENT (CAT) 8/31/2012 #12;DRAFT FOR PUBLIC COMMENT Page 1 STATE OF CALIFORNIA EXTREME HEAT ADAPTATION

423

REACTOR COOLING  

DOE Patents (OSTI)

A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

Quackenbush, C.F.

1959-09-29T23:59:59.000Z

424

American Tower Company | Open Energy Information  

Open Energy Info (EERE)

Company Company Jump to: navigation, search Name American Tower Company Address P.O. Box 29 Place Shelby, Ohio Zip 44875 Sector Wind energy Product Agriculture;Business and legal services; Energy audits/weatherization; Engineering/architectural/design; Manufacturing; Retail product sales and distribution Phone number 419-347-1185 Website http://www.amertower.com Coordinates 40.8814452°, -82.6618424° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8814452,"lon":-82.6618424,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Municipal waste water as a source of cooling water for California electric power plants. Final report  

SciTech Connect

This report discusses sources of municipal waste water for potential use as cooling water in California power plants. It notes the major factors which affect this practice. Municipal treatment facilities in California with discharge volumes deemed adequate to supply new power plants are identified. Also included is a summary of the experiences of several utilities in California and other western states with existing or planned applications of municipal waste water in power plant cooling towers.

MacDonald, T.

1980-05-01T23:59:59.000Z

426

Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report  

DOE Green Energy (OSTI)

Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

Not Available

1981-03-01T23:59:59.000Z

427

Unitary solar heating/cooling system package development. Progress report, June 1, 1977--January 31, 1978  

DOE Green Energy (OSTI)

During this period, a 3 ton residential system hardware package has been developed and is operating in an Arkla owned solar house in Evansville. The Arkla tower-cooled WF36 chiller has been substituted for the evaporatively cooled chiller under development in the package. The residential software and manufacturing programs are underway. Only preliminary thinking has been done on the commercial 25 ton program which will soon be getting major attention.

Merrick, R.H.

1978-01-01T23:59:59.000Z

428

Wind Shear Characteristics at Central Plains Tall Towers  

Science Conference Proceedings (OSTI)

The object of this study is to analyze wind shear characteristics at tall tower sites in the Central Plains of the United States. The hub heights of modern turbines used for wind farm projects are now 70 meters (m) to 100 m above ground and some advanced turbines under development for deployment during the second half of this decade are rated at 2-5 megawatts of energy generation with rotor diameters near 100 m and hub heights of 100-120 m. These advanced turbines will take advantage of the higher wind speeds aloft to generate more wind energy. Specific knowledge of important wind shear characteristics near and at turbine hub height is needed to optimize turbine design and wind farm layout. Unfortunately, wind speed shear measurements at heights of 80-120 m were virtually nonexistent a few years ago and are still quite uncommon today. The Central Plains is a prime wind energy development region and knowledge about the wind shear characteristics will reduce uncertainty about the resource and enhance wind farm design. Previous analyses of tall tower data (Schwartz and Elliott, 2005) concentrated on data from specific states. The wind energy community has recognized the need to fill the gap of direct wind speed measurements at levels 70 m and higher above the ground. Programs instituted during the last 5 years at the state level and supported by the U.S. Department of Energy's (DOE) State Energy Program initiative have placed anemometers and vanes at several levels on existing tall (70 m+) communication towers. The Central Plains has a fairly high concentration of tall tower sites. The distribution of tall tower sites varies among the states in the Central Plains, because the tall tower program is new and the available state and federal funding to establish tall towers is variable. Our wind resource assessment group at DOE's National Renewable Energy Laboratory (NREL) has obtained much of these necessary measurement data from both individual state sources and regional organizations. Most of the data are available to the public, though data from one tower in Colorado are proprietary. We have begun to analyze important wind climate parameters, including wind shear from the tall towers. A total of 13 tall towers were used for this study. Eleven of the towers had the highest anemometer level between 100 m and 113 m. Two towers had the highest measurement level between 70 m and 85 m above ground. The distribution of the towers among the states is: two sites in Texas and Oklahoma; six sites in Kansas; and one site each in Colorado, South Dakota, and North Dakota. Figure 1 shows the locations and names of the thirteen towers. The wind resource at these sites can be classified as ranging from good-to-excellent. Eight tall tower sites have Class 3 resource, four sites have Class 4 resource, and one has Class 5 resource at 50 m.

Schwartz, M.; Elliott, D.

2006-01-01T23:59:59.000Z

429

Draft Forecast of Electricity Demand for the 5th  

E-Print Network (OSTI)

products has been below the medium-low. Future natural gas prices are expected to be higher in this power's draft natural gas price forecasts. The medium natural gas price forecast for this plan in 2015 is about Council Document 2001-23, sited above. #12;DRAFT DRAFT DRAFT 11 Table 1 Natural Gas Price Forecasts

430

Demonstration of Energy Savings of Cool Roofs  

E-Print Network (OSTI)

logging system, the rooftop solar reflectance was measuredand rooftop layers, and a weather tower to measure solarand rooftop layers, and a weather tower to measure solar

Konopacki, S.

2010-01-01T23:59:59.000Z

431

Business Plan in Brief : Draft.  

