Powered by Deep Web Technologies
Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy in density gradient  

E-Print Network [OSTI]

Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindric configuration. This is of practical importance for drift wave instability in various plasmas, and in particular in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit ...

Vranjes, J

2015-01-01T23:59:59.000Z

2

High Energy Density Capacitors  

SciTech Connect (OSTI)

BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

None

2010-07-01T23:59:59.000Z

3

Nuclear Energy Density Optimization  

E-Print Network [OSTI]

We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDFpre results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

M. Kortelainen; T. Lesinski; J. Moré; W. Nazarewicz; J. Sarich; N. Schunck; M. V. Stoitsov; S. Wild

2010-05-27T23:59:59.000Z

4

Double-hybrid density-functional theory with meta-generalized-gradient approximations  

SciTech Connect (OSTI)

We extend the previously proposed one-parameter double-hybrid density-functional theory [K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011)] to meta-generalized-gradient-approximation (meta-GGA) exchange-correlation density functionals. We construct several variants of one-parameter double-hybrid approximations using the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA functional and test them on test sets of atomization energies and reaction barrier heights. The most accurate variant uses the uniform coordinate scaling of the density and of the kinetic energy density in the correlation functional, and improves over both standard Kohn-Sham TPSS and second-order Møller-Plesset calculations.

Souvi, Sidi M. O., E-mail: sidi.souvi@irsn.fr; Sharkas, Kamal; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France) [Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France)

2014-02-28T23:59:59.000Z

5

Density-dependent covariant energy density functionals  

SciTech Connect (OSTI)

Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

Lalazissis, G. A. [Physics Department, Aristotle University of Thessaloniki, GR-54124 (Greece)

2012-10-20T23:59:59.000Z

6

Double-hybrid density-functional theory applied to molecular crystals  

E-Print Network [OSTI]

We test the performance of a number of two- and one-parameter double-hybrid approximations, combining semilocal exchange-correlation density functionals with periodic local second-order M{\\o}ller-Plesset (LMP2) perturbation theory, for calculating lattice energies of a set of molecular crystals: urea, formamide, ammonia, and carbon dioxide. All double-hybrid methods perform better on average than the corresponding Kohn-Sham calculations with the same functionals, but generally not better than standard LMP2. The one-parameter double-hybrid approximations based on the PBEsol density functional gives lattice energies per molecule with an accuracy of about 6 kJ/mol, which is similar to the accuracy of LMP2. This conclusion is further verified on molecular dimers and on the hydrogen cyanide crystal.

Sharkas, Kamal; Maschio, Lorenzo; Civalleri, Bartolomeo

2014-01-01T23:59:59.000Z

7

Computationally efficient double hybrid density functional theory using dual basis methods  

E-Print Network [OSTI]

We examine the application of the recently developed dual basis methods of Head-Gordon and co-workers to double hybrid density functional computations. Using the B2-PLYP, B2GP-PLYP, DSD-BLYP and DSD-PBEP86 density functionals, we assess the performance of dual basis methods for the calculation of conformational energy changes in C$_4$-C$_7$ alkanes and for the S22 set of noncovalent interaction energies. The dual basis methods, combined with resolution-of-the-identity second-order M{\\o}ller-Plesset theory, are shown to give results in excellent agreement with conventional methods at a much reduced computational cost.

Byrd, Jason N

2015-01-01T23:59:59.000Z

8

Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double  

E-Print Network [OSTI]

Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double Layer storage for operation. High demands concerning power and energy density, small volume and weight is to combine storage technologies with complementary characteristics as a hybrid energy storage system. Thus

Paderborn, Universität

9

Phenomenological Relativistic Energy Density Functionals  

SciTech Connect (OSTI)

The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

Lalazissis, G. A.; Kartzikos, S. [Physics Department, Aristotle University of Thessaloniki (Greece); Niksic, T.; Paar, N.; Vretenar, D. [Physics Department, University of Zagreb (Croatia); Ring, P. [Physics Department, TU Muenchen, Garching (Germany)

2009-08-26T23:59:59.000Z

10

Constraining the nuclear symmetry-energy at super-density  

E-Print Network [OSTI]

The nuclear symmetry-energy has broad implications in both nuclear physics and astrophysics. Due to hard work of many people, the nuclear symmetry-energy around saturation density has been roughly constrained. However, the nuclear symmetry-energy at super-density is still in chaos. By considering both the effects of the nucleon-nucleon short-rang correlations and the isospin-dependent in-medium inelastic baryon-baryon scattering cross sections in the transport model, two unrelated experimental measurements are simultaneously analyzed. A soft symmetry-energy at super-density is first consistently obtained by the double comparison of the symmetry-energy sensitive observables.

Yong, Gao-Chan

2015-01-01T23:59:59.000Z

11

Double-hybrid density-functional theory with meta-generalized-gradient approximations  

E-Print Network [OSTI]

Double-hybrid density-functional theory with meta-generalized-gradient approximations Sidi Ould-parameter double-hybrid density-functional theory [K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134 of the most accurate approximations for electronic-structure calculations within density- functional theory

Paris-Sud XI, Université de

12

Revisiting density functionals for the primitive model of electric double layers  

SciTech Connect (OSTI)

Density functional theory (DFT) calculations are typically based on approximate functionals that link the free energy of a multi-body system of interest with the underlying one-body density distributions. Whereas good performance is often proclaimed for new developments, it is difficult to vindicate the theoretical merits relative to alternative versions without extensive comparison with the numerical results from molecular simulations. Besides, approximate functionals may defy statistical-mechanical sum rules and result in thermodynamic inconsistency. Here we compare systematically several versions of density functionals for ionic distributions near a charged surface using the primitive model of electric double layers. We find that the theoretical performance is sensitive not only to the specific forms of the density functional but also to the range of parameter space and the precise properties under consideration. In general, incorporation of the thermodynamic sum rule into the DFT calculations shows significant improvements for both electrochemical properties and ionic distributions.

Jiang, Jian [Department of Chemical and Environmental Engineering and Department of Mathematics, University of California, Riverside, California 92521 (United States) [Department of Chemical and Environmental Engineering and Department of Mathematics, University of California, Riverside, California 92521 (United States); Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Cao, Dapeng, E-mail: jwu@engr.ucr.edu, E-mail: doug@chem.byu.edu, E-mail: caodp@mail.buct.edu.cn [Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)] [Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Henderson, Douglas, E-mail: jwu@engr.ucr.edu, E-mail: doug@chem.byu.edu, E-mail: caodp@mail.buct.edu.cn [Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602 (United States)] [Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602 (United States); Wu, Jianzhong, E-mail: jwu@engr.ucr.edu, E-mail: doug@chem.byu.edu, E-mail: caodp@mail.buct.edu.cn [Department of Chemical and Environmental Engineering and Department of Mathematics, University of California, Riverside, California 92521 (United States)] [Department of Chemical and Environmental Engineering and Department of Mathematics, University of California, Riverside, California 92521 (United States)

2014-01-28T23:59:59.000Z

13

Double Flash | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1DeringDolgeville, NewDorchester, Wisconsin: EnergyDorsett

14

Probability distribution of the vacuum energy density  

SciTech Connect (OSTI)

As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.

Duplancic, Goran; Stefancic, Hrvoje [Theoretical Physics Division, Rudjer Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Glavan, Drazen [Department of Physics, Faculty of Science, University of Zagreb, P.O. Box 331, HR-10002 Zagreb (Croatia)

2010-12-15T23:59:59.000Z

15

Probing the density dependence of symmetry energy at subsaturation density with HICs  

E-Print Network [OSTI]

The reaction mechanism of the central collisions and peripheral collisions for $^{112,124}Sn+^{112,124}Sn$ at $E/A=50MeV$ is investigated within the framework of the Improved Quantum Molecular Dynamics model. The results show that multifragmentation process is an important mechanism at this energy region, and the influence of the cluster emission on the double n/p ratios and the isospin transport ratio are important. Furthermore, three observables, double n/p ratios, isospin diffusion and the rapidity distribution of the ratio $R_{7}$ for $^{112,124}Sn+^{112,124}Sn$ at E/A=50MeV are analyzed with the Improved Quantum Molecular Dynamics model. The results show that these three observables are sensitive to the density dependence of the symmetry energy. By comparing the calculation results to the data, the consistent constraint on the density dependence of the symmetry energy from these three observables is obtained.

Zhang, Yingxun; Li, Zhuxia; Danielewicz, P; Lynch, W G; Lu, Xiaohua

2009-01-01T23:59:59.000Z

16

Probing the density dependence of symmetry energy at subsaturation density with HICs  

E-Print Network [OSTI]

The reaction mechanism of the central collisions and peripheral collisions for $^{112,124}Sn+^{112,124}Sn$ at $E/A=50MeV$ is investigated within the framework of the Improved Quantum Molecular Dynamics model. The results show that multifragmentation process is an important mechanism at this energy region, and the influence of the cluster emission on the double n/p ratios and the isospin transport ratio are important. Furthermore, three observables, double n/p ratios, isospin diffusion and the rapidity distribution of the ratio $R_{7}$ for $^{112,124}Sn+^{112,124}Sn$ at E/A=50MeV are analyzed with the Improved Quantum Molecular Dynamics model. The results show that these three observables are sensitive to the density dependence of the symmetry energy. By comparing the calculation results to the data, the consistent constraint on the density dependence of the symmetry energy from these three observables is obtained.

Yingxun Zhang; M. B. Tsang; Zhuxia Li; P. Danielewicz; W. G. Lynch; Xiaohua Lu

2009-11-09T23:59:59.000Z

17

High density behaviour of nuclear symmetry energy  

E-Print Network [OSTI]

Role of the isospin asymmetry in nuclei and neutron stars, with an emphasis on the density dependence of the nuclear symmetry energy, is discussed. The symmetry energy is obtained using the isoscalar as well as isovector components of the density dependent M3Y effective interaction. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. Implications for the density dependence of the symmetry energy in case of a neutron star are discussed, and also possible constraints on the density dependence obtained from finite nuclei are compared.

D. N. Basu; Tapan Mukhopadhyay

2006-12-27T23:59:59.000Z

18

Oxides having high energy densities  

DOE Patents [OSTI]

Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

Ceder, Gerbrand; Kang, Kisuk

2013-09-10T23:59:59.000Z

19

Jacek Dobaczewski Density functional theory and energy  

E-Print Network [OSTI]

Jacek Dobaczewski Density functional theory and energy density functionals in nuclear physics Jacek Functional #12;Jacek Dobaczewski Mean-Field Theory Density Functional Theory · mean-field one? Density Functional Theory: A variational method that uses observables as variational parameters. #12;Jacek

Dobaczewski, Jacek

20

Testing the kinetic energy functional: Kinetic energy density as a density functional  

E-Print Network [OSTI]

is to the exchange-correlation energy as a functional of the density. A large part of the total energy, the kinetic contexts. For finite systems these forms integrate to the same global ki- netic energy, but they differTesting the kinetic energy functional: Kinetic energy density as a density functional Eunji Sim

Burke, Kieron

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Methodology, morphology, and optimization of carbon nanotube growth for improved energy storage in a double layer capacitor  

E-Print Network [OSTI]

The goal of this thesis is to optimize the growth of carbon nanotubes (CNTs) on a conducting substrate for use as an electrode to improve energy density in a double-layer capacitor. The focus has been on several areas, ...

Ku, Daniel C. (Daniel Chung-Ming), 1985-

2009-01-01T23:59:59.000Z

22

Ionic Asymmetry and Solvent Excluded Volume Effects on Spherical Electric Double Layers: A Density Functional Approach  

SciTech Connect (OSTI)

In this article we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids (J. Chem. Phys. 124, 154506). It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilize a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the Mean Spherical Approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.

Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.; Sushko, Maria L.; Marucho, Marcelo

2014-05-29T23:59:59.000Z

23

On the contact values of the density profiles in an electric double layer using density functional theory  

E-Print Network [OSTI]

A recently proposed local second contact value theorem [Henderson D., Boda D., J. Electroanal. Chem., 2005, 582, 16] for the charge profile of an electric double layer is used in conjunction with the existing Monte Carlo data from the literature to assess the contact behavior of the electrode-ion distributions predicted by the density functional theory. The results for the contact values of the co- and counterion distributions and their product are obtained for the symmetric valency, restricted primitive model planar double layer for a range of electrolyte concentrations and temperatures. Overall, the theoretical results satisfy the second contact value theorem reasonably well, the agreement with the simulations being semi-quantitative or better. The product of the co- and counterion contact values as a function of the electrode surface charge density is qualitative with the simulations with increasing deviations at higher concentrations.

L. B. Bhuiyan; D. Henderson; S. Soko?owski

2012-07-13T23:59:59.000Z

24

Configuration Interactions Constrained by Energy Density Functionals  

E-Print Network [OSTI]

A new method for constructing a Hamiltonian for configuration interaction calculations with constraints to energies of spherical configurations obtained with energy-density-functional (EDF) methods is presented. This results in a unified model that reproduced the EDF binding-energy in the limit of single-Slater determinants, but can also be used for obtaining energy spectra and correlation energies with renormalized nucleon-nucleon interactions. The three-body and/or density-dependent terms that are necessary for good nuclear saturation properties are contained in the EDF. Applications to binding energies and spectra of nuclei in the region above 208Pb are given.

B. Alex Brown; Angelo Signoracci; Morten Hjorth-Jensen

2010-09-24T23:59:59.000Z

25

Density Estimation Trees in High Energy Physics  

E-Print Network [OSTI]

Density Estimation Trees can play an important role in exploratory data analysis for multidimensional, multi-modal data models of large samples. I briefly discuss the algorithm, a self-optimization technique based on kernel density estimation, and some applications in High Energy Physics.

Anderlini, Lucio

2015-01-01T23:59:59.000Z

26

Universal Nuclear Energy Density Functional  

SciTech Connect (OSTI)

An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

2012-12-01T23:59:59.000Z

27

Nuclear energy density optimization: Shell structure  

E-Print Network [OSTI]

Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable with UNEDF1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous UNEDF parameterizations, the parameter confidence interval for UNEDF2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits and significant changes to the form of the functional are needed.

M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

2014-04-28T23:59:59.000Z

28

Energy-momentum Density of Gravitational Waves  

E-Print Network [OSTI]

In this paper, we elaborate the problem of energy-momentum in general relativity by energy-momentum prescriptions theory. Our aim is to calculate energy and momentum densities for the general form of gravitational waves. In this connection, we have extended the previous works by using the prescriptions of Bergmann and Tolman. It is shown that they are finite and reasonable. In addition, using Tolman prescription, exactly, leads to same results that have been obtained by Einstein and Papapetrou prescriptions.

Amir M. Abbassi; Saeed Mirshekari

2014-11-29T23:59:59.000Z

29

Mechanical constraints enhance electrical energy densities of soft dielectrics  

E-Print Network [OSTI]

Mechanical constraints enhance electrical energy densities of soft dielectrics Lin Zhang, Qiming, the dielectric will breakdown electrically. The breakdown limits the electrical energy density of the dielectric electric fields and thus increase their electrical energy densities. The mechanical constraints suppress

Ferrari, Silvia

30

Instabilities in the Nuclear Energy Density Functional  

E-Print Network [OSTI]

In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.

M. Kortelainen; T. Lesinski

2010-02-05T23:59:59.000Z

31

Novel and Optimized Materials Phases for High Energy Density...  

Broader source: Energy.gov (indexed) [DOE]

Novel and Optimized Materials Phases for High Energy Density Batteries Novel and Optimized Materials Phases for High Energy Density Batteries 2013 DOE Hydrogen and Fuel Cells...

32

TEMPO-based Catholyte for High Energy Density Nonaqueous Redox...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries. Abstract: We will...

33

High Energy Density Laboratory Plasmas Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program...

34

Nuclear Energy Density Functionals Constrained by Low-Energy QCD  

E-Print Network [OSTI]

A microscopic framework of nuclear energy density functionals is reviewed, which establishes a direct relation between low-energy QCD and nuclear structure, synthesizing effective field theory methods and principles of density functional theory. Guided by two closely related features of QCD in the low-energy limit: a) in-medium changes of vacuum condensates, and b) spontaneous breaking of chiral symmetry; a relativistic energy density functional is developed and applied in studies of ground-state properties of spherical and deformed nuclei.

Dario Vretenar

2008-02-06T23:59:59.000Z

35

Nuclear Energy Density Optimization: UNEDF2  

E-Print Network [OSTI]

The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

2014-10-30T23:59:59.000Z

36

Symmetry energy in nuclear density functional theory  

E-Print Network [OSTI]

The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar

2013-07-22T23:59:59.000Z

37

High Energy Density Ultracapacitors | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency| -4 Energy1 DOE

38

High Energy Density Ultracapacitors | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency| -4 Energy1 DOE0

39

High Energy Density Ultracapacitors | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency| -4 Energy1

40

High Energy Density Utracapacitors: Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitor—a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density—high energy density means more energy storage. FastCAP is redesigning the ultracapacitor’s internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP’s ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor’s electrode, increasing the overall efficiency and energy density of the device.

None

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ORBITAL-FREE KINETIC-ENERGY DENSITY FUNCTIONAL THEORY  

E-Print Network [OSTI]

Chapter 5 ORBITAL-FREE KINETIC-ENERGY DENSITY FUNCTIONAL THEORY Yan Alexander Wang and Emily A Theory (DFT), there was the Thomas-Fermi (TF) model, which uses the electron density ¢¡ r£ (a function-dependent DFT Density-Functional Theory DI density-independent DM1 first-order reduced density matrix EDF energy

Wang, Yan Alexander

42

The aerocapacitor: An electrochemical double-layer energy-storage device  

SciTech Connect (OSTI)

The authors have applied unique types of carbon foams developed at Lawrence Livermore National Laboratory (LLNL) to make an {open_quotes}aerocapacitor{close_quotes}. The aerocapacitor is a high power-density, high energy-density, electrochemical double-layer capacitor which uses carbon aerogels as electrodes. These electrodes possess very high surface area per unit volume and are electrically continuous in both the carbon and electrolyte phase on a 10 nm scale. Aerogel surface areas range from 100 to 700 m{sup 2}/cc (as measured by BET analysis), with bulk densities of 0.3 to 1.0 g/cc. This morphology permits stored energy to be released rapidly, resulting in high power densities (7.5 kW/kg). Materials parameterization has been performed, and device capacitances of several tens of Farads per gram and per cm{sup 3} of aerogel have been achieved.

Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

1997-10-01T23:59:59.000Z

43

Ionic density distributions near the charged colloids: Spherical electric double layers  

SciTech Connect (OSTI)

We have studied the structure of the spherical electric double layers on charged colloids by a density functional perturbation theory, which is based both on the modified fundamental-measure theory for the hard spheres and on the one-particle direct correlation functional (DCF) for the electronic residual contribution. The contribution of one-particle DCF has been approximated as the functional integration of the second-order correlation function of the ionic fluids in a bulk phase. The calculated result is in very good agreement with the computer simulations for the ionic density distributions and the zeta potentials over a wide range of macroion sizes and electrolyte concentrations, and compares with the results of Yu et al. [J. Chem. Phys. 120, 7223 (2004)] and modified Poisson-Boltzmann approximation [L. B. Bhuiyan and C. W. Outhwaite, Condens. Matter Phys. 8, 287 (2005)]. The present theory is able to provide interesting insights about the charge inversion phenomena occurring at the interface.

Kim, Eun-Young; Kim, Soon-Chul, E-mail: sckim@andong.ac.kr [Department of Physics, Andong National University, Andong 760-749 (Korea, Republic of)] [Department of Physics, Andong National University, Andong 760-749 (Korea, Republic of)

2013-11-21T23:59:59.000Z

44

Relativistic Nuclear Energy Density Functionals: adjusting parameters to binding energies  

E-Print Network [OSTI]

We study a particular class of relativistic nuclear energy density functionals in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance (high-momentum) correlations, as well as intermediate and long-range dynamics, are encoded in the medium (nucleon density) dependence of the strength functionals of an effective interaction Lagrangian. Guided by the density dependence of microscopic nucleon self-energies in nuclear matter, a phenomenological ansatz for the density-dependent coupling functionals is accurately determined in self-consistent mean-field calculations of binding energies of a large set of axially deformed nuclei. The relationship between the nuclear matter volume, surface and symmetry energies, and the corresponding predictions for nuclear masses is analyzed in detail. The resulting best-fit parametrization of the nuclear energy density functional is further tested in calculations of properties of spherical and deformed medium-heavy and heavy nuclei, including binding energies, charge radii, deformation parameters, neutron skin thickness, and excitation energies of giant multipole resonances.

T. Niksic; D. Vretenar; P. Ring

2008-09-08T23:59:59.000Z

45

The influence of cluster emission and the symmetry energy on neutron-proton spectral double ratios  

E-Print Network [OSTI]

Emissions of free neutrons and protons from the central collisions of 124Sn+124Sn and 112Sn+112Sn reactions are simulated using the Improved Quantum Molecular Dynamics model with two different density dependence of the symmetry energy in the nuclear equation of state. The constructed double ratios of the neutron to proton ratios of the two reaction systems are found to be sensitive to the symmetry terms in the EOS. The effect of cluster formation is examined and found to affect the double ratios mainly in the low energy region. In order to extract better information on symmetry energy with transport models, it is therefore important to have accurate data in the high energy region which also is affected minimally by sequential decays.

Y. X. Zhang; P. Danielewicz; M. Famiano; Z. Li; W. G. Lynch; M. B. Tsang

2007-08-27T23:59:59.000Z

46

Innovative High Energy Density Capacitor Design Offers Potential...  

Broader source: Energy.gov (indexed) [DOE]

like TroyCap's High Density Energy Nanolaminate Capacitor (HEDCAP) that may offer new clean energy applications to meet the nation's strategic energy goals and secure...

47

Illustrative Model for Parity Doubling of Energy Levels  

E-Print Network [OSTI]

A one-dimensional quantum mechanical model possessing mass gap, a gapless excitation, and an approximate parity doubling of energy levels is constructed basing on heuristic QCD-inspired arguments. The model may serve for illustrative purposes in considering the related dynamical phenomena in particle and nuclear physics.

S. S. Afonin

2007-12-27T23:59:59.000Z

48

Double Pair Production by Ultra High Energy Cosmic Ray Photons  

E-Print Network [OSTI]

With use of CompHEP package we've made the detailed estimate of the influence of double e+e- pair production by photons (DPP) on the propagation of ultra high energy electromagnetic cascade. We show that in the models in which cosmic ray photons energy reaches few thousand EeV refined DPP analysis may lead to substantial difference in predicted photon spectrum compared to previous rough estimates.

S. V. Demidov; O. E. Kalashev

2008-12-22T23:59:59.000Z

49

Double Coil Condenser Apparatus - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal CycleDonald Raby Donald6,

50

High-capacity electric double-layer capacitor with high-density-activated carbon fiber electrodes  

SciTech Connect (OSTI)

Recently the authors have presented a method to prepare activated carbon fiber with high bulk density (HD-ACF) without using any binders. The possibility of using the HD-ACF as an electrode for electric double-layer capacitors (EDLCs) was examined in this paper. The capacitance of the EDLC with the HD-ACF electrode increased with the increase of bulk density of the HD-ACF, indicating that individual fibers are highly packed without losing their capacitance. The capacitance also increased in proportion to the size of the HD-ACF electrode. The initial discharge current of the EDLC showed little dependency on either the bulk density or the size of the HD-ACF electrode. These results clarified that the HD-ACF electrode is suitable for constructing a high-power EDLC. The initial discharge current was directly proportional to the conductivity of aqueous KCI used as the electrolyte, indicating that the resistance of the electrolyte is much higher than that of the HD-ACF electrode. This result showed that the efficiency of the HD-ACF was well above the efficiency of the electrolyte used in this study and that the improvement of the ionic conductivity of electrolyte is also necessary for developing a high-power EDLC.

Nakagawa, Hiroyuki; Shudo, Atsushi; Miura, Kouichi

2000-01-01T23:59:59.000Z

51

High energy density redox flow device  

DOE Patents [OSTI]

Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

2014-05-13T23:59:59.000Z

52

Nuclear matrix elements in neutrinoless double beta decay: beyond mean-field covariant density functional theory  

E-Print Network [OSTI]

We report a systematic study of nuclear matrix elements (NMEs) in neutrinoless double-beta decays with state-of-the-art beyond mean-field covariant density functional theory. The dynamic effects of particle-number and angular-momentum conservations as well as quadrupole shape fluctuations are taken into account with projections and generator coordinate method for both initial and final nuclei. The full relativistic transition operator is adopted to calculate the NMEs which are found to be consistent with the results of previous beyond non-relativistic mean-field calculation based on a Gogny force with the exception of $^{150}$Nd. Our study shows that the total NMEs can be well approximated by the pure axial-vector coupling term, the calculation of which is computationally much cheaper than that of full terms.

J. M. Yao; L. S. Song; K. Hagino; P. Ring; J. Meng

2014-10-23T23:59:59.000Z

53

Nuclear matrix elements in neutrinoless double beta decay: beyond mean-field covariant density functional theory  

E-Print Network [OSTI]

We report a systematic study of nuclear matrix elements (NMEs) in neutrinoless double-beta decays with state-of-the-art beyond mean-field covariant density functional theory. The dynamic effects of particle-number and angular-momentum conservations as well as quadrupole shape fluctuations are taken into account with projections and generator coordinate method for both initial and final nuclei. The full relativistic transition operator is adopted to calculate the NMEs which are found to be consistent with the results of previous beyond non-relativistic mean-field calculation based on a Gogny force with the exception of $^{150}$Nd. Our study shows that the total NMEs can be well approximated by the pure axial-vector coupling term, the calculation of which is computationally much cheaper than that of full terms.

Yao, J M; Hagino, K; Ring, P; Meng, J

2014-01-01T23:59:59.000Z

54

SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS  

SciTech Connect (OSTI)

We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

2010-12-20T23:59:59.000Z

55

Energy density fluctuations in early universe  

SciTech Connect (OSTI)

The primordial nucleosinthesys of the element can be influenced by the transitions of phase that take place after the Big Bang, such as the QCD transition. In order to study the effect of this phase transition, in this work we compute the time evolution of thermodynamical quantities of the early universe, focusing on temperature and energy density fluctuations, by solving the relevant equations of motion using as input the lattice QCD equation of state to describe the strongly interacting matter in the early universe plasma. We also study the effect of a primordial strong magnetic field by means of a phenomenological equation of state. Our results show that small inhomogeneities of strongly interacting matter in the early Universe are moderately damped during the crossover.

