Powered by Deep Web Technologies
Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Diagnosis of Acid Placement from Downhole Temperature Measurements  

E-Print Network [OSTI]

-dependent function for estimating injection temperature D depth D(t) time function in the wormhole model Dtotal total depth of the wellbore section d observed data vector e residual vector ek specific kinetic energy ep specific potential energy e...R specific internal energy of rock es specific internal energy of acid solution E energy viii Ereaction energy released by reaction in the control volume f objective function f(t) time-dependent function in Rameys equation G sensitivity matrix...

Tan, Xuehao

2012-10-19T23:59:59.000Z

2

Downhole steam quality measurement  

DOE Patents [OSTI]

The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

1985-06-19T23:59:59.000Z

3

Feasibility and Design Studies for a High Temperature Downhole Tool  

Broader source: Energy.gov [DOE]

Project objective: Perform feasibility and design studies for a high temperature downhole tool; which uses nuclear techniques for characterization purposes; using measurements and modeling/simulation.

4

Downhole Temperature Prediction for Drilling Geothermal Wells  

SciTech Connect (OSTI)

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

5

High-Temperature Motor Windings for Downhole Pumps Used in Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production...

6

High-Temperature Downhole Tools | Open Energy Information  

Open Energy Info (EERE)

Tools Tools Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for High-Temperature Downhole Tools 2 Geothermal ARRA Funded Projects for High-Temperature Downhole Tools Geothermal Lab Call Projects for High-Temperature Downhole Tools Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

7

Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

Downhole Techniques Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Techniques Details Activities (0) Areas (0) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Determination of lithology, grain size Stratigraphic/Structural: Thickness and geometry of rock strata, fracture identification Hydrological: Porosity, permeability, water saturation Thermal: Formation temperature with depth Dictionary.png Downhole Techniques: Downhole techniques are measurements collected from a borehole environment which provide information regarding the character of formations and fluids

8

Solid state device for two-wire downhole temperature measurement as a function of current. Final performance technical report  

SciTech Connect (OSTI)

Several metals systems were reviewed for their potential to act as resistive temperature devices. Platinum metal was selected as the metal of choice. Platinum was plated onto 5 mil copper wire, and then subsequently coated with Accusol's proprietary ceramic coating. The copper was etched out in an attempt to make a pure platinum, high resistive, resistive-temperature device. The platinum plating on the wire cracked during processing, resulting in a discontinuous layer of platinum, and the element could not be formed in this way.

Anderson, Roger; Anderson, David

2002-01-15T23:59:59.000Z

9

Development of a High Pressure/High Temperature Down-hole Turbine Generator  

SciTech Connect (OSTI)

As oil & natural gas deposits become more difficult to obtain by conventional means, wells must extend to deeper more heat-intensive environments. The technology of the drilling equipment required to reach these depths has exceeded the availability of electrical power sources needed to operate these tools. Historically, logging while drilling (LWD) and measure while drilling (MWD) devices utilized a wireline to supply power and communication from the operator to the tool. Lithium ion batteries were used in scenarios where a wireline was not an option, as it complicated operations. In current downhole applications, lithium ion battery (LIB) packs are the primary source for electrical power. LIB technology has been proven to supply reliable downhole power at temperatures up to 175 C. Many of the deeper well s reach ambient temperatures above 200 C, creating an environment too harsh for current LIB technology. Other downfalls of LIB technology are cost, limitations on charge cycles, disposal issues and possible safety hazards including explosions and fires. Downhole power generation can also be achieved by utilizing drilling fluid flow and converting it to rotational motion. This rotational motion can be harnessed to spin magnets around a series of windings to produce power proportional to the rpm experienced by the driven assembly. These generators are, in most instances, driven by turbine blades or moyno-based drilling fluid pumps. To date, no commercially available downhole power generators are capable of operating at ambient temperatures of 250 C. A downhole power g enerator capable of operation in a 250 C and 20,000 psi ambient environment will be an absolute necessity in the future. Dexter Magnetic Technologies High-Pressure High-Temperature (HPHT) Downhole Turbine Generator is capable of operating at 250 C and 20, 000 psi, but has not been tested in an actual drilling application. The technology exists, but to date no company has been willing to test the tool.

Ben Plamp

2008-06-30T23:59:59.000Z

10

High-Temperature Motor Windings for Downhole Pumps Used in Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

and Other Harsh Environments High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production Matthew Hooker Composite Technology Development, Inc....

11

Development of a High-Pressure/High-Temperature Downhole Turbine Generator  

SciTech Connect (OSTI)

The objective of this project as originally outlined has been to achieve a viable downhole direct current (DC) power source for extreme high pressure, high temperature (HPHT) environments of >25,000 psi and >250 C. The Phase I investigation posed and answered specific questions about the power requirements, mode of delivery and form factor the industry would like to see for downhole turbine generator tool for the HPHT environment, and noted specific components, materials and design features of that commercial system that will require upgrading to meet the HPHT project goals. During the course of Phase I investigation the scope of the project was HPHT downhole DC power. Phase I also investigated the viability of modifying a commercial expanded, without additional cost expected to the project, to include the addition of HT batteries to the power supply platform.

Timothy F. Price

2007-02-01T23:59:59.000Z

12

High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production  

SciTech Connect (OSTI)

The development of highly reliable downhole equipment is an essential element in enabling the widespread utilization of Enhanced Geothermal Systems (EGS). The downhole equipment used in these systems will be required to operate at high voltages and temperatures on the order of 200 to 250C (and eventually to 300?C). These conditions exceed the practical operating ranges of currently available thermoplastic wire insulations, and thus limit the operating lifetime of tools such as Electric Submersible Pumps (ESPs). In this work, high-temperature insulations based on composite materials were developed and demonstrated. The products of this work were found to exhibit electrical resistivities and dielectric breakdown strengths that PEEK at temperatures above 250C. In addition, sub-scale motor windings were fabricated and tested to validate the performance of this technology

Hooker, Matthew; Hazelton, Craig; Kano, Kimi

2010-12-31T23:59:59.000Z

13

Field application of an interpretation method of downhole temperature and pressure data for detecting water entry in horizontal/highly inclined gas wells  

E-Print Network [OSTI]

condition change, wellbore structure change, geothermal environment change, or simple just noise of measurement. To separate flow condition change from the other causes of temperature change, we require a comprehensive understanding of flow dynamics. 5.... The interpretation model for downhole temperature and pressure data is a coupled thermal wellbore/reservoir flow model. The model is built on fundamental flow and energy conservation equations for both the reservoir and wellbore. These equations are: Mass balance...

Achinivu, Ochi I.

2009-05-15T23:59:59.000Z

14

Development of the downhole dynamometer database  

SciTech Connect (OSTI)

The Downhole Dynamometer Database is a compilation of test data collected with a set of five downhole tools built by Albert Engineering under contract to Sandia National Laboratories. The downhole dynamometer tools are memory tools deployed in the sucker rod string with sensors to measure pressure, temperature, load, and acceleration. The acceleration data is processed to yield position, so that a load vs. position dynagraph can be generated using data collected downhole. With five tools in the hole at one time, all measured data and computed dynagraphs from five different positions in the rod string are available. The purpose of the Database is to provide industry with a complete and high quality measurement of downhole sucker rod pumping dynamics. To facilitate use of the database, Sandia has developed a Microsoft Windows-based interface that functions as a visualizer and browser to the more than 40 MBytes of data. The interface also includes a data export feature to allow users to extract data from the database for use in their own programs. This paper includes a description of the downhole dynamometer tools, data collection program, database content, and a few illustrations of the data contained in the downhole dynamometer database.

Waggoner, J.R.; Mansure, A.

1997-02-01T23:59:59.000Z

15

Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Downhole Fluid Sampling Downhole Fluid Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Fluid Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Gas composition and source of fluids. Thermal: Water temperature. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Downhole Fluid Sampling: Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole

16

High-Temperature Downhole MWD Tools for Directional Drilling | Open Energy  

Open Energy Info (EERE)

MWD Tools for Directional Drilling MWD Tools for Directional Drilling Jump to: navigation, search Geothermal ARRA Funded Projects for High-Temperature Downhole MWD Tools for Directional Drilling Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

17

Downhole Sensor Holds Transformative Potential  

Broader source: Energy.gov [DOE]

Long-term operation of electronics at high temperatures remains a challenge for the geothermal sector; many downhole sensors are prone to failure when deployed in high-temperature wells, which limits the availability and complexity of logging tools av

18

Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China  

Open Energy Info (EERE)

downhole characteristics of well CGEH-1 at Coso Hot Springs, China downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Details Activities (5) Areas (1) Regions (0) Abstract: A series of measurements was made in the exploratory well CGEH-1 at Coso Hot Springs. The temperature measurements provide estimates for the thermal equilibration of the well and indicate that the fractures intersecting the well have different temperatures. The hottest fractures are in the upper-cased portion of the well. Downhole chemical sampling suggests that the borehole still contains remnants of drilling materials. The well has never been extensively flowed at this time.

19

Downhole Fluid Analyzer Development  

SciTech Connect (OSTI)

A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

Bill Turner

2006-11-28T23:59:59.000Z

20

User's manual for GEOTEMP, a computer code for predicting downhole wellbore and soil temperatures in geothermal wells. Appendix to Part I report  

SciTech Connect (OSTI)

GEOTEMP is a computer code that calculates downhole temperatures in and surrounding a well. Temperatures are computed as a function of time in a flowing stream, in the wellbore, and in the soil. Flowing options available in the model include the following: injection/production, forward/reverse circulation, and drilling. This manual describes how to input data to the code and what results are printed out, provides six examples of both input and output, and supplies a listing of the code. The user's manual is an appendix to the Part I report Development of Computer Code and Acquisition of Field Temperature Data.

Wooley, G.R.

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production  

Broader source: Energy.gov [DOE]

Project objective: Develop and demonstrate high-temperature ESP motor windings for use in Enhanced Geothermal Systems and operation at 300?C.

22

Energy Department Announces First-of-its-Kind, High-Temperature, Downhole Rechargeable Energy Storage Device  

Broader source: Energy.gov [DOE]

The Energy Department today announced commercialization of a rechargeable energy storage device capable of operating in the extreme temperatures necessary for geothermal energy production. Industry...

23

Downhole pulse tube refrigerators  

SciTech Connect (OSTI)

This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

Swift, G.; Gardner, D. [Los Alamos National Lab., NM (United States). Condensed Matter and Thermal Physics Group

1997-12-01T23:59:59.000Z

24

Downhole Measurements of Shear- and Compression-Wave Velocities in Boreholes C4993, C4996, C4997 and C4998 at the Waste Treatment Plant DOE Hanford Site.  

SciTech Connect (OSTI)

This report describes the procedures and the results of a series of downhole measurements of shear- and compression-wave velocities performed as part of the Seismic Boreholes Project at the site of the Waste Treatment Plant (WTP). The measurements were made in several stages from October 2006 through early February 2007. Although some fieldwork was carried out in conjunction with the University of Texas at Austin (UT), all data acquired by UT personnel are reported separately by that organization.

Redpath, Bruce B.

2007-04-27T23:59:59.000Z

25

Definition: Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

Downhole Techniques Downhole Techniques Jump to: navigation, search Dictionary.png Downhole Techniques Downhole techniques are measurements collected from a borehole environment which provide information regarding the character of formations and fluids intersected by a well. These petrophysical data are fundamental to developing the understanding of a geothermal reservoir.[1] View on Wikipedia Wikipedia Definition Petrophysics (from the Greek πέτρα, petra, "rock" and φύσις, physis, "nature") is the study of physical and chemical rock properties and their interactions with fluids. A major application of petrophysics is in studying reservoirs for the hydrocarbon industry. Petrophysicists are employed to help reservoir engineers and geoscientists understand the rock properties of the reservoir, particularly how pores in

26

Downhole probes evaluate cavern integrity  

SciTech Connect (OSTI)

Obtaining natural-gas storage caverns` pressures and temperatures with downhole probes has allowed TransGas Ltd., Regina, to monitor and evaluate cavern integrity. TransGas has more than 5 years` experience with the devices. The acquired data have also helped determine gas-in-place inventory and confirm and assess changes in spatial volumes. These changes may have resulted from cavern creep (shrinkage or closure) or downhole abnormality such as fluid infill or collapse of the side walls or roof. This first of two articles presents background and many of the details and lessons to date of TransGas` cavern gas-storage probe program; the conclusion describes a specific storage site with some results.

Crossley, N.G. [TransGas Ltd., Regina, Saskatchewan (Canada)

1997-03-03T23:59:59.000Z

27

Downhole Data Transmission System  

DOE Patents [OSTI]

A system for transmitting data through a string of down-hole components. In accordance with one aspect, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each downhole component includes a pin end and a box end, with the pin end of one downhole component being adapted to be connected to the box end of another. Each pin end includes external threads and an internal pin face distal to the external threads. Each box end includes an internal shoulder face with internal threads distal to the internal shoulder face. The internal pin face and the internal shoulder face are aligned with and proximate each other when the pin end of the one component is threaded into a box end of the other component.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT)

2004-04-06T23:59:59.000Z

28

Self-Consuming Downhole Packer  

Broader source: Energy.gov [DOE]

Self-Consuming Downhole Packer presentation at the April 2013 peer review meeting held in Denver, Colorado.

29

Three phase downhole separator process  

DOE Patents [OSTI]

Three Phase Downhole Separator Process (TPDSP) is a process which results in the separation of all three phases, (1) oil, (2) gas, and (3) water, at the downhole location in the well bore, water disposal injection downhole, and oil and gas production uphole.

Cognata, Louis John (Baytown, TX)

2008-06-24T23:59:59.000Z

30

ARM - Measurement - Virtual temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsVirtual temperature govMeasurementsVirtual temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv = T(1 + rv/{epsilon}), where rv is the mixing ratio, and {epsilon} is the ratio of the gas constants of air and water vapor ( 0.622). Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems MWRP : Microwave Radiometer Profiler RWP : Radar Wind Profiler

31

ARM - Measurement - Atmospheric temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

32

Downhole Data Transmission System  

DOE Patents [OSTI]

A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT)

2003-12-30T23:59:59.000Z

33

Downhole hydraulic seismic generator  

DOE Patents [OSTI]

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

34

275 C Downhole Microcomputer System  

SciTech Connect (OSTI)

An HC11 controller IC and along with serial SRAM and ROM support ICs chip set were developed to support a data acquisition and control for extreme temperature/harsh environment conditions greater than 275 C. The 68HC11 microprocessor is widely used in well logging tools for control, data acquisition, and signal processing applications and was the logical choice for a downhole controller. This extreme temperature version of the 68HC11 enables new high temperature designs and additionally allows 68HC11-based well logging tools and MWD tools to be upgraded for high temperature operation in deep gas reservoirs, The microcomputer chip consists of the microprocessor ALU, a small boot ROM, 4 kbyte data RAM, counter/timer unit, serial peripheral interface (SPI), asynchronous serial interface (SCI), and the A, B, C, and D parallel ports. The chip is code compatible with the single chip mode commercial 68HC11 except for the absence of the analog to digital converter system. To avoid mask programmed internal ROM, a boot program is used to load the microcomputer program from an external mask SPI ROM. A SPI RAM IC completes the chip set and allows data RAM to be added in 4 kbyte increments. The HC11 controller IC chip set is implemented in the Peregrine Semiconductor 0.5 micron Silicon-on-Sapphire (SOS) process using a custom high temperature cell library developed at Oklahoma State University. Yield data is presented for all, the HC11, SPI-RAM and ROM. The lessons learned in this project were extended to the successful development of two high temperature versions of the LEON3 and a companion 8 Kbyte SRAM, a 200 C version for the Navy and a 275 C version for the gas industry.

Chris Hutchens; Hooi Miin Soo

2008-08-31T23:59:59.000Z

35

ARM - Measurement - Soil surface temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

surface temperature surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil surface temperature The temperature of the soil measured near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AMC : Ameriflux Measurement Component CO2FLX : Carbon Dioxide Flux Measurement Systems SOIL : Soil Measurement from the SGP SWATS : Soil Water and Temperature System MET : Surface Meteorological Instrumentation

36

Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system  

SciTech Connect (OSTI)

As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

Marshall, B.W.

1983-05-01T23:59:59.000Z

37

ARM - Measurement - Surface skin temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

skin temperature skin temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface skin temperature The radiative surface skin temperature, from an IR thermometer measuring the narrowband radiating temperature of the ground surface in its field of view. Categories Radiometric, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments IRT : Infrared Thermometer MFRIRT : Multifilter Radiometer and Infrared Thermometer External Instruments

38

ARM - Measurement - Sea surface temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsSea surface temperature govMeasurementsSea surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Sea surface temperature The temperature of sea water near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model Data Field Campaign Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model Data MIRAI : JAMSTEC Research Vessel Mirai

39

Thermal Dosimetry and Temperature Measurements  

Science Journals Connector (OSTI)

...Saptem ber 15 and 16, 1978, San Diego, Calif. 2 The abbreviations used are: RF, radiofrequency; LED, light-emitting diode. gross temperature measurement errors when the probes are used to monitor tissue or phantom material in an electromag...

D. A. Christensen

1979-06-01T23:59:59.000Z

40

Integrated Emissivity And Temperature Measurement  

DOE Patents [OSTI]

A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

Poulsen, Peter (Livermore, CA)

2005-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced downhole periodic seismic generator  

DOE Patents [OSTI]

An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

1991-07-16T23:59:59.000Z

42

Method for measuring surface temperature  

DOE Patents [OSTI]

The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

Baker, Gary A. (Los Alamos, NM); Baker, Sheila N. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

2009-07-28T23:59:59.000Z

43

Downhole material injector for lost circulation control  

DOE Patents [OSTI]

Apparatus and method are disclosed for simultaneously and separately emplacing two streams of different materials through a drill string in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drill string at the desired downhole location and harden only after mixing for control of a lost circulation zone. 6 figs.

Glowka, D.A.

1994-09-06T23:59:59.000Z

44

Downhole material injector for lost circulation control  

DOE Patents [OSTI]

This invention is comprised of an apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

Glowka, D.A.

1991-01-01T23:59:59.000Z

45

Downhole steam generator having a downhole oxidant compressor  

DOE Patents [OSTI]

Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

46

Category:Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Downhole Techniques page? For detailed information on Downhole Techniques as exploration techniques, click here. Category:Downhole Techniques Add.png Add a new Downhole Techniques Technique Subcategories This category has the following 5 subcategories, out of 5 total. B [×] Borehole Seismic Techniques‎ 2 pages F [×] Formation Testing Techniques‎ O [×] Open-Hole Techniques‎ W [×] Well Log Techniques‎ 17 pages [×] Well Testing Techniques‎ 8 pages

47

Application of the Ensemble Kalman Filter to Estimate Fracture Parameters in Unconventional Horizontal Wells by Downhole Temperature Measurements  

E-Print Network [OSTI]

Kalman Filter, a recursive filter, has proved to be an effective tool in the application of inverse problems to determine parameters of non-linear models. Even though large amounts of data are acquired as the information used to apply an estimation...

Gonzales, Sergio Eduardo

2013-07-23T23:59:59.000Z

48

Definition: Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Downhole Fluid Sampling Jump to: navigation, search Dictionary.png Downhole Fluid Sampling Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole fluid sampling is typically performed to monitor water quality, study recharge and flow in groundwater systems, and evaluate resource potential of geothermal reservoirs. Analysis of both the liquid and gas fractions of the reservoir fluid allows for detailed characterize the chemical, thermal, or hydrological properties of the subsurface hydrothermal system. View on Wikipedia Wikipedia Definition Ret Like Like You like this.Sign Up to see what your friends like.

49

Downhole vibration sensing by vibration energy harvesting  

E-Print Network [OSTI]

This thesis outlines the design of a prototype electromagnetic induction vibration energy harvesting device for use in a downhole environment. First order models of the necessary components for a generic vibration energy ...

Trimble, A. Zachary

2007-01-01T23:59:59.000Z

50

DHE (downhole heat exchangers). [Downhole Heat Exchangers (DHE)  

SciTech Connect (OSTI)

The use of downhole heat exchangers (DHE) for residential or commercial space and domestic water heating and other applications has several desirable features. Systems are nearly or completely passive -- that is, no or very little geothermal water or steam is produced from the well either reducing or completely eliminating surface environmental concerns and the need for disposal systems or injection wells. Initial cost of pumps and installation are eliminated or reduced along with pumping power costs and maintenance costs associated with pumping often corrosive geothermal fluids. Many residential and small commercial systems do not require circulating pumps because the density difference in the incoming and outgoing sides of the loop are sufficient to overcome circulating friction losses in the entire system. The major disadvantage of DHEs is their dependence on natural heat flow. In areas where geological conditions provide high permeability and a natural hydraulic gradient, DHEs can provide a substantial quantity of heat. A single 500-ft (152 m) well in Klamath Falls, Oregon, supplies over one megawatt thermal and output is apparently limited by the surface area of pipe that can be installed in the well bore. In contrast, DHEs used in conjunction with heat pumps may supply less than 8 KW from a well of similar depth. Here output is limited by conductive heat flow with perhaps a small contribution from convection near the well bore. The highest capacity DHE reported to date, in Turkey, supplies 6 MW thermal from an 820-ft (250 m) well. There were two main goals for this project. The first was to gather, disseminate and exchange internationally information on DHES. The second was to perform experiments that would provide insight into well bore/aquifer interaction and thereby provide more information on which to base DHE designs. 27 refs., 31 figs., 3 tabs.

Culver, G.

1990-11-01T23:59:59.000Z

51

Temperature Measurements at an Implosion Focus  

Science Journals Connector (OSTI)

...Temperature Measurements at an Implosion Focus T. Saito I. I. Glass Spectroscopic temperature...temperatures were measured at the implosion focus by using a medium quartz Hilger spectrograph...very close to unity, confirmed that the plasma was a black body. Numerical studies with...

1982-01-01T23:59:59.000Z

52

Drilling Optimization Utilizing Surface Instrumentaton for Downhole Event Recognition  

SciTech Connect (OSTI)

This DOE project was undertaken to develop and test an instrumented data-acquisition sub that is mounted in a drill string below the top drive and used to detect downhole events. Data recorded at the surface during drilling operations would then be processed and presented to the driller to discern undesirable drilling conditions and help optimize drilling rates and maximize the life of components in the BHA. This instrumented sub was originally conceived and developed solely as a single-point collection center for rig data that would be used in a number of Noble's products. The sub was designed to collect hook load, rotary torque, rotary speed, rotary position, drill pipe pressure, mud temperature, triaxial vibration, and triaxial magnetometer data. The original design and fabrication was by Sandia National Labs under Noble's direction, which was then tested with Sandia's diagnostics-while-drilling downhole package. After initial results were analyzed, the team surmised that important information describing performance and condition of the bottom-hole assembly (BHA) was embedded in the data recorded by the instrumented sub, and began investigating the potential of using surface measurements from the sub to highlight problems occurring downhole before they could be discerned by the driller. Later, a proposal was submitted to DOE for funding to more broadly investigate use of the system for detecting downhole problems while drilling. Soon after DOE awarded this contract, the Noble team responsible for the previous developments was disbanded and their work terminated (due to factors unrelated to the sub development). This change halted the complementary work that Noble had planned to conduct during the DOE project, and necessitated that all the development work be completed by the DOE project. More effort was expended on the project to develop a field-ready prototype than was originally foreseen. The sub's design had to be significantly modified during the project based on results of field tests. The original slip ring for communication was replaced with a radio link, which makes the sub easier to move to different rigs and simplifies the set-up process. In addition, the sub's previous design would prevent it being used on oil and gas rigs due to potential explosion hazard. The sub was redesigned so that during operation all electrical components on the sub are under a blanket of nitrogen. A pressure switch is used so that, should a leak develop, the sub will shut itself down until any problems are repaired. A total of four series of field tests were conducted. The first (mentioned above) was part of the original Noble-sponsored program and in conjunction with Sandia's diagnostics-while-drilling system. Although these tests highlighted important problems, they showed significant promise for the concept, and the sub was returned to Sandia for early repairs and modifications. After the DOE project took possession of the sub, it was tested three more times in the field. The first two DOE tests had the same objective, which was to establish that the sub could function correctly on the rig and deliver usable data, and to develop procedures for setting up and operating the sub and support computer on a rig. During the first test most of the time was spent troubleshooting the sub. Several significant problems were revealed, demonstrating that the current design was not robust enough to survive typical oil field operations. The sub was then redesigned to increase its robustness and allow it to run safely in areas where explosive gases might be present. Once these changes were implemented, the sub was sent to a second shake-down field test. The new design was found to be greatly improved. The sub operated throughout the test, and quality of the data was significantly higher. Near the end of this project, a final field test was conducted with the objective of creating (or simulating) specific problem conditions and recording data to determine if signatures could be recorded and identified that, after analysis, might signify particula

John H. Cohen; Greg Deskins

2006-02-01T23:59:59.000Z

53

Loaded Transducer Fpr Downhole Drilling Component  

DOE Patents [OSTI]

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2005-07-05T23:59:59.000Z

54

Application of a Downhole Flowmeter to Detecting Casing Breaks in a Geothermal Well  

SciTech Connect (OSTI)

The downhole flowmeter logging system for high temperature geothermal wells developed at Wairakei, New Zealand, is proving to be an invaluable tool for use during workovers to repair or reinstate problem wells. This contribution describes a straightforward example of identifying breaks in plain casing near the top of a productive well.

Syms, Margot C.; Syms, Peter H.; Bixley, Paul F.

1980-12-16T23:59:59.000Z

55

Expandable Metal Liner For Downhole Components  

DOE Patents [OSTI]

A liner for an annular downhole component is comprised of an expandable metal tube having indentations along its surface. The indentations are formed in the wall of the tube either by drawing the tube through a die, by hydroforming, by stamping, or roll forming and may extend axially, radially, or spirally along its wall. The indentations accommodate radial and axial expansion of the tube within the downhole component. The tube is inserted into the annular component and deformed to match an inside surface of the component. The tube may be expanded using a hydroforming process or by drawing a mandrel through the tube. The tube may be expanded in such a manner so as to place it in compression against the inside wall of the component. The tube is useful for improving component hydraulics, shielding components from contamination, inhibiting corrosion, and preventing wear to the downhole component during use. It may also be useful for positioning conduit and insulated conductors within the component. An insulating material may be disposed between the tube and the component in order to prevent galvanic corrosion of the downhole component.

Hall, David R. (Provo, UT); Fox, Joe R. (Provo, UT)

2004-10-05T23:59:59.000Z

56

Remote down-hole well telemetry  

DOE Patents [OSTI]

The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Coates, Don M. (Santa Fe, NM); Freund, Samuel M. (Los Alamos, NM)

2004-07-20T23:59:59.000Z

57

Accurate temperature measurements with a degrading thermocouple  

SciTech Connect (OSTI)

Ways are considered of enhancing the accuracy of thermoelectric measurement of temperature. The high accuracy method proposed for monitoring the temperature of an aggressive medium can determine the temperature, irrespective of the instantaneous values of the Seebeck and Peltier coefficients, i.e., irrespective of the uncontrolled thermocouple sensitivity, which varies during use.

Skripnik, Y.A.; Khimicheva, A.I.

1995-04-01T23:59:59.000Z

58

Downhole Vibration Monitoring and Control System  

SciTech Connect (OSTI)

The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. The key feature of this system is its use of a magnetorheological fluid (MRF) to allow the damping coefficient to be changed extensively, rapidly and reversibly without the use of mechanical valves, but only by the application of a current. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Much of the effort was devoted to the design and testing of the MRF damper, itself. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and a final report was issued. Work on Phase III of the project began during the first quarter, 2006, with the objectives of building precommercial prototypes, testing them in a drilling laboratory and the field; developing and implementing a commercialization plan. All of these have been accomplished. The Downhole Vibration Monitoring & Control System (DVMCS) prototypes have been successfully proven in testing at the TerraTek drilling facility and at the Rocky Mountain Oilfield Test Center (RMOTC.) Based on the results of these tests, we have signed a definitive development and distribution agreement with Smith, and commercial deployment is underway. This current version of the DVMCS monitors and controls axial vibrations. Due to time and budget constraints of this program, it was not possible to complete a system that would also deal with lateral and torsional (stick-slip) vibrations as originally planned; however, this effort is continuing without DOE funding.

Martin E. Cobern

2007-09-30T23:59:59.000Z

59

275 C Downhole Switched-Mode Power Supply  

SciTech Connect (OSTI)

A vee-square (V2) control based controller IC is developed for a switch mode power supply capable of operating at extreme temperature/harsh environment conditions. A buck type regulator with silicon carbide power junction field effect transistors (JFET) as power devices is used to analyze the performance of controller. Special emphases are made on the analog sub-blocks--voltage reference, operational transconductance amplifier and comparator as individual building blocks. Transformer coupled gate drives and high temperature operable magnetic cores and capacitors are identified and tested for use in the design. Conventional ceramic chip packaging of ICs combined with lead carrier type mounting of passive filter components is introduced for hybrid packaging of the complete product. The developed SMPS is anticipated to support the operation of down-hole microcontrollers and other electronics devices that require low/medium power filtered dc inputs over an operating temperature of 275 C.

Chris Hutchens; Vijay Madhuravasal

2008-08-31T23:59:59.000Z

60

DEVELOPMENT OF A MUD-PULSE HIGH-TEMPERATURE MEASUREMENT-WHILE-DRILLING (MWD) SYSTEM  

SciTech Connect (OSTI)

The overall program objective is to develop a mud-pulse measurement-while-drilling (MWD) tool for oil and gas drilling operations that can be used where downhole temperatures are as high as 195 C (383 F). The work was planned to be completed in two phases: Phase I and an optional Phase II. The objectives of Phase I were first to identify critical components of existing MWD systems that can or cannot operate at 195 C. For components not able to meet the higher standard, one of several strategies was pursued: (1) locate high-temperature replacement components, (2) develop new designs that eliminate the unavailable components, or (3) use cooling to keep components at acceptable operating temperatures (under 195 C). New designs and components were then tested under high temperatures in the laboratory. The final goal of Phase I was to assemble two high-temperature MWD prototype tools and test each in at least one low-temperature well to verify total system performance. Phase II was also envisioned as part of this development. Its objective would be to test the two new high-temperature MWD prototype tools in wells being drilled in the United States where the bottom-hole temperatures were 195 C (or the highest temperatures attainable). The high-temperature MWD tool is designed to send directional and formation data to the surface via mud pulses, to aid in the drilling of guided wellbores. The modules that comprise the tool are housed in sealed barrels that protect the electronics from exposure to down-hole fluids and pressures. These pressure barrels are hung inside a non-magnetic collar located above the drilling assembly. A number of significant accomplishments were achieved during the course of the Phase I project, including: (1) Tested two MWD strings for function in an oven at 195 C; (2) Conducted field test of prototype 195 C MWD tool (at well temperatures up to 140-180 C); (3) Tested ELCON hybrid chip with processor, clock, and memory in a custom package for 700 hours at 200 C; (4) Contracted with APS Technology to conduct study of thermoelectric cooling of downhole electronics; (5) Conducted successful Peltier cooling test with APS Technology; (6) Tested and improved the electronics of Sperry Sun's Geiger Muller-based gamma detector for operation at 195 C; (7) Developed two high-temperature magnetometers (one in-house, one with Tensor); and (8) Encouraged outside source to develop lithium/magnesium high-temperature batteries (operating temperature of 125 to 215 C). One of this project's greatest achievements was improvement in Sperry Sun's current tool with changes made as a direct result of work performed under this project. These improvements have resulted in longer life and a more robust MWD tool at the previous temperature rating of 175 C, as well as at higher temperatures. A field test of two prototype 195 C MWD tools was conducted in Lavaca County, Texas. The purpose of this operation was to provide directional services on a sidetrack of a straight hole. The sidetrack was to intersect the formation up-dip above the water/gas interface. In addition, the gamma tool provided formation data including seam tops and thickness. Results from these field tests indicate progress in the development of a 195 C tool. Although the pulsers failed downhole in both tools, failure of the pulsers was determined to be from mechanical rather than electrical causes. Analysis of the economics of the 195 C tool highlights the greatest obstacle to future commercialization. Costs to screen individual components, then subassemblies, and finally completed tools for high-temperature operations are very high. Tests to date also show a relatively short life for high-temperature tools--on the order of 300 hours. These factors mean that the daily cost of the tool will be higher (3 to 5 times more) than a conventional tool.

John H. Cohen; Greg Deskins; William Motion; Jay Martin

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

On quantum interferometric measurements of temperature  

E-Print Network [OSTI]

We provide a detailed description of the interferometric thermometer, which is a device that estimates the temperature of a sample from measurements of the optical phase. For the first time, we rigorously analyze the operation of such a device by studying the interaction of the optical probe system with a heated sample. We find that this approach to thermometry is capable of measuring the temperature of a sample in the nK regime. Furthermore, we compare the theoretical precision of interferometric thermometers with the precision offered by the idealized pyrometers, which infer the temperature from a measurement of the total thermal radiation emitted by the sample.

Marcin Jarzyna; Marcin Zwierz

2014-12-17T23:59:59.000Z

62

ARM - Measurement - Longwave narrowband brightness temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

narrowband brightness temperature narrowband brightness temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave narrowband brightness temperature A descriptive measure of radiation in terms of the temperature of a hypothetical black body emitting an identical amount of radiation in the same narrow band of wavelengths. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments IRT : Infrared Thermometer Field Campaign Instruments RAD-AIR : Airborne Radiometers

63

Method and apparatus of assessing down-hole drilling conditions  

DOE Patents [OSTI]

A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

2007-04-24T23:59:59.000Z

64

Downhole transmission system comprising a coaxial capacitor  

DOE Patents [OSTI]

A transmission system in a downhole component comprises a plurality of data transmission elements. A coaxial cable having an inner conductor and an outer conductor is disposed within a passage in the downhole component such that at least one capacitor is disposed in the passage and having a first terminal coupled to the inner conductor and a second terminal coupled to the outer conductor. Preferably the transmission element comprises an electrically conducting coil. Preferably, within the passage a connector is adapted to electrically connect the inner conductor of the coaxial cable and the lead wire. The coaxial capacitor may be disposed between and in electrically communication with the connector and the passage. In another embodiment a connector is adapted to electrical connect a first and a second portion of the inner conductor of the coaxial cable and a coaxial capacitor is in electrical communication with the connector and the passage.

Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Hall, Jr., H. Tracy (Provo, UT); Rawle, Michael (Springville, UT)

2011-05-24T23:59:59.000Z

65

Data transmission element for downhole drilling components  

DOE Patents [OSTI]

A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2006-01-31T23:59:59.000Z

66

Low pressure combustor for generating steam downhole  

SciTech Connect (OSTI)

A compact catalytic combustor for generating steam downhole in an oil reservoir has steam generating tubes that are attached to a metal catalyst support. The metal support comprises sheets of metal that are spaced apart and transverse to the tubes. Heat from combustion is generated on the metal sheets and is conducted to the steam generating tubes. The steam is injected into the oil reservoir. The combustion gas is vented to ground level.

Retallick, W.B.

1983-03-22T23:59:59.000Z

67

Downhole pipe selection for acoustic telemetry  

DOE Patents [OSTI]

A system is described for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver. 7 figs.

Drumheller, D.S.

1995-12-19T23:59:59.000Z

68

Downhole drilling network using burst modulation techniques  

DOE Patents [OSTI]

A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

2007-04-03T23:59:59.000Z

69

Two wells drilled from one surface bore with downhole splitter  

SciTech Connect (OSTI)

A downhole multiwell drilling template, called a downhole splitter, allows two wells to be drilled, cased, and completed from one well bore. After completion, each well can be produced, serviced, and worked over independently of the other. The downhole splitter was successfully field tested in Wyoming. The downhole splitter is suitable for use on offshore platforms, subsea completions, offshore exploitation and delineation wells, inland waters, and onshore in environmentally sensitive areas. It is also ideal for planned multilateral or multivertical completions. The paper describes the downholds splitter and its development, then discusses the field test: casing program, directional procedure, and results.

Collins, G. (Marathon Oil Co., Houston, TX (United States)); Bennett, R. (Baker Oil Tools, Houston, TX (United States))

1994-10-03T23:59:59.000Z

70

Comparison Measurements of Silicon Carbide Temperature Monitors  

SciTech Connect (OSTI)

As part of the efforts initiated through the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to make Silicon Carbide (SiC) temperature monitors available, a capability was developed at the Idaho National Laboratory (INL) to complete post-irradiation evaluations of these monitors. INL selected the resistance measurement approach for detecting peak irradiation temperature from SiC temperature monitors. To demonstrate this new capability, comparison measurements were completed by INL and Oak Ridge National Laboratory (ORNL) on identical samples subjected to identical irradiation conditions. Results reported in this paper indicate that the resistance measurement approach can yield similar peak irradiation temperatures if appropriate equipment is used and appropriate procedures are followed.

J. L. Rempe; K. G. Condie; D. L. Knudson; L. L. Snead

2010-06-01T23:59:59.000Z

71

Wellbore and soil thermal simulation for geothermal wells: development of computer model and acquisition of field temperature data. Part I report  

SciTech Connect (OSTI)

A downhole thermal simulator has been developed to improve understanding of the high downhole temperatures that affect many design factors in geothermal wells. This development is documented and field temperature data presented for flowing and shut-in conditions.

Wooley, G.R.

1980-03-01T23:59:59.000Z

72

Apparatus and method for high temperature viscosity and temperature measurements  

DOE Patents [OSTI]

A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

Balasubramaniam, Krishnan (Mississippi State, MS); Shah, Vimal (Houston, TX); Costley, R. Daniel (Mississippi State, MS); Singh, Jagdish P. (Mississippi State, MS)

2001-01-01T23:59:59.000Z

73

Downhole delay assembly for blasting with series delay  

DOE Patents [OSTI]

A downhole delay assembly is provided which can be placed into a blasthole for initiation of explosive in the blasthole. The downhole delay assembly includes at least two detonating time delay devices in series in order to effect a time delay of longer than about 200 milliseconds in a round of explosions. The downhole delay assembly provides a protective housing to prevent detonation of explosive in the blasthole in response to the detonation of the first detonating time delay device. There is further provided a connection between the first and second time delay devices. The connection is responsive to the detonation of the first detonating time delay device and initiates the second detonating time delay device. A plurality of such downhole delay assemblies are placed downhole in unfragmented formation and are initiated simultaneously for providing a round of explosive expansions. The explosive expansions can be used to form an in situ oil shale retort containing a fragmented permeable mass of formation particles.