SciTech Connect

Competition is revolutionizing the electricity industry, and utilities may never be the same. In the past two decades, government deregulation has transformed the airline, cable television, natural gas, and telecommunications industries. Now, with the passage of new laws which have spurred the growth of independent power and opened up transmission access, the electric utility industry has become the laboratory for change. Here in the Northwest, dramatic changes in the electric industry mean that the Bonneville Power Administration (BPA) is facing real competition. Our customers have more choices than they had in the past. BPA`s draft Business Plan is a direct response to this changing environment. The plan presents how we propose to adapt to the new competitive marketplace. This is a summary of the plan and some of the important issues it raises for regional discussion. The draft plan contains much more detail on all the topics mentioned here. Business Plan is BPA`s first attempt to integrate the long-term strategic plans of the various parts of the agency with a strategic financial plan. Change is evident throughout the plan--change in our operating environment, in our strategic direction, in our customer and constituent relationships, and in BPA itself as an organization.

United States. Bonneville Power Administration.

1994-06-01T23:59:59.000Z

432

DOE/EA-1697 Draft Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment Draft Environmental Assessment for Right-of-Way Maintenance in the San Joaquin Valley, California June 2010 Prepared for: Western Area Power Administration, Sierra Nevada Region San Joaquin Valley ROW Maintenance EA June 2010 iii Draft EA CONTENTS 1.0 PURPOSE AND NEED FOR ACTION ...................................................................... 1-1 1.1 Introduction ............................................................................................. 1-1 1.2 Background ............................................................................................. 1-1 1.3 Purpose and Need for Action .................................................................. 1-3 1.4 Location and Project Area Description .................................................... 1-4

433

Energy Conservation in Process Chilled Water Systems  

E-Print Network (OSTI)

The energy consumption of the chiller and cooling tower in a process cooling application was analyzed using the TRNSYS computer code. The basic system included a constant speed centrifugal chiller and an induced-draft, counterflow cooling tower. Typical performance data was used to generate empirical models of the chiller and cooling tower. The cooling load profile was based on averaged electrical demand data for three plastic processing plants. The simulation was conducted using hourly Typical Meteorological Year weather data to determine the cooling tower operating conditions. Three alternative systems were modeled to predict the savings associated with the following energy conservation options: 1) variable speed drive chiller, 2) two-speed cooling tower fan, and 3) natural cycle cooling. The annual energy savings are presented as a function of cooling tower outlet temperature and average cooling load ratio.

Ambs, L. L.; DiBella, R. A.

1993-03-01T23:59:59.000Z

434

Analysis of mass transfer performance in an air stripping tower  

Science Conference Proceedings (OSTI)

The carryover of working solution in a traditional stripping tower is of serious concern in real applications. A U-shaped spray tower to prevent carryover has been designed to study the stripping of water vapor from aqueous desiccant solutions of 91.8 to 95.8 wt% triethylene glycol. In this study, water vapor was removed from the diluted desiccant solution by heating the solution and stripping it with the ambient air. Therefore, the solution was concentrated to a desired concentration. This spray tower was capable of handling air flow rates from 3.2 to 5.13 kg/min and liquid flow rates from 1.6 to 2.76 kg/min. Since the literature data on air stripping towers are limited, studies on the mass transfer coefficient and other mass transfer parameters were carried out in this study. Under the operating conditions, the overall mass transfer coefficient calculated from the experimental data varied from 0.053 to 0.169 mol/m{sup 3}{center{underscore}dot}s. These corresponded to heights of a transfer unit of 2.3 to 0.71 m, respectively. The rates of stripping in this spray tower were typically varied from 2.28 to 12.15 kg H{sub 2}O/h. A correlation of the mass transfer coefficient for the air stripping process was also developed in this study.

Chung, T.W.; Lai, C.H.; Wu, H.

1999-10-01T23:59:59.000Z

435

Property:Draft (m) | Open Energy Information  

Open Energy Info (EERE)

Draft (m) Draft (m) Jump to: navigation, search Property Name Draft (m) Property Type String Pages using the property "Draft (m)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 8 + MHK Technologies/Deep Green + 40 + MHK Technologies/Deep water capable hydrokinetic turbine + 5 + MHK Technologies/Electric Buoy + 7 + MHK Technologies/European Pico Pilot Plant + 7 + MHK Technologies/Evopod E35 + 5 + MHK Technologies/Float Wave Electric Power Station + 7 + MHK Technologies/Floating anchored OTEC plant + 530 + MHK Technologies/HyPEG + 20 + MHK Technologies/HydroGen 10 + 1 + MHK Technologies/Hydroflo + 2 + MHK Technologies/ITRI WEC + 13 + MHK Technologies/Microturbine River In Stream + 0.7 + MHK Technologies/OCEANTEC Wave Energy Converter + 5.25 +

436

Electric Motor Predictive Maintenance: Draft Guidelines  

Science Conference Proceedings (OSTI)

Predictive Maintenance can enhance the early detection and avoidance of incipient equipment failures in electric motors. This report provides draft guidelines to support the development of electric motor predictive maintenance (EMPM) programs at utility sites.

1997-10-16T23:59:59.000Z

437

CAMERON LIQUEFACTION PROJECT DRAFT ENVIRONMENTAL IMPACT STATEMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CAMERON LIQUEFACTION PROJECT CAMERON LIQUEFACTION PROJECT DRAFT ENVIRONMENTAL IMPACT STATEMENT TABLE OF CONTENTS EXECUTIVE SUMMARY .................................................................................................... ES-1 PROPOSED ACTION ............................................................................................................... ES-1 PUBLIC INVOLVEMENT ....................................................................................................... ES-3 PROJECT IMPACTS ................................................................................................................ ES-3 ALTERNATIVES CONSIDERED ........................................................................................... ES-7 CONCLUSIONS ....................................................................................................................... ES-8

438

California Energy Commission DRAFT STAFF REPORT  

E-Print Network (OSTI)

on eligibility of hydroelectric and fuel cell facilities, respectively). The Energy Commission recognizesCalifornia Energy Commission STAFF REPORT RENEWABLES PORTFOLIO STANDARD ELIGIBILITY Draft Staff Guidebook Fourth Edition AUGUST 2010 CEC3002010007SD #12;CALIFORNIA ENERGY COMMISSION Kate Zocchetti

