Powered by Deep Web Technologies
Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Downhole hydraulic seismic generator  

DOE Patents (OSTI)

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

2

Downhole hydraulic seismic generator  

DOE Patents (OSTI)

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole. 4 figs.

Gregory, D.L.; Hardee, H.C.; Smallwood, D.O.

1990-01-01T23:59:59.000Z

3

Downhole hydraulic seismic generator  

DOE Patents (OSTI)

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole. 4 figs.

Gregory, D.L.; Hardee, H.C.; Smallwood, D.O.

1990-12-31T23:59:59.000Z

4

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400 level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

Bjorn N. P. Paulsson

2006-09-30T23:59:59.000Z

5

Downhole Seismic Monitoring at the Geysers  

DOE Green Energy (OSTI)

A 500-ft length, 6-level, 3-component, vertical geophone array was permanently deployed within the upper 800 ft of Unocal's well GDCF 63-29 during a plug and abandonment operation on April 7, 1998. The downhole array remains operational after a period of 1 year, at a temperature of about 150 C. Continuous monitoring and analysis of shallow seismicity (<4000 ft deep) has been conducted over that same 1-year period. The downhole array was supplemented with 4 surface stations in late-1998 and early-1999 to help constrain locations of shallow seismicity. Locations occurring within about 1 km ({approximately}3000 ft) of the array have been determined for a subset of high-frequency events detected on the downhole and surface stations for the 10-week period January 6 to March 16, 1999. These events are distinct from surface-monitored seismicity at The Geysers in that they occur predominantly above the producing reservoir, at depths ranging from about 1200 to 4000 ft depth (1450 to -1350 ft elevation). The shallow seismicity shows a northeast striking trend, similar to seismicity trends mapped deeper within the reservoir and the strike of the predominant surface lineament observed over the productive field.

Rutledge, J.T.; Anderson, T.D.; Fairbanks, T.D.; Albright, J.N.

1999-10-17T23:59:59.000Z

6

Deep Downhole Seismic Testing for Earthquake Engineering Studies  

Science Conference Proceedings (OSTI)

Downhole seismic testing is one field test that is commonly used to determine compression-wave (P) and shear-wave (S) velocity profiles in geotechnical earthquake engineering investigations. These profiles are required input in evaluations of the responses to earthquake shaking of geotechnical sites and structures at these sites. In the past, traditional downhole testing has generally involved profiling in the 30- to 150-m depth range. As the number of field seismic investigations at locations with critical facilities has increased, profiling depths have also increased. An improved downhole test that can be used for wave velocity profiling to depths of 300 to 600 m or more is presented.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh; Rohay, Alan C.

2008-10-17T23:59:59.000Z

7

Down-hole periodic seismic generator  

DOE Patents (OSTI)

A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, H.C.; Hills, R.G.; Striker, R.P.

1982-10-28T23:59:59.000Z

8

Development of a HT seismic downhole tool.  

Science Conference Proceedings (OSTI)

Enhanced Geothermal Systems (EGS) require the stimulation of the drilled well, likely through hydraulic fracturing. Whether fracturing of the rock occurs by shear destabilization of natural fractures or by extensional failure of weaker zones, control of the fracture process will be required to create the flow paths necessary for effective heat mining. As such, microseismic monitoring provides one method for real-time mapping of the fractures created during the hydraulic fracturing process. This monitoring is necessary to help assess stimulation effectiveness and provide the information necessary to properly create the reservoir. In addition, reservoir monitoring of the microseismic activity can provide information on reservoir performance and evolution over time. To our knowledge, no seismic tool exists that will operate above 125 C for the long monitoring durations that may be necessary. Replacing failed tools is costly and introduces potential errors such as depth variance, etc. Sandia has designed a high temperature seismic tool for long-term deployment in geothermal applications. It is capable of detecting microseismic events and operating continuously at temperatures up to 240 C. This project includes the design and fabrication of two High Temperature (HT) seismic tools that will have the capability to operate in both temporary and long-term monitoring modes. To ensure the developed tool meets industry requirements for high sampling rates (>2ksps) and high resolution (24-bit Analog-to-Digital Converter) two electronic designs will be implemented. One electronic design will utilize newly developed 200 C electronic components. The other design will use qualified Silicon-on-Insulator (SOI) devices and will have a continuous operating temperature of 240 C.

Maldonado, Frank P.; Greving, Jeffrey J.; Henfling, Joseph Anthony; Chavira, David J.; Uhl, James Eugene; Polsky, Yarom

2009-06-01T23:59:59.000Z

9

Advanced motor driven clamped borehole seismic receiver  

DOE Patents (OSTI)

A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

Engler, B.P.; Sleefe, G.E.; Striker, R.P.

1993-02-23T23:59:59.000Z

10

Modelling Of Downhole Seismic Sources I: Literature Review, Review Of Fundamentals, Impulsive Point Source In A Borehole  

E-Print Network (OSTI)

This paper represents the first of a two paper sequence comprising a multi-faceted introduction to the numerical and analytical modelling of seismic sources in a borehole.

Meredith, J. A.

1990-01-01T23:59:59.000Z

11

Category:Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Downhole Techniques page? For detailed information on Downhole Techniques as exploration techniques, click here. Category:Downhole Techniques Add.png Add a new Downhole Techniques Technique Subcategories This category has the following 5 subcategories, out of 5 total. B [×] Borehole Seismic Techniques‎ 2 pages F [×] Formation Testing Techniques‎ O [×] Open-Hole Techniques‎ W [×] Well Log Techniques‎ 17 pages [×] Well Testing Techniques‎ 8 pages

12

Downhole pipe selection for acoustic telemetry  

DOE Patents (OSTI)

A system is described for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver. 7 figs.

Drumheller, D.S.

1995-12-19T23:59:59.000Z

13

Downhole pipe selection for acoustic telemetry  

DOE Patents (OSTI)

A system for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver.

Drumheller, Douglas S. (Cedar Crest, NM)

1995-01-01T23:59:59.000Z

14

Downhole telemetry system  

DOE Patents (OSTI)

A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit. 7 figs.

Normann, R.A.; Kadlec, E.R.

1994-11-08T23:59:59.000Z

15

Downhole steam quality measurement  

SciTech Connect

An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Muir, James F. (Albuquerque, NM); Wayland, Jr., J. Robert (Albuquerque, NM)

1987-01-01T23:59:59.000Z

16

Downhole Data Transmission System  

DOE Patents (OSTI)

A system for transmitting data through a string of down-hole components. In accordance with one aspect, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each downhole component includes a pin end and a box end, with the pin end of one downhole component being adapted to be connected to the box end of another. Each pin end includes external threads and an internal pin face distal to the external threads. Each box end includes an internal shoulder face with internal threads distal to the internal shoulder face. The internal pin face and the internal shoulder face are aligned with and proximate each other when the pin end of the one component is threaded into a box end of the other component.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT)

2004-04-06T23:59:59.000Z

17

Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

Downhole Techniques Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Techniques Details Activities (0) Areas (0) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Determination of lithology, grain size Stratigraphic/Structural: Thickness and geometry of rock strata, fracture identification Hydrological: Porosity, permeability, water saturation Thermal: Formation temperature with depth Dictionary.png Downhole Techniques: Downhole techniques are measurements collected from a borehole environment which provide information regarding the character of formations and fluids

18

Three phase downhole separator process  

DOE Patents (OSTI)

Three Phase Downhole Separator Process (TPDSP) is a process which results in the separation of all three phases, (1) oil, (2) gas, and (3) water, at the downhole location in the well bore, water disposal injection downhole, and oil and gas production uphole.

Cognata, Louis John (Baytown, TX)

2008-06-24T23:59:59.000Z

19

Downhole steam generator having a downhole oxidant compressor  

SciTech Connect

Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

20

Remote down-hole well telemetry  

DOE Patents (OSTI)

The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Coates, Don M. (Santa Fe, NM); Freund, Samuel M. (Los Alamos, NM)

2004-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Downhole transmission system  

DOE Patents (OSTI)

A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.

Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

2008-01-15T23:59:59.000Z

22

Downhole Fluid Analyzer Development  

SciTech Connect

A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

Bill Turner

2006-11-28T23:59:59.000Z

23

Fluid driven torsional dipole seismic source  

DOE Patents (OSTI)

A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provides. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder of an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping. 4 figs.

Hardee, H.C.

1990-08-08T23:59:59.000Z

24

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS  

SciTech Connect

The development work during this quarter was focused in the assembly of the downhole power generator hardware and its electronics module. The quarter was also spent in the development of the surface system electronics and software to extract the acoustic data transmitted from downhole to the surface from the noise generated by hydrocarbon flow in wells and to amplify very small acoustic signals to increase the distance between the downhole tool and the surface receiver. The tasks accomplished during this report period were: (1) Assembly of the downhole power generator mandrel for generation of electrical power due to flow in the wellbore. (2) Test the piezoelectric wafers to assure that they are performing properly prior to integrating them to the mechanical power generator mandrel. (3) Coat the power generator wafers to prevent water from shorting the power generator wafers. (4) Test of the power generator using a water tower and an electric pump to create a water flow loop. (5) Test the power harvesting electronics module. (6) Upgrade the signal condition and amplification from downhole into the surface system. (7) Upgrade the surface processing system capability to process data faster. (8) Create a new filtering technique to extract the signal from noise after the data from downhole is received at the surface system.

Paul Tubel

2004-02-01T23:59:59.000Z

25

Downhole steam injector  

SciTech Connect

An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

Donaldson, A. Burl (Albuquerque, NM); Hoke, Donald E. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

26

RECEIVED  

NLE Websites -- All DOE Office Websites (Extended Search)

40 40 ri,if--,r7n11-74"vtl Lit0 tait":,0 RECEIVED FFII 2 8 S96 OSTI The Winds of (Evolutionary) Change: Breathing New Life into Microbiology Gary J. Olsen,* Carl R. Woese,* and Ross A. Overbeekt DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark,

27

Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Downhole Fluid Sampling Downhole Fluid Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Fluid Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Gas composition and source of fluids. Thermal: Water temperature. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Downhole Fluid Sampling: Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole

28

Downhole steam quality measurement  

DOE Patents (OSTI)

The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

1985-06-19T23:59:59.000Z

29

Downhole Data Transmission System  

DOE Patents (OSTI)

A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT)

2003-12-30T23:59:59.000Z

30

DOE-Sponsored Project Pushes the Limits of Seismic-While-Drilling  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Pushes the Limits of Seismic-While-Drilling Project Pushes the Limits of Seismic-While-Drilling Technology DOE-Sponsored Project Pushes the Limits of Seismic-While-Drilling Technology August 12, 2009 - 1:00pm Addthis Washington, DC - In a project sponsored by the U.S. Department of Energy, Technology International Inc. has developed a breakthrough borehole imaging system that stands on the cusp of commercialization. By pushing the limits of seismic-while-drilling technology, the patent-pending SeismicPULSER system provides more accurate geo-steering for the discovery of new oil and natural gas reserves, facilitating new field development and improving well economics. Drill-bit seismic-while-drilling techniques use a downhole acoustic source and receivers at the surface to create real-time images that allow

31

Downhole tool adapted for telemetry  

DOE Patents (OSTI)

A cycleable downhole tool such as a Jar, a hydraulic hammer, and a shock absorber adapted for telemetry. This invention applies to other tools where the active components of the tool are displaced when the tool is rotationally or translationally cycled. The invention consists of inductive or contact transmission rings that are connected by an extensible conductor. The extensible conductor permits the transmission of the signal before, after, and during the cycling of the tool. The signal may be continuous or intermittent during cycling. The invention also applies to downhole tools that do not cycle, but in operation are under such stress that an extensible conductor is beneficial. The extensible conductor may also consist of an extensible portion and a fixed portion. The extensible conductor also features clamps that maintain the conductor under stresses greater than that seen by the tool, and seals that are capable of protecting against downhole pressure and contamination.

Hall, David R. (Provo, UT); Fox, Joe (Provo, UT)

2010-12-14T23:59:59.000Z

32

Advanced Seismic While Drilling System  

SciTech Connect

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

33

Battery switch for downhole tools  

Science Conference Proceedings (OSTI)

An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

Boling, Brian E. (Sugar Land, TX)

2010-02-23T23:59:59.000Z

34

Apparatus for downhole drilling communications and method for making and using the same  

DOE Patents (OSTI)

An apparatus for downhole drilling communications is presented. The apparatus includes a spool and end pieces for maintaining the spool at the bottom of a drill string near a drill bit during drilling operations. The apparatus provides a cable for communicating signals between a downhole electronics package and a surface receiver in order to perform measurements while drilling. A method of forming the apparatus is also set forth wherein the apparatus is formed about a central spindle and lathe.

Normann, Randy A. (Edgewood, NM); Lockwood, Grant J. (Albuquerque, NM); Gonzales, Meliton (Albuquerque, NM)

1998-01-01T23:59:59.000Z

35

Apparatus for downhole drilling communications and method for making and using the same  

DOE Patents (OSTI)

An apparatus for downhole drilling communications is presented. The apparatus includes a spool and end pieces for maintaining the spool at the bottom of a drill string near a drill bit during drilling operations. The apparatus provides a cable for communicating signals between a downhole electronics package and a surface receiver in order to perform measurements while drilling. A method of forming the apparatus is also set forth wherein the apparatus is formed about a central spindle and lathe. 6 figs.

Normann, R.A.; Lockwood, G.J.; Gonzales, M.

1998-03-03T23:59:59.000Z

36

Downhole steam generator having a downhole oxidant compressor  

DOE Patents (OSTI)

Am improved apparatus is described for the downhole injection of steam into boreholes, for tertiary oil recovery. It includes an oxidant supply, a fuel supply, an igniter, a water supply, an oxidant compressor, and a combustor assembly. The apparatus is designed for efficiency, preheating of the water, and cooling of the combustion chamber walls. The steam outlet to the borehole is provided with pressure-responsive doors for closing the outlet in response to flameout. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

37

Downhole pulse radar  

DOE Patents (OSTI)

A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

Chang, Hsi-Tien

1987-09-28T23:59:59.000Z

38

Downhole pulse radar  

DOE Patents (OSTI)

A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

Chang, Hsi-Tien (Albuquerque, NM)

1989-01-01T23:59:59.000Z

39

Corrosion reference for geothermal downhole materials selection  

DOE Green Energy (OSTI)

Geothermal downhole conditions that may affect the performance and reliability of selected materials and components used in the drilling, completion, logging, and production of geothermal wells are reviewed. The results of specific research and development efforts aimed at improvement of materials and components for downhole contact with the hostile physicochemical conditions of the geothermal reservoir are discussed. Materials and components covered are tubular goods, stainless steels and non-ferrous metals for high-temperature downhole service, cements for high-temperature geothermal wells, high-temperature elastomers, drilling and completion tools, logging tools, and downhole pumps. (MHR)

Ellis, P.F. II, Smith, C.C.; Keeney, R.C.; Kirk, D.K.; Conover, M.F.

1983-03-01T23:59:59.000Z

40

Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Borehole Seismic Techniques Borehole Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Borehole Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation Thermal: High temperatures and pressure impact the compressional and shear wave velocities

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Downhole material injector for lost circulation control  

DOE Patents (OSTI)

This invention is comprised of an apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

Glowka, D.A.

1991-12-31T23:59:59.000Z

42

Downhole material injector for lost circulation control  

DOE Patents (OSTI)

This invention is comprised of an apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

Glowka, D.A.

1991-01-01T23:59:59.000Z

43

Downhole material injector for lost circulation control  

DOE Patents (OSTI)

Apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

Glowka, David A. (Tijeras, NM)

1994-01-01T23:59:59.000Z

44

Downhole material injector for lost circulation control  

DOE Patents (OSTI)

Apparatus and method are disclosed for simultaneously and separately emplacing two streams of different materials through a drill string in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drill string at the desired downhole location and harden only after mixing for control of a lost circulation zone. 6 figs.

Glowka, D.A.

1994-09-06T23:59:59.000Z

45

Downhole steam injector. [Patent application  

DOE Patents (OSTI)

An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

Donaldson, A.B.; Hoke, E.

1981-06-03T23:59:59.000Z

46

Harsh environments electronics : downhole applications.  

Science Conference Proceedings (OSTI)

The development and operational sustainment of renewable (geothermal) and non-renewable (fossil fuel) energy resources will be accompanied by increasingly higher costs factors: exploration and site preparation, operational maintenance and repair. Increased government oversight in the wake of the Gulf oil spill will only add to the cost burden. It is important to understand that downhole conditions are not just about elevated temperatures. It is often construed that military electronics are exposed to the upper limit in terms of extreme service environments. Probably the harshest of all service conditions for electronics and electrical equipment are those in oil, gas, and geothermal wells. From the technology perspective, advanced materials, sensors, and microelectronics devices are benefificial to the exploration and sustainment of energy resources, especially in terms of lower costs. Besides the need for the science that creates these breakthroughs - there is also a need for sustained engineering development and testing. Downhole oil, gas, and geothermal well applications can have a wide range of environments and reliability requirements: Temperature, Pressure, Vibration, Corrosion, and Service duration. All too frequently, these conditions are not well-defifined because the application is labeled as 'high temperature'. This ambiguity is problematic when the investigation turns to new approaches for electronic packaging solutions. The objective is to develop harsh environment, electronic packaging that meets customer requirements of cost, performance, and reliability. There are a number of challenges: (1) Materials sets - solder alloys, substrate materials; (2) Manufacturing process - low to middle volumes, low defect counts, new equipment technologies; and (3) Reliability testing - requirements documents, test methods and modeling, relevant standards documents. The cost to develop and sustain renewable and non-renewable energy resources will continue to escalate within the industry. Downhole electronics can provide a very cost-effective approach for well exploration and sustainment (data logging). However, the harsh environments are a 'game-changer' in terms defining materials, assembly processes and the long-term reliability of downhole electronic systems. The system-level approach will enable the integration of each of these contributors - materials, processes, and reliability - in order to deliver cost-effective electronics that meet customer requirements.

Vianco, Paul Thomas

2011-03-01T23:59:59.000Z

47

Insights from the downhole dynamometer database  

SciTech Connect

The Downhole Dynamometer Database is a compilation of test data collected with a set of five downhole tools built by Albert Engineering under contract to Sandia National Laboratories. The downhole dynamometer tools are memory tools deployed in the sucker rod string with sensors to measure pressure, temperature, load, and acceleration. The acceleration data is processed to yield position, so that a load vs. position dynagraph can be generated using data collected downhole. With five tools in the hole at one time, all measured data and computed dynagraphs from five different positions in the rod string are available. The purpose of the Database is to provide industry with a complete and high quality measurement of downhole sucker rod pumping dynamics. To facilitate use of the database, Sandia has developed a Microsoft Windows-based interface that functions as a visualizer and browser to the more than 40 MBytes of data. The interface also includes a data export feature to allow users to extract data from the database for use in their own programs. Following a brief description of the downhole dynamometer tools, data collection program, and database content, this paper will illustrate a few of the interesting and unique insights gained from the downhole data.

Waggoner, J.R.

1997-03-01T23:59:59.000Z

48

Definition: Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Downhole Fluid Sampling Jump to: navigation, search Dictionary.png Downhole Fluid Sampling Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole fluid sampling is typically performed to monitor water quality, study recharge and flow in groundwater systems, and evaluate resource potential of geothermal reservoirs. Analysis of both the liquid and gas fractions of the reservoir fluid allows for detailed characterize the chemical, thermal, or hydrological properties of the subsurface hydrothermal system. View on Wikipedia Wikipedia Definition Ret Like Like You like this.Sign Up to see what your friends like.

49

Definition: Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

Downhole Techniques Downhole Techniques Jump to: navigation, search Dictionary.png Downhole Techniques Downhole techniques are measurements collected from a borehole environment which provide information regarding the character of formations and fluids intersected by a well. These petrophysical data are fundamental to developing the understanding of a geothermal reservoir.[1] View on Wikipedia Wikipedia Definition Petrophysics (from the Greek πέτρα, petra, "rock" and φύσις, physis, "nature") is the study of physical and chemical rock properties and their interactions with fluids. A major application of petrophysics is in studying reservoirs for the hydrocarbon industry. Petrophysicists are employed to help reservoir engineers and geoscientists understand the rock properties of the reservoir, particularly how pores in

50

Downhole vibration sensing by vibration energy harvesting  

E-Print Network (OSTI)

This thesis outlines the design of a prototype electromagnetic induction vibration energy harvesting device for use in a downhole environment. First order models of the necessary components for a generic vibration energy ...

Trimble, A. Zachary

2007-01-01T23:59:59.000Z

51

DHE (downhole heat exchangers). [Downhole Heat Exchangers (DHE)  

DOE Green Energy (OSTI)

The use of downhole heat exchangers (DHE) for residential or commercial space and domestic water heating and other applications has several desirable features. Systems are nearly or completely passive -- that is, no or very little geothermal water or steam is produced from the well either reducing or completely eliminating surface environmental concerns and the need for disposal systems or injection wells. Initial cost of pumps and installation are eliminated or reduced along with pumping power costs and maintenance costs associated with pumping often corrosive geothermal fluids. Many residential and small commercial systems do not require circulating pumps because the density difference in the incoming and outgoing sides of the loop are sufficient to overcome circulating friction losses in the entire system. The major disadvantage of DHEs is their dependence on natural heat flow. In areas where geological conditions provide high permeability and a natural hydraulic gradient, DHEs can provide a substantial quantity of heat. A single 500-ft (152 m) well in Klamath Falls, Oregon, supplies over one megawatt thermal and output is apparently limited by the surface area of pipe that can be installed in the well bore. In contrast, DHEs used in conjunction with heat pumps may supply less than 8 KW from a well of similar depth. Here output is limited by conductive heat flow with perhaps a small contribution from convection near the well bore. The highest capacity DHE reported to date, in Turkey, supplies 6 MW thermal from an 820-ft (250 m) well. There were two main goals for this project. The first was to gather, disseminate and exchange internationally information on DHES. The second was to perform experiments that would provide insight into well bore/aquifer interaction and thereby provide more information on which to base DHE designs. 27 refs., 31 figs., 3 tabs.

Culver, G.

1990-11-01T23:59:59.000Z

52

275 C Downhole Microcomputer System  

SciTech Connect

An HC11 controller IC and along with serial SRAM and ROM support ICs chip set were developed to support a data acquisition and control for extreme temperature/harsh environment conditions greater than 275 C. The 68HC11 microprocessor is widely used in well logging tools for control, data acquisition, and signal processing applications and was the logical choice for a downhole controller. This extreme temperature version of the 68HC11 enables new high temperature designs and additionally allows 68HC11-based well logging tools and MWD tools to be upgraded for high temperature operation in deep gas reservoirs, The microcomputer chip consists of the microprocessor ALU, a small boot ROM, 4 kbyte data RAM, counter/timer unit, serial peripheral interface (SPI), asynchronous serial interface (SCI), and the A, B, C, and D parallel ports. The chip is code compatible with the single chip mode commercial 68HC11 except for the absence of the analog to digital converter system. To avoid mask programmed internal ROM, a boot program is used to load the microcomputer program from an external mask SPI ROM. A SPI RAM IC completes the chip set and allows data RAM to be added in 4 kbyte increments. The HC11 controller IC chip set is implemented in the Peregrine Semiconductor 0.5 micron Silicon-on-Sapphire (SOS) process using a custom high temperature cell library developed at Oklahoma State University. Yield data is presented for all, the HC11, SPI-RAM and ROM. The lessons learned in this project were extended to the successful development of two high temperature versions of the LEON3 and a companion 8 Kbyte SRAM, a 200 C version for the Navy and a 275 C version for the gas industry.

Chris Hutchens; Hooi Miin Soo

2008-08-31T23:59:59.000Z

53

Loaded transducer for downhole drilling components  

DOE Patents (OSTI)

A system for transmitting information between downhole components has a first downhole component with a first mating surface and a second downhole component having a second mating surface configured to substantially mate with the first mating surface. The system also has a first transmission element with a first communicating surface and is mounted within a recess in the first mating surface. The first transmission element also has an angled surface. The recess has a side with multiple slopes for interacting with the angled surface, each slope exerting a different spring force on the first transmission element. A second transmission element has a second communicating surface mounted proximate the second mating surface and adapted to communicate with the first communicating surface.

Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT); Daly, Jeffery E. (Cypress, TX)

2009-05-05T23:59:59.000Z

54

Dual-cone double-helical downhole logging device  

DOE Patents (OSTI)

A broadband downhole logging device includes a double-helix coil wrapped over a dielectric support and surrounded by a dielectric shield. The device may also include a second coil longitudinally aligned with a first coil and enclosed within the same shield for measuring magnetic permeability of downhole formations and six additional coils for accurately determining downhole parameters.

Yu, Jiunn S. (Albuquerque, NM)

1984-01-01T23:59:59.000Z

55

Loaded Transducer Fpr Downhole Drilling Component  

DOE Patents (OSTI)

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2005-07-05T23:59:59.000Z

56

Vertical Seismic Profiling | Open Energy Information  

Open Energy Info (EERE)

Vertical Seismic Profiling Vertical Seismic Profiling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Seismic Profiling Details Activities (4) Areas (3) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

57

Evaluation of borehole electromagnetic and seismic detection of fractures  

DOE Green Energy (OSTI)

Experiments were conducted to establish the feasibility of downhole high-frequency techniques for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. The first method used an electromagnetic wave at 30 to 300 MHz, vhf frequencies. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole vhf radar for use in a single borehole for detection of fractures located away from the borehole. Similar experiments were also conducted using seismic waves at 4.5 to 6 KHz. The transmitter and the receiver in this case were located in separate boreholes. During this experiment, reflections from the slot were obtained only with the transducers oriented for shear wave illumination and detection. These results suggest that a high-frequency shear wave can also be used to detect fractures away from a borehole.

Chang, H.T.; Suhler, S.A.; Owen, T.E.

1984-02-01T23:59:59.000Z

58

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS  

SciTech Connect

The third quarter of the project was dedicated to creating the detailed design for the manufacturing of the mechanical system for wireless communications and the power generation module. Another emphasis for the quarter was the development of the surface system and acoustic detector for the downhole tool for 2 way communications. The tasks accomplished during this report period were: (1) All detailed drawings for manufacturing of the wireless communications gauge and power generator were completed and the drawings were forward to a machine shop for manufacturing. (2) The power generator was incorporated to the mandrel of the wireless gauge reducing the length of the tool by 25% and manufacturing cost by about 35%. (3) The new piezoelectric acoustic generator was manufactured successfully and it was delivered during this quarter. The assembly provides a new technique to manufacture large diameter piezoelectric based acoustic generators. (4) The acoustic two-way communications development progressed significantly. The real time firmware for the surface system was developed and the processor was able to detect and process the data frame transmitted from downhole. The analog section of the tool was also developed and it is being tested for filtering capabilities and signal detection and amplification. (5) The new transformer to drive the piezoelectric wafer assembly was designed and manufactured. The transformer has been received and it will go through testing and evaluation during the next quarter.

Paul Tubel

2003-07-05T23:59:59.000Z

59

Turbocompressor downhole steam-generating system  

SciTech Connect

This patent describes a downhole steam-generating system comprising: an air compressor; a steam generating unit, including: a combustor for combusting fuel with the compressed air from the compressor producing combustor exhaust products; and steam conversion means, in indirect heat-exchange relationship with the combustor, for converting water which is fed into the steam-conversion means into steam; a turbine which is rotated by the combustor exhaust products and steam from the steam-generating unit, the rotational motion of the turbine is mechanically coupled to the air compressor to drive the air compressor; and control bypass means associated with the steam generating unit and turbine for regulating the relative amounts of the combustor exhaust product and steam delivered to the turbine from the steam generating unit. The air compressor and turbine form an integral turbocompressor unit. The turbocompressor unit, steam-generating unit and control bypass means are located downhole during operation of the steam-generating system.

Wagner, W.R.

1987-07-28T23:59:59.000Z

60

Downhole steam generator at Kern River  

SciTech Connect

Testing of a prototype down-hole steam generator for use in enhanced oil recovery (EOR) operations has begun at a heavy oil reservoir in the Kern River oil field in California. Steam and combustion gases are directed into an 800-ft-deep reservoir through a standard surface steam delivery system, although the system is designed to function at depths to 4500 ft. Present steam injection techniques require one-third of the oil recovered to be used to fuel the injection system, and the boilers require scrubbers to control emissions to specifications. The down-hole system is expected to use only 2/3 as much fuel as the conventional systems and to have less impact on air quality.

Rintoul, B.

1980-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Data transmission element for downhole drilling components  

DOE Patents (OSTI)

A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2006-01-31T23:59:59.000Z

62

Polished Downhole Transducer Having Improved Signal Coupling  

DOE Patents (OSTI)

Apparatus and methods to improve signal coupling in downhole inductive transmission elements to reduce the dispersion of magnetic energy at the tool joints and to provide consistent impedance and contact between transmission elements located along the drill string. A transmission element for transmitting information between downhole tools is disclosed in one embodiment of the invention as including an annular core constructed of a magnetically conductive material. The annular core forms an open channel around its circumference and is configured to form a closed channel by mating with a corresponding annular core along an annular mating surface. The mating surface is polished to provide improved magnetic coupling with the corresponding annular core. An annular conductor is disposed within the open channel.

Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

2006-03-28T23:59:59.000Z

63

Definition: Vertical Seismic Profiling | Open Energy Information  

Open Energy Info (EERE)

Profiling Profiling Jump to: navigation, search Dictionary.png Vertical Seismic Profiling Vertical Seismic Profile (VSP) is a technique of seismic measurements used for high resolution seismic imaging. It can also be used for correlation with surface seismic data providing velocity information and information for processing such as deconvolution parameters. The defining characteristic of a VSP is that the detectors are in a borehole.[1][2][3] View on Wikipedia Wikipedia Definition Also Known As Advanced Borehole Seismology (ABS), Related Terms Seismic Techniques, High Resolution Imaging and Monitoring References ↑ Bob Hardage VSP Principles ↑ High resolution 3D seismic imaging using 3C data from large downhole seismic arrays Paulsson et al. (2004) ↑ Mueller Soroka Paulsson (2010)

64

Downhole drilling network using burst modulation techniques  

DOE Patents (OSTI)

A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

2007-04-03T23:59:59.000Z

65

Method and apparatus of assessing down-hole drilling conditions  

DOE Patents (OSTI)

A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

2007-04-24T23:59:59.000Z

66

Downhole tool sniffs out fractures  

SciTech Connect

This article reports that a new tool has been designed and successfully tested that can designate which direction from a borehole a particular fracture is located. Albuquerque-based Sandia National Laboratories tested the new tool. The prototype was built by Southwest Research Institute of San Antonio. During field tests, the tool detected simulated fractures more than 30 ft away from a test borehole. It determines fracture direction by transmitting highly directional and powerful radar pulses in a known direction. The pulses last eight billionths of a second and their frequency spectrum range up to the VHF (very high frequency) band. Discontinuities in the rock interrupt and reflect radar signals so that a signal's return to the tool indicates the presence of fractures. The return signal's time delay translates into distance from the borehole. The transmitter and receiver rotate in place, permitting the tool to scan for fractures in all directions.

Not Available

1987-05-01T23:59:59.000Z

67

Static downhole characteristics of well CGEH-1 at Coso Hot Springs...  

Open Energy Info (EERE)

Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Static downhole...

68

IDENTIFYING ABBERANT SEGMENTS IN PERMANENT DOWNHOLE GAUGE DATA  

E-Print Network (OSTI)

for interpretation of subsurface conditions in a well. The data from permanent downhole gauges are voluminous the world supplying continuous real time data about subsurface reservoir conditions. Permanent downhole gauges are used in reservoir monitoring and management by interpreting the pressure, flow rate

69

Upgrades in thermal protection for downhole instruments  

DOE Green Energy (OSTI)

Measurement of geophysical parameters in progressively deeper and hotter wells has prompted design changes that improve the performance of downhole instruments and their associated thermal protection systems. This report provides a brief description of the mechanical and thermal loads to which these instruments and systems are subjected. Each design change made to the passive thermal protection system is described along with its resulting improvement. An outline of work being done to scope an active thermal protection system and the preliminary qualitative results are also described. 3 refs., 4 figs.

Bennett, G.A.

1985-01-01T23:59:59.000Z

70

Method for bonding a transmission line to a downhole tool  

SciTech Connect

An apparatus for bonding a transmission line to the central bore of a downhole tool includes a pre-formed interface for bonding a transmission line to the inside diameter of a downhole tool. The pre-formed interface includes a first surface that substantially conforms to the outside contour of a transmission line and a second surface that substantially conforms to the inside diameter of a downhole tool. In another aspect of the invention, a method for bonding a transmission line to the inside diameter of a downhole tool includes positioning a transmission line near the inside wall of a downhole tool and placing a mold near the transmission line and the inside wall. The method further includes injecting a bonding material into the mold and curing the bonding material such that the bonding material bonds the transmission line to the inside wall.

Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

2007-11-06T23:59:59.000Z

71

Downhole delay assembly for blasting with series delay  

DOE Patents (OSTI)

A downhole delay assembly is provided which can be placed into a blasthole for initiation of explosive in the blasthole. The downhole delay assembly includes at least two detonating time delay devices in series in order to effect a time delay of longer than about 200 milliseconds in a round of explosions. The downhole delay assembly provides a protective housing to prevent detonation of explosive in the blasthole in response to the detonation of the first detonating time delay device. There is further provided a connection between the first and second time delay devices. The connection is responsive to the detonation of the first detonating time delay device and initiates the second detonating time delay device. A plurality of such downhole delay assemblies are placed downhole in unfragmented formation and are initiated simultaneously for providing a round of explosive expansions. The explosive expansions can be used to form an in situ oil shale retort containing a fragmented permeable mass of formation particles.