Guardo, G. L.; Ruggieri, M. [Department of Physics and Astronomy, University of Catania, Catania (Italy); Greco, V. [Department of Physics and Astronomy, University of Catania, Catania, Italy and INFN - Laboratori Nazionali del Sud, Catania (Italy)

2014-05-09T23:59:59.000Z

56

The Free Energy of an Electrical Double Layer DEREK Y. C. CHAN AND D. JOHN MITCHELL  

E-Print Network [OSTI]

The Free Energy of an Electrical Double Layer DEREK Y. C. CHAN AND D. JOHN MITCHELL Department for the potential determining ions. The interaction free energy due to the overlap of two double layers has a simple The concept of the free energy of an elec- trical double layer is of considerable impor- tance in colloid

Chan, Derek Y C

57

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

E-Print Network [OSTI]

The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Min Liu; Ning Wang; Zhuxia Li; Fengshou Zhang

2010-11-17T23:59:59.000Z

58

Experimental bond critical point and local energy density properties...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mn-O, Fe-O and Co-O bonded interactions for Abstract: Bond critical point, bcp, and local energy density properties for the electron density, ED, distributions, calculated with...

59

Density-fitted singles and doubles coupled cluster on graphics processing units  

SciTech Connect (OSTI)

We adapt an algorithm for singles and doubles coupled cluster (CCSD) that uses density fitting (DF) or Cholesky decomposition (CD) in the construction and contraction of all electron repulsion integrals (ERI s) for use on heterogeneous compute nodes consisting of a multicore CPU and at least one graphics processing unit (GPU). The use of approximate 3-index ERI s ameliorates two of the major difficulties in designing scientific algorithms for GPU s: (i) the extremely limited global memory on the devices and (ii) the overhead associated with data motion across the PCI bus. For the benzene trimer described by an aug-cc-pVDZ basis set, the use of a single NVIDIA Tesla C2070 (Fermi) GPU accelerates a CD-CCSD computation by a factor of 2.1, relative to the multicore CPU-only algorithm that uses 6 highly efficient Intel core i7-3930K CPU cores. The use of two Fermis provides an acceleration of 2.89, which is comparable to that observed when using a single NVIDIA Kepler K20c GPU (2.73).

Sherrill, David [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Sumpter, Bobby G [ORNL] [ORNL; DePrince, III, A. Eugene [Georgia Institute of Technology, Atlanta

2014-01-01T23:59:59.000Z

60

Building a Universal Nuclear Energy Density Functional  

SciTech Connect (OSTI)

During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: ? First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; ? Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; ? Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

Carlson, Joe A. [Michigan State University; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

2012-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Balanced homodyne detectors and Casimir energy densities  

E-Print Network [OSTI]

We recall and generalize the analysis of the output of the so-called balanced homodyne detectors. The most important feature of these detectors is their ability to quantify the vacuum fluctuations of the electric field, that is expectation values of products of (quantum-) electric-field operators. More precisely, the output of BHDs provides information on the one- and two-point functions of arbitrary states of quantum fields. We generalize the analysis of the response of BHDs to the case of quantum fields under influence of static external conditions such as cavities or polarizable media. By recalling the expressions for two-point functions of quantum fields in Casimir geometries we show, that a rich, position- and frequency-dependent pattern of BHD responses is predicted for ground states. This points to a potentially new characterization of quantum fields in Casimir setups which would not only complement the current global methods (Casimir forces), but also improve understanding of sub-vacuum energy densities present in some regions in these geometries.

P. Marecki

2008-03-22T23:59:59.000Z

62

Unambiguous exchange-correlation energy density Kieron Burke,a)  

E-Print Network [OSTI]

density approximation LDA , the conventional form is eXC unif (r) , the exchange-correlation energy the following definition of an energy density: eXC wave fn. r d3 r P r,r r r 2 r r 1 2 2 r,r s r,r r r , 2 whereUnambiguous exchange-correlation energy density Kieron Burke,a) Federico G. Cruz, and Kin-Chung Lam

Burke, Kieron

63

DUF6 Project Doubles Production in 2013 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005Department ofDOE AccidentWaste Isolation Pilotat4Doubles Production in

64

Double Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1DeringDolgeville, NewDorchester, Wisconsin: EnergyDorsettDouble

65

Developing a Lower Cost and Higher Energy Density Alternative...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Advanced Batteries ADVANCED MANUFACTURING OFFICE Developing a Lower Cost and Higher Energy Density Alternative to Lithium-Ion Batteries Introduction As the world moves toward...

66

Vehicle Technologies Office Merit Review 2014: High Energy Density...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: High Energy Density Li-ion Cells for EV's Based on Novel, High Voltage Cathode Material Systems Vehicle Technologies Office Merit...

67

Search for High Energy Density Cathode Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram| Department1Scott MinosHigh Energy Density

68

THE MANY-ELECTRON ENERGY IN DENSITY FUNCTIONAL THEORY  

E-Print Network [OSTI]

THE MANY-ELECTRON ENERGY IN DENSITY FUNCTIONAL THEORY From Exchange-Correlation Functional Design to the configuration of its electrons. Computer programs based on density functional theory (DFT) can calculate applicable within the field of computational density functional theory. Sammanfattning Att förutsäga

Armiento, Rickard

69

Symmetry Energy as a Function of Density and Mass  

E-Print Network [OSTI]

Energy in nuclear matter is, in practice, completely characterized at different densities and asymmetries, when the density dependencies of symmetry energy and of energy of symmetric matter are specified. The density dependence of the symmetry energy at subnormal densities produces mass dependence of nuclear symmetry coefficient and, thus, can be constrained by that latter dependence. We deduce values of the mass dependent symmetry coefficients, by using excitation energies to isobaric analog states. The coefficient systematic, for intermediate and high masses, is well described in terms of the symmetry coefficient values of a_a^V=(31.5-33.5) MeV for the volume coefficient and a_a^S=(9-12) MeV for the surface coefficient. These two further correspond to the parameter values describing density dependence of symmetry energy, of L~95 MeV and K_{sym}~25 MeV.

Pawel Danielewicz; Jenny Lee

2007-08-21T23:59:59.000Z

70

Symmetry Energy as a Function of Density and Mass  

SciTech Connect (OSTI)

Energy in nuclear matter is, in practice, completely characterized at different densities and asymmetries, when the density dependencies of symmetry energy and of energy of symmetric matter are specified. The density dependence of the symmetry energy at subnormal densities produces mass dependence of nuclear symmetry coefficient and, thus, can be constrained by that latter dependence. We deduce values of the mass dependent symmetry coefficients, by using excitation energies to isobaric analog states. The coefficient systematic, for intermediate and high masses, is well described in terms of the symmetry coefficient values of a{sub a}{sup V} = (31.5-33.5) MeV for the volume coefficient and a{sub a}{sup S} = (9-12) MeV for the surface coefficient. These two further correspond to the parameter values describing density dependence of symmetry energy, of L{approx}95 MeV and K{sub sym}{approx}25 MeV.

Danielewicz, Pawel; Lee, Jenny [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States)

2007-10-26T23:59:59.000Z

71

Symmetry Energy as a Function of Density and Mass  

E-Print Network [OSTI]

Energy in nuclear matter is, in practice, completely characterized at different densities and asymmetries, when the density dependencies of symmetry energy and of energy of symmetric matter are specified. The density dependence of the symmetry energy at subnormal densities produces mass dependence of nuclear symmetry coefficient and, thus, can be constrained by that latter dependence. We deduce values of the mass dependent symmetry coefficients, by using excitation energies to isobaric analog states. The coefficient systematic, for intermediate and high masses, is well described in terms of the symmetry coefficient values of a_a^V=(31.5-33.5) MeV for the volume coefficient and a_a^S=(9-12) MeV for the surface coefficient. These two further correspond to the parameter values describing density dependence of symmetry energy, of L~95 MeV and K_{sym}~25 MeV.

Danielewicz, Pawel

2007-01-01T23:59:59.000Z

72

Synthesis of Highly Efficient Flame Retardant High-Density Polyethylene Nanocomposites with Inorgano-Layered Double  

E-Print Network [OSTI]

Synthesis of Highly Efficient Flame Retardant High-Density Polyethylene Nanocomposites, Harbin 150080, P. R. China ABSTRACT: High-density polyethylene (HDPE) polymer nanocomposites containing. INTRODUCTION High density polyethylene (HDPE) has good electrical proper- ties, high stiffness, and tensile

Guo, John Zhanhu

73

Constraints on the density dependence of the symmetry energy  

E-Print Network [OSTI]

Collisions involving 112Sn and 124Sn nuclei have been simulated with the improved Quantum Molecular Dynamics transport model. The results of the calculations reproduce isospin diffusion data from two different observables and the ratios of neutron and proton spectra. By comparing these data to calculations performed over a range of symmetry energies at saturation density and different representations of the density dependence of the symmetry energy, constraints on the density dependence of the symmetry energy at sub-normal density are obtained. Results from present work are compared to constraints put forward in other recent analysis.

M. B. Tsang; Yingxun Zhang; P. Danielewicz; M. Famiano; Zhuxia Li; W. G. Lynch; A. W. Steiner

2008-11-19T23:59:59.000Z

74

Constraints on the Density Dependence of the Symmetry Energy  

SciTech Connect (OSTI)

Collisions involving {sup 112}Sn and {sup 124}Sn nuclei have been simulated with the improved quantum molecular dynamics transport model. The results of the calculations reproduce isospin diffusion data from two different observables and the ratios of neutron and proton spectra. By comparing these data to calculations performed over a range of symmetry energies at saturation density and different representations of the density dependence of the symmetry energy, constraints on the density dependence of the symmetry energy at subnormal density are obtained. The results from the present work are compared to constraints put forward in other recent analyses.

Tsang, M. B.; Danielewicz, P.; Lynch, W. G.; Steiner, A. W. [Joint Institute of Nuclear Astrophysics and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824 (United States); Zhang Yingxun [Joint Institute of Nuclear Astrophysics and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); China Institute of Atomic Energy, P.O. Box 275 (18), Beijing 102413 (China); Famiano, M. [Physics Department, Western Michigan University, Kalamazoo, Michigan 49008 (United States); Li, Zhuxia [China Institute of Atomic Energy, P.O. Box 275 (18), Beijing 102413 (China)

2009-03-27T23:59:59.000Z

75

Constraints on the density dependence of the symmetry energy  

E-Print Network [OSTI]

Collisions involving 112Sn and 124Sn nuclei have been simulated with the improved Quantum Molecular Dynamics transport model. The results of the calculations reproduce isospin diffusion data from two different observables and the ratios of neutron and proton spectra. By comparing these data to calculations performed over a range of symmetry energies at saturation density and different representations of the density dependence of the symmetry energy, constraints on the density dependence of the symmetry energy at sub-normal density are obtained. Results from present work are compared to constraints put forward in other recent analysis.

Tsang, M B; Danielewicz, P; Famiano, M; Li, Zhuxia; Lynch, W G; Steiner, A W

2008-01-01T23:59:59.000Z

76

Symmetry energy at subnuclear densities deduced from nuclear masses  

E-Print Network [OSTI]

We examine how nuclear masses are related to the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate nuclear masses in a way dependent on the equation of state of asymmetric nuclear matter. We find by comparison with empirical two-proton separation energies that a smaller symmetry energy at subnuclear densities, corresponding to a larger density symmetry coefficient L, is favored. This tendency, which is clearly seen for nuclei that are neutron-rich, nondeformed, and light, can be understood from the property of the surface symmetry energy in a compressible liquid-drop picture.

Kazuhiro Oyamatsu; Kei Iida

2010-04-19T23:59:59.000Z

77

Density dependence of symmetry free energy of hot nuclei  

E-Print Network [OSTI]

The density and excitation energy dependence of symmetry energy and symmetry free energy for finite nuclei are calculated microscopically in a microcanonical framework taking into account thermal and expansion effects. A finite-range momentum and density dependent two-body effective interaction is employed for this purpose. The role of mass, isospin and equation of state (EoS) on these quantities is also investigated; our calculated results are in consonance with the available experimental data.

S. K. Samaddar; J. N. De; X. Vinas; M. Centelles

2008-09-04T23:59:59.000Z

78

ICF & High Energy Density (HED) Research Future Directions and Plans  

E-Print Network [OSTI]

and ICF activities Energy Balance FY08 Getting the Job Done First credible ignition attempt FYNSP 20 YearsICF & High Energy Density (HED) Research Future Directions and Plans Fusion Power Associates of Defense Science and Inertial Fusion National Nuclear Security Administration US Dept. of Energy #12

79

Relativistic plasma nanophotonics for ultrahigh energy density physics  

E-Print Network [OSTI]

Relativistic plasma nanophotonics for ultrahigh energy density physics Michael A. Purvis1 volumetrically heat dense matter into a new ultrahot plasma regime. Electron densities nearly 100 times greater) and gigabar press- ures only exceeded in the central hot spot of highly compressed thermonuclear fusion

Rocca, Jorge J.

80

Building a Universal Nuclear Energy Density Functional  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, and technology forBudgetThis

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Does Cosmological Vacuum Energy Density have an Electric Reason ?  

E-Print Network [OSTI]

Rather uncomplicated calculations by hand display a surprising connection between the energy density of the vacuum and the diameter and age of the universe. Among other things, the result explains the observation of the accelerated expansion of the universe.

Claus W. Turtur

2004-03-11T23:59:59.000Z

82

Energy Consumption and Energy Density in Optical and Electronic Signal Processing  

E-Print Network [OSTI]

Energy Consumption and Energy Density in Optical and Electronic Signal Processing Volume 3, Number-0655/$26.00 ©2011 IEEE #12;Energy Consumption and Energy Density in Optical and Electronic Signal Processing Rodney optical and digital electronic signal processing circuits, including the contributions to energy

Tucker, Rod

83

Molecular Binding Energies from Partition Density Functional Theory  

SciTech Connect (OSTI)

Approximate molecular calculations via standard Kohn-Sham density functional theory are exactly reproduced by performing self-consistent calculations on isolated fragments via partition density functional theory [P. Elliott, K. Burke, M. H. Cohen, and A. Wasserman, Phys. Rev. A 82, 024501 (2010)]. We illustrate this with the binding curves of small diatomic molecules. We find that partition energies are in all cases qualitatively similar and numerically close to actual binding energies. We discuss qualitative features of the associated partition potentials.

Nafziger, J.; Wu, Q.; Wasserman, A.

2011-12-21T23:59:59.000Z

84

Conformal Higgs model: predicted dark energy density  

E-Print Network [OSTI]

Postulated universal Weyl conformal scaling symmetry provides an alternative to the $\\Lambda$CDM paradigm for cosmology. Recent applications to galactic rotation velocities, Hubble expansion, and a model of dark galactic halos explain qualitative phenomena and fit observed data without invoking dark matter. Significant revision of theory relevant to galactic collisions and clusters is implied, but not yet tested. Dark energy is found to be a consequence of conformal symmetry for the Higgs scalar field of electroweak physics. The present paper tests this implication. The conformal Higgs model acquires a gravitational effect described by a modified Friedmann cosmic evolution equation, shown to fit cosmological data going back to the cosmic microwave background epoch. The tachyonic mass parameter of the Higgs model becomes dark energy in the Friedmann equation. A dynamical model of this parameter, analogous to the Higgs mechanism for gauge boson mass, is derived and tested here. An approximate calculation yields a result consistent with the empirical magnitude inferred from Hubble expansion.

R. K. Nesbet

2014-11-03T23:59:59.000Z

85

High-Energy-Density Plasmas, Fluids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.

86

Energy Density Inhomogeneities with Polynomial $f(R)$ Cosmology  

E-Print Network [OSTI]

In this paper, we study the effects of polynomial $f(R)$ model on the stability of homogeneous energy density in self-gravitating spherical stellar object. For this purpose, we construct couple of evolution equations which relate the Weyl tensor with matter parameters. We explore different factors responsible for density inhomogeneities with non-dissipative dust, isotropic as well as anisotropic fluids and dissipative dust cloud. We find that shear, pressure, dissipative parameters and $f(R)$ terms affect the existence of inhomogeneous energy density.

Sharif, M

2015-01-01T23:59:59.000Z

87

Category:Rock Density | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascadeJump to:Lists JumpRoadmapFlowchartsFeaturesJump

88

Fragment transition density method to calculate electronic coupling for excitation energy transfer  

SciTech Connect (OSTI)

A general approach, the Fragment Transition Density (FTD) scheme, is introduced to estimate electronic coupling for excitation energy transfer in a molecular system. Within this method, the excitation energies and transition densities of the system are used to derive the coupling matrix element. The scheme allows one to treat systems where exciton donor and acceptor are close together and their exchange interaction and orbital overlap are significant. The FTD method can be applied in combination with any quantum mechanical approach to treat excited states of general nature including single-, double-, and higher excitations. Using FTD approach, we derive excitonic couplings for several systems computed with the CIS, TD DFT and MS-CASPT2 methods. In particular, it is shown that the estimated coupling values in DNA ?-stacks are strongly affected by the short-range electronic interaction of adjacent nucleobases.

Voityuk, Alexander A., E-mail: alexander.voityuk@icrea.cat [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain and Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona 17071 Girona (Spain)

2014-06-28T23:59:59.000Z

89

A Proposal of Positive-Definite Local Gravitational Energy Density in General Relativity  

E-Print Network [OSTI]

We propose a 4-dimensional Kaluza-Klein approach to general relativity in the (2,2)-splitting of space-time using the double null gauge. The associated Lagrangian is equivalent to the Einstein-Hilbert Lagrangian, since it yields the same field equations as the E-H Lagrangian does. It is describable as a (1+1)-dimensional Yang-Mills type gauge theory coupled to (1+1)-dimensional matter fields, where the minimal coupling associated with the diffeomorphism group of the 2-dimensional spacelike fibre space automatically appears. Written in the first-order formalism, our Lagrangian density directly yields a non-zero local Hamiltonian density, where the associated time function is the retarded time. From this Hamiltonian density, we obtain a positive-definite local gravitational energy density. In the asymptotically flat space-times, the volume integrals of the proposed local gravitational energy density over suitable 3-dimensional hypersurfaces correctly reproduce the Bondi and the ADM surface integral, at null and spatial infinity, respectively, supporting our proposal. We also obtain the Bondi mass-loss formula as a negative-definite flux integral of a bilinear in the gravitational currents at null infinity.

J. H. Yoon

1993-01-15T23:59:59.000Z

90

Energy density functional for nuclei and neutron stars  

E-Print Network [OSTI]

We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals -- a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties -- are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. The new functional TOV-min yields results for nuclear bulk properties (energy, r.m.s. radius, diffraction radius, surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of $^{208}$Pb and the neutron star radius. We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but it also reproduces expected neutron star data within assumed error bands.

J. Erler; C. J. Horowitz; W. Nazarewicz; M. Rafalski; P. -G. Reinhard

2012-11-27T23:59:59.000Z

91

Energy Density Functional for Nuclei and Neutron Stars  

SciTech Connect (OSTI)

Background: Recent observational data on neutron star masses and radii provide stringent constraints on the equation of state of neutron rich matter [ Annu. Rev. Nucl. Part. Sci. 62 485 (2012)]. Purpose: We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. Methods: We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. Results: The new functional TOV-min yields results for nuclear bulk properties (energy, rms radius, diffraction radius, and surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of 208Pb and the neutron star radius. Conclusions: We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but it also reproduces expected neutron star data within assumed error bands. This functional is expected to yield more reliable predictions in the region of very neutron rich heavy nuclei.

Erler, J. [UTK/ORNL/German Cancer Research Center-Heidelberg; Horowitz, C. J. [UTK/ORNL/Indiana University; Nazarewicz, Witold [UTK/ORNL/University of Warsaw; Rafalski, M. [UTK/ORNL; Reinhard, P.-G. [Universitat Erlangen, Germany

2013-01-01T23:59:59.000Z

92

Various Interpretations of the Stored and the Radiated Energy Density  

E-Print Network [OSTI]

Three contradictory but state-of-the-art concepts for defining and evaluating stored electromagnetic energy are treated in this communication, and are collated with the widely accepted definition of stored energy, which is the total energy minus the radiated energy. All three concepts are compared, and the results are discussed on an example of a dominant spherical mode, which is known to yield dissimilar results for the concepts dealt with here. It is shown that various definitions of stored energy density immanently imply diverse meanings of the term "radiation".

Capek, Miloslav

2015-01-01T23:59:59.000Z

93

Exploration of Plasma Jets Approach to High Energy Density Physics  

SciTech Connect (OSTI)

High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

Chen, Chiping [Massachusetts Institute of Technology

2013-08-26T23:59:59.000Z

94

Superheavy hidden sectors and the vacuum energy density  

E-Print Network [OSTI]

In the present work a quintessence like mechanism is presented, which models a considerable fraction of the critical energy density today $\\rho_c\\simeq 10^{-47}\\;\\hbox{GeV}^4$. By assuming that the Quantum Field Theory vacuum energy is lowered down to zero by a suitable adjustment mechanism, the critical energy density is modelled in terms of a quintessence axion field $a$. This axion is a pseudo-Goldstone boson arising due to a symmetry breaking mechanism in a hidden sector, corresponding to an $\\hbox{SU(2)}$ gauge interaction. The unification between the latter sector and QCD is produced at a very large energy scale, of the order of the GUT or even of the Planck energy. This theory is confining at a very low scale, of the order of a very light neutrino mass $m_\

Santillán, Osvaldo P

2015-01-01T23:59:59.000Z

95

Radiating Gravitational Collapse with an Initial Inhomogeneous Energy Density Distribution  

E-Print Network [OSTI]

A new model is proposed to a collapsing star consisting of an initial inhomogeneous energy density and anisotropic pressure fluid with shear, radial heat flow and outgoing radiation. In previous papers one of us has always assumed an initial star with homogeneous energy density. The aim of this work is to generalize the previous models by introducing an initial inhomogeneous energy density and compare it to the initial homogeneous energy density collapse model. We will show the differences between these models in the evolution of all physical quantities that characterizes the gravitational collapse. The behavior of the energy density, pressure, mass, luminosity and the effective adiabatic index is analyzed. The pressure of the star, at the beginning of the collapse, is isotropic but due to the presence of the shear the pressure becomes more and more anisotropic. The black hole is never formed because the apparent horizon formation condition is never satisfied, in contrast of the previous model where a black hole is formed. An observer at infinity sees a radial point source radiating exponentially until reaches the time of maximum luminosity and suddenly the star turns off. In contrast of the former model where the luminosity also increases exponentially, reaching a maximum and after it decreases until the formation of the black hole. The effective adiabatic index is always positive without any discontinuity in contrast of the former model where there is a discontinuity around the time of maximum luminosity. The collapse is about three thousand times slower than in the case where the energy density is initially homogeneous.

G. Pinheiro; R. Chan

2014-06-01T23:59:59.000Z

96

Analytical Energy Gradients in Range-Separated Hybrid Density Functional Theory with Random Phase Approximation  

E-Print Network [OSTI]

Analytical forces have been derived in the Lagrangian framework for several random phase approximation (RPA) correlated total energy methods based on the range separated hybrid (RSH) approach, which combines a short-range density functional approximation for the short-range exchange-correlation energy with a Hartree-Fock-type long-range exchange and RPA long-range correlation. The RPA correlation energy has been expressed as a ring coupled cluster doubles (rCCD) theory. The resulting analytical gradients have been implemented and tested for geometry optimization of simple molecules and intermolecular charge transfer complexes, where intermolecular interactions are expected to have a non-negligible effect even on geometrical parameters of the monomers.

Mussard, Bastien; Ángyán, János G

2015-01-01T23:59:59.000Z

97

NREL: News - Solar Energy Prices See Double-digit Declines in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3714 Solar Energy Prices See Double-digit Declines in 2013; Trend Expected to Continue PV pricing to drop another 3 - 12 percent in 2014 October 20, 2014 Distributed solar...

98

Role of density dependent symmetry energy in nuclear stopping  

E-Print Network [OSTI]

Information about the nuclear matter under the extreme conditions of temperature and density and the role of symmetry energy under these conditions is still a topic of crucial importance in the present day nuclear physics research. The multifragmentation, collective flow and the nuclear stopping is among the various rare phenomenon which can be observed in heavy-ion collisions at intermediate energies. The nuclear stopping, which is sensitive towards the symmetry energy has gained a lot of interest because it provides the possibility to examine the degree of thermalization or equilibration in the matter. Aim of the present study is to pin down the nuclear stopping for the different forms of density dependent symmetry energy

Karan Singh Vinayak; Suneel Kumar

2011-07-27T23:59:59.000Z

99

Local thermodynamic equilibrium in rapidly heated high energy density plasmas  

SciTech Connect (OSTI)

Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.

Aslanyan, V.; Tallents, G. J. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

2014-06-15T23:59:59.000Z

100

MAGNITUDE AND VARIANCE OF ACOUSTIC ENERGY DENSITY IN MICROCHANNEL ACOUSTOPHORESIS  

E-Print Network [OSTI]

and Martin Wiklund1 1 Dept. of Applied Physics, Royal Institute of Technology (KTH), Stockholm, SWEDEN 2 Dept modulation, Acoustic energy density, Microchannel INTRODUCTION Microchannel acoustophoresis is a powerful) causing a half-wave resonance across the channel width or height. However, a generic problem with SF

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density  

SciTech Connect (OSTI)

The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.

Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.

2005-11-07T23:59:59.000Z

102

Design for a High Energy Density Kelvin-Helmholtz Experiment  

SciTech Connect (OSTI)

While many high energy density physics (HEDP) Rayleigh-Taylor and Richtmyer-Meshkov instability experiments have been fielded as part of basic HEDP and astrophysics studies, not one HEDP Kelvin-Helmholtz (KH) experiment has been successfully performed. Herein, a design for a novel HEDP x-ray driven KH experiment is presented along with supporting radiation-hydrodynamic simulation and theory.

Hurricane, O A

2007-10-29T23:59:59.000Z

103

A new acoustic three dimensional intensity and energy density probe  

E-Print Network [OSTI]

A new acoustic three dimensional intensity and energy density probe F. Aymea , C. Carioub , M is a great advantage. In this frame, a new intensity acoustic probe has been developed to compute acoustic quantities which can be input data for energetic identification methods. 1 Introduction Noise matters

Boyer, Edmond

104

A Stable Vanadium Redox-Flow Battery with High Energy Density...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage. A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy...