439

California Energy Commission DRAFT STAFF REPORT  

E-Print Network (OSTI)

for energy and annual peak load will be met by specific supply resources. Keywords: Electricity) ................................................................ 19 Supply Form S2: Energy Balance Table ...................... California Energy Commission DRAFT STAFF REPORT FORMS AND INSTRUCTIONS FOR SUBMITTING

440

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DSM programs DSM programs between 1989 and 1999, an average of $1.3 billion per year. 1 Interest in these programs gradually grew in the 1980s and early 1990s, then went through a "hiccup" in the mid- 1990s as many states and utilities cut back on their demand-side efforts in order to prepare for electric industry restructuring. Growth resumed in the late 1990s when many states decided not to restructure. Also, even many restructured states decided that demand-side programs were important and created mechanisms to fund and provide such programs, most notably "public benefits" programs, which in many cases are administered and implemented by non-utility organizations. Since the turn-of-the-century, investments in demand-side resources have steadily

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

demand-side demand-side programs between 1989 and 1999, an average of $1.3 billion per year. 1 Interest in these programs gradually grew in the 1980s and early 1990s, then went through a "hiccup" in the mid-1990s as many states and utilities cut back on their demand-side efforts in order to prepare for electric industry restructuring. Growth resumed in the late 1990s when many states decided not to restructure. Also, even many restructured states decided that demand-side programs were important and created mechanisms to fund and provide such programs, most notably "public benefits" programs, which in many cases are administered and implemented by non-utility organizations. Since the turn-of-the-century, investments in demand-side resources have steadily

442

Draft  

E-Print Network (OSTI)

Grenadiers are presently considered “unspecified ” by the NPFMC, which means they are not a part of the groundfish management plans for either the Gulf of Alaska (GOA) or the Bering Sea/Aleutian Islands (BSAI). Therefore, there are no limitations on catch or retention, no reporting requirements, and no official tracking of grenadier catch by management. However, a proposed joint management plan amendment for “other species ” may change grenadiers to a specified status, in which case they would be included as managed groundfish species in the plans. In response to this possibility, an assessment of grenadiers in Alaska was prepared for the first time as an appendix to the 2006 SAFE report (Clausen 2006). For the 2007 SAFE report, it was decided that for many of the “other species ” reports and also for unspecified fish such as grenadiers, a full assessment was not necessary, and that an Executive Summary would suffice. Of the seven species of grenadiers known to occur in Alaska, the giant grenadier appears to be most abundant and also has the shallowest depth distribution on the continental slope. As a result, it is by far the most common grenadier caught in the commercial fishery and in fish surveys. Therefore, the grenadier assessment focuses on giant grenadier. Because of a lack of information on the population dynamics of giant grenadier, this species could be classified into

M. Clausen

2007-01-01T23:59:59.000Z

443

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR THE TRANSFER OF THE KANSAS CITY PLANT, KANSAS CITY, MISSOURI U.S. Department of Energy National Nuclear Security Administration May 2013 DOE/EA-1947 CONVERSION FACTORS Metric to English English to Metric Multiply by To get Multiply by To get Area Square kilometers 247.1 Acres Square kilometers 0.3861 Square miles Square meters 10.764 Square feet Concentration Kilograms/sq. meter 0.16667 Tons/acre Milligrams/liter 1 a Parts/million Micrograms/liter 1 a Parts/billion Micrograms/cu. meter 1 a Parts/trillion Density Grams/cu. centimeter 62.428 Pounds/cu. ft. Grams/cu. meter 0.0000624 Pounds/cu. ft. Length Centimeters 0.3937 Inches Meters 3.2808 Feet Micrometers 0.00003937 Inches Millimeters 0.03937 Inches Kilometers 0.62137 Miles

444

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2005, 12:30 p.m.-1:30 p.m. EST 7, 2005, 12:30 p.m.-1:30 p.m. EST Conference Call Minutes Participants: Co-Chairs: Jay Jones (RW), Alex Thrower (EM) Members: Kevin Blackwell (FRA), Patrick Brady (Burlington Northern Santa Fe Railroad), Ray English (Office of Naval Reactors, DOE), Paul Johnson (ORNL), Doug Larson (Western Interstate Energy Board [WIEB]), Bill Mackie (Western Governors' Association [WGA]), Ellen Ott (Office of General Counsel, DOE), Tim Runyon (Illinois Department of Nuclear Safety), Lisa Sattler (CSG-Midwest), Ruth Weiner (SNL), Sara Wochos (CSG-Midwest) Contractor Support: Ralph Best (BSC), Andrea Dravo (BAH), Michele Enders (SAIC), Susan Knisely (BAH ), Julie Offner (BAH), and Ron Ross (BSC) Summary: The conference call began at 12:30 p.m. Eastern time on Thursday, January 27, 2005. Jay

445

-DRAFT-  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Effect of SCR NOx Control of the Effect of SCR NOx Control Technology on Mercury Speciation Thomas J. Feeley, III U.S. Department of Energy National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236 Phone: 412-386-6134 Fax: 412-386-4822 E-mail: thomas.feeley@netl.doe.gov Lynn A. Brickett U.S. Department of Energy National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236 Phone: 412-386-6574 Fax: 412-386-5917 E-mail: lynn.brickett@netl.doe.gov James T. Murphy Science Applications International Corporation 626 Cochrans Mill Road Pittsburgh, PA 15236 Phone: 412-386-4115 Fax: 412-386-4516 E-mail: james.murphy@netl.doe.gov March 2003 Abstract The U.S. Environmental Protection Agency (EPA) performed an Information Collection Request