Ricketts, Thomas E. (Grand Junction, CO)

1982-01-01T23:59:59.000Z

72

Data Transmission System For A Downhole Component  

DOE Patents (OSTI)

The invention is a system for transmitting data through a string of downhole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Fox, Joe (Spanish Fork, UT); Briscoe, Michael (Lehi, UT)

2005-01-18T23:59:59.000Z

73

Applications of a downhole programmable microprocessor for a geothermal borehole inspection tool  

DOE Green Energy (OSTI)

The high-temperature scanning borehole inspection system is currently being developed jointly by the Los Alamos National Laboratory (LANL) and Westfalische Berggewerkschaftskasse (WBK) of West Germany. The downhole instrument is a digital televiewer that utilized a microprocessor to digitize, process and transmit the acoustic information to the surface acquisition and control system. The primary operation of the downhole acoustic assembly uses a piezoelectric crystal acting as a receiver-transmitter which is mounted on the rotating head. The crystal emits a burst of acoustic energy that propagates through the borehole fluid with a portion of the energy reflected by the borehole wall back to the crystal. The time of travel and the amplitude of the reflected signal are conditioned by the microprocessor and transmitted along with other pertinent data to the surface data processing center. This instrument has been designed specifically for use in geothermal borehole environments to determine the location of fractures intersecting the borehole and provide information concerning overall borehole conditions. It may also be used for definitive casing inspection. The instrument essentially eliminates operator interaction for downhole control and simplifies assembly and maintenance procedures.

Jermance, R.L.; Moore, T.K.; Archuleta, J.; Hinz, K.

1987-01-01T23:59:59.000Z

74

Category:Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Borehole Seismic Techniques page? Borehole Seismic Techniques page? For detailed information on Borehole Seismic Techniques as exploration techniques, click here. Category:Borehole Seismic Techniques Add.png Add a new Borehole Seismic Techniques Technique Pages in category "Borehole Seismic Techniques" The following 2 pages are in this category, out of 2 total. S Single-Well And Cross-Well Seismic V Vertical Seismic Profiling Retrieved from "http://en.openei.org/w/index.php?title=Category:Borehole_Seismic_Techniques&oldid=601962" Category: Downhole Techniques What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

75

Multipurpose Acoustic Sensor for Downhole Fluid Monitoring  

Science Conference Proceedings (OSTI)

The projects objectives and purpose are to: (1) development a multipurpose acoustic sensor for downhole fluid monitoring in Enhanced Geothermal Systems (EGS) reservoirs over typical ranges of pressures and temperatures and demonstrate its capabilities and performance for different EGS systems; (2) determine in real-time and in a single sensor package several parameters - temperature, pressure, fluid flow and fluid properties; (3) needed in nearly every phase of an EGS project, including Testing of Injection and Production Wells, Reservoir Validation, Inter-well Connectivity, Reservoir Scale Up and Reservoir Sustainability. (4) Current sensors are limited to operating at lower temperatures, but the need is for logging at high temperatures. The present project deals with the development of a novel acoustic-based sensor that can work at temperatures up to 374 C, in inhospitable environments.

Pantea, Cristian [Los Alamos National Laboratory

2012-05-04T23:59:59.000Z

76

Downhole Temperature Prediction for Drilling Geothermal Wells  

DOE Green Energy (OSTI)

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

77

Description of a high temperature downhole fluid sampler  

DOE Green Energy (OSTI)

Downhole fluid samplers have been used for years with limited success in high temperature geothermal wells. This paper discusses the development and operating principles of a high temperature downhole fluid sampler, reliable at obtaining samples at temperatures of up to 350/sup 0/C. The sampler was used successfully for recovering a brine sample from a depth of 10,200 ft in the Salton Sea Scientific Drilling Project well.

Solbau, R.; Weres, O.; Hansen, L.; Dudak, B.

1986-05-01T23:59:59.000Z

78

Enhanced Oil Recovery with Downhole Vibrations Stimulation in Osage County, Oklahoma  

Science Conference Proceedings (OSTI)

This Technical Quarterly Report is for the reporting period July 1, 2001 to September 30, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well is permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has begun analyzing the cores recovered from the test well. Standard porosity, permeability and saturation measurements will be conducted. They will then begin the sonic stimulation core tests Calumet Oil Company, the operator of the NBU, has begun to collect both production and injection wells information to establish a baseline for the project in the pilot field test area. Green Country Submersible Pump Company, a subsidiary of Calumet Oil Company, will provide both the surface equipment and downhole tools to allow the Downhole Vibration Tool to be operated by a surface rod rotating system. The 7-inch Downhole Vibration Tool (DHVT) has been built and is ready for initial shallow testing. The shallow testing will be done in a temporarily abandoned well operated by Calumet Oil Co. in the Wynona waterflood unit. The data acquisition doghouse and rod rotating equipment have been placed on location in anticipation of the shallow test in Well No.20-12 Wynona Waterflood Unit. A notice of invention disclosure was submitted to the DOE Chicago Operations Office. DOE Case No.S-98,124 has been assigned to follow the documentation following the invention disclosure. A paper covering the material presented to the Oklahoma Geologic Survey (OGS)/DOE Annual Workshop in Oklahoma City May 8,9 2001 has been submitted for publication to the OGS. A technical paper draft has been submitted for the ASME/ETCE conference (Feb 2002) Production Technology Symposium. A one-day SPE sponsored short course which is planned to cover seismic stimulation efforts around the world, will be offered at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-17, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI will be the instructors. In addition, a proposed technical paper has been submitted for this meeting.

J. Ford Brett; Robert V. Westermark

2001-09-30T23:59:59.000Z

79

Requirements for downhole equipment used for geothermal-well stimulation. Geothermal-reservoir well-stimulation program  

DOE Green Energy (OSTI)

The needs for new and improved down-hole stimulation equipment for geothermal wells are identified. The following kinds of equipment are discussed: mechanical downhole recording instruments, electric line logging tools, and downhole tools used for zone isolation.

Not Available

1982-08-01T23:59:59.000Z

80

Downhole oil/water separators - What's new?  

SciTech Connect

The US Department of Energy's (DOE's) National Petroleum Technology Office is interested in new technologies that can bring oil to the surface at a lower cost or with less environment impact. DOE is particularly interested in technologies that can accomplish both of these goals, and downhole oil/water separators (DOWS) seem to achieve that. They have the potential to reduce operating costs while providing a greater degree of environmental protection. DOE learned of the innovative DOWS technology and funded a team from Argonne National Laboratory, CH2M Hill (a private-sector consulting firm), and the Nebraska Oil and Gas Conservation Commission (a state agency) to conduct an independent evaluation of the technical feasibility, economic viability, and regulatory applicability of the DOWS technology. The results of that investigation were published in January 1999 and represent the most complete publicly available reference material on DOWs technology (the full text of the report can be downloaded from Argonne's website at www.ead.anl.gov). Other abbreviated versions of this information have been published during the past year. Last January, in the 1999 Produced Water Seminar, the author provided an overview of the DOWS technology. For the 2000 Produced Water Seminar, the author is providing updated information on DOWS and related technologies. To set the stage for the new information, the next few sections provided a review of previously reported information.

Veil, J. A.

2000-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Continuous chain bit with downhole cycling capability  

DOE Patents (OSTI)

A continuous chain bit for hard rock drilling is disclosed which is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.

Ritter, D.F.; St. Clair, J.A.; Togami, H.K.

1981-03-17T23:59:59.000Z

82

Continuous chain bit with downhole cycling capability  

DOE Patents (OSTI)

A continuous chain bit for hard rock drilling is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.

Ritter, Don F. (Albuquerque, NM); St. Clair, Jack A. (Albuquerque, NM); Togami, Henry K. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

83

Downhole Vibration Monitoring and Control System  

SciTech Connect

The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. The key feature of this system is its use of a magnetorheological fluid (MRF) to allow the damping coefficient to be changed extensively, rapidly and reversibly without the use of mechanical valves, but only by the application of a current. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Much of the effort was devoted to the design and testing of the MRF damper, itself. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and a final report was issued. Work on Phase III of the project began during the first quarter, 2006, with the objectives of building precommercial prototypes, testing them in a drilling laboratory and the field; developing and implementing a commercialization plan. All of these have been accomplished. The Downhole Vibration Monitoring & Control System (DVMCS) prototypes have been successfully proven in testing at the TerraTek drilling facility and at the Rocky Mountain Oilfield Test Center (RMOTC.) Based on the results of these tests, we have signed a definitive development and distribution agreement with Smith, and commercial deployment is underway. This current version of the DVMCS monitors and controls axial vibrations. Due to time and budget constraints of this program, it was not possible to complete a system that would also deal with lateral and torsional (stick-slip) vibrations as originally planned; however, this effort is continuing without DOE funding.

Martin E. Cobern

2007-09-30T23:59:59.000Z

84

High-Temperature Downhole Tools | Open Energy Information  

Open Energy Info (EERE)

Tools Tools Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for High-Temperature Downhole Tools 2 Geothermal ARRA Funded Projects for High-Temperature Downhole Tools Geothermal Lab Call Projects for High-Temperature Downhole Tools Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

85

RUBBER BEARINGS FOR DOWN-HOLE PUMPS  

DOE Green Energy (OSTI)

Synopsis of project activity: 1998--Awarded cost share grant from DOE. 1st Qtr 1999--Developed fail safe lubricating system. 2nd Qtr 1999--Performed first large scale test with nitrile based bearings. It failed due to material swelling. Failure was blamed on improper tolerance. 3rd Qtr 1999--Material tests were performed with autoclaves and exposure tests to Casa Diablo fluids. Testing of Viton materials began. Alternate bearing designs were developed to limit risk of improper tolerances. 4th Qtr 1999--Site testing indicated a chemical attack on the bearing material caused the test failure and not improper bearing tolerance. 1st Qtr 2000--The assistance of Brookhaven National Laboratory was obtained in evaluating the chemical attack. The National Laboratory also began more elaborate laboratory testing on bearing materials. 2nd Qtr 2000--Testing indicated Viton was an inappropriate material due to degradation in Casa Diablo fluid. Testing of EPDM began. 3rd Qtr 2001--EPDM bearings were installed for another large scale test. Bearings failed again due to swelling. Further testing indicated that larger then expected oil concentrations existed in lubricating water geothermal fluid causing bearing failure. 2002-2003--Searched for and tested several materials that would survive in hot salt and oil solutions. Kalrez{reg_sign}, Viton{reg_sign}ETP 500 and Viton{reg_sign}GF were identified as possible candidates. 2003-2005--Kalrez{reg_sign}has shown superior resistance to downhole conditions at Casa Diablo from among the various materials tested. Viton ETP-500 indicated a life expectancy of 13 years and because it is significantly less expensive then Kalrez{reg_sign}, it was selected as the bearing material for future testing. Unfortunately during the laboratory testing period Dupont Chemical chose to stop manufacturing this specific formulation and replaced it with Viton ETP 600S. The material is available with six different fillers; three based on zinc oxide and three based on silicon oxide. Samples of all six materials have been obtained and are being tested at the National Laboratory in Brookhaven, New York. This new material's properties as a bearing material and its ability to adhere to a bearings shell must be reviewed, but cost information deemed the material to be too expensive to be economical.

Bob Sullivan Mammoth Pacific, L.P.

2005-09-07T23:59:59.000Z

86

Corrosion reference for geothermal downhole materials selection: Overview  

DOE Green Energy (OSTI)

A consolidated reference of materials for downhole equipment used in geothermal energy exploitation is nearing completion. The reference is a summary of recent developments in the areas of tubular goods materials, highly alloyed metals, high temperature cements, high temperature elastomers, drilling and completion tools, logging tools, and downwell pumps. A brief overview is presented in this paper.

Ellis, Peter F.

1982-10-08T23:59:59.000Z

87

Downhole replaceable drill bit: progress report and program plan  

DOE Green Energy (OSTI)

The significant progress in the development of the downhole replaceable drill bit which had been completed by the end of January 1976 is reviewed. A long-range program plan is included to indicate the level of effort required to bring this system to commercial production.

Newsom, M.M.; St. Clair, J.A.; Ashmore, R.F.; Dodd, H.M. Jr.

1976-06-01T23:59:59.000Z

88

Downhole steam generator with improved preheating, combustion, and protection features  

DOE Patents (OSTI)

For tertiary oil recovery, a downhole steam generator is designed which provides for efficient counterflow cooling of the combustion chamber walls and preheating of the fuel and water. Pressure-responsive doors are provided for closing and opening the outlet in response to flameout, thereby preventing flooding of the combustion chamber. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

89

Comparative evaluation of surface and downhole steam-generation techniques  

Science Conference Proceedings (OSTI)

It has long been recognized that the application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil-bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. This paper compares the technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses, with (a) thermally efficient delivery (through insulated strings) of surface generated steam, (b) low pressure combustion downhole steam generation, (c) high pressure combustion downhole steam generation using air as the oxygen source, and (d) high pressure combustion downhole steam generation substituting pure oxygen for air. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality. Therefore, a parametric analysis has been performed which examines varying depths, injection rates and steam qualities. Results indicate that the technologies are not readily distinguishable for low injectivity reservoirs in which conventional steam drives are feasible. However, high injection rates produce a notable cost difference between high pressure combustion systems and the other technologies. Issues that must be addressed before gaining further insight into the economic viability of downhole steam generation are discussed.

Hart, C.

1982-01-01T23:59:59.000Z

90

Seismic CD  

NLE Websites -- All DOE Office Websites (Extended Search)

SEISMIC CD Table of Contents INTRODUCTION Background Resource Findings and Recovery Timeline Oil Program ADIS Overview Gas Program ADIS Overview SEISMIC TECHNOLOGY DEVELOPMENT...

91

Active cooling for downhole instrumentation: Preliminary analysis and system selection  

DOE Green Energy (OSTI)

A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

Bennett, G.A.

1988-03-01T23:59:59.000Z

92

Analyzing the dynamic behavior of downhole equipment during drilling  

DOE Green Energy (OSTI)

Advanced geothermal drilling systems will require a bottom hole assembly (BHA) which utilizes sophisticated electronic and mechanical equipment to accomplish faster, more trouble free, smarter drilling. The bit-drill string/formation interaction during drilling imposes complex, intermittent dynamic loading on the downhole equipment. A finite element computer code, GEODYN, is being developed to allow analysis of the structural response of the downhole equipment during drilling and to simulate the drilling phenomena (i.e. penetration, direction, etc.). Phase 1 GEODYN, completed early in 1984, provides the capability to model the dynamic response of a polycrystalline diamond compact (PDC) bit interacting with a non-homogeneous formation. Succeeding development phases will allow inclusion of stabilizers and, eventually, the entire drill string in addition to facilitating drill ahead simulation.

Baird, J.A.; Caskey, B.C.

1984-01-01T23:59:59.000Z

93

Thermal design for protection of downhole electronic packages  

DOE Green Energy (OSTI)

Design improvements made for downhole tools based on results obtained from the thermal analysis of the instrument package are described. Results include heat flux at the tool surface and temperature-time histories of each subsystem. The research stems from a need for tools that can survive the harsh environment present in geothermal wellbores. The high temperatures and pressures create stress on the tools that function in this environment. Improvements in the design of downhole tools lead to more accurate data obtained from the wellbore during experimentation. The analysis showed that the thermal potential and the conductance between electronics and its heat sink was too small and was misdirected. Significant improvements were achieved by increasing the available thermal capacity of the heat sink, the thermal potential between the heat sink and electronics, and the conductance of the heat transfer paths.

Bennett, G.A.; Sherman, G.R.

1983-01-01T23:59:59.000Z

94

Use of Downhole Motors in Geothermal Drilling in the Philippines  

SciTech Connect

This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

Pyle, D. E.

1981-01-01T23:59:59.000Z

95

Program to develop improved downhole drilling motors. Semiannual report  

DOE Green Energy (OSTI)

The following are described: the history of turbodrill development, positive displacement motor development, the theory of turbodrills, the theory of positive displacement motors, basic motor components, forces on thrust bearings, thrust bearing design, radial bearing design, rotary seal design, sealed lubrication system, lubricants, and project status. Included in appendices are materials on high-temperature lubricants and a progress report on the design of downhole motor seal, bearing, and lubrication test systems. (MHR)

Maurer, W.C.

1976-11-01T23:59:59.000Z

96

Apparatus and method for downhole injection of radioactive tracer  

SciTech Connect

The disclosure relates to downhole injection of radioactive .sup.82 Br and monitoring its progress through fractured structure to determine the nature thereof. An ampule containing granular .sup.82 Br is remotely crushed and water is repeatedly flushed through it to cleanse the instrument as well as inject the .sup.82 Br into surrounding fractured strata. A sensor in a remote borehole reads progress of the radioactive material through fractured structure.

Potter, Robert M. (Los Alamos, NM); Archuleta, Jacobo R. (Espanola, NM); Fink, Conrad F. (Los Alamos, NM)

1983-01-01T23:59:59.000Z

97

System for loading executable code into volatile memory in a downhole tool  

DOE Patents (OSTI)

A system for loading an executable code into volatile memory in a downhole tool string component comprises a surface control unit comprising executable code. An integrated downhole network comprises data transmission elements in communication with the surface control unit and the volatile memory. The executable code, stored in the surface control unit, is not permanently stored in the downhole tool string component. In a preferred embodiment of the present invention, the downhole tool string component comprises boot memory. In another embodiment, the executable code is an operating system executable code. Preferably, the volatile memory comprises random access memory (RAM). A method for loading executable code to volatile memory in a downhole tool string component comprises sending the code from the surface control unit to a processor in the downhole tool string component over the network. A central processing unit writes the executable code in the volatile memory.

Hall, David R. (Provo, UT); Bartholomew, David B. (Springville, UT); Johnson, Monte L. (Orem, UT)

2007-09-25T23:59:59.000Z

98

CALUTRON RECEIVER  

DOE Patents (OSTI)

An improved receiver and receiver mount for calutrons are described. The receiver can be manipulated from outside the tank by a single control to position it with respect to the beam. A door can be operated exteriorly also to prevent undesired portions of the beam from entering the receiver. The receiver has an improved pocket which is more selective in the ions collected. (T.R.H.)

Barnes, S.W.

1959-06-16T23:59:59.000Z

99

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS  

SciTech Connect

The second quarter of the project was dedicated to convert the conceptual designs for the wireless tool and power generator into mechanical and electrical drawings as well as software code to create the new system. The tasks accomplished during this report period were: (1) Basic mechanical design for the wireless communications system was created and the detailed drawings were started. (2) Basic design for the power generator system was created and the detailed machining drawings were started. The generator design was modified to provide a direct action between the wellbore fluid flow and the piezoelectric stack to generate energy. The new design eliminates the inefficiencies related to picking up outside the tubing wall the pressure fluctuations occurring inside the tubing walls. (3) The new piezoelectric acoustic generator design was created and ordered from the manufacturer. The system will be composed of 40 ceramic wafers electrically connected in parallel and compressed into a single generator assembly. (4) The acoustic two-way communications requirements were also defined and the software and hardware development were started. (5) The electrical hardware development required to transmit information to the surface and to receive commands from the surface was started.

Paul Tubel

2003-04-24T23:59:59.000Z

100

MEASUREMENT OF COMPRESSIONAL-WAVE SEISMIC VELOCITIES IN 29 WELLS AT THE HANFORD SITE  

Science Conference Proceedings (OSTI)

Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1, 2009 for 7 wells in the 200-PO-1 OU and Gable Gap regions (see Figure 3 and Figure 4); and March 22, 2010 and April 19, 2010 for 17 wells in the 200 East, The initial scope of survey work was planned for Wells 299-EI8-1, 699-2-E14, 699-12-18, 699-16-51, 699-42-30, 699-53-55B, 699-54-18D, and 699-84-34B. Well 299-E18-1 could not be entered due to bent casing (prevented removal of the pump), wells 699-12-18 and 699-42-30 could not be safely reached by the logging truck, Well 699-16-51 was decommissioned prior to survey start, Well 699-53-55B did not have its pump pulled, and Wells 699-2-EI4, 699-54-18D, and 699-84-34B are artesian and capped with an igloo structure. Table 1 provides a list of wells that were surveyed and Figure 1 through Figure 5 show the well locations relative to the Hanford Site.

PETERSON SW

2010-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Investigation of component failures in downhole geothermal pumping systems. Final report  

DOE Green Energy (OSTI)

This study investigated component failures in electric, downhole submersible pumps which prevented the attainment of one year continuous downhole running times in geothermal wells at temperatures up to 375/sup 0/F. The feasibility of a pressurized motor to prevent brine intrusion was investigated, as well as improved pothead and packoff designs, and brine scale buildup on impeller sleeve bearings and thrust washers. (ACR)

Werner, D.K.

1985-03-15T23:59:59.000Z

102

Parallel implementation of stochastic inversion of seismic tomography data  

Science Conference Proceedings (OSTI)

In this paper parallel implementation of stochastic inversion of seismic tomography data was presented. Classical approach to travel time tomography assumes straight line of seismic rays between sources and receives points and isotropy of geological ... Keywords: inverse problem, master-slave paradigm, seismic anisotropy, seismic tomography

Maciej Dwornik; Anna Pi?ta

2011-09-01T23:59:59.000Z

103

Program to develop improved downhole drilling motors. Final report  

DOE Green Energy (OSTI)

Significant progress was made during Phase I of the program toward finding solutions to the seal-and-bearing problems. A seal-test facility was designed and built to test full-scale seals for downhole motors. The tests will simulate closely the environment imposed on seals used in actual motor drilling. Many seal designs and concepts were considered, including novel designs and modifications to conventional seal types. Several of the most promising designs (including some novel designs) have been designated for testing in Phase II. Some of these seals have already been obtained and are available for testing. The preliminary design for a seal-bearing package test stand was completed. This facility will allow tests of full-size seal-bearing packs at simulated downhole conditions. The design of a new seal-bearing package was completed and is scheduled for full-scale testing in Phase II. This package will allow worn seals and bearings to be replaced easily. New thrust bearings were selected for application in the seal-bearing package. These bearings offer much greater load capacity and should increase bearing life significantly. (JGB)

Black, A.D.; Green, S.J.; Matson, L.W.; Maurer, W.C.; Nielsen, R.R.; Nixon, J.D.; Wilson, J.G.

1977-03-01T23:59:59.000Z

104

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS  

SciTech Connect

The first quarter of the Downhole Power Generation and Wireless Communications for Intelligent Completions Applications was characterized by the evaluation and determination of the specifications required for the development of the system for permanent applications in wellbores to the optimization of hydrocarbon production. The system will monitor and transmit in real time pressure and temperature information from downhole using the production tubing as the medium for the transmission of the acoustic waves carrying digital information. The most common casing and tubing sizes were determined by interfacing with the major oil companies to obtain information related to their wells. The conceptual design was created for both the wireless gauge section of the tool as well as the power generation module. All hardware for the wireless gauge will be placed in an atmospheric pressure chamber located on the outside of a production tubing with 11.4 centimeter (4-1/2 inch) diameter. This mounting technique will reduce cost as well as the diameter and length of the tool and increase the reliability of the system. The power generator will use piezoelectric wafers to generate electricity based on the flow of hydrocarbons through an area in the wellbore where the tool will be deployed. The goal of the project is to create 1 Watt of power continuously.

Paul Tubel

2003-03-24T23:59:59.000Z

105

Downhole steam generator with improved preheating/cooling features. [Patent application  

DOE Patents (OSTI)

An apparatus is described for downhole steam generation employing dual-stage preheaters for liquid fuel and for the water. A first heat exchange jacket for the fuel surrounds the fuel/oxidant mixing section of the combustor assembly downstream of the fuel nozzle and contacts the top of the combustor unit of the combustor assembly, thereby receiving heat directly from the combustion of the fuel/oxidant. A second stage heat exchange jacket surrounds an upper portion of the oxidant supply line adjacent the fuel nozzle receiving further heat from the compression heat which results from pressurization of the oxidant. The combustor unit includes an inner combustor sleeve whose inner wall defines the combustion zone. The inner combustor sleeve is surrounded by two concentric water channels, one defined by the space between the inner combustor sleeve and an intermediate sleeve, and the second defined by the space between the intermediate sleeve and an outer cylindrical housing. The channels are connected by an annular passage adjacent the top of the combustor assembly and the countercurrent nature of the water flow provides efficient cooling of the inner combustor sleeve. An annular water ejector with a plurality of nozzles is provided to direct water downwardly into the combustor unit at the boundary of the combustion zone and along the lower section of the intermediate sleeve.

Donaldson, A.B.; Hoke, D.E.; Mulac, A.J.

1980-10-10T23:59:59.000Z

106

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging (Redirected from Single-Well And Cross-Well Seismic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

107

Borehole seismic monitoring of seismic stimulation at OccidentalPermian Ltd's -- South Wason Clear Fork Unit  

SciTech Connect

Seismic stimulation is a proposed enhanced oil recovery(EOR) technique which uses seismic energy to increase oil production. Aspart of an integrated research effort (theory, lab and field studies),LBNL has been measuring the seismic amplitude of various stimulationsources in various oil fields (Majer, et al., 2006, Roberts,et al.,2001, Daley et al., 1999). The amplitude of the seismic waves generatedby a stimulation source is an important parameter for increased oilmobility in both theoretical models and laboratory core studies. Theseismic amplitude, typically in units of seismic strain, can be measuredin-situ by use of a borehole seismometer (geophone). Measuring thedistribution of amplitudes within a reservoir could allow improved designof stimulation source deployment. In March, 2007, we provided in-fieldmonitoring of two stimulation sources operating in Occidental (Oxy)Permian Ltd's South Wasson Clear Fork (SWCU) unit, located near DenverCity, Tx. The stimulation source is a downhole fluid pulsation devicedeveloped by Applied Seismic Research Corp. (ASR). Our monitoring used aborehole wall-locking 3-component geophone operating in two nearbywells.

Daley, Tom; Majer, Ernie

2007-04-30T23:59:59.000Z

108

Field test of a downhole-activated centralizer to reduce casing drag  

Science Conference Proceedings (OSTI)

A good cementation is based on an adequate centralization. Conventional bow-type centralizers create a drag force, which is not acceptable under certain conditions. The downhole-activated centralizer (DAC{trademark}) was developed for use in highly inclined wells and whenever restrictions in the wellbore like close tolerance wellheads have to be passed. It can be released by external hydraulic pressure, by temperature or by a chemical reaction. The first downhole-activated centralizers with pressure released locking mechanism were field tested in two wells offshore Italy. These field tests proved the function and the effectiveness of the downhole-activated centralizers under operational conditions.

Kinzel, H. [Weatherford Oil Tool GmbH, Langenhagen (Germany); Calderoni, A. [Agip SpA, Milan (Italy)

1995-06-01T23:59:59.000Z

109

Downhole cement test in a very hot hole  

DOE Green Energy (OSTI)

Completion of the commercial-sized Hot Dry Rock Geothermal Energy Project requires that hydraulic fractures be created between two inclined wellbores at a depth of about 4 km (15,000 ft). Isolation of a section of the open wellbore is necessary for pressurization to achieve the fracture connections. A cemented-in liner/PBR assembly is one of the methods used for zone isolation near the botton of the injection well. A downhole, pumped cement test was first conducted at a wellbore temperature of 275/sup 0/C (525/sup 0/F) to determine if a suitable slurry could be designed, pumped, and later recovered to assure the success of the cemented-in liner operation.

Pettitt, R.A.; Cocks, G.G.; Dreesen, D.N.; Sims, J.R.; Nicholson, R.W.; Boevers, B.

1982-01-01T23:59:59.000Z

110

Development of seals for a geothermal downhole intensifier. Progress report  

DOE Green Energy (OSTI)

A system using high-velocity fluid jets in conjunction with a rotary diamond bit is currently considered as the best candidate for reducing the cost of drilling geothermal wells. Technical, safety and cost considerations indicate that the required jet supply pressure can best be established by a downhole pressure intensifier. Key intensifier components are the check valve and plunger seals, which must prevent leakage of the high-pressure, high-temperature abrasive fluid (drilling mud). To achieve the required performance, novel ceramic seals are currently being developed. The check valve seal includes a tapered polymeric plug and ceramic stop acting against a ceramic seat. The ceramic plunger seal is a variant of the ''stepped-joint'' piston ring and is designed to minimize contact pressure and abrasive wear. Initial testing of these seals in the laboratory shows encouraging results; design refinement and further testing is in progress. 2 refs., 6 figs., 3 tabs.

Captain, K.M.; Harvey, A.C.; Caskey, B.C.

1985-08-01T23:59:59.000Z

111

Element for use in an inductive coupler for downhole components  

DOE Patents (OSTI)

An element for use in an inductive coupler for downhole components comprises an annular housing having a generally circular recess. The element further comprises a plurality of generally linear, magnetically conductive segments. Each segment includes a bottom portion, an inner wall portion, and an outer wall portion. The portions together define a generally linear trough from a first end to a second end of each segment. The segments are arranged adjacent to each other within the housing recess to form a generally circular trough. The ends of at least half of the segments are shaped such that the first end of one of the segments is complementary in form to the second end of an adjacent segment. In one embodiment, all of the ends are angled. Preferably, the first ends are angled with the same angle and the second ends are angled with the complementary angle.

Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

2009-03-31T23:59:59.000Z

112

Apparatus for connecting jars to a downhole tool  

Science Conference Proceedings (OSTI)

An apparatus is described for connecting the firing head of a downhole tool to a set of jars to allow the jars to jar up and jar down comprising a firing head housing, a hammer located in the housing, resilient means urging the hammer toward a firing pin, a mandrel extending into the housing having one end adapted for connecting to a jar and the other end connected to the hammer by a shear pin. The mandrel has spaced oppositely facing shoulders, lock segment means spaced around the mandrel, means limiting the movement of the lock segment means along the axis of the housing, and means urging the lock segment means toward the mandrel to move the lock segment means into position to engage the oppositely facing shoulders to limit axial movement of the mandrel relative to the housing in either direction when the pin is sheared and the hammer released to strike the firing pin.

Perricone, J.M.

1988-08-09T23:59:59.000Z

113

275 C Downhole Switched-Mode Power Supply  

SciTech Connect

A vee-square (V2) control based controller IC is developed for a switch mode power supply capable of operating at extreme temperature/harsh environment conditions. A buck type regulator with silicon carbide power junction field effect transistors (JFET) as power devices is used to analyze the performance of controller. Special emphases are made on the analog sub-blocks--voltage reference, operational transconductance amplifier and comparator as individual building blocks. Transformer coupled gate drives and high temperature operable magnetic cores and capacitors are identified and tested for use in the design. Conventional ceramic chip packaging of ICs combined with lead carrier type mounting of passive filter components is introduced for hybrid packaging of the complete product. The developed SMPS is anticipated to support the operation of down-hole microcontrollers and other electronics devices that require low/medium power filtered dc inputs over an operating temperature of 275 C.

Chris Hutchens; Vijay Madhuravasal

2008-08-31T23:59:59.000Z

114

Integrating surface systems with downhole data improves underbalanced drilling  

Science Conference Proceedings (OSTI)

An integrated approach of using special downhole sensors and transmission capabilities in conjunction with a surface drilling optimization system has improved the management and understanding of the underbalanced drilling environment within a closed loop system. Improving the underbalanced drilling operation and obtaining quality data in real time can help eliminate damage to the formation and increase ultimate production. Recent advances in drilling technology have made it possible to drill horizontal wells underbalanced more safely and effectively. This technology has greatly reduced the potential for skin damage to the bore hole. Experience from western Canadian underbalanced horizontal drilling clearly demonstrates that a well bore`s initial productive potential is very accurately predicted from its productive behavior during drilling operations.

Comeau, L. [Sperry-Sun Drilling Services, Calgary, Alberta (Canada)

1997-03-03T23:59:59.000Z

115

Monitoring downhole pressures and flow rates critical for underbalanced drilling  

Science Conference Proceedings (OSTI)

True underbalanced drilling, and not just flow drilling, requires thorough engineering and monitoring of downhole pressures and flow rates to ensure the formations are drilled without formation damage. Underbalanced drilling involves intentionally manipulating the bottom hole circulating pressure so that it is less than static reservoir pressure. This underbalanced pressure condition allows reservoir fluids to enter the well bore while drilling continues, preventing fluid loss and many causes of formation damage. Applied correctly, this technology can address problems of formation damage, lost circulation, and poor penetration rates. Another important benefit of drilling underbalanced is the ability to investigate the reservoir in real time. The paper discusses the reasons for under balanced drilling, creating underbalance, well site engineering, fluids handling, rotating flow divertor injection gas, survey techniques, data acquisition, operations, maintaining under-balance, routine drilling, rate of penetration, misconceptions, and economics.

Butler, S.D.; Rashid, A.U.; Teichrob, R.R. [Flow Drilling Engineering Ltd., Calgary, Alberta (Canada)

1996-09-16T23:59:59.000Z

116

Induced seismicity. Final report  

DOE Green Energy (OSTI)

The objective of this project has been to develop a fundamental understanding of seismicity associated with energy production. Earthquakes are known to be associated with oil, gas, and geothermal energy production. The intent is to develop physical models that predict when seismicity is likely to occur, and to determine to what extent these earthquakes can be used to infer conditions within energy reservoirs. Early work focused on earthquakes induced by oil and gas extraction. Just completed research has addressed earthquakes within geothermal fields, such as The Geysers in northern California, as well as the interactions of dilatancy, friction, and shear heating, on the generation of earthquakes. The former has involved modeling thermo- and poro-elastic effects of geothermal production and water injection. Global Positioning System (GPS) receivers are used to measure deformation associated with geothermal activity, and these measurements along with seismic data are used to test and constrain thermo-mechanical models.

Segall, P.

1997-09-18T23:59:59.000Z

117

Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China  

Open Energy Info (EERE)

downhole characteristics of well CGEH-1 at Coso Hot Springs, China downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Details Activities (5) Areas (1) Regions (0) Abstract: A series of measurements was made in the exploratory well CGEH-1 at Coso Hot Springs. The temperature measurements provide estimates for the thermal equilibration of the well and indicate that the fractures intersecting the well have different temperatures. The hottest fractures are in the upper-cased portion of the well. Downhole chemical sampling suggests that the borehole still contains remnants of drilling materials. The well has never been extensively flowed at this time.

118

Program to develop improved downhole drilling motors. Semi-annual report  

DOE Green Energy (OSTI)

Research progress is reported in two main sections: downhole drilling motor design and design of downhole motor seal, bearing, and test lubrication systems. Information on downhole drilling motor design is presented under the following subsection headings: Turbodrill development; positive displacement motor development; theory of Turbodrills; theory of positive displacement motors; basic motor components; forces on thrust bearings; thrust bearing design; radial bearing design; rotary seal design; sealed lubrication system; lubricants; and project status. The appendix contains information on high temperature lubricants. Information on the design of downhole motor seal, bearing, and test lubrication systems is presented under the following subsection headings: seal, bearing, and lubrication test design criteria; basic test conditions; independent and dependent variable parameters; alternative concepts for seal test apparatus; design of the seal test system; and bearing test system description. A schedule for remaining tasks is included. (JGB)

Maurer, W.C.