Ricketts, Thomas E. (Grand Junction, CO)

1982-01-01T23:59:59.000Z

74

Method for bonding a transmission line to a downhole tool  

DOE Patents [OSTI]

An apparatus for bonding a transmission line to the central bore of a downhole tool includes a pre-formed interface for bonding a transmission line to the inside diameter of a downhole tool. The pre-formed interface includes a first surface that substantially conforms to the outside contour of a transmission line and a second surface that substantially conforms to the inside diameter of a downhole tool. In another aspect of the invention, a method for bonding a transmission line to the inside diameter of a downhole tool includes positioning a transmission line near the inside wall of a downhole tool and placing a mold near the transmission line and the inside wall. The method further includes injecting a bonding material into the mold and curing the bonding material such that the bonding material bonds the transmission line to the inside wall.

Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

2007-11-06T23:59:59.000Z

75

Data Transmission System For A Downhole Component  

DOE Patents [OSTI]

The invention is a system for transmitting data through a string of downhole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Fox, Joe (Spanish Fork, UT); Briscoe, Michael (Lehi, UT)

2005-01-18T23:59:59.000Z

76

DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM  

SciTech Connect (OSTI)

The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Work during this quarter centered on the rebuilding of the prototype using the improved valve design described in the last report. Most of the components have been received and assembly has begun. Testing is expected to resume in August. In April, a paper was presented at the American Association of Drilling Engineers National Technical Conference in Houston. The paper was well received, and several oilfield service and supply companies sent inquiries regarding commercial distribution of the system. These are currently being pursued, but none have yet been finalized.

Martin E. Cobern

2005-07-27T23:59:59.000Z

77

Downhole Vibration Monitoring & Control System  

SciTech Connect (OSTI)

The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and the Phase II final report was issued. Work on Phase III of the project began during the first quarter, 2006. Efforts the current quarter have continued to focus on the manufacture of the prototype and precommercial parts, field test planning and commercialization. The continued extreme lead times quoted by oilfield machine shops for collar components significantly delayed the deployment of the prototype and precommercial units. All parts have now been received for two units, and all but one for the third. Mechanical assembly of the first two systems is complete and the electronics installation and laboratory testing will be finished in April. We have entered into a Memorandum of Understanding with a major US oilfield equipment supplier, which calls for their assisting with our field tests, in cash and in kind. We are close to signing a definitive agreement which includes the purchase of the three precommercial units. We had also signed a CRADA with the Rocky Mountain Oilfield Test Center (RMOTC), and scheduled a test at their site, The RMOTC drilling schedule continues to slip, and the test cannot begin until the first week of May. Based on these factors, we have requested a no-cost extension to July 31, 2007.

Martin E. Cobern

2007-03-31T23:59:59.000Z

78

DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM  

SciTech Connect (OSTI)

The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

Martin E. Cobern

2004-08-31T23:59:59.000Z

79

DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM  

SciTech Connect (OSTI)

The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. As a result of the lower than expected performance of the MR damper noted last quarter, several additional tests were conducted. These dealt with possible causes of the lack of dynamic range observed in the testing: additional damping from the oil in the Belleville springs; changes in properties of the MR fluid; and, residual magnetization of the valve components. Of these, only the last was found to be significant. By using a laboratory demagnetization apparatus between runs, a dynamic range of 10:1 was achieved for the damper, more than adequate to produce the needed improvements in drilling. Additional modeling was also performed to identify a method of increasing the magnetic field in the damper. As a result of the above, several changes were made in the design. Additional circuitry was added to demagnetize the valve as the field is lowered. The valve was located to above the Belleville springs to reduce the load placed upon it and offer a greater range of materials for its construction. In addition, to further increase the field strength, the coils were relocated from the mandrel to the outer housing. At the end of the quarter, the redesign was complete and new parts were on order. The project is approximately three months behind schedule at this time.

Martin E. Cobern

2005-04-27T23:59:59.000Z

80

Design and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS)  

Science Journals Connector (OSTI)

The present study considers the design, performance analysis and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). The optimum mass flow rate of the geothermal fluid for minimum pumping power and maximum extracted heat energy was determined. In addition, the coaxial pipes of the downhole heat exchanger were sized based on the optimum geothermal mass flow rate and steady-state operation. Transient effect or time-dependent cooling of the Earth underground, and the optimum amount and size of perforations at the inner pipe entrance region to regulate the flow of the geothermal fluid were disregarded to simplify the analysis. The paper consists of an analytical and numerical thermodynamic optimization of a downhole coaxial heat exchanger used to extract the maximum possible energy from the Earth's deep underground (2km and deeper below the surface) for direct usage, and subject to a nearly linear increase in geothermal gradient with depth. The thermodynamic optimization process and entropy generation minimization (EGM) analysis were performed to minimize heat transfer and fluid friction irreversibilities. An optimum diameter ratio of the coaxial pipes for minimum pressure drop in both limits of the fully turbulent and laminar fully-developed flow regime was determined and observed to be nearly the same irrespective of the flow regime. Furthermore, an optimum geothermal mass flow rate and an optimum geometry of the downhole coaxial heat exchanger were determined for maximum net power output. Conducting an energetic and exergetic analysis to evaluate the performance of binary power cycle, higher Earth's temperature gradient and lower geofluid rejection temperatures were observed to yield maximum first- and second-law efficiencies.

P.J. Yekoladio; T. Bello-Ochende; J.P. Meyer

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Marine bearing for a downhole drilling apparatus  

SciTech Connect (OSTI)

A bearing supports a rotatable shaft in a fluid environment. The bearing can be utilized to support a drive shaft connected to a drill bit in a downhole drilling apparatus. The drive shaft extends through a housing in which drilling fluid is flowing. Preferably, the bearing includes an inner elastomeric sleeve and an outer rigid sleeve attached to the interior side wall of the housing. The drive shaft has a wear sleeve attached for rotation therewith. The wear sleeve is rotatably received in the bearing inner sleeve. The inner sleeve is relatively short as compared with the drive shaft and absorbs radial loads imposed on the drive shaft. The bearing is lubricated by a portion of the drilling fluid in the housing which flows between the exterior side wall of the wear sleeve and the interior side wall of the inner sleeve.

Beimgraben, H.W.

1984-07-31T23:59:59.000Z

82

Static Temperature Survey At Newberry Caldera Area (Combs, Et Al., 1999) |  

Open Energy Info (EERE)

Newberry Caldera Area Newberry Caldera Area (Combs, Et Al., 1999) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Downhole data collection during this operation was primarily limited to temperature measurements. These temperature logs were taken with Sandia's platinum-resistance-thermometer (PRT) tool which along with a Sandia logging truck remained on-site for the entire project. This instrument uses a simple resistance bridge, with changes in resistance measured from the surface through a four-conductor cable. Since there are no downhole electronics, temperature drift with time is negligible and the PRT temperature measurements are considered a reference standard for this kind

83

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS  

SciTech Connect (OSTI)

The development work during this quarter was focused in the assembly of the downhole power generator hardware and its electronics module. The quarter was also spent in the development of the surface system electronics and software to extract the acoustic data transmitted from downhole to the surface from the noise generated by hydrocarbon flow in wells and to amplify very small acoustic signals to increase the distance between the downhole tool and the surface receiver. The tasks accomplished during this report period were: (1) Assembly of the downhole power generator mandrel for generation of electrical power due to flow in the wellbore. (2) Test the piezoelectric wafers to assure that they are performing properly prior to integrating them to the mechanical power generator mandrel. (3) Coat the power generator wafers to prevent water from shorting the power generator wafers. (4) Test of the power generator using a water tower and an electric pump to create a water flow loop. (5) Test the power harvesting electronics module. (6) Upgrade the signal condition and amplification from downhole into the surface system. (7) Upgrade the surface processing system capability to process data faster. (8) Create a new filtering technique to extract the signal from noise after the data from downhole is received at the surface system.

Paul Tubel

2004-02-01T23:59:59.000Z

84

High Temperature, High Pressure Devices for Zonal Isolation in...  

Open Energy Info (EERE)

remotely and autonomous deployable structures for space and our high temperature composite technology developed for downhole applications. These devices offer several...

85

High-Temperature-High-Volume Lifting for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Norman Turnquist GE Global Research High Temperature Tools and Sensors, Down-hole Pumps and Drilling May 19, 2010 This presentation does not contain any proprietary...

86

Junction Temperature Measurement of IGBTs Using Short Circuit Current  

SciTech Connect (OSTI)

In this paper, a method is proposed to measure the junction temperatures of IGBT discrete devices and modules using short circuit current. Experimental results show that the short circuit current has good sensitivity, linearity and selectivity, which is suitable to be used as temperature sensitive electrical parameters (TSEP). Test circuit and hardware design are proposed for junction temperature measurement in single phase and three phase convertes. By connecting a temperature measurement unit to the converter and giving a short circuit pulse, the IGBT junction temperature can be measured.

Wang, Fei [ORNL; Xu, Zhuxian [ORNL; Ning, Puqi [ORNL

2012-01-01T23:59:59.000Z

87

High-Temperature Circuit Boards for Use in Geothermal Well Monitoring...  

Broader source: Energy.gov (indexed) [DOE]

Composite Technology Development, Inc. High-Temperature Tools and Sensors, Downhole Pumps and Drilling May 19, 2010 This presentation does not contain any proprietary...

88

RUBBER BEARINGS FOR DOWN-HOLE PUMPS  

SciTech Connect (OSTI)

Synopsis of project activity: 1998--Awarded cost share grant from DOE. 1st Qtr 1999--Developed fail safe lubricating system. 2nd Qtr 1999--Performed first large scale test with nitrile based bearings. It failed due to material swelling. Failure was blamed on improper tolerance. 3rd Qtr 1999--Material tests were performed with autoclaves and exposure tests to Casa Diablo fluids. Testing of Viton materials began. Alternate bearing designs were developed to limit risk of improper tolerances. 4th Qtr 1999--Site testing indicated a chemical attack on the bearing material caused the test failure and not improper bearing tolerance. 1st Qtr 2000--The assistance of Brookhaven National Laboratory was obtained in evaluating the chemical attack. The National Laboratory also began more elaborate laboratory testing on bearing materials. 2nd Qtr 2000--Testing indicated Viton was an inappropriate material due to degradation in Casa Diablo fluid. Testing of EPDM began. 3rd Qtr 2001--EPDM bearings were installed for another large scale test. Bearings failed again due to swelling. Further testing indicated that larger then expected oil concentrations existed in lubricating water geothermal fluid causing bearing failure. 2002-2003--Searched for and tested several materials that would survive in hot salt and oil solutions. Kalrez{reg_sign}, Viton{reg_sign}ETP 500 and Viton{reg_sign}GF were identified as possible candidates. 2003-2005--Kalrez{reg_sign}has shown superior resistance to downhole conditions at Casa Diablo from among the various materials tested. Viton ETP-500 indicated a life expectancy of 13 years and because it is significantly less expensive then Kalrez{reg_sign}, it was selected as the bearing material for future testing. Unfortunately during the laboratory testing period Dupont Chemical chose to stop manufacturing this specific formulation and replaced it with Viton ETP 600S. The material is available with six different fillers; three based on zinc oxide and three based on silicon oxide. Samples of all six materials have been obtained and are being tested at the National Laboratory in Brookhaven, New York. This new material's properties as a bearing material and its ability to adhere to a bearings shell must be reviewed, but cost information deemed the material to be too expensive to be economical.

Bob Sullivan Mammoth Pacific, L.P.

2005-09-07T23:59:59.000Z

89

A simple, inexpensive device for measuring the critical temperature of a high-temperature superconductor  

Science Journals Connector (OSTI)

A simple, inexpensive device for measuring the critical temperature of a high-temperature superconductor ... This note describes a simple, inexpensive method of measuring the temperature at which the Meissner effect exists in a disk of YBa2Cu3O7-x. ...

David B. Green; Dijon Douphner; Bennett Hutchinson

1992-01-01T23:59:59.000Z

90

Downhole steam generator with improved preheating, combustion, and protection features  

DOE Patents [OSTI]

For tertiary oil recovery, a downhole steam generator is designed which provides for efficient counterflow cooling of the combustion chamber walls and preheating of the fuel and water. Pressure-responsive doors are provided for closing and opening the outlet in response to flameout, thereby preventing flooding of the combustion chamber. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

91

Effects of Environmental Temperature Change on Building Energy Audit Measurements  

Science Journals Connector (OSTI)

A study is made on how environmental temperature changes affect measurements on heat-transfer resistance at bounding surfaces, as this is a major characteristic measured in energy auditing for domestic and indust...

Yu. A. Chistyakov

2002-09-01T23:59:59.000Z

92

Improvements in Shallow (Two-Meter) Temperature Measurements and Data  

Open Energy Info (EERE)

Improvements in Shallow (Two-Meter) Temperature Measurements and Data Improvements in Shallow (Two-Meter) Temperature Measurements and Data Interpretation Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Improvements in Shallow (Two-Meter) Temperature Measurements and Data Interpretation Abstract The Great Basin Center for Geothermal Energy has been working on improvements in shallow (two-meter) temperature surveys in two areas: overcoming limitations posed by difficult ground conditions with the use of a portable rock drill, and improvements in temperature measurements and interpretations Previous 2-meter temperature surveys conducted by the Great Basin Center for Geothermal Energy have been limited to areas that were not excessively rocky. This limitation has been overcome by the use of a

93

POST-SHOCK TEMPERATURE MEASUREMENTS OF ALUMINUM A. Seifter1  

E-Print Network [OSTI]

POST-SHOCK TEMPERATURE MEASUREMENTS OF ALUMINUM A. Seifter1 , S. T. Stewart2 , M. R. Furlanetto1 concurrent VISAR measurements in the same optical path, validation experiments on aluminum have been-shock temperature of 495 K ± 30 K was recorded from a polished free surface of aluminum 2024-T4 subject to a peak

Stewart, Sarah T.

94

Apparatus for accurately measuring high temperatures  

DOE Patents [OSTI]

The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

Smith, Douglas D. (Knoxville, TN)

1985-01-01T23:59:59.000Z

95

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.  

SciTech Connect (OSTI)

Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

96

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.  

SciTech Connect (OSTI)

Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

97

Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors  

DOE Patents [OSTI]

A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature. 5 figs.

Britton, C.L. Jr.; Ericson, M.N.

1999-01-19T23:59:59.000Z

98

Temperature Measurements in Boreholes: An Overview of Engineering and  

Open Energy Info (EERE)

Temperature Measurements in Boreholes: An Overview of Engineering and Temperature Measurements in Boreholes: An Overview of Engineering and Scientific Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Temperature Measurements in Boreholes: An Overview of Engineering and Scientific Applications Abstract Temperature data obtained in boreholes serve as critical input to many fields of engineering, exploration, and research: (1) in well completions, (2) gas and fluid production engineering, (3) in the exploration for hydrocarbons and ore minerals, and (4) for testing hypotheses concerning the evolution of the Earth's crust and tectonic processes. Wireline-conveyed maximum-recording thermometers and continuous-reading thermistors are used to measure absolute temperatures, differential

99

System for loading executable code into volatile memory in a downhole tool  

DOE Patents [OSTI]

A system for loading an executable code into volatile memory in a downhole tool string component comprises a surface control unit comprising executable code. An integrated downhole network comprises data transmission elements in communication with the surface control unit and the volatile memory. The executable code, stored in the surface control unit, is not permanently stored in the downhole tool string component. In a preferred embodiment of the present invention, the downhole tool string component comprises boot memory. In another embodiment, the executable code is an operating system executable code. Preferably, the volatile memory comprises random access memory (RAM). A method for loading executable code to volatile memory in a downhole tool string component comprises sending the code from the surface control unit to a processor in the downhole tool string component over the network. A central processing unit writes the executable code in the volatile memory.

Hall, David R. (Provo, UT); Bartholomew, David B. (Springville, UT); Johnson, Monte L. (Orem, UT)

2007-09-25T23:59:59.000Z

100

Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application  

SciTech Connect (OSTI)

Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5??10{sup ?5}?nm/psi at 1480?nm to 1.3??10{sup ?3}?nm/psi at 1680?nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000?psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from ?3.4??10{sup ?6} 1/psi to ?1.3??10{sup ?6} 1/psi and from ?5??10{sup ?6} 1/psi to ?1.8??10{sup ?6} 1/psi, respectively, which were in a good accordance with each other.

Sadeghi, J., E-mail: j-sadeghi@sbu.ac.ir; Chenari, Z.; Ziaee, F. [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Latifi, H., E-mail: latifi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Santos, J. L., E-mail: josantos@fc.up.pt [INESC PortoInstituto de Engenharia de Sistemas e Computadores do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Departamento de Fsica, da Faculdade de Cincias, da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

2014-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Study of Windows Effects for Shock Wave Temperature Measurements  

SciTech Connect (OSTI)

Temperature measurements of shocked plutonium are needed for improved understanding of its equation of state (EOS) and will enable better understanding and reliability of the U.S. nuclear weapon stockpile.

W. D. Turley, G. Stevens, L. Veeser, D. Holtkamp, A. Seifter

2011-05-25T23:59:59.000Z

102

Global Surface Temperature Measurement for Hypersonic Flight Vehicles.  

E-Print Network [OSTI]

??This dissertation describes the use of permanent-change thermal paints as a technique for global surface temperature measurements on short-duration hypersonic flight vehicles. The thermal paints (more)

Choudhury, Rishabh

2014-01-01T23:59:59.000Z

103

Measurement of MTF Target Plasma Temperature Using Filtered Silicon Photodiodes  

E-Print Network [OSTI]

Measurement of MTF Target Plasma Temperature Using Filtered Silicon Photodiodes Presented at the 40 Plasma Temperature Using Filtered Silicon Photodiodes Magnetized Target Fusion (MTF) is an approach photodiodes, and a plasma-density interferometer. The data obtained from the array of seven filtered silicon

104

Multipurpose Acoustic Sensor for Downhole Fluid Monitoring  

Broader source: Energy.gov [DOE]

Novel sensor design based on acoustics. Determine in real-timeand in a single sensor packagemultiple parameters: temperature, pressure, fluid flow; and fluid properties, such as density, viscosity, fluid composition.

105

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume II P-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.  

SciTech Connect (OSTI)

In this volume (II), all P-wave measurements are presented that were performed in Borehole C4996 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 360 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1180 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4996, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4996, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-07-06T23:59:59.000Z

106

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume I P-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.  

SciTech Connect (OSTI)

In this volume (I), all P-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 370 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4993, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-07-06T23:59:59.000Z

107

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume III P-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.  

SciTech Connect (OSTI)

In this volume (III), all P-wave measurements are presented that were performed in Borehole C4997 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 390 to 1220 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 40 ft (later relocated to 27.5 ft due to visibility in borehole after rain) in Borehole C4997, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4997, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

108

TEMPERATURE MEASUREMENT SYSTEM OF NOVOSIBIRSK FREE ELECTRON LASER  

E-Print Network [OSTI]

of the accelerator hall. 3. Vacuum "sensors". These sensors are actually control devices for vacuum pumps allows measuring the temperature of the vacuum chamber, cooling water, and windings of the magnetic sensors, it is also used to measure, for instance, vacuum parameters and some parameters of the cooling

Kozak, Victor R.

109

Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration  

SciTech Connect (OSTI)

The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements as a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.

Peter Sandvik; Stanislav Soloviev; Emad Andarawis; Ho-Young Cha; Jim Rose; Kevin Durocher; Robert Lyons; Bob Pieciuk; Jim Williams; David O'Connor

2007-08-10T23:59:59.000Z

110

Self-calibrated active pyrometer for furnace temperature measurements  

DOE Patents [OSTI]

Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

111

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume IV S-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.  

SciTech Connect (OSTI)

In this volume (IV), all S-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. S-wave measurements were performed over the depth range of 370 to 1300 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Shear (S) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition, a second average shear wave record was recorded by reversing the polarity of the motion of the T-Rex base plate. In this sense, all the signals recorded in the field were averaged signals. In all cases, the base plate was moving perpendicular to a radial line between the base plate and the borehole which is in and out of the plane of the figure shown in Figure 1.1. The definition of in-line, cross-line, forward, and reversed directions in items 2 and 3 of Section 2 was based on the moving direction of the base plate. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas (UT) was embedded near the borehole at about 1.5 ft below the ground surface. The Redpath geophone and the UT geophone were properly aligned so that one of the horizontal components in each geophone was aligned with the direction of horizontal shaking of the T-Rex base plate. This volume is organized into 12 sections as follows. Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vs Profile at Borehole C4993, Sections 4 to 6: Unfiltered S-wave records of lower horizontal receiver, reaction mass, and reference receiver, respectively, Sections 7 to 9: Filtered S-wave signals of lower horizontal receiver, reaction mass and reference receiver, respectively, Section 10: Expanded and filtered S-wave signals of lower horizontal receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower horizontal receiver signals, respectively.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

112

Development of a HT seismic downhole tool.  

SciTech Connect (OSTI)

Enhanced Geothermal Systems (EGS) require the stimulation of the drilled well, likely through hydraulic fracturing. Whether fracturing of the rock occurs by shear destabilization of natural fractures or by extensional failure of weaker zones, control of the fracture process will be required to create the flow paths necessary for effective heat mining. As such, microseismic monitoring provides one method for real-time mapping of the fractures created during the hydraulic fracturing process. This monitoring is necessary to help assess stimulation effectiveness and provide the information necessary to properly create the reservoir. In addition, reservoir monitoring of the microseismic activity can provide information on reservoir performance and evolution over time. To our knowledge, no seismic tool exists that will operate above 125 C for the long monitoring durations that may be necessary. Replacing failed tools is costly and introduces potential errors such as depth variance, etc. Sandia has designed a high temperature seismic tool for long-term deployment in geothermal applications. It is capable of detecting microseismic events and operating continuously at temperatures up to 240 C. This project includes the design and fabrication of two High Temperature (HT) seismic tools that will have the capability to operate in both temporary and long-term monitoring modes. To ensure the developed tool meets industry requirements for high sampling rates (>2ksps) and high resolution (24-bit Analog-to-Digital Converter) two electronic designs will be implemented. One electronic design will utilize newly developed 200 C electronic components. The other design will use qualified Silicon-on-Insulator (SOI) devices and will have a continuous operating temperature of 240 C.

Maldonado, Frank P.; Greving, Jeffrey J.; Henfling, Joseph Anthony; Chavira, David J.; Uhl, James Eugene; Polsky, Yarom

2009-06-01T23:59:59.000Z

113

Temperature measurements using multicolor pyrometry in thermal radiation heating environments  

SciTech Connect (OSTI)

Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 11002400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 7001700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

Fu, Tairan, E-mail: trfu@mail.tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China) [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Beijing 100084 (China); Liu, Jiangfan; Duan, Minghao; Zong, Anzhou [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)] [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

2014-04-15T23:59:59.000Z

114

Silicon Carbide Temperature Monitor Measurements at the High Temperature Test Laboratory  

SciTech Connect (OSTI)

Silicon carbide (SiC) temperature monitors are now available for use as temperature sensors in Advanced Test Reactor (ATR) irradiation test capsules. Melt wires or paint spots, which are typically used as temperature sensors in ATR static capsules, are limited in that they can only detect whether a single temperature is or is not exceeded. SiC monitors are advantageous because a single monitor can be used to detect for a range of temperatures that may have occurred during irradiation. As part of the efforts initiated by the ATR National Scientific User Facility (NSUF) to make SiC temperature monitors available, a capability was developed to complete post-irradiation evaluations of these monitors. As discussed in this report, the Idaho National Laboratory (INL) selected the resistance measurement approach for detecting peak irradiation temperature from SiC temperature monitors. This document describes the INL efforts to develop the capability to complete these resistance measurements. In addition, the procedure is reported that was developed to assure that high quality measurements are made in a consistent fashion.

J. L. Rempe; K. G. Condie; D. L. Knudson; L. L. Snead

2010-01-01T23:59:59.000Z

115

ACCURATE TEMPERATURE MEASUREMENTS IN A NATURALLY-ASPIRATED RADIATION SHIELD  

SciTech Connect (OSTI)

Experiments and calculations were conducted with a 0.13 mm fine wire thermocouple within a naturally-aspirated Gill radiation shield to assess and improve the accuracy of air temperature measurements without the use of mechanical aspiration, wind speed or radiation measurements. It was found that this thermocouple measured the air temperature with root-mean-square errors of 0.35 K within the Gill shield without correction. A linear temperature correction was evaluated based on the difference between the interior plate and thermocouple temperatures. This correction was found to be relatively insensitive to shield design and yielded an error of 0.16 K for combined day and night observations. The correction was reliable in the daytime when the wind speed usually exceeds 1 m s{sup -1} but occasionally performed poorly at night during very light winds. Inspection of the standard deviation in the thermocouple wire temperature identified these periods but did not unambiguously locate the most serious events. However, estimates of sensor accuracy during these periods is complicated by the much larger sampling volume of the mechanically-aspirated sensor compared with the naturally-aspirated sensor and the presence of significant near surface temperature gradients. The root-mean-square errors therefore are upper limits to the aspiration error since they include intrinsic sensor differences and intermittent volume sampling differences.

Kurzeja, R.

2009-09-09T23:59:59.000Z

116

Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO2 Sequestration  

SciTech Connect (OSTI)

This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+) simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.

Challener, William

2014-12-31T23:59:59.000Z

117

Experimental Time Resolved Electron Beam Temperature Measurements Using Bremsstrahlung Diagnostics  

SciTech Connect (OSTI)

Electron beam temperature, {beta}{perpendicular} (= v{perpendicular}/v), is important to control for the development of high dose flash radiographic bremsstrahlung sources. At high voltage (> 5 MV) increasing electron beam temperature has a serious deleterious effect on dose production. The average and time resolved behavior of beam temperature was measured during radiographic experiments on the HERMES III accelerator (10 MV, 50 kA, 70 ns). A linear array of thermoluminescent dosimeters (TLDs) were used to estimate the time integrated average of beam temperature. On and off-axis photoconducting diamond (PCD) detectors were used to measure the time resolved bremsstrahlung dose rate, which is dependent on beam energy and temperature. The beam temperature can be determined by correlating PCD response with accelerator voltage and current and also by analyzing the ratio of PCD amplitudes on and off axis. This ratio is insensitive to voltage and current and thus, is more reliable than utilizing absolute dose rate. The data is unfolded using comparisons with Monte Carlo simulations to obtain absolute beam temperatures. The data taken on HERMES III show abrupt increases in {beta}{perpendicular} midway through the pulse indicating rapid onset of beam instability.

Menge, P.R.; Maenchen, J.E.; Mazarakis, M.G.; Rosenthal, S.E.

1999-06-25T23:59:59.000Z

118

Heat Transfer Modeling and Use of Distributed Temperature Measurements to Predict Rate  

E-Print Network [OSTI]

to demonstrate the application of the methodology of rate estimation proposed. Fluid flow rates for steady and transient cases were successfully estimated within engineering accuracy for all three cases. In all three cases, in addition to the traditional downhole...

Hashmi, Gibran Mushtaq

2014-07-08T23:59:59.000Z

119

Neutron scattering effects on fusion ion temperature measurements.  

SciTech Connect (OSTI)

To support the nuclear fusion program at Sandia National Laboratories (SNL), a consistent and verifiable method to determine fusion ion temperatures needs to be developed. Since the fusion temperature directly affects the width in the spread of neutron energies produced, a measurement of the neutron energy width can yield the fusion temperature. Traditionally, the spread in neutron energies is measured by using time-of-flight to convert a spread in neutron energies at the source to a spread in time at detector. One potential obstacle to using this technique at the Z facility at SNL is the need to shield the neutron detectors from the intense bremsstrahlung produced. The shielding consists of eight inches of lead and the concern is that neutrons will scatter in the lead, artificially broaden the neutron pulse width and lead to an erroneous measurement. To address this issue, experiments were performed at the University of Rochester's Laboratory for Laser Energetics, which demonstrated that a reliable ion temperature measurement can be achieved behind eight inches of lead shielding. To further expand upon this finding, Monte Carlo N-Particle eXtended (MCNPX) was used to simulate the experimental geometric conditions and perform the neutron transport. MCNPX was able to confidently estimate results observed at the University of Rochester.

Ziegler, Lee (Bechtel/Nevada, Las Vegas, NV); Starner, Jason R.; Cooper, Gary Wayne; Ruiz, Carlos L.; Franklin, James Kenneth (Ktech Corporation, Albuquerque, NM); Casey, Daniel T.

2006-06-01T23:59:59.000Z

120

Note: Zeeman splitting measurements in a high-temperature plasma  

SciTech Connect (OSTI)

The Zeeman effect has been used for measurement of magnetic fields in low-temperature plasma, but the diagnostic technique is difficult to implement in a high-temperature plasma. This paper describes new instrumentation and methodology for simultaneous measurement of the entire Doppler-broadened left and right circularly polarized Zeeman spectra in high-temperature plasmas. Measurements are made using spectra emitted parallel to the magnetic field by carbon impurities in high-temperature plasma. The Doppler-broadened width is much larger than the magnitude of the Zeeman splitting, thus simultaneous recording of the two circularly polarized Zeeman line profiles is key to accurate measurement of the magnetic field in the ZaP Z-pinch plasma device. Spectral data are collected along multiple chords on both sides of the symmetry axis of the plasma. This enables determination of the location of the current axis of the Z-pinch and of lower-bound estimates of the local magnetic field at specific radial locations in the plasma.

Golingo, R. P.; Shumlak, U.; Den Hartog, D. J. [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington 98195-2250 (United States)

2010-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION  

SciTech Connect (OSTI)

The systematic tests of the gasifier simulator were conducted in this reporting period. In the systematic test, two (2) factors were considered as the experimental parameters, including air injection rate and water injection rate. Each experimental factor had two (2) levels, respectively. A special water-feeding device was designed and installed to the gasifier simulator. Analysis of Variances (ANOVA) was applied to the results of the systematic tests. The ANOVA shows that the air injection rate did have the significant impact to the temperature measurement in the gasifier simulator. The ANOVA also shows that the water injection rate did not have the significant impact to the temperature measurements in the gasifier simulator. The ANOVA analysis also proves that the thermocouple assembly we proposed was immune to the moisture environment, the temperature measurement remained accurate in moisture environment. Within this reporting period, the vibration application for cleaning purpose was explored. Both ultrasonic and sub-sonic vibrations were considered. A feasibility test was conducted to prove that the thermocouple vibration did not have the significant impact to the temperature measurements in the gasifier simulator. This feasibility test was a 2{sup 2} factorial design. Two factors including temperature levels and motor speeds were set to two levels respectively. The sub-sonic vibration tests were applied to the thermocouple to remove the concrete cover layer (used to simulate the solid condensate in gasifiers) on the thermocouple tip. It was found that both frequency and amplitude had significant impacts on removal performance of the concrete cover layer.

Seong W. Lee

2004-04-01T23:59:59.000Z

122

Surface Temperatures of Insulated Glazing Units: Infrared Thermography Laboratory Measurements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures Brent T. Griffith ASHRAE Member, Howdy Goudey, and Dariush Arasteh P.E. ASHRAE Member Building Technologies Program Environment Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley CA 94720 USA August 2, 2001 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Surface Temperatures of Window Specimens: Infrared Thermography Laboratory Measurements Brent T. Griffith 1 , Howdy Goudey, and Dariush Arasteh

123

Variability in Measured Space Temperatures in 60 Homes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Variability in Measured Space Variability in Measured Space Temperatures in 60 Homes David Roberts National Renewable Energy Laboratory Kerylyn Lay EnerNOC (formerly of the National Renewable Energy Laboratory) Technical Report NREL/TP-5500-58059 March 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Variability in Measured Space Temperatures in 60 Homes David Roberts National Renewable Energy Laboratory Kerylyn Lay EnerNOC (formerly of the National Renewable Energy Laboratory)

124

Posters Comparisons of Brightness Temperature Measurements and Calculations Obtained  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Posters Comparisons of Brightness Temperature Measurements and Calculations Obtained During the Spectral Radiance Experiment Y. Han, J. B. Snider, and E. R. Westwater National Oceanic and Atmospheric Administration Environmental Research Laboratories/Environmental Technology Laboratory Boulder, Colorado S. H. Melfi National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland R. A. Ferrare Hughes STX Corporation Lanham, Maryland Introduction In radiometric remote sensing of the atmosphere, the ability to calculate radiances from underlying state variables is fundamental. To infer temperature and water vapor profiles from satellite- or ground-based radiometers, one must determine cloud-free regions and then calculate clear-sky radiance emerging from the top of the earth's

125

temperature measurements conducted by the Gulf Coast Carbon Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature measurements conducted by the Gulf Coast Carbon Center temperature measurements conducted by the Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology, University of Texas at Austin. The effort will examine the instrumentation necessary to ensure safe CO 2 storage by verifying CO 2 retention in the injection zone, quantify storage capacity, and quantify near- and far-field pressure response to injection. SECARB began injecting CO 2 on July 15, 2008, at a depth of 10,300 feet for enhanced oil recovery (EOR) at the Cranfield oilfield near Natchez, Mississippi. The naturally occurring CO 2 is obtained from Jackson Dome and transported by pipeline to the injection site. SECARB plans to inject CO

126

Present Research Situation and Trend of Temperature Measurement and Control Technology for Dry-type Transformers  

Science Journals Connector (OSTI)

The thermal resistance temperature measure-ment technique is widely used in the temperature measurement and control systems for dry-type transfor-mers. The infrared temperature measurement technique has been put into practical use. The fiber-optic sensing temperature measurement technique is newly developed and has a good development prospect. All these three kinds of temperature measurement techniques have too low response speed in the temperature measurement and control of dry-type transformers. The prediction temp-erature measurement and control method based on the BP neural network is feasible to increase the response speed.

Feng Jian-qin; Kang Guo-ping; Chen Zhi-wu; Zheng An-ping; Wei Yun-bing; Cui Guang-zhao

2011-01-01T23:59:59.000Z

127

Temperature Tomography of the Soft X-Ray Corona: Measurements  

Science Journals Connector (OSTI)

We analyze long-exposure and off-pointing Yohkoh/SXT data of the solar corona observed on 1992 August 26. We develop a new (temperature) tomography method that is based on a forward-fitting method of a four-parameter model to the observed soft X-ray fluxes F1(h) and F2(h) of two SXT wavelength filters as a function of height h. The model is defined in terms of a differential emission measure (DEM) distribution dEM(h, T)/dT, which includes also a temperature dependence of density scale heights ?n(T) = q??T and allows us to quantify deviations (q? ? 1) from hydrostatic equilibrium (q? = 1). This parametrization facilitates a proper line-of-sight integration and relates the widely used filter ratio temperature TFR to the peak of the DEM distribution. A direct consequence of the multi-scale height atmosphere is that the filter ratio temperature TFR(h) is predicted to increase with height, even if all magnetic field lines are isothermal. Our model fitting reveals that coronal holes and quiet-Sun regions are in perfect hydrostatic equilibrium but that coronal streamers have a scale height that exceeds the hydrostatic scale height by a factor of up to q? 2.3, which underscores the dynamic nature of coronal streamers. Our density measurements in coronal holes are slightly lower than most of the white-light polarized brightness inversions and seem to come closer to the requirements of solar wind models. Our DEM model provides also a physical framework for the semiempirical Baumbach-Allen formula and quantifies the temperature ranges and degree of hydrostaticity of the K, L, and F coronae.

Markus J. Aschwanden; Loren W. Acton

2001-01-01T23:59:59.000Z

128

High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Design, demonstrate, and qualify high-temperature high pressure zonal isolation devices compatible with the high temperature downhole Enhanced Geothermal Systems (EGS) environment.

129

Tracer dye transport from a well fitted with a downhole heat exchanger, Klamath Falls, Oregon  

SciTech Connect (OSTI)

Low or medium temperature geothermal resources are often used for space and domestic hot water heating. If the resource is located at reasonably shallow depths and adjacent to a major population centre large amounts of relatively cheap, clean heat can be provided. Geothermal fluid is often brought to the surface, either under natural artesian pressure or by pumping, to be used in surface heat exchangers (SHEs). This method generally requires a second well for disposal of the cooled fluid and a substantial capital outlay for pumps and heat exchangers. Large amounts of heat can be extracted from just one or two wells using surface heat exchangers and the method can prove very cost effective in areas with a high density of energy intensive users. For smaller heat loads surface heat exchangers can become expensive and in many instances a downhole heat exchanger (DHE) installed directly in the well bore is capable of supplying cheap heat to a smaller number of users. This report first describes the methods used to carry out the series of dye tests, from well selection to injection of the dye samples. It then discusses the results of these tests in terms of how much dye was recovered, where it was recovered from and how long it took to arrive. The results of the concurrent temperature monitoring work and DHE heat output performance are also presented. Some recommendations are made for any future testing. 13 refs., 42 figs.

Dunstall, M.G.

1990-02-01T23:59:59.000Z

130

Goniometric characteristics of optical fibres for temperature measurement in  

Science Journals Connector (OSTI)

The accurate in situ, non-contact measurement of the temperature distribution within diesel after-treatment filters requires the employment of optical fibres with special tip geometry. The goniometric characteristics of optical fibres with flat, 45 angled and bent and polished tips are studied such that the specific radiation acceptance region can be determined. One 2 mm diameter fused silica and two 0.425 mm diameter sapphire optical fibres are examined. Detailed discussion of the relative intensity profiles observed for these fibres is presented. Of the three fibres evaluated, the 45 angled tip geometry provides the most precise response for measuring radiation emitted from the internal filter walls. Exploiting the characteristics of total internal reflection, the 45 angled tip fibre accepts the maximum quantity of incident radiation at an angle perpendicular to the optical axis.