105

Fundamental measure theory for the electric double layer: applications to blue-energy harvesting and water desalination  

E-Print Network [OSTI]

Capacitive mixing (CAPMIX) and capacitive deionization (CDI) are promising candidates for harvesting clean, renewable energy and for the energy efficient production of potable water, respectively. Both CAPMIX and CDI involve water-immersed porous carbon electrodes at voltages of the order of hundreds of millivolts, such that counter-ionic packing is important. We propose a density functional theory (DFT) to model the electric double layer which forms near the surfaces of these porous materials. The White-Bear mark II fundamental measure theory (FMT) functional is combined with a mean-field Coulombic and a MSA-type correction to describe the interplay between dense packing and electrostatics, in good agreement with MD simulations. Compared to less elaborate mean-field models our DFT calculations reveal a higher work output for blue-energy cycles and a higher energy demand for desalination cycles.

Andreas Härtel; Mathijs Janssen; Sela Samin; René van Roij

2014-11-20T23:59:59.000Z

106

Double Moral Hazard and the Energy Efficiency Gap Louis-Gatan Giraudet1  

E-Print Network [OSTI]

. Suppose that the homeowner cannot perfectly observe the energy saving performance of the job completed on installation costs and perform the job poorly. 1 Precourt Energy Efficiency Center (PEEC), Stanford UniversityDouble Moral Hazard and the Energy Efficiency Gap Louis-Gaëtan Giraudet1 , Sébastien Houde2

Boyer, Edmond

107

Sub-barrier Fusion Cross Sections with Energy Density Formalism  

E-Print Network [OSTI]

We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of $^{16}$O with $^{154,}$$^{144}$Sm,$^{186}$W and $^{208}$Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two $^{64}$Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

F. Muhammad Zamrun; K. Hagino; N. Takigawa

2006-06-07T23:59:59.000Z

108

Sub-barrier Fusion Cross Sections with Energy Density Formalism  

SciTech Connect (OSTI)

We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of 16O with 154,144Sm, 186W and 208Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two 64Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

Zamrun, Muhammad; Hagino, F. K.; Takigawa, N. [Department of Physics, Tohoku University, 980-8578 (Japan)

2006-08-14T23:59:59.000Z

109

Can the energy density of gravitational field be interpreted as dark energy?  

E-Print Network [OSTI]

After a brief review of the Maxwell-like approach to gravity we consider the issue of the negative energy of gravitational field which is a consequence of the field approach to the phenomenon of gravitation. Due to the existence of the negative field energy {\\it within} a mass body its total energy content is smaller than the positive energy assigned to its mass energy. We study the total energy content of a spherically symmetrical mass body having constant matter density, and show that its total energy content depends on its radius. We show that under certain circumstances, the total energy content of a mass body achieves negative values so that the force at its surface becomes repulsive. We apply this idea to the evolution of universe filled by matter and the negative energy density of its gravitational field. Since the negative energy density causes the negative pressure it might be considered as an agent which causes the acceleration of the universe.

V. Majernik

2008-07-31T23:59:59.000Z

110

Laboratory testing of high energy density capacitors for electric vehicles  

SciTech Connect (OSTI)

Laboratory tests of advanced, high energy density capacitors in the Battery Test Laboratory of the Idaho National Engineering Laboratory have been performed to investigate their suitability for load-leveling the battery in an electric vehicle. Two types of devices were tested -- 3 V, 70 Farad, spiral wound, carbon-based, single cell devices and 20 V, 3. 5 Farad, mixed-oxide, multi-cell bipolar devices. The energy density of the devices, based on energy stored during charge to the rated voltage, was found to be 1--2 Wh/kg, which agreed well with that claimed by the manufacturers. Constant power discharge tests were performed at power densities up to 1500 W/kg. Discharges at higher power densities could have been performed had equipment been available to maintain constant power during discharges of less than one second. It was found that the capacitance of the devices were rate dependent with the rate dependency of the carbon-based devices being higher than that of the mixed-oxide devices. The resistance of both types of devices were relatively low being 20--30 milliohms. Testing done in the study showed that the advanced high energy density capacitors can be charged and discharged over cycles (PSFUDS) which approximate the duty cycle that would be encountered if the devices are used to load-level the battery in an electric vehicle. Thermal tests of the advanced capacitors in an insulated environment using the PSFUDS cycle showed the devices do not overheat with their temperatures increasing only 4--5{degrees}C for tests that lasted 5--7 hours. 7 refs., 33 figs., 11 tabs.

Burke, A.F.

1991-10-01T23:59:59.000Z

111

Linear response of homogeneous nuclear matter with energy density functionals  

E-Print Network [OSTI]

Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin-orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe-Salpeter equation for the particle-hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin-isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.

A. Pastore; D. Davesne; J. Navarro

2014-12-07T23:59:59.000Z

112

Quantum Inequality Restrictions on Negative Energy Densities in Curved Spacetimes  

E-Print Network [OSTI]

In quantum field theory, there exist states in which the expectation value of the energy density for a quantized field is negative. These negative energy densities lead to many problems. Although quantum field theory introduces negative energies, it also provides constraints in the form of quantum inequalities (QI's). These uncertainty principle-type relations limit the magnitude and duration of any negative energy. We derive a general form of the QI on the energy density for both the quantized scalar and electromagnetic fields in static curved spacetimes. In the case of the scalar field, the QI can be written as the Euclidean wave operator acting on the Euclidean Green's function. Additionally, a small distance expansion on the Green's function is used to derive the QI in the short sampling time limit. It is found that the QI in this limit reduces to the flat space form with subdominant correction terms which depend on the spacetime geometry. Several example spacetimes are studied in which exact forms of the QI's can be found. These include the three- and four-dimensional static Robertson-Walker spacetimes, flat space with perfectly reflecting mirrors, Rindler and static de Sitter space, and the spacetime outside a black hole. Finally, the application of the quantum inequalities to the Alcubierre warp drive spacetime leads to strict constraints on the thickness of the negative energy region needed to maintain the warp drive. Under these constraints, we discover that the total negative energy required exceeds the total mass of the visible universe by a hundred billion times.

Michael John Pfenning; L. H. Ford

1998-05-11T23:59:59.000Z

113

Sustainable energy for all. Technical report of task force 2 in support of doubling the global rate of energy efficiency improvement and doubling the share of renewable energy in the global energy mix by 2030  

SciTech Connect (OSTI)

The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force Two which is dedicated energy efficiency and renewable energy objectives. The report shows that doubling the rate of energy efficiency improvements and doubling the share of energy from renewable sources by 2030 is challenging but feasible if sufficient actions are implemented. Strong and well-informed government policies as well as extensive private investment should focus on the high impact areas identified by the task force.

Nakicenovic, Nebojsa [International Institute for Applied Systems Analysis and Vienna University of Technology (Austria); Kammen, Daniel [Univ. of California, Berkeley, CA (United States); Jewell, Jessica [International Institute for Applied Systems Analysis (Austria)

2012-04-15T23:59:59.000Z

114

Frontiers for Discovery in High Energy Density Physics  

SciTech Connect (OSTI)

The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

2004-07-20T23:59:59.000Z

115

Finite-size instabilities in nuclear energy density functionals  

SciTech Connect (OSTI)

The systematic lack of convergence of self-consistent mean-field calculations with certain parameterizations of the Skyrme energy density functional has been attributed to the appearance of finite-size instabilities. In this contribution, we investigate what happens at the instability associated with the C{sub 0}{sup {Delta}s}s{sub 0} Dot-Operator {Delta}s{sub 0} term in a high-spin state of the superdeformed band in {sup 194}Hg.

Hellemans, V.; Heenen, P.-H.; Bender, M. [Universite Libre de Bruxelles, PNTPM, CP229, 1050 Bruxelles (Belgium); Univ. Bordeaux, CENBG, UMR5797, F-33170 Gradignan (France) and CNRS/IN2P3, CENBG, UMR5797, F-33170 Gradignan (France)

2012-10-20T23:59:59.000Z

116

High Energy Density Physics and Exotic Acceleration Schemes  

SciTech Connect (OSTI)

The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to be a very important field for diverse applications such as muon cooling, fusion energy research, and ultra-bright particle and radiation generation with high intensity lasers. We had several talks on these and other subjects, and many joint sessions with the Computational group, the EM Structures group, and the Beam Generation group. We summarize our groups' work in the following categories: vacuum acceleration schemes; ion acceleration; particle transport in solids; and applications to high energy density phenomena.

Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC

2005-09-27T23:59:59.000Z

117

PLZT Nano-Precursors for High Energy Density Applications - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical:RockyPISTON (Portable Data

118

New Electrode Designs for Ultrahigh Energy Density | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergy EmissionsElectrode Designs

119

Towards the island of stability with relativistic energy density functionals  

SciTech Connect (OSTI)

Relativistic energy density functionals (REDF) provide a complete and accurate, global description of nuclear structure phenomena. Modern semi-empirical functionals, adjusted to the nuclear matter equation of state and to empirical masses of deformed nuclei, are applied to studies of shapes of superheavy nuclei. The theoretical framework is tested in a comparison to empirical masses, quadrupole deformations, and energy barriers of actinide nuclei. The model is used in a self-consistent mean-field calculation of spherical, axial and triaxial shapes of superheavy nuclei, alpha-decay energies and lifetimes. The effect of explicit treatment of collective correlations is analyzed in calculations that consistently use a collective Hamiltonian model based on REDFs.

Prassa, V.; Niksic, T.; Lalazissis, G. A.; Vretenar, D. [Physics Department, University of Jyvaeskylae, P.O. Box 35 (YFL) FI-40014, Finland and Department of Theoretical Physics, Aristotle University Thessaloniki, GR-54124 (Finland); Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia); Department of Theoretical Physics, Aristotle University Thessaloniki, GR-54124 (Greece); Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia)

2012-10-20T23:59:59.000Z

120

Energy Density Functional Study of Nuclear Matrix Elements for Neutrinoless {beta}{beta} Decay  

SciTech Connect (OSTI)

We present an extensive study of nuclear matrix elements (NME) for the neutrinoless double-beta decay of the nuclei {sup 48}Ca, {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 116}Cd, {sup 124}Sn, {sup 128}Te, {sup 130}Te, {sup 136}Xe, and {sup 150}Nd based on state-of-the-art energy density functional methods using the Gogny D1S functional. Beyond-mean-field effects are included within the generating coordinate method with particle number and angular momentum projection for both initial and final ground states. We obtain a rather constant value for the NMEs around 4.7 with the exception of {sup 48}Ca and {sup 150}Nd, where smaller values are found. We analyze the role of deformation and pairing in the evaluation of the NME and present detailed results for the decay of {sup 150}Nd.

Rodriguez, Tomas R. [GSI Helmholtzzentrum fuer Schwerionenforschung, D-64259 Darmstadt (Germany); Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); CEA, Irfu, SPhN, Centre de Saclay, F-911191 Gif-sur-Yvette (France); Martinez-Pinedo, Gabriel [GSI Helmholtzzentrum fuer Schwerionenforschung, D-64259 Darmstadt (Germany)

2010-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy density functional study of nuclear matrix elements for neutrinoless $??$ decay  

E-Print Network [OSTI]

We present an extensive study of nuclear matrix elements (NME) for the neutrinoless double beta decay of the nuclei $^{48}$Ca, $^{76}$Ge, $^{82}$Se, $^{96}$Zr, $^{100}$Mo, $^{116}$Cd, $^{124}$Sn, $^{128}$Te, $^{130}$Te, $^{136}$Xe, and $^{150}$Nd based on state-of-the-art energy density functional methods using the Gogny D1S functional. Beyond mean-field effects are included within the generating coordinate method with particle number and angular momentum projection for both initial and final ground states. We obtain a rather constant value for the NME's around 4.7 with the exception of $^{48}$Ca and $^{150}$Nd, where smaller values are found. We analyze the role of deformation and pairing in the evaluation of the NME and present detailed results for the decay of $^{150}$Nd.

Tomás R. Rodríguez; G. Martinez-Pinedo

2010-08-31T23:59:59.000Z

122

Optimal use of time dependent probability density data to extract potential energy surfaces  

E-Print Network [OSTI]

A novel algorithm was recently presented to utilize emerging time dependent probability density data to extract molecular potential energy surfaces. This paper builds on the previous work and seeks to enhance the capabilities of the extraction algorithm: An improved method of removing the generally ill-posed nature of the inverse problem is introduced via an extended Tikhonov regularization and methods for choosing the optimal regularization parameters are discussed. Several ways to incorporate multiple data sets are investigated, including the means to optimally combine data from many experiments exploring different portions of the potential. Results are presented on the stability of the inversion procedure, including the optimal combination scheme, under the influence of data noise. The method is applied to the simulated inversion of a double well system.

Lukas Kurtz; Herschel Rabitz; Regina de Vivie-Riedle

2001-11-09T23:59:59.000Z

123

Double-to-single photoionization ratio of lithium at medium energies  

SciTech Connect (OSTI)

The double-to-single photoionization ratio of atomic lithium has been measured for photon energies ranging from 120 eV to 910 eV. Through extensive use of various filters we were able to significantly extend the previous range of measurements [M.-T. Huang et al., Phys. Rev. A 59, 3397 (1999)]. We find that our data are in agreement with the predicted high-energy limit of 3.4%. By applying simple model curves to our data, we believe that sequential processes contribute substantially to the double-photoionization cross-section ratio as predicted by theory.

Wehlitz, R.; Bluett, J.B. [Synchrotron Radiation Center, UW-Madison, Stoughton, Wisconsin 53589 (United States); Martinez, M.M. [University of Washington, Seattle, Washington 98105 (United States); Lukic, D. [Institute of Physics, 11001 Belgrade (Serbia and Montenegro); Whitfield, S.B. [Department of Physics and Astronomy, UW-Eau Claire, Eau Claire, Wisconsin 54702 (United States)

2004-06-01T23:59:59.000Z

124

High energy density capacitors using nano-structure multilayer technology  

SciTech Connect (OSTI)

Today, many pulse power and industrial applications are limited by capacitor performance. While incremental improvements are anticipated from existing capacitor technologies, significant advances are needed in energy density to enable these applications for both the military and for American economic competitiveness. We propose a program to research and develop a novel technology for making high voltage, high energy density capacitors. Nano-structure multilayer technologies developed at LLNL may well provide a breakthrough in capacitor performance. Our controlled sputtering techniques are capable of laying down extraordinarily smooth sub-micron layers of dielectric and conductor materials. With this technology, high voltage capacitors with an order of magnitude improvement in energy density may be achievable. Well-understood dielectrics and new materials will be investigated for use with this technology. Capacitors developed by nano-structure multilayer technology are inherently solid state, exhibiting extraordinary mechanical and thermal properties. The conceptual design of a Notepad capacitor is discussed to illustrate capacitor and capacitor bank design and performance with this technology. We propose a two phase R&D program to address DNA`s capacitor needs for electro-thermal propulsion and similar pulse power programs. Phase 1 will prove the concept and further our understanding of dielectric materials and design tradeoffs with multilayers. Nano-structure multilayer capacitors will be developed and characterized. As our materials research and modeling prove successful, technology insertion in our capacitor designs will improve the possibility for dramatic performance improvements. In Phase 2, we will make Notepad capacitors, construct a capacitor bank and demonstrate its performance in a meaningful pulse power application. We will work with industrial partners to design full scale manufacturing and move this technology to industry for volume production.

Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

1992-08-01T23:59:59.000Z

125

Bounds on negative energy densities in static space-times  

E-Print Network [OSTI]

Certain exotic phenomena in general relativity, such as backward time travel, appear to require the presence of matter with negative energy. While quantum fields are a possible source of negative energy densities, there are lower bounds - known as quantum inequalities - that constrain their duration and magnitude. In this paper, we derive new quantum inequalities for scalar fields in static space-times, as measured by static observers with a choice of sampling function. Unlike those previously derived by Pfenning and Ford, our results do not assume any specific sampling function. We then calculate these bounds in static three- and four-dimensional Robertson-Walker universes, the de Sitter universe, and the Schwarzschild black hole. In each case, the new inequality is stronger than that of Pfenning and Ford for their particular choice of sampling function.

Christopher J. Fewster; Edward Teo

1999-02-16T23:59:59.000Z

126

Descriptions of carbon isotopes within the energy density functional theory  

SciTech Connect (OSTI)

Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.

Ismail, Atef [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia and Department of Physics, Al-Azhar University, 71524 Assiut (Egypt); Cheong, Lee Yen; Yahya, Noorhana [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Tammam, M. [Department of Physics, Al-Azhar University, 71524 Assiut (Egypt)

2014-10-24T23:59:59.000Z

127

Dipole polarizability of 120Sn and nuclear energy density functionals  

E-Print Network [OSTI]

The electric dipole strength distribution in 120Sn between 5 and 22 MeV has been determined at RCNP Osaka from a polarization transfer analysis of proton inelastic scattering at E_0 = 295 MeV and forward angles including 0{\\deg}. Combined with photoabsorption data an electric dipole polarizability alpha_D(120Sn) = 8.93(36) fm^3 is extracted. The correlation of this value with alpha_D for 208Pb serves as a test of energy density functionals (EDFs). The majority of models based on Skyrme interactions can describe the data while relativistic approaches fail. The accuracy of the experimental results provides important constraints on the static isovector properties of EDFs used to predict symmetry energy parameters and the neutron skin thickness of nuclei.

Hashimoto, T; Reinhard, P -G; Tamii, A; von Neumann-Cosel, P; Adachi, T; Aoi, N; Bertulani, C A; Fujita, H; Fujita, Y; Ganio?lu, E; Hatanaka, K; Iwamoto, C; Kawabata, T; Khai, N T; Krugmann, A; Martin, D; Matsubara, H; Miki, K; Neveling, R; Okamura, H; Ong, H J; Poltoratska, I; Ponomarev, V Yu; Richter, A; Sakaguchi, H; Shimbara, Y; Shimizu, Y; Simonis, J; Smit, F D; Süsoy, G; Thies, J H; Suzuki, T; Yosoi, M; Zenihiro, J

2015-01-01T23:59:59.000Z

128

Energy density matrix formalism for interacting quantum systems: a quantum Monte Carlo study  

SciTech Connect (OSTI)

We develop an energy density matrix that parallels the one-body reduced density matrix (1RDM) for many-body quantum systems. Just as the density matrix gives access to the number density and occupation numbers, the energy density matrix yields the energy density and orbital occupation energies. The eigenvectors of the matrix provide a natural orbital partitioning of the energy density while the eigenvalues comprise a single particle energy spectrum obeying a total energy sum rule. For mean-field systems the energy density matrix recovers the exact spectrum. When correlation becomes important, the occupation energies resemble quasiparticle energies in some respects. We explore the occupation energy spectrum for the finite 3D homogeneous electron gas in the metallic regime and an isolated oxygen atom with ground state quantum Monte Carlo techniques imple- mented in the QMCPACK simulation code. The occupation energy spectrum for the homogeneous electron gas can be described by an effective mass below the Fermi level. Above the Fermi level evanescent behavior in the occupation energies is observed in similar fashion to the occupation numbers of the 1RDM. A direct comparison with total energy differences demonstrates a quantita- tive connection between the occupation energies and electron addition and removal energies for the electron gas. For the oxygen atom, the association between the ground state occupation energies and particle addition and removal energies becomes only qualitative. The energy density matrix provides a new avenue for describing energetics with quantum Monte Carlo methods which have traditionally been limited to total energies.

Krogel, Jaron T [ORNL] [ORNL; Kim, Jeongnim [ORNL] [ORNL; Reboredo, Fernando A [ORNL] [ORNL

2014-01-01T23:59:59.000Z

129

Design of Safer High-Energy Density Materials for Lithium-Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Safer High-Energy Density Materials for Lithium-Ion Cells Design of Safer High-Energy Density Materials for Lithium-Ion Cells 2012 DOE Hydrogen and Fuel Cells Program and...

130

Vacuum energy density and pressure of a massive scalar field  

E-Print Network [OSTI]

With a view toward application of the Pauli-Villars regularization method to the Casimir energy of boundaries, we calculate the expectation values of the components of the stress tensor of a confined massive field in 1+1 space-time dimensions. Previous papers by Hays and Fulling are bridged and generalized. The Green function for the time-independent Schrodinger equation is constructed from the Green function for the whole line by the method of images; equivalently, the one-dimensional system is solved exactly in terms of closed classical paths and periodic orbits. Terms in the energy density and in the eigenvalue density attributable to the two boundaries individually and those attributable to the confinement of the field to a finite interval are distinguished so that their physical origins are clear. Then the pressure is found similarly from the cylinder kernel, the Green function associated most directly with an exponential frequency cutoff of the Fourier mode expansion. Finally, we discuss how the theory could be rendered finite by the Pauli-Villars method.

Fernando Daniel Mera; S. A. Fulling

2015-04-03T23:59:59.000Z

131

Strongly Interacting Matter at Very High Energy Density  

SciTech Connect (OSTI)

The authors discuss the study of matter at very high energy density. In particular: what are the scientific questions; what are the opportunities to makes significant progress in the study of such matter and what facilities are now or might be available in the future to answer the scientific questions? The theoretical and experimental study of new forms of high energy density matter is still very much a 'wild west' field. There is much freedom for developing new concepts which can have order one effects on the way we think about such matter. It is also a largely 'lawless' field, in that concepts and methods are being developed as new information is generated. There is also great possibility for new experimental discovery. Most of the exciting results from RHIC experiments were unanticipated. The methods used for studying various effects like flow, jet quenching, the ridge, two particle correlations etc. were developed as experiments evolved. I believe this will continue to be the case at LHC and as we use existing and proposed accelerators to turn theoretical conjecture into tangible reality. At some point this will no doubt evolve into a precision science, and that will make the field more respectable, but for my taste, the 'wild west' times are the most fun.

McLerran, L.

2011-06-05T23:59:59.000Z

132

Curvature and Frontier Orbital Energies in Density Functional Theory  

SciTech Connect (OSTI)

Perdew et al. [Phys. Rev. Lett 49, 1691 (1982)] discovered and proved two different properties that exact Kohn-Sham density functional theory (DFT) must obey: (i) The exact total energy versus particle number must be a series of linear segments between integer electron points; (ii) Across an integer number of electrons, the exchange-correlation potential may ``jump’’ by a constant, known as the derivative discontinuity (DD). Here, we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT, the two are in fact two sides of the same coin. Absence of a derivative discontinuity necessitates deviation from piecewise linearity, and the latter can be used to correct for the former, thereby restoring the physical meaning of the orbital energies. Using selected small molecules, we show that this results in a simple correction scheme for any underlying functional, including semi-local and hybrid functionals as well as Hartree-Fock theory, suggesting a practical correction for the infamous gap problem of density functional theory. Moreover, we show that optimally-tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and show that this can be used as a sound theoretical basis for novel tuning strategies.

Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Kronik, Leeor; Baer, Roi

2012-12-20T23:59:59.000Z

133

Vacuum energy density and pressure of a massive scalar field  

E-Print Network [OSTI]

With a view toward application of the Pauli-Villars regularization method to the Casimir energy of boundaries, we calculate the expectation values of the components of the stress tensor of a confined massive field in 1+1 space-time dimensions. Previous papers by Hays and Fulling are bridged and generalized. The Green function for the time-independent Schrodinger equation is constructed from the Green function for the whole line by the method of images; equivalently, the one-dimensional system is solved exactly in terms of closed classical paths and periodic orbits. Terms in the energy density and in the eigenvalue density attributable to the two boundaries individually and those attributable to the confinement of the field to a finite interval are distinguished so that their physical origins are clear. Then the pressure is found similarly from the cylinder kernel, the Green function associated most directly with an exponential frequency cutoff of the Fourier mode expansion. Finally, we discuss how the theory could be rendered finite by the Pauli-Villars method.

Fernando Daniel Mera; S. A. Fulling

2015-02-15T23:59:59.000Z

134

Vacuum energy density and pressure of a massive scalar field  

E-Print Network [OSTI]

With a view toward application of the Pauli-Villars regularization method to the Casimir energy of boundaries, we calculate the expectation values of the components of the stress tensor of a confined massive field in 1+1 space-time dimensions. Previous papers by Hays and Fulling are bridged and generalized. The Green function for the time-independent Schrodinger equation is constructed from the Green function for the whole line by the method of images; equivalently, the one-dimensional system is solved exactly in terms of closed classical paths and periodic orbits. Terms in the energy density and in the eigenvalue density attributable to the two boundaries individually and those attributable to the confinement of the field to a finite interval are distinguished so that their physical origins are clear. Then the pressure is found similarly from the cylinder kernel, the Green function associated most directly with an exponential frequency cutoff of the Fourier mode expansion. Finally, we discuss how the theory could be rendered finite by the Pauli-Villars method.

Fernando Daniel Mera; S. A. Fulling

2014-12-29T23:59:59.000Z

135

Mass dependence of the vacuum energy density in the massive Schwinger model  

E-Print Network [OSTI]

The vacuum energy density of the massive Schwinger model is shown to be not power expandable in the fermion mass.

Taekoon Lee

2007-03-09T23:59:59.000Z

136

Analysis of the Double Window in Saving Energy and Economical Efficiency in Nanjing in the Winter  

E-Print Network [OSTI]

steel window can save energy by 37.68% is reached. As part of the economical efficiency analysis, an investment payback period is analyzed using the methods of static state and dynamic state. The analysis shows that by using single frame-double plastic...

Zhang, Y.; He, J.; Gao, S.

2006-01-01T23:59:59.000Z

137

Reduced density matrix hybrid approach: Application to electronic energy transfer  

SciTech Connect (OSTI)

Electronic energy transfer in the condensed phase, such as that occurring in photosynthetic complexes, frequently occurs in regimes where the energy scales of the system and environment are similar. This situation provides a challenge to theoretical investigation since most approaches are accurate only when a certain energetic parameter is small compared to others in the problem. Here we show that in these difficult regimes, the Ehrenfest approach provides a good starting point for a dynamical description of the energy transfer process due to its ability to accurately treat coupling to slow environmental modes. To further improve on the accuracy of the Ehrenfest approach, we use our reduced density matrix hybrid framework to treat the faster environmental modes quantum mechanically, at the level of a perturbative master equation. This combined approach is shown to provide an efficient and quantitative description of electronic energy transfer in a model dimer and the Fenna-Matthews-Olson complex and is used to investigate the effect of environmental preparation on the resulting dynamics.