1976-11-01T23:59:59.000Z

119

Report covering examination of parts from downhole steam generators. [Combustor head and sleeve parts  

Science Conference Proceedings (OSTI)

Combustor head and sleeve parts were examined by using optical and scanning electron metallography after use in oxygen/diesel and air/diesel downhole steam generators. The degradation of the different alloy components is described in terms of reactions with oxygen, sulfur and carbon in the presence of cyclic stresses, all generated by the combustion process. Recommendations are presented for component materials (alloys and coatings) to extend component lives in the downhole steam generators. 9 references, 22 figures, 3 tables.

Pettit, F. S.; Meier, G. H.

1983-08-01T23:59:59.000Z

120

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Tube-wave seismic imaging  

DOE Patents (OSTI)

The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

Korneev, Valeri A [LaFayette, CA

2009-05-05T23:59:59.000Z

122

Tube-wave seismic imaging  

DOE Patents (OSTI)

The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)

2009-10-13T23:59:59.000Z

123

Program for the improvement of downhole drilling-motor bearings and seals. Final report: Phase III, Part 1  

DOE Green Energy (OSTI)

A systematic laboratory testing and evaluation program to select high-temperature seals, bearings, and lubricants for geothermal downhole drilling motors is summarized.

Not Available

1980-03-01T23:59:59.000Z

124

Advances in downhole sampling of high temperature solutions  

DOE Green Energy (OSTI)

A fluid sampler capable of sampling hot and/or deep wells has been developed at Los Alamos National Laboratory. In collaboration with Leutert Instruments, an off-the-shelf sampler design was modified to meet gas-tight and minimal chemical reactivity/contamination specifications for use in geothermal wells and deep ocean drillholes. This downhole sampler has been routinely used at temperatures up to 300{degrees}C and hole depths of greater than 5 km. We have tested this sampler in various continental wells, including Valles Caldera VC-2a and VC-2b, German KTB, Cajon Pass, and Yellowstone Y-10. Both the standard commercial and enhanced samplers have also been used to obtain samples from a range of depths in the Ocean Drilling Project's hole 504B and during recent mid-ocean ridge drilling efforts. The sampler has made it possible to collect samples at temperatures and conditions beyond the limits of other tools with the added advantage of chemical corrosion resistance.

Bayhurst, G.K.; Janecky, D.R.

1991-01-01T23:59:59.000Z

125

Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4996  

Science Conference Proceedings (OSTI)

This report presents the field-generated borehole log, lithologic summary, and the record of samples collected during the recent drilling and sampling of the basalt interval of borehole C4996 at the Waste Treatment Plant (WTP) on the Hanford Site. Borehole C4996 was one of four exploratory borings, one core hole and three boreholes, drilled to investigate and acquire detailed stratigraphic and down-hole seismic data. This data will be used to define potential seismic impacts and refine design specifications for the Hanford Site WTP.

Adams , S. C.; Ahlquist, Stephen T.; Fetters, Jeffree R.; Garcia, Ben; Rust, Colleen F.

2007-01-28T23:59:59.000Z

126

Feasibility evaluation of downhole oil/water separator (DOWS) technology.  

SciTech Connect

The largest volume waste stream associated with oil and gas production is produced water. A survey conducted by the American Petroleum Institute estimated that 20.9 billion barrels of produced water were disposed of in 1985 (Wakim 1987). Of this total, 91% was disposed of through disposal wells or was injected for enhanced oil recovery projects. Treatment and disposal of produced water represents a significant cost for operators. A relatively new technology, downhole oil/water separators (DOWS), has been developed to reduce the cost of handling produced water. DOWS separate oil and gas from produced water at the bottom of the well and reinject some of the produced water into another formation or another horizon within the same formation, while the oil and gas are pumped to the surface. Since much of the produced water is not pumped to the surface, treated, and pumped from the surface back into a deep formation, the cost of handling produced water is greatly reduced. When DOWS are used, additional oil may be recovered as well. In cases where surface processing or disposal capacity is a limiting factor for further production within a field, the use of DOWS to dispose of some of the produced water can allow additional production within that field. Simultaneous injection using DOWS minimizes the opportunity for contamination of underground sources of drinking water (USDWs) through leaks in tubing and casing during the injection process. This report uses the acronym 'DOWS' although the technology may also be referred to as DHOWS or as dual injection and lifting systems (DIALS). Simultaneous injection using DOWS has the potential to profoundly influence the domestic oil industry. The technology has been shown to work in limited oil field applications in the United States and Canada. Several technical papers describing DOWS have been presented at oil and gas industry conferences, but for the most part, the information on the DOWS technology has not been widely transferred to operators, particularly to small or medium-sized independent U.S. companies. One of the missions of the U.S. Department of Energy's (DOE's) National Petroleum Technology Office (NPTO) is to assess the feasibility of promising oil and gas technologies that offer improved operating performance, reduced operating costs, or greater environmental protection. To further this mission, the NPTO provided funding to a partnership of three organizations a DOE national laboratory (Argonne National Laboratory), a private-sector consulting firm (CH2M-Hill), and a state government agency (Nebraska Oil and Gas Conservation Commission) to assess the feasibility of DOWS. The purpose of this report is to provide general information to the industry on DOWS by describing the existing uses of simultaneous injection, summarizing the regulatory implications of simultaneous injection, and assessing the potential future uses of the technology. Chapter 2 provides a more detailed description of the two major types of DOWS. Chapter 3 summarizes the existing U.S. and Canadian installations of DOWS equipment, to the extent that operators have been willing to share their data. Data are provided on the location and geology of existing installations, production information before and after installation of the DOWS, and costs. Chapter 4 provides an overview of DOWS-specific regulatory requirements imposed by some state agencies and discusses the regulatory implications of handling produced water downhole, rather than pumping it to the surface and reinjecting it. Findings and conclusions are presented in Chapter 5 and a list of the references cited in the report is provided in Chapter 6. Appendix A presents detailed data on DOWS installations. This report presents the findings of Phase 1 of the simultaneous injection project, the feasibility assessment. Another activity of the Phase 1 investigation is to design a study plan for Phase 2 of the project, field pilot studies. The Phase 2 study plan is being developed separately and is not included in this report.

Veil, J. A.; Langhus, B. G.; Belieu, S.; Environmental Assessment; CH2M Hill; Nebraska Oil and Gas Conservation Commission

1999-01-31T23:59:59.000Z

127

Radiation receiver  

DOE Patents (OSTI)

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

Hunt, A.J.

1983-09-13T23:59:59.000Z

128

Radiation receiver  

SciTech Connect

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

Hunt, Arlon J. (Oakland, CA)

1983-01-01T23:59:59.000Z

129

Development of a High-Pressure/High-Temperature Downhole Turbine Generator  

Science Conference Proceedings (OSTI)

The objective of this project as originally outlined has been to achieve a viable downhole direct current (DC) power source for extreme high pressure, high temperature (HPHT) environments of >25,000 psi and >250 C. The Phase I investigation posed and answered specific questions about the power requirements, mode of delivery and form factor the industry would like to see for downhole turbine generator tool for the HPHT environment, and noted specific components, materials and design features of that commercial system that will require upgrading to meet the HPHT project goals. During the course of Phase I investigation the scope of the project was HPHT downhole DC power. Phase I also investigated the viability of modifying a commercial expanded, without additional cost expected to the project, to include the addition of HT batteries to the power supply platform.

Timothy F. Price

2007-02-01T23:59:59.000Z

130

Seismic Studies  

SciTech Connect

This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (2) For probabilistic analyses supporting the demonstration of compliance with preclosure performance objectives, provide a mean seismic hazard curve for the surface facilities area. Results should be consistent with the PSHA for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (3) For annual ground motion exceedance probabilities appropriate for postclosure analyses, provide site-specific seismic time histories (acceleration, velocity, and displacement) for the waste emplacement level. Time histories should be consistent with the PSHA and reflect available knowledge on the limits to extreme ground motion at Yucca Mountain. (4) In support of ground-motion site-response modeling, perform field investigations and laboratory testing to provide a technical basis for model inputs. Characterize the repository block and areas in which important-to-safety surface facilities will be sited. Work should support characterization and reduction of uncertainties in inputs to ground-motion site-response modeling. (5) On the basis of rock mechanics, geologic, and seismic information, determine limits on extreme ground motion at Yucca Mountain and document the technical basis for them. (6) Update the ground-motion site-response model, as appropriate, on the basis of new data. Expand and enhance the technical basis for model validation to further increase confidence in the site-response modeling. (7) Document seismic methodologies and approaches in reports to be submitted to the NRC. (8) Address condition reports.

R. Quittmeyer

2006-09-25T23:59:59.000Z

131

Development of a High Pressure/High Temperature Down-hole Turbine Generator  

SciTech Connect

As oil & natural gas deposits become more difficult to obtain by conventional means, wells must extend to deeper more heat-intensive environments. The technology of the drilling equipment required to reach these depths has exceeded the availability of electrical power sources needed to operate these tools. Historically, logging while drilling (LWD) and measure while drilling (MWD) devices utilized a wireline to supply power and communication from the operator to the tool. Lithium ion batteries were used in scenarios where a wireline was not an option, as it complicated operations. In current downhole applications, lithium ion battery (LIB) packs are the primary source for electrical power. LIB technology has been proven to supply reliable downhole power at temperatures up to 175 C. Many of the deeper well s reach ambient temperatures above 200 C, creating an environment too harsh for current LIB technology. Other downfalls of LIB technology are cost, limitations on charge cycles, disposal issues and possible safety hazards including explosions and fires. Downhole power generation can also be achieved by utilizing drilling fluid flow and converting it to rotational motion. This rotational motion can be harnessed to spin magnets around a series of windings to produce power proportional to the rpm experienced by the driven assembly. These generators are, in most instances, driven by turbine blades or moyno-based drilling fluid pumps. To date, no commercially available downhole power generators are capable of operating at ambient temperatures of 250 C. A downhole power g enerator capable of operation in a 250 C and 20,000 psi ambient environment will be an absolute necessity in the future. Dexter Magnetic Technologies High-Pressure High-Temperature (HPHT) Downhole Turbine Generator is capable of operating at 250 C and 20, 000 psi, but has not been tested in an actual drilling application. The technology exists, but to date no company has been willing to test the tool.

Ben Plamp

2008-06-30T23:59:59.000Z

132

Downhole pressure, temperature and flowrate measurements in steam wells at the Geysers field  

SciTech Connect

Recently developed pressure-temperature-spinner (PTS) tools are used to collect reliable downhole measurements in geothermal systems, such as at The Geysers. PTS surveys in several flowing Geysers steam wells were used to quantify steam entry location and magnitude, wellbore heat loss, pressure drop due to friction, thermodynamic properties of the steam, and maximum rock temperature. Interwell cross flow/interference was identified in one well. Finally, a single-phase saturated steam wellbore model used to compare calculated to measured downhole values, was found to adequately predict the flowing pressure versus depth curves in vapor filled holes.

Enedy, Kathleen L.

1988-01-01T23:59:59.000Z

133

Downhole refractive-index logging device. [Patent application  

DOE Patents (OSTI)

This invention provides an antenna arrangement for accurately measuring the magnetic permeability of earth formations. It provides a high-resolution coil array of a transmitting coil and six receiving coils to enable self-consistency checks for evaluating tight gas and oil-bearing strata. (DLC)

Yu, J.S.

1982-01-20T23:59:59.000Z

134

Downhole microseismic monitoring of hydraulic fracturing: a full-waveform approach for complete moment tensor inversion and stress estimation  

E-Print Network (OSTI)

Downhole microseismics has gained in popularity in recent years as a way to characterize hydraulic fracturing sources and to estimate in-situ stress state. Conventional approaches only utilize part of the information ...

Song, Fuxian

2010-01-01T23:59:59.000Z

135

Full-waveform based complete moment tensor inversion and source parameter estimation from downhole microseismic data for hydrofracture monitoring  

E-Print Network (OSTI)

Downhole microseismic monitoring is a valuable tool in understanding the efficacy of hydraulic fracturing. Inverting for the moment tensor has gained increasing popularity in recent years as a way to understand the fracturing ...

Song, Fuxian

136

Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993  

SciTech Connect

A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measurement. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.

Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A.; Horner, Jake A.

2007-02-28T23:59:59.000Z

137

An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools  

DOE Patents (OSTI)

A coaxial cable electrical connector more specifically an internal coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transfonner. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive care of the coaxial cable. A plurality of bulbous pliant tabs on the coaxial cable connector mechanically engage the inside diameter of the coaxial cable thus grounding the transformer to the coaxial cable. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2005-11-29T23:59:59.000Z

138

High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production  

Science Conference Proceedings (OSTI)

The development of highly reliable downhole equipment is an essential element in enabling the widespread utilization of Enhanced Geothermal Systems (EGS). The downhole equipment used in these systems will be required to operate at high voltages and temperatures on the order of 200 to 250C (and eventually to 300?C). These conditions exceed the practical operating ranges of currently available thermoplastic wire insulations, and thus limit the operating lifetime of tools such as Electric Submersible Pumps (ESPs). In this work, high-temperature insulations based on composite materials were developed and demonstrated. The products of this work were found to exhibit electrical resistivities and dielectric breakdown strengths that PEEK at temperatures above 250C. In addition, sub-scale motor windings were fabricated and tested to validate the performance of this technology

Hooker, Matthew; Hazelton, Craig; Kano, Kimi

2010-12-31T23:59:59.000Z

139

Biased insert for installing data transmission components in downhole drilling pipe  

DOE Patents (OSTI)

An apparatus for installing data transmission hardware in downhole tools includes an insert insertable into the box end or pin end of drill tool, such as a section of drill pipe. The insert typically includes a mount portion and a slide portion. A data transmission element is mounted in the slide portion of the insert. A biasing element is installed between the mount portion and the slide portion and is configured to create a bias between the slide portion and the mount portion. This biasing element is configured to compensate for varying tolerances encountered in different types of downhole tools. In selected embodiments, the biasing element is an elastomeric material, a spring, compressed gas, or a combination thereof.

Hall, David R. (Provo, UT); Briscoe, Michael A. (Lehi, UT); Garner, Kory K. (Payson, UT); Wilde, Tyson J. (Spanish Fork, UT)

2007-04-10T23:59:59.000Z

140

Downhole steam generator using low-pressure fuel and air supply  

DOE Patents (OSTI)

For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools  

DOE Patents (OSTI)

A seal for a coaxial cable electrical connector more specifically an internal seal for a coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transformer. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive core of the coaxial cable. The electrically insulating material also doubles as a seal to safegaurd against penetration of fluid, thus protecting against shorting out of the electrical connection. The seal is a multi-component seal, which is pre-compressed to a desired pressure rating. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string. The internal coaxial cable connector and its attendant seal can be used in a plurality of downhole tools, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2005-09-20T23:59:59.000Z

142

Raytheon downhole information system. Electromagnetic borehole measurements while drilling system. Final report  

DOE Green Energy (OSTI)

A description is given of the Raytheon Downhole Information System (RDIS), a real time electromagnetic borehole measurements while drilling system, applicable to oil, gas, and geothermal drilling. It communicates in both directions through the earth in a single hop at a downlink data rate of 3 bps and uplink rates dependent on depth--typically 6 bits/second at 10,000 ft and 2 bits/second at 15,000 ft; electromagnetic signal transmission time of approximately .1 second. Downhole hardware for communications, sensors, and power are packaged in three 30 ft subs. Downhole hardware can be developed to permit operation in a 275/sup 0/C geothermal environment. A cost analysis is included that predicts RDIS service could be economically priced at approximately $1000/day. Commercial availability depends primarily on proof of capability by demonstration in a working drilling well. The most significant portions of needed hardware are available. A description of a geothermal drilling telemetry system is included in Appendix A.

Kolker, M.; Greene, A.H.; Kasevich, R.S.; Robertson, J.C.; Grossi, M.D.

1978-03-01T23:59:59.000Z

143

Seismic sources  

SciTech Connect

Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

Green, Michael A. (Oakland, CA); Cook, Neville G. W. (Lafayette, CA); McEvilly, Thomas V. (Berkeley, CA); Majer, Ernest L. (El Cirrito, CA); Witherspoon, Paul A. (Berkeley, CA)

1992-01-01T23:59:59.000Z

144

A 3D-3C Reflection Seismic Survey and Data Integration to Identify the  

Open Energy Info (EERE)

D-3C Reflection Seismic Survey and Data Integration to Identify the D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The Soda Lake geothermal field is an ideal setting to test the applicability of the 3D-3C reflection seismic method because: it is a producing field with a great deal of geologic and drilling data already available; it is in an alluvial valley where the subsurface structures that carry the geothermal fluids have no surface manifestations; and, there are downhole geophysical logs of fractures and permeable zones that can be used to ground-truth the new data.

145

Geology of the Waste Treatment Plant Seismic Boreholes  

Science Conference Proceedings (OSTI)

In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5 million year old Elephant Mountain Member was emplaced above the Pomona Member.

Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

2007-02-28T23:59:59.000Z

146

Seismic Design Expectations Report  

Energy.gov (U.S. Department of Energy (DOE))

The Seismic Design Expectations Report (SDER) is a tool that assists DOE federal project review teams in evaluating the technical sufficiency of the project seismic design activities prior to...

147

Assessing Beyond Design Basis Seismic Events and Implications on Seismic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessing Beyond Design Basis Seismic Events and Implications on Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk September 19, 2012 Presenter: Jeffrey Kimball, Technical Specialist (Seismologist) Defense Nuclear Facilities Safety Board Topics Covered: Department of Energy Approach to Natural Phenomena Hazards Analysis and Design (Seismic) Design Basis and Beyond Design Basis Seismic Events Seismic Risk Implications - Key Parameters and Insights Conclusions Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk More Documents & Publications DOE's Approach to Nuclear Facility Safety Analysis and Management Results from Beyond Design Basis Event Pilots Idaho National Laboratory Advanced Test Reactor Probabilistic Risk

148

Active cooling for downhole instrumentation: design criteria and conceptual design summary  

DOE Green Energy (OSTI)

This report summarizes the results of a literature survey that describes successful tests of geophysical instruments and their thermal protection systems. The conditions to which an instrument is subjected are formulated into relevant thermal and mechanical design criteria that have proved useful for improving passive thermal protection systems and selecting the preliminary feasibility of active refrigeration systems. A brief summary of the results of a series of conceptual designs on seven different active refrigeration systems is given. The systems are ranked according to feasibility for use in downhole active cooling applications.

Bennett, G.A.

1986-05-01T23:59:59.000Z

149

Analysis of Data from a Downhole Oil/Water Separator Field Trial in East Texas  

SciTech Connect

Downhole oil/water separator (DOWS) technology is available to separate oil from produced water at the bottom of an oil well. Produced water can be injected directly to a disposal formation rather than lifting it to the surface, treating it there, and reinjecting it. Because of a lack of detailed performance data on DOWS systems, the U.S. Department of Energy (DOE) provided funding to secure DOWS performance data. A large U.S. oil and gas operator offered to share its data with Argonne National Laboratory. This report summarizes data from the DOWS installation in eastern Texas.

Veil, John A.; Layne, Arthur Langhus

2001-04-19T23:59:59.000Z

150

ENHANCED OIL RECOVERY WITH DOWNHOLE VIBRATION STIMULATION IN OSAGE COUNTY OKLAHOMA  

SciTech Connect

This Final Report covers the entire project from July 13, 2000 to June 30, 2003. The report summarizes the details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma'' under DOE Contract Number DE-FG26-00BC15191. The project was divided into nine separate tasks. This report is written in an effort to document the lessons learned during the completion of each task. Therefore each task will be discussed as the work evolved for that task throughout the duration of the project. Most of the tasks are being worked on simultaneously, but certain tasks were dependent on earlier tasks being completed. During the three years of project activities, twelve quarterly technical reports were submitted for the project. Many individual topic and task specific reports were included as appendices in the quarterly reports. Ten of these reports have been included as appendices to this final report. Two technical papers, which were written and accepted by the Society of Petroleum Engineers, have also been included as appendices. The three primary goals of the project were to build a downhole vibration tool (DHVT) to be installed in seven inch casing, conduct a field test of vibration stimulation in a mature waterflooded field and evaluate the effects of the vibration on both the produced fluid characteristics and injection well performance. The field test results are as follows: In Phase I of the field test the DHVT performed exceeding well, generating strong clean signals on command and as designed. During this phase Lawrence Berkeley National Laboratory had installed downhole geophones and hydrophones to monitor the signal generated by the downhole vibrator. The signals recorded were strong and clear. Phase II was planned to be ninety-day reservoir stimulation field test. This portion of the field tests was abruptly ended after one week of operations, when the DHVT became stuck in the well during a routine removal activity. The tool cannot operate in this condition and remains in the well. There was no response measured during or afterwards to either the produced fluids from the five production wells or in the injection characteristics of the two injection wells in the pilot test area. Monitoring the pilot area injection and production wells ceased when the field test was terminated March 14, 2003. Thus, a key goal of this project, which was to determine the effects of vibration stimulation on improving oil recovery from a mature waterflood, was not obtained. While there was no improved oil recovery effect measured, there was insufficient vibration stimulation time to expect a change to occur. No conclusion can be drawn about the effectiveness of vibration stimulation in this test.

Robert Westermark; J. Ford Brett

2003-11-01T23:59:59.000Z

151

Interpreting Horizontal Well Flow Profiles and Optimizing Well Performance by Downhole Temperature and Pressure Data  

E-Print Network (OSTI)

Horizontal well temperature and pressure distributions can be measured by production logging or downhole permanent sensors, such as fiber optic distributed temperature sensors (DTS). Correct interpretation of temperature and pressure data can be used to obtain downhole flow conditions, which is key information to control and optimize horizontal well production. However, the fluid flow in the reservoir is often multiphase and complex, which makes temperature and pressure interpretation very difficult. In addition, the continuous measurement provides transient temperature behavior which increases the complexity of the problem. To interpret these measured data correctly, a comprehensive model is required. In this study, an interpretation model is developed to predict flow profile of a horizontal well from downhole temperature and pressure measurement. The model consists of a wellbore model and a reservoir model. The reservoir model can handle transient, multiphase flow and it includes a flow model and a thermal model. The calculation of the reservoir flow model is based on the streamline simulation and the calculation of reservoir thermal model is based on the finite difference method. The reservoir thermal model includes thermal expansion and viscous dissipation heating which can reflect small temperature changes caused by pressure difference. We combine the reservoir model with a horizontal well flow and temperature model as the forward model. Based on this forward model, by making the forward calculated temperature and pressure match the observed data, we can inverse temperature and pressure data to downhole flow rate profiles. Two commonly used inversion methods, Levenberg- Marquardt method and Marcov chain Monte Carlo method, are discussed in the study. Field applications illustrate the feasibility of using this model to interpret the field measured data and assist production optimization. The reservoir model also reveals the relationship between temperature behavior and reservoir permeability characteristic. The measured temperature information can help us to characterize a reservoir when the reservoir modeling is done only with limited information. The transient temperature information can be used in horizontal well optimization by controlling the flow rate until favorite temperature distribution is achieved. With temperature feedback and inflow control valves (ICVs), we developed a procedure of using DTS data to optimize horizontal well performance. The synthetic examples show that this method is useful at a certain level of temperature resolution and data noise.

Li, Zhuoyi

2010-12-01T23:59:59.000Z

152

Evaluation of high temperature lubricants for downhole motors in geothermal applications  

DOE Green Energy (OSTI)

A Bearing-Seal Package is being developed for use with downhole motors and turbines for drilling geothermal wells. The lubricant will be sealed in the bearing section which will allow the bearings to operate directly in the lubricant. The development of the Bearing-Seal Package involves the improvement of high temperature seals and lubricants. Candidate high temperature lubricants were tested in the High Temperature Lubricant Tester under elevated temperatures and pressures. A list of candidate high temperature lubricants, a description of the lubricant test program, and the lubricant test results are presented.

DeLafosse, P.H.; Tibbitts, G.A.; Green, S.J.

1979-01-01T23:59:59.000Z

153

Program for the improvement of downhole drilling motor bearings and seals. Phase V. Final report  

DOE Green Energy (OSTI)

The work done during the fifth and final phase of a program to improve downhole drilling motor bearing and seals is described. The principal activities in this phase were: (a) testing seals with abrasive-laden mud on the low-pressure side; (b) test second and third generation designs of both elastomeric chevron seals and Teflon U-seals; and (c) testing a full-scale bearing/seal package. Several operating parameters which have a radical effect on seal life were identified, and some promising designs and materials were tested.

DeLafosse, P.H.; Tibbitts, G.A.; Black, A.D.; DiBona, B.G.

1983-08-01T23:59:59.000Z

154

Development of downhole instruments for use in the Salton Sea Scientific Drilling Project  

DOE Green Energy (OSTI)

Sandia developed high temperature logging instruments for use in the Salton Sea Scientific Drilling Project. These tools - Kuster mechanical tools for measuring temperature, pressure, and flow; a temperature and pressure tool built around an electronic memory; and a timing and control unit to power a downhole sampler - were all designed for slickline operation to temperatures up to 400/sup 0/C. The drilling of the scientific well and the application of these tools in it were successful. The technology advances made in the development of these tools have been transferred to industry. These advances should prove valuable in future scientific and commercial applications.

Carson, C.C.

1986-01-01T23:59:59.000Z

155

Solar heat receiver  

DOE Patents (OSTI)

A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

1985-01-01T23:59:59.000Z

156

Solar heat receiver  

DOE Patents (OSTI)

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

157

Ceramic solar receivers  

DOE Green Energy (OSTI)

The application of ceramic materials to high temperature solar receivers for advanced Brayton and advanced Stirling thermal electric systems is discussed. Conceptual designs for ceramic cavity receivers employing impingement jet-cooled, dome-shaped silicon carbide heat exchanger modules are offered. Optical, mechanical, heat transfer and structural analyses of this novel receiver approach are presented.

Jarvinen, P. O.

1979-01-01T23:59:59.000Z

158

Flow measurement and characterization in shallow geothermal systems used for downhole heat exchanger applications  

DOE Green Energy (OSTI)

In the largest non-electrical application of geothermal energy presently occurring in the United States, over 400 relatively shallow wells are being used for extraction of energy with downhole heat exchangers. Despite this large amount of application, the exact nature of the flows in the wells has not before been characterized. Knowledge to date on the nature of flows in the systems is summarized, and an ongoing experimental program for making appropriate downhole measurements to determine flows is described in detail. Flow characterization was a principal object of this study. Horizontal cross-flows of geothermal fluid may occur at upper and/or lower levels in the well where perforations in the well casing are situated. In addition, natural convection may induce vertical flows within the well casing which would be influenced by the presence or absence of a heat exchanger. Three main aspects of the experimental program are reported on: (i) a review of potentially applicable methods for measuring vertical and horizontal flows in wells, (ii) the limitations and preliminary results of using a vane anemometer for measuring vertical flows, and (iii) the description of the selected hot-film probe, its associated pressurized calibration facility, and means of making well measurements.

Churchill, D.; Culver, G.G.; Reistad, G.M.

1977-01-01T23:59:59.000Z

159

Improved geothermal well logging tools using no downhole electronics. Final report  

DOE Green Energy (OSTI)

A geothermal sonde for measuring temperature and pressure using no downhole electronics was designed and tested for operation at temperatures up to 275/sup 0/C (527/sup 0/F) and pressures of at least 10,000 psi. The measurement system uses variable resistance transducers which are powered in series by an uphole constant current supply. The output signals from the transducers are measured with a digital voltmeter having very high common mode and normal mode rejection ratios. The high rejection ratios of the digital voltmeter virtually eliminate any noise or pickup introduced into the measurement system. The system was tested in a hydroclave at temperatures up to 288/sup 0/C (550/sup 0/F) and at pressure up to 8,000 psi. The sonde was also tested in the Los Alamos geothermal well at temperatures up to 186/sup 0/C (366/sup 0/F) and pressures up to 4100 psi. The main problems encountered were associated with pressure transducers and the logging cable or the cable head and connector. The results of this project indicate that this is a feasible method of making geothermal measurements without the use of downhole electronics and that with further development the technique could be extended to higher temperatures and pressures.

Kratz, H.R.; Day, E.A.; Ginn, W.G.

1979-07-01T23:59:59.000Z

160

Geothermal well cements: current status of R and D and downhole testing  

DOE Green Energy (OSTI)

The status as of October 1981 of the program to develop and test geothermal well cementing materials. The program represents the most comprehensive and thorough examination of the geothermal cementing problem undertaken thus far. To date, 27 cements identified in an R and D phase of the program or supplied by industry have been evaluated in laboratory tests. Sixteen of these materials were selected for downhole investigations currently in progress in Mexico at Cerro Prieto. Data for 3 months exposures to flowing brine at 210{sup 0}C are available. Most of the cements continue to meet the strength and permeability acceptance criteria. These results should be reassuring to operators who are using such slurries. Further evaluations are planned after 6 and 12 months exposures. Contingent upon these results, tests will be initiated at 350{sup 0}C. Since many of the cements were formulated specifically for use at temperatures above 300/sup 0/C, it is expected that significant property improvements may be observed as the downhole temperature is increased.

Kukacka, L.E.

1981-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fabrication, assembly, bench and drilling tests of two prototype downhole pneumatic turbine motors: Final technical report  

DOE Green Energy (OSTI)

The first and second prototype downhole pneumatic turbine motors have been fabricated, assembled and tested. All bench tests showed that the motor will produce horsepower and bit speeds approximating the predicted values. Specifically, the downhole pneumatic turbine motor produced approximately 50 horsepower at 100 rpm, while being supplied with about 3600 SCFM of compressed air. The first prototype was used in a drilling test from a depth of 389 feet to a depth of 789 feet in the Kirtland formation. This first prototype motor drilled at a rate exceeding 180 ft/hr, utilizing only 3000 SCFM of compressed air. High temperature tests (at approximately 460/sup 0/F) were carried out on the thrust assembly and the gearboxes for the two prototypes. These components operated successfully at these temperatures. Although the bench and drilling tests were successful, the tests revealed design changes that should be made before drilling tests are carried out in geothermal boreholes at the Geysers area, near Santa Rosa, California.

Bookwalter, R.; Duettra, P.D.; Johnson, P.; Lyons, W.C.; Miska, S.

1987-04-01T23:59:59.000Z

162

Definition: Single-Well And Cross-Well Seismic Imaging | Open Energy  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Single-Well And Cross-Well Seismic Imaging (Redirected from Definition:Single-Well And Cross-Well Seismic) Jump to: navigation, search Dictionary.png Single-Well And Cross-Well Seismic Imaging Single well seismic imaging (SWSI) is the application of borehole seismic sources and receivers on the same string within a single borehole in order to acquire CMP type shot gathers. Cross well seismic places sources and receivers in adjacent wells in order to image the interwell volume.[1] Also Known As SWSI References ↑ http://library.seg.org/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Single-Well_And_Cross-Well_Seismic_Imaging&oldid=690246"

163

Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir |  

Open Energy Info (EERE)

Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Details Activities (3) Areas (1) Regions (0) Abstract: A 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada), to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The seismic survey covered an area of 3.03 square miles and was designed with 12 north-south receiver lines and 25 east-west source lines. The receiver group interval was 100 feet and the receiver line spacing was 800 feet. The

164

Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system  

SciTech Connect

As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

Marshall, B.W.

1983-05-01T23:59:59.000Z

165

Seismic Imaging and Monitoring  

SciTech Connect

I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

Huang, Lianjie [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

166

Seismic Imaging and Monitoring  

SciTech Connect

I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

Huang, Lianjie [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

167

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2009)&oldid=425640"

168

Seismicity and seismic stress in the Coso Range, Coso geothermal...  

Open Energy Info (EERE)

California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian...

169

Seismic studies of a massive hydraulic fracturing experiment  

DOE Green Energy (OSTI)

During a massive hydraulic fracturing experiment carried out at Fenton Hill, New Mexico, 850 microearthquakes, ranging in magnitudes from -3 to 0, were located reliably using arrival times recorded at a set of 5 downhole geophone stations. A subset of these events were located using an upgraded hodogram technique. The seismicity defines a tabular zone with horizontal extent of 900 m, vertical extent of 800 m, and thickness of 150 m. This zone strikes N340/sup 0/E, and dips 75/sup 0/ to the east; its position indicates that no hydraulic connection between the two predrilled wells could be achieved by the fracturing. The distribution of locations obtained from arrival times shows good agreement with those derived from hodograms. Well constrained fault plane solutions were determined for 26 of the larger microearthquakes observed at a surface seismic net. Most solutions display one nearly vertical nodal plane that strikes close to N - S, and a T axis that trends roughly E - W, in agreement with regional indicators of the least principal stress direction. 9 refs., 6 figs.

House, L.; Keppler, H.; Kaieda, H.

1985-01-01T23:59:59.000Z

170

High-Temperature Downhole MWD Tools for Directional Drilling | Open Energy  

Open Energy Info (EERE)

MWD Tools for Directional Drilling MWD Tools for Directional Drilling Jump to: navigation, search Geothermal ARRA Funded Projects for High-Temperature Downhole MWD Tools for Directional Drilling Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

171

Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration  

SciTech Connect

The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements as a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.

Peter Sandvik; Stanislav Soloviev; Emad Andarawis; Ho-Young Cha; Jim Rose; Kevin Durocher; Robert Lyons; Bob Pieciuk; Jim Williams; David O'Connor

2007-08-10T23:59:59.000Z

172

DOE/GRI development and testing of a downhole pump for jet-assist drilling  

Science Conference Proceedings (OSTI)

The objective of this project is to accelerate development and commercialization of a high pressure downhole pump (DHP{trademark}) to be used for ultra-high pressure, jet-assisted drilling. The purpose of jet-assisted drilling is to increase the rate of penetration (ROP) in the drilling of deeper gas and oil wells where the rocks become harder and more difficult to drill. As a means to accomplishing this objective, a second generation commercial prototype of a DHP is to be designed, fabricated, tested in the laboratory, and eventually tested in the field. The design of the DOE commercial prototype DHP is current in progress. The layout of the complete DHP is expected to be completed by mid-April. Fabrication and laboratory experimentation is expected to be completed in September. Pending successful completion of the laboratory testing phase, the DOE commercial DHP should be ready for testing in the field by the end of the calendar year.