Brian J Boothe; Albert J Shih; Jian Kong; William L Roberts

2003-01-01T23:59:59.000Z

131

Contact resistance measurements recorded at conductive polymer/high-temperature superconductor interfaces  

Science Journals Connector (OSTI)

Contact resistance measurements recorded at conductive polymer/high-temperature superconductor interfaces ... Structure of the Electrical Double Layer in High-Temperature Superconductors. ...

Steven G. Haupt; David R. Riley; Jianai Zhao; John T. McDevitt

1993-01-01T23:59:59.000Z

132

Development of Tools for Measuring Temperature, Flow, Pressure...  

Broader source: Energy.gov (indexed) [DOE]

Temperature, Flow, Pressure, and Seismicity of EGS Reservoirs 300 C Capable Electronics Platform and Temperature Sensor System for Enhanced Geothermal Systems; 2010...

133

Temperature Measurements Through Dust or Steam for Energy-Intensive Industries  

E-Print Network [OSTI]

of industrial situations including those which prevent direct contact with the material, airborne particulates can make remote process temperature measurement difficult or impossible. We have developed a prototype remote temperature measurement instrument which...

Stephan, K. D.; Pearce, J. A.; Wang, L.; Ryza, E.

2005-01-01T23:59:59.000Z

134

Device and method for self-verifying temperature measurement and control  

DOE Patents [OSTI]

A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

Watkins, Arthur D. (Idaho Falls, ID); Cannon, Collins P. (Kearney, MO); Tolle, Charles R. (Idaho Falls, ID)

2002-10-29T23:59:59.000Z

135

Measurement of the temperature of a pulsating electric arc discharge  

Science Journals Connector (OSTI)

A simple method for determining the temperature on the axis of an oscillating arc column is proposed.

A. Marotta

1994-06-01T23:59:59.000Z

136

Apparatus and method for compensating for clock drift in downhole drilling components  

DOE Patents [OSTI]

A precise downhole clock that compensates for drift includes a prescaler configured to receive electrical pulses from an oscillator. The prescaler is configured to output a series of clock pulses. The prescaler outputs each clock pulse after counting a preloaded number of electrical pulses from the oscillator. The prescaler is operably connected to a compensator module for adjusting the number loaded into the prescaler. By adjusting the number that is loaded into the prescaler, the timing may be advanced or retarded to more accurately synchronize the clock pulses with a reference time source. The compensator module is controlled by a counter-based trigger module configured to trigger the compensator module to load a value into the prescaler. Finally, a time-base logic module is configured to calculate the drift of the downhole clock by comparing the time of the downhole clock with a reference time source.

Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Hall, Jr., H. Tracy (Provo, UT)

2007-08-07T23:59:59.000Z

137

Building America Indoor Temperature and Humidity Measurement Protocol  

SciTech Connect (OSTI)

When modeling homes using simulation tools, the heating and cooling set points can have a significant impact on home energy use. Every 4 years the Energy Information Administration (EIA) Residential Energy Consumption Survey (RECS) asks homeowners about their heating and cooling set points. Unfortunately, no temperature data is measured, and most of the time, the homeowner may be guessing at this number. Even one degree Fahrenheit difference in heating set point can make a 5% difference in heating energy use! So, the survey-based RECS data cannot be used as the definitive reference for the set point for the 'average occupant' in simulations. The purpose of this document is to develop a protocol for collecting consistent data for heating/cooling set points and relative humidity so that an average set point can be determined for asset energy models in residential buildings. This document covers the decision making process for researchers to determine how many sensors should be placed in each home, where to put those sensors, and what kind of asset data should be taken while they are in the home. The authors attempted to design the protocols to maximize the value of this study and minimize the resources required to achieve that value.

Engebrecht-Metzger, C.; Norton, P.

2014-02-01T23:59:59.000Z

138

Development of Tools for Measuring Temperature, Flow, Pressure...  

Broader source: Energy.gov (indexed) [DOE]

Reviewer Panel: Outstanding (4), Good (3), Good (3) Supporting comments: * Silicon carbide-based electronics offer excellent potential for high-temperature application....

139

Experimental verification of a theory of the influence of measurement conditions on temperature measurement accuracy with IR systems  

Science Journals Connector (OSTI)

A theory of the influence of measurement conditions on temperature measurement accuracy with infrared systems has been recently presented. A comparison study of the shortwave (35-?m)...

Chrzanowski, Krzysztof

1996-01-01T23:59:59.000Z

140

Spectral Collection of Polyethylene Pellets at nearly Cryogenic Temperature to Improve Selectivity of Raman Measurement  

SciTech Connect (OSTI)

Raman spectroscopy has been extensively used for analysis of diverse polymer samples. Normally, Raman spectral collection of samples is routinely performed at room temperature for convenience. However, the feasibility of improving spectral selectivity and the resulting quantitative accuracy, when samples are measured at nearly cryogenic temperature, has not been investigated. For this purpose, we attempted to measure the density of polyethylene (PE) pellets at cryogenic temperatures and the resulting accuracies were compared with that from room temperature measurement. Initially, each of 25 PE sample was allowed to cool down to cryogenic temperature and the corresponding Raman spectra were continuously collected while the temperature of sample increased. When the temperature of sample was at cryogenic temperature, the resulting band widths were narrower compared to those at room temperature, thereby improving the accuracy of density measurement. In overall, the proposed Raman scheme is simple and efficient; therefore, it could be further applied for analysis of other polymers.

Kim, Saetbyeol; Lee, Sanguk; Hwang, Jinyoung; Chung, Hoeil [Analytical Spectroscopy Lab, Department of Chemistry, Hanyang University, Seoul, 133-791 (Korea, Republic of)

2010-08-06T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A New Microwave Temperature Profiler … First Measurements in Polar Regions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microwave Temperature Profiler - First Microwave Temperature Profiler - First Measurements in Polar Regions E. N. Kadygrov, A. V. Koldaev, and A. S. Viazankin Central Aerological Observatory Moscow, Russia A. Argentini, and A. Conidi Institute of Atmospheric Physics CNR, Italy Introduction Temperature inversions are a ubiquitous feature of the high latitude atmospheric boundary layer (ABL). In Polar Regions, the temperature inversion is a complicated phenomenon involving interactions between surface radiative cooling, subsidence and warm air advection. In the period 1997-2002, several microwave temperature profilers were used to measure temperature inversion parameters at one of the three sites of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM)

142

Research on Temperature Field Measuring of Oxygen Propane  

Science Journals Connector (OSTI)

By substituting alumina particles for soot created in burning flame and using the three-color method, the temperature field of the oxygen propane is calculated based on the image taken by CCD and digital image processing technology. The results show ... Keywords: CCD, oxygen propane flame, temperature field, image processing

Zhang Rui-ping

2010-09-01T23:59:59.000Z

143

The first measurement of temperature standard deviation along the line of sight in galaxy clusters  

Science Journals Connector (OSTI)

......value of the temperature standard deviation by using the...isothermal beta model (for a review, see Birkinshaw 1999...measurement of temperature standard deviation along the line...measure sigma, and we plan to provide a systematic...analysis of the temperature standard deviation in all clusters......

D. A. Prokhorov; S. Colafrancesco

2012-07-01T23:59:59.000Z

144

Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment Deeper  

Open Energy Info (EERE)

Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment Deeper Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment Deeper Temperature Gradient Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment Deeper Temperature Gradient Drilling Abstract Temperature gradient drilling has historically been a key tool in the exploration for geothermal resources in the Great Basin, USA, but regulatory, environmental, and accessibility issues, as well as the expense of drilling, are increasingly limiting its use. In cases where thermal groundwater is not overlain by near-surface cold aquifers, it is possible to augment temperature gradient drilling with temperatures measured from a 2-meter depth. We discuss the development of a rapid, efficient, and

145

Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J.T. Rutledge  

E-Print Network [OSTI]

Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J three hydraulic fracture operations in the Cotton Valley gas field of East Texas. Two 48-level, 3 a consortia of operators and service companies conducted an extensive hydraulic fracture imaging demonstration

146

Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma  

SciTech Connect (OSTI)

The objective of this project is to demonstrate the impact of downhole vibration stimulation on oil production rates in a mature waterflood field. Oil & Gas Consultants International, Inc. (OGCI) will manage the project in close cooperation with the Osage Tribe as the tests will be conducted in Osage County, Oklahoma, the mineral estate of the Osage Tribe. The field is owned and operated by Calumet Oil Company. Phillips Petroleum Company will contribute their proprietary vibration core analysis of cores recovered from the pilot test area. To achieve the project objectives, the work has been divided into nine tasks, some are concurrent, while other tasks rely on completion of previous steps. The operator, Calumet Oil Company operates several field in Osage County Oklahoma. The North Burbank Unit will be the site of the test. The team will then determine where within the field to optimally locate the vibration test well. With the location determined, the test well will be drilled, cored, logged and 7-inch production casing run and cemented. In a parallel effort, OGCI will be designing, building, and testing a new version of the downhole vibration tool based on their patented and field proven whirling orbital vibrator. With the field test tool built to run in 7-inch casing. Reliability testing of the downhole tool and surface power source will be conducted in nearby field operated by Calumet Oil Company. After the core is recovered, Phillips Petroleum Company will be conducting laboratory tests utilizing their proprietary sonic core apparatus to determine fluid flow response to a range of vibration frequencies. These results, in turn, will allow final adjustments to the frequency generation mechanisms of the downhole vibration tool. One or more offset wells, near to the vibration test well, will be equipped with downhole geophones and or hydro-phones to determine the strength of signal and if the producing formation has a characteristic resonant frequency response. Surface geophones will also be set out and arranged to pick up the signal generated by the downhole vibration tool. The downhole vibrator will be installed in the test well. Monitoring the production and injection for the pilot test area will continue. As the frequency of the downhole tool is changed, the recording of seismic signals, both on the surface and downhole, will also be conducted. The results of the data collection will be a matrix of varying vibration stimulation conditions corresponding to changes in production fluid rates and seismic responses. The report on the results of the downhole vibration stimulation will be prepared and delivered using several venues. Technical papers will be submitted to the Society of Petroleum Engineers. Workshops are planned to be held for operators in Osage County and surrounding areas. A dedicated technical session on vibration stimulation may be offered at the 2002 SPE/DOE/IOR Conference, bringing together the world's experts in this emerging technology. The final task will be to close out the project.

J. Ford Brett; Robert V. Westermark

2001-03-31T23:59:59.000Z

147

Humidity, Pressure, and Temperature Measurements in an Interdigitated-Flow PEM Hydrogen Fuel Cell  

Science Journals Connector (OSTI)

In situ measurements of humidity, temperature, and pressure are demonstrated for a polymer electrolyte membrane (PEM) fuel cell of interdigitated gas flow channel layout. Sensors are embedded at ...

S. Bell; G. Hinds; M. de Podesta; M. Stevens

2012-09-01T23:59:59.000Z

148

INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION  

SciTech Connect (OSTI)

The systematic tests of the gasifier simulator on the ultrasonic vibration application for cleaning method were completed in this reporting period. Within the systematic tests on the ultrasonic vibration application, the ambient temperature and high temperature status condition were tested separately. The sticky dirt on the thermocouple tip was simulated by the cement-covered layer on the thermocouple tip. At the ambient temperature status, four (4) factors were considered as the input factors affecting the response variable of peeling off rate. The input factors include the shape of the cement-covered layer (thickness and length), the ultrasonic vibration output power, and application time. At the high temperature tests, four (4) different environments were considered as the experimental parameters including air flow supply, water and air supply environment, water/air/fine dust particle supply, and air/water/ammonia/fine dust particle supply environment. The factorial design method was used in the experiment design with twelve (12) data sets of readings. Analysis of Variances (ANOVA) was applied to the results from systematic tests. The ANOVA results show that the thickness and length of the cement-covered layer have the significant impact on the peeling off rate of ultrasonic vibration application at the ambient temperature environment. For the high temperature tests, the different environments do not seem to have significant impact on the temperature changes. These results may indicate that the ultrasonic vibration is one of best cleaning methods for the thermocouple tip.

Seong W. Lee

2005-04-01T23:59:59.000Z

149

SOLAR-BLIND PYROMETRIC TEMPERATURE MEASUREMENT UNDER CONCENTRATED SOLAR  

E-Print Network [OSTI]

solar thermal applications. As contact thermometry is often not appropriate in the presence of high;Introduction In high temperature solar thermal applications, where key components are driven near reflections1,2 . The distinction between the emitted thermal and the reflected solar radiation becomes

150

DEFINING THE 'BLIND SPOT' OF HINODE EIS AND XRT TEMPERATURE MEASUREMENTS  

SciTech Connect (OSTI)

Observing high-temperature, low emission measure plasma is key to unlocking the coronal heating problem. With current instrumentation, a combination of EUV spectral data from Hinode Extreme-ultraviolet Imaging Spectrometer (EIS; sensitive to temperatures up to 4 MK) and broadband filter data from Hinode X-ray Telescope (XRT; sensitive to higher temperatures) is typically used to diagnose the temperature structure of the observed plasma. In this Letter, we demonstrate that a 'blind spot' exists in temperature-emission measure space for combined Hinode EIS and XRT observations. For a typical active region core with significant emission at 3-4 MK, Hinode EIS and XRT are insensitive to plasma with temperatures greater than {approx}6 MK and emission measures less than {approx}10{sup 27} cm{sup -5}. We then demonstrate that the temperature and emission measure limits of this blind spot depend upon the temperature distribution of the plasma along the line of sight by considering a hypothetical emission measure distribution sharply peaked at 1 MK. For this emission measure distribution, we find that EIS and XRT are insensitive to plasma with emission measures less than {approx}10{sup 26} cm{sup -5}. We suggest that a spatially and spectrally resolved 6-24 Angstrom-Sign spectrum would improve the sensitivity to these high-temperature, low emission measure plasma.

Winebarger, Amy R.; Cirtain, Jonathan; Mulu-Moore, Fana [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Schmelz, Joan T. [Physics Department, University of Memphis, Memphis, TN 38152 (United States); Golub, Leon [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Kobayashi, Ken, E-mail: amy.r.winebarger@nasa.gov [Center for Space Plasma and Aeronomic Research, 320 Sparkman Dr, Huntsville, AL 35805 (United States)

2012-02-20T23:59:59.000Z

151

Influence of Meteorological Balloons on Temperature Measurements with Radiosondes: Nighttime Cooling and Daylight Heating  

Science Journals Connector (OSTI)

Temperatures measured by radiosondes ascending on free-flying balloons within middle latitudes above the troposphere differ significantly from measurements made with the same radiosondes descending on parachutes after the balloons have burst. ...

Helmut K. E. Tiefenau; Alfons Gebbeken

1989-02-01T23:59:59.000Z

152

Magnetic Susceptibility Measurements at Ultra-low Temperatures  

Science Journals Connector (OSTI)

We report the design and operation of a device for ac magnetic susceptibility measurements that can operate down to 1mK. The device, a modification of the standard mutual inductance bridge, is designed with d...

L. Yin; J. S. Xia; N. S. Sullivan; V. S. Zapf

2010-02-01T23:59:59.000Z

153

Gas temperature and electron temperature measurements by emission spectroscopy for an atmospheric microplasma  

SciTech Connect (OSTI)

A microplasma suitable for material processing at atmospheric pressure in argon and argon-oxygen mixtures is being studied here. The microplasma is ignited by a high voltage dc pulse and sustained by low power (1-5 W) at 450 MHz. the mechanisms responsible for sustaining the microplasma require a more detailed analysis, which will be the subject of further study. Here it is shown that the microplasma is in nonequilibrium and appears to be in glow mode. The effect of power and oxygen content is also analyzed in terms of gas temperature and electron temperature. Both the gas temperature and the electron temperature have been determined by spectral emission and for the latter a very simple method has been used based on a collisional-radiative model. It is observed that power coupling is affected by a combination of factors and that prediction and control of the energy flow are not always straightforward even for simple argon plasmas. Varying gas content concentration has shown that oxygen creates a preferential energy channel towards increasing the gas temperature. Overall the results have shown that combined multiple diagnostics are necessary to understand plasma characteristics and that spectral emission can represent a valuable tool for tailoring microplasma to specific processing requirements.

Mariotti, Davide; Shimizu, Yoshiki; Sasaki, Takeshi; Koshizaki, Naoto [Nanoarchtectonics Research Center (NARC), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

2007-01-01T23:59:59.000Z

154

A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements  

SciTech Connect (OSTI)

With the recent development of temperature measurement systems, continuous temperature profiles can be obtained with high precision. Small temperature changes can be detected by modern temperature measuring instruments such as fiber optic distributed temperature sensor (DTS) in intelligent completions and will potentially aid the diagnosis of downhole flow conditions. In vertical wells, since elevational geothermal changes make the wellbore temperature sensitive to the amount and the type of fluids produced, temperature logs can be used successfully to diagnose the downhole flow conditions. However, geothermal temperature changes along the wellbore being small for horizontal wells, interpretations of a temperature log become difficult. The primary temperature differences for each phase (oil, water, and gas) are caused by frictional effects. Therefore, in developing a thermal model for horizontal wellbore, subtle temperature changes must be accounted for. In this project, we have rigorously derived governing equations for a producing horizontal wellbore and developed a prediction model of the temperature and pressure by coupling the wellbore and reservoir equations. Also, we applied Ramey's model (1962) to the build section and used an energy balance to infer the temperature profile at the junction. The multilateral wellbore temperature model was applied to a wide range of cases at varying fluid thermal properties, absolute values of temperature and pressure, geothermal gradients, flow rates from each lateral, and the trajectories of each build section. With the prediction models developed, we present inversion studies of synthetic and field examples. These results are essential to identify water or gas entry, to guide flow control devices in intelligent completions, and to decide if reservoir stimulation is needed in particular horizontal sections. This study will complete and validate these inversion studies.

Keita Yoshioka; Pinan Dawkrajai; Analis A. Romero; Ding Zhu; A. D. Hill; Larry W. Lake

2007-01-15T23:59:59.000Z

155

Measurement and finite element analysis of temperature distribution in arc welding process  

Science Journals Connector (OSTI)

This presentation describes both the experimental measurement and finite element analysis used to study the temperature distribution during a metal inert gas (MIG) welding process, including the cooling down period. Welding was carried out on ... Keywords: FEA, MIG welding, arc welding, cracking, finite element analysis, metal inert gas welding, residual stress, simulation, temperature distribution, weldment temperature

C. K. Lee; J. Candy; C. P. H. Tan

2004-12-01T23:59:59.000Z

156

Proximity effect thermometer for local electron temperature measurements on mesoscopic samples  

E-Print Network [OSTI]

Proximity effect thermometer for local electron temperature measurements on mesoscopic samples J of millikelvin at low temperatures. By placing two such thermometers at different parts of a sample, we have been- tional low temperature thermometers which are typically well coupled only to the phonon bath

Chandrasekhar, Venkat

157

Spectroscopic temperature measurements of air breakdown plasma using a 110 GHz megawatt gyrotron beam  

SciTech Connect (OSTI)

Temperature measurements are presented of a non-equilibrium air breakdown plasma using optical emission spectroscopy. A plasma is created with a focused 110 GHz 3 {mu}s pulse gyrotron beam in air that produces power fluxes exceeding 1 MW/cm{sup 2}. Rotational and vibrational temperatures are spectroscopically measured over a pressure range of 1-100 Torr as the gyrotron power is varied above threshold. The temperature dependence on microwave field as well as pressure is examined. Rotational temperature measurements of the plasma reveal gas temperatures in the range of 300-500 K and vibrational temperatures in the range of 4200-6200 K. The vibrational and rotational temperatures increase slowly with increasing applied microwave field over the range of microwave fields investigated.

Hummelt, J. S.; Shapiro, M. A.; Temkin, R. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2012-12-15T23:59:59.000Z

158

Downhole microseismic monitoring of hydraulic fracturing: a full-waveform approach for complete moment tensor inversion and stress estimation  

E-Print Network [OSTI]

Downhole microseismics has gained in popularity in recent years as a way to characterize hydraulic fracturing sources and to estimate in-situ stress state. Conventional approaches only utilize part of the information ...

Song, Fuxian

2010-01-01T23:59:59.000Z

159

Detection of gas hydrates by the measurement of instantaneous temperature  

E-Print Network [OSTI]

. Changes, either in temperature or pressure, can cause the hydrate to dissociate. In situ gas hydrates were discovered in the permafrost region of the Soviet Union and have been typically The Journal of Geotechnical En ineerin of the American Society... to detect hydrates. Both of these methods, illustrated in Fig. 6, may not detect hydrates in the form of nodules or thin layers. Hence it is necessary to develop a local method to detect Ocean Floor BASE QE GAS HYDRATE PIG. 5. Bottom Simulating...

Dinakaran, Srikanth

2012-06-07T23:59:59.000Z

160

Nanosecond Range Heating and Temperature Measurement on Thin Layers Experiment and Simulation  

E-Print Network [OSTI]

Nanosecond Range Heating and Temperature Measurement on Thin Layers Experiment and Simulation W for sensitivity measurements, heating resistance and temperature sensor. Taking advantage of using the gate electrode for heating only the sensitive two layer system LaF3/Pt (thickness only 300 nm) has to be at high

Moritz, Werner

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Time Series Measurements of Temperature, Current Velocity, and Sediment Resuspension in Saginaw Bay  

E-Print Network [OSTI]

Time Series Measurements of Temperature, Current Velocity, and Sediment Resuspension in Saginaw Bay and verification. These measurements will be made as part of this project. Measurements of sediment resuspension sediment resuspension in the bay during the spring. Measurements of sediment resuspension are important

162

Thermal history sensors for non-destructive temperature measurements in harsh environments  

Science Journals Connector (OSTI)

The operating temperature is a critical physical parameter in many engineering applications however can be very challenging to measure in certain environments particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally rare earth dopants make the ceramic phosphorescent so that the temperature information can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range namely between 300C and 900C. Furthermore results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.

2014-01-01T23:59:59.000Z

163

Thermal history sensors for non-destructive temperature measurements in harsh environments  

SciTech Connect (OSTI)

The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature information can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300C and 900C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.

Pilgrim, C. C. [Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK and Sensor Coating Systems, Imperial Incubator, Bessemer Building, Level 1 and 2, Imperial College London, London SW7 2AZ (United Kingdom); Heyes, A. L. [Energy Technology and Innovation Initiative, University of Leeds, Leeds, LS2 9JT (United Kingdom); Feist, J. P. [Sensor Coating Systems, Imperial Incubator, Bessemer Building, Level 1 and 2, Imperial College London, London SW7 2AZ (United Kingdom)

2014-02-18T23:59:59.000Z

164

Comparative electron temperature measurements of Thomson scattering and electron cyclotron emission diagnostics in TCABR plasmas  

SciTech Connect (OSTI)

We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfven wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfven wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values.

Alonso, M. P.; Figueiredo, A. C. A. [Associacao EURATOM/IST, Instituto de Plasmas e FuSao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Borges, F. O.; Elizondo, J. I.; Galvao, R. M. O.; Severo, J. H. F.; Usuriaga, O. C. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil); Berni, L. A. [Laboratorio Associado de Sensores e Materiais, INPE, Sao Jose dos Campos, Sao Paulo (Brazil); Machida, M. [Universidade Estadual de Campinas, Campinas, Sao Paulo (Brazil)

2010-10-15T23:59:59.000Z

165

An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools  

DOE Patents [OSTI]

A coaxial cable electrical connector more specifically an internal coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transfonner. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive care of the coaxial cable. A plurality of bulbous pliant tabs on the coaxial cable connector mechanically engage the inside diameter of the coaxial cable thus grounding the transformer to the coaxial cable. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2005-11-29T23:59:59.000Z

166

The use of pattern recognition techniques in analyzing down-hole dynamometer cards  

E-Print Network [OSTI]

corners 12. Input matrix showing slight fluid pound 13. Modified reference matrix showing gray level values 14. Down-hole card showing differences in curvature 30 32 32 33 47 15. Reference shapes and input shape used in conventional string..., B. S. , Rensselaer Polytechnic Institute Chair of Advisory Committee: Dr. James W. Jennings In recent years, many companies have taken steps to automate the monitoring of their sucker rod pumped wells. In some cases, data transmission devices...

Dickinson, Roderick Raymond

2012-06-07T23:59:59.000Z

167

An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools  

DOE Patents [OSTI]

A seal for a coaxial cable electrical connector more specifically an internal seal for a coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transformer. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive core of the coaxial cable. The electrically insulating material also doubles as a seal to safegaurd against penetration of fluid, thus protecting against shorting out of the electrical connection. The seal is a multi-component seal, which is pre-compressed to a desired pressure rating. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string. The internal coaxial cable connector and its attendant seal can be used in a plurality of downhole tools, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2005-09-20T23:59:59.000Z

168

Measurement of temperature distributions in large pool fires with the use of directional flame thermometers  

SciTech Connect (OSTI)

Temperatures inside the flame zone of large regulatory pool fires measured during tests of radioactive materials packages vary widely with both time and position. Measurements made with several Directional Flame Thermometers, in which a thermocouple is attached to a thin metal sheet that quickly approaches flame temperatures, have been used to construct fire temperature distributions and cumulative probability distributions. As an aid to computer simulations of these large fires, these distributions are presented. The distributions are constructed by sorting fire temperature data into bins 10 C wide. A typical fire temperature distribution curve has a gradual increase starting at about 600 C, with the number of observations increasing to a peak near 1000 C, followed by an abrupt decrease in frequency, with no temperatures observed above 1200 C.

KOSKI,JORMAN A.

2000-05-09T23:59:59.000Z

169

Measuring High-Frequency Humidity, Temperature and Radio Refractive Index in the Surface Layer  

Science Journals Connector (OSTI)

Three different instrument systems are compared in their ability to either directly or indirectly measure humidity, temperature, and refractive-index fluctuations. Each system consists of a basic instrumenta Lyman-? hygrometer, an infrared ...

J. T. Priestley; R. J. Hill

1985-06-01T23:59:59.000Z

170

Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for gas-phase temperature measurements.  

E-Print Network [OSTI]

??Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is employed for quantitative gas-phase temperature measurements in combustion processes and heated flows. In this approach, ultrafast (more)

Miller, Joseph Daniel

2012-01-01T23:59:59.000Z

171

UNIVERSITY OF CALIFORNIA, SAN DIEGO Measurement of the Magnetic and Temperature  

E-Print Network [OSTI]

Compressional Heating with Cyclotron Cooling 5.4 Experimentally Measured Relaxation Rate 5.5 Error Analysis.1 Introduction................... 57 4.2 Cyclotron Radiation and Plasma Temperature 61 4.2.1 Plasma Cooling Rate 62 4.2.2 Corrections to Calculated Cyclotron Radiation Rate for Low Temperatures 64 4

California at San Diego, University of

172

Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature  

E-Print Network [OSTI]

opto-electronics, plasmonics, and ultra-sensitive bolometry. Here we present measurements of bipolar con- ductance over a temperature range of 300 mK to 100 K, using three different sample configurations of 10-20 J/K at 300 mK, which is 9 times smaller than the previous record[15]. For higher temperatures

173

Electric field and temperature measurement using ultra wide bandwidth pigtailed electro-optic probes  

E-Print Network [OSTI]

1 Electric field and temperature measurement using ultra wide bandwidth pigtailed electro bandwidth from kHz to tens of GHz with a sensitivity of 0.7 V.m-1 .Hz-1/2 and a temperature accuracy of 40 mK.1364/AO.47.002470 #12;2 Introduction In the field of high power microwave (HPM) measurements, ultra wide

Boyer, Edmond

174

Radial temperature variations in cylindrical waveguides and implications for flow measurement  

Science Journals Connector (OSTI)

A quantitative treatment of radial temperature variations in a cylindrical duct on ultrasonic flow meter performance is discussed in the laminar flow regime. First based on the continuity equation the NavierStokes equations and an energy equation including loss mechanisms due to heat conduction and viscous effects the steady?state temperature and flow spatial distributions are determined in two cases of practical interest: (a) cylinder wall temperature is maintained at a constant value and (b) cylinder wall temperature decreases linearly with cylinder axial distance. It is shown that while radial temperature variations are insignificant in case (a) radial temperature gradients as large as 100200 K/m are possible in case (b) for a fixed axial temperature gradient decrease of 0.1 K/m. Such strong temperature gradients have strong and unfortunate consequences for flow measurement. Large flow meter errorsup to several percentagesare possible using typical parameter values for water as medium. Finally it is shown that effective ways exist such as to diminish the influence of temperature gradients on flow meter performance. Besides the obvious choice of insulating the flow meter tube flow measurement errors due to radial temperature variations can be effectively suppressed by reducing the cylinder radius and/or ultrasound frequency.

2001-01-01T23:59:59.000Z

175

An investigation of temperature measurement methods in nuclear power plant reactor pressure vessel annealing  

SciTech Connect (OSTI)

The objective of this project was to provide an assessment of several methods by which the temperature of a commercial nuclear power plant reactor pressure vessel (RPV) could be measured during an annealing process. This project was a coordinated effort between DOE`s Office of Nuclear Energy, Science and Technology; DOE`s Light Water Reactor Technology Center at Sandia National Laboratories; and the Electric Power Research Institute`s Non- Destructive Evaluation Center. Ball- thermocouple probes similar to those described in NUREG/CR-5760, spring-loaded, metal- sheathed thermocouple probes, and 1778 air- suspended thermocouples were investigated in experiments that heated a section of an RPV wall to simulate a thermal annealing treatment. A parametric study of ball material, emissivity, thermal conductivity, and thermocouple function locations was conducted. Also investigated was a sheathed thermocouple failure mode known as shunting (electrical breakdown of insulation separating the thermocouple wires). Large errors were found between the temperature as measured by the probes and the true RPV wall temperature during heat-up and cool-down. At the annealing soak temperature, in this case 454{degrees}C [850`F], all sensors measured the same temperature within about {plus_minus}5% (23.6{degrees}C [42.5{degrees}F]). Because of these errors, actual RPV wall heating and cooling rates differed from those prescribed (by up to 29%). Shunting does not appear to be a problem under these conditions. The large temperature measurement errors led to the development of a thermal model that predicts the RPV wall temperature from the temperature of a ball- probe. Comparisons between the model and the experimental data for ball-probes indicate that the model could be a useful tool in predicting the actual RPV temperature based on the indicated ball- probe temperature. The model does not predict the temperature as well for the spring-loaded and air suspended probes.

Acton, R.U.; Gill, W.; Sais, D.J.; Schulze, D.H.; Nakos, J.T. [Sandia National Labs., Albuquerque, NM (United States)

1996-05-01T23:59:59.000Z

176

Systems and Methods for Integrated Emissivity and Temperature Measurement of a Surface  

DOE Patents [OSTI]

A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

Poulsen, Peter

2005-11-08T23:59:59.000Z

177

Optimum design of on-line measurements of thermophysical properties using temperature oscillation techniques  

SciTech Connect (OSTI)

The presented temperature oscillation techniques operate in a steady-periodic mode independent of initial conditions. They are used for on-line measurement of thermal diffusivity, conductivity and specific heat of liquids. Peltier-elements generate a periodic temperature oscillation at the outer surface of a reference layer, which is in contact with the liquid specimen. The temperature wave propagates through the reference layer into the specimen. The thermal diffusivity of the specimen is deduced by measuring and evaluating the amplitude attenuation and/or the phase shift between the fundamental temperature oscillation at the surface of the liquid specimen and at a well defined position inside the specimen. If the thermal diffusivity of the specimen is known, the thermal conductivity is determined by the measured amplitude attenuation and/or the phase shift between the fundamental temperature oscillation at both surfaces of the reference layer, one of which is in contact with the liquid specimen. With additional measurement of the density the specific heat capability is evaluated from thermal diffusivity and conductivity. Slab and semi-infinite body geometries are considered. The direct heat conduction problem is solved to specify the optimum design of the measurement apparatus by means of sensitivity coefficient studies. Measurement cells are designed and, to confirm the practical applicability, experiments are carried out with different liquids. Measured thermal diffusivities agree very well, and thermal conductivities and specific heat capacities reasonably well with data from the literature.

Czarnetzki, W.; Roetzel, W. [Univ. der Bundeswehr Hamburg (Germany)

1995-12-31T23:59:59.000Z

178

Inferring temperature uniformity from gas composition measurements in a hydrogen combustion-heated hypersonic flow stream  

SciTech Connect (OSTI)

The application of a method for determining the temperature of an oxygen-replenished air stream heated to 2600 K by a hydrogen burner is reviewed and discussed. The purpose of the measurements is to determine the spatial uniformity of the temperature in the core flow of a ramjet test facility. The technique involves sampling the product gases at the exit of the test section nozzle to infer the makeup of the reactant gases entering the burner. Knowing also the temperature of the inlet gases and assuming the flow is at chemical equilibrium, the adiabatic flame temperature is determined using an industry accepted chemical equilibrium computer code. Local temperature depressions are estimated from heat loss calculations. A description of the method, hardware and procedures is presented, along with local heat loss estimates and uncertainty assessments. The uncertainty of the method is estimated at {+-}31 K, and the spatial uniformity was measured within {+-}35 K.

Olstad, S.J. [Phoenix Solutions Co., Minneapolis, MN (United States)

1995-08-01T23:59:59.000Z

179

TEMPERATURE COEFFICIENTS FOR PV MODULES AND ARRAYS: MEASUREMENT METHODS, DIFFICULTIES, AND RESULTS  

Office of Scientific and Technical Information (OSTI)

TEMPERATURE COEFFICIENTS FOR PV MODULES AND ARRAYS: TEMPERATURE COEFFICIENTS FOR PV MODULES AND ARRAYS: MEASUREMENT METHODS, DIFFICULTIES, AND RESULTS David L. King, Jay A. Kratochvil, and William E. Boyson Sandia National Laboratories, Albuquerque, NM 0 ABSTRACT The term "temperature coefficient" has been applied to several different photovoltaic performance parameters, including voltage, current, and power. The procedures for measuring the coefficient(s) for modules and arrays are not yet standardized, and systematic influences are common in the test methods used to measure them. There are also misconceptions regarding their application. Yet, temperature coefficients, however obtained, play an important role in PV system design and sizing, where often the worst case operating condition dictates the array

180

Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium  

DOE Patents [OSTI]

A method and apparatus are described for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

Beller, L.S.

1993-01-26T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium  

DOE Patents [OSTI]

A method and apparatus for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

Beller, Laurence S. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

182

Ultra-sensitive and Wide Bandwidth Thermal Measurements of Graphene at Low Temperatures  

E-Print Network [OSTI]

exhibits one of the highest thermal conductivities of all measured materials[3, 4]. However at lowUltra-sensitive and Wide Bandwidth Thermal Measurements of Graphene at Low Temperatures K.C. Fong. This paper is organized as follows. We first present the thermal model of the electron gas of graphene at low

183

Device for measuring the boundary layer parameters in a high-temperature gas stream  

SciTech Connect (OSTI)

The authors describe a device enabling one to simultaneously measure the distributions of electrical conductivity and electron density of the working substance of an MHD generator. The structure and a block diagram of the device are shown. The measured results give information on the thermal boundary layer thickness, and temperature profiles are calculated.

Kosov, V.F.; Molotkov, V.I.; Nefedov, A.P.

1985-05-01T23:59:59.000Z

184

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise spectroscopy  

E-Print Network [OSTI]

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise of the plasma thermal noise analysis for the Solar Orbiter, in order to get accurate measurements of the total of their small mass and therefore large thermal speed, the solar wind electrons are expected to play a major role

California at Berkeley, University of

185

Comparison of NO and OH planar fluorescence temperature measurements in scramjet model flowfields  

SciTech Connect (OSTI)

The use of nitric oxide (NO) and the hydroxyl radical (OH) as temperature tracers, in a two-line planar laser-induced fluorescence technique, is examined in the context of a supersonic mixing and combustion flowfield. The temperature measurements were based on the sequential excitation of two transitions, either in the A implied by X (0,0) band of NO near 226 nm or the A implied by X (1,0) band of OH near 283 nm. The measurements were obtained for each species through the use of two lasers and two cameras, with each camera integrating signal induced from only one of the lasers. Both temporally resolved and frame-averaged temperature measurements of each species are presented. Additional results include simultaneous NO and OH visualizations, in which seeded NO marks the fuel jet fluid and nascent OH marks the reaction zones and convected combustion gases. A detailed temperature comparison shows good agreement in the common measurement regions and indicates that shot noise is the largest source of uncertainty. The comparison also illustrates the importance of a careful interpretation of the measurements, since, depending on the origin of the tracer and the degree of mixing, the measurements may be biased toward the fuel, freestream, or reaction zone temperatures. 33 refs.

Mcmillin, B.K.; Seitzman, J.M.; Hanson, R.K. [Natl. Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-10-01T23:59:59.000Z

186

A robust and well shielded thermal conductivity device for low temperature measurements  

SciTech Connect (OSTI)

We present a compact mechanically robust thermal conductivity measurement apparatus for measurements at low temperatures (<1 K) and high magnetic fields on small high-purity single crystal samples. A high-conductivity copper box is used to enclose the sample and all the components. The box provides protection for the thermometers, heater, and most importantly the sample increasing the portability of the mount. In addition to physical protection, the copper box is also effective at shielding radio frequency electromagnetic interference and thermal radiation, which is essential for low temperature measurements. A printed circuit board in conjunction with a braided ribbon cable is used to organize the delicate wiring and provide mechanical robustness.

Toews, W. H.; Hill, R. W. [GWPI and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)] [GWPI and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

2014-04-15T23:59:59.000Z

187

Interpreting Horizontal Well Flow Profiles and Optimizing Well Performance by Downhole Temperature and Pressure Data  

E-Print Network [OSTI]

, Rs = 0.1 0F...................... 118 Fig. 5.39 May identify high inflow sections at 2 days, Rs = 0.1 0F............................. 119 Fig. 5.40 Identify high inflow sections at initial, ? = 0.033 0F ................................... 120 Fig... sections at 5 day, ? = 0.1 0F ........................ 121 Fig. 5.44 Reservoir geometry and 2D permeability distribution used in example 2...