446

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2005, 11:00 a.m.-12:30 p.m. EST 8, 2005, 11:00 a.m.-12:30 p.m. EST Conference Call Minutes Participants: Co-Chairs: Jay Jones (RW), Alex Thrower (EM) Members: Jane Beetem (MO Department of Natural Resources), Kevin Blackwell (FRA), Ray English (Office of Naval Reactors, DOE), Scott Field (Western Interstate Energy Board [WIEB]), Bob Fronczak (Association of American Railroads), Paul Johnson (ORNL), Doug Larson (Western Interstate Energy Board [WIEB]), Bill Mackie (Western Governors' Association), Roger Mulder (Texas Energy Conservation Office), Ellen Ott (DOE General Counsel), Tammy Ottmer (WIEB-Colorado), Jim Reed (NCSL), Tim Runyon (Illinois Department of Nuclear Safety), Conrad Smith (CSG-East), Ruth Weiner (Sandia National Laboratories) Contractor Support: Ralph Best (BSC), Peter Bolton (BAH)Randy Coppage (BAH),

447

draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 (08-93) U.S. Department of Energy ORDER FOR SUPPLIES OR SERVICES ORDER FOR SUPPLIES OR SERVICES PAGE OF PAGES IMPORTANT: Mark all packages and papers with contract and/or order numbers. 1. DATE OF ORDER 2. CONTRACT NO. (if any) 3. ORDER NO. 4. REQUISITION/REFERENCE NO. 5. ISSUING OFFICE (Address correspondence to) BUYER NO. CODE 6. SHIP TO: (Consignee and address, ZIP Code) SHIP VIA: 7. TO CONTRACTOR (Name, address and ZIP Code) 8. TYPE OF ORDER 9 9 A. PURCHASE - Reference your___________________________ ____________________________________________________________ Please furnish the following on the terms and conditions specified on both sides for this order and on the attached sheets, if any,

448

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wednesday, November 9, 2005, 11:00 a.m.-12:00 p.m. EST Wednesday, November 9, 2005, 11:00 a.m.-12:00 p.m. EST Conference Call Minutes Participants: Co-Chairs: Jay Jones (RW) Members: Kevin Blackwell (DOT/FRA), Pat Brady (BNSF), Anne Clark (WGA), Doug Osborn (Sandia National Laboratories), Ellen Ott (DOE General Counsel), Tim Runyon (CSG-MW),Lisa Sattler (CSG-Midwest), Ruth Weiner (Sandia National Laboratories), Sarah Wochos (CSG-MW) Contractor Support: Ralph Best (BSC), Michele Enders (SAIC), and John Smegal (LEGIN) Summary: The conference call began at 11:00 a.m. Eastern time on Wednesday, November 9, 2005. Jay Jones started the meeting by reviewing the items to be discussed during the call. Jay announced that Alex Thrower just sent out the Security Topic Group (STG) Task Plan. The STG's Task Plan overlaps with the RTG's Task Plan and there may need to be a

449

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DSM programs DSM programs between 1989 and 1999, an average of $1.3 billion per year. 1 Interest in these programs gradually grew in the 1980s and early 1990s, then went through a "hiccup" in the mid- 1990s as many states and utilities cut back on their demand-side efforts in order to prepare for electric industry restructuring. Growth resumed in the late 1990s when many states decided not to restructure. Also, even many restructured states decided that demand-side programs were important and created mechanisms to fund and provide such programs, most notably "public benefits" programs, which in many cases are administered and implemented by non-utility organizations. Since the turn-of-the-century, investments in demand-side resources have steadily

450

-DRAFT-  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/NETL's Mercury Control Technology DOE/NETL's Mercury Control Technology R&D Program for Coal-Fired Power Plants Thomas J. Feeley, III 1. , James Murphy 2. , Jeffrey Hoffmann 2. , and Scott A. Renninger 1. 1. U.S. Department of Energy, National Energy Technology Laboratory 2. Science Applications International Corporation Abstract Mercury exists in trace amounts in coal. In the United States, coal-fired power plants emit about 48 tons of mercury and are the largest point source of emissions. The U.S. Environmental Protection Agency has determined the need to control mercury emissions from power plants. In addition, several legislative proposals have been introduced in the 108 th Congress to reduce mercury emissions from the electric-utility sector. Recognizing the potential for mercury regulations, the U.S. Department of Energy/National

451

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2012 0, 2012 Roland Risser, Director Building Technologies Program U.S. Department of Energy Mail Stop EE-2J 1000 Independence Ave, SW Washington, DC 20585 Subject: Joint Hydraulic Institute/ASAP Letter of March 30 th - Clarification of Point #2 Dear Mr. Risser, We are looking forward to our meeting with you and your staff on May 1 st to present our progress regarding potential energy conservation standards for certain types of pumps. We would like to clarify point #2 in the referenced letter, which addressed potential energy conservation standards for residential circulators. During the joint meeting between Hydraulic Institute and efficiency advocates, we agreed to investigate paths for consideration, and did not specifically agree on a recommended standard

452

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 15, 2005, 11:00 a.m.-12:00 p.m. EST September 15, 2005, 11:00 a.m.-12:00 p.m. EST Conference Call Minutes Participants: Co-Chairs: Jay Jones (RW), Alex Thrower (EM) Members: Jane Beetem (MO Department of Natural Resources), Patrick Brady (BNSF), Sandi Covi (Union Pacific), Scott Field (WIEB-CO), Bob Fronczak (AAR), Eric Huang (DOE Office of Transportation), Paul Johnson (ORNL), Adam Levin (Exelon Generation), Bill Mackie (Western Governors' Association), Ken Niles (WIEB), Doug Osborn (Sandia National Laboratories), Ellen Ott (DOE General Counsel), Lisa Sattler (CSG-Midwest),Conrad Smith (CSG-East), Sarah Wochos (CSG-MW) Contractor Support: Randy Coppage (BAH), Michele Enders (SAIC), Lee Finewood (BAH), and Ron Ross (BSC) Summary: The conference call began at 11:00 a.m. Eastern time on Thursday, September 15, 2005.