NONE

1995-07-01T23:59:59.000Z

173

Analysis and thermal-design improvements of downhole tools for use in hot-dry wells  

DOE Green Energy (OSTI)

Design improvements made for downhole thermal protection of systems based on results obtained from the analysis of the electronics, heat sink, and dewar packaged in a steel tubular body are described. Results include heat flux at the tool surface, temperature-time histories of each subsystem and isotherm contour plots during the simulation. The analysis showed that the thermal potential between the electronics and the heat sink was in the wrong direction and also was too small to remove heat entering the electronics section. Also, the conductance of the available heat transfer paths from electronics to heat sink was too small to remove that heat efficiently. Significant improvements in survival at high temperatures were achieved by increasing the available thermal capacity of the heat sink, increasing the thermal potential between the heat sink and electronics, and vastly increasing the conductance of the heat transfer paths.

Bennett, G.A.; Sherman, G.R.

1983-02-01T23:59:59.000Z

174

System to inject steam and produce oil from the same wellbore through downhole valve switching  

SciTech Connect

Various Downhole Equipment systems have been designed for typical applications in three California Oilfields,based on well data gathered from three different Operating Companies. The first system, applicable to a 2,000 ft deep reservoir (Monarch) a highly underpressured, unconsolidated sand of 200 ft net pay, located in the Midway-Sunset field, is based on the use of a new well. The second well configuration considered was the re-entry into an existing well equipped with a 7 inches casing and penetrating into two separate sandstone reservoirs, at normal pressures in the North Antelope Hills field. Only the bottom layer is presently in production through a gravel-packed 5.5 inch linear, while the upper zone is behind the cemented casing. The third case studied was the re-entry into an existing well equipped with an 8 5/8 inch casing, presently unperforated, into a thin under-pressured sand reservoir (Weber) in the Midway-Sunset field. All three California fields contain Heavy Oils of different but relatively high viscosities. A new class of potential applications of our new technology has also been considered: the recovery of Light Oil (> 20 API) by steam injection in under-pressured Carbonate reservoirs which lay at depths beyond the economic limit for conventional steam injection technology. The possibility of including this application in a Field Test proposal to the DOE, under the Class II Oil Program, is now under review by various Operators. A drilling contractor experienced in drilling multiple horizontal wells in Carbonate reservoirs and a team of reservoir engineers experienced in the recovery of Light Oil by steam in fractured reservoirs have expressed their interest in participating in such a joint Field Project. Laboratory tests on specific prototypes of Downhole Sealing Elements are underway.

Not Available

1992-01-01T23:59:59.000Z

175

IPEEE Seismic Insights  

Science Conference Proceedings (OSTI)

This report compiles and summarizes results of the seismic portion of the Individual Plant Examination for External Events (IPEEE) conducted for each U.S. nuclear plant. Utilities can use trends developed from these results -- together with their individual plant-specific results -- to address future seismic issues on a risk-informed basis.

1999-05-20T23:59:59.000Z

176

Seismic Fragility Application Guide  

Science Conference Proceedings (OSTI)

The "Seismic Fragility Applications Guide" provides utilities with in-depth guidelines for performing fragility analysis as part of a seismic probabilistic risk assessment (SPRA). These cost-effective and practical procedures and the resulting SPRA can support risk-informed/performance-based (RI/PB) applications. To download a pdf file of the product description for this report, click here.

2002-12-18T23:59:59.000Z

177

NETL Researchers Receive  

NLE Websites -- All DOE Office Websites (Extended Search)

1, Issue 20 1, Issue 20 the lab NETL Researchers Receive 2010 R&D 100 Awards page 2 NETL Employees Receive USGS Director's Award for Exemplary Service to the Nation page 3 Exciting New Raman Gas Sensor System page 5 NETLOG is a quarterly newsletter, which highlights recent achievements and ongoing research at NETL. Any comments or suggestions, please contact Paula Turner at paula.turner@netl.doe.gov or call 541-967-5966. R&D 100 award recipients Paul Jablonski and David Alman at the black tie ceremony on November 11 in Orlando. CONTENTS NETL Researchers Receive 2010 R&D 100 Awards _______ 2 NETL Employees Receive USGS Director's Award for Exemplary Service to the Nation _____________________ 3 NETL Develops Smart Drilling Fluids ____________________

178

Shipping and Receiving  

NLE Websites -- All DOE Office Websites (Extended Search)

Shipping and Receiving Print Shipping and Receiving Print On this page: Transport Policy Shipping to the ALS Shipping from the ALS Shipping Hazardous Materials Contacts: ALS Shipping & Receiving (small packages) LBNL Shipping & Receiving (large packages requiring forklift truck) Building 7 Hours: M-F, 7:30 am-4:30 pm Telephone: 510 486 4494 Building 69 Hours: M-F, 7:00 am-3:30 pm Telephone: 510 486 4935 Fax: 510 486 5668 Transport Policy - Getting Your Samples and Equipment to and from the ALS All Lab personnel, including ALS staff and users, must follow the procedures detailed below for packing, labeling, and sending shipments to or from the ALS. These shipping procedures are required for: all materials and equipment brought to the ALS; items that are being returned for repairs or refunds to

179

Solar energy receiver  

DOE Patents (OSTI)

An improved long-life design for solar energy receivers provides for greatly reduced thermally induced stress and permits the utilization of less expensive heat exchanger materials while maintaining receiver efficiencies in excess of 85% without undue expenditure of energy to circulate the working fluid. In one embodiment, the flow index for the receiver is first set as close as practical to a value such that the Graetz number yields the optimal heat transfer coefficient per unit of pumping energy, in this case, 6. The convective index for the receiver is then set as closely as practical to two times the flow index so as to obtain optimal efficiency per unit mass of material.

Schwartz, Jacob (Arlington, MA)

1978-01-01T23:59:59.000Z

180

Lab receives OPCW recertification  

NLE Websites -- All DOE Office Websites (Extended Search)

Vu, and Audrey Williams. In 2011, LLNL, as well as the laboratories from Spain and Poland, received "C" grades that weren't based on technical issues, but were mainly based on...

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Biasi, Et Al., 2008) Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Ileana Tibuleac, Leiph Preston (2008) Regional Resource Area Mapping In Nevada Using The Usarray Seismic Network Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2008)&oldid=425638" Category: Exploration Activities What links here

182

Definition: Single-Well And Cross-Well Seismic Imaging | Open Energy  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search Dictionary.png Single-Well And Cross-Well Seismic Imaging Single well seismic imaging (SWSI) is the application of borehole seismic sources and receivers on the same string within a single borehole in order to acquire CMP type shot gathers. Cross well seismic places sources and receivers in adjacent wells in order to image the interwell volume.[1] Also Known As SWSI References ↑ http://library.seg.org/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Single-Well_And_Cross-Well_Seismic_Imaging&oldid=690246" Category:

183

System to inject steam and produce oil from the same wellbore through downhole valve switching. Final report  

SciTech Connect

Through direct contacts with many California Operators, the potential market for this technology and hardware was more closely defined. The largest market might be for re-entry into existing but shut-in wells, equipped with 7{double_prime}OD cemented casings, for which a suitable configuration was designed. For field-testing any prototype Downhole equipment, however, Operators and Service Companies prefer to start with a new well, for better control of the well characteristics. In the relatively shallow reservoirs where Steam injection is currently used with success, the additional drilling cost, in soft formations, is sufficiently small that this became the main design case. Substantial savings were obtained by reducing the number of Downhole valves from two to one and by replacing the twin hydraulically-controlled ball or flapper-type valves with a single sliding sleeve valve, operated by wireline. Laboratory tests conducted at UC-Berkeley confirmed the satisfactory operation of this type of valve with wet steam over extended periods. Low reservoir pressures dictated the use of artificial lift methods, with rod pumps considered the most economical. The availability of live steam downhole at all times is, however, a major advantage which led to the selection of a combined method of artificial lift: (1) steam-lift of the produced fluids up to the kick-off point of the medium curvature drainholes, (2) dumping of the produced fluids into a vertical separator/sump below the kick-off points, (3) vertical rod pumping of the liquid phases from the downhole separator/sump to the surface through a dedicated production tubing.

Not Available

1994-10-01T23:59:59.000Z

184

Central solar energy receiver  

DOE Patents (OSTI)

An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

Drost, M. Kevin (Richland, WA)

1983-01-01T23:59:59.000Z

185

Method of migrating seismic records  

DOE Patents (OSTI)

The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.

Ober, Curtis C. (Las Lunas, NM); Romero, Louis A. (Albuquerque, NM); Ghiglia, Dennis C. (Longmont, CO)

2000-01-01T23:59:59.000Z

186

Geology of the Waste Treatment Plant Seismic Boreholes  

Science Conference Proceedings (OSTI)

In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 ft of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5-million-year-old Elephant Mountain Member, was emplaced above the Pomona Member.

Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

2007-05-11T23:59:59.000Z

187

Category:Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

2 subcategories, out of 2 total. A Active Seismic Techniques 2 pages P Passive Seismic Techniques 2 pages Pages in category "Seismic Techniques" The following 2...

188

Seismic Ruggedness of Relays  

Science Conference Proceedings (OSTI)

Relay GERS (Generic Equipment Ruggedness Spectra) provide utilities with generic seismic capability for more than 100 electrical relays most commonly used in nuclear power plants. The data can be used directly for the assessment of relays in the resolution of Unresolved Safety Issue A-46, "Seismic Qualification of Equipment in Operating Nuclear Plants" and for the Individual Plant Evaluation for External Events (IPEEE) for resolution of USNRC severe accident policy issues.

1991-08-01T23:59:59.000Z

189

Downhole measurements and fluid chemistry of a Castle Rock steam well, The Geysers, Lake County, California  

SciTech Connect

Certain wells within The Geysers steam field have standing water columns either when first drilled or when produced at low flow rates. These water columns have been attributed by Lipman et al. (1978) to accumulation of water condensing in the well bore. Alternative explanations are that perched water bodies exist within the reservoir or that a deep water body underlying the steam reservoir has been tapped. A well in the Castle Rock field of The Geysers drilled by Signal Oil and Gas Company (now Aminoil, U.S.A.) with such a water column was sampled in 1976 for water, gas, and isotope chemistry in hopes of distinguishing between these possible origins; the results along with the well history and downhole pressure and temperature measurements are reported here. The well is located in Lake County, California, in the central part of the Castle Rock field, 4.8 km west-northwest of the town of Anderson Springs. Drilling was started in mid 1970 on a ridge at an elevation of 700 m above sea level. Steam entries were encountered at depths (below land surface) of 1,899, 1,902, 2,176, 2,248 2,288, and 2,295 m; the total depth drilled was 2,498 m. Large volume water entries above 685 m were cased off to 762 m.

Truesdell, Alfred H.; Frye, George A.; Nathenson, Manuel

1978-01-01T23:59:59.000Z

190

Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis  

DOE Patents (OSTI)

A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point and a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained. 9 figs.

Noble, D.T.; Braymen, S.D.; Anderson, M.S.

1996-10-01T23:59:59.000Z

191

Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis  

DOE Patents (OSTI)

A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point mad a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained.

Noble, Donald T. (Ames, IA); Braymen, Steven D. (Ames, IA); Anderson, Marvin S. (Ames, IA)

1996-10-01T23:59:59.000Z

192

Downhole oil/water separators offer lower costs and greater environmental protection  

Science Conference Proceedings (OSTI)

Produced water management can be a significant expense for oil and gas operators. This paper summarizes a study of the technical, economic, and regulatory feasibility of a relatively new technology, downhole oil/water separators (DOWS), to reduce the volume of water pumped to the surface. The study was funded by the US Department of Energy and conducted by Argonne National Laboratory, CH2M Hill, and the Nebraska Oil and Gas Conservation Commission. DOWS are devices that separate oil and gas from produced water at the bottom of the well and reinject some of the produced water into another formation or another horizon within the same formation, while the oil and gas are pumped to the surface. Since much of the produced water is not pumped to the surface, treated, and pumped from the surface back into a deep formation, the cost of handling produced water is greatly reduced. The oil production rate has increased for more than half of the DOWS installations to date.

Veil, J. A.

1999-11-02T23:59:59.000Z

193

Tracer dye transport from a well fitted with a downhole heat exchanger, Klamath Falls, Oregon  

DOE Green Energy (OSTI)

Low or medium temperature geothermal resources are often used for space and domestic hot water heating. If the resource is located at reasonably shallow depths and adjacent to a major population centre large amounts of relatively cheap, clean heat can be provided. Geothermal fluid is often brought to the surface, either under natural artesian pressure or by pumping, to be used in surface heat exchangers (SHEs). This method generally requires a second well for disposal of the cooled fluid and a substantial capital outlay for pumps and heat exchangers. Large amounts of heat can be extracted from just one or two wells using surface heat exchangers and the method can prove very cost effective in areas with a high density of energy intensive users. For smaller heat loads surface heat exchangers can become expensive and in many instances a downhole heat exchanger (DHE) installed directly in the well bore is capable of supplying cheap heat to a smaller number of users. This report first describes the methods used to carry out the series of dye tests, from well selection to injection of the dye samples. It then discusses the results of these tests in terms of how much dye was recovered, where it was recovered from and how long it took to arrive. The results of the concurrent temperature monitoring work and DHE heat output performance are also presented. Some recommendations are made for any future testing. 13 refs., 42 figs.

Dunstall, M.G.

1990-02-01T23:59:59.000Z

194

Multichannel homodyne receiver  

DOE Patents (OSTI)

A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals is described. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.

Landt, J.A.

1981-01-19T23:59:59.000Z

195

Multichannel homodyne receiver  

DOE Patents (OSTI)

A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.

Landt, Jeremy A. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

196

Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada |  

Open Energy Info (EERE)

Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: A 3-D surface seismic reflection survey, covering an area of over 3 square miles, was conducted at the Rye Patch geothermal reservoir (Nevada) to explore the structural features that may control geothermal production in the area. In addition to the surface sources and receivers, a high-temperature three-component seismometer was deployed in a borehole at a depth of 3900 ft within the basement below the reservoir, which recorded the waves generated by all surface sources. A total of 1959 first-arrival travel times were determined out of 2134 possible traces. Two-dimensional

197

Seismic methods for resource exploration in enhanced geothermal systems  

DOE Green Energy (OSTI)

A finite-difference modeling study of seismic wave propagation was conducted to determine how to best investigate subsurface faults and fracture zones in geothermal areas. The numerical model was created based on results from a previous seismic reflection experiment. A suite of fault models was investigated including blind faults and faults with surface expressions. The seismic data suggest that blind faults can be detected by a sudden attenuation of seismic wave amplitudes, as long the fault is located below the receiver array. Additionally, a conversion from P- to S-waves indicates the reflection and refraction of the P-waves while propagating across the fault. The drop in amplitudes and the excitation of S-waves can be used to estimate the location of the fault at depth. The accuracy of the numerical modeling depends on the availability of a priori in situ information (velocity and density) from borehole experiments in the geothermal area.

Gritto, Roland; Majer, Ernest L.

2002-06-12T23:59:59.000Z

198

Magnitude correlations in global seismicity  

Science Conference Proceedings (OSTI)

By employing natural time analysis, we analyze the worldwide seismicity and study the existence of correlations between earthquake magnitudes. We find that global seismicity exhibits nontrivial magnitude correlations for earthquake magnitudes greater than M{sub w}6.5.

Sarlis, N. V. [Solid State Section and Solid Earth Physics Institute, Physics Department, University of Athens, Panepistimiopolis, Zografos GR-157 84, Athens (Greece)

2011-08-15T23:59:59.000Z

199

Geothermal induced seismicity program plan  

DOE Green Energy (OSTI)

A plan for a National Geothermal Induced Seismicity Program has been prepared in consultation with a panel of experts from industry, academia, and government. The program calls for baseline seismic monitoring in regions of known future geothermal development, continued seismic monitoring and characterization of earthquakes in zones of geothermal fluid production and injection, modeling of the earthquake-inducing mechanism, and in situ measurement of stresses in the geothermal development. The Geothermal Induced Seismicity Program (GISP) will have as its objectives the evaluation of the seismic hazard, if any, associated with geothermal resource exploitation and the devising of a technology which, when properly utilized, will control or mitigate such hazards.

Not Available

1981-03-01T23:59:59.000Z

200

Seismic Analysis of Existing Facilties and Evaluation of Risk...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* Develop Seismic Equipment List (SEL) * Perform seismic screening - Perform DOEEH-0545 seismic walkdowns - Perform structural and anchorage seismic analysis to DOEEH-...

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

WIPP Receives Top Safety Award  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP Receives Top Safety Award CARLSBAD, N.M., November 10, 2011 - The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) received top accolades from New...

202

High-temperature ceramic receivers  

DOE Green Energy (OSTI)

An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

Jarvinen, P. O.

1980-01-01T23:59:59.000Z

203

Seismic Design Expectations Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seismic Design Expectations Report Seismic Design Expectations Report March 2010 CD- This Rev of th Se -0 view Module w he overall Cons OFFICE O eismic De C CD-1 was used to dev struction Projec inco OF ENVIRO Standard esign Exp Critical Deci CD-2 M velop the Revie ct Review cond orporated in the ONMENTA Review Pla pectation ision (CD) A C March 2010 ew Plan for the ducted in 2009 e current versio AL MANAG an (SRP) ns Report Applicability D-3 e Oak Ridge Bl 9. Lessons lear on of the Modu GEMENT t (SDER) CD-4 ldg. 3019 60% rned from this r ule. ) Post Ope design review review have be eration w as part een Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental

204

Seismic scaling laws revisited  

E-Print Network (OSTI)

at fast speed Local energy balance Gc U Dc slip friction i n i Es = U Gc #12; Main result: Energy Mo= DSL3 D S L Moment Seismic energy ES=¿ D S L3 Es Mo Energy moment ratio #12; Thus Es ~ 105 Mo ~ U Summary of Observed Radiated Energy vs Moment log Mo=1.5 Mw9.6 Beroza et al, 2001 #12

Madariaga, Raúl

205

Heavy oil recovery process: Conceptual engineering of a downhole methanator and preliminary estimate of facilities cost for application to North Slope Alaska  

Science Conference Proceedings (OSTI)

The West Sak (Upper Cretaceous) sands, overlaying the Kuparuk field, would rank among the largest known oil fields in the US, but technical difficulties have so far prevented its commercial exploitation. Steam injection is the most successful and the most commonly-used method of heavy oil recovery, but its application to the West Sak presents major problems. Such difficulties may be overcome by using a novel approach, in which steam is generated downhole in a catalytic Methanator, from Syngas made at the surface from endothermic reactions (Table 1). The Methanator effluent, containing steam and soluble gases resulting from exothermic reactions (Table 1), is cyclically injected into the reservoir by means of a horizontal drainhole while hot produced fluids flow form a second drainhole into a central production tubing. The downhole reactor feed and BFW flow downward to two concentric tubings. The large-diameter casing required to house the downhole reactor assembly is filled above it with Arctic Pack mud, or crude oil, to further reduce heat leaks. A quantitative analysis of this production scheme for the West Sak required a preliminary engineering of the downhole and surface facilities and a tentative forecast of well production rates. The results, based on published information on the West Sak, have been used to estimate the cost of these facilities, per daily barrel of oil produced. A preliminary economic analysis and conclusions are presented together with an outline of future work. Economic and regulatory conditions which would make this approach viable are discussed. 28 figs.

Gondouin, M.

1991-10-31T23:59:59.000Z

206

ELASTIC-WAVEFIELD SEISMIC STRATIGRAPHY: A NEW SEISMIC IMAGING TECHNOLOGY  

Science Conference Proceedings (OSTI)

The focus of elastic-wavefield seismic stratigraphy research shifted from onshore prospects to marine environments during this report period. Four-component ocean-bottom-cable (4-C OBC) seismic data acquired in water depths of 2400 to 2500 feet across Green Canyon Block 237 in the Gulf of Mexico were processed and analyzed. The P-P and P-SV images of strata immediately below the seafloor exhibit amazing differences in P-P and P-SV seismic facies. These data may be one of the classic examples of the basic concepts of elastic-wavefield seismic stratigraphy.

Bob A. Hardage

2004-05-06T23:59:59.000Z

207

Short-range wireless sensor networks for high density seismic monitoring  

E-Print Network (OSTI)

new oil and gas reservoir. The envisioned production peak of current oil and gas reservoirs is pushing for sub-surface diagnostic (for small earthquake monitoring) and exploration (for new oil and gas Receivers time Delivery time Source Receivers Shot Gas/Oil/Water Gas/Oil/Water Dip-slip fault Active seismic

Spagnolini, Umberto

208

Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Seismic Techniques Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(10) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

209

Seismic analysis of lattice towers.  

E-Print Network (OSTI)

??In the absence of specific guidelines for the seismic analysis of self-supporting telecommunication towers, designers may be tempted to apply simplified building code approaches to (more)

Khedr, Mohamed Abdel Halim.

1998-01-01T23:59:59.000Z

210

Ceramic dome receiver technology developments  

DOE Green Energy (OSTI)

The development and experimental demonstration of a high-temperature seal for the SHARE ceramic dome cavity receiver is reported. The mechanical contact seal which was tested on one-foot-diameter silicon-carbide ceramic-dome hardware at pressure differentials to four atmospheres and dome temperatures to 2200/sup 0/F (1200/sup 0/C) showed negligible leakage at expected receiver operating conditions. Potential solar receiver applications for the technology are illustrated.

Jarvinen, P. O.

1980-01-01T23:59:59.000Z

211

Crosswell Seismic Tomography | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Crosswell Seismic Tomography Citation Schlumberger. Crosswell Seismic...

212

Seismic Design of Reinforced Concrete Mat Foundations  

Science Conference Proceedings (OSTI)

... of building types including high-rise residential towers, healthcare, and ... bearing pressure for transient loads (wind or seismic ... Tower Seismic Force ...

2012-09-17T23:59:59.000Z

213

Induced Seismicity Impact | Open Energy Information  

Open Energy Info (EERE)

Seismicity Impact Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleInducedSeismicityImpact&oldid612409" Category: NEPA Resources What links...

214

System to inject steam and produce oil from the same wellbore through downhole valve switching. First quarterly report  

SciTech Connect

Various Downhole Equipment systems have been designed for typical applications in three California Oilfields,based on well data gathered from three different Operating Companies. The first system, applicable to a 2,000 ft deep reservoir (Monarch) a highly underpressured, unconsolidated sand of 200 ft net pay, located in the Midway-Sunset field, is based on the use of a new well. The second well configuration considered was the re-entry into an existing well equipped with a 7 inches casing and penetrating into two separate sandstone reservoirs, at normal pressures in the North Antelope Hills field. Only the bottom layer is presently in production through a gravel-packed 5.5 inch linear, while the upper zone is behind the cemented casing. The third case studied was the re-entry into an existing well equipped with an 8 5/8 inch casing, presently unperforated, into a thin under-pressured sand reservoir (Weber) in the Midway-Sunset field. All three California fields contain Heavy Oils of different but relatively high viscosities. A new class of potential applications of our new technology has also been considered: the recovery of Light Oil (> 20 API) by steam injection in under-pressured Carbonate reservoirs which lay at depths beyond the economic limit for conventional steam injection technology. The possibility of including this application in a Field Test proposal to the DOE, under the Class II Oil Program, is now under review by various Operators. A drilling contractor experienced in drilling multiple horizontal wells in Carbonate reservoirs and a team of reservoir engineers experienced in the recovery of Light Oil by steam in fractured reservoirs have expressed their interest in participating in such a joint Field Project. Laboratory tests on specific prototypes of Downhole Sealing Elements are underway.

Not Available

1992-10-01T23:59:59.000Z

215

Desjarlais received Lifetime Achievement Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Andr Desjarlais received a Lifetime Achievement Award from the Polyisocyanurate Insulation Manufacturers Association (PIMA) during the group's 25th Anniversary celebration...

216

Geophysics I. Seismic Methods  

SciTech Connect

During the past two decades, the technology of geophysics has exploded. At the same time, the petroleum industry has been forced to look for more and more subtle traps in more and more difficult terrain. The choice of papers in this geophysics reprint volume reflects this evolution. The papers were chosen to help geologists, not geophysicists, enhance their knowledge of geophysics. Math-intensive papers were excluded because those papers are relatively esoteric and have limited applicability for most geologists. This volume concentrates on different seismic survey methods. Each of the 38 papers were abstracted and indexed for the U.S. Department of Energy's Energy Data Base.

Beaumont, E.A.; Foster, N.H. (comps.)

1989-01-01T23:59:59.000Z

217

Data Mining for Seismic Exploration  

Science Conference Proceedings (OSTI)

Seismic exploration plays an important role in petroleum industry. It is widely admitted that there are a lot of limitations of conventional data analysis ways in oil and gas industry. Traditional methods in petroleum engineering are knowledge-driven ... Keywords: seismic exploration, data mining, cluster analysis

Zhongbin Ouyang; Jing He; Keliang Zhang

2008-12-01T23:59:59.000Z

218

Induced Seismicity | Open Energy Information  

Open Energy Info (EERE)

Induced Seismicity Induced Seismicity Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Induced Seismicity 2 Geothermal ARRA Funded Projects for Induced Seismicity Geothermal Lab Call Projects for Induced Seismicity Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":14,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

219

Seismic event classification system  

DOE Patents (OSTI)

In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities. 21 figures.

Dowla, F.U.; Jarpe, S.P.; Maurer, W.

1994-12-13T23:59:59.000Z

220

Micromachined silicon seismic transducers  

SciTech Connect

Batch-fabricated silicon seismic transducers could revolutionize the discipline of CTBT monitoring by providing inexpensive, easily depolyable sensor arrays. Although our goal is to fabricate seismic sensors that provide the same performance level as the current state-of-the-art ``macro`` systems, if necessary one could deploy a larger number of these small sensors at closer proximity to the location being monitored in order to compensate for lower performance. We have chosen a modified pendulum design and are manufacturing prototypes in two different silicon micromachining fabrication technologies. The first set of prototypes, fabricated in our advanced surface- micromachining technology, are currently being packaged for testing in servo circuits -- we anticipate that these devices, which have masses in the 1--10 {mu}g range, will resolve sub-mG signals. Concurrently, we are developing a novel ``mold`` micromachining technology that promises to make proof masses in the 1--10 mg range possible -- our calculations indicate that devices made in this new technology will resolve down to at least sub-{mu}G signals, and may even approach to 10{sup {minus}10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

Barron, C.C.; Fleming, J.G.; Sniegowski, J.J.; Armour, D.L.; Fleming, R.P.

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Seismic event classification system  

DOE Patents (OSTI)

In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.

Dowla, Farid U. (Castro Valley, CA); Jarpe, Stephen P. (Brentwood, CA); Maurer, William (Livermore, CA)

1994-01-01T23:59:59.000Z

222

CBFO Manager Receives ESGR Award  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant P.O. Box 3090 Carlsbad, New Mexico 88221 For Immediate Release CBFO Manager Receives ESGR Honor...

223

Development and testing of a high-pressure downhole pump for jet-assist drilling. Topical report, Phase II  

Science Conference Proceedings (OSTI)

The goal of jet-assisted drilling is to increase the rate of penetration (ROP) in deeper gas and oil wells, where the rocks become harder and more difficult to drill. Increasing the ROP can result in fewer drilling days, and therefore, lower drilling cost. In late 1993, FlowDril and the Gas Research Institute (GRI) began a three-year development of a down hole pump (DHP{reg_sign}) capable of producing 30,000 psi out pressure to provide the high-pressure flow for high-pressure jet-assist of the drill bit. The U.S. Department of Energy (DOE) through its Morgantown, WV (DOE-Morgantown) field office, joined with GRI and FlowDril to develop and test a second prototype designed for drilling in 7-7/8 inch holes. This project, {open_quotes}Development and Testing of a High-Pressure Down Hole Pump for Jet-Assist Drilling,{close_quotes} is for the development and testing of the second prototype. It was planned in two phases. Phase I included an update of a market analysis, a design, fabrication, and an initial laboratory test of the second prototype. Phase II is continued iterative laboratory and field developmental testing. This report summarizes the results of Phase II. In the downhole pump approach shown in the following figure, conventional drill pipe and drill collars are used, with the DHP as the last component of the bottom hole assembly next to the bit. The DHP is a reciprocating double ended, intensifier style positive displacement, high-pressure pump. The drive fluid and the high-pressure output fluid are both derived from the same source, the abrasive drilling mud pumped downhole through the drill string. Approximately seven percent of the stream is pressurized to 30,000 psi and directed through a high-pressure nozzle on the drill bit to produce the high speed jet and assist the mechanical action of the bit to make it drill faster.

NONE

1997-10-01T23:59:59.000Z

224

Frequent-Interval Seismic CPTu  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Frequent-Interval Frequent-Interval Seismic CPTu D. Bruce Nothdurft, MSCE, PE, PG SRS Geotechnical Engineering Department Savannah River Nuclear Solutions Alec V. McGillivray, PhD, PE Geotechnical Consultant Brent J. Gutierrez, PhD, PE NPH Engineering Manager, DOE-SR Motivation  The seismic piezocone penetration test (SCPTu) utilized at SRS because it provides rapid and thorough site characterization.  Evaluation of non-linear soil behavior...  detailed stratigraphy  small-strain velocity measurements  large-strain non-seismic measurements  Depth scale disparity  large-strain non-seismic measurements nearly continuous with depth  small-strain velocity measurements over 1 m depth intervals. 2 October 25-26, 2011 DOE NPH Conference

225

Position paper: Seismic design criteria  

SciTech Connect

The purpose of this paper is to document the seismic design criteria to be used on the Title 11 design of the underground double-shell waste storage tanks and appurtenant facilities of the Multi-Function Waste Tank Facility (MWTF) project, and to provide the history and methodologies for determining the recommended Design Basis Earthquake (DBE) Peak Ground Acceleration (PGA) anchors for site-specific seismic response spectra curves. Response spectra curves for use in design are provided in Appendix A.

Farnworth, S.K.

1995-05-22T23:59:59.000Z

226

Experience Based Seismic Equipment Qualification  

Science Conference Proceedings (OSTI)

This report provides guidelines that can be used to perform an experience-based seismic equipment qualification for verification of seismic adequacy of active electrical and mechanical equipment consistent with requirements of American Society of Civil Engineers (ASCE)-7. The report summarizes what requirements are sufficient to ensure that an item of equipment can perform its intended safety function after a design earthquake. The report also provides additional guidance on ensuring that an item of equi...

2007-12-21T23:59:59.000Z

227

Newberry Seismic Deployment Fieldwork Report  

DOE Green Energy (OSTI)

This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquake detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.

Wang, J; Templeton, D C

2012-03-21T23:59:59.000Z

228

Central solar-energy receiver  

DOE Patents (OSTI)

An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan is described. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

Not Available

1981-10-27T23:59:59.000Z

229

UWB communication receiver feedback loop  

DOE Patents (OSTI)

A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

Spiridon, Alex (Palo Alto, CA); Benzel, Dave (Livermore, CA); Dowla, Farid U. (Castro Valley, CA); Nekoogar, Faranak (San Ramon, CA); Rosenbury, Erwin T. (Castro Valley, CA)

2007-12-04T23:59:59.000Z

230

Definition: Active Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Seismic Techniques Seismic Techniques Jump to: navigation, search Dictionary.png Active Seismic Techniques Active seismic techniques study the behavior of artificially-generated elastic waves in the subsurface. A seismic wave or pulse is generated at the surface by an active seismic source which can be a vibration, mechanical impact, or near-surface explosion.[1] View on Wikipedia Wikipedia Definition Seismic waves are waves of energy that travel through the Earth's layers, and are a result of an earthquake, explosion, or a volcano that imparts low-frequency acoustic energy. Many other natural and anthropogenic sources create low amplitude waves commonly referred to as ambient vibrations. Seismic waves are studied by geophysicists called seismologists. Seismic wave fields are recorded by a seismometer,

231

RF transmission line and drill/pipe string switching technology for down-hole telemetry  

DOE Patents (OSTI)

A modulated reflectance well telemetry apparatus having an electrically conductive pipe extending from above a surface to a point below the surface inside a casing. An electrical conductor is located at a position a distance from the electrically conductive pipe and extending from above the surface to a point below the surface. Modulated reflectance apparatus is located below the surface for modulating well data into a RF carrier transmitted from the surface and reflecting the modulated carrier back to the surface. A RF transceiver is located at the surface and is connected between the electrically conductive pipe and the electrical conductor for transmitting a RF signal that is confined between the electrically conductive well pipe and the electrical conductor to the modulated reflectance apparatus, and for receiving reflected data on the well from the modulated reflectance apparatus.

Clark, David D. (Santa Fe, NM); Coates, Don M. (Santa Fe, NM)

2007-08-14T23:59:59.000Z

232

FPGA side-channel receivers  

Science Conference Proceedings (OSTI)

The popularity of FPGAs is rapidly growing due to the unique advantages that they offer. However, their distinctive features also raise new questions concerning the security and communication capabilities of an FPGA-based hardware platform. In this paper, ... Keywords: ddr2, fpga, i2c, phase shift, side-channel receiver, thermal

Ji Sun; Ray Bittner; Ken Eguro

2011-02-01T23:59:59.000Z

233

RFID receiver apparatus and method  

DOE Patents (OSTI)

An RFID backscatter interrogator for transmitting data to an RFID tag, generating a carrier for the tag, and receiving data from the tag modulated onto the carrier, the interrogator including a single grounded-coplanar wave-guide circuit board and at least one surface mount integrated circuit supported by the circuit board.

Scott, Jeffrey Wayne (Pasco, WA)

2006-12-26T23:59:59.000Z

234

Selecting the seismic HRA approach for Savannah River Plant PRA revision 1  

SciTech Connect

The Westinghouse Savannah River Company (WSRC) has prepared a level I probabilistic risk assessment (PRA), Rev. 0 of reactor operations for externally-initiated events including seismic events. The SRS PRA, Rev. 0 Seismic HRA received a critical review that expressed skepticism with the approach used for human reliability analysis because it had not been previously used and accepted in other published PRAs. This report provides a review of published probabilistic risk assessments (PRAs), the associated methodology guidance documents, and the psychological literature to identify parameters important to seismic human reliability analysis (HRA). It also describes a recommended approach for use in the Savannah River Site (SRS) PRA. The SRS seismic event PRA performs HRA to account for the contribution of human errors in the accident sequences. The HRA of human actions during and after a seismic event is an area subject to many uncertainties and involves significant analyst judgment. The approach recommended by this report is based on seismic HRA methods and associated issues and concerns identified from the review of these referenced documents that represent the current state-of-the- art knowledge and acceptance in the seismic HRA field.