Li, Zhuoyi

2011-02-22T23:59:59.000Z

188

Assessment of the SE2-ANL code using EBR-II temperature measurements  

SciTech Connect (OSTI)

The SE2-ANL code is a modified version of the SUPERENERGY-2 code [1]. This code is used at Argonne National Laboratory (ANL) to compute the core-wide temperature profiles in Liquid Metal Reactor (LMR) cores. The accuracy of this code has recently been tested by comparing the predicted temperatures with measured values in the Experimental Breeder Reactor R (EBR-II). The detailed temperature distributions in two experimental subassemblies and the mixed mean subassembly outlet temperatures were used in this validation study. The SE2-ANL predictions were found to agree well with measured values. It was also found that SE2-ANL yields results with accuracy comparable to the more detailed COBRA-WC [2] calculations at much lower computational cost.

Yang, W.S.; Yacout, A.M.

1995-01-01T23:59:59.000Z

189

Method and apparatus for measuring gravitational acceleration utilizing a high temperature superconducting bearing  

DOE Patents [OSTI]

Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operating temperature at or below 77K, whereby cooling may be accomplished with liquid nitrogen.

Hull, John R. (Downers Grove, IL)

2000-01-01T23:59:59.000Z

190

Downhole steam-generator study. Volume I. Conception and feasibility evaluation. Final report, September 1978-September 1980  

SciTech Connect (OSTI)

A feasibility evaluation of a downhole steam generator was performed by the Rocketdyne Division of Rockwell International, under contract to Sandia National Laboratories, from September 1978 to September 1980. The study was conducted in four phases: (1) selection of a preliminary system design, (2) parametric analysis of the selected system, (3) experimental studies to demonstrate feasibility and develop design data, and (4) development of a final system design based on the parametric and experimental results. The feasibility of a low pressure combustion, indirect contact, downhole steam generator system was demonstrated. Key results from all phases of the study are presented herein.

Not Available

1982-06-01T23:59:59.000Z

191

Downhole steam generator with improved preheating, combustion and protection features  

DOE Patents [OSTI]

An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

192

Spatial and Temporal Measurements of Temperature and Cell Viability in Response to Nanoparticle Mediated Photothermal Therapy  

SciTech Connect (OSTI)

Aim: Nanoparticle enhanced photothermal therapy is a promising alternative to tumor resection. However, quantitative measurements of cellular response to these treatments are limited. This paper introduces a Bimodal Enhanced Analysis of Spatiotemporal Temperature (BEAST) algorithm to rapidly determine the viability of cancer cells in vitro following photothermal therapy alone or in combination with nanoparticles. Materials & Methods: To illustrate the capability of the BEAST viability algorithm, single wall carbon nanohorns were added to renal cancer (RENCA) cells in vitro and time-dependent spatial temperature maps measured with an infrared camera during laser therapy were correlated with post-treatment cell viability distribution maps obtained by cell-staining fluorescent microscopy. Conclusion: The BEAST viability algorithm accurately and rapidly determined the cell viability as function of time, space, and temperature.

Whitney, Jon R [ORNL; Rodgers, Amanda [Virginia Polytechnic Institute and State University; Harvie, Erica [Virginia Polytechnic Institute and State University; Carswell, William [Virginia Polytechnic Institute and State University; Torti, Suzy [Wake Forest University, Winston-Salem; Puretzky, Alexander A [ORNL; Rouleau, Christopher M [ORNL; Geohegan, David B [ORNL; Rylander, Christopher [Virginia Polytechnic Institute and State University; Rylander, Nichole M [Virginia Polytechnic Institute and State University

2012-01-01T23:59:59.000Z

193

Measurement of the Electron Temperature by Thomson Scattering in Tokamak T3  

Science Journals Connector (OSTI)

... made of the electron temperature and density of the plasma in the toroidal discharge apparatus Tokamak T3 (ref. 1) at the Kurchatov Institute, using Thomson scattering by the plasma ... 6943 A light from a Q-spoiled ruby laser. Important features of recent measurements onTokamak T3 have been the high total energy of the plasma2, the long con- finement ...

N. J. PEACOCK; D. C. ROBINSON; M. J. FORREST; P. D. WILCOCK; V. V. SANNIKOV

1969-11-01T23:59:59.000Z

194

Coherent anti-stokes Raman spectroscopy system for point temperature and major species concentration measurement  

SciTech Connect (OSTI)

The Coherent anti-Stokes Raman Spectroscopy system (CARS) has been developed as a laser-based, advanced, combustion-diagnostic technique to measure temperature and major species concentration. Principles of operation, description of the system and its capabilities, and operational details of this instrument are presented in this report.

Singh, J.P.; Yueh, Fang-Yu

1993-10-01T23:59:59.000Z

195

Method for Microfluidic Whole-Chip Temperature Measurement Using Thin-Film  

E-Print Network [OSTI]

Method for Microfluidic Whole-Chip Temperature Measurement Using Thin-Film Poly- phoresis effects. Recent developments in microfluidic and lab-on-a-chip devices has drawn ever of a glass or plastic microfluidic platform with integrated sample processing units such as mixers

Le Roy, Robert J.

196

Laboratory measurements of acoustic scattering from a temperature and salinity gradient  

Science Journals Connector (OSTI)

Recently developed theoretical scattering models predict that acoustic scattering from temperature and salinity microstructure at high frequencies (10 kHz1 MHz) can be significant under certain oceanographic conditions. The results of this theoretical work suggest that it may be possible to use acoustic scattering techniques in combination with the scattering models to estimate oceanographic parameters such as the dissipation rate of turbulent kinetic energy. In addition quantification of the scattering contributions from temperature and salinity microstructure can play an important role in correctly interpreting acoustic surveys of marine life since recent field data indicate that the acoustic returns from zooplankton and microstructure can be of similar strength. Acoustic backscatter from a sharp temperature and salinity gradient was measured in a tank capable of generating and sustaining a thin double?diffusive layer (12 cm thick) between two water masses (cold fresh residing above warm salty water). Vertical shear temperature and salinity profiles were measured during the experiment to provide input to the acoustic scattering models. Backscatter was measured at frequencies between 24 kHz and 500 kHz and as a function of range from the sharp interface as part of a program to measure the backscattering from microstructure. a)Currently at Southwest Fisheries Science Center La Jolla CA 92037.

2001-01-01T23:59:59.000Z

197

Temperature dependence of carrier mobility in Si wafers measured by infrared photocarrier radiometry  

E-Print Network [OSTI]

to the existing intrinsic carrier density. According to the principle of conser- vation of energy,4 the radiation, such as silicon, the dominant process takes place through nonradiative energy conversion accompanied by phononTemperature dependence of carrier mobility in Si wafers measured by infrared photocarrier

Mandelis, Andreas

198

Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind  

E-Print Network [OSTI]

Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind; received in revised form 6 April 2005; accepted 25 April 2005 Abstract We present the solar wind plasma parameters obtained from the Wind spacecraft during more than nine years, encompassing almost the whole solar

California at Berkeley, University of

199

Parallel air temperature measurements at the KNMI observatory in De Bilt (the  

E-Print Network [OSTI]

in De Bilt (the Netherlands) May 2003 - June 2005 | March 14, 2011 Page 6 of 56 #12;nal | Parallel air at the KNMI observatory in De Bilt (the Netherlands) May 2003 - June 2005 | March 14, 2011 Page 8 of 56 #12Parallel air temperature measurements at the KNMI observatory in De Bilt (the Netherlands) May 2003

Brandsma, Theo

200

De Bilt, 2011 | Scientific report; WR 2011-01 Parallel air temperature measurements  

E-Print Network [OSTI]

at the KNMI observatory in De Bilt (the Netherlands) May 2003 - June 2005 | March 14, 2011 Page 6 of 56 #12 observatory in De Bilt (the Netherlands) May 2003 - June 2005 Theo Brandsma #12;#12;Parallel air temperature measurements at the KNMI observatory in De Bilt (the Netherlands) May 2003 - June 2005 Version 1.0 Date March

Haak, Hein

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Using Multispectral Imaging to Measure Temperature Profiles and Emissivity of Large Thermionic Dispenser, Cathodes  

SciTech Connect (OSTI)

Thermionic dispenser cathodes are widely used in modern high-power microwave tubes. Use of these cathodes has led to significant improvement in performance. In recent years these cathodes have been used in electron linear accelerators (LINACs), particularly in induction LINACs, such as the Experimental Test Accelerator at Lawrence Livermore National Laboratory and the Relativistic Test Accelerator at Lawrence Berkeley National Laboratory. For induction LINACs, the thermionic dispenser cathode provides greater reproducibility, longer pulse lengths, and lower emittance beams than does a field emission cathode. Los Alamos National Laboratory is fabricating a dual-axis X-ray radiography machine called dual-axis radiograph hydrodynamic test (DARHT). The second axis of DARHT consists of a 2-kA, 20-MeV induction LINAC that uses a 3.2-MeV electron gun with a tungsten thermionic-dispenser cathode. Typically the DARHT cathode current density is 10 A/cm{sup 2} at 1050 C. Under these conditions current density is space-charge limited, which is desirable since current density is independent of temperature. At lower temperature (the temperature-limited regime) there are variations in the local current density due to a nonuniform temperature profile. To obtain the desired uniform current density associated with space-charge limited operation, the coolest area on the cathode must be at a sufficiently high temperature so that the emission is space-charge limited. Consequently, the rest of the cathode is emitting at the same space-charge-limited current density but is at a higher temperature than necessary. Because cathode lifetime is such a strong function of cathode temperature, there is a severe penalty for nonuniformity in the cathode temperature. For example, a temperature increase of 50 C means cathode lifetime will decrease by a factor of at least four. Therefore, we are motivated to measure the temperature profiles of our large-area cathodes.

D.F. Simmons; C.M. Fortgang; D.B. Holtkamp

2001-09-01T23:59:59.000Z

202

MEASUREMENTS OF ANISOTROPIC ION TEMPERATURES, NON-THERMAL VELOCITIES, AND DOPPLER SHIFTS IN A CORONAL HOLE  

SciTech Connect (OSTI)

We present a new diagnostic allowing one to measure the anisotropy of ion temperatures and non-thermal velocities, as well as Doppler shifts with respect to the ambient magnetic field. This method provides new results, as well as an independent test for previous measurements obtained with other techniques. Our spectral data come from observations of a low-latitude, on-disk coronal hole. A potential field source surface model was used to calculate the angle between the magnetic field lines and the line of sight for each spatial bin of the observation. A fit was performed to determine the line widths and Doppler shifts parallel and perpendicular to the magnetic field. For each line width component we derived ion temperatures T {sub i,} and T {sub i, Parallel-To} and non-thermal velocities v {sub nt,} and v {sub nt, Parallel-To }. T {sub i,} was cooler than off-limb polar coronal hole measurements, suggesting increasing collisional cooling with decreasing height. T {sub i, Parallel-To} is consistent with a uniform temperature of (1.8 {+-} 0.2) Multiplication-Sign 10{sup 6} K for each ion. Since parallel ion heating is expected to be weak, this ion temperature should reflect the proton temperature. A comparison between our results and others implies a large proton temperature gradient around 1.02 R {sub Sun }. The non-thermal velocities are thought to be proportional to the amplitudes of various waves. Our results for v {sub nt,} agree with Alfven wave amplitudes inferred from off-limb polar coronal hole line width measurements. Our v {sub nt, Parallel-To} results are consistent with slow magnetosonic wave amplitudes inferred from Fourier analysis of time-varying intensity fluctuations. Doppler shift measurements yield outflows of Almost-Equal-To 5 km s{sup -1} for ions formed over a broad temperature range. This differs from other studies that found a strong Doppler shift dependence on formation temperature.

Hahn, M.; Savin, D. W. [Columbia Astrophysics Laboratory, Columbia University, MC 5247, 550 West 120th Street, New York, NY 10027 (United States)] [Columbia Astrophysics Laboratory, Columbia University, MC 5247, 550 West 120th Street, New York, NY 10027 (United States)

2013-02-15T23:59:59.000Z

203

Electron density and temperature measurement by continuum radiation emitted from weakly ionized atmospheric pressure plasmas  

SciTech Connect (OSTI)

The electron-atom neutral bremsstrahlung continuum radiation emitted from weakly ionized plasmas is investigated for electron density and temperature diagnostics. The continuum spectrum in 4501000?nm emitted from the argon atmospheric pressure plasma is found to be in excellent agreement with the neutral bremsstrahlung formula with the electron-atom momentum transfer cross-section given by Popovi?. In 280450?nm, however, a large discrepancy between the measured and the neutral bremsstrahlung emissivities is observed. We find that without accounting for the radiative H{sub 2} dissociation continuum, the temperature, and density measurements would be largely wrong, so that it should be taken into account for accurate measurement.

Park, Sanghoo; Choe, Wonho, E-mail: wchoe@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Youn Moon, Se [High-enthalpy Plasma Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 561-756 (Korea, Republic of); Park, Jaeyoung [5771 La Jolla Corona Drive, La Jolla, CA 92037 (United States)

2014-02-24T23:59:59.000Z

204

Apparatus for direct measurement of ash fusion and sintering behavior at elevated temperatures and pressures  

Science Journals Connector (OSTI)

Ash fusion sintering and deposition may impose serious operational difficulties in conventional and advanced coal?combustion systems. Conventional ash fusion techniques (e.g. ASTM methods) determine the qualitative behavior of ash samples at atmospheric pressure. Presently there is no known available technique that can measure the behavior of coal ash at elevated temperatures and pressures. In the literature methods based on electrical resistance or shrinkage of coal ash have been reported at atmospheric pressure (elevated temperatures) conditions. A high?pressure microdilatometer (HPMD) has been developed to investigate ash fusion and sintering behavior at elevated pressures and temperatures by the simultaneous measurement of the temperature of initial contraction and electrical resistivity of samples. This novel technique facilitates the measurement of ash properties over a wide range of temperature pressure and gas atmosphere (oxidizing reducing or inert). The operating principle of the HPMD includes measuring the temperature at which there is a significant shift in the electrical resistivity (and/or sample volume) that represents ash sintering and fusion. Sintering occurs through the formation of solid?state particle?to?particle necks or the appearance of a molten phase which allows a path for electrical conductance. The ability to perform both resistivity and shrinkage measurements simultaneously or independently at e l e v a t e d p r e s s u r e s makes the HPMD truly unique. The HPMD can also be used to investigate the swelling and softening behavior of pyrolyzing coal at elevated pressures and relatively rapid heating rates. The HPMD can provide insights into the sintering/fusion of coal ash or coal swelling at a range of conditions: (a) the influences of various gas atmospheres can be investigated (b) the effects of pressure can be studied (c) different temperature/heating rate schemes can be used (constant rates isothermal holds below or above the sinteringtemperature etc.) and (d) studies can be performed to investigate the influence of increased heating rate at elevated pressures (which were not performed previously) on coal swelling and plasticity.

M. Rashid Khan

1989-01-01T23:59:59.000Z

205

DEVELOPMENT OF HIGH PERFORMANCE BS-PT BASED PIEZOELECTRIC TRANSDUCERS FOR HIGH-TEMPERATURE  

E-Print Network [OSTI]

-TEMPERATURE APPLICATIONS Yu-Hung Li1 , Sang Jong Kim2 , Nathan Salowitz2 , Fu-Kuo Chang2 1 Department of Materials Science processes in industries like aerospace. However, similar ultrasonic SHM techniques for high downhole casings). Recent research in high-temperature piezoelectric materials has facilitated

Boyer, Edmond

206

Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch  

SciTech Connect (OSTI)

Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

Prevosto, L.; Mancinelli, B. [Departamento Ing. Electromecanica, Grupo de Descargas Electricas, Universidad Tecnologica Nacional, Regional Venado Tuerto, Las Heras 644, Venado Tuerto, Santa Fe 2600 (Argentina); Artana, G. [Departamento Ing. Mecanica, Laboratorio de Fluidodinamica, Facultad de Ingenieria (UBA), Paseo Colon 850 (C1063ACV), Buenos Aires (Argentina); Kelly, H. [Departamento de Fisica, Instituto de Fisica del Plasma (CONICET), Facultad de Ciencias Exactas y Naturales (UBA), Ciudad Universitaria Pab. I, Buenos Aires 1428 (Argentina)

2010-01-15T23:59:59.000Z

207

Non-contact passive temperature measuring system and method of operation using micro-mechanical sensors  

DOE Patents [OSTI]

A non-contact infrared thermometer measures target temperatures remotely without requiring the ratio of the target size to the target distance to the thermometer. A collection means collects and focusses target IR radiation on an IR detector. The detector measures thermal energy of the target over a spectrum using micromechanical sensors. A processor means calculates the collected thermal energy in at least two different spectral regions using a first algorithm in program form and further calculates the ratio of the thermal energy in the at least two different spectral regions to obtain the target temperature independent of the target size, distance to the target and emissivity using a second algorithm in program form.

Thundat, Thomas G. (616 Plainfield Rd., Knoxville, TN 37923); Oden, Patrick I. (804-171 Olde Pioneer Trail, Knoxville, TN 37923); Datskos, Panagiotis G. (8444 Mecklenburg Ct., Knoxville, TN 37923)

2000-01-01T23:59:59.000Z

208

EBR-II axial temperature distributions measured during in-vessel natural circulation experiments  

SciTech Connect (OSTI)

The Experimental Breeder Reactor II is located in a cylindrical pool of liquid sodium which is part of the cold-leg of the primary flow circuit. A vertical string of 32 thermocouples spans the 8 m tank height, at each of two diametrically opposed locations in the primary tank. Local temperatures were measured with these 64 thermocouples during dynamic tests. The instantaneous spacial temperature distribution obtained from a string of thermocouples can be viewed on a personal computer. The animation which results from displaying successive spacial distributions provides a very effective way to quickly obtain physical insights. The design of the two strings of thermocouples, the software used to create the animation, measured data from three different types of tests -- two unprotected reactor transients, and one with the reactor at decay power levels and the reactor cover lifted, are discussed.

Ragland, W.A.; Feldman, E.E.

1994-03-01T23:59:59.000Z

209

Elementary reaction rate measurements at high temperatures by tunable-laser flash-absorption  

SciTech Connect (OSTI)

The major objective of this program is to measure thermal rate coefficients and branching ratios of elementary reactions. To perform these measurements, the authors constructed an ultrahigh-purity shock tube to generate temperatures between 1000 and 5500 K. The tunable-laser flash-absorption technique is used to measure the rate of change of the concentration of species which absorb below 50,000 cm{sup {minus}1} e.g.: OH, CH, and CH{sub 3}. This technique is being extended into the vacuum-ultraviolet spectral region where one can measure atomic species e.g.: H, D, C, O, and N; and diatomic species e.g.: O{sub 2}, CO, and OH.

Hessler, J.P. [Argonne National Laboratory, IL (United States)

1993-12-01T23:59:59.000Z

210

Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures  

DOE Patents [OSTI]

An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample.

Gonczy, John D. (Oaklawn, IL); Markley, Finley W. (St. Charles, IL); McCaw, William R. (Burr Ridge, IL); Niemann, Ralph C. (Downers Grove, IL)

1992-01-01T23:59:59.000Z

211

System to inject steam and produce oil from the same wellbore through downhole valve switching  

SciTech Connect (OSTI)

Various Downhole Equipment systems have been designed for typical applications in three California Oilfields,based on well data gathered from three different Operating Companies. The first system, applicable to a 2,000 ft deep reservoir (Monarch) a highly underpressured, unconsolidated sand of 200 ft net pay, located in the Midway-Sunset field, is based on the use of a new well. The second well configuration considered was the re-entry into an existing well equipped with a 7 inches casing and penetrating into two separate sandstone reservoirs, at normal pressures in the North Antelope Hills field. Only the bottom layer is presently in production through a gravel-packed 5.5 inch linear, while the upper zone is behind the cemented casing. The third case studied was the re-entry into an existing well equipped with an 8 5/8 inch casing, presently unperforated, into a thin under-pressured sand reservoir (Weber) in the Midway-Sunset field. All three California fields contain Heavy Oils of different but relatively high viscosities. A new class of potential applications of our new technology has also been considered: the recovery of Light Oil (> 20 API) by steam injection in under-pressured Carbonate reservoirs which lay at depths beyond the economic limit for conventional steam injection technology. The possibility of including this application in a Field Test proposal to the DOE, under the Class II Oil Program, is now under review by various Operators. A drilling contractor experienced in drilling multiple horizontal wells in Carbonate reservoirs and a team of reservoir engineers experienced in the recovery of Light Oil by steam in fractured reservoirs have expressed their interest in participating in such a joint Field Project. Laboratory tests on specific prototypes of Downhole Sealing Elements are underway.

Not Available

1992-01-01T23:59:59.000Z

212

Improve Industrial Temperature Measurement Precision for Cost-Effective Energy Usage  

E-Print Network [OSTI]

Industrial Energy Technology Conference, Houston, TX, May 12-13, 1999 THERMOCOUPLE AND RTD SENSORS In the process and utility industries, temperature measurements must often be made in a remote location and transmitted to a central control system. Various... in some detail in Chemical Engineering, May 1990, pages 114 - 125.) Various devices are then used with these sensors to transmit the data to the central control system. These transmitting devices are two, three or four-wire electronic transmitters...

Lewis, C. W.

213

Measurements of the cosmic microwave background temperature at 1. 47 GHz  

SciTech Connect (OSTI)

A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus minus} 0.02,K global average CMB temperature.

Bensadoun, M.J.

1991-11-01T23:59:59.000Z

214

Measurements of the cosmic microwave background temperature at 1.47 GHz  

SciTech Connect (OSTI)

A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus_minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus_minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus_minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus_minus} 0.02,K global average CMB temperature.

Bensadoun, M.J.

1991-11-01T23:59:59.000Z

215

Pressure &Pressure & TemperatureTemperature  

E-Print Network [OSTI]

to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer to measure air temperature.measure air temperature.measure air temperature.measure air temperature

California at Santa Cruz, University of

216

Scattering Versus Intrinsic Attenuation in the Near Surface: Measurements from Permanent Down-hole Geophones  

E-Print Network [OSTI]

seismic reflection PartII: Prestack depth migration and field examples, Geophysics, Vol. 67, Bradford, JH, Liberty,

Mangriotis, Maria-Daphne

2009-01-01T23:59:59.000Z

217

Scattering Versus Intrinsic Attenuation in the Near Surface: Measurements from Permanent Down-hole Geophones  

E-Print Network [OSTI]

seismic waves in unconsolidated sediments, Geophysics, Vol.of weak rocks and unconsolidated sediments, which may behaveby over 100 m of unconsolidated, heterogeneous alluvial

Mangriotis, Maria-Daphne

2009-01-01T23:59:59.000Z

218

The Sun as an X--ray Star I: Deriving the Emission Measure Distribution vs. Temperature of the Whole  

E-Print Network [OSTI]

The Sun as an X--ray Star I: Deriving the Emission Measure Distribution vs. Temperature--90134 Palermo, Italy ABSTRACT The scope of this work is to obtain the emission measure distributions vs. temperature, EM(T ), of the whole solar corona from Yohkoh/SXT images. As discussed in Paper II, the EM

219

Concentration and temperature measurements in a laser-induced high explosive ignition zone. Part I: LIF spectroscopy measurements  

Science Journals Connector (OSTI)

This paper describes a method that combines a laser ignition technique with laser-induced fluorescence (LIF) spectroscopy for studying the gas-phase products in a laser-induced subignition zone and the reactions that lead to a self-sustained ignition. The experiment comprises a tunable 180 W CO2-laser as ignition source, an excimer pumped dye-laser for inducing the fluorescence, and a spectrometer equipped with an optical multichannel analyzer. This technique was used for measurements of relative NO and CN concentrations in the subignition zone of RDX (1,3,5-Trinitrohexahydro-s-triazine) in pseudo-real time (time resolution better than 1 ?s). By using LIF technique for measuring the relative population of different vibrational levels, we were able to calculate the vibrational temperature in the gas phase reaction zone in front of the sample at subignition to approximately 3100 K. The measurements show clearly that the chemical reactions and the diffusion in the subignition zone play an important part long before a self-sustained reaction occurs, and thus influence the sensitivity of an explosive. By using LIF imaging technique, two-dimensional images of the NO concentration were registered at different times in the ignition pulse, and the wavelength dependence of the ignition source was also studied. The results correspond to a model for fast radiative ignition where Lambert-Beer absorption is the main energy interaction mechanism between the energetic material and the laser beam.

H. stmark; M. Carlson; K. Ekvall

1996-01-01T23:59:59.000Z

220

Measurements of the Infrared SpectraLines of Water Vapor at Atmospheric Temperatures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurements of the Infrared Spectral Lines Measurements of the Infrared Spectral Lines of Water Vapor at Atmospheric Temperatures P. Varanasi and Q. Zou Institute for Terrestrial and Planetary Atmospheres State University of New York at Stony Brook Stony Brook, New York Introduction Water vapor is undoubtedly the most dominant greenhouse gas in the terrestrial atmosphere. In the two facets of Atmospheric Radiation Measurement (ARM) Program research, atmospheric remote sensing (air-borne as well as Cloud and Radiation Testbed [CART] site-based) and modeling of atmospheric radiation, the spectrum of water vapor, ranging from the microwave to the visible wavelengths, plays a significant role. Its spectrum has been the subject of many studies throughout the last century. Therefore, it is natural to presume it should be fairly well established by now. However, the need for a

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

GROUT TEMPERATURE MEASUREMENTS IN 105-R DISASSEMBLY BASIN D AND E CANAL  

SciTech Connect (OSTI)

The 105-R Reactor Disassembly Basin Grout Placement Strategy Report (SRNL-TR-2009-00157) identifies various portions of the facility that will undergo an in-situ decommissioning process. The estimated residual radioactive contamination in the 105-R facility is shown in Figure 1. Cementitious grout formulations developed by SRNL are being used to immobilize and isolate the radioactive contamination in existing below grade portions of the 105-R building as shown by the gray-hatched area in Figure 2. A Zero Bleed flowable fill was formulated for both dry placement and for underwater placement. The first major area in the 105-R Disassembly Basin to undergo the grouting process was the D&E Canal and an underlying void space known as the Chase. Grout temperature data was needed to ensure that the grout mix design was on the correct grout curing trajectory to meet the material compressive strength requirement of 50 pounds per square inch. Initial grout temperature measurements were needed to confirm and optimize grout mix design fresh property characteristics; i.e. material strength, and set time. Grout curing temperature is an integrating fresh property characteristic that is used to estimate cementitious material strength in accordance with the Standard Practice for Estimating Concrete Strength by the Maturity Method, ASTM C 1074. The Maturity Method is used in the construction industry to estimate in-place strength of concrete to allow the start of critical construction activities; e.g. formwork removal, removal of cold weather protection, opening of roadways to traffic, etc. Applying this methodology provides an expeditious means to estimate in-place grout strength based on compressive strength laboratory results. The Maturity Method results define the relationship between strength-time and age-time that may be utilized in the field for estimating strength after a given time of placement. Maturation curves were developed under the 105-R Reactor Disassembly Basin Cementitious Materials Laboratory Test Plan (SRNL-TR-2009-00175) to establish grout mix maturation indices for this relationship. Temperature data collected from the D&E grout placement will be evaluated against these maturation indices in a subsequent analysis. Grout temperature data outside the maturation indices highlight the opportunity to adjust the grout mix design for future placements. The pre-existing grout placement will not be removed since this material will comply with strength requirements under the normal curing duration. SRNL designed a standalone measurement system to collect grout mass placement temperature data in the D&E Canal. Four vertical poles instrumented with thermocouples were positioned in the canal prior to grout placement. The thermocouples were connected to stand-alone, battery-powered data recorders mounted nearby that were configured to take temperature recordings every 10 minutes for up to 100 days. Unfortunately, after just 2 weeks, data collection was terminated because the thermocouple wires connecting the data loggers to the thermocouple poles were severed during construction activities. This report will highlight the unique challenges in designing a data collection system for the D&E canal, describe the temperature measurement system and its installation, and present calculated as well as measured temperature values.

Fogle, R.; Collins, M.; Guerrero, H.

2010-06-03T23:59:59.000Z

222

Velocity of Sound Measurements in High?Pressure, High?Temperature Steam  

Science Journals Connector (OSTI)

Experimental information concerning the acoustic velocity in steam as a function of pressure and temperature is quite limited. Yet it is of particular interest to steam turbine designers who are now planning units as large as 400 000 kw operating at 4500 lb/sq in. and 1200F so as to increase thermal efficiencies of such units. Apparatus is now in operation for measuring the acoustic velocity up to 2000 lb/sq in. and 750F using a variable path acoustic interferometer.Measurements are taken at 200?lb/sq in. intervals along a given isotherm using a sound frequency of 750 kc. A special experimental high?pressure boiler is used to generate the steam at the desired pressure and the stem is then increased in temperature by means of a stainless steel superheater before entering the interferometer. The interferometer also of stainless steel is enclosed by an insulated steel vessel maintained at a given constant temperature by another separate steam system. Future work is now being considered up to 6000?lb/sq in. steam pressure based upon results of present experiments.

James Woodburn

1960-01-01T23:59:59.000Z

223

Release Path Temperatures of Shock-Compressed Tin from Dynamic Reflectance and Radiance Measurements  

SciTech Connect (OSTI)

Dynamic reflectance and radiance measurements were conducted for tin samples shock compressed to 35 GPa and released to 15 GPa using high explosives. We determined the reflectance of the tin samples glued to lithium fluoride windows using an integrating sphere with an internal xenon flashlamp as an illumination source. The dynamic reflectance (R) was determined at near normal incidence in four spectral bands with coverage in visible and near-infrared spectra. Uncertainties in R/R0 are < 2%, and uncertainties in absolute reflectance are < 5%. In complementary experiments, thermal radiance from the tin/glue/lithium fluoride interface was recorded with similar shock stress and spectral coverage as the reflectance measurements. The two sets of experiments were combined to obtain the temperature history of the tin surface with an uncertainty of < 2%. The stress at the interface was determined from photonic Doppler velocimetry and combined with the temperatures to obtain temperature-stress release paths for tin. We discuss the relationship between the experimental release paths and release isentropes that begin on the principal shock Hugoniot.

La Lone, B. M. [NSTec; Stevens, G. D. [NSTec; Turley, W. D. [NSTec; Holtkamp, D. B. [LANL; Iverson, A. J. [NSTec; Hixson, R. S. [NSTec; Veeser, L. R. [NSTec

2013-08-01T23:59:59.000Z

224

Measurement of threshold temperature effects in dissociative electron attachment to HI and DI  

Science Journals Connector (OSTI)

From accurate spectroscopic constants one finds that the thermal dissociative-attachment process (DA) in DI should be exothermic only for rotational levels J>8 in v=0. We report herein measurement of an enhancement of DA with rotational temperature T in the range 298468 K. The effect is easily accounted for by the increase in total fractional population of excited J levels in DI relative to HI. The effect affords a rotational analog to the use of vibrationally excited molecules (e.g., HCl) in a plasma to control electron conduction.

A. Chutjian; S. H. Alajajian; K-F. Man

1990-02-01T23:59:59.000Z

225

Automated and versatile SQUID magnetometer for the measurement of materials properties at millikelvin temperatures  

Science Journals Connector (OSTI)

We present the design and construction of a SQUID-based magnetometer for operation down to temperatures T ? 10 mK while retaining the compatibility with the sample holders typically used in commercial SQUIDmagnetometers. The system is based on a dc-SQUID coupled to a second-order gradiometer. The sample is placed inside the plastic mixing chamber of a dilution refrigerator and is thermalized directly by the He 3 flow. To measure the magnetic moment the sample is moved through the gradiometercoils by lifting the whole dilution refrigerator insert. A home-developed software provides full automation and an easy user interface.

A. Morello; W. G. J. Angenent; G. Frossati; L. J. de Jongh

2005-01-01T23:59:59.000Z

226

Development Of An Acoustice Sensor For On-Line Gas Temperature Measurement In Gasifiers  

SciTech Connect (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. This report describes all of the activities conducted during the project and reports the findings of each activity in detail. The investigation of potential sound generation and coupling methods led to the selection of a reflected shock method which has been developed into a functioning prototype device. The principles of operation of this device and its performance characteristics are described in the report. Modeling of the attenuation of sound by suspended particles and by interaction of the sound pulses with the high temperature syngas inside the gasifier was conducted and the predictions of those models were used to determine the required sound pulse intensity to allow the sound pulses to be detected after passage through the gasifier environment. These modeling results are presented in this report. A study of the likely spatial and temporal variability of gas composition inside the gasifier was performed and the results of that study was used to predict the impact of that variability on the accuracy of the acoustic temperature method. These results are reported here. A design for a port rodding mechanism was developed to deal with potential slagging issues and was incorporated into the prototype sensor. This port rodding mechanism operated flawlessly during the field testing, but because these tests were performed in a region of the gasifier that experiences little slagging, the effectiveness of the rodding mechanism in dealing with highly slagging conditions was not fully demonstrated. This report describes the design and operation of the automated Gasifier Acoustic Pyrometer (autoGAP) which was tested at the Wabash River facility. The results of the tests are reported and analyzed in detail. All of the objectives of the project have been achieved. A field prototype acoustic pyrometer sensor has been successfully tested at the Wabash River gasifier plant. Acoustic signals were propagated through the gases inside the gasifier and were detected by the receiver unit, the times of flight of these sound pulses were measured and these propagation times were converted into temperatures which agreed very well with thermocouple measurements m

Peter Ariessohn; Hans Hornung

2006-10-01T23:59:59.000Z

227

Simultaneous Microwave Imaging System for Density and Temperature Fluctuation Measurements on TEXTOR  

SciTech Connect (OSTI)

Diagnostic systems for fluctuation measurements in plasmas have, of necessity, evolved from simple 1-D systems to multi-dimensional systems due to the complexity of the MHD and turbulence physics of plasmas illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, Microwave Imaging Reflectometry (MIR) and Electron Cyclotron Emission Imaging (ECEI), simultaneously measuring density and temperature fluctuations, are developed for TEXTOR. The MIR system was installed on TEXTOR and the first experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The new 2-D ECE Imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured a true 2-D images of Te fluctuations of m=1 oscillation (''sawteeth'') near the q {approx} 1 surface for the first time.

H. Park; E. Mazzucato; T. Munsat; C.W. Domier; M. Johnson; N.C. Luhmann, Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

2004-05-07T23:59:59.000Z

228

Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures  

DOE Patents [OSTI]

An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample. 7 figs.

Gonczy, J.D.; Markley, F.W.; McCaw, W.R.; Niemann, R.C.

1992-04-21T23:59:59.000Z

229

Measurement of the ductile to brittle transition temperature for waste tank cooling coils  

SciTech Connect (OSTI)

Charpy impact tests were conducted on ASTM A106 carbon steel archived from SRS waste tanks to determine the susceptibility of the cooling coils to brittle fracture during a seismic event. The highest ductile to brittle transition temperature measured was {minus}5{degree}F and, with the addition of a 30{degree}F safety factor, the minimum safe operating temperature was determined to be 25{degree}F. Calculations also showed that a pre-existing circumferential flaw that is 2.2in. long would be necessary to initiate brittle fracture of the pipe. These results demonstrate that the pipes will not be susceptible to brittle fracture if the cooling water inlet temperature is lowered to 50{degree}F. Visual observation of the inner and outer walls of the pipe showed no localized attack or significant wall thinning. A 100--200 micron zinc coating is probably the reason for the lack of corrosion. A build-up of zinc slag occurred at pipe fittings where the weld had burned through. Although no attack was observed, the slag created several crevices which have the potential to trap the chromated water and initiate localized attack.

Wiersma, B.J.

1992-09-01T23:59:59.000Z

230

Measurement of the ductile to brittle transition temperature for waste tank cooling coils  

SciTech Connect (OSTI)

Charpy impact tests were conducted on ASTM A106 carbon steel archived from SRS waste tanks to determine the susceptibility of the cooling coils to brittle fracture during a seismic event. The highest ductile to brittle transition temperature measured was [minus]5[degree]F and, with the addition of a 30[degree]F safety factor, the minimum safe operating temperature was determined to be 25[degree]F. Calculations also showed that a pre-existing circumferential flaw that is 2.2in. long would be necessary to initiate brittle fracture of the pipe. These results demonstrate that the pipes will not be susceptible to brittle fracture if the cooling water inlet temperature is lowered to 50[degree]F. Visual observation of the inner and outer walls of the pipe showed no localized attack or significant wall thinning. A 100--200 micron zinc coating is probably the reason for the lack of corrosion. A build-up of zinc slag occurred at pipe fittings where the weld had burned through. Although no attack was observed, the slag created several crevices which have the potential to trap the chromated water and initiate localized attack.

Wiersma, B.J.

1992-09-01T23:59:59.000Z

231

Parallel air temperature measurements at the KNMI-terrain in De Bilt (the Netherlands) May 2003 April 2005  

E-Print Network [OSTI]

measurements at the KNMI-terrain in De Bilt (the Netherlands) Page 2 #12;Interim report Page 3 Table measurements at the KNMI-terrain in De Bilt (the Netherlands) Page 4 Foreword From May 2003 through April 2005Parallel air temperature measurements at the KNMI-terrain in De Bilt (the Netherlands) May 2003

Stoffelen, Ad

232

8 - Measurement and monitoring technologies for verification of carbon dioxide (CO2) storage in underground reservoirs  

Science Journals Connector (OSTI)

Abstract: The chapter reviews some of the current technologies available for storage site monitoring, focusing on a limited range of core monitoring technologies required to provide storage site assurance at the industrial scale. Monitoring strategy has two elements: deep-focused for storage performance testing and verification and the early detection of deviations from predicted behaviour; and shallow -focused for leakage detection, verification of emissions performance and public acceptance. Key deep-focused monitoring technologies include 3D time-lapse seismic and downhole pressure and temperature measurement. For shallow monitoring, key technologies include soil gas, surface flux and atmospheric measurement. Selection of suitable monitoring strategies is highly site-specific, and tool testing and development is ongoing.