453

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 3-4, 2003 November 3-4, 2003 Crowne Plaza Hotel, Arlington, Virginia NERAC members present: John Ahearne, Vice Chairman Robert L. Long Thomas B. Cochran William F. Martin, Chairman Joseph R. Comfort Warren F. Miller Michael L. Corradini (Monday only) Sekazi K. Mtingwa Jose Luis M. Cortez Harold B. Ray Allen G. Croff Richard Reba Marvin S. Fertel Joy Lynn Rempe Beverly K. Hartline Michael B. Sellman Silvia S. Jurrison Allen L. Sessoms Andrew C. Klein Daniel C. Sullivan (Monday only) Dale E. Klein Neil E. Todreas NERAC members absent: Steve Fetter Jerry Paul Corbin McNeill Charles E. Till Richard A. Meserve Also participating: Arnold B. Baker, Chief Economist, Sandia National Laboratories

454

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2005, 11:00 a.m.-12:30 p.m. EST 24, 2005, 11:00 a.m.-12:30 p.m. EST Conference Call Minutes Participants: Co-Chairs: Jay Jones (RW), Alex Thrower (EM) Members: Jane Beetem (MO Department of Natural Resources), Kevin Blackwell (FRA), Ray English (Office of Naval Reactors, DOE), Bob Fronczak (Association of American Railroads), Bob Halstead (Nevada Agency for Nuclear Projects), Eric Huang (DOE), Paul Johnson (ORNL), Doug Larson (Western Interstate Energy Board [WIEB]), Adam Levin (Exelon Generation Company), Jim Reed (NCSL), Conrad Smith (CSG-East), Steve Sullivan (American Shortline Railroad Association),Ruth Weiner (Sandia National Laboratories) Contractor Support: Ralph Best (BSC), Randy Coppage (BAH),Ed Davis (BSC), Michele Enders (SAIC), Lee Finewood (BAH),and Ron Ross (BSC)

455

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

.3 (January 2012) .3 (January 2012) 1 Compliance with U.S. Export Control Laws, Regulations and Policies References a. Federal Acquisition Regulations (FAR) 17.6, Management and Operating Contracts b. Department of Energy Acquisition Regulations (DEAR) 917.6, Management and Operating Contracts c. Atomic Energy Act of 1954 (AEA), as amended, http://www.nrc.gov/reading-rm/doc- collections/nuregs/staff/sr0980/v1/sr0980v1.pdf#page=13 (accessed 9/27/11) d. "Contractor Compliance with Deemed Export Controls," DOE Inspector General (IG) Report DOE/IG-0645, April 2004 e. "Review of Status of Prior Export Control Recommendations at the Department of

456

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 24, 2005, 11:00 a.m.-12:30 p.m. EST February 24, 2005, 11:00 a.m.-12:30 p.m. EST Conference Call Minutes Participants: Co-Chairs: Jay Jones (RW), Alex Thrower (EM) Members: Jane Beetem (MO Department of Natural Resources), Kevin Blackwell (FRA), Dennis Brooks (Texas Energy Conservation Office), Patrick Edwards (PA Public Utility Commission), Ray English (Office of Naval Reactors, DOE), Paul Genoa ( Nuclear Energy Institute), Eric Huang (DOE), Paul Johnson (ORNL), Doug Larson (Western Interstate Energy Board [WIEB]), Bill Mackie (Western Governors' Association [WGA]), Roger Mulder (Texas Energy Conservation Office), Ken Niles (WIEB), Jim Reed (NCSL), Lisa Sattler (CSG-Midwest), Conrad Smith (CSG-East), Sara Wochos (CSG-Midwest) Contractor Support: Ralph Best (BSC), Ed Davis (BSC), Michele Enders (SAIC),

457

DRAFT  

NLE Websites -- All DOE Office Websites (Extended Search)

03/1195 03/1195 Healy Clean Coal Project A DOE Assessment Office of Fossil Energy National Energy Technology Laboratory U.S. Department of Energy September 2003 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

458

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation External Coordination Working Group Meeting Transportation External Coordination Working Group Meeting Albuquerque, New Mexico April 21-23, 2004 The U.S. Department of Energy (DOE), Transportation External Coordination Working Group (TEC) held its 22 nd meeting on April 21-23, 2004, in Albuquerque, New Mexico. One hundred thirty-two participants, representing national, State, Tribal, and local government; industry; professional organizations; and other interested parties, met to address a variety of issues related to DOE's radioactive materials transportation activities. The TEC process includes the involvement of these key stakeholders in developing solutions to DOE transportation issues through their actual participation in the work product. These members provide continuing and improved coordination between DOE, other levels of

459

DRAFT  

U.S. Energy Information Administration (EIA)

covering the January report period must be received by February 20). ... Option (PEDRO) is a Windows-based application that will enable you to enter data ...

460

DRAFT  

National Nuclear Security Administration (NNSA)

began producing electrical and mechanical weapon components for the U.S. Atomic Energy Commission (a predecessor agency to DOENNSA) in part of the Main Manufacturing...