Berkelbach, Timothy C.; Reichman, David R. [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Markland, Thomas E. [Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305 (United States)

2012-02-28T23:59:59.000Z

138

Supplementary material to "Curvature and frontier orbital energies in density functional theory", by Stein et al.  

E-Print Network [OSTI]

Supplementary material to "Curvature and frontier orbital energies in density functional theory and frontier orbital energies in density functional theory", by Stein et al. 2. Calculation of curvature from: [{ }] [{ }] #12;Supplementary material to "Curvature and frontier orbital energies in density functional theory

Baer, Roi

139

High Energy Density Science at the Linac Coherent Light Source  

SciTech Connect (OSTI)

High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded descriptions (Ch. V), and a more detailed plans for experiments (Ch. VI), highlighting the uniqueness the HEDS endstation will play in providing mission-relevant HED data and in the development of the field. One of the more exciting aspects of NNSA-relevant experiments on LCLS is that, given the extraordinary investment and consequent advances in accurate atomic-scale simulations of matter (to a large extent via the Accelerated Scientific Computing program sponsored by NNSA), the facility will provide a platform that, for the first time, will permit experiments in the regimes of interest at the time and spatial scales of the simulations. In Chapter III, the report places the potential of LCLS with an HED science endstation in the context of science required by NNSA, as well as explicating the relationship of NNSA and HED science in general. Chapter IV discusses 4th-generation light sources, like LCLS, in the context of other laboratory technologies presently utilized by NNSA. The report concludes, noting that an HED endstation on LCLS can provide access to data in regimes that are relevant to NNSA needs but no mechanism exists for providing such data. The endstation will also serve to build a broad-based community in the 'X-Games' of physics. The science generated by the facility will be a collaboration of NNSA-based laboratory scientists and university-based researchers. The LCLS endstation fulfills the need for an intermediate-scale facility capable of delivering fundamental advances and mission-relevant research in high energy density science.

Lee, R W

2007-10-19T23:59:59.000Z

140

Educational buildings stocks refurbishment, a double opportunity: massive energy savings, education of youngsters about sustainable development  

E-Print Network [OSTI]

Educational buildings stocks refurbishment, a double opportunity: massive energy savings, education of youngsters about sustainable development Nicolas COUILLAUD, research engineer at CSTB, France Phone +33 1 61 44 80 53, Email: nicolas... the sustainability of the whole building performance during the operation phase. For that, we developed dedicated toolbox for educational sector. This toolbox addresses several actors as local authority, engineering department and energy manager. The objective...

Couillaud, N.

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Solid Double-Layered Hydroxide Catalysts for Lignin Decomposition - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment2) 1/8 5/15/11Solicitingcontinuted) A

142

BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF)  

SciTech Connect (OSTI)

The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties. Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data. Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

Nazarewicz, Witold

2012-07-01T23:59:59.000Z

143

CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES  

SciTech Connect (OSTI)

This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

Professor Bruce R. Kusse; Professor David A. Hammer

2007-04-18T23:59:59.000Z

144

The low-energy nuclear density of states and the saddle point approximation  

E-Print Network [OSTI]

The nuclear density of states plays an important role in nuclear reactions. At high energies, above a few MeV, the nuclear density of states is well described by a formula that depends on the smooth single particle density of states at the Fermi surface, the nuclear shell correction and the pairing energy. In this paper we present an analysis of the low energy behaviour of the nuclear density of states using the saddle point approximation and extensions to it. Furthermore, we prescribe a simple parabolic form for excitation energy, in the low energy limit, which may facilitate an easy computation of level densities.

Sanjay K. Ghosh; Byron K. Jennings

2001-07-30T23:59:59.000Z

145

On the role of electron energy distribution function in double frequency heating of electron cyclotron resonance ion source plasmas  

SciTech Connect (OSTI)

Double frequency heating (DFH) is a tool to improve the output of highly charged ions particularly from modern electron cyclotron resonance ion source installations with very high RF-frequencies. In order to gain information on the DFH-mechanism and on the role of the lower injected frequency we have carried out a series of dedicated experiments where we have put emphasis on the creation of a discrete resonance surface also for this lower frequency. Our well-established method of inserting an emissive MD (metal-dielectric) liner into the plasma chamber of the source is used in these experiments as a tool of investigation. In this way, the electron temperature and density for both ECR zones is increased in a controlled manner, allowing conclusions on the role of the change of the electron-energy-distribution function with and without DFH.

Schachter, L., E-mail: lsch@tandem.nipne.ro; Dobrescu, S. [National Institute for Physics and Nuclear Engineering, Bucharest (Romania)] [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Stiebing, K. E. [Institut für Kernphysik der J. W. Goethe Universität, Frankfurt/Main (Germany)] [Institut für Kernphysik der J. W. Goethe Universität, Frankfurt/Main (Germany)

2014-02-15T23:59:59.000Z

146

Negative energy densities in integrable quantum field theories at one-particle level  

E-Print Network [OSTI]

We study the phenomenon of negative energy densities in quantum field theories with self-interaction. Specifically, we consider a class of integrable models (including the sinh-Gordon model) in which we investigate the expectation value of the energy density in one-particle states. In this situation, we classify the possible form of the stress-energy tensor from first principles. We show that one-particle states with negative energy density generically exist in non-free situations, and we establish lower bounds for the energy density (quantum energy inequalities). Demanding that these inequalities hold reduces the ambiguity in the stress-energy tensor, in some situations fixing it uniquely. Numerical results for the lowest spectral value of the energy density allow us to demonstrate how negative energy densities depend on the coupling constant and on other model parameters.

Bostelmann, Henning

2015-01-01T23:59:59.000Z

147

Negative energy densities in integrable quantum field theories at one-particle level  

E-Print Network [OSTI]

We study the phenomenon of negative energy densities in quantum field theories with self-interaction. Specifically, we consider a class of integrable models (including the sinh-Gordon model) in which we investigate the expectation value of the energy density in one-particle states. In this situation, we classify the possible form of the stress-energy tensor from first principles. We show that one-particle states with negative energy density generically exist in non-free situations, and we establish lower bounds for the energy density (quantum energy inequalities). Demanding that these inequalities hold reduces the ambiguity in the stress-energy tensor, in some situations fixing it uniquely. Numerical results for the lowest spectral value of the energy density allow us to demonstrate how negative energy densities depend on the coupling constant and on other model parameters.

Henning Bostelmann; Daniela Cadamuro

2015-02-05T23:59:59.000Z

148

Fundamental measure theory for the electric double layer: implications for blue-energy harvesting and water desalination  

E-Print Network [OSTI]

Capacitive mixing (CAPMIX) and capacitive deionization (CDI) are promising candidates for harvesting clean, renewable energy and for the energy efficient production of potable water, respectively. Both CAPMIX and CDI involve water-immersed porous carbon (supercapacitors) electrodes at voltages of the order of hundreds of millivolts, such that counter-ionic packing is important for the electric double layer (EDL) which forms near the surface of these porous materials. Thus, we propose a density functional theory (DFT) to model the EDL, where the White-Bear mark II fundamental measure theory functional is combined with a mean-field Coulombic and a mean spherical approximation-type correction to describe the interplay between dense packing and electrostatics, in good agreement with molecular dynamics simulations. We discuss the concentration-dependent potential rise due to changes in the chemical potential in capacitors in the context of an over-ideal theoretical description and its impact on energy harvesting and water desalination. Compared to less elaborate mean-field models our DFT calculations reveal a higher work output for blue-energy cycles and a higher energy demand for desalination cycles.

Andreas Härtel; Mathijs Janssen; Sela Samin; René van Roij

2015-03-06T23:59:59.000Z

149

Energy density is an important mea-sure of fish nutritional condition and  

E-Print Network [OSTI]

indices, energy density integrates and reflects the history of fish feed- ing environments before the time218 Energy density is an important mea- sure of fish nutritional condition and is used to assess growth, construct energy budgets, and measure energy flow in ecosystems (Brett et al., 1969; Jobling

150

Ontogenetic and Seasonal Variation of Young Non-Native Fish Energy Densities in Lake Michigan  

E-Print Network [OSTI]

-specific trade-offs between energy allocation to different tissue-types (low energy density, structural tissueOntogenetic and Seasonal Variation of Young Non-Native Fish Energy Densities in Lake Michigan Overview Energy content is a useful metric of physiological status of fishes and may help elucidate spatial

151

Nuclear Physics A 770 (2006) 131 Relativistic nuclear energy density functional  

E-Print Network [OSTI]

Nuclear Physics A 770 (2006) 1­31 Relativistic nuclear energy density functional constrained by low-energy 10 February 2006 Available online 3 March 2006 Abstract A relativistic nuclear energy density nuclear physics: the relationship between low-energy, non- perturbative QCD and the rich structure

Weise, Wolfram

152

Metrology Challenges for High Energy Density Science Target Manufacture  

SciTech Connect (OSTI)

Currently, High Energy Density Science (HEDS) experiments are used to support and qualify predictive physics models. These models assume ideal conditions such as energy (input) and device (target) geometry. The experiments rely on precision targets constructed from components with dimensions in the millimeter range, while having micrometer-scale, functional features, including planar steps, sine waves, and step-joint geometry on hemispherical targets. Future target designs will likely have features and forms that rival or surpass current manufacturing and characterization capability. The dimensional metrology of these features is important for a number of reasons, including qualification of sub-components prior to assembly, quantification of critical features on the as-built assemblies and as a feedback mechanism for fabrication process development. Variations in geometry from part to part can lead to functional limitations, such as unpredictable instabilities during an experiment and the inability to assemble a target from poorly matched sub-components. Adding to the complexity are the large number and variety of materials, components, and shapes that render any single metrology technique difficult to use with low uncertainty. Common materials include metal and glass foams, doped transparent and opaque plastics and a variety of deposited and wrought metals. A suite of metrology tools and techniques developed to address the many critical issues relevant to the manufacture of HEDS targets including interferometry, x-ray radiography and contact metrology are presented including two sided interferometry for absolute thickness metrology and low force probe technology for micrometer feature coordinate metrology.

Seugling, R M; Bono, M J; Davis, P

2009-02-19T23:59:59.000Z

153

Spin-Multiplet Energies from Time-Dependent Density-Functional Theory  

E-Print Network [OSTI]

Spin-Multiplet Energies from Time-Dependent Density-Functional Theory M. Petersilka and E, density-functional theory (DFT) [1, 2, 3, 4, 5] has enjoyed increas- ing popularity in the #12;eld energies which is based on time-dependent density- functional theory (TDDFT) [26]. In the linear response

Gross, E.K.U.

154

Collective coordinates for nuclear spectral densities in energy transfer and femtosecond spectroscopy of molecular aggregates  

E-Print Network [OSTI]

Collective coordinates for nuclear spectral densities in energy transfer and femtosecond collective nuclear coordinates necessary to represent a given set of spectral densities is obtained coordinates phase space. The signatures of excitonic and nuclear motions in ultrafast fluorescence

Mukamel, Shaul

155

Building A Universal Nuclear Energy Density Functional (UNEDF)  

SciTech Connect (OSTI)

During the period of Dec. 1 2006 â?? Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.

Carlson, Joe, Los Alamos National Laboratory, Los Alamos, NM; Furnstahl, Dick, Ohio State University, Columbus, OH; Horoi, Mihai, Central Michigan University, Mount Pleasant, MI; Lusk, Rusty, Argonne National Laboratory, Argonne, IL; Nazarewicz, Witek, University of Tennessee, Knoxville, TN; Ng, Esmond, Berkeley National Laboratory, Berkeley, CA; Thompson, Ian, Lawrence Livermore National Laboratory, Livermore, CA; Vary, James, Iowa State University, Ames, Iowa

2012-09-30T23:59:59.000Z

156

Upgrading of biorenewables to high energy density fuels  

SciTech Connect (OSTI)

According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.

Gordon, John C [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Chen, Weizhong [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Dirmyer, Matthew R [Los Alamos National Laboratory; John, Kevin D [Los Alamos National Laboratory; Kim, Jin K [Los Alamos National Laboratory; Keith, Jason [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Pierpont, Aaron W [Los Alamos National Laboratory; Silks Ill, L. A. "" Pete [Los Alamos National Laboratory; Smythe, Mathan C [Los Alamos National Laboratory; Sutton, Andrew D [Los Alamos National Laboratory; Taw, Felicia L [Los Alamos National Laboratory; Trovitch, Ryan J [Los Alamos National Laboratory; Vasudevan, Kalyan V [Los Alamos National Laboratory; Waidmann, Christopher R [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Baker, R. Thomas [UNIV OF OTTAWWA; Schlaf, Marcel [UNIV OF GUELPH

2010-12-07T23:59:59.000Z

157

Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei  

E-Print Network [OSTI]

The Skyrme energy-density functional approach has been extended to study the massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parameterized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with $Z_1Z_2fusion reactions, for example, the $^{238}$U-induced reactions and $^{48}$Ca+$^{208}$Pb the capture excitation functions have been reproduced remarkable well. The influence of structure effects in the reaction partners on the capture cross sections are studied with our parameterized barrier distribution. Through comparing the reactions induced by double-magic nucleus $^{48}$Ca and by $^{32}$S and $^{35}$Cl, the 'threshold-like' behavior in the capture excitation function for $^{48}$Ca induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with $^{36}$S, $^{37}$Cl, $^{48}$Ca and $^{50}$Ti bombarding on $^{248}$Cm, $^{247,249}$Bk, $^{250,252,254}$Cf and $^{252,254}$Es, and as well as the reactions lead to the same compound nucleus with Z=120 and N=182 are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

Ning Wang; Xizhen Wu; Zhuxia Li; Min Liu; Werner Scheid

2006-09-18T23:59:59.000Z

158

Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei  

SciTech Connect (OSTI)

The Skyrme energy-density functional approach has been extended to study massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parametrized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with Z{sub 1}Z{sub 2}<1200. For the massive fusion reactions, for example, the {sup 238}U-induced reactions and {sup 48}Ca+{sup 208}Pb, the capture excitation functions have been reproduced remarkably well. The influence of structure effects in the reaction partners on the capture cross sections is studied with our parametrized barrier distribution. By comparing the reactions induced by double-magic nucleus {sup 48}Ca and by {sup 32}S and {sup 35}Cl, the ''threshold-like'' behavior in the capture excitation function for {sup 48}Ca-induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with {sup 36}S, {sup 37}Cl, {sup 48}Ca, and {sup 50}Ti bombarding {sup 248}Cm, {sup 247,249}Bk, {sup 250,252,254}Cf, and {sup 252,254}Es, as well as the reactions leading to the same compound nucleus with Z=120 and N=182, are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

Wang Ning; Scheid, Werner [Institute for Theoretical Physics at Justus-Liebig-University, D-35392 Giessen (Germany); Wu Xizhen; Liu Min [China Institute of Atomic Energy, Beijing 102413 (China); Li Zhuxia [China Institute of Atomic Energy, Beijing 102413 (China); Institute of Theoretical Physics, Chinese Academic of Science, Beijing 100080 (China); Nuclear Theory Center of National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China)

2006-10-15T23:59:59.000Z

159

Reliability of Bioelectrical Impedance Analysis for Estimating Whole-Fish Energy Density and Percent Lipids  

E-Print Network [OSTI]

Reliability of Bioelectrical Impedance Analysis for Estimating Whole-Fish Energy Density impedance analysis (BIA) as a nonlethal means of predicting energy density and percent lipids for three fish. Although models that combined BIA measures with fish wet mass provided strong predictions of total energy

160

Negative Energy Density States for the Dirac Field in Flat Spacetime  

E-Print Network [OSTI]

Negative energy densities in the Dirac field produced by state vectors that are the superposition of two single particle electron states are examined. I show that for such states the energy density of the field is not bounded from below and that the quantum inequalities derived for scalar fields are satisfied. I also show that it is not possible to produce negative energy densities in a scalar field using state vectors that are arbitrary superpositions of single particle states.

Dan N. Vollick

1998-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Subsystem functionals in density-functional theory: Investigating the exchange energy per particle R. Armiento*  

E-Print Network [OSTI]

Subsystem functionals in density-functional theory: Investigating the exchange energy per particle; published 31 October 2002 A viable way of extending the successful use of density-functional theory for slowly varying densities and discuss the implications of our findings on the future of functional

Armiento, Rickard

162

Introduction to Density Functional Theory and Exchange-Correlation Energy Functionals  

E-Print Network [OSTI]

Introduction to Density Functional Theory and Exchange-Correlation Energy Functionals R. O. Jones.jones@fz-juelich.de Density functional calculations of cohesive and structural properties of molecules and solids can the theory and discuss the local density approximations basic to most applications, and we discuss ways

163

The Impact of Neighbourhood Density on the Energy Demand of Passive Houses and on Potential Energy Sources from the Waste Flows and Solar Energy.  

E-Print Network [OSTI]

??This study demonstrates how the density of a neighbourhood affects its energy demand, metabolism (energy and material flows) and its ability to produce its own… (more)

Stupka, Robert

2011-01-01T23:59:59.000Z

164

Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics  

E-Print Network [OSTI]

The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system ...

Pilawa-Podgurski, R. C. N.

165

Curvature and Frontier Orbital Energies in Density Functional Theory Tamar Stein,  

E-Print Network [OSTI]

Curvature and Frontier Orbital Energies in Density Functional Theory Tamar Stein, Jochen Autschbach the frontier, highest occupied (HOMO), and lowest unoccupied (LUMO) Kohn-Sham (KS) orbital energies (OEs

Baer, Roi

166

On the breaking and restoration of symmetries within the nuclear energy density functional formalism  

E-Print Network [OSTI]

We review the notion of symmetry breaking and restoration within the frame of nuclear energy density functional methods. We focus on key differences between wave-function- and energy-functional-based methods. In particular, we point to difficulties encountered within the energy functional framework and discuss new potential constraints on the underlying energy density functional that could make the restoration of broken symmetries better formulated within such a formalism. We refer to Ref.~\\cite{duguet10a} for details.

T. Duguet; J. Sadoudi

2010-10-19T23:59:59.000Z

167

Kaon condensation in neutron stars and high density behaviour of nuclear symmetry energy  

E-Print Network [OSTI]

We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases.

S. Kubis; M. Kutschera

1999-07-24T23:59:59.000Z

168

Probability-density function for energy perturbations of isolated optical pulses  

E-Print Network [OSTI]

Probability-density function for energy perturbations of isolated optical pulses C. J. Mc to determine the probability-density function (PDF) for noise-induced energy perturbations of isolated (solitary) optical pulses in fiber communication systems. The analytical formula is consistent

Lakoba, Taras I.

169

Constraints on the density dependence of the symmetry energy from heavy ion collisions  

E-Print Network [OSTI]

Constraints on the Equation of State for symmetric matter (equal neutron and proton numbers) have been extracted from energetic collisions of heavy ions over a range of energies. Collisions of neutron-deficient and neutron-rich heavy ions now provide initial constraints on the EoS of neutron-rich matter at sub-saturation densities from isospin diffusions and neutron proton ratios. This article reviews the experimental constraints on the density dependence of Symmetry Energy at sub-saturation density.

Tsang, M B; Coupland, D; Danielewicz, P; Famiano, F; Hodges, R; Kilburn, M; Lu, F; Lynch, W G; Winkelbauer, J; Youngs, M; Zhang, YingXun

2011-01-01T23:59:59.000Z

170

Constraints on the density dependence of the symmetry energy from heavy ion collisions  

E-Print Network [OSTI]

Constraints on the Equation of State for symmetric matter (equal neutron and proton numbers) have been extracted from energetic collisions of heavy ions over a range of energies. Collisions of neutron-deficient and neutron-rich heavy ions now provide initial constraints on the EoS of neutron-rich matter at sub-saturation densities from isospin diffusions and neutron proton ratios. This article reviews the experimental constraints on the density dependence of Symmetry Energy at sub-saturation density.

M. B. Tsang; Z. Chajecki; D. Coupland; P. Danielewicz; F. Famiano; R. Hodges; M. Kilburn; F. Lu; W. G. Lynch; J. Winkelbauer; M. Youngs; YingXun Zhang

2011-01-19T23:59:59.000Z

171

Free energies, vacancy concentrations and density distribution anisotropies in hard--sphere crystals: A combined density functional and simulation study  

E-Print Network [OSTI]

We perform a comparative study of the free energies and the density distributions in hard sphere crystals using Monte Carlo simulations and density functional theory (employing Fundamental Measure functionals). Using a recently introduced technique (Schilling and Schmid, J. Chem. Phys 131, 231102 (2009)) we obtain crystal free energies to a high precision. The free energies from Fundamental Measure theory are in good agreement with the simulation results and demonstrate the applicability of these functionals to the treatment of other problems involving crystallization. The agreement between FMT and simulations on the level of the free energies is also reflected in the density distributions around single lattice sites. Overall, the peak widths and anisotropy signs for different lattice directions agree, however, it is found that Fundamental Measure theory gives slightly narrower peaks with more anisotropy than seen in the simulations. Among the three types of Fundamental Measure functionals studied, only the White Bear II functional (Hansen-Goos and Roth, J. Phys.: Condens. Matter 18, 8413 (2006)) exhibits sensible results for the equilibrium vacancy concentration and a physical behavior of the chemical potential in crystals constrained by a fixed vacancy concentration.

M. Oettel; S. Goerig; A. Haertel; H. Loewen; M. Radu; T. Schilling

2010-09-03T23:59:59.000Z

172

Energy density functional analysis of shape coexistence in {sup 44}S  

SciTech Connect (OSTI)

The structure of low-energy collective states in the neutron-rich nucleus {sup 44}S is analyzed using a microscopic collective Hamiltonian model based on energy density functionals (EDFs). The calculated triaxial energy map, low-energy spectrum and corresponding probability distributions indicate a coexistence of prolate and oblate shapes in this nucleus.

Li, Z. P.; Yao, J. M.; Vretenar, D.; Niksic, T.; Meng, J. [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Physics Department, Faculty of Science, University of Zagreb (Croatia); State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China)

2012-10-20T23:59:59.000Z

173

Determining the density dependence of the nuclear symmetry energy using heavy-ion reactions  

E-Print Network [OSTI]

We review recent progress in the determination of the subsaturation density behavior of the nuclear symmetry energy from heavy-ion collisions as well as the theoretical progress in probing the high density behavior of the symmetry energy in heavy-ion reactions induced by high energy radioactive beams. We further discuss the implications of these results for the nuclear effective interactions and the neutron skin thickness of heavy nuclei.

Lie-Wen Chen; Che Ming Ko; Bao-An Li; Gao-Chan Yong

2007-11-12T23:59:59.000Z

174

ESS 2012 Peer Review - Novel High Energy Density Dielectrics...  

Broader source: Energy.gov (indexed) [DOE]

National Laboratories 2012 DOE ESS Peer Review Temperature Energy Response Time Cost New BZT-BT Ceramics Improve upon strengths of ceramics (ripple, temperature) with higher...

175

Soil Density/Moisture Gauge | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational Energy AgencyImpact ofDepartment ofEnergySoil

176

High energy-density water: density functional theory calculations of structure and electrical conductivity.  

SciTech Connect (OSTI)

Knowledge of the properties of water is essential for correctly describing the physics of shock waves in water as well as the behavior of giant planets. By using finite temperature density functional theory (DFT), we have investigated the structure and electronic conductivity of water across three phase transitions (molecular liquid/ ionic liquid/super-ionic/electronic liquid). There is a rapid transition to ionic conduction at 2000 K and 2 g/cm{sup 3} while electronic conduction dominates at temperatures above 6000 K. We predict that the fluid bordering the super-ionic phase is conducting above 4000 K and 100 GPa. Earlier work instead has the super-ionic phase bordering an insulating fluid, with a transition to metallic fluid not until 7000 K and 250 GPa. The tools and expertise developed during the project can be applied to other molecular systems, for example, methane, ammonia, and CH foam. We are now well positioned to treat also complex molecular systems in the HEDP regime of phase-space.

Desjarlais, Michael Paul; Mattsson, Thomas Kjell Rene

2006-03-01T23:59:59.000Z

177

Systematic study of nuclear matrix elements in neutrinoless double-beta decay with a beyond mean-field covariant density functional theory  

E-Print Network [OSTI]

We report a systematic study of nuclear matrix elements (NMEs) in neutrinoless double-beta decays with a state-of-the-art beyond mean-field covariant density functional theory. The dynamic effects of particle-number and angular-momentum conservations as well as quadrupole shape fluctuations are taken into account with projections and generator coordinate method for both initial and final nuclei. The full relativistic transition operator is adopted to calculate the NMEs. The present systematic studies show that in most of the cases there is a much better agreement with the previous non-relativistic calculation based on the Gogny force than in the case of the nucleus $^{150}$Nd found in Song et al. [Phys. Rev. C 90, 054309 (2014)]. In particular, we find that the total NMEs can be well approximated by the pure axial-vector coupling term with a considerable reduction of the computational effort.

J. M. Yao; L. S. Song; K. Hagino; P. Ring; J. Meng

2015-01-29T23:59:59.000Z

178

Isospin coupling-channel decomposition of nuclear symmetry energy in covariant density functional theory  

E-Print Network [OSTI]

The isospin coupling-channel decomposition of the potential energy density functional is carried out within the covariant density functional theory, and their isospin and density dependence in particular the influence on the symmetry energy is studied. It is found that both isospin-singlet and isospin-triplet components of the potential energy play the dominant role in deciding the symmetry energy, especially when the Fock diagram is introduced. The results illustrate a quite different mechanism to the origin of the symmetry energy from the microscopic Brueckner-Hartree-Fock theory, and demonstrate the importance of the Fork diagram in the CDF theory, especially from the isoscalar mesons, in the isospin properties of the in-medium nuclear force at high density.

Qian Zhao; Bao Yuan Sun; Wen Hui Long

2014-11-23T23:59:59.000Z

179

Effects of Electromagnetic Field on Energy Density Inhomogeneity in Self-Gravitating Fluids  

E-Print Network [OSTI]

This paper is devoted to study the effects of electromagnetic field on the energy density inhomogeneity in the relativistic self-gravitating fluids for spherically symmetric spacetime. Two important equations of the Weyl tensor are formulated which help to analyze the energy density inhomogeneity in this scenario. We investigate two types of fluids, i.e., non-dissipative and dissipative. The non-dissipative fluid further includes dust, locally isotropic, and locally anisotropic charged fluids. We explore the effects of different factors on energy density inhomogeneity in all these cases, in particular, the effect of charge.