Papouchado, K.; Salaymeh, J. [eds.] [Westinghouse Savannah River Co., Aiken, SC (United States); Wingo, H.E.; Benhardt, H.C.; van Buijtenen, C.M.; Mitts, T.M. [Battelle Pacific Northwest Labs., Richland, WA (United States)

1993-10-01T23:59:59.000Z

235

Three-dimensional seismic imaging of the Rye Patch geothermal reservoir  

DOE Green Energy (OSTI)

A 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada), to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The seismic survey covered an area of 3.03 square miles and was designed with 12 north-south receiver lines and 25 east-west source lines. The receiver group interval was 100 feet and the receiver line spacing was 800 feet. The source interval was 100 feet while the source line spacing was 400 feet. The sources were comprised of 4 vibrator trucks arranged in a box array. Seismic processing involved, among other steps, the picking of over 700,000 of the possible one million traces to determine first arrival travel times, normal moveout correction, 3-D stack, deconvolution, time migration, and depth conversion. The final data set represents a 3-D cube of the subsurface structure in the reservoir. Additionally, the travel times were used to perform tomographic inversions for velocity estimates to support the findings of the surface seismic imaging. The results suggest the presence of at least one dominant fault responsible for the migration of fluids in the reservoir. Furthermore, it is suggested that this feature might be part of a fault system that includes a graben structure.

Feighner, M.; Gritto, R.; Daley, T.M.; Keers, H.; Majer, E.L.

1999-11-01T23:59:59.000Z

236

FAST Simulation of Seismic Wind Turbine Response  

DOE Green Energy (OSTI)

This paper discusses recent additions to the computer simulation code FAST that allow a user to consider seismic loads.

Prowell, I.; Elgamal, A.; Jonkman, J.

2010-03-01T23:59:59.000Z

237

Seismic Isolation of Nuclear Power Plants  

Science Conference Proceedings (OSTI)

With increasing public concern for seismic safety in general and research findings that indicate that seismic hazards may be larger than expected in many parts of the world, it would be prudent for the nuclear industry to consider more fully the potential benefits, costs, and impediments associated with applying seismic isolation more widely and to identify actions needed to develop practical and cost-effective guidelines for the application of seismic isolation to nuclear power plants (NPPs) and ...

2013-10-28T23:59:59.000Z

238

The Nuclear Renaissance & the NRC Seismic Research ...  

Science Conference Proceedings (OSTI)

... Existing and New Reactor Licensing Offices ... Seismic Isolation Small Modular Reactors SSI modeling of NPPs under non-traditional loads ...

2011-03-10T23:59:59.000Z

239

Seismic Regionalization In Northeast Russia  

E-Print Network (OSTI)

In an effort to characterize seismicity in support of nuclear explosion monitoring for the continental regions of northeast Russia, we have been analyzing information obtained from regional seismic network operators. Our goal is to merge catalog, bulletin, waveform, and other ground truth data from several regional networks into a comprehensive data set that we will use for various seismic research projects. To date we have compiled a bulletin from published and unpublished event data of about 200,000 events and over 150,000 arrival times. We have also determined that the Russian regional network catalogs are contaminated with mining-explosion events. Hence, one of our primary efforts is to identify mining events when possible and move them into a separate bulletin from the natural earthquakes. We have extended our preliminary analysis of explosion contamination of Russian seismicity catalogs using temporal analysis into the Irkutsk and Chita districts and the Buryat Republic. Based on analysis of epicenters and origin times reported in Material po Seismichnost' Sibiri for 1970 -- 1993, it is likely that considerable explosion contamination occurs in the gold (Bodaibo, northern Irkutsk Region, and in the Chita region), mica (Vitim, northern Irkutsk Region), and other mining areas (Bushulei, Nerchinsk, and Petrovsk in the Buryat and Chita areas). Explosion contamination is also observed in northernmost Mongolia in the mining and industrial district near Darkhan. Explosions associated with the construction of the Baikal-Amur Mainline Railroad are likely, as was observed in the Amur district; however, the amount of natural seismicity dominates the activity and makes it impossible to resolve the railroad separately. In conjunction with the Magadan Seismic Network operators,...

Kevin Mackey Kazuya; Kazuya Fujita; Lee K. Steck; Hans E. Hartse

2002-01-01T23:59:59.000Z

240

Seismic-frequency attenuation and moduli estimates using a fiber-optic strainmeter Ludmila Adam 1  

E-Print Network (OSTI)

-frequency attenuation and moduli estimates using a fiber-optic strainmeter = /(2n), where is the wavelength of light of strain gages, fiber-optic and ultrasonic data. * Not enough light was received at the detector (mirrorsSeismic-frequency attenuation and moduli estimates using a fiber-optic strainmeter Ludmila Adam 1

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Evaluation and design of downhole heat exchangers for direct application; Annual report, May 1, 1976 - July 1, 1977  

DOE Green Energy (OSTI)

Progress in an experimental and analytical research program to evaluate and improve the design of downhole heat exchangers (DHEs) for direct applications of geothermal energy is reported. Significant progress has been achieved in characterizing flows in wells and without perforated casings and DHEs installed, determination of energy extraction rates for conventional DHEs in both cased and uncased wells, and utilization of information obtained to develop and substantiate models of heat transfer within the well. Flow characterization was obtained by experimentally measuring temperature and velocity profiles. In uncased wells, there was a relatively large vertical temperature gradient (approximately 0.5{sup 0}C/m) and insignificant measured vertical flow, while for the same wells when cased the temperature gradient was essentially zero (approximately 0.03{sup 0}C/m) and a large vertically upward flow was measured (9 to 14 cm/s as measured with a hot-film anemometer). These show that a significant connection cell is established after installation of the casing. The energy extraction rates for a conventional DHE both before and after casing of a 60 m deep well was experimentally measured. In the uncased well up to 300 kW was obtained while the cased well produced over 500 kW. Analytical heat transfer models were developed for the cased well both with and without DHEs. For the cased well without a DHE, the model predicts flow rates that agree with the measured value within about 30 percent. Further, the energy extraction rates predicted by the models agree even better with the measured values. These models allow the energy extraction rates of design parameter variations to be evaluated. At this stage, only trends can be shown but with additional substantiation they should produce optimum energy extraction designs.

Culver, G.G.; Reistad, G.M.

1977-07-01T23:59:59.000Z

242

Seismic Performance Requirements for WETF  

Science Conference Proceedings (OSTI)

This report develops recommendations for requirements on the Weapons Engineering Tritium Facility (WETF) performance during seismic events. These recommendations are based on fragility estimates of WETF structures, systems, and components that were developed by LANL experts during facility walkdowns. They follow DOE guidance as set forth in standards DOE-STD-1021-93, ''Natural Phenomena Hazards Performance Categorization Guidelines for Structures, Systems, and Components'' and DOE-STD-1020-94, ''Natural Phenomena Hazards Design and Evaluation Criteria for Department of Energy Facilities''. Major recommendations are that WETF institute a stringent combustible loading control program and that additional seismic bracing and anchoring be provided for gloveboxes and heavy equipment.

Hans Jordan

2001-01-01T23:59:59.000Z

243

Expanding Conventional Seismic Stratigrphy into the Multicomponent Seismic Domain  

SciTech Connect

Multicomponent seismic data are composed of three independent vector-based seismic wave modes. These wave modes are, compressional mode (P), and shear modes SV and SH. The three modes are generated using three orthogonal source-displacement vectors and then recorded using three orthogonal vector sensors. The components travel through the earth at differing velocities and directions. The velocities of SH and SV as they travel through the subsurface differ by only a few percent, but the velocities of SV and SH (Vs) are appreciably lower than the P-wave velocity (Vp). The velocity ratio Vp/Vs varies by an order of magnitude in the earth from a value of 15 to 1.5 depending on the degree of sedimentary lithification. The data used in this study were acquired by nine-component (9C) vertical seismic profile (VSP), using three orthogonal vector sources. The 9C vertical seismic profile is capable of generating P-wave mode and the fundamental S-wave mode (SH-SH and SV-SV) directly at the source station and permits the basic components of elastic wavefield (P, SH-SH and SV-SV) to be separated from one another for the purposes of imaging. Analysis and interpretations of data from the study area show that incident full-elastic seismic wavefield is capable of reflecting four different wave modes, P, SH , SV and C which can be utilized to fully understand the architecture and heterogeneities of geologic sequences. The conventional seismic stratigraphy utilizes only reflected P-wave modes. The notation SH mode is the same as SH-SH; SV mode means SV-SV and C mode which is a converted shear wave is a special SV mode and is the same as P-SV. These four wave modes image unique geologic stratigraphy and facies and at the same time reflect independent stratal surfaces because of the unique orientation of their particle-displacement vectors. As a result of the distinct orientation of individual mode's particle-displacement vector, one mode may react to a critical subsurface sequence more than the other. It was also observed that P-wave and S-wave do not always reflect from the same stratal boundaries. The utilization of full-elastic seismic wavefield needs to be maximized in oil and gas explorations in order to optimize the search for hydrocarbons.

Innocent Aluka

2008-08-31T23:59:59.000Z

244

Tubular well tool receiving conduit  

SciTech Connect

In combination, a well packer and a tubular well tool receiving conduit are described which consists of: a well packer having an expandable and retractable anchoring teeth and an expandable and retractable seal spaced from the anchoring teeth, a tubular well conduit including, a first plurality of circularly extending grooves on the inside of the conduit for coacting with the anchoring teeth for supporting the well tool in the conduit, a second plurality of circularly extending grooves on the inside of the conduit and positioned for coacting with the expandable seal for providing multiple seal points with the seal.

Durst, D.G.; Morris, A.J.

1986-07-15T23:59:59.000Z

245

User's manual for GEOTEMP, a computer code for predicting downhole wellbore and soil temperatures in geothermal wells. Appendix to Part I report  

DOE Green Energy (OSTI)

GEOTEMP is a computer code that calculates downhole temperatures in and surrounding a well. Temperatures are computed as a function of time in a flowing stream, in the wellbore, and in the soil. Flowing options available in the model include the following: injection/production, forward/reverse circulation, and drilling. This manual describes how to input data to the code and what results are printed out, provides six examples of both input and output, and supplies a listing of the code. The user's manual is an appendix to the Part I report Development of Computer Code and Acquisition of Field Temperature Data.

Wooley, G.R.

1980-03-01T23:59:59.000Z

246

Repository receiving facility design support  

Science Conference Proceedings (OSTI)

This report provides preliminary design criteria and proposed design features to reduce the occupational radiation exposure and the transportation turnaround time during receipt of waste shipments at a Federal high-level nuclear waste repository. A cost/benefit analysis is provided. Much of the data presented in previous reports was revised and upgraded to reflect current estimates of waste generation/receipt volumes so as to provide a baseline comparison case for the cost/benefit analysis. The National Waste Repository in Basalt receiving facility operational manpower requirements, estimated occupational dose exposures and capital cost estimates were revised by scaling factors based on the volume receipts. All capital cost estimates were expressed in terms of 1983 dollars. The repository receiving facility was divided into two main areas. The cask handling facility for unloading shipments of spent fuel high-level vitrified wastes and spent fuel cladding hulls, and the TRU-waste handling facility for unloading 55-, 80-, and 600-drum shipments. In both areas, remote handling techniques were employed as much as practical. Occupational dose estimates were formulated based on an operational time and motion survey for truck and rail shipping packages and reference dose maps for each corresponding package. 9 references, 5 figures, 22 tables.

Cottrell, J.E.; Dabolt, R.J.; Steneck, P.D.

1983-07-01T23:59:59.000Z

247

Active Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Active Seismic Techniques Active Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Active Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

248

Teleseismic-Seismic Monitoring | Open Energy Information  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring Teleseismic-Seismic Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Teleseismic-Seismic Monitoring Details Activities (33) Areas (18) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Passive Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Map geothermal reservoir geometry. Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

249

Passive Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Passive Seismic Techniques Passive Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Passive Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(4) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

250

Micromachined silicon seismic accelerometer development  

Science Conference Proceedings (OSTI)

Batch-fabricated silicon seismic transducers could revolutionize the discipline of seismic monitoring by providing inexpensive, easily deployable sensor arrays. Our ultimate goal is to fabricate seismic sensors with sensitivity and noise performance comparable to short-period seismometers in common use. We expect several phases of development will be required to accomplish that level of performance. Traditional silicon micromachining techniques are not ideally suited to the simultaneous fabrication of a large proof mass and soft suspension, such as one needs to achieve the extreme sensitivities required for seismic measurements. We have therefore developed a novel {open_quotes}mold{close_quotes} micromachining technology that promises to make larger proof masses (in the 1-10 mg range) possible. We have successfully integrated this micromolding capability with our surface-micromachining process, which enables the formation of soft suspension springs. Our calculations indicate that devices made in this new integrated technology will resolve down to at least sub-{mu}G signals, and may even approach the 10{sup -10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

Barron, C.C.; Fleming, J.G.; Montague, S. [and others

1996-08-01T23:59:59.000Z

251

USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC  

Open Energy Info (EERE)

USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC AND HYDROLOGIC STRUCTURE WITHIN THE COSO GEOTHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC AND HYDROLOGIC STRUCTURE WITHIN THE COSO GEOTHERMAL FIELD, CALIFORNIA Details Activities (1) Areas (1) Regions (0) Abstract: We relocate 14 years of seismicity in the Coso Geothermal Field using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We utilize over 60,000 micro-seismic events using waveform crosscorrelation to augment the expansive catalog of Pand S-wave

252

Statistical Physics Approaches to Seismicity  

E-Print Network (OSTI)

This entry in the Encyclopedia of Complexity and Systems Science, Springer present a summary of some of the concepts and calculational tools that have been developed in attempts to apply statistical physics approaches to seismology. We summarize the leading theoretical physical models of the space-time organization of earthquakes. We present a general discussion and several examples of the new metrics proposed by statistical physicists, underlining their strengths and weaknesses. The entry concludes by briefly outlining future directions. The presentation is organized as follows. I Glossary II Definition and Importance of the Subject III Introduction IV Concepts and Calculational Tools IV.1 Renormalization, Scaling and the Role of Small Earthquakes in Models of Triggered Seismicity IV.2 Universality IV.3 Intermittent Periodicity and Chaos IV.4 Turbulence IV.5 Self-Organized Criticality V Competing mechanisms and models V.1 Roots of complexity in seismicity: dynamics or heterogeneity? V.2 Critical earthquakes ...

Sornette, D

2008-01-01T23:59:59.000Z

253

Nuclear component horizontal seismic restraint  

DOE Patents (OSTI)

A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

Snyder, Glenn J. (Lynchburg, VA)

1988-01-01T23:59:59.000Z

254

Oklahoma seismic network. Final report  

SciTech Connect

The US Nuclear Regulatory Commission has established rigorous guidelines that must be adhered to before a permit to construct a nuclear-power plant is granted to an applicant. Local as well as regional seismicity and structural relationships play an integral role in the final design criteria for nuclear power plants. The existing historical record of seismicity is inadequate in a number of areas of the Midcontinent region because of the lack of instrumentation and (or) the sensitivity of the instruments deployed to monitor earthquake events. The Nemaha Uplift/Midcontinent Geophysical Anomaly is one of five principal areas east of the Rocky Mountain front that has a moderately high seismic-risk classification. The Nemaha uplift, which is common to the states of Oklahoma, Kansas, and Nebraska, is approximately 415 miles long and 12-14 miles wide. The Midcontinent Geophysical Anomaly extends southward from Minnesota across Iowa and the southeastern corner of Nebraska and probably terminates in central Kansas. A number of moderate-sized earthquakes--magnitude 5 or greater--have occurred along or west of the Nemaha uplift. The Oklahoma Geological Survey, in cooperation with the geological surveys of Kansas, Nebraska, and Iowa, conducted a 5-year investigation of the seismicity and tectonic relationships of the Nemaha uplift and associated geologic features in the Midcontinent. This investigation was intended to provide data to be used to design nuclear-power plants. However, the information is also being used to design better large-scale structures, such as dams and high-use buildings, and to provide the necessary data to evaluate earthquake-insurance rates in the Midcontinent.

Luza, K.V.; Lawson, J.E. Jr. [Oklahoma Geological Survey, Norman, OK (United States)]|[Univ. of Oklahoma, Norman, OK (United States). Energy Center

1993-07-01T23:59:59.000Z

255

Seismicity and seismic stress in the Coso Range, Coso geothermal field, and  

Open Energy Info (EERE)

Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Details Activities (1) Areas (1) Regions (0) Abstract: The temporal and spatial distribution of seismicity in the Coso Range, the Coso geothermal field, and the Indian Wells Valley region of southeast-central California are discussed in this paper. An analysis of fault-related seismicity in the region led us to conclude that the Little Lake fault and the Airport Lake fault are the most significant seismogenic zones. The faulting pattern clearly demarcates the region as a transition

256

Probabilistic economic evaluation of substation seismic upgrade  

SciTech Connect

This paper presents a methodology for deciding whether or not to implement seismic design modifications at Southern California Edison's (SCE) Substation facilities. The method considers the potential for substation capability loss resulting from earthquake damage, cost of seismic modification made today, the cost of damage restoration after that modification is made, the cost of doing nothing now, and the site specific earthquake probability. Based on these findings, recommendations for seismic modifications of substation facilities could be made.

Ong, T.L.; Ensign, R.L.; Martin, D.F.; Richter, H.L. (Southern California Edison Co., Rosemead, CA (USA))

1990-04-01T23:59:59.000Z

257

SLAC National Accelerator Laboratory - SLAC Physicist Receives...  

NLE Websites -- All DOE Office Websites (Extended Search)

Receives Free-electron Laser Award By Glenn Roberts Jr. September 10, 2013 Dao Xiang, a SLAC accelerator physicist, has received an international award for his work on a technique...

258

Trough Receiver Heat Loss Testing (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the design, fabrication, and qualification of an experimental capability for thermal loss testing of full-size trough receiver elements; and the testing on a variety of receivers.

Lewandowski, A.; Feik, C.; Hansen, R.; Phillips, S.; Bingham, C.; Netter, J.; Forristal, R.; Burkholder, F.; Meglan, B.; Wolfrum, E.

2006-02-01T23:59:59.000Z

259

HYDRAULIC FRACTURING AND INDUCED SEISMICITY IN KANSAS  

E-Print Network (OSTI)

For some time the public has asked questions about seismic activity related to hydraulic fracturing and other oil-field related activities. In particular, there is concern that the energy that goes into the subsurface during hydraulic fracturing is sufficient to cause felt earthquakes. The following is a response to those questions. 1) Seismic activity that is related to human activities is generally referred to as induced seismicity or triggered seismicity. Induced seismicity is defined as seismic events attributable to human activities (National Research Council, 2012). The term triggered seismicity is also used to describe situations in which human activities could potentially trigger large and potentially damaging earthquakes (Shemeta et al., 2012). The following discussion uses only the term induced seismicity to refer to seismic activity in which human activity plays a role. 2) Because it uses energy to fracture rocks to release oil or natural gas, hydraulic fracturing does create microseismic events (of a magnitude less than 2.0). Felt earthquake activity (generally greater than a magnitude 3.0) resulting from hydraulic fracturing has been confirmed from only one location in the world (National Research Council, 2012). In the

unknown authors

2013-01-01T23:59:59.000Z

260

Mapping Diffuse Seismicity for Geothermal Reservoir Management...  

Open Energy Info (EERE)

Facebook icon Twitter icon Mapping Diffuse Seismicity for Geothermal Reservoir Management with Matched Field Processing Geothermal Lab Call Project Jump to: navigation,...

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Tentative Framework for Development of Advanced Seismic ...  

Science Conference Proceedings (OSTI)

... 3-30 4. Conceptual Reformulation of Seismic Design Parameters ..... ... 4-5 4.4.1 Maximum Considered Earthquake Basis for the RM Factor ...

2013-06-17T23:59:59.000Z

262

ITL Staff Members Receive Tech Transfer Award  

Science Conference Proceedings (OSTI)

ITL Staff Members Receive Tech Transfer Award. ... Regional "Excellence in Technology Transfer" Award for ... the process of transferring a technology ...

2010-10-05T23:59:59.000Z

263

Teleseismic-Seismic Monitoring At Kilauea Summit Area (Chouet...  

Open Energy Info (EERE)

10). References Bernard Chouet, Kehti Aki (1981) Seismic Structure And Seismicity Of The Cooling Lava Lake Of Kilauea Iki, Hawaii Retrieved from "http:en.openei.orgw...

264

Category:Passive Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Passive Seismic Techniques page? For detailed information on Passive Seismic Techniques,...

265

Seismic baseline and induction studies- Roosevelt Hot Springs...  

Open Energy Info (EERE)

Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic baseline and...

266

Teleseismic-Seismic Monitoring At New River Area (DOE GTP) |...  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At New...

267

Shipping and Receiving | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Employee Services » Facility Operations » Shipping Services » Employee Services » Facility Operations » Shipping and Receiving Shipping and Receiving Headquarters Receiving Services Information It is our responsibility to get your package to you as quickly as possibly. In order to accomplish this, we must first receive it. However, it is difficult to receive your package if it arrives without being properly addressed. When placing orders with commercial vendors, it is imperative that you let them know the addressees name, mail stop code, room number, location (Forrestal or Germantown) and the address. This information will allow us to receive your order and not reject it. It will also help if you would provide our office with a copy of your purchase order which will assist us in efficiently receiving your order and getting it to you.

268

Seismic monitoring at The Geysers  

DOE Green Energy (OSTI)

During the last several years Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL) have been working with industry partners at The Geysers geothermal field to evaluate and develop methods for applying the results of microearthquake (MEQ) monitoring. It is a well know fact that seismicity at The Geysers is a common occurrence, however, there have been many studies and papers written on the origin and significance of the seismicity. The attitude toward MEQ data ranges from being nothing more than an curious artifact of the production activities, to being a critical tool in evaluating the reservoir performance. The purpose of the work undertaken b y LBL and LLNL is to evaluate the utility, as well as the methods and procedures used in of MEQ monitoring, recommend the most cost effective implementation of the methods, and if possible link physical processes and parameters to the generation of MEQ activity. To address the objectives above the MEQ work can be categorized into two types of studies. The first type is the direct analysis of the spatial and temporal distribution of MEQ activity and studying the nature of the source function relative to the physical or chemical processes causing the seismicity. The second broad area of study is imaging the reservoir/geothermal areas with the energy created by the MEQ activity and inferring the physical and/or chemical properties within the zone of imaging. The two types of studies have obvious overlap, and for a complete evaluation and development require high quality data from arrays of multicomponent stations. Much of the effort to date at The Geysers by both DOE and the producers has concentrated establishing a high quality data base. It is only within the last several years that this data base is being fully evaluated for the proper and cost effective use of MEQ activity. Presented here are the results to date of DOE`s effort in the acquisition and analysis of the MEQ data.

Majer, E.L.; Romero, A.; Vasco, D.; Kirkpatrick, A.; Peterson, J.E. [Lawrence Berkeley Lab., CA (United States); Zucca, J.J.; Hutchings, L.J.; Kasameyer, P.W. [Lawrence Livermore National Lab., CA (United States)

1993-04-01T23:59:59.000Z

269

Non-linear Seismic Soil Structure Interaction Method for Developing Nonlinear Seismic SSI  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Linear Seismic Soil Structure Interaction (SSI) Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011 E102003020BDS Presentation Outline  Purpose of Presentation  Linear versus Non-Linear Seismic SSI  Non-Linear seismic Soil Structure Interaction (NLSSI) Studies  The NLSSI Introduction  Non-Linearity in Seismic SSI Analysis  Commercial Software Elements  Commercial Software Non-Linear Constitutive Models  Non-Linear Seismic SSI Damping  Demonstration of Time Domain 2D Model  NLSSI Validation Approach  NLSSI Implementation  Need For NLSSI  Conclusions E102003020BDS Purpose of Presentation  The purpose of the presentation is to establish the need for using non-linear analysis

270

CX-007886: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Development of a 300C, 200 level, 3C Fiber Optic Downhole Seismic Receiver Array for Surveying and Monitoring of Geothermal Reservoirs CX(s) Applied: A9, B3.6, B3.11 Date: 01/25/2012 Location(s): California Offices(s): Golden Field Office

271

CX-010245: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Development of a 300 Degree, 200 Level, 3C Fiber Optic Downhole Seismic Receiver Array for Surveying and Monitoring of Geothermal Reservoirs CX(s) Applied: A9, B3.6 Date: 03/14/2013 Location(s): California Offices(s): Golden Field Office

272

Seismic Studies of Substation Equipment: Progress Report  

Science Conference Proceedings (OSTI)

IEEE Standard 693, Recommended Practice for Seismic Design of Substations, is used by electric power utilities to qualify substation equipment for seismic movements. Deficiencies exist in the present standard, and information is unavailable for dynamic response that may be used to better analyze equipment and permit equipment evaluation in case of limited configuration changes, such as insulator substitution.

2009-09-28T23:59:59.000Z

273

Seismic Probabilistic Risk Assessment Implementation Guide  

Science Conference Proceedings (OSTI)

BackgroundThis report provides updates to the guidelines and approaches for seismic probabilistic risk assessments (SPRAs) that were published in the initial Electric Power Research Institute (EPRI) report Seismic Probabilistic Risk Assessment Implementation Guide (1002989) in 2003. It provides practical guidelines for SPRA development to support a variety of uses, including risk-informed applications.It is intended that a probabilistic risk ...

2013-12-18T23:59:59.000Z

274

Apparatus and method for detecting seismic waves  

SciTech Connect

Disclosed is an apparatus for transducing seismic signals and a method for placing said apparatus for detecting seismic signals. The apparatus comprises at least one geophone preferably embedded in a polymeric material contained in a tubular member. A lower portion of the tubular member preferably contains ballast. The tubular member is preferably cemented into a borehole.

O' Brien, T.T.

1985-08-06T23:59:59.000Z

275

Seismicity in Azerbaijan and Adjacent Caspian Sea  

Science Conference Proceedings (OSTI)

So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicate that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.

Panahi, Behrouz M. [Geology Institute, Azerbaijan National Academy of Sciences, 29-A H. Javid Ave., Baku 1143 (Azerbaijan)

2006-03-23T23:59:59.000Z

276

Analysis of the omnium-g receiver  

DOE Green Energy (OSTI)

A thermal analysis of the Omnium-G receiver is presented and the technique is shown to be generally applicable to solar thermal receivers utilizing a directly heated thermal mass. The thermal loss coefficient, including reradiation losses, is calculated and shown to agree quite well with the experimentally measured thermal loss coefficient. The rate of heat transfer to the working fluid is also analyzed and the analysis is used to show that the Omnium-G receiver is well matched to the water/steam working fluid because the steam outlet temperature is almost the same as the receiver temperature. A general procedure for calculating receiver performance is presented. With this procedure, the energy delivery to any working fluid, the delivered temperature of the working fluid, and the pressure drop through the receiver can be determined. An example of the calculation is also presented.

Bohn, M.

1980-03-01T23:59:59.000Z

277

Strategic Petroleum Reserve Receives Prestigious Environmental Award |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Petroleum Reserve Receives Prestigious Environmental Strategic Petroleum Reserve Receives Prestigious Environmental Award Strategic Petroleum Reserve Receives Prestigious Environmental Award September 22, 2009 - 1:00pm Addthis Washington, DC - The Department of Energy's Office of Fossil Energy (FE) announced today that the Strategic Petroleum Reserve (SPR) has received the Most Valuable Pollution Prevention Project (MVP2) award from the National Pollution Prevention Roundtable for lowering potential greenhouse gas emissions. This is the first time the SPR has captured the award for its commitment to pollution prevention, focusing on innovation, measurable results, transferability, commitment, and optimization of available project resources. "This is another example of the hard work and dedication by employees at

278

Strategic Petroleum Reserve Receives Prestigious Environmental Award |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Petroleum Reserve Receives Prestigious Environmental Strategic Petroleum Reserve Receives Prestigious Environmental Award Strategic Petroleum Reserve Receives Prestigious Environmental Award September 22, 2009 - 1:00pm Addthis Washington, DC - The Department of Energy's Office of Fossil Energy (FE) announced today that the Strategic Petroleum Reserve (SPR) has received the Most Valuable Pollution Prevention Project (MVP2) award from the National Pollution Prevention Roundtable for lowering potential greenhouse gas emissions. This is the first time the SPR has captured the award for its commitment to pollution prevention, focusing on innovation, measurable results, transferability, commitment, and optimization of available project resources. "This is another example of the hard work and dedication by employees at

279

Substance abuse differences among students receiving special ...  

Science Conference Proceedings (OSTI)

abilities to cope with daily pressures and extended social environ- ments like schools. Typically, children and youth receiving special ed- ucation school services...

280

Receiver System: Lessons Learned From Solar Two  

DOE Green Energy (OSTI)

The Boeing Company fabricated the Solar Two receiver as a subcontractor for the Solar Two project. The receiver absorbed sunlight reflected from the heliostat field. A molten-nitrate-salt heat transfer fluid was pumped from a storage tank at grade level, heated from 290 to 565 C by the receiver mounted on top of a tower, then flowed back down into another storage tank. To make electricity, the hot salt was pumped through a steam generator to produce steam that powered a conventional Rankine steam turbine/generator. This evaluation identifies the most significant Solar Two receiver system lessons learned from the Mechanical Design, Instrumentation and Control, Panel Fabrication, Site Construction, Receiver System Operation, and Management from the perspective of the receiver designer/manufacturer. The lessons learned on the receiver system described here consist of two parts: the Problem and one or more identified Solutions. The appendix summarizes an inspection of the advanced receiver panel developed by Boeing that was installed and operated in the Solar Two receiver.

LITWIN, ROBERT Z.; PACHECO, JAMES E.

2002-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Seismic stimulation for enhanced oil recovery  

Science Conference Proceedings (OSTI)

The pore-scale effects of seismic stimulation on two-phase flow are modeled numerically in random 2D grain0pack geometries. Seismic stimulation aims to enhance oil production by sending seismic waves across a reservoir to liberate immobile patches of oil. For seismic amplitudes above a well-defined (analytically expressed) dimensionless criterion, the force perturbation associated with the waves indeed can liberate oil trapped on capillary barriers and get it flowing again under the background pressure gradient. Subsequent coalescence of the freed oil droplets acts to enhance oil movement further because longer bubbles overcome capillary barriers more efficiently than shorter bubbles do. Poroelasticity theory defines the effective force that a seismic wave adds to the background fluid-pressure gradient. The lattice-Boltzmann model in two dimensions is used to perform pore-scale numerical simulations. Dimensionless numbers (groups of material and force parameters) involved in seismic stimulation are defined carefully so that numerical simulations can be applied to field-scale conditions. Using the analytical criteria defined in the paper, there is a significant range of reservoir conditions over which seismic stimulation can be expected to enhance oil production.

Pride, S.R.; Flekkoy, E.G.; Aursjo, O.

2008-07-22T23:59:59.000Z

282

ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS  

SciTech Connect

Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using factory prefabricated structural modules, for application to external event shell and base isolated structures.

E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

2010-09-20T23:59:59.000Z

283

Predictive modeling for collections of accounts receivable  

Science Conference Proceedings (OSTI)

It is commonly agreed that accounts receivable (AR) can be a source of financial difficulty for firms when they are not efficiently managed and are underperforming. Experience across multiple industries shows that effective management of AR and overall ... Keywords: accounts receivable, invoice to cash, knowledge discovery, order to cash, payment collection, predictive modeling

Sai Zeng; Ioana Boier-Martin; Prem Melville; Conrad Murphy; Christian A. Lang

2007-08-01T23:59:59.000Z

284

Liquid cooled fiber thermal radiation receiver  

DOE Patents (OSTI)

A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

Butler, B.L.

1985-03-29T23:59:59.000Z

285

Liquid cooled fiber thermal radiation receiver  

DOE Patents (OSTI)

A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

Butler, Barry L. (Del Mar, CA)

1987-01-01T23:59:59.000Z

286

Seismic evaluation of vulnerability for SAMA educational buildings in Tehran  

Science Conference Proceedings (OSTI)

Earthquake is a destructive phenomenon that trembles different parts of the earth yearly and causes many destructions. Iran is one of the (high seismicity) quack- prone parts of the world that has received a lot of pecuniary damages and life losses each year, schools are of the most important places to be protected during such crisis.There was no special surveillance on designing and building of school's building in Tehran till the late 70's, and as Tehran is on faults, instability of such buildings may cause irrecoverable pecuniary damages and especially life losses, therefore preventing this phenomenon is in an urgent need.For this purpose, some of the schools built during 67-78 mostly with Steel braced frame structures have been selected, first, by evaluating the selected Samples, gathering information and Visual Survey, the prepared questionnaires were filled out. With the use of ARIA and SABA (Venezuela) Methods, new modified combined method for qualified evaluations was found and used.Then, for quantified evaluation, with the use of computer 3D models and nonlinear statically analysis methods, a number of selected buildings of qualified evaluation, were reevaluated and finally with nonlinear dynamic analysis method the real behavior of structures on the earthquakes is studied.The results of qualified and quantified evaluations were compared and a proper Pattern for seismic evaluation of Educational buildings was presented. Otherwise the results can be a guidance for the person in charge of retrofitting or if necessary rebuilding the schools.

Amini, Omid Nassiri [University of Mazandran, Department of Civil Engineering, Master of Structural engineering, Mazandran (Iran, Islamic Republic of); Amiri, Javad Vaseghi [Department of Civil Engineering, Associated professor, Mazandran University, Babol (Iran, Islamic Republic of)

2008-07-08T23:59:59.000Z

287

Advanced Methods for Determination of Seismic Fragilities: Seismic Fragilities Using Scenario Earthquakes  

Science Conference Proceedings (OSTI)

Seismic probabilistic risk assessment (SPRA) is an increasingly important means of assessing the seismic safety of nuclear power plants. The standard approach for incorporating the seismic hazard into an SPRA is to use the uniform hazard spectra (UHS), which is computed independently at each spectral frequency, resulting in an equal probability of exceeding the ground motion at any frequency. As a result, the UHS may not be representative of an actual earthquake spectrum, and is a potential source of con...