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DRAFT  

NLE Websites -- All DOE Office Websites (Extended Search)

031195 Healy Clean Coal Project A DOE Assessment Office of Fossil Energy National Energy Technology Laboratory U.S. Department of Energy September 2003 Disclaimer This report was...

462

DRAFT  

U.S. Energy Information Administration (EIA)

context of emergency response planning and actual emergencies. SANCTIONS . ... response, including the time of reviewing instructions, searching

463

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a significant utility resource. 5 Electric energy efficiency, load management and demand response programs also have achieved significant levels of demand savings. For...

464

**Draft**  

Science Conference Proceedings (OSTI)

GUIDELINES FOR AOCS SECTION ORGANIZATION (adopted May 2008) Updated November 2009 1 Table of Contents Introduction Definition of a “Section” Benefits to S

465

DRAFT  

National Nuclear Security Administration (NNSA)

that DOE will take to achieve its individual GHG-reduction targets, reduce long-term costs, and meet the full range of goals of the order. All SSPPs segregate GHG emissions...

466

draft  

Science Conference Proceedings (OSTI)

Jun 22, 2005 ... Santa Barbara is served by Amtrak Train Service. The Amtrak terminal is located in downtown Santa Barbara and in Goleta. From the terminal ...

467

DRAFT  

NLE Websites -- All DOE Office Websites (Extended Search)

Steering Committee. ARCHIVE SAFARI 2000 will establish a Southern African Regional Data Center to provide tools for documenting, storing, searching, and distributing data and...

468

DRAFT  

Science Conference Proceedings (OSTI)

... Robotic Mobility Platform (RMP 400/ INL) ... if they are outfitted in cumbersome protective suits, which ... Jon Nelson Dynamic Protection Solutions ...

2008-05-02T23:59:59.000Z

469

Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Closing the Circle: The Department of Energy and Environmental Management 1942-1994 F.G. Gosling and Terrence R. Fehner History Division Executive Secretariat Department of Energy...

470

DRAFT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

dual-use equipment, materials and related technologies. (Reference p); Nuclear Non-Proliferation Treaty Exporters (Zangger) Committee at: http:www.zanggercommittee.org...

471

Energy Efficiency Evaluation of Guangzhou West Tower Façade System  

E-Print Network (OSTI)

Guangzhou West Tower is an extremely tall public building. The energy efficiency evaluation of its façade should be different than that of ordinary public buildings. Based on the national code GB50189-2005, “Design Standard for Energy efficiency of Public Buildings”, typical meteorological yearly data for Guangzhou were used and revised according to architectural character of Guangzhou West Tower. The energy efficiency design of a single skin façade and active airflow curtain wall was analyzed by a dynamic energy simulation tool and modified weather data. The payback period of initial investment in the façade system was evaluated based on simulation results. In addition, the results confirm the façade system scheme of Guangzhou West Tower.

Meng, Q.; Zhang, L.

2006-01-01T23:59:59.000Z

472

Conversion of Solar Two to a Kokhala hybrid power tower  

DOE Green Energy (OSTI)

The continued drop in energy prices and restructuring of the utility industry have reduced the likelihood that a follow-on commercial 100-MW, power tower project will be built immediately following the Solar Two demonstration project. Given this, it would be desirable to find a way to extend the life of the Solar Two project to allow the plant to operate as a showcase for future power tower projects. This paper looks at the possibility of converting Solar Two into a commercial Kokhala hybrid power tower plant at the end of its demonstration period in 1998. The study identifies two gas turbines that could be integrated into a Kokhala cycle at Solar Two and evaluates the design, expected performance, and economics of each of the systems. The study shows that a commercial Kokhala project at Solar Two could produce power at a cost of less than 7 e/kWhr.

Price, H.W.

1997-06-01T23:59:59.000Z

473

RADIATIVE AND PASSIVE COOLING  

E-Print Network (OSTI)

at the 3rd Annual Solar Heating and Cooling R&D Contractors'been supported by the Solar Heating and Cooling Research andof Energy. 3rd Annual Solar Heating and Cooling R&D

Martin, M.

2011-01-01T23:59:59.000Z

474

Appendix A DRAFT EIS DISTRIBUTION LIST  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A DRAFT EIS DISTRIBUTION LIST A-1 ADMINISTRATIVE DRAFT EIS DISTRIBUTION LIST Federal Agencies Air Force Real Property Agency, TX Jeffrey Blevins Army Corps of Engineers Office of the Chief of Army Engineers, DC John Furry, Senior Policy Advisor New Orleans District, LA James Little Ronnie Duke, Western Division Manager Army Operations Division, VA Office of the Assistant Chief of Staff for Installation Management

475

Comparison of Second Wind Triton Data with Meteorological Tower Measurements  

DOE Green Energy (OSTI)

With the increased interest in remote sensing of wind information in recent years, it is important to determine the reliability and accuracy of new wind measurement technologies if they are to replace or supplement conventional tower-based measurements. In this study, we present the results of an analysis characterizing the measurement performance of a state-of-the-art SOund Detection And Ranging (sodar) device when compared to a high-quality tower measurement program. Second Wind Inc. (Somerville, MA, USA) provided NREL with more than six months of data from a measurement program conducted near an operating wind farm in western Texas.

Scott, G.; Elliott, D.; Schwartz, M.