R.A. Chadwick

2010-01-01T23:59:59.000Z

233

Application of a ratiometric laser induced fluorescence (LIF) thermometry for micro-scale temperature measurement for natural convection flows  

E-Print Network [OSTI]

A ratiometric laser induced fluorescence (LIF) thermometry applied to micro-scale temperature measurement for natural convection flows. To eliminate incident light non-uniformity and imperfection of recording device, two fluorescence dyes are used...

Lee, Heon Ju

2004-11-15T23:59:59.000Z

234

The Viability of Sustainable, Self-Propping Shear Zones in Ehanced Geothermal Systems: Measurement of Reaction Rates at Elevated Temperatures  

Broader source: Energy.gov [DOE]

The Viability of Sustainable, Self-Propping Shear Zones in Ehanced Geothermal Systems: Measurement of Reaction Rates at Elevated Temperatures presentation at the April 2013 peer review meeting held in Denver, Colorado.

235

Simultaneous measurement of core electron temperature and density fluctuations during electron cyclotron heating on DIII-D  

E-Print Network [OSTI]

New measurements show that long-wavelength (k??s<0.5)[(k subscript theta p subscript s temperature fluctuations can play an important role in determining electron thermal transport in low-confinement mode ...

White, Anne E.

236

Standard Test Method for Measuring Heat Flux Using Flush-Mounted Insert Temperature-Gradient Gages  

E-Print Network [OSTI]

1.1 This test method describes the measurement of the net heat flux normal to a surface using gages inserted flush with the surface. The geometry is the same as heat-flux gages covered by Test Method E 511, but the measurement principle is different. The gages covered by this standard all use a measurement of the temperature gradient normal to the surface to determine the heat that is exchanged to or from the surface. Although in a majority of cases the net heat flux is to the surface, the gages operate by the same principles for heat transfer in either direction. 1.2 This general test method is quite broad in its field of application, size and construction. Two different gage types that are commercially available are described in detail in later sections as examples. A summary of common heat-flux gages is given by Diller (1). Applications include both radiation and convection heat transfer. The gages used for aerospace applications are generally small (0.155 to 1.27 cm diameter), have a fast time response ...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

237

Spectroscopic Measurements of Low-Temperature Heat Release for Homogeneous Combustion Compression Ignition (HCCI) n-Heptane/Alcohol Mixture Combustion  

Science Journals Connector (OSTI)

Spectroscopic Measurements of Low-Temperature Heat Release for Homogeneous Combustion Compression Ignition (HCCI) n-Heptane/Alcohol Mixture Combustion ... (6) The earlier short heat release, LTHR, is characteristic of chemical oxidation at low temperature of the hydrocarbon fuel. ... lower heating value (kJ/kg) ...

Peerawat Saisirirat; Fabrice Foucher; Somchai Chanchaona; Christine Mounai?m-Rousselle

2010-10-04T23:59:59.000Z

238

Inversion of marine heat flow measurements by expansion of the temperature decay function  

Science Journals Connector (OSTI)

......number of sensors to be mounted on one string due to increased storage capacity. Both developments now permit multipenetration deployments...the penetration did not suffice to raise the temperature from seawater temperature above the ambient sediment temperature. This caused......

A. Hartmann; H. Villinger

2002-03-01T23:59:59.000Z

239

Development of an Acoustic Sensor On-Line Gas Temperature Measurement in Gasifiers  

SciTech Connect (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. Following the completion of the initial 3 year project, several continuations were awarded by the Department of Energy to allow Enertechnix to conduct extended testing of the sensor at the Wabash River facility. In February, 2008 the sensor was installed on the gasifier in preparation for a long-term test. During the initial testing of the sensor a stainless steel tube on the sensor failed and allowed syngas to escape. The syngas self-ignited and the ensuing small fire damaged some of the components on the sensor. There was no damage to the gasifier or other equipment and no injuries resulted from this incident. Two meetings were held to identify the root causes of the incident-one at Wabash River and one at Enertechnix. A list of recommended improvements that would have addressed the causes of the incident was created and presented to the Department of Energy on May 2, 2008. However, the DOE decided not to pursue these improvements and terminated the project. This report describes all of the activities conducted during the project and reports the findings of each activity in detail. The investigation of potential sound generation and coupling methods led to the selection of a reflected shock method which has been developed into a functioning prototype device. The principles of operation of this device and its performance characteristics are described in the report. Modeling of the attenuation of sound by suspended particles and by interaction of the sound pulses with the high temperature syngas inside the gasifier was conducted and the predictions of those models were used to determine the required sound pulse intensity to allow the sound pulses to be detected after passage through the gasifier environment. These modeling results are presented in this report. A study of the likely spatial and temporal variability of gas composition inside the gasifier was performed and the results of that study was used to predict the impact of that variability on the accuracy of the acoustic temperature method. These results are reported here. A design for a port rodding mechanism was developed to deal with potential slagging issues and was incorporated i

Peter Ariessohn

2008-06-30T23:59:59.000Z

240

Modified ultrafast thermometer UFT-M and temperature measurements during Physics of Stratocumulus Top (POST)  

E-Print Network [OSTI]

al. : Modified ultrafast thermometer UFT-M and temperatureR. : A new ultrafast thermometer for airborne measurementsof some airborne thermometers in clouds, J. Atmos. Ocean.

Kumala, W.; Haman, K. E; Kopec, M. K; Khelif, D.; Malinowski, S. P

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

SYNTHESIS AND FABRICATION OF MO-W COMPONENTS FOR NEUTRON RESONANCE SPECTROSCOPY TEMPERATURE MEASUREMENT  

SciTech Connect (OSTI)

A Molybdenum--{sup 182}Tungsten (Mo-{sup 182}W) alloy was specified for an application that would ultimately result in the measurement of temperature and particle velocity during the steady state time following the shock loading of various materials. The {sup 182}W isotope provides a tag for the analysis of neutron resonance line shape from which the temperature may be calculated. The material was specified to have 1.8 atom percent W, with W-rich regions no larger than 1 {micro}m in size. Both the composition and W distribution were critical to the experiment. Another challenge to the processing was the very small quantity of {sup 182}W material available for the synthesis of the alloy. Therefore, limited fabrication routes were available for evaluation. Several synthesis and processing routes were explored to fabricate the required alloy components. First, precipitation of W onto Mo powder using ammonium metatungstate was investigated for powder synthesis followed by uniaxial hot pressing. Second, mechanical alloying (MA) followed by hot isostatic pressing (HIP) and warm forging was attempted. Finally, arc-melting techniques followed by either hot rolling or crushing the alloyed button into powder and consolidation were pursued. The results of the processing routes and characterization of the materials produced will be discussed.

S. BINGERT; P. DESCH; E. TRUJILLO

1999-09-01T23:59:59.000Z

242

Geothermal Technologies Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

pressure, temperature, and directional measurement and telemetry. The rechargeable energy storage unit for geothermal applications can handle extreme, high-temperature downhole...

243

Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes  

SciTech Connect (OSTI)

High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T>500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length {proportional_to}4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, can be expressed in Arrhenius form as k{sub OH+Cyclopentane}=(1.90{+-}0.30) x 10{sup -10}exp(-1705{+-}56 K/T) (813-1341 K), k{sub OH+Cyclohexane}=(1.86{+-}0.24) x 10{sup -10}exp(-1513{+-}123 K/T) (801-1347 K), k{sub OH+Methylcyclopentane}=(2.02{+-}0.19) x 10{sup -10}exp(-1799{+-}96 K/T) (859-1344 K), k{sub OH+Methylcyclohexane}=(2.55{+-}0.30) x 10{sup -10}exp(-1824{+-}114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, are k{sub OH+Cyclopentane}=1.390 x 10{sup -16}T{sup 1.779}exp(97 K/T)cm{sup 3} molecule{sup -1}s{sup -1} (209-1341 K), k{sub OH+Cyclohexane}=3.169 x 10{sup -16}T{sup 1.679}exp(119 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (225-1347 K), k{sub OH+Methylcyclopentane}=6.903 x 10{sup -18}T{sup 2.148}exp(536 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1344 K), k{sub OH+Methylcyclohexane}=2.341 x 10{sup -18}T{sup 2.325}exp(602 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1273 K). High level electronic structure methods were used to characterize the first three reactions in order to provide reliable extrapolations of the rate constants from 250-2000 K. The results of the theoretical predictions for OH + cyclohexane and OH + methylcyclopentane were sufficient to make a theoretical prediction for OH + methylcyclohexane. The present recommended rate expressions for OH with cyclohexane, and methylcyclohexane, give rate constants that are 15-25% higher (over the T-range 800-1300 K) than the rate constants utilized in recent modeling efforts aimed at addressing the oxidation of cyclohexane and methylcyclohexane. The current measurements reduce the uncertainties in rate constants for the primary cycloalkane consumption channel in a high temperature oxidation environment. (author)

Sivaramakrishnan, R.; Michael, J.V. [Chemical Sciences and Engineering Division, D-193, Bldg. 200, Argonne National Laboratory, Argonne, IL 60439 (United States)

2009-05-15T23:59:59.000Z

244

Measurement of Elastic Modulus of PUNB Bonded Sand as a Function of Temperature J. Thole and C. Beckermann  

E-Print Network [OSTI]

. Beckermann Dept. of Mechanical and Industrial Engineering, University of Iowa, Iowa City, Iowa 52242 Abstract Measurements of the elastic modulus of PUNB bonded silica sand are performed using a three-point bend test from for the elastic modulus at room temperature is obtained when measured under compressive, tensile or bending

Beckermann, Christoph

245

Laser-Beam-Scattering Measurement of Ion Temperature in a ?-Pinch Plasma and Evidence for Thermonuclear Reactions  

Science Journals Connector (OSTI)

Results are reported on an experiment to measure the ion temperature in a 100-kJ ?-pinch deuterium plasma. A ruby laser was used for scattering observations at 5 and 90 using multichannel spectrum analyzers and gave n=1.051017 cm-3 and Ti=300 eV. An independent measurement of the density was made by means of Rayleigh scattering. The neutron yield from the plasma was measured to be 8108 sec-1. The observed neutron emission was compared with that expected from a plasma with an ion temperature of 300 eV and was found to be of thermonuclear origin.

P. K. John

1972-08-01T23:59:59.000Z

246

Diode laser measurement of H?O, CO?, and temperature in gas turbine exhaust through the application of wavelength modulation spectroscopy  

E-Print Network [OSTI]

Absorption-Measurements of Water-Vapor Concentration, Temperature, and Line-Shape Parameters Using a Tunable Ingaasp

Leon, Marco E.

2007-01-01T23:59:59.000Z

247

Apparatus and method for direct measurement of coal ash sintering and fusion properties at elevated temperatures and pressures  

DOE Patents [OSTI]

A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.

Khan, M. Rashid (Morgantown, WV)

1990-01-01T23:59:59.000Z

248

High-temperature stress measurement on chemical-vapor-deposited tungsten silicide and tungsten films  

SciTech Connect (OSTI)

Stresses in chemical-vapor-deposited tungsten silicide and tungsten films at high temperatures were measured. Tungsten silicide films were formed from WF/sub 6/ and SiH/sub 4/ or Si/sub 2/H/sub 6/. Tungsten films were formed from WF/sub 6/ and H/sub 2/. The stress in tungsten silicide films is tensile and in the order of 10/sup 9/--10/sup 10/ dynes/cm/sup 2/. For a composition ratio of Si/Wless than or equal to2.6, the stress of a film of more than 1000 A has a maximum at about 500 /sup 0/C. On the other hand, for a composition Si/W>2.9, the stress has no maximum. The maximum of the stress is caused by crystallization of the film. The stress has two components. One component is related to the difference of the thermal expansion coefficients between the film and the Si substrate. Another is related to the film crystallization. It was found that the stress concentrates in the portion of the film nearest the substrate. The stress in tungsten films also reaches a maximum at 550 /sup 0/C, similar to the tungsten silicide films. However, the cause of this behavior is not clear.

Shioya, Y.; Ikegami, K.; Maeda, M.; Yanagida, K.

1987-01-15T23:59:59.000Z

249

Evaluations of temperature measurements in powder-based electron beam additive manufacturing by near-infrared thermography  

Science Journals Connector (OSTI)

Powder-based electron beam additive manufacturing (EBAM) has received an increased attention from different industries for various applications. Process metrology such as part temperature measurements is essential to process model validations as well as process monitoring. However, temperature measurements in EBAM are challenging because of high temperature ranges, extreme gradients and fast transient response, etc. In this study, temperature measurements during the EBAM process were attempted using a near-infrared (NIR) thermal camera. The thermal camera was able to capture the pre-heating, contour melting, and hatch melting events. The best obtained spatial resolution is around 12 m. Moreover, temperature data were processes and analysed to illustrate the process phenomenon, analogy to a moving heat source event. Moreover, from the extracted temperature profiles, a melting range can be identified and utilised for melt pool geometry estimates. It is shown that a typical melt pool in hatch melting from this test is about 1.91 mm long and 0.63 mm wide.

Steven Price; Kenneth Cooper; Kevin Chou

2014-01-01T23:59:59.000Z

250

Fast scanning heterodyne receiver for the measurement of the time evolution of the electron temperature profile on TFTR  

SciTech Connect (OSTI)

Two fast scanning heterodyne receivers, swept between 75 to 110 GHz and 110 to 170 GHz in 2 msec every 4 msec, were developed to measure the electron cyclotron emission on the horizontal midplane of the Tokamak Fusion Test Reactor (TFTR) plasma. An absolute, in situ calibration technique enables the determination of the profile of the plasma electron temperature from the cyclotron emission intensity. The 4 msec repetition rate of the receiver allowed the resolution of sawtooth fluctuations of temperature, whose period was 10 to 100 msec, in profiles with central temperatures of 1 to 2.5 keV.

Taylor, G.; Efthimion, P.; McCarthy, M.; Arunasalam, V.; Bitzer, R.; Bryer, J.; Cutler, R.; Fredd, E.; Goldman, M.A.; Kaufman, D.

1984-06-01T23:59:59.000Z

251

Fast surface temperature measurement of Teflon propellant-in-pulsed ablative discharges using HgCdTe photovoltaic cells  

SciTech Connect (OSTI)

High-speed mercury cadmium telluride photovoltaic detectors, sensitive to infrared emission, are investigated as a means of measuring surface temperature on a microsecond time frame during pulsed ablative discharges with Teflon trade mark sign as the ablated material. Analysis is used to derive a governing equation for detector output voltage for materials with wavelength dependent emissivity. The detector output voltage is experimentally calibrated against thermocouples embedded in heated Teflon. Experimental calibration is performed with Teflon that has been exposed to {approx}200 pulsed discharges and non-plasma-exposed Teflon and is compared to theoretical predictions to analyze emissivity differences. The diagnostic capability is evaluated with measurements of surface temperature from the Teflon propellant of electric micropulsed plasma thrusters. During the pulsed current discharge, there is insufficient information to claim that the surface temperature is accurately measured. However, immediately following the discharge, the postpulse cooling curve is measured. The statistical spread of postpulse surface temperature from shot to shot, most likely due to arc constriction and localization, is investigated to determine an operational envelope for postpulse temperature and mass ablation. This information is useful for determining postpulse ablation contributions to mass loss as well as evaluation of theoretical discharge models currently under development.

Antonsen, Erik L.; Burton, Rodney L.; Reed, Garrett A.; Spanjers, Gregory G. [University of Illinois at Urbana-Champaign, Illinois 61801 (United States); ERC Inc., Edwards AFB, California 93524 (United States); Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117 (United States)

2006-10-15T23:59:59.000Z

252

Spatially distributed temperatures at the base of two mountain snowpacks measured  

E-Print Network [OSTI]

imaging (FLIR) can provide meter-scale temperature resolution in fairly complex terrain (Loheide, FLIR also requires consideration of spatial, temporal and angular variability in emissivity

Dozier, Jeff

253

Detection of water or gas entry into horizontal wells by using permanent downhole monitoring systems  

E-Print Network [OSTI]

because geothermal temperature differences in depth make the wellbore temperature sensitive to the amount and the type of fluids flowing in the wellbore. Geothermal temperature does not change, however, along a horizontal wellbore, which leads to small...

Yoshioka, Keita

2007-09-17T23:59:59.000Z

254

The Sun as an X--ray Star. II: Using the Yohkoh/SXTderived Solar Emission Measure vs. Temperature to Interpret Stellar Xray Observations  

E-Print Network [OSTI]

The Sun as an X--ray Star. II: Using the Yohkoh/SXT­derived Solar Emission Measure vs. Temperature/SXT images we derive the whole--Sun X­ray emission measure vs. temperature (EM(T)), in the range 10 5:5 K the distribution of plasma temperatures in stellar coronae resembles that of the solar corona. To date, most

255

Heavy oil recovery process: Conceptual engineering of a downhole methanator and preliminary estimate of facilities cost for application to North Slope Alaska  

SciTech Connect (OSTI)

The West Sak (Upper Cretaceous) sands, overlaying the Kuparuk field, would rank among the largest known oil fields in the US, but technical difficulties have so far prevented its commercial exploitation. Steam injection is the most successful and the most commonly-used method of heavy oil recovery, but its application to the West Sak presents major problems. Such difficulties may be overcome by using a novel approach, in which steam is generated downhole in a catalytic Methanator, from Syngas made at the surface from endothermic reactions (Table 1). The Methanator effluent, containing steam and soluble gases resulting from exothermic reactions (Table 1), is cyclically injected into the reservoir by means of a horizontal drainhole while hot produced fluids flow form a second drainhole into a central production tubing. The downhole reactor feed and BFW flow downward to two concentric tubings. The large-diameter casing required to house the downhole reactor assembly is filled above it with Arctic Pack mud, or crude oil, to further reduce heat leaks. A quantitative analysis of this production scheme for the West Sak required a preliminary engineering of the downhole and surface facilities and a tentative forecast of well production rates. The results, based on published information on the West Sak, have been used to estimate the cost of these facilities, per daily barrel of oil produced. A preliminary economic analysis and conclusions are presented together with an outline of future work. Economic and regulatory conditions which would make this approach viable are discussed. 28 figs.

Gondouin, M.

1991-10-31T23:59:59.000Z

256

Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG  

E-Print Network [OSTI]

Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb and heat sink grease respectively). The dynamics of thermal effects is also presented. PACS 42.55.Xi (Diode-pumped in a diode-end-pumped Yb:YAG crystal, using a calibrated infrared camera, with a 60-µm spatial resolution

Paris-Sud XI, Université de

257

Large Area Divertor Temperature Measurements Using A High-speed Camera With Near-infrared FiIters in NSTX  

SciTech Connect (OSTI)

Fast cameras already installed on the National Spherical Torus Experiment (NSTX) have be equipped with near-infrared (NIR) filters in order to measure the surface temperature in the lower divertor region. Such a system provides a unique combination of high speed (> 50 kHz) and wide fi eld-of-view (> 50% of the divertor). Benchtop calibrations demonstrated the system's ability to measure thermal emission down to 330 oC. There is also, however, signi cant plasma light background in NSTX. Without improvements in background reduction, the current system is incapable of measuring signals below the background equivalent temperature (600 - 700 oC). Thermal signatures have been detected in cases of extreme divertor heating. It is observed that the divertor can reach temperatures around 800 oC when high harmonic fast wave (HHFW) heating is used. These temperature profiles were fi t using a simple heat diffusion code, providing a measurement of the heat flux to the divertor. Comparisons to other infrared thermography systems on NSTX are made.

Lyons, B C; Zweben, S J; Gray, T K; Hosea, J; Kaita, R; Kugel, H W; Maqueda, R J; McLean, A G; Roquemore, A L; Soukhanovskii, V A

2011-04-05T23:59:59.000Z

258

Density measurements Viscosity measurements  

E-Print Network [OSTI]

Density measurements Viscosity measurements Temperature measurements Pressure measurements Flow rate measurements Velocity measurements Sensors How to measure fluid flow properties ? Am´elie Danlos Ravelet Experimental methods for fluid flows: an introduction #12;Density measurements Viscosity

Ravelet, Florent

259

Cryogenic temperature measurement of THz meta-resonance in symmetric metamaterial superlattice  

Science Journals Connector (OSTI)

We investigated a change in the Q-factor of THz meta-resonance as a function of temperature in a symmetric metamaterial superlattice composed by double-split ring resonators (DSRR)....

Woo, J H; Kim, E S; Kang, Boyoung; Choi, E Y; Lee, Hyun-Hee; Kim, J; Lee, Y U; Hong, Tae Y; Kim, Jae H; Wu, J W

260

Design of the Wireless Temperature Measurement Alarming System in the High-Voltage Transformer Substation  

Science Journals Connector (OSTI)

Due to electric power overload and equipment aging, fire and explosion occur at transmission circuitry joints in high-voltage transformer substation caused by high temperatures accumulated at these...

Qiang Gao; Hongli Wang; Huaxiang Wang

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Characterizing Surface Temperature and Clarity of Kuwait's Seawaters Using Remotely Sensed Measurements and GIS Analyses  

E-Print Network [OSTI]

Kuwait sea surface temperature (SST) and water clarity are important water characteristics that influence the entire Kuwait coastal ecosystem. The aim of this project was to study the spatial and temporal distributions of Kuwait SST using MODIS...

Alsahli, Mohammad M. M.

2009-11-30T23:59:59.000Z

262

Measurement of the vortex depinning force in a high temperature superconductor  

E-Print Network [OSTI]

Introduction: Superconductivity is one of those subjects in physics that is as captivating theoretically as it is experimentally interesting. The dual driving force of commercial demand for high-temperature superconductors ...

Whitehead, Andrew Patrick

2005-01-01T23:59:59.000Z

263

Narrowband sodium lidar for the measurements of mesopause region temperature and wind  

Science Journals Connector (OSTI)

We report here a narrowband high-spectral resolution sodium temperature/wind lidar recently developed at the University of Science and Technology of China (USTC) in Hefei, China...

Li, Tao; Fang, Xin; Liu, Wei; Gu, Sheng-Yang; Dou, Xiankang

2012-01-01T23:59:59.000Z

264

Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar  

Science Journals Connector (OSTI)

This study investigates the accuracy and calibration stability of temperature profiles derived from an operational Raman lidar over a 2-yr period from 1 January 2009 to 31 December 2010. The lidar, which uses the rotational Raman technique for ...

Rob K. Newsom; David D. Turner; John E. M. Goldsmith

2013-08-01T23:59:59.000Z

265

Synergistic Effect of coal blends on thermoplasticity evaluated using a temperature-variable dynamic viscoelastic measurement  

SciTech Connect (OSTI)

To maximize the conversion of low-quality coal into good coke, we investigated the thermoplasticity of various binary blends of caking coals with slightly or noncaking coals using a dynamic viscoelastic technique with a temperature-variable rheometer. Coal blend samples were prepared by mixing two coals (1:1 by weight), which were heated from room temperature to 600 C at a rate of 3-80{sup o}C/min. At the slow rate of 3{sup o}C/min, the blends had a tan {delta} that was generally lower than the calculated value, showing that a negative interaction caused a loss of thermoplasticity. In contrast, at the rapid heating rate of 80{sup o}C/min, the tan {delta} of some blends was higher than the calculated value, indicating a positive interaction that enhanced the thermoplasticity. With rapid heating, the thermoplasticity of each coal itself increased, and their thermoplastic temperature ranges widened with rapid heating. Therefore, rapid heating was effective at converting these coal blends into good cokes. Moreover, even with slow heating, when a combination of coals (Gregory:Enshu, 1:1) showing some thermoplasticity in nearly the same temperature range was blended, a desirable synergistic effect of the blend was obtained. This suggests that blending coal with an overlapping thermoplastic temperature range is important for the synergistic effect, regardless of the heating rate. 15 refs., 9 figs., 2 tabs.

Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito; Kensuke Masaki; Atsushi Dobashi; Kiyoshi Fukada [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

2006-12-15T23:59:59.000Z

266

Measurement of temperature-dependent thermal conductivity and viscosity of TiO{sub 2}-water nanofluids  

SciTech Connect (OSTI)

Nanofluid is an innovative heat transfer fluid with superior potential for enhancing the heat transfer performance of conventional fluids. Many attempts have been made to investigate its thermal conductivity and viscosity, which are important thermophysical properties. No definitive agreements have emerged, however, about these properties. This article reports the thermal conductivity and dynamic viscosity of nanofluids experimentally. TiO{sub 2} nanoparticles dispersed in water with volume concentration of 0.2-2 vol.% are used in the present study. A transient hot-wire apparatus is used for measuring the thermal conductivity of nanofluids whereas the Bohlin rotational rheometer (Malvern Instrument) is used to measure the viscosity of nanofluids. The data are collected for temperatures ranging from 15 C to 35 C. The results show that the measured viscosity and thermal conductivity of nanofluids increased as the particle concentrations increased and are higher than the values of the base liquids. Furthermore, thermal conductivity of nanofluids increased with increasing nanofluid temperatures and, conversely, the viscosity of nanofluids decreased with increasing temperature of nanofluids. Moreover, the measured thermal conductivity and viscosity of nanofluids are quite different from the predicted values from the existing correlations and the data reported by other researchers. Finally, new thermophysical correlations are proposed for predicting the thermal conductivity and viscosity of nanofluids. (author)

Duangthongsuk, Weerapun; Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, 126 Bangmod, Bangkok 10140 (Thailand)

2009-04-15T23:59:59.000Z

267

Ultra-fast charge exchange spectroscopy for turbulent ion temperature fluctuation measurements on the DIII-D tokamak (invited)  

SciTech Connect (OSTI)

A novel two-channel, high throughput, high efficiency spectrometer system has been developed to measure impurity ion temperature and toroidal velocity fluctuations associated with long-wavelength turbulence and other plasma instabilities. The spectrometer observes the emission of the n= 8-7 hydrogenic transition of C{sup +5} ions ({lambda}{sub air}= 529.06 nm) resulting from charge exchange reactions between deuterium heating beams and intrinsic carbon. Novel features include a large, prism-coupled high-dispersion, volume-phase-holographic transmission grating and high-quantum efficiency, high-gain, low-noise avalanche photodiode detectors that sample emission at 1 MHz. This new diagnostic offers an order-of-magnitude increase in sensitivity compared to earlier ion thermal turbulence measurements. Increased sensitivity is crucial for obtaining enough photon statistics from plasmas with much less impurity content. The irreducible noise floor set by photon statistics sets the ultimate sensitivity to plasma fluctuations. Based on the measured photon flux levels for the entire spectral line, photon noise levels for T(tilde sign){sub i}/T{sub i} and V(tilde sign){sub i}/V{sub i} of {approx}1% are expected, while statistical averaging over long data records enables reduction in the detectable plasma fluctuation levels to values less than that. Broadband ion temperature fluctuations are observed to near 200 kHz in an L-mode discharge. Cross-correlation with the local beam emission spectroscopy measurements demonstrates a strong coupling of the density and temperature fields, and enables the cross-phase measurements between density and ion temperature fluctuations.

Uzun-Kaymak, I. U.; Fonck, R. J.; McKee, G. R. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

2012-10-15T23:59:59.000Z

268

Pressure Temperature Log At Steamboat Springs Area (Combs, Et Al., 1999) |  

Open Energy Info (EERE)

Steamboat Springs Area (Combs, Et Al., 1999) Steamboat Springs Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Steamboat Springs Area (Combs, Et Al., 1999) Exploration Activity Details Location Steamboat Springs Area Exploration Technique Pressure Temperature Log Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Downhole data during production and injection tests were acquired using pressure/temperature/spinner (PTS) tools from two dtierent service companies. Although details differed, all the commercial downhole instruments were designed to take data and to transmit that data uphole in real time, using a singleconductor wireline. All the instruments (each company used more than one) employed a dewar, or thermal flasIq to protect

269

System to inject steam and produce oil from the same wellbore through downhole valve switching. First quarterly report  

SciTech Connect (OSTI)

Various Downhole Equipment systems have been designed for typical applications in three California Oilfields,based on well data gathered from three different Operating Companies. The first system, applicable to a 2,000 ft deep reservoir (Monarch) a highly underpressured, unconsolidated sand of 200 ft net pay, located in the Midway-Sunset field, is based on the use of a new well. The second well configuration considered was the re-entry into an existing well equipped with a 7 inches casing and penetrating into two separate sandstone reservoirs, at normal pressures in the North Antelope Hills field. Only the bottom layer is presently in production through a gravel-packed 5.5 inch linear, while the upper zone is behind the cemented casing. The third case studied was the re-entry into an existing well equipped with an 8 5/8 inch casing, presently unperforated, into a thin under-pressured sand reservoir (Weber) in the Midway-Sunset field. All three California fields contain Heavy Oils of different but relatively high viscosities. A new class of potential applications of our new technology has also been considered: the recovery of Light Oil (> 20 API) by steam injection in under-pressured Carbonate reservoirs which lay at depths beyond the economic limit for conventional steam injection technology. The possibility of including this application in a Field Test proposal to the DOE, under the Class II Oil Program, is now under review by various Operators. A drilling contractor experienced in drilling multiple horizontal wells in Carbonate reservoirs and a team of reservoir engineers experienced in the recovery of Light Oil by steam in fractured reservoirs have expressed their interest in participating in such a joint Field Project. Laboratory tests on specific prototypes of Downhole Sealing Elements are underway.

Not Available

1992-10-01T23:59:59.000Z

270

Cryogenic temperature measurement of THz meta-resonance in symmetric metamaterial superlattice  

Science Journals Connector (OSTI)

A symmetric metamaterial superlattice is introduced accommodating a high Q-factor trapped mode. THz time-domain spectroscopy is employed to measure the transmission spectra,...

Woo, J H; Kim, E S; Choi, E; Kang, Boyoung; Lee, Hyun-Hee; Kim, J; Lee, Y U; Hong, Tae Y; Kim, Jae H; Wu, J W

2011-01-01T23:59:59.000Z

271

High-resolution spectroscopy for Doppler-broadening ion temperature measurements of implosions at the National Ignition Facility  

SciTech Connect (OSTI)

Future implosion experiments at the national ignition facility (NIF) will endeavor to simultaneously measure electron and ion temperatures with temporal and spatial resolution in order to explore non-equilibrium temperature distributions and their relaxation toward equilibrium. In anticipation of these experiments, and with understanding of the constraints of the NIF facility environment, we have explored the use of Doppler broadening of mid-Z dopant emission lines, such as krypton He-{alpha} at 13 keV, as a diagnostic of time- and potentially space-resolved ion temperature. We have investigated a number of options analytically and with numerical raytracing, and we have identified several promising candidate spectrometer designs that meet the expected requirements of spectral and temporal resolution and data signal-to-noise ratio for gas-filled exploding pusher implosions, while providing maximum flexibility for use on a variety of experiments that potentially include burning plasma.

Koch, J. A.; Stewart, R. E.; Beiersdorfer, P.; Shepherd, R.; Schneider, M. B.; Miles, A. R.; Scott, H. A.; Smalyuk, V. A.; Hsing, W. W. [Lawrence Livermore National Laboratory, P.O. Box 808, L-493, Livermore, California 94550 (United States)

2012-10-15T23:59:59.000Z

272

Two dimensionally space-resolved electron temperature measurement of fusion plasma by x-ray monochromatic imaging method  

SciTech Connect (OSTI)

Electron temperature distributions of laser created fusion plasma were measured by using toroidally bent Bragg crystals. A tiny amount of argon was seeded in deuterium fuel gas and monochromatic images of Ar{sup +17} (1{ital s}{minus}3{ital p}) Ly{beta} and Ar{sup +16} (1{ital s}{sup 2}{minus}1{ital s}3{ital p}) He{beta} lines were taken to provide temperature distribution of the compressed core from their intensity ratios. A fusion core created by laser-generated x rays in a micro-cavity showed the temperature structure corresponding to the illumination asymmetry caused by the cavity irradiation geometry. The experimental distribution of the line-ratio of Ly{beta} to He{beta} was compared with the postprocessed outputs from one dimensional simulation, assuming perfect spherical implosion, to discuss degradation of pellet implosion. {copyright} {ital 1996 American Institute of Physics.}

Fujita, K.; Nishimura, H.; Uschmann, I.; Foerster, E.; Takabe, H.; Kato, Y.; Nakai, S. [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565 (Japan)

1996-05-01T23:59:59.000Z

273

AN APPROACH TO IMPROVEMENT TEMPERATURE AND MOISTURE RETRIEVALS FROM THE GOES SOUNDER MEASUREMENTS  

E-Print Network [OSTI]

are calculated from radiosonde observations of the atmospheric state, generating an ensemble of computed GOES together against radiances from CO2, water vapor, and window bands. This method is often used to generate on the changes in the atmospheric state using a physically-based retrieval of temperature and moisture profiles

Li, Jun

274

Sensors and Actuators A 125 (2006) 170177 Thin film temperature sensor for real-time measurement  

E-Print Network [OSTI]

allows for an accurate placement of the temperature sensor within the fuel cell. Simulation results show protons, but too much water can lead to local flooding. With poor thermal management, short-term effects will be a performance loss due to either membrane dry-out or diffusion media flooding, and long-term effects

Mench, Matthew M.

275

The measurement of contact areas and temperature during frictional sliding of Tennessee sandstone  

E-Print Network [OSTI]

of the two bodies remains at a t. emperat;ure T (approx', mately room temperat:ure). This assumption can 0 be considered valid since the velocity of the moviL. g surfaces is slow; so slow that at each asper', iy contact there i ample time...

Teufel, Lawrence William

2012-06-07T23:59:59.000Z

276

Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements  

Science Journals Connector (OSTI)

Radiation damage to protein crystals exhibits two regimes of temperature-activated behavior between T = 300 and 100 K, with a crossover at the protein glass transition near 200 K. These results have implications for mechanistic studies of proteins and for structure determination when cooling to T = 100 K creates excessive disorder.

Warkentin, M.

2010-09-18T23:59:59.000Z

277

Solubility Measurements of Crystalline Cu2O in Aqueous Solution as a Function of Temperature and pH  

SciTech Connect (OSTI)

The equilibrium solubility of crystalline cuprous oxide, cuprite, was measured in liquid water and steam using two flow-through reactors and a conventional batch autoclave. These measurements were carried out from 20 to 400 C. Different batches of pretreated cuprite were thoroughly characterized prior to and following each set of experiments. Metallic copper beads were added to the inlet end of the reactors and to the solid charge in the autoclave to preserve the Cu(I) oxidation state, although one series of experiments produced some results which were only compatible with CuO(cr) as the solubility limiting phase. Comparison of the solubility data for Cu2O(cr) in aqueous solution with those from the only available high-temperature dataset (Var yash, Geochem. Int. 26:80 90, 1989) showed that in near-neutral solutions the new data are lower by about four orders of magnitude at 350 C. Moreover, the dominant species in solution at temperatures 100 C were found to be only Cu+ and Cu(OH) 2 with Cu(OH)0 occurring over a narrow pH range at 75 C rather than the reverse trend reported previously. Solubility equations were developed as a function of temperature and pH, based on these new results, which showed increased solubility with temperature in acidic and basic solutions. The solubility of Cu2O(cr) in steam decreased slightly with temperature and as expected increased with increasing pressure to supercritical conditions where limited, compatible data were available in the literature. The solubility at subcritical conditions was on the order of one to several parts per billion, ppb. A simple empirical fit was derived for the solubility in steam as a function of temperature and pressure.

Palmer, Donald [ORNL

2011-01-01T23:59:59.000Z

278

Experimental techniques for measuring temperature and velocity fields to improve the use and validation of building heat transfer models  

SciTech Connect (OSTI)

When modeling thermal performance of building components and envelopes, researchers have traditionally relied on average surface heat-transfer coefficients that often do not accurately represent surface heat-transfer phenomena at any specific point on the component being evaluated. The authors have developed new experimental techniques that measure localized surface heat-flow phenomena resulting from convection. The data gathered using these new experimental procedures can be used to calculate local film coefficients and validate complex models of room and building envelope heat flows. These new techniques use a computer-controlled traversing system to measure both temperatures and air velocities in the boundary layer near the surface of a building component, in conjunction with current methods that rely on infrared (IR) thermography to measure surface temperatures. Measured data gathered using these new experimental procedures are presented here for two specimens: (1) a Calibrated Transfer Standard (CTS) that approximates a constant-heat-flux, flat plate; and (2) a dual-glazed, low-emittance (low-e), wood-frame window. The specimens were tested under steady-state heat flow conditions in laboratory thermal chambers. Air temperature and mean velocity data are presented with high spatial resolution (0.25- to 25-mm density). Local surface heat-transfer film coefficients are derived from the experimental data by means of a method that calculates heat flux using a linear equation for air temperature in the inner region of the boundary layer. Local values for convection surface heat-transfer rate vary from 1 to 4.5 W/m{sup 2} {center_dot} K. Data for air velocity show that convection in the warm-side thermal chamber is mixed forced/natural, but local velocity maximums occur from 4 to 8 mm from the window glazing.

Griffith, Brent; Turler, Daniel; Goudey, Howdy; Arasteh, Dariush

1998-04-01T23:59:59.000Z

279

O{sub 2} rotational temperature measurements in an atmospheric air microdischarge by radar resonance-enhanced multiphoton ionization  

SciTech Connect (OSTI)

Nonintrusive spatially resolved rotational temperature measurements in an atmospheric air microdischarge are presented. The measurements were based on coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization of molecular oxygen. The open air DC microdischarge source operated in a stable 'normal-glow' mode and pin-to-pin electrodes spaced 1.3 mm apart. The second harmonic of a tunable dye laser beam was focused between the two electrodes and scanned between 286 and 288 nm. Coherent microwave Rayleigh scattering was used to collect the two-photon rotational spectra of O{sub 2} at C{sup 3}{Pi}(v = 2) Leftwards-Arrow X{sup 3}{Sigma}(v Prime = 0) transitions. The Boltzmann plots from analyses of the O{sub 2} rotational lines determined local rotational temperatures at various axial locations between the electrodes. The molecular oxygen rotational temperature varied from {approx}1150 K to {approx}1350 K within the discharge area. The measurements had an accuracy of {approx}{+-}50 K.