M. Sharif; Neelum Bashir

2012-09-25T23:59:59.000Z

180

Energy Doubling of 42 GeV Electrons in a Meter-scale Plasma Wakefield Accelerator  

SciTech Connect (OSTI)

The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx} 52GV m{sup -1}. This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.

Blumenfeld, Ian; Clayton, Christopher E.; Decker, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Joshi, Chandrashekhar; Katsouleas,; Kirby, Neil; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

2007-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers  

E-Print Network [OSTI]

The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied.

Min Liu; Ning Wang; Zhuxia Li; Xizhen Wu; Enguang Zhao

2006-01-25T23:59:59.000Z

182

Nuclear Double Beta Decay, Fundamental Particle Physics, Hot Dark Matter, And Dark Energy  

E-Print Network [OSTI]

Nuclear double beta decay, an extremely rare radioactive decay process, is - in one of its variants - one of the most exciting means of research into particle physics beyond the standard model. The large progress in sensitivity of experiments searching for neutrinoless double beta decay in the last two decades - based largely on the use of large amounts of enriched source material in "active source experiments" - has lead to the observation of the occurrence of this process in nature (on a 6.4 sigma level), with the largest half-life ever observed for a nuclear decay process (2.2 x 10^{25} y). This has fundamental consequences for particle physics - violation of lepton number, Majorana nature of the neutrino. These results are independent of any information on nuclear matrix elements (NME)*. It further leads to sharp restrictions for SUSY theories, sneutrino mass, right-handed W-boson mass, superheavy neutrino masses, compositeness, leptoquarks, violation of Lorentz invariance and equivalence principle in the neutrino sector. The masses of light-neutrinos are found to be degenerate, and to be at least 0.22 +- 0.02 eV. This fixes the contribution of neutrinos as hot dark matter to >=4.7% of the total observed dark matter. The neutrino mass determined might solve also the dark energy puzzle. *(It is briefly discussed how important NME for 0nubb decay really are.)

Hans V. Klapdor-Kleingrothaus; Irina V. Krivosheina

2010-07-15T23:59:59.000Z

183

Calculations of free energies in liquid and solid phases: Fundamental measure density-functional approach  

E-Print Network [OSTI]

Calculations of free energies in liquid and solid phases: Fundamental measure density, a theoretical description of the free energies and correlation functions of hard-sphere (HS) liquid and solid-Chandler-Andersen perturbation theory, free energies of liquid and solid phases with many interaction potentials can be obtained

Song, Xueyu

184

High energy density micro plasma bunch from multiple laser interaction with thin target  

SciTech Connect (OSTI)

Three-dimensional particle-in-cell simulation is used to investigate radiation-pressure driven acceleration and compression of small solid-density plasma by intense laser pulses. It is found that multiple impacts by presently available short-pulse lasers on a small hemispheric shell target can create a long-living tiny quasineutral monoenergetic plasma bunch of very high energy density.

Xu, Han [National Laboratory for Parallel and Distributed Processing, College of Computer Science, National University of Defense Technology, Changsha 410073 (China); Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800 (China); Yu, Wei; Luan, S. X.; Xu, Z. Z. [Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800 (China); Yu, M. Y., E-mail: myyu@zju.edu.cn [Physics Department, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, Bochum D-44780 (Germany); Cai, H. B.; Zhou, C. T. [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Yang, X. H.; Yin, Y.; Zhuo, H. B. [College of Science, National University of Defense Technology, Changsha (China); Wang, J. W. [Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800 (China); Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan); Murakami, M. [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan)

2014-01-13T23:59:59.000Z

185

Accelerating the convergence of the total energy evaluation in density functional theory calculations  

E-Print Network [OSTI]

Accelerating the convergence of the total energy evaluation in density functional theory.1063/1.2821101 I. INTRODUCTION Density functional theory DFT ,1,2 one of the most widely used first functional theory OO-DFT B. Zhou and Y. A. Wang, J. Chem. Phys. 124, 081107 2006 is that the second

Wang, Yan Alexander

186

Polymer Electrolytes for High Energy Density Lithium Batteries | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21, 2015 7:00AM09 Class1.pdf

187

Optimization of Polymer-based Nanocomposites for High Energy Density Applications  

E-Print Network [OSTI]

polymers are of interest owing to their high inherent electrical resistance, low dielectric loss, flexibility, light weight, and low cost; however, capacitors produced with dielectric polymers are limited to an energy density of ~1-2 J/cc. Polymer...

Barhoumi Ep Meddeb, Amira

2012-07-16T23:59:59.000Z

188

Battery concepts for high density energy storage: Principles and practice. C. Austen Angell  

E-Print Network [OSTI]

Battery concepts for high density energy storage: Principles and practice. C. Austen Angell Dept such as the lithium-air battery, and the more advanced zinc-air battery in which only the source needs to be "bottled

Angell, C. Austen

189

Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds  

E-Print Network [OSTI]

We compare the accuracy of conventional semilocal density functional theory (DFT), the DFT+U method, and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional for structural parameters, redox reaction energies, and formation ...

Ceder, Gerbrand

190

High Energy Density Li-ion Cells for EVs Based on Novel, High...  

Broader source: Energy.gov (indexed) [DOE]

Storage Systems Vehicle Technologies Annual Merit Review 6182014 1 High Energy Density Li-ion Cells for EV's Based on Novel, High Voltage Cathode Material Systems Keith D. Kepler...

191

High energy density capacitors for power electronic applications using nano-structure multilayer technology  

SciTech Connect (OSTI)

Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

Barbee, T.W. Jr.; Johnson, G.W.

1995-09-01T23:59:59.000Z

192

Report of the Interagency Task Force on High Energy Density Physics  

SciTech Connect (OSTI)

Identifies the needs for improving Federal stewardship of specific aspects of high energy density physics, particularly the study of high energy density plasmas in the laboratory, and strengthening university activities in this latter discipline. The report articulates how HEDP fits into the portfolio of federally funded missions and includes agency actions to be taken that are necessary to further this area of study consistent with Federal priorities and plans, while being responsive to the needs of the scientific community.

None

2007-08-01T23:59:59.000Z

193

An Exact Calculation of the Energy Density of Cosmological Gravitational Waves  

E-Print Network [OSTI]

In this paper we calculate the Bogoliubov coefficients and the energy density of the stochastic gravitational wave background for a universe that undergoes inflation followed by radiation domination and matter domination, using a formalism that gives the Bogoliubov coefficients as continous functions of time. By making a reasonable assumption for the equation of state during reheating, we obtain in a natural way the expected high frequency cutoff in the spectral energy density.

L. E. Mendes; A. B. Henriques; R. G. Moorhouse

1994-10-24T23:59:59.000Z

194

Theoretical Electron Density Distributions for Fe-and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Critical Point Properties, Local Energy Densities,  

E-Print Network [OSTI]

, Biomolecular and Chemical Sciences, UniVersity of Western Australia, Australia ReceiVed: August 7, 2006 between Bond Length, Bond Critical Point Properties, Local Energy Densities, and Bonded Interactions G. V; In Final Form: December 6, 2006 Bond critical point and local energy density properties together with net

Downs, Robert T.

195

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

196

Excitation energies of molecules within time-independent density functional theory  

SciTech Connect (OSTI)

Recently proposed exchange energy functional for excited-states is tested for obtaining excitation energies of diatomic molecules. The functional is the ground-state counterpart of the local-density approximation, the modified local spin density (MLSD). The MLSD functional is tested for the N{sub 2} and CO diatomic molecules. The excitation energy obtained with the MLSD functional for the N{sub 2} molecule is in close vicinity to that obtained from the exact exchange orbital functional, Krieger, Li and Iafrate (KLI). For the CO molecule, the departure in excitation energy is observed and is due to the overcorrection of self-interaction.

Hemanadhan, M., E-mail: hemanadh@iitk.ac.in; Harbola, Manoj K., E-mail: hemanadh@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur-208016 (India)

2014-04-24T23:59:59.000Z

197

High Energy Density Laboratory Plasmas Program | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL

198

The Second Peak: The Dark-Energy Density and the Cosmic Microwave Background  

E-Print Network [OSTI]

Supernova evidence for a negative-pressure dark energy (e.g., cosmological constant or quintessence) that contributes a fraction $\\Omega_\\Lambda\\simeq0.7$ of closure density has been bolstered by the discrepancy between the total density, $\\Omega_{\\rm tot}\\simeq1$, suggested by the location of the first peak in the cosmic microwave background (CMB) power spectrum and the nonrelativistic-matter density $\\Omega_m\\simeq0.3$ obtained from dynamical measurements. Here we show that the impending identification of the location of the {\\it second} peak in the CMB power spectrum will provide an immediate and independent probe of the dark-energy density. As an aside, we show how the measured height of the first peak probably already points toward a low matter density and places upper limits to the reionization optical depth and gravitational-wave amplitude.

Marc Kamionkowski; Ari Buchalter

2000-01-05T23:59:59.000Z

199

Angular Momentum and Energy-Momentum Densities as Gauge Currents  

E-Print Network [OSTI]

If we replace the general spacetime group of diffeomorphisms by transformations taking place in the tangent space, general relativity can be interpreted as a gauge theory, and in particular as a gauge theory for the Lorentz group. In this context, it is shown that the angular momentum and the energy-momentum tensors of a general matter field can be obtained from the invariance of the corresponding action integral under transformations taking place, not in spacetime, but in the tangent space, in which case they can be considered as gauge currents.

M. Calcada; J. G. Pereira

2002-07-11T23:59:59.000Z

200

High Energy Density Laboratory Plasmas | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILLAdministration | National Nuclear Security

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

LANL | Physics | Inertial Confinement Fusion and High Energy Density  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2Recovery Act JobPhysics Inertial

202

Basic Research Needs for High Energy Density Laboratory Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground High the cover: Invisible infrared light

203

Fact #661: February 7, 2011 Population Density | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July 19, 2010Energy 5:Fuelof1:

204

Experimental bond critical point and local energy density properties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100Jefferson LabAuxiliarydetermined for Mn-O,

205

File:Air Density Lab.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy0).pdf Jump to: navigation,Lab.pdf Jump to:

206

Constraints on the inner edge of neutron star crusts from relativistic nuclear energy density functionals  

SciTech Connect (OSTI)

The transition density n{sub t} and pressure P{sub t} at the inner edge between the liquid core and the solid crust of a neutron star are analyzed using the thermodynamical method and the framework of relativistic nuclear energy density functionals. Starting from a functional that has been carefully adjusted to experimental binding energies of finite nuclei, and varying the density dependence of the corresponding symmetry energy within the limits determined by isovector properties of finite nuclei, we estimate the constraints on the core-crust transition density and pressure of neutron stars: 0.086 fm{sup -3}<=n{sub t}<0.090 fm{sup -3} and 0.3 MeV fm{sup -3}

Moustakidis, Ch. C.; Lalazissis, G. A. [Department of Theoretical Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Niksic, T. [Physics Department, Faculty of Science, University of Zagreb, HR-10000 Zagreb (Croatia); Vretenar, D. [Physics Department, Faculty of Science, University of Zagreb, HR-10000 Zagreb (Croatia); Physik-Department der Technischen Universitaet Muenchen, D-85748 Garching (Germany); Ring, P. [Physik-Department der Technischen Universitaet Muenchen, D-85748 Garching (Germany)

2010-06-15T23:59:59.000Z

207

Spectroscopic properties of nuclear Skyrme energy density functionals  

E-Print Network [OSTI]

We address the question of how to improve the agreement between theoretical nuclear single-particle energies (SPEs) and experiment. Empirically, in doubly magic nuclei, the SPEs can be deduced from spectroscopic properties of odd nuclei that have one more, or one less neutron or proton. Theoretically, bare SPEs, before being confronted with experiment, must be corrected for the effects of the particle-vibration-coupling (PVC). In the present work, we determine the PVC corrections in a fully self-consistent way. Then, we adjust the SPEs, with PVC corrections included, to empirical data. In this way, the agreement with experiment, on average, improves; nevertheless, large discrepancies still remain. We conclude that the main source of disagreement is still in the underlying mean fields, and not in including or neglecting the PVC corrections.

D. Tarpanov; J. Dobaczewski; J. Toivanen; B. G. Carlsson

2014-11-27T23:59:59.000Z

208

Proceedings of the third international seminar on double layer capacitors and similar energy storage devices. Volume 3  

SciTech Connect (OSTI)

This book contains the papers presented at the Third International Seminar on Double Layer Capacitors and Similar Energy Storage Devices in December, 1993. The topics of the papers include basic electrochemical principles, testing of ultracapacitors and systems for application in electric powered vehicles, performance of capacitors, materials used in supercapacitors, and reliability of supercapacitors.

Not Available

1993-01-01T23:59:59.000Z

209

A Double-Deletion Method to Quantifying Incremental Binding Energies in Proteins from Experiment: Example of a Destabilizing Hydrogen  

E-Print Network [OSTI]

A Double-Deletion Method to Quantifying Incremental Binding Energies in Proteins from Experiment: Example of a Destabilizing Hydrogen Bonding Pair Luis A. Campos,*y Santiago Cuesta-Lo´pez,*z Jon Lo of a specific hydrogen bond in apoflavodoxin to protein stability is investigated by combining theory

Sancho, Javier

210

Present and future perspectives for high energy density physics with intense heavy ion and laser beams  

E-Print Network [OSTI]

Present and future perspectives for high energy density physics with intense heavy ion and laser18, deliver an intense uranium beam that deposit about 1 kJ0g specific energy in solid matter. Using 2004! Abstract Intense heavy ion beams from the Gesellschaft für Schwerionenforschung ~GSI, Darmstadt

211

Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density  

SciTech Connect (OSTI)

The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

Bake, Muhammad Ali; Xie Baisong [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Shan Zhang [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Hong Xueren [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Hongyu [Department of Physics, Anshan Normal University, Anshan 114005 (China); Shanghai Bright-Tech Information Technology Co. Ltd, Shanghai 200136 (China)

2012-08-15T23:59:59.000Z

212

Towards a Microscopic Reaction Description Based on Energy Density Functionals  

SciTech Connect (OSTI)

A microscopic calculation of reaction cross sections for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all particle-hole excitations in the target and one-nucleon pickup channels. The particle-hole states may be regarded as doorway states through which the flux flows to more complicated configurations, and subsequently to long-lived compound nucleus resonances. Target excitations for {sup 40,48}Ca, {sup 58}Ni, {sup 90}Zr and {sup 144}Sm were described in a random-phase framework using a Skyrme functional. Reaction cross sections obtained agree very well with experimental data and predictions of a state-of-the-art fitted optical potential. Couplings between inelastic states were found to be negligible, while the pickup channels contribute significantly. The effect of resonances from higher-order channels was assessed. Elastic angular distributions were also calculated within the same method, achieving good agreement with experimental data. For the first time observed absorptions are completely accounted for by explicit channel coupling, for incident energies between 10 and 70 MeV, with consistent angular distribution results.

Nobre, G A; DIetrich, F S; Escher, J E; Thompson, I J; Dupuis, M; Terasaki, J; Engel, J

2011-09-26T23:59:59.000Z

213

Bounds on the energy densities of ground states on static spacetimes of compact objects  

E-Print Network [OSTI]

In this paper we investigate quantum fields propagating on given, static, spherically symmetric spacetimes, which are isometric to a part of the Schwarzschild spacetime. Without specifying the internal geometry we show, that there exist bounds on the energy densities of ground states of a quantum scalar field on such spacetimes. The bounds (from above and below) come from the so-called Quantum Energy Inequalities, and are centered around the energy density of the Boulware state (the ground state for Schwarzschild spacetime). The specific value of the bound from below depends critically on the distance $\\ell$ from the horizon, where the spacetimes of compact objects cease to be isometric to the Schwarzschild spacetime. In the limit of small $\\ell$ we prove, that the energy densities of ground states cannot be below the Boulware level.

P. Marecki

2005-07-20T23:59:59.000Z

214

Passive tailoring of laser-accelerated ion beam cut-off energy by using double foil assembly  

SciTech Connect (OSTI)

A double foil assembly is shown to be effective in tailoring the maximum energy produced by a laser-accelerated proton beam. The measurements compare favorably with adiabatic expansion simulations, and particle-in-cell simulations. The arrangement proposed here offers for some applications a simple and passive way to utilize simultaneously highest irradiance lasers that have best laser-to-ion conversion efficiency while avoiding the production of undesired high-energy ions.

Chen, S. N., E-mail: sophia.chen@polytechnique.edu; Brambrink, E.; Mancic, A.; Romagnani, L.; Audebert, P.; Fuchs, J., E-mail: julien.fuchs@polytechnique.fr [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-École Polytechnique-Université Paris VI, Palaiseau (France); Robinson, A. P. L. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Antici, P. [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-École Polytechnique-Université Paris VI, Palaiseau (France) [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-École Polytechnique-Université Paris VI, Palaiseau (France); Dipartimento SBAI, Università di Roma « La Sapienza », Via Scarpa 14-16, 00165 Roma (Italy); INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec (Canada); D'Humières, E. [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States) [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States); Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France); University of Bordeaux—CNRS—CEA, CELIA, UMR5107, 33405 Talence (France); Gaillard, S. [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States)] [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States); Grismayer, T.; Mora, P. [Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France)] [Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France); Pépin, H. [INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec (Canada)] [INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec (Canada)

2014-02-15T23:59:59.000Z

215

Role of exchange in density-functional theory for weakly interacting systems: Quantum Monte Carlo analysis of electron density and interaction energy  

E-Print Network [OSTI]

We analyze the density-functional theory (DFT) description of weak interactions by employing diffusion and reptation quantum Monte Carlo (QMC) calculations, for a set of benzene-molecule complexes. While the binding energies ...

Grossman, Jeffrey C.

216

A density theorem for asymptotically hyperbolic initial data satisfying the dominant energy condition  

E-Print Network [OSTI]

When working with asymptotically hyperbolic initial data sets for general relativity it is convenient to assume certain simplifying properties. We prove that the subset of initial data with such properties is dense in the set of physically reasonable asymptotically hyperbolic initial data sets. More specifically, we show that an asymptotically hyperbolic initial data set with non-negative local energy density can be approximated by an initial data set with strictly positive local energy density and a simple structure at infinity, while changing the mass arbitrarily little. The argument follows an argument used by Eichmair, Huang, Lee, and Schoen in the asymptotically Euclidean case.

Dahl, Mattias

2015-01-01T23:59:59.000Z

217

Free energy density for mean field perturbation of states of a one-dimensional spin chain  

E-Print Network [OSTI]

Motivated by recent developments on large deviations in states of the spin chain, we reconsider the work of Petz, Raggio and Verbeure in 1989 on the variational expression of free energy density in the presence of a mean field type perturbation. We extend their results from the product state case to the Gibbs state case in the setting of translation-invariant interactions of finite range. In the special case of a locally faithful quantum Markov state, we clarify the relation between two different kinds of free energy densities (or pressure functions).

Fumio Hiai; Milan Mosonyi; Hiromichi Ohno; Denes Petz

2008-01-26T23:59:59.000Z

218

Quasi-local-density approximation for a van der Waals energy functional  

E-Print Network [OSTI]

We discuss a possible form for a theory akin to local density functional theory, but able to produce van der Waals energies in a natural fashion. The usual Local Density Approximation (LDA) for the exchange and correlation energy $E_{xc}$ of an inhomogeneous electronic system can be derived by making a quasilocal approximation for the {\\it interacting} density-density response function $\\chi (\\vec{r},\\vec{r} ^{\\prime},\\omega)$, then using the fluctuation-dissipation theorem and a Feynman coupling-constant integration to generate $E_{xc}$. The first new idea proposed here is to use the same approach except that one makes a quasilocal approximation for the {\\it bare} response $\\chi ^{0}$, rather than for $\\chi $. The interacting response is then obtained by solving a nonlocal screening integral equation in real space. If the nonlocal screening is done at the time-dependent Hartree level, then the resulting energy is an approximation to the full inhomogeneous RPA energy: we show here that the inhomogeneous RPA correlation energy contains a van der Waals term for the case of widely-separated neutral subsystems. The second new idea is to use a particularly simple way of introducing LDA-like local field corrrections into the screening equations, giving a theory which should remain reasonable for all separations of a pair of subsystems, encompassing both the van der Waals limit much as in RPA and the bonding limit much as in LDA theory.

John F. Dobson

2003-11-17T23:59:59.000Z

219

Energy Aware Self-Organizing Density Management in Wireless Sensor Networks  

E-Print Network [OSTI]

Energy consumption is the most important factor that determines sensor node lifetime. The optimization of wireless sensor network lifetime targets not only the reduction of energy consumption of a single sensor node but also the extension of the entire network lifetime. We propose a simple and adaptive energy-conserving topology management scheme, called SAND (Self-Organizing Active Node Density). SAND is fully decentralized and relies on a distributed probing approach and on the redundancy resolution of sensors for energy optimizations, while preserving the data forwarding and sensing capabilities of the network. We present the SAND's algorithm, its analysis of convergence, and simulation results. Simulation results show that, though slightly increasing path lengths from sensor to sink nodes, the proposed scheme improves significantly the network lifetime for different neighborhood densities degrees, while preserving both sensing and routing fidelity.

Merrer, Erwan Le; Kermarrec, Anne-Marie; Viana, Aline; Bertier, Marin

2008-01-01T23:59:59.000Z

220

Heavy quark free energies and screening at finite temperature and density  

E-Print Network [OSTI]

We study the free energies of heavy quarks calculated from Polyakov loop correlation functions in full 2-flavour QCD using the p4-improved staggered fermion action. A small but finite Baryon number density is included via Taylor expansion of the fermion determinant in the Baryo-chemical potential mu. For temperatures above Tc we extract Debye screening masses from the large distance behaviour of the free energies and compare their mu-dependence to perturbative results.

M. Doring; S. Ejiri; O. Kaczmarek; F. Karsch; E. Laermann

2005-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Configuration mixing within the energy density functional formalism: pathologies and cures  

E-Print Network [OSTI]

Configuration mixing calculations performed in terms of the Skyrme/Gogny Energy Density Functional (EDF) rely on extending the Single-Reference energy functional into non-diagonal EDF kernels. The standard way to do so, based on an analogy with the pure Hamiltonian case and the use of the generalized Wick theorem, is responsible for the recently observed divergences and steps in Multi-Reference calculations. We summarize here the minimal solution to this problem recently proposed [Lacroix et al, arXiv:0809.2041] and applied with success to particle number restoration[Bender et al, arXiv:0809.2045]. Such a regularization method provides suitable corrections of pathologies for EDF depending on integer powers of the density. The specific case of fractional powers of the density[Duguet et al, arXiv:0809.2049] is also discussed.

Denis Lacroix; Michael Bender; Thomas Duguet

2008-11-17T23:59:59.000Z

222

Stochastic thermodynamics of fluctuating density fields: Non-equilibrium free energy differences under coarse-graining  

SciTech Connect (OSTI)

We discuss the stochastic thermodynamics of systems that are described by a time-dependent density field, for example, simple liquids and colloidal suspensions. For a time-dependent change of external parameters, we show that the Jarzynski relation connecting work with the change of free energy holds if the time evolution of the density follows the Kawasaki-Dean equation. Specifically, we study the work distributions for the compression and expansion of a two-dimensional colloidal model suspension implementing a practical coarse-graining scheme of the microscopic particle positions. We demonstrate that even if coarse-grained dynamics and density functional do not match, the fluctuation relations for the work still hold albeit for a different, apparent, change of free energy.

Leonard, T.; Lander, B.; Seifert, U. [II. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany)] [II. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Speck, T. [Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany)] [Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany)

2013-11-28T23:59:59.000Z

223

Dual-energy synchrotron X ray measurements of rapid soil density and water content changes in swelling soils  

E-Print Network [OSTI]

Dual-energy synchrotron X ray measurements of rapid soil density and water content changes content and bulk density. A number of studies have used dual-energy gamma rays to investigate soil in moisture content and soil swelling shortly after infiltration is initiated. In this paper, we use the dual-energy

Walter, M.Todd

224

vol. 155, no. 2 the american naturalist february 2000 Energy, Density, and Constraints to Species Richness: Ant  

E-Print Network [OSTI]

. This supports the energy limitation hypothesis' assumption that average population densities are highervol. 155, no. 2 the american naturalist february 2000 Energy, Density, and Constraints to Species in a given time and space. The energy limitation hy- pothesis links the species richness of consumer taxa

Kaspari, Mike

225

Relativistic energy density functionals: Low-energy collective states of {sup 240}Pu and {sup 166}Er  

SciTech Connect (OSTI)

The empirical relativistic density-dependent, point-coupling energy density functional, adjusted exclusively to experimental binding energies of a large set of deformed nuclei with Aapprox =150-180 and Aapprox =230-250, is tested with spectroscopic data for {sup 166}Er and {sup 240}Pu. Starting from constrained self-consistent triaxial relativistic Hartree-Bogoliubov calculations of binding energy maps as functions of the quadrupole deformation in the beta-gamma plane, excitation spectra and E2 transition probabilities are calculated as solutions of the corresponding microscopic collective Hamiltonian in five dimensions for quadrupole vibrational and rotational degrees of freedom and compared with available data on low-energy collective states.

Li, Z. P. [Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia); State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Niksic, T.; Vretenar, D. [Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia); Ring, P. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Physik-Department der Technischen Universitaet Muenchen, D-85748 Garching (Germany); Meng, J. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China)

2010-06-15T23:59:59.000Z

226

High energy density, thin-lm, rechargeable lithium batteries for marine eld operations  

E-Print Network [OSTI]

High energy density, thin-®lm, rechargeable lithium batteries for marine ®eld operations Biying February 2001 Abstract All solid state, thin-®lm batteries with the cell con®guration of VOx, no binder) cathode consisted of a dense ®lm of vanadium oxide (200 nm thick), deposited on aluminum foil

Sadoway, Donald Robert

227

Defect transition energies and the density of electronic states in hydrogenated amorphous silicon  

E-Print Network [OSTI]

-Si:H. The data allow us to determine the dominant ra- diative transitions and the corresponding positionsDefect transition energies and the density of electronic states in hydrogenated amorphous silicon G of Utah, Salt Lake City, UT 84112, USA Abstract Using photoluminescence excitation (PLE) spectroscopy, we

Tolk, Norman H.