2010-02-01T23:59:59.000Z

476

Modeling, loading, and preliminary design considerations for tall guyed towers  

Science Conference Proceedings (OSTI)

In this paper, the authors first summarize the results of an investigation they carried out on the collapse of a 1900 ft tall guyed tower under ice and wind loads. Based on this investigation, they then proceed to present some structural analysis recommendations relating to loading and modeling concerns. Special emphasis is placed on the importance of ice loading, and on the level of accuracy required in modeling the nonlinear response behavior. Finally, the conclusions drawn from this study are used to formulate preliminary design guidelines. This facilitates a systematic approach for the design of tall guyed towers. 23 refs.

Gantes, C.; Khoury, R.; Connors, J.J.; Pouangare, C. [Engg Information Technology, Cambridge, MA (United States)

1993-12-01T23:59:59.000Z

477

On Why Disks Generate Magnetic Towers and Collimate Jets  

E-Print Network (OSTI)

We show that accretion disks with magnetic fields in them ought to make jets provided that their electrical conductivity prevents slippage and there is an ambient pressure in their surroundings. We study equilibria of highly wound magnetic structures. General Energy theorems demonstrate that they form tall magnetic towers whose height grows with every turn at a velocity related to the circular velocity in the accretion disk. The pinch effect amplifies the magnetic pressures toward the axis of the towers whose stability is briefly considered.

D Lynden-Bell

2002-08-21T23:59:59.000Z

478

On Why Disks Generate Magnetic Towers and Collimate Jets  

E-Print Network (OSTI)

We show that accretion disks with magnetic fields in them ought to make jets provided that their electrical conductivity prevents slippage and there is an ambient pressure in their surroundings. We study equilibria of highly wound magnetic structures. General Energy theorems demonstrate that they form tall magnetic towers whose height grows with every turn at a velocity related to the circular velocity in the accretion disk. The pinch effect amplifies the magnetic pressures toward the axis of the towers whose stability is briefly considered.

Lynden-Bell, Donald

2002-01-01T23:59:59.000Z

479

Solar Two: A successful power tower demonstration project  

DOE Green Energy (OSTI)

Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.

REILLY,HUGH E.; PACHECO,JAMES E.

2000-03-02T23:59:59.000Z

480

Energy Basics: Evaporative Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

absorbent material. Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. How Evaporative Coolers Work There are two types of evaporative...

Note: This page contains sample records for the topic "draft cooling tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Condition-based monitoring of natural draught wet-cooling tower performance-related parameters.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: The meteorological conditions at Eskom’s Majuba Power Station are measured, evaluated and trended in this dissertation. The results are used to evaluate the… (more)

Ehlers, Frederik Coenrad

2011-01-01T23:59:59.000Z

482

[en] THEORETICAL AND EXPERIMENTAL ANALYSIS OF COOLING TOWERS AND AIR WASHERS.  

E-Print Network (OSTI)

??[pt] Investigou-se teórica e experimentalmente o comportamento dos equipamentos de transferência de calor e massa conhecidos como Torre de Resfriamento e Lavador de Ar. Para… (more)

MARCOS SEBASTIAO DE PAULA GOMES

2012-01-01T23:59:59.000Z

483

Baca geothermal demonstration project baseline ecosystem studies of cooling tower emission effects  

DOE Green Energy (OSTI)

Results of baseline studies for boron, arsenic, mercury, and fluorine in vegetation and soil near the Baca Geothermal Demonstration Power Plant are provided for the 1980 sampling season. Preliminary results of visual vegetation assessments and population density studies of soil invertebrate fauna are also provided. Foliage samples were collected for chemical analysis on a total of 17 plots on 5 transects. Two to five plant species were sampled at each plot. Samples were collected in June-July and September. Soil samples were collected at each plot during September. Visual vegetation inspections were conducted along each transect. Eighty-eight soil samples were collected for soil invertebrate studies. Boron, arsenic, mercury, and fluorine levels in vegetation were within normal range for natural vegetation and crops. Concentrations of soil arsenic and mercury were comparable to foliage concentrations. Boron concentrations were lower in soil than in foliage, whereas soil fluorine concentrations were considerably higher than foliage concentrations. With the exception of heavy insect infestations in June-July, no vegetation abnormalities were noted. Preliminary soil invertebrate analysis indicated an overall arthropod density of approximately 100,000/m/sup 2/ which appears within the normal range encountered in forest and meadow soil.

Leitner, P.; Osterling, R.; Price, D.; Westermeier, J.

1981-03-01T23:59:59.000Z

484

Weather Modification from Cooling Towers: A Test Based on the Distributional Properties of Rainfall  

Science Conference Proceedings (OSTI)

A statistical technique for the treatment of data from weather modification experiments is presented. This work, a part of the Meteorological Effects of Thermal Energy Releases (METER) Program, is aimed at determining the potential precipitation ...

A. A. N. Patrinos; K. O. Bowman

1980-03-01T23:59:59.000Z

485

CFD Simulation and Analysis of the Combined Evaporative Cooling and Radiant Ceiling Air-conditioning System  

E-Print Network (OSTI)

Due to such disadvantages as large air duct and high energy consumption of the current all- outdoor air evaporative cooling systems used in the dry region of Northwest China, as well as the superiority of the ceiling cooling system in improving thermal comfort and saving energy, a combined system is presented in this paper. It combines an evaporative cooling system with ceiling cooling, in which the evaporative cooling system handles the entire latent load and one part of the sensible loads, and the ceiling cooling system deals with the other part of sensible loads in the air-conditioned zone, so that the condensation on radiant panels and the insufficiency of cooling capacity can be avoided. The cooling water at 18? used in the cooling coils of ceiling cooling system can be ground water, tap water or the cooled water from cooling towers in the summer. This new air-conditioning system and existing all- outdoor air evaporative cooling system are applied to a project in the city of Lanzhou. Energy consumption analysis of the building is carried out using the energy consumption code. Velocity and temperature distribution in the air-conditioned zone is computed using CFD. According to the results, the energy consumption and indoor human thermal comfort of both systems are then compared. It is concluded that the new system occupies less building space, reduces energy consumption, improves indoor human thermal comfort and saves initial investment.