Sawyer, Jordan; Wu, Yue; Zhang, Zhili [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville Tennessee 37996 (United States)] [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville Tennessee 37996 (United States); Adams, Steven F. [Air Force Research Laboratory (AFRL/RQQE), Wright-Patterson AFB, Ohio 45433-7919 (United States)] [Air Force Research Laboratory (AFRL/RQQE), Wright-Patterson AFB, Ohio 45433-7919 (United States)

2013-06-21T23:59:59.000Z

280

Clip gage attachment for frictionless measurement of displacement during high-temperature mechanical testing  

DOE Patents [OSTI]

An attachment for placement between a test specimen and a remote clip gage extensometer providing improved fracture toughness tests of materials at elevated temperature. Using a cylindrical tube and axial rod in new relationship, the device transfers the displacement signal of the fracture toughness test specimen directly to a clip gage extensometer located outside the high temperature furnace. Virtually frictionless operation is assured by having the test specimen center one end of the rod in one end of the tube, while the clip gage extensometer arms center the other end of the rod in the other end of the tube. By providing positive control over both ends of both rod and tube, the attachment may be operated in orientations other than vertical.

Alexander, David J. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Clip gage attachment for frictionless measurement of displacement during high-temperature mechanical testing  

DOE Patents [OSTI]

An attachment for placement between a test specimen and a remote clip gage extensometer providing improved fracture toughness tests of materials at elevated temperature is described. Using a cylindrical tube and axial rod in new relationship, the device transfers the displacement signal of the fracture toughness test specimen directly to a clip gage extensometer located outside the high temperature furnace. Virtually frictionless operation is assured by having the test specimen center one end of the rod in one end of the tube, while the clip gage extensometer arms center the other end of the rod in the other end of the tube. By providing positive control over both ends of both rod and tube, the attachment may be operated in orientations other than vertical. 1 figure.

Alexander, D.J.

1994-01-04T23:59:59.000Z

282

Laboratory Measurements of Contact Freezing by Dust and Bacteria at Temperatures of Mixed-Phase Clouds  

Science Journals Connector (OSTI)

Laboratory measurements of freezing by aerosol particles in contact mode are presented. The fraction of particles catalyzing freezing is quantified for three mineral dusts and three strains of bacteria. This is the most comprehensive such dataset ...

Joseph Niehaus; Jennifer G. Becker; Alexander Kostinski; Will Cantrell

2014-10-01T23:59:59.000Z

283

Measurement by Room Temperature Phosphorescence of Polynuclear Aromatic Containing Hydrocarbon Fuels that Permeate Glove Materials  

Science Journals Connector (OSTI)

......technique provided a simple, cost effective, and very sensitive means for measuring breakthrough times and permeation rates of the class of potentially carcinogenic PNA in liquid fuels derived from crude petroleum, oil shale, and coal....

R.B. Gammage; T. Vo-Dinh; D.A. White

1986-12-01T23:59:59.000Z

284

Method for spectroradiometric temperature measurements in two phase flows. 2: Experimental verification  

Science Journals Connector (OSTI)

A new method for emissionabsorption pyrometric measurements has been developed to account for the effects of scattering particles suspended in an absorbing gas. In this paper, the...

Paul, Phillip H; Self, Sidney A

1989-01-01T23:59:59.000Z

285

1M . B a h r a m i ENSC 388 Experiment 1 a: Fundamentals of Temperature Measurements ENSC 388: Engineering Thermodynamics and Heat Transfer  

E-Print Network [OSTI]

of temperature measuring devices including: bimetallic thermometer, several electrical temperature sensors, liquid thermometer, and gas thermometers, see Fig. 1. Three temperature sensors are fitted to the unit thermometer: In a glass thermometer, the relative expansion of a liquid compared to the contents of the bulb

Bahrami, Majid

286

Assessment of selected conservation measures for high-temperature process industries  

SciTech Connect (OSTI)

Energy conservation projects involving high-temperature processes in various stages of development are assessed to quantify their energy conservation potential; to determine their present status of development; to identify their research and development needs and estimate the associated costs; and to determine the most effective role for the Federal government in developing these technologies. The program analyzed 25 energy conserving processes in the iron and steel, aluminium, copper, magnesium, cement, and glassmaking industries. A preliminary list of other potential energy conservation projects in these industries is also presented in the appendix. (MCW)

Kusik, C.L.; Parameswaran, K.; Nadkarni, R.; O& #x27; Neill, J.K.; Malhotra, S.; Hyde, R.; Kinneberg, D.; Fox, L.; Rossetti, M.

1981-01-01T23:59:59.000Z

287

Electrochemical polarization measurement on 304 SS in high temperature, high purity water  

SciTech Connect (OSTI)

The polarization behavior of the redox reactions of hydrogen (H{sub 2}), oxygen (O{sub 2}), and hydrogen peroxide (H{sub 2}O{sub 2}) on 304 stainless steel (SS) in high temperature, high purity water was studied in order to determine the electrochemical kinetic constants, such as Tafel slopes, exchange currents, orders of reaction and other parameters. These values are necessary to develop the electrochemical corrosion potential (ECP) predictive model for boiling water reactors (BWRs), which is used to monitor the intergranular stress corrosion cracking (IGSCC) susceptibility of sensitized austenitic SS.

Kim, Y.J.; Niedrach, L.W. [General Electric Corp., Schenectady, NY (United States). Corporate Research and Development Center

1997-12-01T23:59:59.000Z

288

A compact bellows-driven diamond anvil cell for high-pressure, low-temperature magnetic measurements  

SciTech Connect (OSTI)

We present the design of an efficient bellows-controlled diamond anvil cell that is optimized for use inside the bores of high-field superconducting magnets in helium-3 cryostats, dilution refrigerators, and commercial physical property measurement systems. Design of this non-magnetic pressure cell focuses on in situ pressure tuning and measurement by means of a helium-filled bellows actuator and fiber-coupled ruby fluorescence spectroscopy, respectively. We demonstrate the utility of this pressure cell with ac susceptibility measurements of superconducting, ferromagnetic, and antiferromagnetic phase transitions to pressures exceeding 8 GPa. This cell provides an opportunity to probe charge and magnetic order continuously and with high resolution in the three-dimensional Magnetic FieldPressureTemperature parameter space.

Feng, Yejun [The Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [The Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States); Silevitch, D. M.; Rosenbaum, T. F. [The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States)] [The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States)

2014-03-15T23:59:59.000Z

289

Design, Fabrication and Testing of an Infrared Ratio Pyrometer System for the Measurement of Gasifier Reaction Chamber Temperature  

SciTech Connect (OSTI)

Texaco was awarded contract DE-FC26-99FT40684 from the U.S. DOE to design, build, bench test and field test an infrared ratio pyrometer system for measuring gasifier temperature. The award occurred in two phases. Phase 1, which involved designing, building and bench testing, was completed in September 2000, and the Phase 1 report was issued in March 2001. Phase 2 was completed in 2005, and the results of the field test are contained in this final report. Two test campaigns were made. In the first one, the pyrometer was sighted into the gasifier. It performed well for a brief period of time and then experienced difficulties in keeping the sight tube open due to a slag accumulation which developed around the opening of the sight tube in the gasifier wall. In the second test campaign, the pyrometer was sighted into the top of the radiant syngas cooler through an unused soot blower lance. The pyrometer experienced no more problems with slag occlusions, and the readings were continuous and consistent. However, the pyrometer readings were 800 to 900 F lower than the gasifier thermocouple readings, which is consistent with computer simulations of the temperature distribution inside the radiant syngas cooler. In addition, the pyrometer readings were too sluggish to use for control purposes. Additional funds beyond what were available in this contract would be required to develop a solution that would allow the pyrometer to be used to measure the temperature inside the gasifier.

Tom Leininger

2005-03-31T23:59:59.000Z

290

A numerical study of geometry dependent errors in velocity, temperature, and density measurements from single grid planar retarding potential analyzers  

SciTech Connect (OSTI)

Planar retarding potential analyzers (RPAs) have been utilized numerous times on high profile missions such as the Communications/Navigation Outage Forecast System and the Defense Meteorological Satellite Program to measure plasma composition, temperature, density, and the velocity component perpendicular to the plane of the instrument aperture. These instruments use biased grids to approximate ideal biased planes. These grids introduce perturbations in the electric potential distribution inside the instrument and when unaccounted for cause errors in the measured plasma parameters. Traditionally, the grids utilized in RPAs have been made of fine wires woven into a mesh. Previous studies on the errors caused by grids in RPAs have approximated woven grids with a truly flat grid. Using a commercial ion optics software package, errors in inferred parameters caused by both woven and flat grids are examined. A flat grid geometry shows the smallest temperature and density errors, while the double thick flat grid displays minimal errors for velocities over the temperature and velocity range used. Wire thickness along the dominant flow direction is found to be a critical design parameter in regard to errors in all three inferred plasma parameters. The results shown for each case provide valuable design guidelines for future RPA development.

Davidson, R. L.; Earle, G. D.; Heelis, R. A. [William B. Hanson Center for Space Sciences, University of Texas at Dallas, 800 W. Campbell Road, WT15, Richardson, Texas 75080 (United States); Klenzing, J. H. [Space Weather Laboratory/Code 674, Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

2010-08-15T23:59:59.000Z

291

Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC  

SciTech Connect (OSTI)

One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Bolte, N. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Marsili, P. [Department of Physics, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Roche, T. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Wessel, F. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

2010-10-15T23:59:59.000Z

292

Use of high-temperature gas-tight electrochemical cells to measure electronic transport and thermodynamics in metal oxides  

SciTech Connect (OSTI)

By using a gas-tight electrochemical cell, the authors can perform high-temperature coulometric titration and measure electronic transport properties to determine the electronic defect structure of metal oxides. This technique reduces the time and expense required for conventional thermogravimetric measurements. The components of the gas-tight coulometric titration cell are an oxygen sensor, Pt/yttria stabilized zirconia (YSZ)/Pt, and an encapsulated metal oxide sample. Based on cell design, both transport and thermodynamic measurements can be performed over a wide range of oxygen partial pressures (pO{sub 2} = 10{sup {minus}35} to 1 atm). This paper describes the high-temperature gas-tight electrochemical cells used to determine electronic defect structures and transport properties for pure and doped-oxide systems, such as YSZ, doped and pure ceria (Ca-CeO{sub 2} and CeO{sub 2}), copper oxides, and copper-oxide-based ceramic superconductors, transition metal oxides, SrFeCo{sub 0.5}O{sub x}, and BaTiO{sub 3}.

Park, J.H.; Ma, B.; Park, E.T. [Argonne National Lab., IL (United States). Energy Technology Div.

1997-10-01T23:59:59.000Z

293

Static Temperature Survey | Open Energy Information  

Open Energy Info (EERE)

Static Temperature Survey Static Temperature Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Static Temperature Survey Details Activities (28) Areas (24) Regions (2) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Extrapolate the true temperature of the formation the well penetrates Cost Information Low-End Estimate (USD): 0.2525 centUSD 2.5e-4 kUSD 2.5e-7 MUSD 2.5e-10 TUSD / foot Median Estimate (USD): 0.3535 centUSD 3.5e-4 kUSD 3.5e-7 MUSD 3.5e-10 TUSD / foot High-End Estimate (USD): 0.7575 centUSD 7.5e-4 kUSD 7.5e-7 MUSD

294

Pressure Temperature Log | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Pressure Temperature Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Pressure Temperature Log Details Activities (13) Areas (13) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Perturbations in temperature or pressure can be indicative of faults or other structural features Hydrological: fluid cirulation, over-pressured zones, and under-pressured zones. Thermal: Temperature profile with depth Cost Information Low-End Estimate (USD): 0.6060 centUSD 6.0e-4 kUSD

295

Steam quality determination using pressure and temperature measurements in a venturi  

E-Print Network [OSTI]

1987 Steam (tuality Ue~tion using Pressure and ~tuze Measurements M A Venturi(December 1987) Benny leo O' Neil, B. S ~ Texas A & M University Chairman of Advisory Crmsittee: Dr. R. A. Staztnaan Steam injecticn into heavy oil reservoirs accounted...-Rmse Flow 'Ihrough Venturi. . . TABID 2: Pressures and ~tures Gorrespanding to location on Heat E&n9anger. 25 59 LI87 OF FIGURES FIGURE 1: Steam distribution network facilities. . FIGURE 2: Counter flow heat exchanger FIGURE 3: Gas fired stan...

O'Neil, Danny Leo

2012-06-07T23:59:59.000Z

296

The influence of temperature on the estimation of interstitial water by capillary pressure measurements  

E-Print Network [OSTI]

. The residual hydrocarbons reznaining in the core samples were zemoved by a Soxhlet extractor using toluene as the solvent. The extraction time was eight hours. The ccrc samples we "e then dried at 250'F. The exact diameter and length of each core sample... in the graduated pipettes to an initial level corresponding to the top of the diaphragms. The cores we e placed in contact with FIGURE I CAPILLARY PRESSURE MEASUREMENT APPARATUS FRONT VIEW FIGURE l CAPILLARY PRESSURE CELI. i0 the diaphragm using a single...

Shah, Narendra

2012-06-07T23:59:59.000Z

297

How to Cons-Train Your M Dwarf: measuring effective temperature, bolometric luminosity, mass, and radius  

E-Print Network [OSTI]

Precise and accurate parameters for late-type (late K and M) dwarf stars are important for proper characterization of any planets they host, but studies have been hampered by these stars' complex spectra and dissimilarity to the Sun. We exploited a calibrated method of spectroscopic effective temperature ($T_{\\rm{eff}}$) estimation and the Stefan-Boltzmann law to determine radii with an accuracy of 2-5% and expand the sample to 161 nearby K7-M7 dwarf stars covering a wider range of $T_{\\rm{eff}}$ and metallicity. We developed improved relations between $T_{\\rm{eff}}$, radius, and luminosity, as well as between $T_{\\rm{eff}}$ and color. Our $T_{\\rm{eff}}$-radius relation depends strongly on [Fe/H], as predicted by theory. We derived a relation between absolute $K_S$ magnitude and radius that is accurate to better than 3%. We derived bolometric correction to the $VR_CI_CgrizJHK_S$ and Gaia passbands as a function of color, accurate to 1-3%. We confronted the reliability of predictions from Dartmouth stellar evo...

Mann, Andrew W; Gaidos, Eric; Boyajian, Tabetha

2015-01-01T23:59:59.000Z

298

Experimental density measurements of bis(2-ethylhexyl) phthalate at elevated temperatures and pressures  

SciTech Connect (OSTI)

Experimental high-temperature, high-pressure (HTHP) density data for bis(2-ethylhexyl) phthalate (DEHP) are reported in this study. DEHP is a popular choice as a reference fluid for viscosity calibrations in the HTHP region. However, reliable HTHP density values are needed for accurate viscosity calculations for certain viscometers (e.g. rolling ball). HTHP densities are determined at T = (373, 424, 476, 492, and 524) K and P to 270 MPa using a variable-volume, high-pressure view cell. The experimental density data are satisfactorily correlated by the modified Tait equation with a mean absolute percent deviation (?) of 0.15. The experimental data are modeled with the PengRobinson (PREoS), volume-translated PREoS (VT-PREoS), and perturbed chain statistical associating fluid theory (PC-SAFT EoS) models. The required parameters for the two PREoS and the PC-SAFT EoS models are determined using group contribution methods. The PC-SAFT EoS performs the best of the three models with a ? of 2.12. The PC-SAFT EoS is also fit to the experimental data to obtain a new set of pure component parameters that yield a ? of 0.20 for these HTHP conditions.

Bamgbade, Babatunde A.; Wu, Yue; Baled, Hseen O.; Enick, Robert M.; Burgess, Ward A.

2013-08-01T23:59:59.000Z

299

Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure  

Open Energy Info (EERE)

Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature Downhole Tools Project Description Draka has engaged top academic, national laboratory and industry research scientists to develop the myriad of technical advances required - from glass chemistry to encapsulation metallurgy. Draka will develop the required advances in buffer tubing, cladding, wire insulation materials and cable packaging as well as coordinate activities of other participants. Draka Communications will develop the required advances in glass chemistry, fiber coatings and fiber drawing technologies. AltaRock Energy, Inc., a renewable energy company focused on research & development, will provide well field services and EGS wells for long-term testing and validation of the cable at Geysers, California. Tetramer has been engaged for the required advances in candidate materials for fiber coating and encapsulation technologies. Sandia will provide laboratory testing and validation of Draka's fiber solutions at elevated temperatures, pressures and hydrogen levels. Permatools (a Sandia EGS spin-off) will provide EGS tools to validate the finished cable design and will also coordinate in-well testing. Permatools (a Sandia EGS spin-off) will provide EGS tools to validate the finished cable design and will also coordinate in-well testing.

300

Observation of a Forbidden Line of Fe xx and Its Application for Ion Temperature Measurements in the Princeton Large Torus Tokamak  

Science Journals Connector (OSTI)

A spectrum line in the Princeton Large Torus (PLT) tokamak discharges, with wave-length measured as 2665.1 0.3 , has been identified as the 2s22p3 D522?D322 magnetic dipole transition in Fe xx ground configuration. A variety of localized spectroscopic diagnostics, e.g., ion temperature and density distribution measurements in the high-temperature interior of the plasma, are feasible by means of forbidden lines of this type. The 2665- line has been used to measure near-central ion temperature in a discharge with auxiliary neutral-beam heating.

S. Suckewer and E. Hinnov

1978-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Measurements of net radiation, ground heat flux and surface temperature in an urban canyon  

SciTech Connect (OSTI)

The Joint Urban 2003 (JU2003) field study was conducted in Oklahoma City in July 2003 to collect data to increase our knowledge of dispersion in urban areas. Air motions in and around urban areas are very complicated due to the influence of urban structures on both mechanical and thermal forcing. During JU2003, meteorological instruments were deployed at various locations throughout the urban area to characterize the processes that influence dispersion. Some of the instruments were deployed to characterize urban phenomena, such as boundary layer development. In addition, particular sites were chosen for more concentrated measurements to investigate physical processes in more detail. One such site was an urban street canyon on Park Avenue between Broadway and Robinson Avenues in downtown Oklahoma City. The urban canyon study was designed to examine the processes that control dispersion within, into and out of the urban canyon. Several towers were deployed in the Park Avenue block, with multiple levels on each tower for observing the wind using sonic anemometers. Infrared thermometers, net radiometers and ground heat flux plates were deployed on two of the towers midway in the canyon to study the thermodynamic effects and to estimate the surface energy balance. We present results from the surface energy balance observations.

Gouveia, F J; Leach, M J; Shinn, J H

2003-11-06T23:59:59.000Z

302

Measurement of ion and electron temperatures in plasma blobs by using an improved ion sensitive probe system and statistical analysis methods  

SciTech Connect (OSTI)

We have measured ion temperature as well as electron temperature in plasma blobs observed in a linear plasma device by using an improved ion sensitive probe. Current-voltage characteristics of the ion sensitive probe inside and outside plasma blobs were re-constructed with a conditional sampling method. It is clearly found that both ion and electron temperatures in plasma blobs decrease more slowly in a cross-field direction than those in a bulk plasma without plasma blobs.

Okazaki, K.; Tanaka, H.; Ohno, N.; Tsuji, Y. [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Ezumi, N. [Nagano National College of Technology, Nagano 381-8550 (Japan); Kajita, S. [EcoTopia Science Institute, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

2012-02-15T23:59:59.000Z

303

Development of a standard for calculation and measurement of the moderator temperature coefficient of reactivity in water-moderated power reactors  

SciTech Connect (OSTI)

The contents of ANS 19.11, the standard for ``Calculation and Measurement of the Moderator Temperature Coefficient of Reactivity in Water-Moderated Power Reactors,`` are described. The standard addresses the calculation of the moderator temperature coefficient (MTC) both at standby conditions and at power. In addition, it describes several methods for the measurement of the at-power MTC and assesses their relative advantages and disadvantages. Finally, it specifies a minimum set of documentation requirements for compliance with the standard.

Mosteller, R.D. [Los Alamos National Lab., NM (United States); Hall, R.A. [Virginia Power, Glen Allen, VA (United States). Innsbrook Technical Center; Apperson, C.E. Jr. [Westinghouse Safety Management Solutions, Inc., Aiken, SC (United States); Lancaster, D.B. [TRW Environmental Safety Systems, Inc., Vienna, VA (United States); Young, E.H. [Commonwealth Edison Co., Downers Grove, IL (United States); Gavin, P.H. [ABB Combustion Engineering, Windsor, CT (United States); Robertson, S.T. [Framatome/COGEMA Fuels, Lynchburg, VA (United States)

1998-12-01T23:59:59.000Z

304

An Estimate of the Signal-to-Noise Ratio in Nuclear Magnetic Resonance Measurements at Ultra-Low Temperatures  

Science Journals Connector (OSTI)

The signal-to-noise ratios for nuclear magnetic resonance (NMR) measurements by the Continuous Wave (CW) and the Pulsed NMR techniques are compared for applications at ultra-low temperatures. This comparison is made at 0.1, 1 and 10 mK as a function of the energy dissipation. The resonance signal is to be detected by a conventional method using a receiver r-f coil or by using a SQUID detector and the relative merits of the two detection methods are discussed for both the CW and the Pulse techniques. For the CW NMR, the SQUID detection method is found to have an advantage over the conventional method except at a relatively high applied DC field. For the pulsed NMR, the SQUID detection results in a better signal-to-noise ratio for a relatively high r-f field, (short pulses) while the conventional method becomes more advantageous with a decreasing r-f field.

Itsuhiro Fujii; Akira Ikushima; Yoshitaka Yoshida

1980-01-01T23:59:59.000Z

305

Optimization of pulsed-DEER measurements for Gd-based labels: choice of operational frequencies, pulse durations and positions, and temperature  

SciTech Connect (OSTI)

In this work, the experimental conditions and parameters necessary to optimize the long-distance (? 60 ) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimal temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 ) are also briefly discussed.

Raitsimring, Arnold; Astashkin, Andrei V.; Enemark, John H.; Kaminker, Ilia; Goldfarb, Daniella; Walter, Eric D.; Song, Y.; Meade, T. J.

2013-06-01T23:59:59.000Z

306

The measurement of solubility and viscosity of oil/refrigerant mixtures; At high pressures and temperatures test facility and initial results for R-22/naphthenic oil mixtures  

SciTech Connect (OSTI)

The design and construction of a test facility for measuring the solubility and viscosity of lubricating oil/refrigerant mixtures at high pressures and temperatures are described. An auxiliary charging system, developed to provide precisely measured quantities of oil and refrigerant to the test facility, is also presented. Initial results for liquid mixtures of 10% to 40% R-22 (by mass) in a 150 SUS naphthenic oil are reported over the temperature range 70 {degrees} F (20{degrees}C) to 300 {degrees} F(150 {degrees}C). Good agreement with existing data from the open literature is obtained over the limited temperature range for which previously published data are available.

Van Gaalen, N.A.; Zoz, S.C.; Pate, M.B. (Dept. of Mechanical Engineering, Iowa State Univ., Ames, IA (US))

1990-01-01T23:59:59.000Z

307

System to inject steam and produce oil from the same wellbore through downhole valves switching. Fifth quarterly report  

SciTech Connect (OSTI)

Although EOR by steam injection is used primarily to recover Heavy Oil, the same methods are also applicable to some Light Oil reservoirs. A typical example is that of the Shannon reservoirs in the Teapot Dome field, WY, operated by the DOE, for the US Naval Petroleum Reserve No.3. To show that our technology is also applicable to steam injection in Light Oil reservoirs, a preliminary well design was prepared and submitted to Naval Petroleum Reserve No.3. The Upper and Lower Shannon sandstone reservoirs, of low permeability, in the Teapot Dome field are both highly faulted and fractured. This is a situation where horizontal drainholes, oriented in such a way that they would intersect many of the preexisting fractures and fault zones, would greatly increase the wells productivity, as compared to the current practice of using only vertical wells and hydro-fracturation. Proposed well design includes a single vertical casing, tied-in respectively to a liner-equipped horizontal drainhole drilled into the Lower Shannon and to a liner-equipped vertical hole drilled into the Upper Shannon. The two wells are operated in sequential ``huff and puff,`` using two parallel vertical tubings, respectively dedicated to steam injection and to conveying the produced fluids to the surface, using a single rod pump. Corresponding proposed Teapot Dome well configuration, added to those previously considered for various California Heavy Oil fields confirms the flexibility and adaptability of this technology to a large variety of field conditions, exhibiting wide range of oil and reservoir characteristics. The experiments made at UC Berkeley to verify the operability of sliding sleeve type three-way downhole valves are presented and reviewed. This concludes tasks No.1 to No.4 of this Contract. Calculations of steam tubing heat losses for various well configurations and types of tubing insulations have been made under Task No.5. The results are presented in graphical form and analyzed.

Not Available

1993-12-01T23:59:59.000Z

308

Detection of surface mobility of poly (2, 3, 4, 5, 6-pentafluorostyrene) films by in situ variable-temperature ToF-SIMS and contact angle measurements  

Science Journals Connector (OSTI)

Abstract Poly (2, 3, 4, 5, 6-pentafluorostyrene) (5FPS) was prepared by bulk radical polymerization. The spin-cast films of this polymer were analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) at various temperatures ranging from room temperature to 120C. Principal component analysis (PCA) of the ToF-SIMS data revealed a transition temperature (TT) at which the surface structure of 5FPS was rearranged. A comparison between the results of the PCA of ToF-SIMS spectra obtained on 5FPS and polystyrene (PS) indicate that the pendant groups of 5FPS and PS moved in exactly opposite directions as the temperature increased. More pendant groups of 5FPS and PS migrated from the bulk to the surface and verse versa, respectively, as the temperature increased. These results clearly support the view that the abrupt changes in the normalized principal component 1 value was caused by the surface reorientation of the polymers and not by a change in the ion fragmentation mechanism at temperatures above the TT. Contact angle measurement, which is another extremely surface sensitive technique, was used to monitor the change in the surface tension as a function of temperature. A clear TT was determined by the contact angle measurements. The TT values determined by contact angle measurements and ToF-SIMS were very similar.

Yi Fu; Yiu-Ting R. Lau; Lu-Tao Weng; Kai-Mo Ng; Chi-Ming Chan

2014-01-01T23:59:59.000Z

309

A COMPREHENSIVE STATISTICALLY-BASED METHOD TO INTERPRET REAL-TIME FLOWING MEASUREMENTS  

SciTech Connect (OSTI)

In this project, we are developing new methods for interpreting measurements in complex wells (horizontal, multilateral and multi-branching wells) to determine the profiles of oil, gas, and water entry. These methods are needed to take full advantage of ''smart'' well instrumentation, a technology that is rapidly evolving to provide the ability to continuously and permanently monitor downhole temperature, pressure, volumetric flow rate, and perhaps other fluid flow properties at many locations along a wellbore; and hence, to control and optimize well performance. In this first year, we have made considerable progress in the development of the forward model of temperature and pressure behavior in complex wells. In this period, we have progressed on three major parts of the forward problem of predicting the temperature and pressure behavior in complex wells. These three parts are the temperature and pressure behaviors in the reservoir near the wellbore, in the wellbore or laterals in the producing intervals, and in the build sections connecting the laterals, respectively. Many models exist to predict pressure behavior in reservoirs and wells, but these are almost always isothermal models. To predict temperature behavior we derived general mass, momentum, and energy balance equations for these parts of the complex well system. Analytical solutions for the reservoir and wellbore parts for certain special conditions show the magnitude of thermal effects that could occur. Our preliminary sensitivity analyses show that thermal effects caused by near-wellbore reservoir flow can cause temperature changes that are measurable with smart well technology. This is encouraging for the further development of the inverse model.

Pinan Dawkrajai; Analis A. Romero; Keita Yoshioka; Ding Zhu; A.D. Hill; Larry W. Lake

2004-10-01T23:59:59.000Z

310

Influence of gas composition on wafer temperature in a tungsten chemical vapor deposition reactor: Experimental measurements, model  

E-Print Network [OSTI]

Influence of gas composition on wafer temperature in a tungsten chemical vapor deposition reactor-wafer, lamp-heated chemical vapor deposition system were used to study the wafer temperature response to gas composition. A physically based simulation procedure for the process gas and wafer temperature was developed

Rubloff, Gary W.

311

Measurement of the Young's modulus and internal friction of single crystal and polycrystalline copper, and copper-graphite composites as a function of temperature and orientation  

E-Print Network [OSTI]

MEASUREMENT OF THE YOUNG'S MODULUS AND INTERNAL FRICTION OF SINGLE CRYSTAL AND POLYCRYSTALLINE COPPER, AND COPPER- GRAPHITE COMPOSITES AS A FUNCTION OF TEMPERATURE AND ORIENTATION A Thesis by S teven Norman Wicks trom Submitted... AND POLYCRYSTALLINE COPPER, AND COPPER- GRAPHITE COMPOSITES AS A FUNCTION OF TEMPERATURE AND ORIENTATION A Thesis by Steven Norman Wickstrom Approved as to style and content by: A(J ~a Alan Wolfenden (Chairman of Committee) Don E. Bray (Member) Donald G...

Wickstrom, Steven Norman

2012-06-07T23:59:59.000Z

312

Observation and Measurement of Temperature Rise and Distribution on GaAs Photo-cathode Wafer with a 532nm Drive Laser and a Thermal Imaging Camera  

SciTech Connect (OSTI)

Significant temperature rise and gradient are observed from a GaAs photo-cathode wafer irradiated at various power levels with over 20W laser power at 532nm wavelength. The laser power absorption and dissipated thermal distribution are measured. The result shows a clear indication that proper removal of laser induced heat from the cathode needs to be considered seriously when designing a high average current or low quantum efficiency photo-cathode electron gun. The measurement method presented here provides a useful way to obtain information about both temperature and thermal profiles, it also applies to cathode heating study with other heating devices such as electrical heaters.

Shukui Zhang, Stephen Benson, Carlos Hernandez-Garcia

2011-03-01T23:59:59.000Z

313

Temperature distribution in light-coloured flowers and inflorescences of early spring temperate species measured by Infrared camera  

Science Journals Connector (OSTI)

Temperature is a limiting factor for plant reproduction under harsh conditions. Using an infrared camera, we studied temperature distribution in three early flowering light-coloured species of markedly different morphology. The influence of three environmental factors (temperature of the ambient air, temperature of the ground and irradiance) on the temperature of the flowers and inflorescences was evaluated. White petals and yellow centres of sun tracking Anemone nemorosa (Ranunculaceae) were shown to be on average 1.6 and 3.4C warmer than the ambient air, respectively. The surface temperature of the sun lit yellow discs of Bellis perennis (Asteraceae) was on average 7.4C warmer than the ambient air. Direct solar light was found to be responsible for large temperature differences between the discs and the marginal ray flowers. Bell-shaped white flowers of Galanthus nivalis (Amaryllidaceae) bent to the ground were on average 2.7C cooler than the surrounding air. The temperature relations of the different reproductive organs to the studied environmental factors are discussed. Temperature behaviour of the studied lowland species is compared with the results previously gained for alpine and arctic species by other authors. Ecological importance of our conclusions is considered.

Alb?ta Rejkov; Jakub Brom; Jan Pokorn; Jozef Kore?ko

2010-01-01T23:59:59.000Z

314

Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas  

SciTech Connect (OSTI)

A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1 MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and v? on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and uclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

2008-01-29T23:59:59.000Z

315

Stuck in a stackTemperature measurements of the microclimate around split type condensing units in a high rise building in Singapore  

Science Journals Connector (OSTI)

Abstract The use of air-conditioning, the largest energy demand for buildings in the tropics, is increasing as regional population and affluence grow. The majority of installed systems are split type air-conditioners. While the performance of new equipment is much better, the influence of the microclimate where the condensing units are installed is often overlooked. Several studies have used CFD simulations to analyse the stack effect, a buoyancy-driven airflow induced by heat rejected from condensing units. This leads to higher on-coil temperatures, deteriorating the performance of the air-conditioners. We present the first field measurements from a 24-storey building in Singapore. A network of wireless temperature sensors measured the temperature around the stack of condensing units. We found that the temperatures in the void space increased continuously along the height of the building by 1013C, showing a significant stack effect from the rejected heat from condensing units. We also found that hot air gets stuck behind louvres, built as aesthetic barriers, which increases the temperature another 9C. Temperatures of around 50C at the inlet of the condensing units for floors 10 and above are the combined result, reducing the unit efficiency by 32% compared to the undisturbed design case. This significant effect is completely neglected in building design and performance evaluation, and only with an integrated design process can truly efficient solutions be realised.

Marcel Bruelisauer; Forrest Meggers; Esmail Saber; Cheng Li; Hansjrg Leibundgut

2014-01-01T23:59:59.000Z

316

Temperature measurements of fusion plasmas produced by petawatt laser-irradiated D2-3He or CD4-3He clustering gases  

E-Print Network [OSTI]

Two different methods have been employed to determine the plasma temperature in a laser-cluster fusion experiment on the Texas Petawatt laser. In the first, the temperature was derived from time-of-flight data of deuterium ions ejected from exploding D2 or CD4 clusters. In the second, the temperature was measured from the ratio of the rates of two different nuclear fusion reactions occurring in the plasma at the same time: D(d, 3He)n and 3He(d, p)4He. The temperatures determined by these two methods agree well, which indicates that: i) The ion energy distribution is not significantly distorted when ions travel in the disassembling plasma; ii) The kinetic energy of deuterium ions, especially the hottest part responsible for nuclear fusion, is well described by a near-Maxwellian distribution.

Bang, W; Bonasera, A; Dyer, G; Quevedo, H J; Hagel, K; Schmidt, K; Consoli, F; De Angelis, R; Andreoli, P; Gaul, E; Bernstein, A C; Donovan, M; Barbarino, M; Kimura, S; Mazzocco, M; Sura, J; Natowitz, J B; Ditmire, T

2013-01-01T23:59:59.000Z

317

Downhole jet pump  

SciTech Connect (OSTI)

This patient describes a well equipped to produce oil at the surface from a subterranean formation including: a casing string cemented in a well bore penetrating the earth to a depth below the formation, the casing string comprising perforations extending through the casing string into communication with the formation; a packer sealed against the interior of the casing string above the formation; a tubing string inside the casing string and providing therewith an annulus, the tubing string being connected to the packer and extending upwardly to the surface, the tubing string and annulus providing a first upward path to the surface and a second downward fluid path from the surface; and a jet pump assembly including a jet pump below the packer comprising a body having an upper end, an outlet in communicating with the first fluid path, a nozzle section having a suction inlet below the packer and a power fluid inlet, means providing communication between the second fluid path and the nozzle section for delivering power fluid to the power fluid inlet and means connecting the upper jet pump body end to the tubing string comprising as J-slot receptacle secured to the upper jet pump body end having a J-slot therein, a tubular member connected with and communicating with the tubing string and having a J-slot pin on the lower end thereof removably received in the J-slot and means sealing between the J-slot receptacle and J-slot pin.

Weeks, B.R.

1988-12-13T23:59:59.000Z

318

Use of dual-grating sensors formed by different types of fiber Bragg gratings for simultaneous temperature and strain measurements  

Science Journals Connector (OSTI)

We report on a systematic investigation of the dependence of both temperature and strain sensitivities on the fiber Bragg grating type, including the well-known Type I, Type IIA, and a...

Shu, Xuewen; Zhao, Donghui; Zhang, Lin; Bennion, Ian

2004-01-01T23:59:59.000Z

319

Spatially resolved temperature and heat flux measurements for slow evaporating droplets heated by a microfabricated heater array  

E-Print Network [OSTI]

The evaporation phenomenon of a liquid droplet was investigated by using microfabricated heaters. All 32 microheaters were designed to have the same resistance. Gold microheaters worked both as temperature indicators and as heaters. The first...

Paik, Sokwon

2006-08-16T23:59:59.000Z

320

Three-point bending test at extremely high temperature enhanced by real-time observation and measurement  

Science Journals Connector (OSTI)

Abstract We developed a three-point bending test equipment with a heating chamber to provide a high temperature environment. An observation window was intentionally opened in the chamber wall for image capture. A high speed camera is integrated to record the surface evolution of the specimen through the observation window. The fixture stage for the specimens was made of Al2O3 ceramic (>99% pure) and could resist extremely high temperature. This testing platform provides the specimens with an environment that is up to 1600C in atmosphere for three-point bending test. Experiments were conducted for refractory alloy and C/SiC (carbon fiber reinforced silicon carbide composites) and the surface evolution of these specimens at high temperature was recorded. The crack propagation of the specimens was captured real-time and provided more detailed information for study of fracture behavior of the materials at high temperature.

Xufei Fang; Jingmin Jia; Xue Feng

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A new sensor concept for simultaneous measurement of pressure, temperature and thickness of plate structures using modified wave propagation theory  

E-Print Network [OSTI]

-Acousto Photonic Non-Destructive Evaluation (TAP-NDE) is employed to remotely initiate and acquire interrogating ultrasonic waves. Parameters including pressure, temperature and plate thickness are determined through exploring the dispersion features...