228

PLASMA FOCUSING OF HIGH ENERGY DENSITY ELECTRON AND POSITRON BEAMS \\Lambda  

E-Print Network [OSTI]

PLASMA FOCUSING OF HIGH ENERGY DENSITY ELECTRON AND POSITRON BEAMS \\Lambda J.S.T. Ng, P. Chen, W, for the first time, positron beams. We also discuss measure­ ments on plasma lens­induced synchrotron radiation and laser­ and beam­plasma interactions. 1 INTRODUCTION The plasma lens was proposed as a final focusing

229

Density dependence of the symmetry energy from neutron skin thickness in finite nuclei  

SciTech Connect (OSTI)

The density dependence of the symmetry energy, characterized by the parameter L, is studied using information provided by the neutron skin thickness in finite nuclei. An estimate of L is obtained from experimental data of antiprotonic atoms. We also discuss the ability of parity violating electron scatering to obtain information about the neutron skin thickness in {sup 208}Pb.

Vinas, X.; Centelles, M.; Roca-Maza, X.; Warda, M. [Departament d'Estructura i Conastituents de la Materia and Institut de Ciencies del Cosmos, Facultat de Fisica, Universitat de Barcelona, Marti i Franques 1, 08028, Barcelona (Spain); Instituto Nazionale di Fisica Nucleare, Sezione di Milano , Via Celoria 16, I-20133 Milano (Italy); Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie-Skodowskiej ul. Radziszewskiego 10, 20-031 Lublin (Poland)

2012-10-20T23:59:59.000Z

230

On a HeleShaw type domain evolution with convected surface energy density  

E-Print Network [OSTI]

generalizes surface­tension driven Hele­Shaw flow to the case of non­ constant surface tension coe#cient taken the surface tension coe#cient degenerates. The problem is reformulated as a vector­valued, degenerate variations of the surface energy density (corresponding to the surface tension coe#cient #) on surface

Eindhoven, Technische Universiteit

231

GAS PUFF FUELED H-MODE DISCHARGES WITH GOOD ENERGY CONFINEMENT ABOVE THE GREENWALD DENSITY LIMIT ON DIII-D  

SciTech Connect (OSTI)

A261. GAS PUFF FUELED H-MODE DISCHARGES WITH GOOD ENERGY CONFINEMENT ABOVE THE GREENWALD DENSITY LIMIT ON DIII-D

T.H. OSBORNE; A.W. LEONARD; M.A. MAHDAVI; M.S. CHU; M.E. FENSTERMACHER; R.J. LA HAYE; G.R. McKEE; T.W. PETRIE; E.J. DOYLE; G.M. STAEBLER; M.R. WADE

2000-11-01T23:59:59.000Z

232

Sulfurized activated carbon for high energy density supercapacitors Yunxia Huang a,b  

E-Print Network [OSTI]

electric double layer capacitors (EDLCs) or pseudo-capacitors. The former is based on the accumulation

Cao, Guozhong

233

Further Study on the Conservation Laws of Energy-momentum Tensor Density for a Gravitational System  

E-Print Network [OSTI]

The various methods to derive Einstein conservation laws and the relevant definitions of energy-momentum tensor density for gravitational fields are studied in greater detail. It is shown that these methods are all equivalent. The study on the identical and different characteristics between Lorentz and Levi-Civita conservation laws and Einstein conservation laws is thoroughly explored. Whether gravitational waves carry the energy-momentum is discussed and some new interpretations for the energy exchanges in the gravitational systems are given. The viewpoint that PSR1913 does not verify the gravitational radiation is confirmed.

Chen Fang-Pei

2008-05-21T23:59:59.000Z

234

Randomized, Double-Blinded, Placebo-Controlled, Trial of Risedronate for the Prevention of Bone Mineral Density Loss in Nonmetastatic Prostate Cancer Patients Receiving Radiation Therapy Plus Androgen Deprivation Therapy  

SciTech Connect (OSTI)

Purpose: Androgen deprivation therapy (ADT) has been used as an adjuvant treatment to radiation therapy (RT) for the management of locally advanced prostate carcinoma. Long-term ADT decreases bone mineral density (BMD) and increases the risk of osteoporosis. The objective of this clinical trial was to evaluate the efficacy of risedronate for the prevention of BMD loss in nonmetastatic prostate cancer patients undergoing RT plus 2 to 3 years of ADT. Methods and Materials: A double-blinded, placebo-controlled, randomized trial was conducted for nonmetastatic prostate cancer patients receiving RT plus 2 to 3 years of ADT. All had T scores > ?2.5 on dual energy x-ray absorptiometry at baseline. Patients were randomized 1:1 between risedronate and placebo for 2 years. The primary endpoints were the percent changes in the BMD of the lumbar spine at 1 and 2 years from baseline, measured by dual energy x-ray absorptiometry. Analyses of the changes in BMD and bone turnover biomarkers were carried out by comparing mean values of the intrapatient changes between the 2 arms, using standard t tests. Results: One hundred four patients were accrued between 2004 and 2007, with 52 in each arm. Mean age was 66.8 and 67.5 years for the placebo and risedronate, respectively. At 1 and 2 years, mean (±SE) BMD of the lumbar spine decreased by 5.77% ± 4.66% and 13.55% ± 6.33%, respectively, in the placebo, compared with 0.12% ± 1.29% at 1 year (P=.2485) and 0.85% ± 1.56% (P=.0583) at 2 years in the risedronate. The placebo had a significant increase in serum bone turnover biomarkers compared with the risedronate. Conclusions: Weekly oral risedronate prevented BMD loss at 2 years and resulted in significant suppression of bone turnover biomarkers for 24 months for patients receiving RT plus 2 to 3 years of ADT.

Choo, Richard [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)] [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Lukka, Himu [Department of Radiation Oncology, Juravinski Cancer Center, McMaster University, Hamilton (Canada)] [Department of Radiation Oncology, Juravinski Cancer Center, McMaster University, Hamilton (Canada); Cheung, Patrick [Department of Radiation Oncology, Odette Cancer Centre, University of Toronto, Toronto (Canada)] [Department of Radiation Oncology, Odette Cancer Centre, University of Toronto, Toronto (Canada); Corbett, Tom [Department of Radiation Oncology, Juravinski Cancer Center, McMaster University, Hamilton (Canada)] [Department of Radiation Oncology, Juravinski Cancer Center, McMaster University, Hamilton (Canada); Briones-Urbina, Rosario [Department of Medicine, Women's College Hospital, University of Toronto, Toronto (Canada)] [Department of Medicine, Women's College Hospital, University of Toronto, Toronto (Canada); Vieth, Reinhold [Departments of Nutritional Sciences and Laboratory Medicine and Pathology, Mount Sinai Hospital, University of Toronto, Toronto (Canada)] [Departments of Nutritional Sciences and Laboratory Medicine and Pathology, Mount Sinai Hospital, University of Toronto, Toronto (Canada); Ehrlich, Lisa [Department of Radiology, Sunnybrook Health Sciences Center, University of Toronto (Canada)] [Department of Radiology, Sunnybrook Health Sciences Center, University of Toronto (Canada); Kiss, Alex [Department of Health Policy, Management, and Evaluation, Sunnybrook Health Sciences Center, University of Toronto, Toronto (Canada)] [Department of Health Policy, Management, and Evaluation, Sunnybrook Health Sciences Center, University of Toronto, Toronto (Canada); Danjoux, Cyril, E-mail: Cyril.danjoux@sunnybrook.ca [Department of Radiation Oncology, Odette Cancer Centre, University of Toronto, Toronto (Canada)] [Department of Radiation Oncology, Odette Cancer Centre, University of Toronto, Toronto (Canada)

2013-04-01T23:59:59.000Z

235

Measurements of continuous mix evolution in a high energy density shear flow  

SciTech Connect (OSTI)

We report on the novel integration of streaked radiography into a counter-flowing High Energy Density (HED) shear environment that continually measures a growing mix layer of Al separating two low-density CH foams. Measurements of the mix width allow us to validate compressible turbulence models and with streaked imaging, make this possible with a minimal number of experiments on large laser facilities. In this paper, we describe how the HED counter-flowing shear layer is created and diagnosed with streaked radiography. We then compare the streaked data to previous two-dimensional, single frame radiography and radiation hydrodynamic simulations of the experiment with inline compressible turbulent mix models.

Loomis, E., E-mail: loomis@lanl.gov; Doss, F.; Flippo, K.; Fincke, J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-04-15T23:59:59.000Z

236

Accurate Ground-State Energies of Solids and Molecules from Time-Dependent Density-Functional Theory  

E-Print Network [OSTI]

-dissipation theorem with time-dependent density- functional theory. The key ingredient is a renormalization scheme be obtained from time- dependent density-functional theory (TDDFT) through the Dyson equation ð� ¼ KS ð� þ KS density-functional theory (DFT), one needs a rather involved approximation for the xc energy in order

Thygesen, Kristian

237

Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors  

SciTech Connect (OSTI)

We propose a new form of orbital-free (OF) kinetic energy density functional (KEDF) for semiconductors that is based on the Wang-Govind-Carter (WGC99) nonlocal KEDF. We enhance within the latter the semi-local von Weizsäcker KEDF term, which is exact for a single orbital. The enhancement factor we introduce is related to the extent to which the electron density is localized. The accuracy of the new KEDF is benchmarked against Kohn-Sham density functional theory (KSDFT) by comparing predicted energy differences between phases, equilibrium volumes, and bulk moduli for various semiconductors, along with metal-insulator phase transition pressures. We also compare point defect and (100) surface energies in silicon for a broad test of its applicability. This new KEDF accurately reproduces the exact non-interacting kinetic energy of KSDFT with only one additional adjustable parameter beyond the three parameters in the WGC99 KEDF; it exhibits good transferability between semiconducting to metallic silicon phases and between various III-V semiconductors without parameter adjustment. Overall, this KEDF is more accurate than previously proposed OF KEDFs (e.g., the Huang-Carter (HC) KEDF) for semiconductors, while the computational efficiency remains at the level of the WGC99 KEDF (several hundred times faster than the HC KEDF). This accurate, fast, and transferable new KEDF holds considerable promise for large-scale OFDFT simulations of metallic through semiconducting materials.

Shin, Ilgyou [Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009 (United States)] [Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009 (United States); Carter, Emily A., E-mail: eac@princeton.edu [Department of Mechanical and Aerospace Engineering, Program in Applied and Computational Mathematics, and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544-5263 (United States)

2014-05-14T23:59:59.000Z

238

WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA  

E-Print Network [OSTI]

case, the electrons have negative wave energy for 2w ne w wave energy for 2w . > w > 0 nlw/k to the negative wave energy of the electrons. positive

Cary, John R.

2012-01-01T23:59:59.000Z

239

WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA  

E-Print Network [OSTI]

case, the electrons have negative wave energy for 2w ne w wave energy for 2w .w > 0 nl Hence, unstable waves with negative phase velocity,

Cary, John R.

2012-01-01T23:59:59.000Z

240

Energy-density-functional calculations including the proton-neutron mixing  

E-Print Network [OSTI]

We present results of calculations based on the Skyrme energy density functional including the arbitrary mixing between protons and neutrons. In this framework, single-particle states are superpositions of proton and neutron components and the energy density functional is fully invariant with respect to three-dimensional rotations in the isospin space. The isospin of the system is controlled by means of the isocranking method, which carries over the standard cranking approach to the isospin space. We show numerical results of the isocranking calculations performed for isobaric analogue states in the A=14 and $A=40-56$ nuclei. We also present such results obtained for high-isospin states in $^{48}$Cr, with constraints on the isospin implemented by using the augmented Lagrange method.

Koichi Sato; Jacek Dobaczewski; Takashi Nakatsukasa; Wojciech Satu?a

2013-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nuclear energy density functionals: what we can learn about/from their global performance?  

E-Print Network [OSTI]

A short review of recent results on the global performance of covariant energy density functionals is presented. It is focused on the analysis of the accuracy of the description of physical observables of ground and excited states as well as to related theoretical uncertainties. In addition, a global analysis of pairing properties is presented and the impact of pairing on the position of two-neutron drip line is discussed.

A. V. Afanasjev; S. E. Agbemava; D. Ray; P. Ring

2015-01-17T23:59:59.000Z

242

Nuclear energy density functionals: what we can learn about/from their global performance?  

E-Print Network [OSTI]

A short review of recent results on the global performance of covariant energy density functionals is presented. It is focused on the analysis of the accuracy of the description of physical observables of ground and excited states as well as to related theoretical uncertainties. In addition, a global analysis of pairing properties is presented and the impact of pairing on the position of two-neutron drip line is discussed.

Afanasjev, A V; Ray, D; Ring, P

2015-01-01T23:59:59.000Z

243

Maps of the Little Bangs Through Energy Density and Temperature Fluctuations  

E-Print Network [OSTI]

In this letter we propose for the first time to map the heavy-ion collisions at ultra-relativistic energies, similar to the maps of the cosmic microwave background radiation, using fluctuations of energy density and temperature in small phase space bins. We study the evolution of fluctuations at each stage of the collision using an event-by-event hydrodynamic framework. We demonstrate the feasibility of making fluctuation maps from experimental data and its usefulness in extracting considerable information regarding the early stages of the collision and its evolution.

Sumit Basu; Rupa Chatterjee; Basanta K. Nandi; Tapan K. Nayak

2014-05-15T23:59:59.000Z

244

Interacting boson model from energy density functionals: {gamma}-softness and the related topics  

SciTech Connect (OSTI)

A comprehensive way of deriving the Hamiltonian of the interacting boson model (IBM) is described. Based on the fact that the multi-nucleon induced surface deformation in finite nucleus is simulated by effective boson degrees of freedom, the potential energy surface calculated with self-consistent mean-field method employing a given energy density functional (EDF) is mapped onto the IBM analog, and thereby the excitation spectra and transition rates with good symmetry quantum numbers are calculated. Recent applications of the proposed approach are reported: (i) an alternative robust interpretation of the {gamma}-soft nuclei and (ii) shape coexistence in lead isotopes.

Nomura, K. [Institut fuer Kernphysik, Universitaet zu Koeln, D-50937 Koeln (Germany)

2012-10-20T23:59:59.000Z

245

Energy density and volume expansion in solid-liquid phase change, for energy applications.  

E-Print Network [OSTI]

?? Phase change materials (PCMs) have long been studied as thermal energy storage media. However, the Swedish company, Exencotech AB, reaching beyond this usual scope… (more)

Pan, Ruijun

2013-01-01T23:59:59.000Z

246

Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels  

SciTech Connect (OSTI)

HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

None

2012-01-09T23:59:59.000Z

247

Infrared and visible laser double resonance studies of vibrational energy transfer processes in polyatomic molecules  

SciTech Connect (OSTI)

We have purchased a new probe laser (Nitrogen laser pumped dye laser) from Laser Photonics for use in this project. The new laser is already installed and tested with several dyes. We have acquired two frequency doubling crystals, KDP and BBO and at this time we are conducting experiments to optimize their performance. The frequency doubling capability will extend the useful range of our dye laser in the ultra-violet region. We intend to use this capability at a later stage to study the reaction dynamics of free radicals generated by the CO{sub 2} laser pulse. We have synthesized s-tetrazine in our laboratory and although the yield was poor, we were successful in our attempt. The compound is unstable over a long period of time and due to the cost of chemicals involved, we have postponed further synthesis until all our equipment is ready for an experiment. 1 ref.

Bhatnagar, R.

1990-01-01T23:59:59.000Z

248

Quadrupole collective dynamics from energy density functionals: Collective Hamiltonian and the interacting boson model  

SciTech Connect (OSTI)

Microscopic energy density functionals have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications, this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this paper, we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations and the interacting boson model (IBM). The two models are compared in a study of the evolution of nonaxial shapes in Pt isotopes. Starting from the binding energy surfaces of {sup 192,194,196}Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the {gamma}-vibration bands are compared to the corresponding sequences of experimental states.

Nomura, K.; Vretenar, D. [Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia); Niksic, T. [Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia); Otsuka, T. [Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321 (United States); Shimizu, N. [Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2011-07-15T23:59:59.000Z

249

Constraining the high-density nuclear symmetry energy with the transverse-momentum dependent elliptic flow  

E-Print Network [OSTI]

Within the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model, the transverse-velocity dependence of the elliptic flow of free nucleons from $^{197}$Au+$^{197}$Au collisions at the incident energy 400 MeV$/$nucleon is studied within different windows of the normalized c.m. rapidity $y_0$. It is found that the elliptic flow difference $v_{2}^{n}$-$v_{2}^{p}$ and ratio $v_{2}^{n}$/$v_{2}^{p}$ of neutrons versus protons are sensitive to the density dependence of the symmetry energy, especially the ratio $v_{2}^{n}$/$v_{2}^{p}$ at small transverse velocity in the intermediate rapidity intervals $0.4hydrogen isotopes with calculations using various Skyrme interactions, all exhibiting similar values of isoscalar incompressibility but very different density dependences of the symmetry energy, a moderately soft to linear symmetry energy is extracted, in good agreement with previous UrQMD or T\\"{u}bingen QMD model calculations but contrasting results obtained with $\\pi^-/\\pi^+$ yield ratios available in the literature.

Yongjia Wang; Chenchen Guo; Qingfeng Li; Hongfei Zhang; Y. Leifels; W. Trautmann

2014-03-27T23:59:59.000Z

250

Specific Energy and Energy Density Analysis of Conventional and NonConventional Flywheels  

E-Print Network [OSTI]

Flywheels are widely used as a means of energy storage throughout different applications such as hybrid electric vehicles, spacecraft, and electrical grids. The research presented here investigates various steel flywheel constructions. The purpose...

Reyna, Ruben

2013-12-09T23:59:59.000Z

251

High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage  

SciTech Connect (OSTI)

HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today’s EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery—which does not use any hazardous substances—can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak’s converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers—eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

None

2011-11-15T23:59:59.000Z

252

Constraints on neutron skin thickness in 208Pb and density-dependent symmetry energy  

E-Print Network [OSTI]

Accurate knowledge about the neutron skin thickness $\\Delta R_{np}$ in $^{208}$Pb has far-reaching implications for different communities of nuclear physics and astrophysics. Yet, the novel Lead Radius Experiment (PREX) did not yield stringent constraint on the $\\Delta R_{np}$ recently. We employ a more practicable strategy currently to probe the neutron skin thickness of $^{208}$Pb based on a high linear correlation between the $\\Delta R_{np}$ and $J-a_{\\text{sym}}$, where $J$ and $a_{\\text{sym}}$ are the symmetry energy (coefficient) of nuclear matter at saturation density and of $^{208}$Pb. An accurate $J-a_{\\text{sym}}$ thus places a strong constraint on the $\\Delta R_{np}$. Compared with the parity-violating asymmetry $A_{\\text{PV}}$ in the PREX, the reliably experimental information on the $J-a_{\\text{sym}}$ is much more easily available attributed to a wealth of measured data on nuclear masses and on decay energies. The density dependence of the symmetry energy is also well constrained with the $J-a_{\\...

Dong, Jianmin; Gu, Jianzhong

2015-01-01T23:59:59.000Z

253

Machine Protection and High Energy Density States in Matter for High Energy Hadron Accelerators  

E-Print Network [OSTI]

The Large Hadron Collider (LHC) is the largest accelerator in the world. It is designed to collide two proton beams with unprecedented particle energy of 7TeV. The energy stored in each beam is 362MJ, sufficient to melt 500kg of copper. An accidental release of even a small fraction of the beam energy can result in severe damage to the equipment. Machine protection systems are essential to safely operate the accelerator and handle all possible accidents. This thesis deals with the study of different failure scenarios and its possible consequences. It addresses failure scenarios ranging from low intensity losses on high-Z materials and superconductors to high intensity losses on carbon and copper collimators. Low beam losses are sufficient to quench the superconducting magnets and the stabilized superconducting cables (bus-bars) that connects the main magnets. If this occurs and the energy from the bus-bar is not extracted fast enough it can lead to a situation similar to the accident in 2008 at LHC during pow...

Blanco Sancho, Juan; Schmidt, R

254

Experimental test of the compatibility of the definitions of the electromagnetic energy density and the Poynting vector  

E-Print Network [OSTI]

It is shown that the generally accepted definition of the Poynting vector and the energy flux vector defined by means of the energy density of the electromagnetic field (Umov vector) lead to the prediction of the different results touching electromagnetic energy flux. The experiment shows that within the framework of the mentioned generally accepted definitions the Poynting vector adequately describes the electromagnetic energy flux unlike the Umov vector. Therefore one can conclude that a generally accepted definitions of the electromagnetic energy density and the Poynting vector, in general, are not always compatible.

Andrew Chubykalo; Augusto Espinoza; Rumen Tzonchev

2005-03-24T23:59:59.000Z

255

Complex-energy approach to sum rules within nuclear density functional theory  

E-Print Network [OSTI]

The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or EDF. But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish an efficient framework to compute sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy FAM based on the QRPA. To compute sum rules, we carry out contour integration of the response function in the complex-energy plane. We benchmark our results against the conventional matrix formulation of the QRPA theory, the Thouless theorem for the energy-weighted sum rule, and the dielectric theorem for the inverse energy-weighted sum rule. We demonstrate that calculated sum-rule values agree with those obtained from the matrix formulation of the QRPA. We also discuss the applicability of both the Thouless theorem about the energy-weighted sum rule and the dielectric theorem for the inverse energy-weighted sum rule to nuclear density functional theory in cases when the EDF is not based on a Hamiltonian. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. The FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.

Nobuo Hinohara; Markus Kortelainen; Witold Nazarewicz; Erik Olsen

2015-01-28T23:59:59.000Z

256

Mean-Field Calculation Based on Proton-Neutron Mixed Energy Density Functionals  

E-Print Network [OSTI]

We have performed calculations based on the Skyrme energy density functional (EDF) that includes arbitrary mixing between protons and neutrons. In this framework, single-particle states are generalized as mixtures of proton and neutron components. The model assumes that the Skyrme EDF is invariant under the rotation in isospin space and the Coulomb force is the only source of the isospin symmetry breaking. To control the isospin of the system, we employ the isocranking method, which is analogous to the standard cranking approach used for describing high-spin states. Here, we present results of the isocranking calculations performed for the isobaric analog states in $A = 40$ and $A = 54$ nuclei.

Koichi Sato; Jacek Dobaczewski; Takashi Nakatsukasa; Wojciech Satu?a

2014-10-10T23:59:59.000Z

257

Generation of high-energy-density ion bunches by ultraintense laser-cone-target interaction  

SciTech Connect (OSTI)

A scheme in which carbon ion bunches are accelerated to a high energy and density by a laser pulse (?10{sup 21}?W/cm{sup 2}) irradiating cone targets is proposed and investigated using particle-in-cell simulations. The laser pulse is focused by the cone and drives forward an ultrathin foil located at the cone's tip. In the course of the work, best results were obtained employing target configurations combining a low-Z cone with a multispecies foil transversely shaped to match the laser intensity profile.

Yang, X. H.; Zhuo, H. B., E-mail: hongbin.zhuo@gmail.com; Ma, Y. Y.; Zou, D. B.; Yu, T. P.; Ge, Z. Y.; Yin, Y.; Shao, F. Q. [College of Science, National University of Defense Technology, Changsha 410073 (China); Yu, W. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Xu, H., E-mail: xuhanemail@gmail.com [State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073 (China); Borghesi, M., E-mail: m.borghesi@qub.ac.uk [School of Mathematics and Physics, Queen's University of Belfast, Belfast BT7 1NN (United Kingdom); Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague (Czech Republic)

2014-06-15T23:59:59.000Z

258

Monochromatic radiography of high energy density physics experiments on the MAGPIE generator  

SciTech Connect (OSTI)

A monochromatic X-ray backlighter based on Bragg reflection from a spherically bent quartz crystal has been developed for the MAGPIE pulsed power generator at Imperial College (1.4 MA, 240 ns) [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (2005)]. This instrument has been used to diagnose high energy density physics experiments with 1.865 keV radiation (Silicon He-?) from a laser plasma source driven by a ?7 J, 1 ns pulse from the Cerberus laser. The design of the diagnostic, its characterisation and performance, and initial results in which the instrument was used to radiograph a shock physics experiment on MAGPIE are discussed.

Hall, G. N., E-mail: gareth.hall@imperial.ac.uk; Burdiak, G. C.; Suttle, L.; Stuart, N. H.; Swadling, G. F.; Lebedev, S. V.; Smith, R. A.; Patankar, S.; Suzuki-Vidal, F.; Grouchy, P. de; Harvey-Thompson, A. J.; Bennett, M.; Bland, S. N.; Pickworth, L.; Skidmore, J. [The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)

2014-11-15T23:59:59.000Z

259

Condition on the KohnSham kinetic energy and modern parametrization of the ThomasFermi density  

E-Print Network [OSTI]

; published online 20 January 2009 We study the asymptotic expansion of the neutral-atom energy as the atomic-correlation energy, EXC n , must be approximated. But a direct, orbital-free DFT could be constructed if onlyCondition on the Kohn­Sham kinetic energy and modern parametrization of the Thomas­Fermi density

Burke, Kieron

260

Linear Relationship Between Weighted-Average Madelung and Density Functional Theory Energies for MgO Nanotubes  

E-Print Network [OSTI]

Energies for MgO Nanotubes Journal: The Journal of Physical Chemistry Manuscript ID: jp-2012-08041d.R1 Constants and Density Functional Theory Energies for MgO Nanotubes Mark D. Baker,*1 A. David Baker2 , Jane-average Madelung constants of MgO nanotubes correlate in an essentially perfectly linear way with cohesive energies

Hanusa, Christopher

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers  

E-Print Network [OSTI]

The beam energy spread at the entrance of undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs). In this paper, the dependences of high harmonic micro-bunching in the high-gain harmonic generation (HGHG), echo-enabled harmonic generation (EEHG) and phase-merging enhanced harmonic generation (PEHG) schemes on the electron energy spread distribution are studied. Theoretical investigations and multi-dimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the performance of HGHG-FELs, while they almost have no influence on EEHG and PEHG schemes. A numerical example demonstrates that, with about 84keV RMS uniform and/or saddle slice energy spread, the 30th harmonic radiation can be directly generated by a single-stage seeding scheme for a soft x-ray FEL f...