2011-11-22T23:59:59.000Z

288

Seismic Pulses Derivation from the Study of Source Signature Characteristics  

Science Conference Proceedings (OSTI)

This paper deals with a deterministic technique for the derivation of seismic pulses by the study of source characteristics. The spectral characteristics of the directly or the nearest detected seismic signal is analyzed and considered as the principle source signature. Using this signature seismic pulses are derived with accurate time position in the seismic traces. The technique is applied on both synthetic and field refraction seismic traces. In both cases it has estimated that the accurate time shifts along with amplitude coefficients.

Rahman, Syed Mustafizur; Nawawi, M. N. Mohd.; Saad, Rosli [School of Physics, Univeristi Sains Malaysia, 11800 USM, Pulau Pinang (Malaysia)

2010-07-07T23:59:59.000Z

289

Piezotube Borehole Seismic Source for Continuous Crosswell ...  

Tom Daley and colleagues at Berkeley Lab have invented a seismic source that can be operated while fluid is being injected or withdrawn from an aquifer or oil well.

290

Seismic design verification of LMFBR structures  

SciTech Connect

The report provides an assessment of the seismic design verification procedures currently used for nuclear power plant structures, a comparison of dynamic test methods available, and conclusions and recommendations for future LMFB structures.

1977-07-01T23:59:59.000Z

291

Estimating Oceanic Turbulence Dissipation from Seismic Images  

Science Conference Proceedings (OSTI)

Seismic images of oceanic thermohaline finestructure record vertical displacements from internal waves and turbulence over large sections at unprecedented horizontal resolution. Where reflections follow isopycnals, their displacements can be used ...

W. Steven Holbrook; Ilker Fer; Raymond W. Schmitt; Daniel Lizarralde; Jody M. Klymak; L. Cody Helfrich; Robert Kubichek

292

Seismic retrofitting of deficient Canadian buildings  

E-Print Network (OSTI)

Many developed countries such as Canada and the United States are facing a significant infrastructure crisis. Most of their facilities have been built with little consideration of seismic design and durability issues. As ...

Gemme, Marie-Claude

2009-01-01T23:59:59.000Z

293

Seismic assessment strategies for masonry structures  

E-Print Network (OSTI)

Masonry structures are vulnerable to earthquakes, but their seismic assessment remains a challenge. This dissertation develops and improves several strategies to better understand the behavior of masonry structures under ...

DeJong, Matthew J. (Matthew Justin)

2009-01-01T23:59:59.000Z

294

Progress in solar thermal distributed receiver technology  

DOE Green Energy (OSTI)

The author reports the status of research on distributed receivers, which are solar thermal collectors which concentrate sunlight on an absorber and do not employ the central receiver concept. Point-focusing collectors such as the parabolic dish, line-focusing collectors such as the parabolic trough, and the fixed-mirror distributed-focus of hemispheric bowl collectors are the most common receivers. Following an overview of fundamental principals, there is a description of several installations and of the organic Rankine Cycle engine and the Solarized Automotive Gas Turbine projects. Future development will explore other types of power cycles, new materials, and other components and designs. 5 references, 6 figures.

Leonard, J.A.; Otts, J.V.

1985-08-01T23:59:59.000Z

295

Seismic analysis of piping with nonlinear supports  

Science Conference Proceedings (OSTI)

The modeling and results of nonlinear time-history seismic analyses for three sizes of pipelines restrained by mechanical snubbes are presented. Numerous parametric analyses were conducted to obtain sensitivity information which identifies relative importance of the model and analysis ingredients. Special considerations for modeling the pipe clamps and the mechanical snubbers based on experimental characterization data are discussed. Comparisions are also given of seismic responses, loads and pipe stresses predicted by standard response spectra methods and the nonlinear time-history methods.

Barta, D.A.; Huang, S.N.; Severud, L.K.

1980-01-01T23:59:59.000Z

296

Forecasting Seismic Signatures of Stellar Magnetic Activity  

E-Print Network (OSTI)

For the Sun, a tight correlation between various activity measures and oscillation frequencies is well documented. For other stars, we have abundant data on magnetic activity and its changes but not yet on its seismic signature. A prediction of the activity induced frequency changes in stars based on scaling the solar relations is presented. This seismic signature of the activity should be measurable in the data expected within few years.

W. A. Dziembowski

2007-09-17T23:59:59.000Z

297

WIPP Receives Top Mine Safety Award  

NLE Websites -- All DOE Office Websites (Extended Search)

September 18, 2013 - The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) received top safety honors from the New Mexico Bureau of Mine Safety (BMS) and the New...

298

Atmospheric considerations for central receiver power plants  

DOE Green Energy (OSTI)

This report documents the results of a study of the effects of atmospheric attenuation, turbulent scattering, and the use of cooling towers on the performance of solar thermal central receiver power plants.

Henderson, R.G.; Pitter, R.L.

1979-06-01T23:59:59.000Z

299

One Video Stream to Serve Diverse Receivers  

E-Print Network (OSTI)

The fundamental problem of wireless video multicast is to scalably serve multiple receivers which may have very different channel characteristics. Ideally, one would like to broadcast a single stream that allows each ...

Woo, Grace

2008-10-18T23:59:59.000Z

300

EM Field Office Manager Receives Military Honor  

Energy.gov (U.S. Department of Energy (DOE))

EM Carlsbad Field Office (CBFO) Manager Joe Franco receives the Employer Support of the Guard and Reserve (ESGR) Seven Seals Award in June at a ESGR recognition event in Carlsbad, N.M.

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A handbook for solar central receiver design  

DOE Green Energy (OSTI)

This Handbook describes central receiver technology for solar thermal power plants. It contains a description and assessment of the major components in a central receiver system configured for utility scale production of electricity using Rankine-cycle steam turbines. It also describes procedures to size and optimize a plant and discussed examples from recent system analyses. Information concerning site selection criteria, cost estimation, construction, and operation and maintenance is also included, which should enable readers to perform design analyses for specific applications.

Falcone, P.K.

1986-12-01T23:59:59.000Z

302

Low-temperature volumetric receiver concept  

SciTech Connect

This document describes an alternative solar central receiver concept that offers the potential for a substantial reduction in the cost of electrical energy. The concept consists of a low temperature volumetric receiver which supplies 1100/degree/F air to a Kalina cycle heat engine. Hot air can also be supplied to a packed bed of Dresser basalt where the hot air is used to heat the bed. The thermal energy stored in the bed can be extracted and supplied to the Kalina cycle during periods of low insolation. Previous investigations of the volumetric receiver concentrated on high temperature applications. The results showed that the volumetric concept could be very efficient, but the receiver was expensive and there were significant technical problems. Areas of technical uncertainty included fiber durability, the feasibility of inducing a preswirl and cost effective applications. The use of the volumetric receiver to produce low temperature will avoid the problems identified in the high temperature studies. The attractiveness of the low temperature concept is enhanced by the availability of the Kalina cycle. This heat engine was developed as a bottoming cycle for Brayton and Rankine cycle power plants. The key feature of the Kalina cycle is its ability to efficiently utilize the energy in a relatively low temperature heat source. The combination of the low temperature volumetric receiver and the Kalina cycle is particularly interesting. 7 refs., 2 figs., 3 tabs.

Drost, M.K.

1988-09-01T23:59:59.000Z

303

Los Alamos National Laboratory employees receive Pollution Prevention...  

NLE Websites -- All DOE Office Websites (Extended Search)

Employees receive Pollution Prevention awards Los Alamos National Laboratory employees receive Pollution Prevention awards Nearly 400 employees on 47 teams received Pollution...

304

Los Alamos National Laboratory employees receive Pollution Prevention...  

NLE Websites -- All DOE Office Websites (Extended Search)

Employees Receive Pollution Prevention Awards Los Alamos National Laboratory employees receive Pollution Prevention Awards Nearly 400 employees on 47 teams received Pollution...

305

Liquid cooled, linear focus solar cell receiver  

DOE Patents (OSTI)

Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

Kirpich, A.S.

1983-12-08T23:59:59.000Z

306

Liquid cooled, linear focus solar cell receiver  

DOE Patents (OSTI)

Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

Kirpich, Aaron S. (Broomall, PA)

1985-01-01T23:59:59.000Z

307

Dish/stirling hybrid-receiver  

DOE Green Energy (OSTI)

A hybrid high-temperature solar receiver is provided which comprises a solar heat-pipe-receiver including a front dome having a solar absorber surface for receiving concentrated solar energy, a heat pipe wick, a rear dome, a sidewall joining the front and the rear dome, and a vapor and a return liquid tube connecting to an engine, and a fossil fuel fired combustion system in radial integration with the sidewall for simultaneous operation with the solar heat pipe receiver, the combustion system comprising an air and fuel pre-mixer, an outer cooling jacket for tangentially introducing and cooling the mixture, a recuperator for preheating the mixture, a burner plenum having an inner and an outer wall, a porous cylindrical metal matrix burner firing radially inward facing a sodium vapor sink, the mixture ignited downstream of the matrix forming combustion products, an exhaust plenum, a fossil-fuel heat-input surface having an outer surface covered with a pin-fin array, the combustion products flowing through the array to give up additional heat to the receiver, and an inner surface covered with an extension of the heat-pipe wick, a pin-fin shroud sealed to the burner and exhaust plenums, an end seal, a flue-gas diversion tube and a flue-gas valve for use at off-design conditions to limit the temperature of the pre-heated air and fuel mixture, preventing pre-ignition.

Mehos, Mark S. (Boulder, CO); Anselmo, Kenneth M. (Arvada, CO); Moreno, James B. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM); Corey, John (Melrose, NY); Bohn, Mark S. (Golden, CO)

2002-01-01T23:59:59.000Z

308

Correlelations between the Anomalous Behaviour of the Ionosphere and the Seismic Events for VTX-MALDA VLF Propagation  

SciTech Connect

One of the most important application of the VLF signals is that it contains possible information about the lithosphere-ionosphere coupling. In other words, in near future, it may be possible to predict seismic events by judging signatures of VLF signals. In this paper, we present the result of the monitoring of the VLF signals collected in the Malda branch of ICSP, located in Malda, West Bengal, for four years (2005, 2007-09) and we try to find out the co-relations, if any, between the ionospheric activities and the earthquakes. Here we use that VLF signals which are transmitted from the VTX station (18.2 KHz), located near Vijayanarayanam in Tamilnadu, about 2290 km away from the receiver. To find out the co-relation of the ionospheric activities with the seismic events such as earthquake, first we have to study the average signal throughout the year. For this, we plot the so-called standardized calibration curve using the four years data. Here we use a total of 481 no. of data. To establish the co-relation between the ionospheric activities and the seismic events, we use the data of the year 2008 and we found that the deviations of the anomalous data are co-related with the seismic event. We found that the highest deviation takes place one day prior to the seismic events. We also calculated the 'D-layer preparation time'(DLPT) and the 'D-layer disappearance time'(DLDT) for the data of 2008 and tried to establish the co-relation between the anomalous DLPT and DLDT with the seismic events, if any. We compare our result with the VLF signals received from other places.

Ray, Suman; Sasmal, S. [Indian Centre for Space Physics, 43 Chalantika, Garia Station Road, Kolkata 700084 (India); Chakrabarti, S. K. [Indian Centre for Space Physics, 43 Chalantika, Garia Station Road, Kolkata 700084 (India); S. N. Bose National Centre for Basic Sciences, JD Block, Salt Lake, Kolkata 700098 (India); Choudhury, A. K. [Indian Centre for Space Physics, Malda Branch, Atul Market, Malda 731101 (India)

2010-10-20T23:59:59.000Z

309

Mudundi R. Raju receives Padma Shri award  

NLE Websites -- All DOE Office Websites (Extended Search)

Mudundi R. Raju receives Padma Shri award Mudundi R. Raju receives Padma Shri award Mudundi R. Raju receives Padma Shri award The government of India honored Mudundi Raju for his distinguished service in science and engineering, providing cancer radiation treatment to the poor of rural India. July 18, 2013 President of India Pranab Mukherjee presents the Padma Shri award to former Los Alamos National Laboratory scientist Mudundi Raju. President of India Pranab Mukherjee presents the Padma Shri award to former Los Alamos National Laboratory scientist Mudundi Raju. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The aim of science is to improve the human condition," said Nobel Laureate Ilya Prigogine, and Raju has taken this statement to heart. Los Alamos retiree brings medical advances to poor of India

310

Windowed versus windowless solar energy cavity receivers  

DOE Green Energy (OSTI)

A model for a windowed, high-temperature cavity receiver of the heated-air type is developed and used to evaluate the greenhouse effect as a method for obtaining high receiver operating efficiencies. The effects on receiver efficiency of varying the window cutoff wavelength, the amount of absorption in the window pass-band, the cavity operating temperature, and the number of windows are determined. Single windowed cavities are found to offer theoretical efficiencies comparable to windowless ones, while multiple windowed units are found to suffer from low operating efficiencies due to losses resulting from reflections at each window/air interface. A ''first order'' examination is made of the feasibility of air cooling the window to assure its survival. This appears possible if a proper combination of cooling technique and window material characteristics is selected.

Jarvinen, P. O.

1976-09-01T23:59:59.000Z

311

Solar Heat-Pipe Receiver Wick Modeling  

DOE Green Energy (OSTI)

Stirling-cycle engines have been identified as a promising technology for the conversion of concentrated solar energy into usable electrical power. In previous experimented work, we have demonstrated that a heat pipe receiver can significantly improve system performance-over a directly-illuminated heater head. The design and operating conditions of a heat pipe receiver differ significantly from typical laboratory heat pipes. New wick structures have been developed to exploit the characteristics of the solar generation system. Typically, these wick structures allow vapor generation within the wick. Conventional heat pipe models do not handle this enhancement yet it can more than double the performance of the wick. In this study, I develop a steady-state model of a boiling-enhanced wick for a solar heat pipe receiver. The model is used for design-point calculations and is written in FORTRAN90. Some limited comparisons have been made with actual test data.

Andraka, C.E.

1998-12-21T23:59:59.000Z

312

LM Receives Sustainability Award | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Receives Sustainability Award Receives Sustainability Award LM Receives Sustainability Award January 8, 2013 - 1:17pm Addthis Award ceremony (left to right): Melvin G. Williams, Jr., Associate Deputy Secretary, U.S. Department of Energy (DOE); Mary Sizemore, Environmental Management System (EMS) Coordinator, Office of Legacy Management (LM) contractor; Tracy Ribeiro, EMS Coordinator, LM; Tom Pauling, Director of Site Operations, LM; Dave Geiser, Director, LM; and Jennifer MacDonald, Director, Sustainability Performance Office, DOE. Award ceremony (left to right): Melvin G. Williams, Jr., Associate Deputy Secretary, U.S. Department of Energy (DOE); Mary Sizemore, Environmental Management System (EMS) Coordinator, Office of Legacy Management (LM) contractor; Tracy Ribeiro, EMS Coordinator, LM; Tom Pauling, Director of

313

Characterization of the Virgo Seismic Environment  

E-Print Network (OSTI)

The Virgo gravitational wave detector is an interferometer (ITF) with 3km arms located in Pisa, Italy. From July to October 2010, Virgo performed its third science run (VSR3) in coincidence with the LIGO detectors. Despite several techniques adopted to isolate the interferometer from the environment, seismic noise remains an important issue for Virgo. Vibrations produced by the detector infrastructure (such as air conditioning units, water chillers/heaters, pumps) are found to affect Virgo's sensitivity, with the main coupling mechanisms being through beam jitter and scattered light processes. The Advanced Virgo (AdV) design seeks to reduce ITF couplings to environmental noise by having most vibration-sensitive components suspended and in-vacuum, as well as muffle and relocate loud machines. During the months of June and July 2010, a Guralp-3TD seismometer was stationed at various locations around the Virgo site hosting major infrastructure machines. Seismic data were examined using spectral and coherence analysis with seismic probes close to the detector. The primary aim of this study was to identify noisy machines which seismically affect the ITF environment and thus require mitigation attention. Analyzed machines are located at various distances from the experimental halls, ranging from 10m to 100m. An attempt is made to measure the attenuation of emitted noise at the ITF and correlate it to the distance from the source and to seismic attenuation models in soil.

The Virgo Collaboration; T. Accadia; F. Acernese; P. Astone; G. Ballardin; F. Barone; M. Barsuglia; A. Basti; Th. S. Bauer; M. Bebronne; M. G. Beker; A. Belletoile; M. Bitossi; M. A. Bizouard; M. Blom; F. Bondu; L. Bonelli; R. Bonnand; V. Boschi; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; M. Branchesi; T. Briant; A. Brillet; V. Brisson; T. Bulik; H. J. Bulten; D. Buskulic; C. Buy; G. Cagnoli; E. Calloni; B. Canuel; F. Carbognani; F. Cavalier; R. Cavalieri; G. Cella; E. Cesarini; O. Chaibi; E. Chassande-Mottin; A. Chincarini; A. Chiummo; F. Cleva; E. Coccia; P. -F. Cohadon; C. N. Colacino; J. Colas; A. Colla; M. Colombini; A. Conte; M. Coughlin; J. -P. Coulon; E. Cuoco; S. DAntonio; V. Dattilo; M. Davier; R. Day; R. De Rosa; G. Debreczeni; W. Del Pozzo; M. del Prete; L. Di Fiore; A. Di Lieto; M. Di Paolo Emilio; A. Di Virgilio; A. Dietz; M. Drago; G. Endroczi; V. Fafone; I. Ferrante; F. Fidecaro; I. Fiori; R. Flaminio; L. A. Forte; J. -D. Fournier; J. Franc; S. Frasca; F. Frasconi; M. Galimberti; L. Gammaitoni; F. Garufi; M. E. Gaspar; G. Gemme; E. Genin; A. Gennai; A. Giazotto; R. Gouaty; M. Granata; C. Greverie; G. M. Guidi; J. -F. Hayau; A. Heidmann; H. Heitmann; P. Hello; P. Jaranowski; I. Kowalska; A. Krolak; N. Leroy; N. Letendre; T. G. F. Li; N. Liguori; M. Lorenzini; V. Loriette; G. Losurdo; E. Majorana; I. Maksimovic; N. Man; M. Mantovani; F. Marchesoni; F. Marion; J. Marque; F. Martelli; A. Masserot; C. Michel; L. Milano; Y. Minenkov; M. Mohan; N. Morgado; A. Morgia; S. Mosca; B. Mours; L. Naticchioni; F. Nocera; G. Pagliaroli; L. Palladino; C. Palomba; F. Paoletti; M. Parisi; A. Pasqualetti; R. Passaquieti; D. Passuello; G. Persichetti; F. Piergiovanni; M. Pietka; L. Pinard; R. Poggiani; M. Prato; G. A. Prodi; M. Punturo; P. Puppo; D. S. Rabeling; I. Racz; P. Rapagnani; V. Re; T. Regimbau; F. Ricci; F. Robinet; A. Rocchi; L. Rolland; R. Romano; D. Rosinska; P. Ruggi; B. Sassolas; D. Sentenac; L. Sperandio; R. Sturani; B. Swinkels; M. Tacca; L. Taffarello; A. Toncelli; M. Tonelli; O. Torre; E. Tournefier; F. Travasso; G. Vajente; J. F. J. van den Brand; C. Van Den Broeck; S. van der Putten; M. Vasuth; M. Vavoulidis; G. Vedovato; D. Verkindt; F. Vetrano; A. Vicere; J. -Y. Vinet; S. Vitale; H. Vocca; R. L. Ward; M. Was; M. Yvert; A. Zadrozny; J. -P. Zendri

2011-08-08T23:59:59.000Z

314

Hostile wells: the borehole seismic challenge | Open Energy Information  

Open Energy Info (EERE)

Hostile wells: the borehole seismic challenge Hostile wells: the borehole seismic challenge Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hostile wells: the borehole seismic challenge Author William Wills Published Oil and Gas Engineer - Subsea & Seismic, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Hostile wells: the borehole seismic challenge Citation William Wills. Hostile wells: the borehole seismic challenge [Internet]. 2013. Oil and Gas Engineer - Subsea & Seismic. [cited 2013/10/01]. Available from: http://www.engineerlive.com/content/22907 Retrieved from "http://en.openei.org/w/index.php?title=Hostile_wells:_the_borehole_seismic_challenge&oldid=690045" Categories: References Geothermal References

315

Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir  

E-Print Network (OSTI)

at Well 46-28, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,

Feighner, Mark A.

2010-01-01T23:59:59.000Z

316

Prepaid Services Full-time students receive  

E-Print Network (OSTI)

with a medical provider · Unlimited nutritional consultations with RD #12;Prepaid Services · Health education for student only #12;PUSH Services Allergy and Immunizations Laboratory Radiology Physical Therapy Sports#12;Prepaid Services Full-time students receive: · Unlimited visits to medical clinic to consult

Holland, Jeffrey

317

Seismic hazard analysis overview and executive summary  

Science Conference Proceedings (OSTI)

The Site Specific Spectra Project (SSSP) described in this report was a multi-year study funded by the US Nuclear Regulatory Commission (NRC) as part of NRC's Systematic Evaluation Program (SEP). The main objective of this project was to provide assistance to the NRC by developing estimates of the seismic hazard at the nine oldest nuclear power plant sites east of the Rocky Mountains which were included in the SEP. This volume gives brief overview of the SEP and the SSSP including a discussion of the formal elicitation of expert opinion used to obtain a subjective representation of parameters that affect seismic hazard and the development of the seismic hazard at the nine SEP facilities.

Bernreuter, D.L.; Minichino, C.

1982-10-01T23:59:59.000Z

318

Cost reduction through improved seismic design  

SciTech Connect

During the past decade, many significnt seismic technology developments have been accomplished by the United States Department of Energy (USDOE) programs. Both base technology and major projects, such as the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR) plant, have contributed to seismic technology development and validation. Improvements have come in the areas of ground motion definitions, soil-structure interaction, and structural analysis methods and criteria for piping, equipment, components, reactor core, and vessels. Examples of some of these lessons learned and technology developments are provided. Then, the highest priority seismic technology needs, achievable through DOE actions and sponsorship are identified and discussed. Satisfaction of these needs are expected to make important contributions toward cost avoidances and reduced capital costs of future liquid metal nuclear plants. 23 references, 12 figures.

Severud, L.K.

1984-01-01T23:59:59.000Z

319

Weapons test seismic investigations at Yucca Mountain  

Science Conference Proceedings (OSTI)

Yucca Mountain, located on and adjacent to the Nevada Test Site, is being characterized as part of an ongoing effort to identify a potential high-level nuclear waste repository. This site will be subjected to seismic ground motions induced by underground nuclear explosions. A knowledge of expected ground motion levels from these tests will enable the designers to provide for the necessary structural support in the designs of the various components of the repository. The primary objective of the Weapons Test Seismic Investigation project is to develop a method to predict the ground motions expected at the repository site as a result of future weapons tests. This paper summarizes the data base presently assembled for the Yucca Mountain Project, characteristics of expected ground motions, and characterization of the two-dimensional seismic properties along paths between Yucca Mountain and the testing areas of the Nevada Test Site.

Phillips, J.S.; Shephard, L.E.; Walck, M.C.

1991-01-01T23:59:59.000Z

320

Workshop on the Seismic Rehabilitation of Lightly Reinforced ...  

Science Conference Proceedings (OSTI)

Page 1. NISTIR5741 Proceedings, Workshop on the Seismic Rehabilitation of Lightly Reinforced Concrete Frames Gaithersburg, MD ...

2004-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Seismic Qualification Case Study for a New Inverter  

Science Conference Proceedings (OSTI)

This report reviews and compares methods used for the seismic qualification of safety related equipment at nuclear power plants and examines an alternative, hybrid approach. The report investigates the costs and lead times for each seismic qualification approach and also discusses the seismic capacity definitions that result from the application of each qualification approach. The report includes a case study that applies the new approach to the seismic qualification of an inverter.

2007-12-17T23:59:59.000Z

322

Modeling-Computer Simulations At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration...

323

Solar Central Receiver with an Irising Aperture  

E-Print Network (OSTI)

Variable sun elevation, azimuthal and declination angles with the time of day, and seasons of the year respectively, give variable projected image size defects produced by field site concave mirrors on the central cavity receiver's aperture entrance. If the aperture is small, it will be inefficient for periods when the solar isolation is inclined due to spillage. However, if the aperture is large, it will be inefficient for periods when the solar isolation is normal, due to excess heat radiation and convection losses. Thus, the fixed aperture area size is a compromise between ideal sizes for different conditions. The end result is a loss of efficiency as a function of time of day and seasons of the year. This research presents an approach to maximize the interception factor on the receiver entrance, with reducing the heat losses by radiation and convection through its aperture area. A central receiver system, having a down-looking cavity with an irises aperture is being proposed for application in rich environmental solar conditions, utilized solar flux insolation throughout the day on the city of Kuwait. Solar tower focusing collector with a cavity type receiver having a fixed area aperture at the entrance is presented for comparison with the proposed technique. This collector is proved to be less efficient than the suggested design. The isiring cavity receiver with a variable area aperture provides an approximately constant efficiency regardless of the time of day or season of the year. The end result is the proposed system shows improved performance and capability. However, over the life-time of installation these advantages of the proposed system should overweigh its disadvantages of additional cost due to extra automation.

Galal, T.; Kulaib, A. M.; Abuzaid, M.

2010-01-01T23:59:59.000Z

324

Seismic isolation systems with distinct multiple frequencies  

DOE Patents (OSTI)

The present invention relates generally to a method and apparatus for supporting a structure such as a building, bridge, or power plant such that it is isolated from seismic vibratory ground motion. More particularly, the present invention relates to a method and apparatus for supporting a structure by an isolation system which will not allow large dynamic loads to be transmitted to the supported structure due to seismic motions which have damaging energy at frequencies at or near the natural frequency of the structure and the overall structural systems. 4 figs.

Wu, Ting-shu; Seidensticker, R.W.

1989-04-14T23:59:59.000Z

325

ICCS questions received by March 19, 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

questions received by March 19, 2010 questions received by March 19, 2010 1. Is property tax on land or equipment directly attributable to the project eligible for cost share? 2. Is insurance, with coverage comparable to that purchased for similar projects, eligible for cost share (construction and operating)? Response: The answer to both questions is yes. The specific cost principle that the Applicants can go to for further information, as well as the regulations on cost sharing are given below. Question 1 - FAR Part 31.205-41, Taxes Question 2 - FAR Part 31.205-19, Insurance and Indemnification Cost Sharing regulations - 10 CFR 600.123; 10 CFR 600.224; or 10 CFR 600.313 Since both questions indicate that the costs to be incurred will be used as potential cost share for the project, additional details will be needed to verify and validate the

326

Questions Received February 17-18  

NLE Websites -- All DOE Office Websites (Extended Search)

Received February 17-18 Received February 17-18 1. I am formally requesting information on the length of the entire CCS Program. a. Is there a minimum time requirement on the Demonstration portion of the project? There is no specific minimum duration for the Demonstration Phase. However, projects will be evaluated on their ability to meet DOE's target of capture and sequestration of one million tons of CO 2 per year. Another objective of the program is to demonstrate geologic sequestration options in a variety of geologic settings in order to evaluate costs, operational processes, and technical performance. Excessively short Demonstration Phase durations will not assist DOE in meetings its objectives, and will be taken into consideration during the evaluation.

327

Central Receiver Test Facility (CRTF) experiment manual  

DOE Green Energy (OSTI)

The Central Receiver Test Facility is operated by Sandia Laboratories for the US Department of Energy. The CRTF is being used for component and subsystem evaluation within the Solar Thermal Large Power Systems Program. This experiment manual provides users of the CRTF detailed information about: (1) implementation of testing at the CRTF; (2) details of the CRTF capabilities and interfaces, and (3) requirements of experimenters.

Holmes, J. T.; Matthews, L. K.; Seamons, L. O.; Davis, D. B.; King, D. L.

1979-10-01T23:59:59.000Z

328

Radio Astronomy Software Defined Receiver Project  

SciTech Connect

The paper describes a Radio Astronomy Software Defined Receiver (RASDR) that is currently under development. RASDR is targeted for use by amateurs and small institutions where cost is a primary consideration. The receiver will operate from HF thru 2.8 GHz. Front-end components such as preamps, block down-converters and pre-select bandpass filters are outside the scope of this development and will be provided by the user. The receiver includes RF amplifiers and attenuators, synthesized LOs, quadrature down converters, dual 8 bit ADCs and a Signal Processor that provides firmware processing of the digital bit stream. RASDR will interface to a user s PC via a USB or higher speed Ethernet LAN connection. The PC will run software that provides processing of the bit stream, a graphical user interface, as well as data analysis and storage. Software should support MAC OS, Windows and Linux platforms and will focus on such radio astronomy applications as total power measurements, pulsar detection, and spectral line studies.

Vacaliuc, Bogdan [ORNL; Leech, Marcus [Shirleys Bay Radio Astronomy Consortium; Oxley, Paul [Retired; Flagg, Richard [Retired; Fields, David [ORNL

2011-01-01T23:59:59.000Z

329

Studies of the Correlation Between Ionospheric Anomalies and Seismic Activities in the Indian Subcontinent  

SciTech Connect

The VLF (Very Low Frequency) signals are long thought to give away important information about the Lithosphere-Ionosphere coupling. It is recently established that the ionosphere may be perturbed due to seismic activities. The effects of this perturbation can be detected through the VLF wave amplitude. There are several methods to find this correlations and these methods can be used for the prediction of these seismic events. In this paper, first we present a brief history of the use of VLF propagation method for the study of seismo-ionospheric correlations. Then we present different methods proposed by us to find out the seismo-ionospheric correlations. At the Indian Centre for Space Physics, Kolkata we have been monitoring the VTX station at Vijayanarayanam from 2002. In the initial stage, we received 17 kHz signal and latter we received 18.2 kHz signal. In this paper, first we present the results for the 17 kHz signal during Sumatra earthquake in 2004 obtained from the terminator time analysis method. Then we present much detailed and statistical analysis using some new methods and present the results for 18.2 kHz signal. In order to establish the correlation between the ionospheric activities and the earthquakes, we need to understand what are the reference signals throughout the year. We present the result of the sunrise and sunset terminators for the 18.2 kHz signal as a function of the day of the year for a period of four years, viz, 2005 to 2008 when the solar activity was very low. In this case, the signal would primarily be affected by the Sun due to normal sunrise and sunset effects. Any deviation from this standardized calibration curve would point to influences by terrestrial (such as earthquakes) and extra-terrestrial (such as solar activities and other high energy phenomena). We present examples of deviations which occur in a period of sixteen months and show that the correlations with seismic events is significant and typically the highest deviation in terminator shift takes place up to a couple of days prior to the seismic event. We introduce a new method where we find the effects of the seismic activities on D-layer preparation time (DLPT) and the D-layer disappearance time (DLDT). We identify those days in which DLPT and DLDT exhibit deviations from the average value and we correlate those days with seismic events. Separately, we compute the energy release by the earthquakes and using this, we compute the total energy released locally from distant earthquakes and find correlations of the deviations with them. In this case also we find pre-cursors a few days before the seismic events. In a third approach, we consider the nighttime fluctuation method (differently quantified than the conventional way). We analyzed the nighttime data for the year 2007 to check the correlation between the night time fluctuation of the signal amplitude and the seismic events. Using the statistical method for all the events of the year and for the individual individual earthquakes (Magnitude > 5) we found that the night time signal amplitude becomes very high on three days prior to the seismic events.

Sasmal, S. [Indian Centre for Space Physics, 43 Chalantika, Garia Station Road, Kolkata-700084 (India); Chakrabarti, S. K. [Indian Centre for Space Physics, 43 Chalantika, Garia Station Road, Kolkata-700084 (India); S. N. Bose National Centre for Basic Sciences, JD Block, Salt-Lake Kolkata-70098 (India); Chakrabarti, S. [Indian Centre for Space Physics, 43 Chalantika, Garia Station Road, Kolkata-700084 (India); Maharaja Manindra Chandra College, 20, Ramkanta Bose Street, Kolkata-700003 (India)

2010-10-20T23:59:59.000Z

330

Summary of Data from DOE-Subsidized Field Trial No.1 of Downhole Oil/Water Separator Technology, Texas Well Bilbrey 30-Federal No. 5 Lea County, New Mexico  

SciTech Connect

This reports, DOWS technology reduced the quality of produced water that is handled at the surface by separating it from the oil downhole and simultaneously injecting it underground. The two primary components of a DOWS system are an oil/water separation system and at least one pump to lift oil to the surface and inject the water. Two basic types of DOWS have been developed -- one type using hydrocyclones to mechanically separate oil and water and one relying on gravity separation that takes place in the well bore.

Veil, John A.

2001-04-19T23:59:59.000Z

331

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN  

Open Energy Info (EERE)

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Details Activities (1) Areas (1) Regions (0) Abstract: High precision earthquake locations and subsurface velocity structure provide potential insights into fracture system geometry, fluid conduits and fluid compartmentalization critical to geothermal reservoir management. We analyze 16 years of seismicity to improve hypocentral locations and simultaneously invert for the seismic velocity structure within the Coso Geothermal Field (CGF). The CGF has been continuously

332

Distributed computing of Seismic Imaging Algorithms  

E-Print Network (OSTI)

The primary use of technical computing in the oil and gas industries is for seismic imaging of the earth's subsurface, driven by the business need for making well-informed drilling decisions during petroleum exploration and production. Since each oil/gas well in exploration areas costs several tens of millions of dollars, producing high-quality seismic images in a reasonable time can significantly reduce the risk of drilling a "dry hole". Similarly, these images are important as they can improve the position of wells in a billion-dollar producing oil field. However seismic imaging is very data- and compute-intensive which needs to process terabytes of data and require Gflop-years of computation (using "flop" to mean floating point operation per second). Due to the data/computing intensive nature of seismic imaging, parallel computing are used to process data to reduce the time compilation. With introducing of Cloud computing, MapReduce programming model has been attracted a lot of attention in parallel and di...

Emami, Masnida; Jaberi, Nasrin

2012-01-01T23:59:59.000Z

333

RISC-3 Seismic Assessment Guidelines: Preliminary Report  

Science Conference Proceedings (OSTI)

This report provides guidance for establishing reasonable confidence that structures, systems, and components (SSCs) of nuclear plants, categorized as RISC-3 under the 10 CFR 50.69 Risk Informed Safety Categorization Process, will perform their required functions under design basis seismic conditions.