Lo, Tzu-Wei

2005-11-01T23:59:59.000Z

322

Measurements of relativistic effects in collective Thomson scattering at electron temperatures less than 1 keV  

E-Print Network [OSTI]

basis for laser- plasma interactions in ignition hohlraumslaser-beam propagation through high- temperature ignitionlaser-target coupling efficiency it significantly improves implosion symmetry. The indirect drive approach to ignition

Ross, James Steven

2010-01-01T23:59:59.000Z

323

High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100300 spectral band  

SciTech Connect (OSTI)

We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li{sup +} or Li{sup 2+}, which radiate near 199 and 135 , respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 m at the 200 setting and better than 40 m for the 135- range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Li{sup +} and 65 eV for the 135 Li{sup 2+} lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

Widmann, K., E-mail: widmann1@llnl.gov; Beiersdorfer, P.; Magee, E. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Boyle, D. P.; Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

2014-11-15T23:59:59.000Z

324

Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings  

SciTech Connect (OSTI)

Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

2009-07-15T23:59:59.000Z

325

Measurement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

localization that limits the present measurements. The knowledge thus gained will have input not only to fusion research, but to may ques- tions of basic plasma physics....

326

Measurement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the Department of Physics & Astronomy. Chapel Hill 2005 Approved: A. E. Champagne, Advisor J. C. Blackmon, Reader C. Iliadis, Reader ABSTRACT Ryan P. Fitzgerald: Measurement of...

327

Evaluation by room?temperature electroreflectance of the 77 K dark?storage time of bulk mercury cadmium telluride measured on metal?insulator semiconductor devices  

Science Journals Connector (OSTI)

We have studied a set of 14 very carefully characterized samples by spectroscopicellipsometry electrolyte electroreflectance (EER) and other measurements and have measured the 77 K storage time ? of metal?insulator semiconductor (MIS)devices built on these samples. The measured storage times ranged from 6.8 to 130.8 ?s. Only the results of the EER measurements showed a correlation with the measured values of ?. We interpret our EER results in terms of a two?phase model consisting of bulk plus very thin highly defectuous regions possibly associated with subgrain boundaries. The observed correlation between the values of the incremental linewidth ?? of the thin defectuous regions and the values of the charge?storage lifetimes ? of the MISdevices is excellent and capable of predicting the values of ?. Furthermore the exact form of the observed correlation is shown to follow immediately from a simple physical model.Correlations between the values of ? and those of other parameters measured by EER were also observed. They suggest a possible simple physical picture for the primary origin of dark current in these devices. This is the first predictive quantitative correlation ever observed between the results of room?temperature optical characterizations of semiconductor materials and the low?temperature electrical performance of devices built on those materials.

Paul M. Raccah; James W. Garland; De Yang; Hisham Abad; Roger L. Strong; Matthew C. McNeill

1989-01-01T23:59:59.000Z

328

Critical current measurements on a Ag/Bi-Pb-Sr-Ca-Cu-O composite coil as a function of temperature and external magnetic field  

SciTech Connect (OSTI)

Transport critical currents have been measured on two coils of high-temperature superconducting (HTSC) tape as a function of temperature and external magnetic field. The HTSC tape and the coils were fabricated by American Superconductor Corporation. The sample coil windings have inside and outside diameters of roughly 25 mm and 40 mm, respectively, and a length of 50 mm. They contain about 300 turns of filamentary Bi-Pb-Sr-Ca-Cu-O 2223 HTSC material sheathed in Ag to form a 0. 18-mm by 2.54-mm tape, with a total length of about 30 m. Critical current results are reported for temperatures between 4.2 K and 90 K, in magnetic fields ranging up to 5.5 T.

Schwenterly, S.W.; Lue, J.W.; Lubell, M.S.; Luton, J.N. [Oak Ridge National Lab., TN (United States); Joshi, C.H. [American Superconductor Corp., Watertown, MA (United States)

1992-10-01T23:59:59.000Z

329

Critical current measurements on a Ag/Bi-Pb-Sr-Ca-Cu-O composite coil as a function of temperature and external magnetic field  

SciTech Connect (OSTI)

Transport critical currents have been measured on two coils of high-temperature superconducting (HTSC) tape as a function of temperature and external magnetic field. The HTSC tape and the coils were fabricated by American Superconductor Corporation. The sample coil windings have inside and outside diameters of roughly 25 mm and 40 mm, respectively, and a length of 50 mm. They contain about 300 turns of filamentary Bi-Pb-Sr-Ca-Cu-O 2223 HTSC material sheathed in Ag to form a 0. 18-mm by 2.54-mm tape, with a total length of about 30 m. Critical current results are reported for temperatures between 4.2 K and 90 K, in magnetic fields ranging up to 5.5 T.

Schwenterly, S.W.; Lue, J.W.; Lubell, M.S.; Luton, J.N. (Oak Ridge National Lab., TN (United States)); Joshi, C.H. (American Superconductor Corp., Watertown, MA (United States))

1992-01-01T23:59:59.000Z

330

Measurement of Gas Evolution from PUNB Bonded Sand as a Function of Temperature G. Samuels and C. Beckermann  

E-Print Network [OSTI]

is heated to a temperature not exceeding 510°C (950°F), the binder gas partially condenses during subsequent Founders' Society of America, Chicago, IL, 2011. #12;2 and periodically sampling the gas generated at the mold-metal interface. The gas samples were collected inside evacuated glass tubes and subsequently

Beckermann, Christoph

331

2010 IEEE International Semiconductor Laser Conference, Kyoto, Japan Measurement of internal quantum efficiency and temperature dependence of gain  

E-Print Network [OSTI]

quantum efficiency and temperature dependence of gain and loss in interband cascade lasers near room, University of Maryland, College Park, MD 20742 Recently, type-II interband cascade (IC) lasers operating and internal quantum efficiency in these lasers. In contrast to previous reports [2-3], we demonstrate

Dagenais, Mario

332

Neutron Scattering Methodology for Absolute Measurement of Room-Temperature Hydrogen Storage Capacity and Evidence for Spillover Effect in a Pt-Doped Activated Carbon  

Science Journals Connector (OSTI)

Neutron Scattering Methodology for Absolute Measurement of Room-Temperature Hydrogen Storage Capacity and Evidence for Spillover Effect in a Pt-Doped Activated Carbon ... A neutron scattering methodology is proposed to simultaneously determine the total hydrogen adsorption, the excess hydrogen adsorption, and hydrogen gas confined in the porous sample. ... It can be combined with an in situ small-angle neutron scattering to study the hydrogen spillover effect in the kinetic adsorption process. ...

Cheng-Si Tsao; Yun Liu; Mingda Li; Yang Zhang; Juscelino B. Leao; Hua-Wen Chang; Ming-Sheng Yu; Sow-Hsin Chen

2010-04-29T23:59:59.000Z

333

In Situ Measurement of Magnesium Carbonate Formation from CO2 Using Static High-Pressure and -Temperature 13  

E-Print Network [OSTI]

In Situ Measurement of Magnesium Carbonate Formation from CO2 Using Static High the reaction of CO2 with water. Many studies6,8-10 have focused on the carbonation of the magnesium-contai

Skemer, Philip

334

Implementation of the Ensemble Kalman Filter in the Characterization of Hydraulic Fractures in Shale Gas Reservoirs by Integrating Downhole Temperature Sensing Technology  

E-Print Network [OSTI]

Multi-stage hydraulic fracturing in horizontal wells has demonstrated successful results for developing unconventional low-permeability oil and gas reservoirs. Despite being vastly implemented by different operators across North America, hydraulic...

Moreno, Jose A

2014-08-12T23:59:59.000Z

335

The effect of aberration on partial-sky measurements of the cosmic microwave background temperature power spectrum  

E-Print Network [OSTI]

Our motion relative to the cosmic-microwave-background (CMB) rest frame deflects light rays giving rise to shifts as large as L -> L(1+-beta), where beta=0.00123 is our velocity (in units of the speed of light) on measurements of small-scale (large multipole moment L) CMB fluctuations. For measurements at L>1000, where the CMB power spectrum varies roughly as C(L) ~ L^-7, the fractional change to the power spectrum measured on a small sky patch can be as large as Delta C(L)/C(L)~7*beta~1%, larger than the measurement uncertainties in several current experiments. Here we present a novel harmonic-space approach to this CMB aberration that improves upon prior work by allowing us to (i) go to higher orders in beta, thus extending the validity of the analysis to measurements at L>1/beta~800; and (ii) treat the effects of window functions and pixelization in a more accurate and computationally efficient manner. We calculate precisely the magnitude of the systematic bias in the power spectrum inferred from current S...

Jeong, Donghui; Dai, Liang; Kamionkowski, Marc; Wang, Xin

2014-01-01T23:59:59.000Z

336

Studies of the mechanism of Coal Hydrogenation by Electron Spin Resonance. Quarterly technical progress report, March 1-May 31, 1980. [For high-temperature, high pressure measurements  

SciTech Connect (OSTI)

This is the first quarterly report on the program Studies of Coal Hydrogenation by Electron Spin Resonance. This quarter has been devoted to constructing apparatus for high temperature-high pressure electron paramagnetic resonance (EPR) measurements, characterizing the performance of the microwave cavity, and carrying out preliminary room temperature studies on coals and coal products. At the start of this program, there were no microwave cavities available to study high pressure-high temperature reactions. A system was constructed which can be used to study coal hydrogenation, and satisfies the conditions described in the report. This cavity was constructed using funding from Rockwell International, and will be used on this program. Because of the dependence of the work to be done with this device for this program, the construction is described in detail. This report, therefore, considers the design philosophy, construction of the device, a preliminary discussion of its performance, and application of the cavity for room temperature studies on several varieties of coal.

Goldberg, Ira B.

1980-07-01T23:59:59.000Z

337

Measurement of Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Exp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boundary-Layer Temperature Profiles by Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Experiment and WVIOP 2000 V. Y. Leuski and E. R. Westwater Cooperative Institute for Research in the Environmental Sciences National Oceanic and Atmospheric Administration Environmental Technology Laboratory University of Colorado Boulder, Colorado Introduction A scanning 5-mm-wavelength radiometer was deployed during two Intensive Operational Periods (IOPs) at the Atmospheric Radiation Measurement (ARM) Program's Cloud and Radiation Testbed (CART) facilities. The first was conducted at the North Slope of Alaska (NSA) and Adjacent arctic Ocean (AAO) site near Barrow, Alaska, during March 1999. One goal was to evaluate the ability of an

338

Low-temperature scanning tunneling microscopy and transport measurements on adsorbate-induced two-dimensional electron systems  

SciTech Connect (OSTI)

We have performed not only magnetotransport measurements on two-dimensional electron systems (2DESs) formed at the cleaved surfaces of p-InAs but also observations of the surface morphology of the adsorbate atoms, which induced the 2DES at the surfaces of narrow band-gap semiconductors, with use of a scanning tunneling microscopy. The electron density of the 2DESs is compared to the atomic density of the isolated Ag adatoms on InAs surfaces.

Masutomi, Ryuichi; Triyama, Naotaka; Okamoto, Tohru [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2013-12-04T23:59:59.000Z

339

Control and diagnosis of temperature, density, and uniformity in x-ray heated iron/magnesium samples for opacity measurements  

SciTech Connect (OSTI)

Experimental tests are in progress to evaluate the accuracy of the modeled iron opacity at solar interior conditions, in particular to better constrain the solar abundance problem [S. Basu and H. M. Antia, Phys. Rep. 457, 217 (2008)]. Here, we describe measurements addressing three of the key requirements for reliable opacity experiments: control of sample conditions, independent sample condition diagnostics, and verification of sample condition uniformity. The opacity samples consist of iron/magnesium layers tamped by plastic. By changing the plastic thicknesses, we have controlled the iron plasma conditions to reach (1) T{sub e}?=?167??3?eV and n{sub e}?=?(7.1??1.5)?10{sup 21}?cm{sup ?3}, (2) T{sub e}?=?170??2?eV and n{sub e}?=?(2.0??0.2)??10{sup 22}?cm{sup ?3}, and (3) T{sub e}?=?196??6?eV and n{sub e}?=?(3.8??0.8)??10{sup 22}?cm{sup ?3}, which were measured by magnesium tracer K-shell spectroscopy. The opacity sample non-uniformity was directly measured by a separate experiment where Al is mixed into the side of the sample facing the radiation source and Mg into the other side. The iron condition was confirmed to be uniform within their measurement uncertainties by Al and Mg K-shell spectroscopy. The conditions are suitable for testing opacity calculations needed for modeling the solar interior, other stars, and high energy density plasmas.

Nagayama, T.; Bailey, J. E.; Loisel, G.; Hansen, S. B.; Rochau, G. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Mancini, R. C. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States)] [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); MacFarlane, J. J.; Golovkin, I. [Prism Computational Sciences, Madison, Wisconsin 53703 (United States)] [Prism Computational Sciences, Madison, Wisconsin 53703 (United States)

2014-05-15T23:59:59.000Z

340

Control and diagnosis of temperature, density, and uniformity in x-ray heated iron/magnesium samples for opacity measurements  

E-Print Network [OSTI]

Experimental tests are in progress to evaluate the accuracy of the modeled iron opacity at solar interior conditions, in particular to better constrain the solar abundance problem [S. Basu and H.M. Antia, Physics Reports 457, 217 (2008)]. Here we describe measurements addressing three of the key requirements for reliable opacity experiments: control of sample conditions, independent sample condition diagnostics, and verification of sample condition uniformity. The opacity samples consist of iron/magnesium layers tamped by plastic. By changing the plastic thicknesses, we have controlled the iron plasma conditions to reach i) Te=167+/-3 eV and ne=(7.1+/-1.5)e21 e/cc, ii) Te=170+/-2 eV and ne=(2.0+/-0.2)e22 e/cc, and iii) Te=196+/-6 eV and ne=(3.8+/-0.8)e22 e/cc, which were measured by magnesium tracer K-shell spectroscopy. The opacity sample non-uniformity was directly measured by a separate experiment where Al is mixed into the side of the sample facing the radiation source and Mg into the other side. The iron...

Nagayama, T; Loisel, G; Hansen, S B; Rochau, G A; Mancini, R C; MacFarlane, J J; Golovkin, I

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea  

Science Journals Connector (OSTI)

Abstract Multi-channel seismic reflection data, well logs, and recovered sediment cores have been used in this study to characterize the geologic controls on the occurrence of gas hydrate in the Shenhu area of the South China Sea. The concept of the gas hydrate petroleum system has allowed for the systematic analysis of the impact of gas source, geologic controls on gas migration, and the role of the host sediment in the formation and stability of gas hydrates as encountered during the 2007 Guangzhou Marine Geological Survey Gas Hydrate Expedition (GMGS-1) in the Shenhu area. Analysis of seismic and bathymetric data identified seventeen sub-linear, near-parallel submarine canyons in this area. These canyons, formed in the Miocene, migrated in a northeasterly direction, and resulted in the burial and abandonment of canyons partially filled by coarse-grained sediments. Downhole wireline log (DWL) data were acquired from eight drill sites and sediment coring was conducted at five of these sites, which revealed the presence of suitable reservoirs for the occurrence of concentrated gas hydrate accumulations. Gas hydrate-bearing sediment layers were identified from well log and core data at three sites mainly within silt and silt clay sediments. Gas hydrate was also discovered in a sand reservoir at one site as inferred from the analysis of the DWL data. Seismic anomalies attributed to the presence of gas below the base of gas hydrate stability zone, provided direct evidence for the migration of gas into the overlying gas hydrate-bearing sedimentary sections. Geochemical analyses of gas samples collected from cores confirmed that the occurrence of gas hydrate in the Shenhu area is controlled by the presence thermogenic methane gas that has migrated into the gas hydrate stability zone from a more deeply buried source.

Xiujuan Wang; Timothy S. Collett; Myung W. Lee; Shengxiong Yang; Yiqun Guo; Shiguo Wu

2014-01-01T23:59:59.000Z

342

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2002-05-01T23:59:59.000Z

343

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2002-09-01T23:59:59.000Z

344

Thermal Dosimetry and Temperature Measurements  

Science Journals Connector (OSTI)

...CCD camera (Cascade:512F, Photometrics, Tucson, AZ). The microscope is composed of (a) 455-nm blue light-emitting diode (Luxeon LXHL-MRRC, Lumileds Lighting, San Jose, CA), (b) exciter filter (455/70, Chroma Technology...

D. A. Christensen

1979-06-01T23:59:59.000Z

345

Thermal Dosimetry and Temperature Measurements  

Science Journals Connector (OSTI)

...N-acetyl-dihydrosphingosine; DAG, diacylglycerol; DETAPAC, diethylenetriamine pentaacetic acid; LED, light-emitting diode; LSM, low-serum medium; LY-R, L5178Y-R; PDT, photodynamic treatment; SAPK, stress-activated protein...

D. A. Christensen

1979-06-01T23:59:59.000Z

346

Finite temperature effects on the X-ray absorption spectra of lithium compounds: First-principles interpretation of X-ray Raman measurements  

SciTech Connect (OSTI)

We elucidate the role of room-temperature-induced instantaneous structural distortions in the Li K-edge X-ray absorption spectra (XAS) of crystalline LiF, Li{sub 2}SO{sub 4}, Li{sub 2}O, Li{sub 3}N, and Li{sub 2}CO{sub 3} using high resolution X-ray Raman spectroscopy (XRS) measurements and first-principles density functional theory calculations within the eXcited electron and Core Hole approach. Based on thermodynamic sampling via ab initio molecular dynamics simulations, we find calculated XAS in much better agreement with experiment than those computed using the rigid crystal structure alone. We show that local instantaneous distortion of the atomic lattice perturbs the symmetry of the Li 1s core-excited-state electronic structure, broadening spectral line-shapes and, in some cases, producing additional spectral features. The excellent agreement with high-resolution XRS measurements validates the accuracy of our first-principles approach to simulating XAS, and provides both accurate benchmarks for model compounds and a predictive theoretical capability for identification and characterization of multi-component systems, such as lithium-ion batteries, under working conditions.

Pascal, Tod A.; Prendergast, David, E-mail: dgprendergast@lbl.gov [The Molecular Foundry, Materials Science Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720 (United States)] [The Molecular Foundry, Materials Science Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720 (United States); Boesenberg, Ulrike; Kostecki, Robert; Richardson, Thomas J. [Environmental Energy Technologies Division, LBNL, Berkeley, California 94720 (United States)] [Environmental Energy Technologies Division, LBNL, Berkeley, California 94720 (United States); Weng, Tsu-Chien; Sokaras, Dimosthenis; Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford, California 94720 (United States)] [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford, California 94720 (United States); McDermott, Eamon; Moewes, Alexander [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, Saskatchewan S7N 5E2 (Canada)] [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, Saskatchewan S7N 5E2 (Canada); Cabana, Jordi [Environmental Energy Technologies Division, LBNL, Berkeley, California 94720 (United States) [Environmental Energy Technologies Division, LBNL, Berkeley, California 94720 (United States); Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60605 (United States)

2014-01-21T23:59:59.000Z

347

Characterization of room temperature recrystallization kinetics in electroplated copper thin films with concurrent x-ray diffraction and electrical resistivity measurements  

SciTech Connect (OSTI)

Concurrent in-situ four-point probe resistivity and high resolution synchrotron x-ray diffraction measurements were used to characterize room temperature recrystallization in electroplated Cu thin films. The x-ray data were used to obtain the variation with time of the integrated intensities and the peak-breadth from the Cu 111 and 200 reflections of the transforming grains. The variation of the integrated intensity and resistivity data with time was analyzed using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. For both 111-textured and non-textured electroplated Cu films, four-point probe resistivity measurements yielded shorter transformation times than the values obtained from the integrated intensities of the corresponding Cu 111 reflections. In addition, the JMAK exponents fitted to the resistivity data were significantly smaller. These discrepancies could be explained by considering the different material volumes from which resistivity and diffraction signals originated, and the physical processes which linked these signals to the changes in the evolving microstructure. Based on these issues, calibration of the resistivity analysis with direct structural characterization techniques is recommended.

Treger, Mikhail; Noyan, I. C. [Department of Applied Physics and Applied Mathematics, Columbia University, New York 10027 (United States)] [Department of Applied Physics and Applied Mathematics, Columbia University, New York 10027 (United States); Witt, Christian [GlobalFoundries, T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States)] [GlobalFoundries, T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Cabral, Cyril; Murray, Conal; Jordan-Sweet, Jean [IBM, T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States)] [IBM, T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Rosenberg, Robert [State University of New York, the University at Albany, Albany, NY 12203 (United States)] [State University of New York, the University at Albany, Albany, NY 12203 (United States); Eisenbraun, Eric [College of Nanoscale Science and Engineering, University at Albany, Albany, NY 12203 (United States)] [College of Nanoscale Science and Engineering, University at Albany, Albany, NY 12203 (United States)

2013-06-07T23:59:59.000Z

348

Detailed conceptual design of a high-temperature CO/sub 2/ sensor for geothermal applications. Final report, Task I  

SciTech Connect (OSTI)

The work performed on the development of a pCO/sub 2/ probe is documented. The recommended probe includes a solid state device which senses the pH of the internal electrolyte, a gas-permeable membrane that allows diffusion of CO/sub 2/ into the electrolyte, and a getter to inhibit incursion of H/sub 2/S. The results of the feasibility study indicate that such a probe holds promise of meeting all the operational and environmental requirements for in situ and down-hole measurement of carbon dioxide in geothermal fluids.

Phelan, D.M.; Taylor, R.M.; Baxter, R.D.

1983-03-01T23:59:59.000Z

349

DETERMINATION OF IN-SITU THERMAL PROPERTIES OF STRIPA GRANITE FROM TEMPERATURE MEASUREMENTS IN THE FULL-SCALE HEATER EXPERIMENTS: METHOD AND PRELIMINARY RESULTS  

E-Print Network [OSTI]

observed temperatures for the Lulea University pilot heaterPower room '--_I, I\\'~ \\,1 Lulea drift I I I I I I I I Ithe temperature data from the LUlea University pilot heater

Jeffry, J.A.

2010-01-01T23:59:59.000Z

350

A method to measure Kr/N2 ratios in air bubbles trapped in ice cores and its application in reconstructing past mean ocean temperature  

E-Print Network [OSTI]

in krypton inventory in the glacial ocean due to higher gas solubility in colder water causes a decrease reflect past ocean temperature change due to the dependence of gas solubility on temperature. The increase of LGM deep ocean temperature based on foraminiferal d18 O and sediment pore water d18 O and chlorinity

Severinghaus, Jeffrey P.

351

High Temperature, High Pressure Devices for Zonal Isolation in Geothermal  

Open Energy Info (EERE)

Temperature, High Pressure Devices for Zonal Isolation in Geothermal Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Zonal Isolation Project Description For Enhanced Geothermal Systems (EGS), high-temperature high-pressure zonal isolation tools capable of withstanding the downhole environment are needed. In these wells the packers must withstand differential pressures of 5,000 psi at more than 300°C, as well as pressures up to 20,000 psi at 200°C to 250°C. Furthermore, when deployed these packers and zonal isolation tools must form a reliable seal that eliminates fluid loss and mitigates short circuiting of flow from injectors to producers. At this time, general purpose open-hole packers do not exist for use in geothermal environments, with the primary technical limitation being the poor stability of existing elastomeric seals at high temperatures.

352

Gas hydrate identified in sand-rich inferred sedimentary section using downhole logging and seismic data in Shenhu area, South China Sea  

Science Journals Connector (OSTI)

Abstract Downhole wireline log (DWL) data was acquired from eight drill sites during China's first gas hydrate drilling expedition (GMGS-1) in 2007. Initial analyses of the acquired well log data suggested that there were no significant gas hydrate occurrences at Site SH4. However, the re-examination of the DWL data from Site SH4 indicated that there are two intervals of high resistivity, which could be indicative of gas hydrate. One interval of high resistivity at depth of 171175m below seafloor (mbsf) is associated with a high compressional- wave (P-wave) velocities and low gamma ray log values, which suggests the presence of gas hydrate in a potentially sand-rich (low clay content) sedimentary section. The second high resistivity interval at depth of 175180mbsf is associated with low P-wave velocities and low gamma values, which suggests the presence of free gas in a potentially sand-rich (low clay content) sedimentary section. Because the occurrence of free gas is much shallower than the expected from the regional depth of the bottom simulating reflector (BSR), the free gas could be from the dissociation of gas hydrate during drilling or there may be a local anomaly in the depth to the base of the gas hydrate stability zone. In order to determine whether the low P-wave velocity with high resistivity is caused by in-situ free gas or dissociated free gas from the gas hydrate, the surface seismic data were also used in this analysis. The log analysis incorporating the surface seismic data through the construction of synthetic seismograms using various models indicated the presence of free gas directly in contact with an overlying gas hydrate-bearing section. The occurrence of the anomalous base of gas hydrate stability at Site SH4 could be caused by a local heat flow conditions. This paper documents the first observation of gas hydrate in what is believed to be a sand-rich sediment in Shenhu area of the South China Sea.

Xiujuan Wang; Myung Lee; Timthy Collett; Shengxiong Yang; Yiqun Guo; Shiguo Wu

2014-01-01T23:59:59.000Z

353

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2005-03-31T23:59:59.000Z

354

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS.  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2003-01-01T23:59:59.000Z

355

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2005-08-21T23:59:59.000Z

356

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-05-31T23:59:59.000Z

357

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-09-30T23:59:59.000Z

358

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2002-12-01T23:59:59.000Z

359

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-05-01T23:59:59.000Z

360

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2003-09-01T23:59:59.000Z

362

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2003-07-01T23:59:59.000Z

363

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-12-31T23:59:59.000Z

364

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2006-05-05T23:59:59.000Z

365

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N. P. Paulsson

2005-09-30T23:59:59.000Z

366

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2003-12-01T23:59:59.000Z

367

High-Resolution Neutron Capture and Total Cross-Section Measurements, and the Astrophysical 95Mo(n,gamma) Reaction Rate at s-process Temperatures  

E-Print Network [OSTI]

Abundances of Mo isotopes predicted by stellar models of the s process are, except for 95Mo, in good agreement with data from single grains of mainstream presolar SiC. Because the meteorite data seemed sound and no reasonable modification to stellar theory resulted in good agreement for 95Mo, it has been suggested that the recommended neutron capture reaction rate for this nuclide is 30% too low. Therefore, we have made a new determination of the 95Mo(n,gamma) reaction rate via high-resolution measurements of the neutron-capture and total cross sections of 95Mo at the Oak Ridge Electron Linear Accelerator. These data were analyzed with the R-matrix code SAMMY to obtain parameters for resonances up to En = 10 keV. Also, a small change to our capture apparatus allowed us to employ a new technique to vastly improve resonance spin and parity assignments. These new resonance parameters, together with our data in the unresolved range, were used to calculate the 95Mo(n,gamma) reaction rate at s-process temperatures. We compare the currently recommended rate to our new results and discuss their astrophysical impact.

P. E. Koehler; J. A. Harvey; K. H. Guber; D. Wiarda

2008-09-16T23:59:59.000Z

368

Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system  

SciTech Connect (OSTI)

A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

Moreno, J.B.

1983-07-01T23:59:59.000Z

369

Temperature measurement of an atmospheric pressure arc discharge plasma jet using the diatomic CN (B {sup 2}{sigma}{sup +}-X {sup 2}{sigma}{sup +}, violet system) molecular spectra  

SciTech Connect (OSTI)

The CN (B {sup 2}{sigma}{sup +}-X {sup 2}{sigma}{sup +}) molecular emission spectrum is used to measure both the vibrational and rotational temperatures in atmospheric pressure arc jet discharges. The vibrational and rotational temperature effects on the synthetic diatomic molecular spectra were investigated from the (v{sup '},v{sup ''})=(0,0) band to the (5,5) band. The temperatures obtained from the synthetic spectra compared with the experimental result of a low-frequency arc discharge show a vibrational temperature of (4250-5010) K and a rotational temperature of (3760-3980) K for the input power in the range of (80-280) W. As the (0,0) band is isolated from other vibrational transition bands, determination of the rotational temperature is possible based only on the (0,0) band, which simplifies the temperature measurement. From the result, it was found that the CN molecular spectrum can be used as a thermometer for atmospheric pressure plasmas containing carbon and nitrogen.

Moon, Se Youn; Kim, D. B.; Gweon, B.; Choe, W. [Department of Physics, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

2009-03-01T23:59:59.000Z

370

Temperature and Blood Flow Measurements in and around 7,12-Dimethylbenz(a)anthracene-induced Tumors and Walker 256 Carcinosarcomas in Rats  

Science Journals Connector (OSTI)

...partition coefficient of xenon is dependent primarily...smaller temperature oscillations normally present (3...partition coefficients for xenon is given in Table 3...after application of xenon showed that less than...difference in the circadian oscillations of temperature for the...

U. Mller and J. Bojsen

1975-11-01T23:59:59.000Z

371

Surface Temperature of IGUs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

117 117 Surface Temperatures of Insulated Glazing Units: Infrared Thermography Laboratory Measurements Brent T. Griffith, Daniel Türler, and Dariush Arasteh Building Technologies Program Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 USA Fax: 510-486-6046, email: D_Arasteh@lbl.gov Abstract Data are presented for the distribution of surface temperatures on the warm-side surface of seven different insulated glazing units. Surface temperatures are measured using infrared thermography and an external referencing technique. This technique allows detailed mapping of surface temperatures that is non-intrusive. The glazings were placed between warm and cold environmental chambers that were operated at conditions

372

Complete Fiber/Copper Cable Solution for Long-Term Temperature...  

Broader source: Energy.gov (indexed) [DOE]

| US DOE Geothermal Program eere.energy.gov Talented technical team - Specialty fiber optics development, testing, and production - Downhole cable and tool development and...

373

Absolute CF{sub 2} density and gas temperature measurements by absorption spectroscopy in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas  

SciTech Connect (OSTI)

Broadband ultraviolet absorption spectroscopy has been used to determine the CF{sub 2} radical density in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas, using the CF{sub 2} A{sup ~1}B{sub 1}?X{sup ~1}A{sub 1} system of absorption spectrum. The rotational temperature of ground state CF{sub 2} and excited state CF was also estimated by using A{sup ~1}B{sub 1}?X{sup ~1}A{sub 1} system and B{sup 2}??X{sup 2}? system, respectively. The translational gas temperature was deduced from the Doppler width of the Ar{sup *}({sup 3}P{sub 2}) and Ar{sup *}({sup 3}P{sub 0}) metastable atoms absorption line by using the tunable diode laser absorption spectroscopy. The rotational temperatures of the excited state CF are about 100?K higher than those of ground state CF{sub 2}, and about 200?K higher than the translational gas temperatures. The dependences of the radical CF{sub 2} density, electron density, electron temperature, rotational temperature, and gas temperature on the high frequency power and pressure have been analyzed. Furthermore, the production and loss mechanisms of CF{sub 2} radical and the gas heating mechanisms have also been discussed.

Liu, Wen-Yao; Xu, Yong, E-mail: yongxu@dlut.edu.cn; Peng, Fei; Gong, Fa-Ping; Li, Xiao-Song; Zhu, Ai-Min [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China); Liu, Yong-Xin; Wang, You-Nian [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

2014-10-15T23:59:59.000Z

374

Diode laser measurement of H?O, CO?, and temperature in gas turbine exhaust through the application of wavelength modulation spectroscopy  

E-Print Network [OSTI]

hourly percent load data .. 52 Figure 5.14:temperature and GT1 percent load data over the April 2006along with GT1 percent load data over the entire April 2006

Leon, Marco E.

2007-01-01T23:59:59.000Z

375

Dynamic measurements of Young's and shear moduli and mechanical damping as a function of temperature and microstructure for Uranium-6% Niobium  

E-Print Network [OSTI]

of mechanical damping versus strain amplitude. . . . . . . . 18 4. 1 Depleted uranium-niobium phase diagram wtih superimposed nonequilibrium phases. . 21 4. 2 Depleted U-6% Nb Time-Temperature-Transformation diagram. . 22 4. 3 Schematic of high temperature..., and an indispensible staple in the medical field. Intense research under government sponsorship has uncovered more information about uranium in less time than almost any other metal in history. Through this effort, depleted uranium (U-238) has surfaced as a viable...

Lowry, David Raymond

2012-06-07T23:59:59.000Z

376

Measurement of particulate matter and trace elements from a coal-fired power plant with electrostatic precipitators equipped the low temperature economizer  

Science Journals Connector (OSTI)

Abstract The particulate matter and trace elements from a 660MW coal-fired power plant boiler which equipped with a novel electrostatic precipitator were sampled and analyzed. To promote the thermal efficiency of power plants, a low temperature economizer was installed at the inlet of electrostatic precipitator to collect the heat generated from flue gas. The low temperature economizer can reduce flue gas temperature, and then affect the operation of electrostatic precipitator. Therefore, this experiment was carried out to investigate the collection characteristics of this novel electrostatic precipitator on particulate matter. In addition, the distribution of trace elements in solid combustion residues was also studied. The results indicate that the low temperature economizer can markedly decrease the amount of particulate matter at the outlet of electrostatic precipitator. The collection efficiency of electrostatic precipitator on particulate matter is significantly improved by the low temperature economizer, whereby the collection efficiencies of PM2.5 and PM1.0 can reach 99.7% and 99.2%, respectively. Most of the trace elements remain in the fly ash collected by the electrostatic precipitator, and less than 10% remain in the bottom ash, but very rare emit from the electrostatic precipitator. The low temperature economizer not only reduces the emission of particulate matter, but also diminishes the emissions of trace elements in flue gas. The enrichment characteristics of trace elements in submicron particles were also studied.

Chao Wang; Xiaowei Liu; Dong Li; Junping Si; Bo Zhao; Minghou Xu

2014-01-01T23:59:59.000Z

377

Automatic temperature adjustment apparatus  

DOE Patents [OSTI]

An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

Chaplin, James E. (66 Overlook Rd., Bloomingdale, NJ 07403)

1985-01-01T23:59:59.000Z

378

Experimental measurements and equation of state modeling of liquid densities for long-chain n-alkanes at pressures to 265 MPa and temperatures to 523 K  

SciTech Connect (OSTI)

Experimental densities are reported for n-hexadecane, n-octadecane, and n-eicosane at pressures to ?265 MPa and temperatures of 323.15, 423.15, and 523.15 K. The reported densities are in good agreement with the available literature data that cover limited pressure and temperature ranges. The PengRobinson equation of state (PR EOS), a new high-temperature high-pressure volume-translated SoaveRedlichKwong equation of state (HTHP-VT SRK EOS), and the perturbed-chain statistical associating fluid theory (PC-SAFT) are used to predict the reported densities. Both the HTHP-VT SRK and PC-SAFT equations exhibit mean absolute percent deviation (MAPD) values of 2.41.3% for the densities of all three hydrocarbons while the MAPD values for the PR EOS are all near 16%.

Wu, Yu; Bamgbade, Babatunde; Liu, Kun; McHugh, Mark A.; Baled, Hseen; Enick, Robert M.; Burgess, Ward; Tapriyal, Deepak; Morreale, Bryan D.

2011-12-15T23:59:59.000Z

379

The Sun as an X-Ray Star. I. Deriving the Emission Measure Distribution versus Temperature of the Whole Solar Corona from the Yohkoh/Soft X-Ray Telescope Data  

Science Journals Connector (OSTI)

The scope of this work is to obtain the emission measure distributions versus temperature, EM(T), of the whole solar corona from Yohkoh Soft X-ray Telescope images. As discussed in Paper II, the EM(T) is our starting point for studying the Sun as an X-ray star. To this purpose, we need to extract as much information as possible from the Yohkoh/SXT data covering the whole range of the Yohkoh/SXT temperature sensitivity, i.e., 5.5 T(K) 6 K, errors on the temperature and emission measure determination are expected to be large. To this end, we have made an extensive set of simulations to explore the nominal performance of the entire system (instrument and data analysis system) in the determination of the plasma temperature and emission measure at low, intermediate, and high photon counts per pixel. We have shown that low-count data with a number of photons per pixel nphot T) characterized by a steep negative slope. As a result, we have devised an analysis method that minimizes the instrumental and statistical effects on the determination of EM(T) and allows us to determine the global coronal EM(T). As a first application to real SXT data, we have derived the EM(T) of the Sun close to the maximum of the solar cycle, a challenging case. The low-temperature part is in agreement with analogous studies made in the UV band, and it shows a well-defined maximum at T ~ 2 MK.

S. Orlando; G. Peres; F. Reale

2000-01-01T23:59:59.000Z

380

Fiber optic temperature sensor  

SciTech Connect (OSTI)

Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

Rabold, D.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Measurement of the bubble nucleation temperature of water on a pulse-heated thin platinum film supported by a membrane using a low-noise bridge circuit  

Science Journals Connector (OSTI)

Abstract This study describes the performance of stress-minimized platinum (Pt) films supported by thin membranes (200nm thick) to promote bubble nucleation of water near its theoretical superheat limit. The membrane configurations consist of Pt films deposited on 200nm thick SiN films over bulk Si, with membranes being formed by etching Si from the back side of the films. Results are compared with more conventional Pt films supported by SiO2 and Si substrates. The average metal temperature is monitored by a bridge circuit with capacitive and inductive filtering to reduce noise in the output signal. Voltage pulses with durations ranging between 0.5 and 10?s are imposed on the bridge to electrically heat the Pt film. The paper includes discussion of fabrication of the films, their treatment prior to using them as temperature sensors, the bridge circuit design for monitoring the change in electrical resistance during the power pulse, the calibration process of the films, and results of the bubble nucleation temperatures for the range of pulse durations examined. The results show that significantly less power is needed to trigger bubble nucleation on a membrane-supported platinum film compared to a platinum film on a bulk Si substrate. The nucleation temperatures which were closest to the theoretical limit of water were realized at heating rates of nearly 109C/s. The potential for employing back-side etched devices is suggested for fundamental studies of phase transitions of highly superheated liquids and in applications where bubble nucleation is an important process such as for ink-jet printers and microscale bubble pump concepts.

Eric J. Ching; C. Thomas Avedisian; Michael J. Carrier; Richard C. Cavicchi; James R. Young; Bruce R. Land

2014-01-01T23:59:59.000Z

382

A summary of volatile impurity measurements and gas generation studies on MISSTD-1, a high-purity plutonium oxide produced by low-temperature calcination of plutonium oxalate  

SciTech Connect (OSTI)

Plutonium dioxide of high specific surface area was subjected to long-term tests of gas generation in sealed containers. The material preparation and the storage conditions were outside the bounds of acceptable parameters defined by DOE-STD-3013-2012 in that the material was stabilized to a lower temperature than required and had higher moisture content than allowed. The data provide useful information for better defining the bounding conditions for safe storage. Net increases in internal pressure and transient increases in H{sub 2} and O{sub 2} were observed, but were well within the bounds of gas compositions previously shown to not threaten integrity of 3013 containers.