Wang, Guanglei; Deng, Haixiao; Zhang, Weiqing; Wu, Guorong; Dai, Dongxu; Wang, Dong; Zhao, Zhentang; Yang, Xueming

2015-01-01T23:59:59.000Z

262

Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids  

SciTech Connect (OSTI)

The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy was modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.

Attarian Shandiz, M., E-mail: mohammad.attarianshandiz@mail.mcgill.ca; Gauvin, R. [Department of Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada)

2014-10-28T23:59:59.000Z

263

Density dependence of the nuclear symmetry energy from measurements of neutron radii in nuclei  

SciTech Connect (OSTI)

We study the density dependence of the nuclear symmetry energy, characterized by its slope parameter L, by means of the information provided by the neutron radius and the neutron skin thickness in finite nuclei. These quantities are extracted from the analysis of data obtained in antiprotonic atoms, from the parity-violating asymmetry at low-momentum transfer in polarized electron scattering in {sup 208}Pb, and from the electric dipole polarizability obtained via polarized proton inelastic scattering at forward angles in {sup 208}Pb. All these experiments provide different constraints on the slope L of the symmetry energy but the corresponding values have a considerable overlap in a range around 50 MeV ? L ? 70 MeV, in a reasonable agreement with other estimates that use different observables and methods to extract L.

Viñas, X.; Centelles, M. [Departament d'Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Roca-Maza, X. [Dipartimento di Fisica, Università degli Studi di Milano and INFN, Sezione di Milano, I-20133 Milano (Italy); Warda, M. [Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie–Sk?odowskiej ul. Radziszewskiego 10, 20-031 Lublin (Poland)

2014-07-23T23:59:59.000Z

264

Isospin-invariant Skyrme energy-density-functional approach with axial symmetry  

E-Print Network [OSTI]

We develop the isospin-invariant Skyrme-EDF method by considering local densities in all possible isospin channels and proton-neutron (p-n) mixing terms as mandated by the isospin symmetry. The EDF employed has the most general form that depends quadratically on the isoscalar and isovector densities. We test and benchmark the resulting p-n EDF approach, and study the general properties of the new scheme by means of the cranking in the isospin space. We extend the existing axial DFT solver HFBTHO to the case of isospin-invariant EDF approach with all possible p-n mixing terms. Explicit expressions have been derived for all the densities and potentials that appear in the isospin representation. In practical tests, we consider the Skyrme EDF SkM* and, as a first application, concentrate on Hartree-Fock aspects of the problem, i.e., pairing has been disregarded. Calculations have been performed for the (A=78, T~11), (A=40, T~8), and (A=48, T~4) isobaric analog chains. Isospin structure of self-consistent p-n mixed solutions has been investigated with and without the Coulomb interaction, which is the sole source of isospin symmetry breaking in our approach. The extended axial HFBTHO solver has been benchmarked against the symmetry-unrestricted HFODD code for deformed and spherical states. We developed and tested a general isospin-invariant Skyrme-EDF framework. The new approach permits spin-isospin densities that may give rise to, hitherto, unexplored modes in the excitation spectrum. The new formalism has been tested in the Hartree-Fock limit. A systematic comparison between HFODD and HFBTHO results show a maximum deviation of about 10 keV on the total binding energy for deformed nuclei when the Coulomb term is included. Without this term, the results of both solvers agree down to a ~10 eV level.

J. A. Sheikh; N. Hinohara; J. Dobaczewski; T. Nakatsukasa; W. Nazarewicz; K. Sato

2014-05-20T23:59:59.000Z

265

Thulium heat source for high-endurance and high-energy density power systems  

SciTech Connect (OSTI)

We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW{sub th} coupled with a power conversion efficiency of {approximately}30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs.

Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

1991-05-01T23:59:59.000Z

266

Vacuum energy densities of a field in a cavity with a mobile boundary  

E-Print Network [OSTI]

We consider the zero-point field fluctuations, and the related field energy densities, inside a one-dimensional and a three-dimensional cavity with a mobile wall. The mechanical degrees of freedom of the mobile wall are described quantum mechanically and they are fully included in the overall system dynamics. In this optomechanical system, the field and the wall can interact with each other through the radiation pressure on the wall, given by the photons inside the cavity or even by vacuum fluctuations. We consider two cases: the one-dimensional electromagnetic field and the three-dimensional scalar field, and use the Green's functions formalism, which allows extension of the results obtained for the scalar field to the electromagnetic field. We show that the quantum fluctuations of the position of the cavity's mobile wall significantly affect the field energy density inside the cavity, in particular at the very proximity of the mobile wall. The dependence of this effect from the ultraviolet cutoff frequency, related to the plasma frequency of the cavity walls, is discussed. We also compare our new results for the one-dimensional electromagnetic field and the three-dimensional massless scalar field to results recently obtained for the one-dimensional massless scalar field. We show that the presence of a mobile wall also changes the Casimir-Polder force on a polarizable body placed inside the cavity, giving the possibility to detect experimentally the new effects we have considered.

Federico Armata; Roberto Passante

2015-01-15T23:59:59.000Z

267

Constraining the gravitational wave energy density of the Universe using Earth's ring  

E-Print Network [OSTI]

The search for gravitational waves is one of today's major scientific endeavors. A gravitational wave can interact with matter by exciting vibrations of elastic bodies. Earth itself is a large elastic body whose so-called normal-mode oscillations ring up when a gravitational wave passes. Therefore, precise measurement of vibration amplitudes can be used to search for the elusive gravitational-wave signals. Earth's free oscillations that can be observed after high-magnitude earthquakes have been studied extensively with gravimeters and low-frequency seismometers over many decades leading to invaluable insight into Earth's structure. Making use of our detailed understanding of Earth's normal modes, numerical models are employed for the first time to accurately calculate Earth's gravitational-wave response, and thereby turn a network of sensors that so far has served to improve our understanding of Earth, into an astrophysical observatory exploring our Universe. In this article, we constrain the energy density of gravitational waves to values in the range 0.035 - 0.15 normalized by the critical energy density of the Universe at frequencies between 0.3mHz and 5mHz, using 10 years of data from the gravimeter network of the Global Geodynamics Project that continuously monitors Earth's oscillations. This work is the first step towards a systematic investigation of the sensitivity of gravimeter networks to gravitational waves. Further advance in gravimeter technology could improve sensitivity of these networks and possibly lead to gravitational-wave detection.

Michael Coughlin; Jan Harms

2014-06-04T23:59:59.000Z

268

Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number  

SciTech Connect (OSTI)

Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States) [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)

2014-05-14T23:59:59.000Z

269

Application of nuclear density functionals to lepton number violating weak processes  

SciTech Connect (OSTI)

We present an application of energy density functional methods with the Gogny interaction to the calculation of nuclear matrix elements (NME) for neutrinoless double beta decay and double electron capture. Beyond mean field effects have been included by particle number and angular momentum restoration and shape mixing within the generator coordinate method (GCM) framework. We analyze in detail the NME for {sup 116}Cd nucleus which is one of the most promising candidates to detect neutrinoless double beta decay.

Rodriguez, Tomas R.; Martinez-Pinedo, Gabriel [Technische Universitaet Darmstadt, Magdalenenstr. 12, D-64289, Darmstadt (Germany) and GSI Helmholtzzentrum fuer Schwerionenforschung, Plankstr. 1, D-64291 Darmstadt (Germany)

2012-10-20T23:59:59.000Z

270

Energy Density Functional analysis of shape evolution in N=28 isotones  

E-Print Network [OSTI]

The structure of low-energy collective states in proton-deficient N=28 isotones is analyzed using structure models based on the relativistic energy density functional DD-PC1. The relativistic Hartree-Bogoliubov model for triaxial nuclei is used to calculate binding energy maps in the $\\beta$-$\\gamma$ plane. The evolution of neutron and proton single-particle levels with quadrupole deformation, and the occurrence of gaps around the Fermi surface, provide a simple microscopic interpretation of the onset of deformation and shape coexistence. Starting from self-consistent constrained energy surfaces calculated with the functional DD-PC1, a collective Hamiltonian for quadrupole vibrations and rotations is employed in the analysis of excitation spectra and transition rates of $^{46}$Ar, $^{44}$S, and $^{42}$Si. The results are compared to available data, and previous studies based either on the mean-field approach or large-scale shell-model calculations. The present study is particularly focused on $^{44}$S, for which data have recently been reported that indicate pronounced shape coexistence.

Z. P. Li; J. M. Yao; D. Vretenar; T. Niksic; H. Chen; J. Meng

2012-09-26T23:59:59.000Z

271

A background free double beta decay experiment  

E-Print Network [OSTI]

We present a new detection scheme for rejecting backgrounds in neutrino less double beta decay experiments. It relies on the detection of Cherenkov light emitted by electrons in the MeV region. The momentum threshold is tuned to reach a good discrimination between background and good events. We consider many detector concepts and a range of target materials. The most promising is a high-pressure 136Xe emitter for which the required energy threshold is easily adjusted. Combination of this concept and a high pressure Time Projection Chamber could provide an optimal solution. A simple and low cost effective solution is to use the Spherical Proportional Counter that provides two delayed signals from ionization and Cherenkov light. In solid-state double beta decay emitters, because of their higher density, the considered process is out of energy range. An alternative solution could be the development of double decay emitters with lower density by using for instance the aerogel technique. It is surprising that a technology used for particle identification in high-energy physics becomes a powerful tool for rejecting backgrounds in such low-energy experiments.

Ioannis Giomataris

2010-12-20T23:59:59.000Z

272

$^3$H/$^3$He ratio as a probe of the nuclear symmetry energy at sub-saturation densities  

E-Print Network [OSTI]

Within the newly updated version of the Ultra-relativistic quantum molecular dynamics (UrQMD) model in which the Skyrme potential energy-density functional is introduced, the yield ratio between $^3$H and $^3$He clusters emitted from central $^{40}$Ca+$^{40}$Ca, $^{96}$Zr+$^{96}$Zr, $^{96}$Ru+$^{96}$Ru, and $^{197}$Au+$^{197}$Au collisions in the beam energy range from 0.12 to 1 GeV$/$nucleon is studied. The recent FOPI data for the $^3$H$/$$^3$He ratio are compared with UrQMD calculations using 13 Skyrme interactions (all exhibiting similar values of iso-scalar incompressibility but very different density dependences of the symmetry energy). It is found that the $^3$H$/$$^3$He ratio is sensitive to the nuclear symmetry energy at sub-saturation densities. Model calculations with moderately soft to linear symmetry energies are in agreement with the experimental FOPI data. This result is in line with both, the recent constraints on the low-density symmetry energy available in the literature and our previous results for the high-density symmetry energy obtained with the elliptic flow of free nucleons and hydrogen isotopes as a sensitive probe.

Yongjia Wang; Chenchen Guo; Qingfeng Li; Hongfei Zhang

2014-07-29T23:59:59.000Z

273

Experimental and Computational Studies of High Energy Density Plasma Streams Ablated from Fine Wires  

SciTech Connect (OSTI)

Experimental and computational studies of high energy density plasma streams ablated from fine wires. Laboratory of Plasma Studies, School of Electrical and Computer Engineering, Cornell University. Principal Investigators: Dr. John B. Greenly and Dr. Charles E. Seyler. This report summarizes progress during the final year of this project to study the physics of high energy density (HED) plasma streams of 10^17-10^20/cm3 density and high velocity (~100-500 km/s). Such streams are produced from 5-250 micrometer diameter wires heated and ionized by a 1 MA, 250 ns current pulse on the COBRA pulsed power facility at Cornell University. Plasma is ablated from the wires and is driven away to high velocity by unbalanced JxB force. A wire, or an array of wires, can persist as an essentially stationary, continuous source of this streaming plasma for >200 ns, even with driving magnetic fields of many Tesla and peak current densities in the plasma of many MA/cm2. At the heart of the ablation stream generation is the continuous transport of mass from the relatively cold, near-solid-density wire "core" into current-carrying plasma within 1 mm of the wire, followed by the magnetic acceleration of that plasma and its trapped flux to form a directed stream. In the first two years of this program, an advancing understanding of ablation physics led to the discovery of several novel wire ablation experimental regimes. In the final year, one of these new HED plasma regimes has been studied in quantitative detail. This regime studies highly reproducible magnetic reconnection in strongly radiating plasma with supersonic and superalfvenic flow, and shock structures in the outflow. The key discovery is that very heavy wires, e.g. 250 micrometer diameter Al or 150 micrometer Cu, behave in a qualitatively different way than the lighter wires typically used in wire-array Z-pinches. Such wires can be configured to produce a static magnetic X-point null geometry that stores magnetic and thermal energy; reconnection and outflow are triggered when the current begins to decrease and the electric field reverses. The reconnecting flow is driven by both magnetic and thermal pressure forces, and it has been found to be possible to vary the configuration so that one or the other dominates. The magnetic null extends into a current sheet that is heated and radiates strongly, with supersonic outflows. This is the first study of reconnection in this HED plasma regime. This compressible, radiative regime, and the triggering mechanism, may be relevant to solar and astrophysical processes. The PERSEUS extended MHD code has been developed for simulation of these phenomena, and will continue to be used and further developed to help interpret and understand experimental results, as well as to guide experimental design. The code is well-suited to simulations of shocks, and includes Hall and electron inertia physics that appear to be of importance in a number of ablation flow regimes, and definitely in the reconnection regime when gradient scales are comparable to the ion inertial scale. During the final year, our graduate student supported by this grant completed a new version of PERSEUS with the finite volume computational scheme replaced by a discontinuous Galerkin method that gives much less diffusive behavior and allows faster run time and higher spatial resolution. Thecode is now being used to study shock structures produced in the outflow region of the reconnection regime.

Greenly, John B. [Cornell University; Seyler, Charles [Cornell University

2014-03-30T23:59:59.000Z

274

Double opposite-end tubesheet design for a thermovoltaic energy converter  

DOE Patents [OSTI]

A method and apparatus for the direct conversion of energy by thermovoltaic energy conversion having first and second tubesheets, at least one photon emitter plate secured to and extending from the first tubesheet, at least one cold plate secured to and extending from the second tubesheet, a plurality of thermovoltaic cells disposed along oppositely disposed exterior surfaces of the cold plate, and means cooperating with the tubesheet for maintaining a vacuum between the photon emitter plate and the cold plate.

Ashcroft, John M. (Scotia, NY); Campbell, Brian C. (Scotia, NY); Depoy, David M. (Clifton Park, NY)

2000-01-01T23:59:59.000Z

275

Holographic energy density on Ho\\v{r}ava-Lifshitz cosmology  

E-Print Network [OSTI]

In Ho\\v{r}ava-Lifshitz cosmology we use the holographic Ricci-like cut-off for the energy density proposed by L. N. Granda and A. Oliveros and under this framework we study, through the cosmic evolution at late times, the sign change in the amount of non-conservation energy ($Q$) present in this cosmology. We revise the early stage (curvature-dependent) of this cosmology, where a term reminiscent of stiff matter is the dominant, and in this stage we find a power-law solution for the cosmic scale factor although $\\omega =-1$. Late and early phantom schemes are obtained without requiring $\\omega <-1$. Nevertheless, these schemes are not feasible according to what is shown in this paper. We also show that $ \\omega =-1$ alone does not imply a de Sitter phase in the present cosmology. Thermal aspects are revised by considering the energy interchange between the bulk and the spacetime boundary and we conclude that there is no thermal equilibrium between them. Finally, a ghost scalar graviton (extra degree of fre...

Lepe, Samuel; Torres, Francisco

2015-01-01T23:59:59.000Z

276

Thermodynamics of baryonic matter with strangeness within non-relativistic energy density functional model  

E-Print Network [OSTI]

We study the thermodynamical properties of compressed baryonic matter with strangeness within non-relativistic energy density functional models with a particular emphasis on possible phase transitions found earlier for a simple $n,p,e,\\Lambda$-mixture. The aim of the paper is twofold: I) examining the phase structure of the complete system, including the full baryonic octet and II) testing the sensitivity of the results to the model parameters. We find that, associated to the onset of the different hyperonic families, up to three separate strangeness-driven phase transitions may occur. Consequently, a large fraction of the baryonic density domain is covered by phase coexistence with potential relevance for (proto)-neutron star evolution. It is shown that the presence of a phase transition is compatible both with the observational constraint on the maximal neutron star mass, and with the present experimental information on hypernuclei. In particular we show that two solar mass neutron stars are compatible with important hyperon content. Still, the parameter space is too large to give a definitive conclusion of the possible occurrence of a strangeness driven phase transition, and further constraints from multiple-hyperon nuclei and/or hyperon diffusion data are needed.

Ad. R. Raduta; F. Gulminelli; M. Oertel

2014-09-15T23:59:59.000Z

277

The formation of reverse shocks in magnetized high energy density supersonic plasma flows  

SciTech Connect (OSTI)

A new experimental platform was developed, based on the use of supersonic plasma flow from the ablation stage of an inverse wire array z-pinch, for studies of shocks in magnetized high energy density physics plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (Re{sub M}???50, M{sub S}???5, M{sub A}???8, V{sub flow}???100?km/s) has a frozen-in magnetic field at a level sufficient to affect shocks formed by its interaction with obstacles. It is found that in addition to the expected accumulation of stagnated plasma in a thin layer at the surface of a planar obstacle, the presence of the magnetic field leads to the formation of an additional detached density jump in the upstream plasma, at a distance of ?c/?{sub pi} from the obstacle. Analysis of the data obtained with Thomson scattering, interferometry, and local magnetic probes suggests that the sub-shock develops due to the pile-up of the magnetic flux advected by the plasma flow.

Lebedev, S. V., E-mail: s.lebedev@imperial.ac.uk, E-mail: l.suttle10@imperial.ac.uk; Suttle, L.; Swadling, G. F.; Bennett, M.; Bland, S. N.; Burdiak, G. C.; Chittenden, J. P.; Grouchy, P. de; Hall, G. N.; Hare, J. D.; Kalmoni, N.; Niasse, N.; Patankar, S.; Smith, R. A.; Suzuki-Vidal, F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)] [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Burgess, D.; Clemens, A. [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)] [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom); Ciardi, A. [LERMA, Observatoire de Paris and École Normale Supérieure Université Pierre et Marie Curie, UMR 8112 CNRS, 75231 Paris (France)] [LERMA, Observatoire de Paris and École Normale Supérieure Université Pierre et Marie Curie, UMR 8112 CNRS, 75231 Paris (France); Sheng, L. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom) [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Yuan, J. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom) [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China); and others

2014-05-15T23:59:59.000Z

278

Density of vacuum energy for multidimensional model of Kazner with scalar field and cosmological birth of particles  

E-Print Network [OSTI]

In the work's considered density of vacuum energy and dynamic of scalar field in multidimensional theory with cosmological constant. Using method of N.N.Bogolubov coefficients, was gotten expression for influence of anisotropic metric to vacuum energy. Obtained the effective mass of massles scalar field, that depends on cosmological constant, and some general theoretical results concerning arising of particles in the model.

Sergey Yakovlev

2011-12-22T23:59:59.000Z

279

Demonstration of x-ray fluorescence imaging of a high-energy-density plasma  

SciTech Connect (OSTI)

Experiments at the Trident Laser Facility have successfully demonstrated the use of x-ray fluorescence imaging (XRFI) to diagnose shocked carbonized resorcinol formaldehyde (CRF) foams doped with Ti. One laser beam created a shock wave in the doped foam. A second laser beam produced a flux of vanadium He-? x-rays, which in turn induced Ti K-shell fluorescence within the foam. Spectrally resolved 1D imaging of the x-ray fluorescence provided shock location and compression measurements. Additionally, experiments using a collimator demonstrated that one can probe specific regions within a target. These results show that XRFI is a capable alternative to path-integrated measurements for diagnosing hydrodynamic experiments at high energy density.

MacDonald, M. J., E-mail: macdonm@umich.edu; Gamboa, E. J. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Keiter, P. A.; Fein, J. R.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J.-E.; Wan, W. C.; Drake, R. P. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Montgomery, D. S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Biener, M. M.; Fournier, K. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Streit, J. [Schafer Corporation, Livermore, California 94551 (United States)

2014-11-15T23:59:59.000Z

280

Potential impact of doubling atmospheric carbon dioxide on energy consumption in the US  

SciTech Connect (OSTI)

This paper uses models of monthly electricity and natural gas per capita demand to forecast the effects of a global warming scenario. An extensive study of energy consumption sensitivity to climate in eight of the most energy intensive states of the US is briefly summarized. Models of statewide monthly per capita electricity consumption as a function of cooling degree days, heating degree days, enthalpy latent days and wind speed were developed. Similar models were developed for natural gas using temperature as the only independent variable. Population weighted statewide monthly cooling and heating degree days were calculated using the base climatic year and the general circulation model (GCM) predictions for California, Texas, New York, and Illinois. The expected changes were clearly dependent on the model chosen for the global warming forecast. The effects of the predicted changes in cooling degree days and heating degree days generated the typical saddle shape of the estimated changes in per capita electricity use. This is attributed to shifts from predominant heating requirements to predominant cooling requirements in certain months. The shape of the climatically induced decrease in natural gas consumption was expected and also highly dependent on the GCM chosen. It appears that per capita energy consumption could be affected significantly under global warming. Since heating and cooling are provided by different energy sources, there could be significant consequences for energy delivery systems. 8 refs., 2 figs.

Munoz, J.R.; Sailor, D.J. [Tulane Univ., New Orleans, LA (United States)

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Drops on soft solids: Free energy and double transition of contact angles  

E-Print Network [OSTI]

The equilibrium shape of liquid drops on elastic substrates is determined by minimising elastic and capillary free energies, focusing on thick incompressible substrates. The problem is governed by three length scales: the size of the drop $R$, the molecular size $a$, and the ratio of surface tension to elastic modulus $\\gamma/E$. We show that the contact angles undergo two transitions upon changing the substrates from rigid to soft. The microscopic wetting angles deviate from Young's law when $\\gamma/Ea \\gg 1$, while the apparent macroscopic angle only changes in the very soft limit $\\gamma/ER \\gg 1$. The elastic deformations are worked out in the simplifying case where the solid surface energy is assumed constant. The total free energy turns out lower on softer substrates, consistent with recent experiments.

Luuk A. Lubbers; Joost H. Weijs; Lorenzo Botto; Siddhartha Das; Bruno Andreotti; Jacco H. Snoeijer

2014-03-14T23:59:59.000Z

282

DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes, Double  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof EnergyAlliance |DepartmentSystems Home |May,NM,Humanity,AL

283

Carports with Solar Panels do Double Duty for Navy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy-ChevronSeveral salesCarolyn L. Huntoon - EMAB BoardJoshua

284

Report: Global Share of Renewable Energy Could Double by 2030 | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashesEnergy byNuclearof Energy Global Share

285

Building a Universal Nuclear Energy Density Functional (UNEDF): SciDAC-2 Project  

SciTech Connect (OSTI)

An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1, 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; and third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

Carlson, Joe; Furnstahl, Dick; Lusk, Rusty; Nazarewicz, Witek; Ng, Esmond; Thompson, Ian; Vary, James

2012-06-30T23:59:59.000Z

286

Microscopic description of fission in Uranium isotopes with the Gogny energy density functional  

E-Print Network [OSTI]

The most recent parametrizations D1S, D1N and D1M of the Gogny energy density functional are used to describe fission in the isotopes $^{232-280}$ U. Fission paths, collective masses and zero point quantum corrections, obtained within the constrained Hartree-Fock-Bogoliubov approximation, are used to compute the systematics of the spontaneous fission half-lives $t_\\mathrm{SF}$, the masses and charges of the fission fragments as well as their intrinsic shapes. The Gogny-D1M parametrization has been benchmarked against available experimental data on inner and second barrier heights, excitation energies of the fission isomers and half-lives in a selected set of Pu, Cm, Cf, Fm, No, Rf, Sg, Hs and Fl nuclei. It is concluded that D1M represents a reasonable starting point to describe fission in heavy and superheavy nuclei. Special attention is also paid to understand the uncertainties in the predicted $t_\\mathrm{SF}$ values arising from the different building blocks entering the standard semi-classical Wentzel-Kramers-Brillouin formula. Although the uncertainties are large, the trend with mass or neutron numbers are well reproduced and therefore the theory still has predictive power. In this respect, it is also shown that modifications of a few per cent in the pairing strength can have a significant impact on the collective masses leading to uncertainties in the $t_\\mathrm{SF}$ values of several orders of magnitude.

R. Rodriguez-Guzman; L. M. Robledo

2014-05-25T23:59:59.000Z

287

Determination of energy scales in few-electron double quantum dots  

SciTech Connect (OSTI)

The capacitive couplings between gate-defined quantum dots and their gates vary considerably as a function of applied gate voltages. The conversion between gate voltages and the relevant energy scales is usually performed in a regime of rather symmetric dot-lead tunnel couplings strong enough to allow direct transport measurements. Unfortunately, this standard procedure fails for weak and possibly asymmetric tunnel couplings, often the case in realistic devices. We have developed methods to determine the gate voltage to energy conversion accurately in the different regimes of dot-lead tunnel couplings and demonstrate strong variations of the conversion factors. Our concepts can easily be extended to triple quantum dots or even larger arrays.

Taubert, D.; Ludwig, S. [Center for NanoScience and Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Geschwister-Scholl-Platz 1, D-80539 Muenchen (Germany); Schuh, D. [Institut fuer Experimentelle Physik, Universitaet Regensburg, D-93040 Regensburg (Germany); Wegscheider, W. [Laboratory for Solid State Physics, ETH Zuerich, CH-8093 Zuerich (Switzerland)

2011-12-15T23:59:59.000Z

288

Radiation from Ag high energy density Z-pinch plasmas and applications to lasing  

SciTech Connect (OSTI)

Silver (Ag) wire arrays were recently introduced as efficient x-ray radiators and have been shown to create L-shell plasmas that have the highest electron temperature (>1.8?keV) observed on the Zebra generator so far and upwards of 30?kJ of energy output. In this paper, results of single planar wire arrays and double planar wire arrays of Ag and mixed Ag and Al that were tested on the UNR Zebra generator are presented and compared. To further understand how L-shell Ag plasma evolves in time, a time-gated x-ray spectrometer was designed and fielded, which has a spectral range of approximately 3.5–5.0?Å. With this, L-shell Ag as well as cold L{sub ?} and L{sub ?} Ag lines was captured and analyzed along with photoconducting diode (PCD) signals (>0.8?keV). Along with PCD signals, other signals, such as filtered XRD (>0.2?keV) and Si-diodes (SiD) (>9?keV), are analyzed covering a broad range of energies from a few eV to greater than 53?keV. The observation and analysis of cold L{sub ?} and L{sub ?} lines show possible correlations with electron beams and SiD signals. Recently, an interesting issue regarding these Ag plasmas is whether lasing occurs in the Ne-like soft x-ray range, and if so, at what gains? To help answer this question, a non-local thermodynamic equilibrium (LTE) kinetic model was utilized to calculate theoretical lasing gains. It is shown that the Ag L-shell plasma conditions produced on the Zebra generator at 1.7 maximum current may be adequate to produce gains as high as 6?cm{sup ?1} for various 3p???3s transitions. Other potential lasing transitions, including higher Rydberg states, are also included in detail. The overall importance of Ag wire arrays and plasmas is discussed.