Xiang, H.; Yinming, L.; Junmei, W.

2006-01-01T23:59:59.000Z

486

EA-1919: Notice of Availability of a Draft Programmatic Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Availability of a Draft Programmatic Availability of a Draft Programmatic Environmental Assessment EA-1919: Notice of Availability of a Draft Programmatic Environmental Assessment Recycling of Scrap Metals Originating from Radiological Areas DOE announces the availability for public review and comment of the Draft Programmatic Environmental Assessment (PEA) for the Recycling of Scrap Metals Originating from Radiological Areas. This Draft PEA for the Recycling of Scrap Metals Originating from Radiological Areas analyzes the potential environmental impacts associated with resuming the clearance of scrap metal, originating from DOE radiological areas, for recycling pursuant to improved procedures designed to assure that clearance for release is limited to metals meeting stringent criteria. This Draft PEA

487

SunShot Initiative: Solar Power Tower Improvements with the Potential to  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Tower Improvements Solar Power Tower Improvements with the Potential to Reduce Costs to someone by E-mail Share SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Facebook Tweet about SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Twitter Bookmark SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Google Bookmark SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Delicious Rank SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Digg Find More places to share SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on AddThis.com... Concentrating Solar Power

488

Microphysical Measurements from an Aircraft Ascending with a Growing Isolated Maritime Cumulus Tower  

Science Conference Proceedings (OSTI)

The development of precipitation in the top of an isolated maritime cumulus tower is traced by four rapid penetrations with an instrumented aircraft between 400 and 1000 m below the visible top of the growing tower. The hydrometeor distribution ...

Paul T. Willis; John Hallett

1991-01-01T23:59:59.000Z

489

Comparison of emerging diagnostic tools for large commercial HVAC systems  

E-Print Network (OSTI)

handlers, cooling plants (cooling towers, chillers), heatingBoiler: see general Cooling tower (CT) capacity ENFORMA

Friedman, Hannah; Piette, Mary Ann

2001-01-01T23:59:59.000Z

490

Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts  

DOE Green Energy (OSTI)

Sargent& Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

Not Available

2003-10-01T23:59:59.000Z

491

Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts  

DOE Green Energy (OSTI)

Sargent and Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

Not Available

2003-10-01T23:59:59.000Z

492

NREL: MIDC/National Wind Technology Center M2 Tower (39.91 N...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Measurement and Instrumentation Data Center collects Irradiance and Meterological data from the National Wind Technology Center M2 Tower....

493

LEAD COMMISSIONER DRAFT RENEWABLES PORTFOLIO  

E-Print Network (OSTI)

resources technologies; development of commercial heating systems and cooling solutions, biogas. and GC Environmental, Inc. Cleaner Biogas Production The purpose of this Energy Innovations Small Grant treatment system that removes hydrogen sulfide from dairy digester biogas and nitrogen oxides from biogas

494

'Radio Wave Cooling' Offers New Twist on Laser Cooling  

Science Conference Proceedings (OSTI)

'Radio Wave Cooling' Offers New Twist on Laser Cooling. From NIST Tech Beat: September 13, 2007. ...

2013-07-08T23:59:59.000Z

495

Model and Seismic Analysis of Large-scale Wind Turbine Tower Structure  

Science Conference Proceedings (OSTI)

The working condition of wind turbine tower structure with a massive engine room and revolving wind wheels is very complex. The paper simplify the wind turbine tower model with finite element analysis software --ANSYS, completed modal analysis firstly, ... Keywords: wind turbine tower, model analysis, resonance, time-history analysis, dynamic

Xiang Liu; Jiangtao Kong

2012-05-01T23:59:59.000Z

496

Ilchmann, Achim; Pahl, M. : Adaptive Multivariable pH Regulation of a Biogas Tower Reactor  

E-Print Network (OSTI)

Ilchmann, Achim; Pahl, M. : Adaptive Multivariable pH Regulation of a Biogas Tower Reactor Zuerst. The adaptive controller was successlullytesteclover il pcriod of tu'o nonths at a biogas tower reuetoriu pilot are not applicable to the biogas tower reüctor.since a dontinatingf-eatureof the new reactol' prir-rciplc-is its

Knobloch,Jürgen

497

PEP Conceptual Design Report  

E-Print Network (OSTI)

Cooling tower water system. . . . .Utilities LCW Systems Cooling Towers TQTAL NOTES: aprojectsreject follows: heat to cooling tower water systems. Heat

Various

1976-01-01T23:59:59.000Z

498

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

Management Practices #8 – Cooling Tower Management. Federalair flow pattern Cooling towers Compressors Compressorhousekeeping Reducing cooling tower bleed-off Wastewater

Brush, Adrian

2012-01-01T23:59:59.000Z

499

A New Tall-Tower Meteorological Monitoring System  

SciTech Connect

The Atmospheric Technologies Group of the Savannah River Technology Center operates an extensive meteorological monitoring network of 13 tower in and near the Savannah River Site near Aiken, South Carolina. The data from this system are available in ''real-time'' for emergency response atmospheric release modeling and operational weather forecasting.

Parker, M.J.

2003-01-14T23:59:59.000Z

500

Solar Power Tower Design Basis Document, Revision 0  

DOE Green Energy (OSTI)

This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

ZAVOICO,ALEXIS B.

2001-07-01T23:59:59.000Z