Berg, John M. [Los Alamos National Laboratory; Narlesky, Joshua E. [Los Alamos National Laboratory; Veirs, Douglas K. [Los Alamos National Laboratory

2012-06-08T23:59:59.000Z

383

Hydrogeology of Stromboli volcano, Aeolian Islands (Italy) from the interpretation of resistivity tomograms, self-potential, soil temperature and soil CO2 concentration measurements  

Science Journals Connector (OSTI)

......France 9 Earth and Atmospheric Sciences Department...can occur when water encounters a...measurements with a generator and a voltmeter...two-phase (liquid water and steam) flow...concentration below atmospheric level (350 ppm...The evidence of atmospheric levels of soil...infiltration of meteoric water can flow on the......

A. Revil; A. Finizola; T. Ricci; E. Delcher; A. Peltier; S. Barde-Cabusson; G. Avard; T. Bailly; L. Bennati; S. Byrdina; J. Colonge; F. Di Gangi; G. Douillet; M. Lupi; J. Letort; E. Tsang Hin Sun

2011-09-01T23:59:59.000Z

384

H2O activity in concentrated KCl and KCl-NaCl solutions at high temperatures and pressures measured by the brucite-periclase equilibrium  

Science Journals Connector (OSTI)

H2O activities in supercritical fluids in the system KCl-H2O-(MgO) were measured at pressures of 1, 2, 4, 7, 10 and 15? kbar by numerous reversals of vapor compositions in equilibrium with brucite and periclase....

L. Y. Aranovich; R. C. Newton

1997-04-01T23:59:59.000Z

385

H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium  

Science Journals Connector (OSTI)

?H2O activities in concentrated NaCl solutions were measured in the ranges 600900?C and 215 kbar and at NaCl concentrations up to halite saturation by depression of the brucite (Mg(OH)2...) periclase (MgO) ...

L. Y. Aranovich; R. C. Newton

1996-10-01T23:59:59.000Z

386

Apparatus and method for maintaining low temperatures about an object at a remote location. [Patent application  

DOE Patents [OSTI]

The disclosure is directed to an apparatus and method for maintaining a body at cryogenic temperatures at a remote location such as down a borehole for an extended period of time. A housing contains a body comprising a material having a high specific heat at cryogenic temperatures such as between about 2 and 15 K. The body contains an orifice for containing an instrument or instruments operable at superconducting temperatures. The apparatus is precooled at the surface and lowered into a borehole to a desired depth, such as 2 to 3 miles. The instruments are operated, and the apparatus withdrawn, the material of the body maintaining the very low temperatures at which the instrument(s) operate for a sufficient period of time at the remote or downhole location. The material may comprise a rare earth compound, such as Gd/sub 2/O/sub 3/, Gd/sub 2/Se/sub 3/, Gd/sub 2/O/sub 2/S or GdAlO/sub 3/. Monoclinic and C-phase gadolinium oxides work well. A low temperature is maintainable at a remote location for several hours.

Steyert, W.A. Jr.; Overton, W.C. Jr.

1980-10-29T23:59:59.000Z

387

Apparatus and method for maintaining low temperatures about an object at a remote location  

DOE Patents [OSTI]

The disclosure is directed to an apparatus and method for maintaining a body at cryogenic temperatures at a remote location such as down a borehole for an extended period of time. A housing contains a body comprising a material having a high specific heat at cryogenic temperatures such as between about 2 and 15 K. The body contains an orifice for containing an instrument or instruments operable at superconducting temperatures. The apparatus is precooled at the surface and lowered into a borehole to a desired depth, such as 2 to 3 miles. The instruments are operated, and the apparatus withdrawn, the material of the body maintaining the very low temperatures at which the instrument(s) operate for a sufficient period of time at the remote or downhole location. The material may comprise a rare earth compound, such as Gd.sub.2 O.sub.3, Gd.sub.2 Se.sub.3, Gd.sub.2 O.sub.2 S or GdAlO.sub.3. Monoclinic and C-phase gadolinium oxides work well. A low temperature is maintainable at a remote location for several hours.

Steyert, Jr., William A. (Los Alamos, NM); Overton, Jr., William C. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

388

Levitation Performance of Bulk High Temperature Superconductor Above the Permanent Magnet Guideway atDifferent Temperatures  

Science Journals Connector (OSTI)

The levitation performance of a high temperature superconducting (HTS) Maglev system was investigated at different temperatures for HTS Maglev vehicle application. Using a cryogenic measurement system, we stud...

Hua Jing; Suyu Wang; Ming Jiang; Jiasu Wang

2010-12-01T23:59:59.000Z

389

Principal interactions in the magnetic system Fe{sub 1-x}Co{sub x}Si: Magnetic structure and critical temperature by neutron diffraction and SQUID measurements  

SciTech Connect (OSTI)

The compound Fe{sub 1-x}Co{sub x}Si is a good representative for a cubic magnet with Dzyaloshinskii-Moriya interaction. On the basis of the neutron diffraction and superconducting quantum interference device measurements, we built the H-T phase diagram for the compound with different x from 0.1 to 0.7. The same set of parameters governs the magnetic system for different x. These parameters are well interpreted in the framework of the recently developed theory [S. V. Maleyev, Phys. Rev. B 73, 174402 (2006)]. As a result, the spin-wave stiffness, the Dzyaloshinskii constant, the anisotropic exchange constant, and the spin-wave gap caused by the Dzyaloshinskii interaction have been obtained and plotted as a function of x. The changes of the magnetic structure with x can be well interpreted on the basis of our findings.

Grigoriev, S. V.; Maleyev, S. V.; Dyadkin, V. A. [Petersburg Nuclear Physics Institute, Gatchina, 188300 St. Petersburg (Russian Federation); Menzel, D.; Schoenes, J. [Institut fuer Physik der Kondensierten Materie, TU Braunschweig, 38106 Braunschweig (Germany); Eckerlebe, H. [GKSS Forschungszentrum, 21502 Geesthacht (Germany)

2007-09-01T23:59:59.000Z

390

Direct measurements of methoxy removal rate constants for collisions with CH/sub 4/, Ar, N/sub 2/, Xe, and CF/sub 4/ in the temperature range 673--973K  

SciTech Connect (OSTI)

Removal rate constants for CH/sub 3/O by CH/sub 4/, Ar, N/sub 2/, Xe, and CF/sub 4/ were measured over a 400K temperature range using a laser photolysis/laser-induced fluorescence technique. Rapid methoxy removal rates are observed for the non-reactive collision partners (Ar, N/sub 2/, Xe, and CF/sub 4/) at elevated temperatures showing that the dissociation and isomerization channels for CH/sub 3/O are indeed important. The total removal rate constant (reaction /plus/ dissociation and/or isomerization) for CH/sub 4/ exhibits a linear dependence on temperature and has a removal rate constant, k/sub r/ /equals/ (1.2 +- 0.6) /times/ 10/sup /minus/8/exp((/minus/101070 +- 350)/T)cm/sup 3/molecule/sup /minus/1/s/sup /minus/1/. Assuming that the removal rate constant due to dissociation and/or isomerization are similar for CH/sub 4/ and CF/sub 4/, the reaction rate constant for CH/sub 3/O /plus/ CH/sub 4/ is equal to (1.7 +- 1.0) /times/ 10/sup /minus/10/exp((/minus/7480 +- 1100)/T)cm/sup 3/molecule/sup /minus/1/s/sup /minus/1/. 7 refs., 4 figs.

Wantuck, P.J.; Oldenborg, R.C.; Baugchum, S.L.; Winn, K.R.

1988-01-01T23:59:59.000Z

391

High-Temperature Circuit Boards for use in Geothermal Well Monitoring  

Open Energy Info (EERE)

Temperature Circuit Boards for use in Geothermal Well Monitoring Temperature Circuit Boards for use in Geothermal Well Monitoring Applications Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High-Temperature Circuit Boards for use in Geothermal Well Monitoring Applications Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature Downhole Tools Project Description Geothermal energy offers an abundant, renewable source of power that could be used to ensure the long-term energy independence of our nation. Currently, geothermal power in the United States is produced from relatively shallow wells that also contain naturally occurring water sources. These current geothermal power plants with near-ideal conditions for geothermal power production exist primarily in the western U.S. In order to expand the use of geothermal energy, new technologies are needed that will enable the utilization of the hot, dry rock located at depths up to 10 km. The introduction of water into these deep wells to create geothermal reservoirs is referred to as Enhanced Geothermal System (EGS).

392

Investigation of oxides formed in the corrosion of SUS-304 in high-temperature water through the measurement of evolved hydrogen and radiochemical analyses  

SciTech Connect (OSTI)

Corrosion behavior of SUS-304 at 280/sup 0/C in deaerated water has been traced both through measuring H/sub 2/ gas, concomitantly formed with corrosion, and through radiochemical analysis of the corrosion layers. The calculated H/sub 2/ yield based on the reaction, M + x.H/sub 2/O = MO /sub x/ + x.H/sub 2/ (M: iron, chromium, nickel, manganese, and cobalt), agreed reasonably well with the observed H/sub 2/ yields, showing that iron is mainly in a magnetite form and chromium is in a Cr(III) state. More than 85% of the corrosion layers were recovered by repeating ultrasonic cleaning and electrostripping processes. The residual fraction was rich in chromium and dissolved in the subsequent electropolishing process. The total corrosion increases with the reaction time, although the ''inner layer'' tends to stay almost constant at a longer reaction time. In some cases, both neutron irradiated and nonirradiated SUS coexisted. Mutual transfer of the elements from one SUS to the other has been examined.

Tachikawa, E.; Hoshi, M.; Nakashima, M.; Sagawa, C.; Yonezawa, C.

1984-04-01T23:59:59.000Z

393

Temperature profile detector  

DOE Patents [OSTI]

Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

Tokarz, R.D.

1983-10-11T23:59:59.000Z

394

Carbon nanotube temperature and pressure sensors  

DOE Patents [OSTI]

The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

Ivanov, Ilia N; Geohegan, David Bruce

2013-10-29T23:59:59.000Z

395

Determining Outdoor CPV Cell Temperature: Preprint  

SciTech Connect (OSTI)

An accurate method is needed for determining cell temperature when measuring CPV modules outdoors. It has been suggested that cell temperature can be calculated though a procedure that shutters sunlight to the cells while measuring the transients in open-circuit voltage (Voc) and heat sink temperature. This paper documents application of this shutter procedure to multiple CPV modules at NREL. The challenges and limitations are presented along with an alternate approach to measuring CPV cell operating temperature.

Muller, M.; Deline, C.; Marion, B.; Kurtz, S.; Bosco, N.

2011-07-01T23:59:59.000Z

396

TRENDS: TEMPERATURE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Historical Isotopic Temperature Record from the Vostok Ice Core Historical Isotopic Temperature Record from the Vostok Ice Core Graphics Digital Data J.R. Petit, D. Raynaud, and C. Lorius Laboratoire de Glaciogie et Géophysique de l'Environnement, CNRS, Saint Martin d'Hères Cedex, France J. Jouzel and G. Delaygue Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA/CNRS, L'Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France N.I. Barkov Arctic and Antarctic Research Institute, Beringa Street 38, 199397 St. Petersburg, Russia V.M. Kotlyakov Institute of Geography, Staromonetny, per 29, Moscow 109017, Russia DOI: 10.3334/CDIAC/cli.006 Period of Record 420,000 years BP-present Methods Because isotopic fractions of the heavier oxygen-18 (18O) and deuterium (D) in snowfall are temperature-dependent and a strong spatial correlation

397

The Sun as an X-Ray Star. II. Using the Yohkoh/Soft X-Ray Telescope-derived Solar Emission Measure versus Temperature to Interpret Stellar X-Ray Observations  

Science Journals Connector (OSTI)

This paper is the second of a project dedicated to using solar Yohkoh/SXT data as a guide and a template to interpret data on stellar coronae. In the light of the large differences in scope and approach between solar and stellar studies, we have developed a method to translate Yohkoh/SXT data of the whole solar corona into stellar-like data, i.e., to put them in the same format and context as the stellar ones. First from the Yohkoh/SXT images we derive the whole-Sun X-ray emission measure versus temperature [EM(T)], in the range 105.5-108 K, during the specific observation. Then, we synthesize the solar X-ray spectrum; finally, we fold the spectrum through the instrumental response of nonsolar X-ray observatories, for instance, ROSAT/PSPC and ASCA/SIS. Finally, we analyze such solar coronal data in the same band and with the same methods used for stellar observations, allowing a direct and homogeneous comparison with them. In this paper we present in detail our method and, as an example of results, we show and discuss EM(T) and stellar-like spectra for three phases of the solar cycle: maximum, intermediate phase, and minimum. The total amount and the distribution of the emission measure change dramatically during the cycle, in particular at temperatures above 106 K. We also show the EM(T) of the whole solar corona during a large flare. The ROSAT/PSPC- and ASCA/SIS-like X-ray spectra of the Sun as a star that we obtain are discussed in the context of stellar coronal physics. The Sun's coronal total luminosity in the ROSAT/PSPC band ranges from ?2.7 ? 1026 ergs s-1 (at minimum) to ?4.7 ? 1027 ergs s-1 (at maximum). We discuss future developments and possible applications of our method.

G. Peres; S. Orlando; F. Reale; R. Rosner; H. Hudson

2000-01-01T23:59:59.000Z

398

Conditioning circuit for temperature and strain measurement  

E-Print Network [OSTI]

be written as [4]; V. C, C?+Cz 1? Vying Ci ( Czd (3. 4) where V, ?: (Vj Vj ) (Vz Vj ). 26 Table I. Transistor aspect ratios for the CMOS switch Transistor Label Transistor Dimension (W:L) (p) Ml-M2 3:2 The gain error is thus seen to be proportional... value and form a volLage divider to drive node A, the gates of transistors Mll and VI12. A change Table II. Transistor aspect ratios for the DCMFB circuit Transistor Label Transistor Dimension (W:L) (p) Ml-M2 20:6 M3-M4 20:2 M5-M6 10:2 M7-M8 M...

Patel, Aashit Mahendra

2012-06-07T23:59:59.000Z

399

Estimation of formation temperature from borehole measurements  

Science Journals Connector (OSTI)

......obtained if the borehole rock system...between the drilling muds used...boreholes, the largest being between...properties of drilling muds (see...v) The borehole radius should...this shows large variations...100-1000 times larger than the...the finite drilling rate is more...that the borehole is created......

M. N. Luheshi

1983-09-01T23:59:59.000Z

400

Fuel Temperature Coefficient of Reactivity  

SciTech Connect (OSTI)

A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

Loewe, W.E.

2001-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Beamline Temperatures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Temperatures Temperatures Energy: 3.0000 GeV Current: 493.2242 mA Date: 11-Jan-2014 21:40:00 Beamline Temperatures Energy 3.0000 GeV Current 493.2 mA 11-Jan-2014 21:40:00 LN:MainTankLevel 124.4 in LN:MainTankPress 56.9 psi SPEAR-BL:B120HeFlow 15.4 l/min SPEAR-BL:B131HeFlow 22.2 l/min BL 4 BL02:LCW 0.0 ℃ BL02:M0_LCW 31.5 ℃ BL 4-1 BL04-1:BasePlate -14.0 ℃ BL04-1:Bottom1 46.0 ℃ BL04-1:Bottom2 47.0 ℃ BL04-1:Lower 32.0 ℃ BL04-1:Moly 46.0 ℃ BL04-1:ChinGuard1 31.0 ℃ BL04-1:ChinGuard2 31.0 ℃ BL04-1:FirstXtalA -167.0 ℃ BL04-1:FirstXtalB -172.0 ℃ BL04-1:Pad1 31.0 ℃ BL04-1:Pad2 31.0 ℃ BL04-1:SecondXtalA -177.0 ℃ BL04-1:SecondXtalB -175.0 ℃ BL 4-2 BL04-2:BasePlate -14.0 ℃ BL04-2:Bottom1 24.0 ℃ BL04-2:Bottom2 25.0 ℃

402

Temperature calibration of Gulf of Mexico corals  

E-Print Network [OSTI]

for measurement of extension, density, and isotopes ([]?O, []C). The coral oxygen isotope signature was calibrated against high-resolution daily temperature and salinity data sets spanning 1990-1997. Coralline estimates of water temperature demonstrate only...

Smith, Jennifer Mae

2012-06-07T23:59:59.000Z

403

installed on all three resoitors. Between February 27 and necessary at a 1.2 m (4.0 it) depth for a reason-and May 15, 1980 all the time metern, the house watt-ably sized earth coil in this location.hour meter, and the indoor temperature as measured by Th  

E-Print Network [OSTI]

.hour meter, and the indoor temperature as measured by The design procedure for the length of the eartha glass. Thea the CROC5 heating seson werelyfth day from the running time meter. heat input QH(i) ist The second at by using a differnt set of "xperimental measurements (air handler time meter for B1, and house Q (i) " B

Oak Ridge National Laboratory

404

Internal temperatures of neutral sodium clusters: a PIE-thermometer  

Science Journals Connector (OSTI)

Distinct temperature effects could be observed in the threshold regions of photoionisation efficiency (PIE) measurements of sodium clusters. Simulations of the PIE thresholds at various temperatures were carried ...

U. Rthlisberger; M. Schr; E. Schumacher

1989-01-01T23:59:59.000Z

405

High temperature thermometric phosphors  

DOE Patents [OSTI]

A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

1999-03-23T23:59:59.000Z

406

Actinide Thermodynamics at Elevated Temperatures  

SciTech Connect (OSTI)

The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

2007-11-16T23:59:59.000Z

407

Quantum Chemistry at Finite Temperature  

E-Print Network [OSTI]

In this article, we present emerging fields of quantum chemistry at finite temperature. We discuss its recent developments on both experimental and theoretical fronts. First, we describe several experimental investigations related to the temperature effects on the structures, electronic spectra, or bond rupture forces for molecules. These include the analysis of the temperature impact on the pathway shifts for the protein unfolding by atomic force microscopy (AFM), the temperature dependence of the absorption spectra of electrons in solvents, and the temperature influence over the intermolecular forces measured by the AFM. On the theoretical side, we review advancements made by the author in the coming fields of quantum chemistry at finite temperature. Starting from the Bloch equation, we have derived the sets of hierarchy equations for the reduced density operators in both canonical and grand canonical ensembles. They provide a law according to which the reduced density operators vary in temperature for the identical and interacting many-body systems. By taking the independent particle approximation, we have solved the equations in the case of a grand canonical ensemble, and obtained an energy eigenequation for the molecular orbitals at finite temperature. The explicit expression for the temperature-dependent Fock operator is also given. They form a mathematical foundation for the examination of the molecular electronic structures and their interplay with finite temperature. Moreover, we clarify the physics concerning the temperature effects on the electronic structures or processes of the molecules, which is crucial for both theoretical understanding and computation. Finally, ....

Liqiang Wei

2006-05-23T23:59:59.000Z

408

Low-Temperature Automotive Diesel Combustion  

Broader source: Energy.gov (indexed) [DOE]

reaction 12 The CO LIF results are semi-quantitative - lending credence to the measured spatial distributions We apply temperature and pressure corrections to the CO absorption...

409

Comparing Wind, Temperature, Pressure, and Humidity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the higher the amount of energy in the air. Temperature is measured using a thermometer with units in degrees Celsius or Fahrenheit. See http:www.teachervision.com...

410

Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Log Techniques Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Log Techniques Details Activities (4) Areas (4) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: depth and thickness of formations; lithology and porosity can be inferred Stratigraphic/Structural: reservoir thickness, reservoir geometry, borehole geometry Hydrological: permeability and fluid composition can be inferred Thermal: direct temperature measurements; thermal conductivity and heat capacity Dictionary.png Well Log Techniques: Well logging is the measurement of formation properties versus depth in a

411

E-Print Network 3.0 - assess body temperature Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

their wheel-run- ning activity, body temperature, resting metabolic rate and daily energy... measurement using the ERS. Body temperature was measured with a ... Source:...

412

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

413

Optical temperature sensor using thermochromic semiconductors  

DOE Patents [OSTI]

Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

Kronberg, J.W.

1994-01-01T23:59:59.000Z

414

Measurement-Measurement-  

E-Print Network [OSTI]

Internet Measurement- System A Measurement- System B Control System GPS Satellite GPS Satellite GPS Receiver GPS Receiver 2) measurement 3) data1) command Methodology for One-way IP Performance Measurement This paper proposes a methodology for measurement of one-way IP performance metrics such as one-way delay

Jeong, Jaehoon "Paul"

415

Acoustical Communications for Wireless Downhole Telemetry Systems  

E-Print Network [OSTI]

on this testbed in order to characterize the channel behavior are explained as well. Moreover, the large scale statistics of the acoustic waves along the pipe string are described. Results of this work indicate that acoustic waves experience a frequency- dependent...

Farraj, Abdallah

2012-08-22T23:59:59.000Z

416

Down-hole periodic seismic generator  

DOE Patents [OSTI]

A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, H.C.; Hills, R.G.; Striker, R.P.

1982-10-28T23:59:59.000Z

417

Multipurpose Acoustic Sensor for Downhole Fluid Monitoring  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- determines thermal gradient along the borehole - provides location of borehole fracture intersections - allows estimation of thermal drawdown and recovery rates of the...

418

Drexel University Temperature Sensors  

SciTech Connect (OSTI)

This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) Drexel University Project 31091 irradiation. The objective of this test was to assess the radiation performance of new ceramic materials for advanced reactor applications. Accordingly, irradiations of transition metal carbides and nitrides were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in static capsules inserted into the A-3 and East Flux Trap Position 5 locations of the ATR.

K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

2014-09-01T23:59:59.000Z

419

A Dynamical Approach to Temperature  

E-Print Network [OSTI]

We present a new dynamical approach for measuring the temperature of a Hamiltonian dynamical system in the micro canonical ensemble of thermodynamics. We show that under the hypothesis of ergodicity the temperature can be computed as a time-average of the functional, div(grad H/|grad H|^2), on the energy-surface. Our method not only yields an efficient computational approach for determining the temperature it also provides an intrinsic link between dynamical systems theory and the statistical mechanics of Hamiltonian systems.

Hans Henrik Rugh

1997-01-30T23:59:59.000Z

420

Rayleigh LIDAR and satellite (HALOE, SABER, CHAMP and COSMIC) measurements of stratosphere-mesosphere temperature over a southern sub-tropical site, Reunion (20.8 S; 55.5 E): climatology and comparison study  

E-Print Network [OSTI]

L. , and Keckhut, P. : Climatology and trends of the middleD. M. : A 14-year monthly climatology and trend in the 3565D. A. : Temperature climatology of the mid- dle atmosphere

Sivakumar, V.; Vishnu Prasanth, P.; Kishore, P.; Bencherif, H.; Keckhut, P.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

High temperature methods for forming oxidizer fuel  

DOE Patents [OSTI]

A method of treating a formation fluid includes providing formation fluid from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes carbon dioxide, hydrogen sulfide, hydrocarbons, hydrogen or mixtures thereof. Molecular oxygen is separated from air to form a molecular oxygen stream comprising molecular oxygen. The first gas stream is combined with the molecular oxygen stream to form a combined stream comprising molecular oxygen and the first gas stream. The combined stream is provided to one or more downhole burners.

Bravo, Jose Luis (Houston, TX)

2011-01-11T23:59:59.000Z

422

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Harsh Environment Electronics Packaging for Downhole Oil & Gas Exploration Harsh Environment Electronics Packaging for Downhole Oil & Gas Exploration DE-FC26-06NT42950 Goal The goal is to develop new packaging techniques for downhole electronics that will be capable of withstanding at least 200oC (~400oF) while maintaining a small form factor and high vibration tolerance necessary for use in a downhole environment. These packaging techniques will also be capable of integrating a sensor and other electronics to form an integrated electronics/sensor module. Performers General Electric Global Research Center, Niskayuna, NY 12309 Binghamton University (SUNY), Binghamton, NY 13902 Background Sensors and electronics systems are key components in measurement-while-drilling (MWD) equipment. Examples of sensors and electronics that can directly impact the efficiency of drilling guidance systems can include gamma ray and neutron sensors, orientation modules, pressure sensors and the all of the associated signal conditioning and computational electronics. As drilling depths increase, more rigorous temperature demands are made on the electronic components in the drillstring. Current sensor systems for MWD applications are limited by the temperature rating of their electronics, with a typical upper end temperature rating of 175oC (~350oF). The lifetime of an electronics system at such temperatures is extremely short (600-1500 hrs). These limitations are driven by the temperature performance and reliability of the materials in the electronic components (active and passive devices) and their associated packages and interconnect methods.

423

Radiation Minimum Temperatures  

Science Journals Connector (OSTI)

Frost resulting from cooling of vegetation by nocturnal radiation is a serious agricultural problem. Because of the number of variables involved attacks on this problem from a purely theoretical point of view have met with only moderate success. It seems logical to suppose that an instrument might be devised which would speed up the natural radiation processes and enable an observer to obtain in a few hours a measure of the cooling which occurs naturally over a period of 12 to 14 hr. Such an instrument could serve as a frost warning device. This paper describes the construction of a radiation device and presents experimental evidence to show that it can be used as a predictor of freezing temperatures at vegetation level.

Francis K. Davis Jr.

1957-01-01T23:59:59.000Z

424

Measuring while drilling apparatus mud pressure signal valve  

SciTech Connect (OSTI)

This patent describes a measurement while drilling system for borehole drilling having a downhole instrument connectable in a drill string of a rotary drilling rig including apparatus to sense geological and geophysical parameters and a valve apparatus to pulse modulate drilling fluid flowing in the drill string. A surface apparatus is connected to a drilling fluid flow conductor for extracting intelligence carrying information from the modulated drilling fluid. An improved valve apparatus is described comprising: (a) a drilling fluid flow pulse modulating pressure pulse valve member longitudinally, movably mounted in a body member and movable from a retracted position substantially removed from the drilling fluid flow and an extended position disposed at least partially within the drilling fluid flow thereby temporarily restricting drilling fluid flow within the drill string; and (b) the pulse valve member is a tubular member having a lower end portion displaceable from the body member into the drilling fluid and an upper end portion with opposed fluid pressure force areas thereon being in fluid communication with the drilling fluid flow such that forces due to the drilling fluid acting on the pressure pulse valve member are balanced in a longitudinal direction.

Peppers, J.M.; Shaikh, F.A.

1986-12-09T23:59:59.000Z

425

Development of a high-temperature diagnostics-while-drilling tool.  

SciTech Connect (OSTI)

The envisioned benefits of Diagnostics-While-Drilling (DWD) are based on the principle that high-speed, real-time information from the downhole environment will promote better control of the drilling process. Although in practice a DWD system could provide information related to any aspect of exploration and production of subsurface resources, the current DWD system provides data on drilling dynamics. This particular set of new tools provided by DWD will allow quicker detection of problems, reduce drilling flat-time and facilitate more efficient drilling (drilling optimization) with the overarching result of decreased drilling costs. In addition to providing the driller with an improved, real-time picture of the drilling conditions downhole, data generated from DWD systems provides researchers with valuable, high fidelity data sets necessary for developing and validating enhanced understanding of the drilling process. Toward this end, the availability of DWD creates a synergy with other Sandia Geothermal programs, such as the hard-rock bit program, where the introduction of alternative rock-reduction technologies are contingent on the reduction or elimination of damaging dynamic effects. More detailed descriptions of the rationale for the program and early development efforts are described in more detail by others [SAND2003-2069 and SAND2000-0239]. A first-generation low-temperature (LT) DWD system was fielded in a series of proof-of-concept tests (POC) to validate functionality. Using the LT system, DWD was subsequently used to support a single-laboratory/multiple-partner CRADA (Cooperative Research and Development Agreement) entitled Advanced Drag Bits for Hard-Rock Drilling. The drag-bit CRADA was established between Sandia and four bit companies, and involved testing of a PDC bit from each company [Wise, et al., 2003, 2004] in the same lithologic interval at the Gas Technology Institute (GTI) test facility near Catoosa, OK. In addition, the LT DWD system has been fielded in cost-sharing efforts with an industrial partner to support the development of new generation hard-rock drag bits. Following the demonstrated success of the POC DWD system, efforts were initiated in FY05 to design, fabricate and test a high-temperature (HT) capable version of the DWD system. The design temperature for the HT DWD system was 225 C. Programmatic requirements dictated that a HT DWD tool be developed during FY05 and that a working system be demonstrated before the end of FY05. During initial design discussions regarding a high-temperature system it was decided that, to the extent possible, the HT DWD system would maintain functionality similar to the low temperature system, that is, the HT DWD system would also be designed to provide the driller with real-time information on bit and bottom-hole-assembly (BHA) dynamics while drilling. Additionally, because of time and fiscal constraints associated with the HT system development, the design of the HT DWD tool would follow that of the LT tool. The downhole electronics package would be contained in a concentrically located pressure barrel and the use of externally applied strain gages with thru-tool connectors would also be used in the new design. Also, in order to maximize the potential wells available for the HT DWD system and to allow better comparison with the low-temperature design, the diameter of the tool was maintained at 7-inches. This report discusses the efforts associated with the development of a DWD system capable of sustained operation at 225 C. This report documents work performed in the second phase of the Diagnostics-While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided. Background on prior phases of the project can be found in SAND2003-2069 and SAND2000-0239.

Chavira, David J.; Huey, David (Stress Engineering Services, Inc.); Hetmaniak, Chris (Stress Engineering Services, Inc.); Polsky, Yarom; King, Dennis K.; Jacobson, Ronald David; Blankenship, Douglas Alan; Knudsen, Steven Dell; Henfling, Joseph Anthony; Mansure, Arthur James

2009-01-01T23:59:59.000Z

426

The Development and Demonstration of an Electric Submersible...  

Broader source: Energy.gov (indexed) [DOE]

Submersible Pump at High Temperatures - High-temperature Motor Windings for Down-hole Pumps Used in Geothermal Energy Production Presentation Number: 016 Investigator: Hooker,...

427

The Development and Demonstration of an Electric Submersible...  

Broader source: Energy.gov (indexed) [DOE]

Submersible Pump at High Temperatures - High-temperature Motor Windings for Down-hole Pumps Used in Geothermal Energy Production; 2010 Geothermal Technology Program Peer Review...

428

2-D Temperature Mapping in Fluorocarbon Plasmas  

SciTech Connect (OSTI)

Two-dimensional maps of rotational temperature in CF4 plasmas were determined using planar laser-induced fluorescence measurements of CF A2{sigma}+ - X2{pi} (1,0). Rotational temperatures are expected to be in equilibrium with gas temperatures under the present conditions. Experiments were performed in a capacitively-coupled, parallel-plate reactor at pressures from 27 Pa to 107 Pa and powers of 10 W to 30 W. The effects of electrode cooling and having a wafer present were also examined. Measured temperatures ranged between 273 K{+-}15 K and 480 K{+-}15 K. The strong temperature gradients found in these plasmas can have serious effects on density measurements that probe a single rotational level, as well as on reaction rate constants and interpretation of density gradients.

Steffens, Kristen L.; Sobolewski, Mark A. [Process Measurements Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

2005-09-09T23:59:59.000Z

429

Automatic HTS force measurement instrument  

DOE Patents [OSTI]

A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

Sanders, S.T.; Niemann, R.C.

1999-03-30T23:59:59.000Z

430

Automatic HTS force measurement instrument  

DOE Patents [OSTI]

A device for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed.

Sanders, Scott T. (Valparaiso, IN); Niemann, Ralph C. (Downers Grove, IL)

1999-01-01T23:59:59.000Z

431

Method for cooling nanostructures to microkelvin temperatures  

SciTech Connect (OSTI)

We propose a new scheme aimed at cooling nanostructures to microkelvin temperature based on the well established technique of adiabatic nuclear demagnetization: we attach each device measurement lead to an individual nuclear refrigerator, allowing efficient thermal contact to a microkelvin bath. On a prototype consisting of a parallel network of nuclear refrigerators, temperatures of {approx}1 mK simultaneously on ten measurement leads have been reached upon demagnetization, thus completing the first steps toward ultracold nanostructures.

Clark, A. C.; Schwarzwaelder, K. K.; Bandi, T.; Maradan, D.; Zumbuehl, D. M. [Department of Physics, University of Basel, Klingelbergstrasse 82, Basel CH-4056 (Switzerland)

2010-10-15T23:59:59.000Z

432

High temperature thermometric phosphors for use in a temperature sensor  

DOE Patents [OSTI]

A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

1998-01-01T23:59:59.000Z

433

Temperature effects on the electronic conductivity of single-walled carbon nanotubes  

E-Print Network [OSTI]

The room-temperature electronic conductivity and temperature dependence of conductivity were measured for samples of carbon nanotubes of three types: pristine; functionalized with a nitrobenzene covalent functionalization, ...

Mascaro, Mark Daniel

2007-01-01T23:59:59.000Z

434

HIGH TEMPERATURE CONDUCTIVITY PROBE FOR MONITORING CONTAMINATION LEVELS IN POWER PLANT BOILER WATER.  

E-Print Network [OSTI]

??A high temperature/high pressure flow through probe was designed to measure high temperature electrical conductivity of aqueous (aq) dilute electrolyte solutions, an application which can (more)

Hipple, Sarah

2008-01-01T23:59:59.000Z

435

Yeast and Temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yeast and Temperature Yeast and Temperature Name: Alyssaaum Location: N/A Country: N/A Date: N/A Question: How does temperature affect yeast? Replies: Dear Alyssa, At low temperatures (0-10 C) yeast will not grow, but not die either. At temperatures 10-37 C yeast will grow and multiply, faster at higher temperatures with an optimal growth at 30 or 37 C (that depends on the species). At higher temperature the cells become stressed, meaning that their content becomes damaged and which can be repaired to some degree. At high temperatures (>50 C) the cells die. The bacteria can survive freezing under certain conditions. When baking bread all yeast dies during the process. Dr. Trudy Wassenaar yeast is a unique type of fungi that grows quickly by rapid cell division. It grows best at about 100 degrees fahrenheit, colder will cause it to go dormant, much warmer could kill it

436

Development of 2-Meter Soil Temperature Probes and Results of Temperature  

Open Energy Info (EERE)

Development of 2-Meter Soil Temperature Probes and Results of Temperature Development of 2-Meter Soil Temperature Probes and Results of Temperature Survey Conducted at Desert Peak, Nevada, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Development of 2-Meter Soil Temperature Probes and Results of Temperature Survey Conducted at Desert Peak, Nevada, USA Abstract Temperature gradient drilling has historically been a key tool in the exploration for geothermal resources in the Great Basin, USA but regulatory, environmental, and accessibility issues, as well as the expense of drilling, are increasingly limiting its use. In cases where thermal groundwater is not overlain by near-surface cold aquifers, temperatures measured at a depth of 2-meters is an efficient method for mapping thermal anomalies at a high level of detail. This is useful for augmenting deeper

437

Cementing temperatures for deep-well production liners  

SciTech Connect (OSTI)

Temperature of cement is an important factor in properly cementing deep well production liners, yet current methods of determining cement temperatures do not account for all variables. In this paper a computer model predicts temperatures of cement while pumping and while waiting on cement, compares computed and measured temperatures, defines the importance of certain cementing variables on temperatures, and provides an explanation of difficulties encountered while cementing liner tops.

Wooley, G.R.; Galate, J.W.; Giussani, A.P.

1984-09-01T23:59:59.000Z

438

6, 13011320, 2006 Temperature  

E-Print Network [OSTI]

ACPD 6, 1301­1320, 2006 Temperature climatology and trend estimates over Durban, South Africa H and Physics Discussions Temperature climatology and trend estimates in the UTLS region as observed over Commons License. 1301 #12;ACPD 6, 1301­1320, 2006 Temperature climatology and trend estimates over Durban

Boyer, Edmond

439

Thermoelectric Temperature Control  

E-Print Network [OSTI]

the controller can supply the power required to bring the device to the desired temperature and maintain a stableNOTE 201TM TECHNICAL Optimizing Thermoelectric Temperature Control Systems #12;2 May 1995 92 of applications that require extremely stable temperature control. System design can be complex, but improved

Saffman, Mark

440

Static Temperature Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

the caldera in response to volcanic activity, large earthquakes, andor geothermal production. These U.S. Geological Survey temperature measurements, in addition to past...

Note: This page contains sample records for the topic "downhole temperature measurement" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Evaluation of High-Temperature Exposure of Photovoltaic Modules: Preprint  

SciTech Connect (OSTI)

This paper documents measured and modeled PV-module temperatures and evaluates these in the context of the requirements for accelerated testing.

Kurtz, S.; Miller, D.; Kempe, M.; Bosco, N.; Whitefield, K.; Wohlgemuth, J.; Dhere, N.; Zgonena, T.

2009-06-01T23:59:59.000Z

442

Measurement of in-situ stress in salt and rock using NQR techniques  

SciTech Connect (OSTI)

A discussion of how stress and strain affect the quantities which can be measured in an NQR experiment shows that, for stresses of the magnitude to be expected at depths up to about 10,000 feet, quadrupole coupling constants will fall in the range of 1 to 10 kHz for both the sodium and chloride ions in NaCl. The most promising system involves pulsed nuclear double resonance detection; and alterative is to observe the quadrupolar splitting of the NMR signal. Choices to be made in the measurement and mapping techniques are discussed. The well-known perturbation of the homogenous stress field in the neighborhood of a borehole is shown to be advantageous from the point of view of obtaining directional information on the stress. Construction and operation of a borehole stress sensor are considered. The NQR technique seems feasible for measuring the magnitude and direction of underground stress with a resolution of about 25 psi, or 2.5% at 1000 psi. Downhole instrumentation suitable for in-situ determinations of stress appears within the state of the art. Additional tas