2004-12-15T23:59:59.000Z

334

Seismic Probabilistic Risk Assessment Implementation Guide  

Science Conference Proceedings (OSTI)

The "SPRA Implementation Guide" provides utilities with in-depth guidelines for seismic probabilistic risk assessments (SPRAs). These cost-effective and practical procedures for SPRA support a variety of purposes, including risk-informed/performance-based (RI/PB) applications.

2003-12-31T23:59:59.000Z

335

Nevada Test Site seismic: telemetry measurements  

SciTech Connect

The feasibility and limitations of surface-to-tunnel seismic telemetry at the Nevada Test Site were explored through field measurements using current technology. Range functions for signaling were determined through analysis of monofrequency seismic signals injected into the earth at various sites as far as 70 km (43 mi) from installations of seismometers in the G-Tunnel complex of Rainier Mesa. Transmitted signal power at 16, 24, and 32 Hz was measured at two locations in G-Tunnel separated by 670 m (2200 ft). Transmissions from 58 surface sites distributed primarily along three azimuths from G-Tunnel were studied. The G-Tunnel noise environment was monitored over the 20-day duration of the field tests. Noise-power probability functions were calculated for 20-s and 280-s seismic-record populations. Signaling rates were calculated for signals transmitted from superior transmitter sites to G-Tunnel. A detection threshold of 13 dB re 1 nm/sup 2/ displacement power at 95% reliability was demanded. Consideration of field results suggests that even for the frequency range used in this study, substantially higher signaling rates are likely to be obtained in future work in view of the present lack of information relevant to hardware-siting criteria and the seismic propagation paths at the Nevada Test Site. 12 references.

Albright, J N; Parker, L E; Horton, E H

1983-08-01T23:59:59.000Z

336

SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS | Open Energy Information  

Open Energy Info (EERE)

SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS Details Activities (1) Areas (1) Regions (0) Abstract: Large velocity contrasts are regularly encountered in geothermal fields due to poorly consolidated and hydro-thermally altered rocks. The appropriate processing of seismic data is therefore crucial to delineate the geological structure. To assess the benefits of surface seismic surveys in such settings, we applied different migration procedures to image a synthetic reservoir model and seismic data from the Coso Geothermal Field. We have shown that the two-dimensional migration of synthetic seismic data from a typical reservoir model resolves the geological structure very well

337

Induced seismicity associated with enhanced geothermal system  

Science Conference Proceedings (OSTI)

Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the effectiveness of the EGS operations and shed light on the mechanics of the reservoir.

Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

2006-09-26T23:59:59.000Z

338

A passion for physics, Zoe Martin, receives exposure to real...  

NLE Websites -- All DOE Office Websites (Extended Search)

for physics student receives exposure to real-world science A passion for physics, Zoe Martin, receives exposure to real-world science Physics undergraduate runs computer...

339

Y-12 receives American Heart Association award | Y-12 National...  

NLE Websites -- All DOE Office Websites (Extended Search)

receives American ... Y-12 receives American Heart Association award Posted: November 22, 2012 - 9:00am Kathy Jetton, senior regional director of the American Heart Association,...

340

Chemical Scientist Hendrik Bluhm Receives Bessel Research Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Scientist Hendrik Bluhm Receives Bessel Research Award Chemical Scientist Hendrik Bluhm Receives Bessel Research Award Print Friday, 24 May 2013 00:00 Hendrik Bluhm of the...

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Laser warning receiver to identify the wavelength and angle of ...  

A laser warning receiver is disclosed which has up to hundreds of individual optical channels each optically oriented to receive laser light from a different angle of ...

342

Pantex receives Perkins Award in recognition of its work with...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex receives Perkins Award in recognition of ... Pantex receives Perkins Award in...

343

WIPP Receives First Shipment | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > WIPP Receives First Shipment WIPP Receives...

344

Sixty-seven New Mexico students receive LAESF scholarships  

NLE Websites -- All DOE Office Websites (Extended Search)

April Sixty-seven New Mexico students receive LAESF scholarships LAESF scholarships winners Taos High School senior Majdolene Khweis received this year's platinum scholarship,...

345

Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base  

SciTech Connect

These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Chavez, Francesca C. [Editor; Mendius, E. Louise [Editor

2003-09-23T23:59:59.000Z

346

Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect

These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

2005-09-20T23:59:59.000Z

347

Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring  

SciTech Connect

These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Chavez, Francesca C. [Editor; Benson, Jody [Editor; Hanson, Stephanie [Editor; Mark, Carol [Editor; Wetovsky, Marvin A. [Editor

2004-09-21T23:59:59.000Z

348

Feasibility study of the seismic reflection method in Amargosa Desert, Nye County, Nevada  

Science Conference Proceedings (OSTI)

The US Geological Survey (USGS) working under an Interagency agreement with the Department of Energy is engaged in a broad geoscience program to assess and identify a potential repository for high level nuclear waste at Yucca Mountain, Nye County, Nevada. The USGS program, referred to as the Yucca Mountain Project, or YMP, consists of integrated geologic, hydrologic and geophysical studies which range in nature from site specific to regional. This report is an evaluation of different acquisition methods for future regional seismic reflection studies to be conducted in the vicinity of Yucca Mountain, located in the southwestern corner of the Nevada Test Site (NTS). In January 1988, field studies were conducted to investigate the feasibility of using the common-depth point (CDP) seismic reflection method to map subsurface geological horizons within the Amargosa Desert, Nye County, Nevada. The goal of the field study was to investigate which seismic reflection method(s) should be used for mapping shallow to lower-crustal horizons. Therefore, a wide-variety of field acquisition parameters were tested, included point versus linear receiver group arrays; Vibroseis (service and trademark of Conoco, Inc.) versus explosive sources; Vibroseis array patterns; and Vibroseis sweep and frequency range. 31 refs., 33 figs., 8 tabs.

Brocher, T.M.; Hart, P.E.; Carle, S.F.

1990-11-01T23:59:59.000Z

349

Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration  

Science Conference Proceedings (OSTI)

These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Warren, N. Jill [Editor

2002-09-17T23:59:59.000Z

350

Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect

These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

2006-09-19T23:59:59.000Z

351

Proceedings of the 23rd Seismic Research Symposium: Worldwide Monitoring of Nuclear Explosions  

Science Conference Proceedings (OSTI)

These proceedings contain papers prepared for the 23rd Seismic Research Review: Worldwide Monitoring of Nuclear Explosions, held 2-5 October, 2001 in Jackson Hole, Wyoming. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Warren, N. Jill [Editor; Chavez, Francesca C. [Editor

2001-10-02T23:59:59.000Z

352

Solar central receiver heliostat reflector assembly  

SciTech Connect

A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.

Horton, Richard H. (Schenectady, NY); Zdeb, John J. (Clifton Park, NY)

1980-01-01T23:59:59.000Z

353

DOE receives title to Great Plains plant  

Science Conference Proceedings (OSTI)

On June 30, 1986 the Great Plains Coal Gasification Project was sold at a foreclosure sale at the Mercer County courthouse in North Dakota. The US Department of Energy was the only bidder at the sale. DOE's bid for the plant was $1 billion DOE-secured loan that the five sponsor companies defaulted on when they withdrew from the project in August 1985. DOE did not receive title to the plant until a lawsuit filed by American Natural Resources (ANR) was settled on July 14, 1986. DOE has vowed to keep the plant running as long as it does not cost the taxpayers any money. Eventually DOE wishes to dispose of the plant. Therefore, in February 1986 DOE requested that interested organizations submit expressions of interest in the Great Plains plant. This paper, after discussing the lawsuit, summarizes the nine responses received by DOE. Some companies were willing for it to remain a coal gasification facility; other submitted plans for modifications to produce methanol.

Not Available

1986-09-01T23:59:59.000Z

354

Parabolic Trough Receiver Heat Loss Testing (Poster)  

DOE Green Energy (OSTI)

Parabolic trough receivers, or heat collection elements (HCEs), absorb sunlight focused by the mirrors and transfer that thermal energy to a fluid flowing within them. Thje absorbing tube of these receivers typically operates around 400 C (752 F). HCE manufacturers prevent thermal loss from the absorbing tube to the environment by using sputtered selective Cermet coatings on the absorber and by surrounding the absorber with a glass-enclosed evacuated annulus. This work quantifies the heat loss of the Solel UVAC2 and Schott PTR70 HCEs. At 400 C, the HCEs perform similarly, losing about 400 W/m of HCE length. To put this in perspective, the incident beam radiation on a 5 m mirror aperture is about 4500 W/m, with about 75% of that energy ({approx} 3400 W/m) reaching the absorber surface. Of the 3400 W/m on the absorber, about 3000 W/m is absorbed into the working fluid while 400 W/m is lost to the environment.

Price, H.; Netter, J.; Bingham, C.; Kutscher, C.; Burkholder, F.; Brandemuehl, M.

2007-03-01T23:59:59.000Z

355

5h Other Seismic Stakeholder InteractionsGlenn Kelly- Appendix 5 Seismic.wpd Page 3  

E-Print Network (OSTI)

decommissioning plants. During the course of the workshop, presentations by the NRC and the industry concluded that spent fuel pools possess substantial capability beyond their design basis to with stand seismic events but that variations in seismic capacity existed due to plant specific designs and locations. The consensus was that the risk was low enough that precise quantification was not necessary to support exemption requests but that this needed to be confirmed on a plant specific basis with deterministic criteria. It was recommended that a simple spent fuel pool (SFP) vulnerability check list be developed to provide additional assurance that no beyond-design-basis seismic structural vulnerabilities exist at decommissioning plants. Enclosed for your review is the "Seismic Screening Criteria For Assessing Potential Pool Vulnerabilities At Decommissioning Plants." Please contact me at (202) 739-8110 or by e-mail (apn@.nei.org) if you have any questions or if a meeting should be scheduled to discuss the enclosed seismic checklist.

Glenn Kelly Aee Attached; George Hubbard; Aee Attached; Glenn Kelly; Alan Nelson; Alan Nelson

2000-01-01T23:59:59.000Z

356

Seismic Emissions Surveys | Open Energy Information  

Open Energy Info (EERE)

Emissions Surveys Emissions Surveys Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Seismic Emissions Surveys Abstract With recent improvements in acquiring, processing and interpreting data, seismic ground noise provides a valuable tool for geothermal exploration. A time domain beam steering array processing technique is employed. This process eliminates the occurrence of false anomalies caused by local geologic amplification effects. Surveys of this type are used to located naturally fractured reservoirs. Results form Dixie Valley and Desert Peak, Nevada correlate well with the location of productive wells or known geology. Authors Katz and Lewis J. Published Journal Geothermal Resources Council Transactions, 1984 DOI Not Provided Check for DOI availability: http://crossref.org

357

Definition: Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Seismic methods provide information regarding the elastic properties of the subsurface through the measurement of the propagation velocity of elastic waves.[1] View on Wikipedia Wikipedia Definition Seismology /saɪzˈmɒlədʒi/ is the scientific study of earthquakes and the propagation of elastic waves through the Earth or through other planet-like bodies. The field also includes studies of earthquake effects, such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, oceanic, atmospheric, and artificial processes (such as explosions). A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of earth motion as a function of time is called a seismogram. A seismologist

358

Seismic monitoring at the Geysers Geothermal Field  

DOE Green Energy (OSTI)

This report summarizes the efforts of LBL to utilize MEQ data in reservoir definition as well as in evaluating its performance. Results of the study indicate that the velocity and attenuation variations correlate with the known geology of the field. At the NW Geysers, high velocity anomalies correspond to metagraywacke and greenstone units while low velocity anomalies seem to be associated with Franciscan melanges. Low Vp/Vs and high attenuation delineate the steam reservoir suggesting undersaturation of the reservoir rocks. Ongoing monitoring of Vp/Vs may be useful in tracking the expansion of the steam zone with time. Spatial and temporal patterns of seismicity exhibit compelling correlation with geothermal exploitation. Clusters of MEQs occur beneath active injection wells and appear to shift with changing injection activities. High resolution MEQ locations hold promise for inferring fluid flow paths, especially in tracking injectate. This study has demonstrated that continuous seismic monitoring may be useful as an active reservoir management tool.

Romero, A.E. Jr.; Kirkpatrick, A.; Majer, E.L.; Peterson, J.E. Jr.

1994-09-01T23:59:59.000Z

359

Seismic behavior of geogrid reinforced slag wall  

Science Conference Proceedings (OSTI)

Flexible retaining structures are known with their high performance under earthquake loads. In geogrid reinforced walls the performance of the fill material and the interface of the fill and geogrid controls the performance. Geosynthetic reinforced walls in seismic regions must be safe against not only static forces but also seismic forces. The objective of this study is to determine the behavior of a geogrid reinforced slag wall during earthquake by using shaking table experiments. This study is composed of three stages. In the first stage the physical properties of the material to be used were determined. In the second part, a case history involving the use of slag from steel industry in the construction of geogrid reinforced wall is presented. In the third stage, the results of shaking table tests conducted using model geogrid wall with slag are given. From the results, it is seen that slag can be used as fill material for geogrid reinforced walls subjected to earthquake loads.

Edincliler, Ayse [Bogazici University, Kandilli Observatory and Earthquake Research Institute, Department of Earthquake Engineering, Cengelkoey-Istanbul (Turkey); Baykal, Gokhan; Saygili, Altug [Bogazici University, Department of Civil Engineering, Bebek-Istanbul (Turkey)

2008-07-08T23:59:59.000Z

360

Seismic responses of unanchored electrode storage fixtures  

SciTech Connect

Two anchored electrode storage fixtures will be installed in the process cell of the Integral Fast Reactor`s Fuel Cycle Facility at ANL-W in Idaho. In addition to the concerns for structural integrity, the potential for uplifting and tipping of the fixtures during the design basis earthquake must also be examined. In the analysis, a response-spectrum method was employed to investigate tipping, while a static approach was used for the structural-integrity evaluations. The results show that the combined stresses from seismic and other loads are within the allowables permitted by the design codes. The overall vertical seismic reaction forces at the leveling pads are compressive, implying that the fixtures will remain in contact with the floor. No uplifting or tipping of the fixture will occur during the design basis earthquake.

Ting-shu Wu; Blomquist, C.A.; Haupt, H.J.; Herceg, J.E.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Savannah River Site disaggregated seismic spectra  

SciTech Connect

The objective of this technical note is to characterize seismic ground motion at the Savannah River Site (SRS) by postulated earthquakes that may impact facilities at the site. This task is accomplished by reviewing the deterministic and probabilistic assessments of the seismic hazard to establish the earthquakes that control the hazard to establish the earthquakes that control the hazard at the site and then evaluate the associated seismic ground motions in terms of response spectra. For engineering design criteria of earthquake-resistant structures, response spectra serve the function of characterizing ground motions as a function of period or frequency. These motions then provide the input parameters that are used in the analysis of structural response. Because they use the maximum response, the response spectra are an inherently conservative design tool. Response spectra are described in terms of amplitude, duration, and frequency content, and these are related to source parameters, travel path, and site conditions. Studies by a number of investigators have shown by statistical analysis that for different magnitudes the response spectrum values are different for differing periods. These facts support Jennings' position that using different shapes of design spectra for earthquakes of different magnitudes and travel paths is a better practice than employing a single, general-purpose shape. All seismic ground motion characterization results indicate that the PGA is controlled by a local event with M[sub w] < 6 and R < 30km. The results also show that lower frequencies are controlled by a larger, more distant event, typically the Charleston source. The PGA of 0.2 g, based originally on the Blume study, is consistent with LLNL report UCRL-15910 (1990) and with the DOE position on LLNL/EPRI.

Stephenson, D.E.

1993-02-01T23:59:59.000Z

362

Savannah River Site disaggregated seismic spectra  

SciTech Connect

The objective of this technical note is to characterize seismic ground motion at the Savannah River Site (SRS) by postulated earthquakes that may impact facilities at the site. This task is accomplished by reviewing the deterministic and probabilistic assessments of the seismic hazard to establish the earthquakes that control the hazard to establish the earthquakes that control the hazard at the site and then evaluate the associated seismic ground motions in terms of response spectra. For engineering design criteria of earthquake-resistant structures, response spectra serve the function of characterizing ground motions as a function of period or frequency. These motions then provide the input parameters that are used in the analysis of structural response. Because they use the maximum response, the response spectra are an inherently conservative design tool. Response spectra are described in terms of amplitude, duration, and frequency content, and these are related to source parameters, travel path, and site conditions. Studies by a number of investigators have shown by statistical analysis that for different magnitudes the response spectrum values are different for differing periods. These facts support Jennings` position that using different shapes of design spectra for earthquakes of different magnitudes and travel paths is a better practice than employing a single, general-purpose shape. All seismic ground motion characterization results indicate that the PGA is controlled by a local event with M{sub w} < 6 and R < 30km. The results also show that lower frequencies are controlled by a larger, more distant event, typically the Charleston source. The PGA of 0.2 g, based originally on the Blume study, is consistent with LLNL report UCRL-15910 (1990) and with the DOE position on LLNL/EPRI.

Stephenson, D.E.

1993-02-01T23:59:59.000Z

363

Development Of Active Seismic Vector-Wavefield Imaging Technology For  

Open Energy Info (EERE)

Of Active Seismic Vector-Wavefield Imaging Technology For Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Development Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Details Activities (2) Areas (2) Regions (0) Abstract: This report describes the development and testing of vector-wavefield seismic sources that can generate shear (S) waves that may be valuable in geothermal exploration and reservoir characterization. Also described is a 3-D seismic data-processing effort to create images of Rye Patch geothermal reservoir from 3-D sign-bit data recorded over the geothermal prospect. Two seismic sources were developed and tested in this study that can be used to illuminate geothermal reservoirs with S-waves.

364

Statistical study of seismicity associated with geothermal reservoirs in  

Open Energy Info (EERE)

study of seismicity associated with geothermal reservoirs in study of seismicity associated with geothermal reservoirs in California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Statistical study of seismicity associated with geothermal reservoirs in California Details Activities (5) Areas (5) Regions (0) Abstract: Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times. The regions studied to date include the Imperial Valley, Coso, The Geysers, Lassen, and the San Jacinto fault. The spatial characteristics of the random and clustered components of the seismicity

365

Use of experience data for DOE seismic evaluations  

SciTech Connect

As dictated by DOE Order 5480.28, seismic evaluations of essential systems and components at DOE facilities will be conducted over the next several years. For many of these systems and components, few, if any, seismic requirements applied to the original design, procurement, installation, and maintenance process. Thus the verification of the seismic adequacy of existing systems and components presents a difficult challenge. DOE has undertaken development of the criteria and procedures for these seismic evaluations that will maximize safety benefits in a timely and cost effective manner. As demonstrated in previous applications at DOE facilities and by the experience from the commercial nuclear power industry, use of experience data for these evaluations is the only viable option for most existing systems and components. This paper describes seismic experience data, the needs at DOE facilities, the precedent of application at nuclear power plants and DOE facilities, and the program being put in place for the seismic verification task ahead for DOE.

Barlow, M.W. [Westinghouse Savannah River Co., Aiken, SC (United States); Budnitz, R. [Future Resources Associates, Inc., Berkeley, CA (United States); Eder, S.J. [EQE Engineering Consultants, San Francisco, CA (United States); Eli, M.W. [Lawrence Livermore National Lab., CA (United States)

1993-09-30T23:59:59.000Z

366

Short-Period Seismic Noise in Vorkuta (Russia)  

SciTech Connect

Cultural development of new subpolar areas of Russia is associated with a need for detailed seismic research, including both mapping of regional seismicity and seismic monitoring of specific mining enterprises. Of special interest are the northern territories of European Russia, including shelves of the Kara and Barents Seas, Yamal Peninsula, and the Timan-Pechora region. Continuous seismic studies of these territories are important now because there is insufficient seismological knowledge of the area and an absence of systematic data on the seismicity of the region. Another task of current interest is the necessity to consider the seismic environment in the design, construction, and operation of natural gas extracting enterprises such as the construction of the North European Gas Pipeline. Issues of scientific importance for seismic studies in the region are the complex geodynamical setting, the presence of permafrost, and the complex tectonic structure. In particular, the Uralian Orogene (Fig. 1) strongly affects the propagation of seismic waves. The existing subpolar seismic stations [APA (67,57{sup o}N; 33,40{sup o}E), LVZ (67,90{sup o}N; 34,65{sup o}E), and NRIL (69,50{sup o}N; 88,40{sup o}E)] do not cover the extensive area between the Pechora and Ob Rivers (Fig. 1). Thus seismic observations in the Vorkuta area, which lies within the area of concern, represent a special interest. Continuous recording at a seismic station near the city of Vorkuta (67,50{sup o}N; 64,11{sup o}E) [1] has been conducted since 2005 for the purpose of regional seismic monitoring and, more specifically, detection of seismic signals caused by local mining enterprises. Current surveys of local seismic noise [7,8,9,11], are particularly aimed at a technical survey for the suitability of the site for installation of a small-aperture seismic array, which would include 10-12 recording instruments, with the Vorkuta seismic station as the central element. When constructed, this seismic array will considerably improve the recording capacity of regional and local seismic events. It will allow detection of signatures of seismic waves propagating in submeridional and sublatitudinal directions. The latter is of special interest not only to access the influence of the Urals on propagation patterns of seismic waves, but also to address other questions, such as the structure and dynamic characteristics of the internal dynamo of the Earth [9,13]. Recording seismic waves at low angular distances from seismically active subpolar zones will allow us to collect data on vortical and convective movements in subpolar lithosphere blocks and at the boundary of the inner core of the Earth, possibly giving essential clues to the modeling of the Earth's electromagnetic field [3,13]. The present study considers basic features of seismic noise at the Vorkuta station obtained through the analysis of seismic records from March, 2006 till December, 2007.

Kishkina, S B; Spivak, A A; Sweeney, J J

2008-05-15T23:59:59.000Z

367

Industry Approach to Seismic Severe Accident Policy Implementation  

Science Conference Proceedings (OSTI)

This report provides utilities with industry recommended guidelines for cost-effective seismic evaluation of nuclear power plants in response to NRC Generic Letter 88-20. Guidance is provided on application of seismic probabilistic risk assessment and seismic margin methods for full-, focused-, and reduced-scope evaluations. It provides strategies for coordinating these evaluations with similar reviews needed for resolution of Unresolved Safety Issue (USI) A-46.

1991-11-01T23:59:59.000Z

368

Piedmont seismic reflection study: A program integrated with tectonics to probe the cause of eastern seismicity  

Science Conference Proceedings (OSTI)

A new tectonic model of the Appalachian orogen indicates that one, not two or more, terrane boundaries is present in the Piedmont and Blue Ridge of the central and southern Appalachians. This terrane boundary is the Taconic suture, it has been transported in the allochthonous Blue Ridge/Piedmont crystalline thrust nappe, and it is repeated at the surface by faulting and folding associated with later Paleozoic orogenies. The suture passes through the lower crust and lithosphere somewhere east of Richmond. It is spatially associated with seismicity in the central Virginia seismic zone, but is not conformable with earthquake focal planes and appears to have little causal relation to their localization.

Glover, L. III; Coruh, C.; Costain, J.K.; Bollinger, G.A. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Geological Sciences)

1992-03-01T23:59:59.000Z

369

Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And...  

Open Energy Info (EERE)

Flank Area (Wyss, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And...

370

Tube-wave Seismic Imaging and Monitoring Method for Oil ...  

Valeri Korneev at Berkeley National Lab has developed a low cost method for real-time seismic monitoring of underground fluid reservoirs based on tube-wave analysis.

371

Tube-wave Seismic Imaging and Monitoring Method for Oil ...  

Tube-wave Seismic Imaging and Monitoring Method for Oil Reservoirs and Aquifers Lawrence Berkeley National Laboratory. Contact LBL About This Technology

372

Microsoft Word - Calpine EGS_Seismic Eval Final.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Environmental Impacts of Induced Seismicity at the Calpine Enhanced Geothermal System Project, The Geysers, California prepared for RMT, Inc. 4 West Fourth Avenue,...

373

APPENDIX J: STATEMENT OF COMPLIANCE WITH DOE SEISMICITY PROTOCOL  

NLE Websites -- All DOE Office Websites (Extended Search)

compliance with the "Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems". Calpine Corporation and other Geysers geothermal operators have long been...

374

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION...  

Open Energy Info (EERE)

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

375

Thermal Gradient Holes At Central Nevada Seismic Zone Region...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration...

376

Development Of Active Seismic Vector-Wavefield Imaging Technology...  

Open Energy Info (EERE)

This report describes the development and testing of vector-wavefield seismic sources that can generate shear (S) waves that may be valuable in geothermal exploration and...

377

Teleseismic-Seismic Monitoring At Newberry Caldera Area (DOE...  

Open Energy Info (EERE)

Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Newberry Caldera Area (DOE GTP)...

378

Seismic Technology Adapted to Analyzing and Developing Geothermal...  

Open Energy Info (EERE)

Last modified on July 22, 2011. Project Title Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Project Type ...

379

Using Supercomputers to Improve Seismic Hazard Maps | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

of 2% in 50 years. Using Supercomputers to Improve Seismic Hazard Maps PI Name: Thomas Jordan PI Email: tjordan@usc.edu Institution: Southern California Earthquake Center...

380

Geographic Information System At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Geographic Information System At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Blewitt, Et Al., 2003) Exploration...

382

Geographic Information System At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2)...

383

Statistical study of seismicity associated with geothermal reservoirs...  

Open Energy Info (EERE)

reservoirs in California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Statistical study of seismicity associated with geothermal reservoirs in California...

384

Geothermal: Sponsored by OSTI -- Seismic Technology Adapted to...  

Office of Scientific and Technical Information (OSTI)

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report Geothermal Technologies Legacy Collection HelpFAQ...

385

Modeling-Computer Simulations At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration...

386

Modeling-Computer Simulations At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

387

Time-dependent seismic tomography and its application to the...  

Open Energy Info (EERE)

changes in Earth structure are commonly determined using local earthquake tomography computer programs that invert multiple seismic-wave arrival time data sets separately and...

388

Seismic Reflection Data and Conceptual Models for Geothermal...  

Open Energy Info (EERE)

Reflection Data and Conceptual Models for Geothermal Development in Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Seismic Reflection...

389

Advanced Seismic data Analysis Program (The "Hot Pot Project...  

Open Energy Info (EERE)

seismic data to locate deep geothermal structures. Awardees (Company Institution) OSKI Energy, LLC Awardee Website http:www.oskienergy.com Partner 1 Optim, Inc Partner 2...

390

Injection monitoring with seismic arrays and adaptive noise cancellation  

DOE Green Energy (OSTI)

Although the application of seismic methods, active and passive, to monitor in-situ reservoir stimulation processes is not new, seismic arrays and array processing technology coupled with a new noise cancellation method has not been attempted. Successful application of seismic arrays to passively monitor in-situ reservoir stimulation processes depends on being able to sufficiently cancel the expected large amplitude background seismic noise typical of an oil or geothermal production environment so that small amplitude seismic signals occurring at depth can be detected and located. This report describes the results of a short field experiment conducted to test both the application of seismic arrays for in-situ reservoir stimulation monitoring and the active noise cancellation technique in a real reservoir production environment. Although successful application of these techniques to in-situ reservoir stimulation monitoring would have the greatest payoff in the oil industry, the proof-of-concept field experiment site was chosen to be the Geysers geothermal field in northern California. This site was chosen because of known high seismicity rates, a relatively shallow production depth, cooperation and some cost sharing the UNOCAL Oil Corporation, and the close proximity of the site to LLNL. The body of this report describes the Geysers field experimental configuration and then discusses the results of the seismic array processing and the results of the seismic noise cancellation followed by a brief conclusion. 2 refs., 11 figs.

Harben, P.E.; Harris, D.B.; Jarpe, S.P.

1991-01-01T23:59:59.000Z

391

Next-Generation Performance-Based Seismic Design ...  

Science Conference Proceedings (OSTI)

Page 1. Next-Generation Performance-Based Seismic Design Guidelines Program Plan for New and Existing Buildings FEMA-445 / August 2006 ...

2007-03-01T23:59:59.000Z

392

Seismic Design of Steel Special Concentrically Braced Frame ...  

Science Conference Proceedings (OSTI)

Page 1. NEHRP Seismic Design Technical Brief No. 8 ... Dr. John (Jay) L. Harris, III, managed the project to produce this Technical Brief for EL. ...

2013-08-01T23:59:59.000Z

393

DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM  

SciTech Connect

The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program entails modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. The project continues to advance, but is behind the revised (14-month) schedule. Tasks 1-3 (Modeling, Specification and Design) are all essentially complete. The test bench for the Test and Evaluation (Tasks 4 & 5) and the laboratory prototype were constructed by the end of the period. During assembly, however, several of the key subassemblies became galled together, and had to be cut apart. These parts are being remachined with harder surfaces to prevent recurrence of this problem. One key component, the MR damper mandrel, has been redesigned into a three-piece assembly which will facilitate assembly and reduce the cost of replacement of worn components. The remade parts will be delivered by April 19, and the prototype assembled. Testing will begin during the first week of May and is anticipated to be completed before the revised end date for Phase I, May 31, 2004.

Martin E. Cobern

2004-04-17T23:59:59.000Z

394

Global pattern of earthquakes and seismic energy distributions: Insights for the mechanisms of plate tectonics  

E-Print Network (OSTI)

Global pattern of earthquakes and seismic energy distributions: Insights for the mechanisms October 2011 Keywords: Global seismicity Declustered catalogue Earthquake energy distribution Plate tectonics In this paper, we analyse the distributions of number of events (N) and seismic energy (E

Doglioni, Carlo

395

Receiver control for the Submillimeter Array  

E-Print Network (OSTI)

Efficient operation of a submillimeter interferometer requires remote (preferably automated) control of mechanically tuned local oscillators, phase-lock loops, mixers, optics, calibration vanes and cryostats. The present control system for these aspects of the Submillimeter Array (SMA) will be described. Distributed processing forms the underlying architecture. In each antenna cabin, a serial network of up to ten independent 80C196 microcontroller boards attaches to the real-time PowerPC computer (running LynxOS). A multi-threaded, gcc-compiled program on the PowerPC accepts top-level requests via remote procedure calls (RPC), subsequently dispatches tuning commands to the relevant microcontrollers, and regularly reports the system status to optical-fiber-based reflective memory for common access by the telescope monitor and error reporting system. All serial communication occurs asynchronously via encoded, variable-length packets. The microcontrollers respond to the requested commands and queries by accessing non-volatile, rewriteable lookup-tables (when appropriate) and executing embedded software that operates additional electronic devices (DACs, ADCs, etc.). Since various receiver hardware components require linear or rotary motion, each microcontroller also implements a position servo via a one-millisecond interrupt service routine which drives a DC-motor/encoder combination that remains standard across each subsystem.

T. R. Hunter; R. W. Wilson; R. Kimberk; P. S. Leiker; R. D. Christensen

2005-09-26T23:59:59.000Z

396

Integrated solar receiver/biomass gasifier research  

SciTech Connect

Processes for producing liquid fuels from olefin-rich pyrolysis gases obtained from fast pyrolysis of biomass are being developed by J. Kuester at Arizona State University and J. Diebold at the Naval Weapons Center, China Lake, Calif. In the Diebold process the biomass, carried by steam, is blown through an entrained bed gasifier. The olefins are then separated from the rest of the reaction products and polymerized thermally to gasoline; the other gases are used as fuel for the process. The Kuester process uses a fluidized bed gasifier and a catalytic Fischer-Tropsch reactor which converts the olefins, hydrogen, and carbon monoxide into n-propanol and paraffinic hydrocarbons. The advantages over the Diebold process are shorter residence time and elimination of the gas separation requirement. One disadvantage is the low octane rating of the fuel. As part of the solar thermal program at the Solar Energy Research Institute (SERI), an entrained bed reactor/receiver for fast pyrolysis of biomass is being developed for use with either the Diebold or Kuester process. This system is discussed.

Benham, C.; Bergeron, P.; Bessler, G.; Bohn, M.

1979-11-01T23:59:59.000Z

397

Seismic Characterization of Coal-Mining Seismicity in Utah for CTBT Monitoring  

SciTech Connect

Underground coal mining (down to {approx}0.75 km depth) in the contiguous Wasatch Plateau (WP) and Book Cliffs (BC) mining districts of east-central Utah induces abundant seismicity that is monitored by the University of Utah regional seismic network. This report presents the results of a systematic characterization of mining seismicity (magnitude {le} 4.2) in the WP-BC region from January 1978 to June 2000-together with an evaluation of three seismic events (magnitude {le} 4.3) associated with underground trona mining in southwestern Wyoming during January-August 2000. (Unless specified otherwise, magnitude implies Richter local magnitude, M{sub L}.) The University of Utah Seismograph Stations (UUSS) undertook this cooperative project to assist the University of California Lawrence Livermore National Laboratory (LLNL) in research and development relating to monitoring the Comprehensive Test Ban Treaty (CTBT). The project, which formally began February 28, 1998, and ended September 1, 2000, had three basic objectives: (1) Strategically install a three-component broadband digital seismic station in the WP-BC region to ensure the continuous recording of high-quality waveform data to meet the long-term needs of LLNL, UUSS, and other interested parties, including the international CTBT community. (2) Determine source mechanisms--to the extent that available source data and resources allowed--for comparative seismic characterization of stress release in mines versus earthquakes in the WP-BC study region. (3) Gather and report to LLNL local information on mine operations and associated seismicity, including ''ground truth'' for significant events. Following guidance from LLNL's Technical Representative, the focus of Objective 2 was changed slightly to place emphasis on three mining-related events that occurred in and near the study area after the original work plan had been made, thus posing new targets of opportunity. These included: a magnitude 3.8 shock that occurred close to the Willow Creek coal mine in the Book Cliffs area on February 5, 1998 (UTC date), just prior to the start of this project; a magnitude 4.2 shock on March 7,2000 (UTC date), in the same area as the February 5 event; and a magnitude 4.3 shock that occurred on January 30,2000 (UTC and local date), associated with a panel collapse at the Solvay trona mine in southwestern Wyoming. This is the same mine in which an earlier collapse event of magnitude 5.2 occurred in February 1995, attracting considerable attention from the CTBT community.

Arabasz, W J; Pechmann, J C

2001-03-01T23:59:59.000Z

398

HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS  

Science Conference Proceedings (OSTI)

M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al. (2006a), it is concluded that time-domain SSI analysis using ANSYS{reg_sign} is justified for predicting the global response of the DSTs. The most significant difference between the current revision (Revision 1) of this report and the original issue (Revision 0) is the treatment of the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome.

MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

2009-01-15T23:59:59.000Z

399

Geophysics II. Tools for seismic interpretation  

SciTech Connect

During the past two decades, the technology of geophysics has exploded. At the same time, the petroleum industry has been forced to look for more and more subtle traps in more and more difficult terrain. The choice of papers in this geophysics reprint volume reflects this evolution. The papers were chosen to help geologists, not geophysicists, enhance their knowledge of geophysics. Math-intensive papers were excluded because those papers are relatively esoteric and have limited applicability for most geologists. This volume concentrates on tools for seismic data interpretation. Each of the 25 papers were abstracted and indexed for the U.S. Department of Energy's Energy Data Base.

Beaumont, E.A.; Foster, N.H. (comps.)

1989-01-01T23:59:59.000Z

400

Geophysics III. Geologic interpretation of seismic data  

SciTech Connect

During the past two decades, the technology of geophysics has exploded. At the same time, the petroleum industry has been forced to look for more and more subtle traps in more and more difficult terrain. The choice of papers in this geophysics reprint volume reflects this evolution. The papers were chosen to help geologists, not geophysicists, enhance their knowledge of geophysics. Math-intensive papers were excluded because those papers are relatively esoteric and have limited applicability for most geologists. This volume concentrates on geologic interpretation of seismic data interpretation. Each of the 21 papers were abstracted and indexed for the U.S. Department of Energy's Energy Data Base.

Beaumont, E.A.; Foster, N.H. (comps.)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

First Quarter Hanford Seismic Report for Fiscal Year 2009  

SciTech Connect

The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. This includes three recently acquired Transportable Array stations located at Cold Creek, Didier Farms, and Phinney Hill. For the Hanford Seismic Network, ten local earthquakes were recorded during the first quarter of fiscal year 2009. All earthquakes were considered as minor with magnitudes (Mc) less than 1.0. Two earthquakes were located at shallow depths (less than 4 km), most likely in the Columbia River basalts; five earthquakes at intermediate depths (between 4 and 9 km), most likely in the sub-basalt sediments); and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, four earthquakes occurred in known swarm areas and six earthquakes were classified as random events.

Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

2009-03-15T23:59:59.000Z

402

First Quarter Hanford Seismic Report for Fiscal Year 2011  

SciTech Connect

The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

2011-03-31T23:59:59.000Z

403

Knowledge Assisted Visualization: Knowledge-assisted visualization of seismic data  

Science Conference Proceedings (OSTI)

We present novel techniques for knowledge-assisted annotation and computer-assisted interpretation of seismic data for oil and gas exploration. We describe the existing procedure for oil and gas search which consists of manually extracting information ... Keywords: 2D textures, 3D textures, Illustrative visualization, Knowledge-assisted visualization, Rapid interpretation, Seismic interpretation

Daniel Patel; yvind Sture; Helwig Hauser; Christopher Giertsen; M. Eduard Grller

2009-10-01T23:59:59.000Z

404

3D porosity prediction from seismic inversion and neural networks  

Science Conference Proceedings (OSTI)

In this work, we address the problem of transforming seismic reflection data into an intrinsic rock property model. Specifically, we present an application of a methodology that allows interpreters to obtain effective porosity 3D maps from post-stack ... Keywords: Feed-forward neural network, Matlab, Reservoir characterization, Seismic inversion

Emilson Pereira Leite; Alexandre Campane Vidal

2011-08-01T23:59:59.000Z

405

Engineering Seismic Base Layer for Defining Design Earthquake Motion  

Science Conference Proceedings (OSTI)

Engineer's common sense that incident wave is common in a widespread area at the engineering seismic base layer is shown not to be correct. An exhibiting example is first shown, which indicates that earthquake motion at the ground surface evaluated by the analysis considering the ground from a seismic bedrock to a ground surface simultaneously (continuous analysis) is different from the one by the analysis in which the ground is separated at the engineering seismic base layer and analyzed separately (separate analysis). The reason is investigated by several approaches. Investigation based on eigen value problem indicates that the first predominant period in the continuous analysis cannot be found in the separate analysis, and predominant period at higher order does not match in the upper and lower ground in the separate analysis. The earthquake response analysis indicates that reflected wave at the engineering seismic base layer is not zero, which indicates that conventional engineering seismic base layer does not work as expected by the term 'base'. All these results indicate that wave that goes down to the deep depths after reflecting in the surface layer and again reflects at the seismic bedrock cannot be neglected in evaluating the response at the ground surface. In other words, interaction between the surface layer and/or layers between seismic bedrock and engineering seismic base layer cannot be neglected in evaluating the earthquake motion at the ground surface.

Yoshida, Nozomu [Department of Civil and Environmental Engineering, Tohoku Gakuin University, Tagajo 1-13-1, Miyagi (Japan)

2008-07-08T23:59:59.000Z

406

Sixty-Eight Students to Receive Nuclear Energy Scholarships and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sixty-Eight Students to Receive Nuclear Energy Scholarships and Fellowships Sixty-Eight Students to Receive Nuclear Energy Scholarships and Fellowships July 17, 2013 - 10:30am...

407

Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers  

Science Conference Proceedings (OSTI)

Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range ...

Refaat Tamer F.; Halama Gary E.; DeYoung Russell J.

2000-07-01T23:59:59.000Z

408

SunShot Initiative: Advanced Nitrate Salt Central Receiver Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nitrate Salt Central Receiver Power Plant to someone by E-mail Share SunShot Initiative: Advanced Nitrate Salt Central Receiver Power Plant on Facebook Tweet about SunShot...

409

Y-12 inventors receive awards | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

inventors receive ... Y-12 inventors receive awards Posted: February 20, 2013 - 10:31am OAK RIDGE, Tenn. - At the ninth annual Y-12 Technology Transfer awards ceremony held to...

410

Pantex receives two safety awards | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex receives two safety awards Pantex receives two safety awards Posted By Office of...

411

NREL: Concentrating Solar Power Research - Receiver R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

used to analyze the steady-state, off-sun thermal losses of receivers used in solar parabolic trough power plants; helps to reduce collector optical losses and reduce receiver...

412

NREL: Wind Research - Baring-Gould Receives Champion Award from...  

NLE Websites -- All DOE Office Websites (Extended Search)

Baring-Gould Receives Champion Award from Women of Wind Energy May 20, 2013 Wind Powering America National Technical Director Ian Baring-Gould received the Champion Award at the...

413

Development of a solar thermal receiver for high temperature applications  

DOE Green Energy (OSTI)

A thermal receiver for point focus collectors is being constructed. Its design, which is based upon experience with a commercial receiver, employs the advantages of that receiver and improves some of its features. The new receiver uses as a buffer between the cavity surface and the heat transfer fluid a thermal mass, which with a very small temperature drop penalty smooths the flux distribution to eliminate hot spots. Maximum operating temperature range was extended from 620/sup 0/C to 870/sup 0/C and receiver efficiency was improved. The design of the receiver enables significant spillage flux at the receiver to be used. Thus, lower quality optics can be employed in applications not requiring very high temperatures. Design and construction features of the receiver are presented and the testing program is described.

Bohn, M.; Bessler, G.

1979-11-01T23:59:59.000Z

414

Operational Monitoring of Weather Radar Receiving Chain Using the Sun  

Science Conference Proceedings (OSTI)

A method for operational monitoring of a weather radar receiving chain, including the antenna gain and the receiver, is presented. The online method is entirely based on the analysis of sun signals in the polar volume data produced during ...

Iwan Holleman; Asko Huuskonen; Mikko Kurri; Hans Beekhuis

2010-01-01T23:59:59.000Z

415

Designing CPV Receivers With Reliability: Early Evaluation of Components  

E-Print Network (OSTI)

Designing CPV Receivers With Reliability: Early Evaluation of Components Objective Materials from power electronics industry must be proven when integrated in PV applications. Pre-qualification tests improves the receiver design and reliability. ANU microconcentrator test&design experience

416

LLNL receives accolades from EPA's Federal Green Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

713green 05172013 LLNL receives accolades from EPA's Federal Green Challenge Jennie L Doman, LLNL, (925) 423-2216, doman3@llnl.gov Printer-friendly LLNL has received accolades...

417

Los Alamos National Laboratory receives Department of Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE environmental sustainability award Los Alamos National Laboratory receives Department of Energy environmental sustainability award EStar awards recognize excellence in...

418

Dixson and Fu Receive NIST Applied Research Award  

Science Conference Proceedings (OSTI)

Dixson and Fu Receive NIST Applied Research Award. For Immediate Release: December 1, 1999. *. Bookmark and Share. ...

2013-07-19T23:59:59.000Z

419

John Cahn to Receive 2011 Kyoto Prize For Fundamental ...  

Science Conference Proceedings (OSTI)

John Cahn to Receive 2011 Kyoto Prize For Fundamental Contributions to Materials Science. For Immediate Release: June 24, 2011. ...

2011-06-27T23:59:59.000Z

420

John Cahn to Receive 2011 Kyoto Prize for Fundamental ...  

Science Conference Proceedings (OSTI)

John Cahn to Receive 2011 Kyoto Prize for Fundamental Contributions to Materials Science. From NIST Tech Beat: July 6, 2011. ...

2011-07-06T23:59:59.000Z

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Refraction Survey At Central Nevada Seismic Zone Region (Heimgartner, Et  

Open Energy Info (EERE)

Refraction Survey At Central Nevada Seismic Zone Region (Heimgartner, Et Refraction Survey At Central Nevada Seismic Zone Region (Heimgartner, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Central Nevada Seismic Zone Region (Heimgartner, Et Al., 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Refraction Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Michelle Heimgartner, James B. Scott, Weston Thelen, Christopher R. Lopez, John N. Louie (2005) Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old And New Refraction Data Retrieved from "http://en.openei.org/w/index.php?title=Refraction_Survey_At_Central_Nevada_Seismic_Zone_Region_(Heimgartner,_Et_Al.,_2005)&oldid=401382

422

Geographic Information System At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Central_Nevada_Seismic_Zone_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401371

423

Data Acquisition-Manipulation At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Central_Nevada_Seismic_Zone_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401360"

424

Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Details Activities (2) Areas (2) Regions (0) Abstract: Local seismic networks were established at the Roosevelt Hot Springs geothermal area, utah and at Raft River geothermal area, Idaho to monitor the background seismicity prior to initiation of geothermal power production. The Raft River study area is currently seismically quiet down

425

The discrete Kalman filtering approach for seismic signals deconvolution  

SciTech Connect

Seismic signals are a convolution of reflectivity and seismic wavelet. One of the most important stages in seismic data processing is deconvolution process; the process of deconvolution is inverse filters based on Wiener filter theory. This theory is limited by certain modelling assumptions, which may not always valid. The discrete form of the Kalman filter is then used to generate an estimate of the reflectivity function. The main advantage of Kalman filtering is capability of technique to handling continually time varying models and has high resolution capabilities. In this work, we use discrete Kalman filter that it was combined with primitive deconvolution. Filtering process works on reflectivity function, hence the work flow of filtering is started with primitive deconvolution using inverse of wavelet. The seismic signals then are obtained by convoluting of filtered reflectivity function with energy waveform which is referred to as the seismic wavelet. The higher frequency of wavelet gives smaller wave length, the graphs of these results are presented.

Kurniadi, Rizal; Nurhandoko, Bagus Endar B. [Departement of Physics Intitut Teknologi Bandung, Jl. Ganesha 10 Bandung (Indonesia)

2012-06-20T23:59:59.000Z

426

Seismic-Scale Rock Physics of Methane Hydrate  

SciTech Connect

We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

Amos Nur

2009-01-08T23:59:59.000Z

427

Nonlinear acoustic/seismic waves in earthquake processes  

Science Conference Proceedings (OSTI)

Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering-one of the most fascinating topics in seismology today-which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering of the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge-the granular material located between the fault blocks-is key to the triggering phenomenon.

Johnson, Paul A. [Geophysics Group, Los Alamos National Laboratory, Los Alamos National Laboratory, Los Alamos New Mexico 87544 (United States)

2012-09-04T23:59:59.000Z

428

Second Quarter Hanford Seismic Report for Fiscal Year 2008  

SciTech Connect

The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, seven local earthquakes were recorded during the second quarter of fiscal year 2008. The largest event recorded by the network during the second quarter (February 3, 2008 - magnitude 2.3 Mc) was located northeast of Richland in Franklin County at a depth of 22.5 km. With regard to the depth distribution, two earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), three earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and two earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, five earthquakes occurred in swarm areas and two earthquakes were classified as random events.

Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

2008-06-26T23:59:59.000Z

429

First Quarter Hanford Seismic Report for Fiscal Year 2008  

SciTech Connect

The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, forty-four local earthquakes were recorded during the first quarter of fiscal year 2008. A total of thirty-one micro earthquakes were recorded within the Rattlesnake Mountain swarm area at depths in the 5-8 km range, most likely within the pre-basalt sediments. The largest event recorded by the network during the first quarter (November 25, 2007 - magnitude 1.5 Mc) was located within this swarm area at a depth of 4.3 km. With regard to the depth distribution, three earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), thirty-six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and five earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, thirty-eight earthquakes occurred in swarm areas and six earthquakes were classified as random events.

Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

2008-03-21T23:59:59.000Z

430

Ground motion input in seismic evaluation studies  

Science Conference Proceedings (OSTI)

This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants.

Sewell, R.T.; Wu, S.C.

1996-07-01T23:59:59.000Z

431

Seismic imaging of the Medicine Lake Caldera  

DOE Green Energy (OSTI)

Medicine Lake Volcano, a broad shield volcano about 50 km east of Mount Shasta in northern California, produced rhylotic eruptions as recently as 400 years ago. Because of this recent activity it is of considerable interest to producers of geothermal energy. The USGS and LLNL conducted an active seismic experiment designed to explore the area beneath and around the caldera. This experiment had two purposes: To produce high-quality velocity and attenuation images of the young magma body presumed to be the source for the young volcanic features, and to collect a dataset that can be used to develop and test seismic imaging methods that may be useful for understanding other geothermal systems. Eight large explosions were detonated in a 50 km radius circle around the volcano, a distance chosen to produce strong upward traveling signals through the area of interest. The data were inverted using Aki's method to produce three-dimensional velocity and attenuation images of the sub-surface. Preliminary interpretation shows low velocity and attenuation on the flanks of the volcano, and coincident high attenuation values and low velocities (-20%) from 3 to 5 km beneath the center of the caldera. This zone may be a region of partial melt which fed the youngest eruptions.

Zucca, J.J.; Evans, J.R.; Kasameyer, P.W.

1987-04-01T23:59:59.000Z

432

Application of the Neo-Deterministic Seismic Microzonation Procedure in Bulgaria and Validation of the Seismic Input Against Eurocode 8  

SciTech Connect

The earthquake record and the Code for design and construction in seismic regions in Bulgaria have shown that the territory of the Republic of Bulgaria is exposed to a high seismic risk due to local shallow and regional strong intermediate-depth seismic sources. The available strong motion database is quite limited, and therefore not representative at all of the real hazard. The application of the neo-deterministic seismic hazard assessment procedure for two main Bulgarian cities has been capable to supply a significant database of synthetic strong motions for the target sites, applicable for earthquake engineering purposes. The main advantage of the applied deterministic procedure is the possibility to take simultaneously and correctly into consideration the contribution to the earthquake ground motion at the target sites of the seismic source and of the seismic wave propagation in the crossed media. We discuss in this study the result of some recent applications of the neo-deterministic seismic microzonation procedure to the cities of Sofia and Russe. The validation of the theoretically modeled seismic input against Eurocode 8 and the few available records at these sites is discussed.

Ivanka, Paskaleva [CLSMEE--BAS, 3 Acad G. Bonchev str, 1113 Sofia (Bulgaria); Mihaela, Kouteva [CLSMEE-BAS, 3 Acad G. Bonchev str, 1113 Sofia (Bulgaria); ESP-SAND, ICTP, Trieste (Italy); Franco, Vaccari [DST-University of Trieste, Via E. Weiss 4, 34127 Trieste (Italy); Panza, Giuliano F. [DST-University of Trieste, Via E. Weiss 4, 34127 Trieste (Italy); ESP-SAND, ICTP, Trieste (Italy)

2008-07-08T23:59:59.000Z

433

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS  

Science Conference Proceedings (OSTI)

M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste.

MACKEY, T.C.

2006-03-17T23:59:59.000Z

434

Micropower RF transponder with superregenerative receiver and RF receiver with sampling mixer  

DOE Patents (OSTI)

A micropower RF transponder employs a novel adaptation of the superregenerative receiver wherein the quench oscillator is external to the regenerative transistor. The quench oscillator applies an exponentially decaying waveform rather than the usual sinewave to achieve high sensitivity at microampere current levels. Further improvements include circuit simplifications for antenna coupling, extraction of the detected signal, and a low-voltage bias configuration that allows operation with less than a 1-volt rail voltage. The inventive transponder is expected to operate as long as the battery shelf life. 13 figs.

McEwan, T.E.

1997-05-13T23:59:59.000Z

435

Micropower RF transponder with superregenerative receiver and RF receiver with sampling mixer  

DOE Patents (OSTI)

A micropower RF transdponder employs a novel adaptation of the superregenerative receiver wherein the quench oscillator is external to the regenerative transistor. The quench oscillator applies an exponentially decaying waveform rather than the usual sinewave to achieve high sensitivity at microampere current levels. Further improvements include circuit simplifications for antenna coupling, extraction of the detected signal, and a low-voltage bias configuration that allows operation with less than a 1-volt rail voltage. The inventive transponder is expected to operate as long as the battery shelf life.

McEwan, Thomas E. (Livermore, CA)

1997-01-01T23:59:59.000Z

436

Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume III. Appendices  

DOE Green Energy (OSTI)

The overall, long term objective of the Solar Central Receiver Hybrid Power System is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumpton, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains appendices to the conceptual design and systems analysis studies gien in Volume II, Books 1 and 2. (WHK)

None

1980-01-01T23:59:59.000Z

437

Analysis of seismic sloshing of reactor tanks considering submerged components and seismic isolation  

Science Conference Proceedings (OSTI)

A study of the seismic sloshing response of a large pool-type reactor tank with several deck-mounted components is presented. The main objective of the study is to investigate the effects of internal components on the sloshing response and to determine the sloshing loads on the components. The study shows that the presence of internal components can significantly change the dynamic characteristics of the sloshing motion. The sloshing frequencies of a tank with internal components are considerably higher than those of a tank without internals. The higher sloshing frequencies reduce the sloshing wave height on the free surface but the dynamic pressures of the fluid are increased. The effects of seismic isolation on sloshing response are also presented.

Ma, D.C.; Chang, Y.M.

1985-01-01T23:59:59.000Z

438

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems  

Open Energy Info (EERE)

Technology Adapted to Analyzing and Developing Geothermal Systems Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geophysical Exploration Technologies Project Description Historically, areas where the Earth surface is covered by an exposed high-velocity rock layer have been locations where conventional, single-component, seismic P-waves have failed to provide usable geological information. The research will use new seismic sources that emphasize shear waves and new seismic data-acquisition technology based on cable-free data recording to acquire seismic research data across two sites covered with surface-exposed highvelocity rocks. Research tasks will involve acquiring, processing, and interpreting both conventional seismic data and multicomponent seismic data. Scientists at BEG will analyze well logs, cores, and reservoir test data to construct geological models of the targeted geology across each study site.

439

Seismic Safety Margins Research Program. Phase I, final report - overview  

SciTech Connect

The Seismic Safety Margins Research Program (SSMRP) is a multiyear, multiphase program whose overall objective is to develop improved methods for seismic safety assessments of nuclear power plants, using a probabilistic computational procedure. The program is being carried out at the Lawrence Livermore National Laboratory and is sponsored by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Phase I of the SSMRP was successfully completed in January 1981: A probabilistic computational procedure for the seismic risk assessment of nuclear power plants has been developed and demonstrated. The methodology is implemented by three computer programs: HAZARD, which assesses the seismic hazard at a given site, SMACS, which computes in-structure and subsystem seismic responses, and SEISIM, which calculates system failure probabilities and radioactive release probabilities, given (1) the response results of SMACS, (2) a set of event trees, (3) a family of fault trees, (4) a set of structural and component fragility descriptions, and (5) a curve describing the local seismic hazard. The practicality of this methodology was demonstrated by computing preliminary release probabilities for Unit 1 of the Zion Nuclear Power Plant north of Chicago, Illinois. Studies have begun aimed at quantifying the sources of uncertainty in these computations. Numerous side studies were undertaken to examine modeling alternatives, sources of error, and available analysis techniques. Extensive sets of data were amassed and evaluated as part of projects to establish seismic input parameters and to produce the fragility curves. 66 refs., 29 figs., 10 tabs.

Smith, P.D.; Dong, R.G.; Bernreuter, D.L.; Bohn, M.P.; Chuang, T.Y.; Cummings, G.E.; Johnson, J.J.; Mensing, R.W.; Wells, J.E.

1981-03-06T23:59:59.000Z

440

Validation of seismic probabilistic risk assessments of nuclear power plants  

SciTech Connect

A seismic probabilistic risk assessment (PRA) of a nuclear plant requires identification and information regarding the seismic hazard at the plant site, dominant accident sequences leading to core damage, and structure and equipment fragilities. Uncertainties are associated with each of these ingredients of a PRA. Sources of uncertainty due to seismic hazard and assumptions underlying the component fragility modeling may be significant contributors to uncertainty in estimates of core damage probability. Design and construction errors also may be important in some instances. When these uncertainties are propagated through the PRA, the frequency distribution of core damage probability may span three orders of magnitude or more. This large variability brings into question the credibility of PRA methods and the usefulness of insights to be gained from a PRA. The sensitivity of accident sequence probabilities and high-confidence, low probability of failure (HCLPF) plant fragilities to seismic hazard and fragility modeling assumptions was examined for three nuclear power plants. Mean accident sequence probabilities were found to be relatively insensitive (by a factor of two or less) to: uncertainty in the coefficient of variation (logarithmic standard deviation) describing inherent randomness in component fragility; truncation of lower tail of fragility; uncertainty in random (non-seismic) equipment failures (e.g., diesel generators); correlation between component capacities; and functional form of fragility family. On the other hand, the accident sequence probabilities, expressed in the form of a frequency distribution, are affected significantly by the seismic hazard modeling, including slopes of seismic hazard curves and likelihoods assigned to those curves.

Ellingwood, B. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "downhole seismic receiver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

N Reactor Seismic Task Force analysis and fix summary  

Science Conference Proceedings (OSTI)

The N Reactor Safety Enhancement Program (SEP) and the Accelerated Safety Enhancement Program (ASEP) were established to implement recommendations made earlier by study groups assessing the safety of N Reactor. The recommendations which dealt with seismic issues were assigned to Safety Enhancement Programs, Defense Reactor Programs for implementation. A Seismic Task Force was assembled to perform the analyses, design the modifications, direct the performance of the work and provide program management of the effort to seismically qualify the facility. This document identifies the reports published by the task force to resolve each of the seismic issues raised by safety assessments. The reports, in turn, provide a list of recommended fixes (Fixes are potential problems, not resolved in the engineering analyses, which require repair, cleanup or modifications to hardware to establish seismic qualification). The purpose of this report is to provide a guide to seismic fixes implemented by the Seismic Task Force. This information is provided in the form of a ``fix log`` which lists fixes according to the report which recommended them and identifies the work authorization (WA), engineering documentation (Design Change, Field Change Notice or Engineering Change Notice) and acceptance dates for each fix. 5 refs., 6 tabs.

Rainey, T.E.

1989-05-01T23:59:59.000Z

442

Planning Tools For Seismic Risk Mitigation. Rules And Applications  

SciTech Connect

Recently, Italian urban planning research in the field of seismic risk mitigation are renewing. In particular, it promotes strategies that integrate urban rehabilitation and aseismic objectives, and also politicizes that are directed to revitalizes urban systems, coupling physical renewal and socio-economic development.In Italy the first law concerning planning for seismic mitigation dates back 1974, the law n. 64 'Regulation for buildings with particular rules for the seismic areas' where the rules for buildings in seismic areas concerning also the local hazard. This law, in fact, forced the municipalities to acquire, during the formation of the plans, a preventive opinion of compatibility between planning conditions and geomorphology conditions of the territory. From this date the conviction that the seismic risk must be considered inside the territorial planning especially in terms of strategies of mitigation has been strengthened.The town planners have started to take an interest in seismic risk in the [80]s when the Irpinia's earthquake took place. The researches developed after this earthquake have established that the principal cause of the collapse of buildings are due to from the wrong location of urban settlements (on slopes or crowns) After Irpinia's earthquake the first researches on seismic risk mitigation, in particular on the aspects related to the hazards and to the urban vulnerability were made.

De Paoli, Rosa Grazia [Department of Landscape Planning, Mediterranean University of Reggio Calabria (Italy)

2008-07-08T23:59:59.000Z

443

High resolution seismic imaging of Rainier Mesa using surface reflection and surface to tunnel tomography  

SciTech Connect

In the interpretation of seismic data to infer properties of an explosion source, it is necessary to account for wave propagation effects. In order to understand and remove these propagation effects, it is necessary to have a model. An open question concerning this matter is the detail and accuracy which must be present in the velocity model in order to produce reliable estimates in the estimated source properties. While it would appear that the reliability of the results would be directly related to the accuracy of the velocity and density models used in the interpretation, it may be that certain deficiencies in these models can be compensated by the and amount of seismic data which is used in the inversion. The NPE provided an opportunity to test questions of this sort. In August 1993, two high resolution seismic experiments were performed in N-Tunnel and on the surface of Rainier Mesa above it. The first involved a surface-to-tunnel imaging experiment with sources on the surface and receivers in tunnel U12n.23 about 88 meters west of the NPE. It was possible to estimate the apparent average velocity between the tunnel and the surface. In a separate experiment, a high resolution reflection experiment was performed in order to image the lithology in Rainier Mesa. Good quality, broad band, reflections were obtained from depths extending into the Paleozoic basement. A high velocity layer near the surface is underlain by a thick section of low velocity material, providing a nonuniform but low average velocity between the depth of the NPE and the surface.

Majer, E.L.; Johnson, L.R.; Karageorgi, E.K.; Peterson, J.E.

1994-06-01T23:59:59.000Z

444

SHEAR WAVE SEISMIC STUDY COMPARING 9C3D SV AND SH IMAGES WITH 3C3D C-WAVE IMAGES  

Science Conference Proceedings (OSTI)

The objective of this study was to compare the relative merits of shear-wave (S-wave) seismic data acquired with nine-component (9-C) technology and with three-component (3-C) technology. The original proposal was written as if the investigation would be restricted to a single 9-C seismic survey in southwest Kansas (the Ashland survey), on the basis of the assumption that both 9-C and 3-C S-wave images could be created from that one data set. The Ashland survey was designed as a 9-C seismic program. We found that although the acquisition geometry was adequate for 9-C data analysis, the source-receiver geometry did not allow 3-C data to be extracted on an equitable and competitive basis with 9-C data. To do a fair assessment of the relative value of 9-C and 3-C seismic S-wave data, we expanded the study beyond the Ashland survey and included multicomponent seismic data from surveys done in a variety of basins. These additional data were made available through the Bureau of Economic Geology, our research subcontractor. Bureau scientists have added theoretical analyses to this report that provide valuable insights into several key distinctions between 9-C and 3-C seismic data. These theoretical considerations about distinctions between 3-C and 9-C S-wave data are presented first, followed by a discussion of differences between processing 9-C common-midpoint data and 3-C common-conversion-point data. Examples of 9-C and 3-C data are illustrated and discussed in the last part of the report. The key findings of this study are that each S-wave mode (SH-SH, SV-SV, or PSV) involves a different subsurface illumination pattern and a different reflectivity behavior and that each mode senses a different Earth fabric along its propagation path because of the unique orientation of its particle-displacement vector. As a result of the distinct orientation of each mode's particle-displacement vector, one mode may react to a critical geologic condition in a more optimal way than do the other modes. A conclusion of the study is that 9-C seismic data contain more rock and fluid information and more sequence and facies information than do 3-C seismic data; 9-C data should therefore be acquired in multicomponent seismic programs whenever possible.

John Beecherl; Bob A. Hardage

2004-07-01T23:59:59.000Z

445

Post-processing of seismic parameter data based on valid seismic event determination  

DOE Patents (OSTI)

An automated seismic processing system and method are disclosed, including an array of CMOS microprocessors for unattended battery-powered processing of a multi-station network. According to a characterizing feature of the invention, each channel of the network is independently operable to automatically detect, measure times and amplitudes, and compute and fit Fast Fourier transforms (FFT's) for both P- and S- waves on analog seismic data after it has been sampled at a given rate. The measured parameter data from each channel are then reviewed for event validity by a central controlling microprocessor and if determined by preset criteria to constitute a valid event, the parameter data are passed to an analysis computer for calculation of hypocenter location, running b-values, source parameters, event count, P- wave polarities, moment-tensor inversion, and Vp/Vs ratios. The in-field real-time analysis of data maximizes the efficiency of microearthquake surveys allowing flexibility in experimental procedures, with a minimum of traditional labor-intensive postprocessing. A unique consequence of the system is that none of the original data (i.e., the sensor analog output signals) are necessarily saved after computation, but rather, the numerical parameters generated by the automatic analysis are the sole output of the automated seismic processor.

McEvilly, Thomas V. (733 Alvarado Rd., Berkeley, CA 94705)

1985-01-01T23:59:59.000Z

446

Review of seismicity and ground motion studies related to development of seismic design at SRS  

Science Conference Proceedings (OSTI)

The NRC response spectra developed in Reg. Guide 1.60 is being used in the studies related to restarting of the existing Savannah River Site (SRS) reactors. Because it envelopes all the other site specific spectra which have been developed for SRS, it provides significant conservatism in the design and analysis of the reactor systems for ground motions of this value or with these probability levels. This spectral shape is also the shape used for the design of the recently licensed Vogtle Nuclear Station, located south of the Savannah River from the SRS. This report provides a summary of the data base used to develop the design basis earthquake. This includes the seismicity, rates of occurrence, magnitudes, and attenuation relationships. A summary is provided for the studies performed and methodologies used to establish the design basis earthquake for SRS. The ground motion response spectra developed from the various studies are also summarized. The seismic hazard and PGA`s developed for other critical facilities in the region are discussed, and the SRS seismic instrumentation is presented. The programs for resolving outstanding issues are discussed and conclusions are presented.

Stephenson, D.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Acree, J.R. [Westinghouse Environmental and Geotechnical Services, Inc., Columbia, SC (United States)

1992-08-01T23:59:59.000Z

447

SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY; APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS  

SciTech Connect

The objective of the project is to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study is performed at West Coalinga Field in California. We continued our investigation on the nature of seismic reactions from heterogeneous reservoirs. We began testing our algorithm to infer parameters of object-based reservoir models from seismic data. We began integration of seismic and geologic data to determine the deterministic limits of conventional seismic data interpretation. Lastly, we began integration of seismic and geologic heterogeneity using stochastic models conditioned both on wireline and seismic data.

Matthias G. Imhof; James W. Castle

2003-11-01T23:59:59.000Z

448

Structural reliability analysis and seismic risk assessment  

SciTech Connect

This paper presents a reliability analysis method for safety evaluation of nuclear structures. By utilizing this method, it is possible to estimate the limit state probability in the lifetime of structures and to generate analytically the fragility curves for PRA studies. The earthquake ground acceleration, in this approach, is represented by a segment of stationary Gaussian process with a zero mean and a Kanai-Tajimi Spectrum. All possible seismic hazard at a site represented by a hazard curve is also taken into consideration. Furthermore, the limit state of a structure is analytically defined and the corresponding limit state surface is then established. Finally, the fragility curve is generated and the limit state probability is evaluated. In this paper, using a realistic reinforced concrete containment as an example, results of the reliability analysis of the containment subjected to dead load, live load and ground earthquake acceleration are presented and a fragility curve for PRA studies is also constructed.

Hwang, H.; Reich, M.; Shinozuka, M.

1984-01-01T23:59:59.000Z

449

Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De  

Open Energy Info (EERE)

Region (Shevenell & De Region (Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Central_Nevada_Seismic_Zone_Region_(Shevenell_%26_De_Rocher,_2005)&oldid=401374" Category: Exploration Activities What links here

450

Single well seismic imaging of a gas-filled hydrofracture  

SciTech Connect

A single well seismic survey was conducted at the Lost Hills, Ca oil field in a monitoring well as part of a CO2 injection test. The source was a piezoelectric seismic source and the sensors were a string of hydrophones hanging below the source. The survey was processed using standard CMP reflection seismology techniques. A potential reflection event was observed and interpreted as being caused by a near vertical hydrofracture. The radial distance between the survey well and the hydrofracture is estimated from Kirchoff migration using a velocity model derived from cross well seismic tomography. The hydrofracture location imaged after migration agrees with the location of an existing hydrofracture.

Daley, Thomas M.; Gritto, Roland; Majer, Ernest L.

2003-08-19T23:59:59.000Z

451

Seismic Monitoring Of Blasting Activity In Russia  

E-Print Network (OSTI)

Two significant mining regions in Russia lie near Novosibirsk and at the Kursk Magnetic Anomaly. A small percentage of events from these areas trigger the International Monitoring System (IMS). We have studied IMS recordings of events from these areas with the main goal of better understanding how these blasts are detonated and how these events will be most effectively monitored using IMS data. We have collected ground-truth information on the mining blasts and crustal structure in the area to facilitate modeling of the events. We have focused on sifting out from further consideration routine mining events and identifying detonation anomalies. We define master traces to represent tight clusters of mining events and to be used to identify anomalous events. We have examined recordings of events from eight significant event clusters in the 500-km-long Kuzbass/Abakan mining trend near Novosibirsk. The recordings were made by the IMS station ZAL. We see significant variations in the P onset and early coda between different events in clusters. We have found strong evidence of a detonation anomaly in just one of the events (out of 178 examined). Differences in the onset wave trains are attributed largely to differences in the firing patterns. Time independent spectral modulations have been observed in seismic