Weller, M. E., E-mail: mweller@unr.edu; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Shrestha, I.; Stafford, A.; Keim, S. F.; Shlyaptseva, V. V.; Osborne, G. C.; Petkov, E. E. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States)] [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Apruzese, J. P.; Giuliani, J. L. [Naval Research Laboratory, Washington, District of Columbia 20375 (United States)] [Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Chuvatin, A. S. [Ecole Polytechnique, 91128 Palaiseau (France)] [Ecole Polytechnique, 91128 Palaiseau (France)

2014-03-15T23:59:59.000Z

289

Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials  

E-Print Network [OSTI]

We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

Svend-Age Biehs

2011-03-15T23:59:59.000Z

290

Mechanical confinement for improved energy storage density in BNT-BT-KNN lead-free ceramic capacitors  

SciTech Connect (OSTI)

With the advent of modern power electronics, embedded circuits and non-conventional energy harvesting, the need for high performance capacitors is bound to become indispensible. The current state-of-art employs ferroelectric ceramics and linear dielectrics for solid state capacitance. However, lead-free ferroelectric ceramics propose to offer significant improvement in the field of electrical energy storage owing to their high discharge efficiency and energy storage density. In this regards, the authors have investigated the effects of compressive stress as a means of improving the energy storage density of lead-free ferroelectric ceramics. The energy storage density of 0.91(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-0.07BaTiO{sub 3}-0.02(K{sub 0.5}Na{sub 0.5})NbO{sub 3} ferroelectric bulk ceramic was analyzed as a function of varying levels of compressive stress and operational temperature .It was observed that a peak energy density of 387 mJ.cm{sup -3} was obtained at 100 MPa applied stress (25{sup o}C). While a maximum energy density of 568 mJ.cm{sup -3} was obtained for the same stress at 80{sup o}C. These values are indicative of a significant, 25% and 84%, improvement in the value of stored energy compared to an unloaded material. Additionally, material's discharge efficiency has also been discussed as a function of operational parameters. The observed phenomenon has been explained on the basis of field induced structural transition and competitive domain switching theory.

Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul, E-mail: rahul@iitmandi.ac.in [School of Engineering, Indian Institute of Technology Mandi, 175 001 (India)

2014-08-15T23:59:59.000Z

291

Screening Tool for Providers of Double-Stranded DNA - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)ScienceScientists In thePrincetonScottPortal

292

Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source  

SciTech Connect (OSTI)

A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko [Department of Energy Sciences, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

2009-11-15T23:59:59.000Z

293

A background free double beta decay experiment  

E-Print Network [OSTI]

We present a new detection scheme for rejecting backgrounds in neutrino less double beta decay experiments. It relies on the detection of Cherenkov light emitted by electrons in the MeV region. The momentum threshold is tuned to reach a good discrimination between background and good events. We consider many detector concepts and a range of target materials. The most promising is a high-pressure 136Xe emitter for which the required energy threshold is easily adjusted. Combination of this concept and a high pressure Time Projection Chamber could provide an optimal solution. A simple and low cost effective solution is to use the Spherical Proportional Counter that provides two delayed signals from ionization and Cherenkov light. In solid-state double beta decay emitters, because of their higher density, the considered process is out of energy range. An alternative solution could be the development of double decay emitters with lower density by using for instance the aerogel technique. It is surprising that a te...

Giomataris, Ioannis

2010-01-01T23:59:59.000Z

294

Bethe binary-encounter peaks in the double-differential cross sections for high-energy electron-impact ionization of H{sub 2} and He  

SciTech Connect (OSTI)

We study the Bethe binary-encounter (BE) region in the ejected-electron double-differential emission spectrum of H{sub 2} and He targets in collisions with 8-keV electrons. We compare the absolute cross sections for these isoelectronic systems at high emission energies. The experimental data are analyzed in terms of a state-of-the-art theoretical model based on a two-effective-center approximation. In the case of the H{sub 2} molecule the binary peak in the double-differential cross sections (DDCS) is enhanced due to the two-center Young-type interference. The observed undulation in the DDCS ratio is explained in terms of the combined contributions of the Compton profile mismatch and the interference effect. The influence of the interference effect is thus observed for higher-energy electrons compared to most of the earlier studies which focused on low-energy electrons produced in soft collisions.

Chatterjee, S.; Agnihotri, A. N.; Tribedi, L. C. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Stia, C. R.; Fojon, O. A.; Rivarola, R. D. [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Av. Pellegrini 250, 2000 Rosario (Argentina)

2010-11-15T23:59:59.000Z

295

BiFeO3 Domain Wall Energies and Structures: A Combined Experimental and Density Functional Theory+U Study  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We determined the atomic structures and energies of 109°, 180°, and 71° domain walls in BiFeO3, combining density functional theory+U calculations and aberration-corrected transmission electron microscopy images. We find a substantial Bi sublattice shift and a rather uniform Fe sublattice across the walls. The calculated wall energies (?) follow the sequence ?109 180 71 for the 109°, 180°, and 71° walls. We attribute the high 71° wall energy to an opposite tilting rotation of the oxygen octahedra and the low 109° wall energy to the opposite twisting rotation of the oxygen octahedra across the domain walls.

Wang, Yi; Nelson, Chris; Melville, Alexander; Winchester, Benjamin; Shang, Shunli; Liu, Zi-Kui; Schlom, Darrell G.; Pan, Xiaoqing; Chen, Long-Qing

2013-06-01T23:59:59.000Z

296

Recent developments in classical density functional theory: Internal energy functional and diagrammatic structure of fundamental measure theory  

E-Print Network [OSTI]

An overview of several recent developments in density functional theory for classical inhomogeneous liquids is given. We show how Levy's constrained search method can be used to derive the variational principle that underlies density functional theory. An advantage of the method is that the Helmholtz free energy as a functional of a trial one-body density is given as an explicit expression, without reference to an external potential as is the case in the standard Mermin-Evans proof by reductio ad absurdum. We show how to generalize the approach in order to express the internal energy as a functional of the one-body density distribution and of the local entropy distribution. Here the local chemical potential and the bulk temperature play the role of Lagrange multipliers in the Euler-Lagrange equations for minimiziation of the functional. As an explicit approximation for the free-energy functional for hard sphere mixtures, the diagrammatic structure of Rosenfeld's fundamental measure density unctional is laid out. Recent extensions, based on the Kierlik-Rosinberg scalar weight functions, to binary and ternary non-additive hard sphere mixtures are described.

M. Schmidt; M. Burgis; W. S. B. Dwandaru; G. Leithall; P. Hopkins

2012-12-27T23:59:59.000Z

297

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network [OSTI]

Vehicle Usage and Energy Consumption Table 2 Housing Unitsresidential vehicular energy consumption is graphed as aon Vehicle Usage and Energy Consumption with vehicles, but

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

298

Functional approach for pairing in finite systems: How to define restoration of broken symmetries in Energy Density Functional theory ?  

E-Print Network [OSTI]

The Multi-Reference Energy Density Functional (MR-EDF) approach (also called configuration mixing or Generator Coordinate Method), that is commonly used to treat pairing in finite nuclei and project onto particle number, is re-analyzed. It is shown that, under certain conditions, the MR-EDF energy can be interpreted as a functional of the one-body density matrix of the projected state with good particle number. Based on this observation, we propose a new approach, called Symmetry-Conserving EDF (SC-EDF), where the breaking and restoration of symmetry are accounted for simultaneously. We show, that such an approach is free from pathologies recently observed in MR-EDF and can be used with a large flexibility on the density dependence of the functional.

Guillaume Hupin; Denis Lacroix; Michael Bender

2011-05-30T23:59:59.000Z

299

Copper nanocrystal modified activated carbon for supercapacitors with enhanced volumetric energy and power density  

E-Print Network [OSTI]

capacitors (EDLCs) have evoked wide interest in recent years due to their ability to supply high power of EDLCs is based on the quick formation of a double layer of surface charges and counter materials for EDLCs should have large surface area to accumulate a large amount of charges, and a size

Cao, Guozhong

300

Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499  

SciTech Connect (OSTI)

Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

Smith, K.

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics  

SciTech Connect (OSTI)

This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

Sun, K.

2011-05-04T23:59:59.000Z

302

The need for high density energy storage for wind turbine and solar power has proven to be a  

E-Print Network [OSTI]

1 The need for high density energy storage for wind turbine and solar power has proven cost of these components but also considerably improve their lifetime and reliability as it removes. New breakthrough for single-layer ceramic capacitors with high performance #12;2 Benefits ANU has

Botea, Adi

303

Numerical Integration of the Negative Energy Density in the Natario Warp Drive Spacetime using 3 different Natario Shape Functions  

E-Print Network [OSTI]

Numerical Integration of the Negative Energy Density in the Natario Warp Drive Spacetime using 3 6, 2013 Abstract Warp Drives are solutions of the Einstein Field Equations that allows superluminal: The Alcubierre warp drive discovered in 1994 and the Natario warp drive discovered in 2001. However as stated

Paris-Sud XI, Université de

304

Maximizing net income for pork producers by determining the interaction between dietary energy concentration and stocking density on finishing pig performance, welfare, and carcass composition.  

E-Print Network [OSTI]

??Marketplace volatility in the pork industry demands that producers re-evaluate production practices in order to remain profitable. Stocking density and dietary energy concentration independently affect… (more)

Rozeboom, Garrett

2015-01-01T23:59:59.000Z

305

Stimulated scattering in laser driven fusion and high energy density physics experiments  

SciTech Connect (OSTI)

In laser driven fusion and high energy density physics experiments, one often encounters a k?{sub D} range of 0.15?

Yin, L., E-mail: lyin@lanl.gov; Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kirkwood, R. K.; Milovich, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2014-09-15T23:59:59.000Z

306

Double Higgs production in the littlest Higgs Model with T-parity at high energy $e^{+}e^{-}$ Colliders  

E-Print Network [OSTI]

In the framework of the littlest Higgs model with T-parity(LHT), we investigate the double Higgs production processes $e^{+}e^{-}\\rightarrow ZHH$ and $e^{+}e^{-}\\rightarrow \

Bingfang Yang; Guofa Mi; Ning Liu

2014-12-15T23:59:59.000Z

307

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network [OSTI]

on Vehicle Usage and Energy Consumption References Bento,Vehicle Usage and Energy Consumption UCI-ITS-WP-05-1 Thomason Vehicle Usage and Energy Consumption Thomas F. Golob

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

308

The Materials genome : rapid materials screening for renewable energy using high-throughput density functional theory  

E-Print Network [OSTI]

This thesis relates to the emerging field of high-throughput density functional theory (DFT) computation for materials design and optimization. Although highthroughput DFT is a promising new method for materials discovery, ...

Jain, Anubhav, Ph.D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

309

Vehicle Technologies Office Merit Review 2014: High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems  

Broader source: Energy.gov [DOE]

Presentation given by Farasis Energy, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy density Li...

310

Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book  

SciTech Connect (OSTI)

Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

1997-10-21T23:59:59.000Z

311

CO2/oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal-Air Type Rechargeable Batteries  

E-Print Network [OSTI]

We present theoretical analysis on why and how rechargeable metal-air type batteries can be made significantly safer and more practical by utilizing CO2/oxalate conversions instead of O2/peroxide or O2/hydroxide ones, in the positive electrode. Metal-air batteries, such as the Li-air one, may have very large energy densities, comparable to that of gasoline, theoretically allowing for long range all-electric vehicles. There are, however, still significant challenges, especially related to the safety of their underlying chemistries, the robustness of their recharging and the need of supplying high purity O2 from air to the battery. We point out that the CO2/oxalate reversible electrochemical conversion is a viable alternative of the O2-based ones, allowing for similarly high energy density and almost identical voltage, while being much safer through the elimination of aggressive oxidant peroxides and the use of thermally stable, non-oxidative and environmentally benign oxalates instead.

Nemeth, Karoly

2013-01-01T23:59:59.000Z

312

Synthesis and electrical analysis of nano-crystalline barium titanate nanocomposites for use in high-energy density applications.  

SciTech Connect (OSTI)

Ceramic based nanocomposites have recently demonstrated the ability to provide enhanced permittivity, increased dielectric breakdown strength, and reduced electromechanical strain making them potential materials systems for high energy density applications. A systematic characterization and optimization of barium titanate and PLZT based nanoparticle composites employing a glass or polymer matrix to yield a high energy density component will be presented. This work will present the systematic characterization and optimization of barium titanate and lead lanthanum zirconate titanate nanoparticle based ceramics. The nanoparticles have been synthesized using solution and pH-based synthesis processing routes and employed to fabricate polycrystalline ceramic and nanocomposite based components. The dielectric/ferroelectric properties of these various components have been gauged by impedance analysis and electromechanical response and will be discussed.

DiAntonio, Christopher Brian; Yang, Pin; Chavez, Tom P.; Huber, Dale L.; Winter, Michael R.; Monson, Todd C.; Roesler, Alexander William

2010-10-01T23:59:59.000Z

313

The Fractal Density Structure in Supersonic Isothermal Turbulence: Solenoidal versus Compressive Energy Injection  

E-Print Network [OSTI]

In a systematic study, we compare the density statistics in high resolution numerical experiments of supersonic isothermal turbulence, driven by the usually adopted solenoidal (divergence-free) forcing and by compressive (curl-free) forcing. We find that for the same rms Mach number, compressive forcing produces much stronger density enhancements and larger voids compared to solenoidal forcing. Consequently, the Fourier spectra of density fluctuations are significantly steeper. This result is confirmed using the Delta-variance analysis, which yields power-law exponents beta~3.4 for compressive forcing and beta~2.8 for solenoidal forcing. We obtain fractal dimension estimates from the density spectra and Delta-variance scaling, and by using the box counting, mass size and perimeter area methods applied to the volumetric data, projections and slices of our turbulent density fields. Our results suggest that compressive forcing yields fractal dimensions significantly smaller compared to solenoidal forcing. However, the actual values depend sensitively on the adopted method, with the most reliable estimates based on the Delta-variance, or equivalently, on Fourier spectra. Using these methods, we obtain D~2.3 for compressive and D~2.6 for solenoidal forcing, which is within the range of fractal dimension estimates inferred from observations (D~2.0-2.7). The velocity dispersion to size relations for both solenoidal and compressive forcing obtained from velocity spectra follow a power law with exponents in the range 0.4-0.5, in good agreement with previous studies.

Christoph Federrath; Ralf S. Klessen; Wolfram Schmidt

2009-02-03T23:59:59.000Z

314

Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams  

DOE Patents [OSTI]

A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

Gammel, George M. (Merrick, NY); Kugel, Henry W. (Somerset, NJ)

1992-10-06T23:59:59.000Z

315

Fast Computation of Solvation Free Energies with Molecular Density Functional Theory: Thermodynamic-Ensemble Partial Molar Volume Corrections  

E-Print Network [OSTI]

Molecular Density Functional Theory (MDFT) offers an efficient implicit- solvent method to estimate molecule solvation free-energies whereas conserving a fully molecular representation of the solvent. Even within a second order ap- proximation for the free-energy functional, the so-called homogeneous reference uid approximation, we show that the hydration free-energies computed for a dataset of 500 organic compounds are of similar quality as those obtained from molecular dynamics free-energy perturbation simulations, with a computer cost reduced by two to three orders of magnitude. This requires to introduce the proper partial volume correction to transform the results from the grand canoni- cal to the isobaric-isotherm ensemble that is pertinent to experiments. We show that this correction can be extended to 3D-RISM calculations, giving a sound theoretical justifcation to empirical partial molar volume corrections that have been proposed recently.

Volodymyr P. Sergiievskyi; Guillaume Jeanmairet; Maximilien Levesque; Daniel Borgis

2014-06-11T23:59:59.000Z

316

Permeation of low-Z atoms through carbon sheets: Density functional theory study on energy barriers and deformation effects  

SciTech Connect (OSTI)

Energetic and geometric aspects of the permeation of the atoms hydrogen to neon neutral atoms through graphene sheets are investigated by investigating the associated energy barriers and sheet deformations. Density functional theory calculations on cluster models, where graphene is modeled by planar polycyclic aromatic hydrocarbons (PAHs), provide the energies and geometries. Particularities of our systems, such as convergence of both energy barriers and deformation curves with increasing size of the PAHs, are discussed. Three different interaction regimes, adiabatic, planar and vertical, are investigated by enforcing different geometrical constraints. The adiabatic energy barriers range from 5 eV for hydrogen to 20 eV for neon. We find that the permeation of oxygen and carbon into graphene is facilitated by temporary chemical bonding while for other, in principle reactive atoms, it is not. We discuss implications of our results for modeling chemical sputtering of graphite.

Huber, Stefan E., E-mail: s.huber@uibk.ac.at, E-mail: Michael.probst@uibk.ac.at; Mauracher, Andreas; Probst, Michael, E-mail: s.huber@uibk.ac.at, E-mail: Michael.probst@uibk.ac.at [Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria)] [Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria)

2013-12-15T23:59:59.000Z

317

for doubling solar panel  

E-Print Network [OSTI]

An outline for doubling solar panel efficiency C o l o ra do S c ho o l of M i ne s Ma g a z i ne Take a look at a solar panel on a sunny Colorado day and, if you're like most people, you won't see physics professor and solar energy researcher, who admits to checking out his panels and their energy

318

Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration  

SciTech Connect (OSTI)

GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

None

2010-10-01T23:59:59.000Z

319

High thermal energy storage density molten salts for parabolic trough solar power generation.  

E-Print Network [OSTI]

??New alkali nitrate-nitrite systems were developed by using thermodynamic modeling and the eutectic points were predicted based on the change of Gibbs energy of fusion.… (more)

Wang, Tao

2011-01-01T23:59:59.000Z

320

Singlet-Triplet Energy Gaps for Diradicals from Fractional-Spin Density-Functional Theory  

SciTech Connect (OSTI)

Open-shell singlet diradicals are difficult to model accurately within conventional Kohn?Sham (KS) density-functional theory (DFT). These methods are hampered by spin contamination because the KS determinant wave function is neither a pure spin state nor an eigenfunction of the S2 operator. Here we present a theoretical foray for using single-reference closed-shell ground states to describe diradicals by fractional-spin DFT (FS-DFT). This approach allows direct, self-consistent calculation of electronic properties using the electron density corresponding to the proper spin eigenfunction. The resulting FS-DFT approach is benchmarked against diradical singlet?triplet gaps for atoms and small molecules. We have also applied FS-DFT to the singlet?triplet gaps of hydrocarbon polyacenes.

Ess, Daniel H.; Johnson, E R; Hu, Xiangqian; Yang, W T

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

High Energy Density Physics and Applications with a State-of-the-Art Compact X-Pinch  

SciTech Connect (OSTI)

Recent advances in technology has made possible to create matter with extremely high energy density (energy densities and pressure exceeding 1011 J/m3 and 1 Mbar respectively). The field is new and complex. The basic question for high energy density physics (HEDP) is how does matter behave under extreme conditions of temperature, pressure, density and electromagnetic radiation? The conditions for studying HEDP are normally produced using high intensity short pulse laser, x-rays, particle beams and pulsed power z-pinches. Most of these installations occupy a large laboratory floor space and require a team consisting of a large number of scientists and engineers. This limits the number of experiments that can be performed to explore and understand the complex physics. A novel way of studying HEDP is with a compact x-pinch in university scale laboratory. The x-pinch is a configuration in which a pulsed current is passed through two or more wires placed between the electrodes making the shape of the letter ‘X’. Extreme conditions of magnetic field (> 200 MGauss for less than 1 ns), temperature (1 keV) and density (~ 1022 cm-3) are produced at the cross-point, where two wires make contact. Further, supersonic jets are produced on either side of the cross-point. The physics of the formation of the plasma at the cross-point is complex. It is not clear what role radiation plays in the formation of high energy density plasma (>> 1011 J/m3) at the cross-point. Nor it is understood how the supersonic jets are formed. Present numerical codes do not contain complex physics that can take into account some of these aspects. Indeed, a comprehensive experimental study could answer some of the questions, which are relevant to wide-ranging fields such as inertial confinement fusion, astrophysical plasmas, high intensity laser plasma interactions and radiation physics. The main aim of the proposal was to increase the fundamental understanding of high energy density physics and particularly address the key issues associated with x-pinches, which include radiation transport, energetic particle transport, supersonic jet formation, using state-of-the-art compact pulsed power drivers. All the primary objectives of the proposed work were met. These objectives include: • Understanding of the fundamental physics of hot and dense plasma formation, implosion to less than 1 µm size due to the radiation enhanced collapse and energetic electron heating, • Study of the jet formation mechanism, which is of interest due to the astrophysical jets and deposition of energy by energetic electrons in jets, • Characterization of an x-pinch as a point x-ray source for the phase contrast radiography of beryllium cryogenic targets for the National Ignition Facility (NIF) experiments. The work carried out included a strong educational component involving both undergraduate and graduate students. Several undergraduate students from University of California San Diego participated in this project. A post-doctoral fellow, Dr. Simon Bott and two graduate students, David Haas and Erik Shipton contributed to every aspect of this project. The success of the project can be judged from the fact that fifteen peer-reviewed papers were published in high quality journals. In addition several presentations were made to a number of scientific meetings.

Beg, Farhat N [University of California San Diego

2013-08-14T23:59:59.000Z

322

The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network [OSTI]

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

Moses, E I

2001-01-01T23:59:59.000Z

323

Testing Skyrme energy-density functionals with the QRPA in low-lying vibrational states of rare-earth nuclei  

E-Print Network [OSTI]

Although nuclear energy density functionals are determined primarily by fitting to ground state properties, they are often applied in nuclear astrophysics to excited states, usually through the quasiparticle random phase approximation (QRPA). Here we test the Skyrme functionals SkM* and SLy4 along with the self-consistent QRPA by calculating properties of low-lying vibrational states in a large number of well-deformed even-even rare-earth nuclei. We reproduce trends in energies and transition probabilities associated with gamma-vibrational states, but our results are not perfect and indicate the presences of multi-particle-hole correlations that are not included in the QRPA. The Skyrme functional SkM* performs noticeably better than SLy4. In a few nuclei, changes in the treatment of the pairing energy functional have a significant effect. The QRPA is less successful with "beta-vibrational" states than with the gamma-vibrational states.

J. Terasaki; J. Engel

2011-05-19T23:59:59.000Z

324

Kaon condensate with trapped neutrinos and high-density symmetry energy behavior  

E-Print Network [OSTI]

Effects of the neutrino trapping and symmetry energy behavior are investigated in the framework of the chiral Kaplan-Nelson model with kaon condensation. Decrease in the condensation threshold during deleptonization if found to be generic regardless uncertainties in the nucleon-kaon interactions and symmetry energy. Quantitatively however, differences are shown to be important

A. Odrzywolek; M. Kutschera

2007-03-27T23:59:59.000Z

325

Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmasa...  

E-Print Network [OSTI]

, Albuquerque, New Mexico, 87185-1196, USA 2 University of Nevada, Reno, Nevada 89557, USA 3 Lawrence Livermore for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion more energy and the backlight must be bright enough to overwhelm the plasma self-emission

326

Understanding the implications of the data from recent high-energy-density Kelvin-Helmholtz shear layer experiments  

SciTech Connect (OSTI)

The first successful high energy density Kelvin-Helmholtz (KH) shear layer experiments (O.A. Hurricane, et al., Phys. Plasmas, 16, 056305, 2009; E.C. Harding, et al., Phys. Rev. Lett., 103, 045005, 2009) demonstrated the ability to design and field a target that produces an array of large diagnosable KH vortices in a controlled fashion. Data from these experiments vividly showed the complete evolution of large distinct eddies, from formation to apparent turbulent break-up. Unexpectedly, low-density bubbles/cavities comparable to the vortex size ({approx} 300 - 400 {micro}m) appeared to grow up in the free-stream flow above the unstable material interface. In this paper, the basic principles of the experiment will be discussed, the data reviewed, and the progress on understanding the origin of the above bubble structures through theory and simulation will be reported on.

Hurricane, O A; Hansen, J F; Harding, E C; Drake, R P; Robey, H F; Remington, B A; Kuranz, C C; Grosskopf, M J; Gillespie, R S; Park, H

2009-10-26T23:59:59.000Z

327

Development and current status of electric double-layer capacitors  

SciTech Connect (OSTI)

An electric double layer capacitor (EDLC) based on the charge storage at the interface between a high surface area carbon electrode and an electrolyte solution is widely used as maintenance-free power source for IC memories and microcomputers. New applications for electric double-layer capacitors have been proposed in recent years. The popularity of these devices is derived from their high energy density relative to conventional capacitors and their long cycle life and high power density relative to batteries. In this paper a classification and a characteristics of industrially produced Japanese small EDLCs are reviewed. Structure and performance of power capacitors under development as well as materials and performance of industrially produced small capacitors are discussed.

Morimoto, Takeshi; Hiratsuka, Kazuya; Sanada, Yasuhiro [Asahi Glass Co. Ltd., Yokohama (Japan). Research Center; Kurihara, Kaname [ELNA Co., Ltd., Fujisawa (Japan)

1995-12-31T23:59:59.000Z

328

High energy density and extreme field physics in the transparent-overdense regime  

SciTech Connect (OSTI)

Conclusions of this report are: (1) high harmonics generated on solid surfaces are a very versatile source of intense coherent XUV radiation; (2) high harmonics can be used to probe and monitor the interaction of intense femtosecond laser pulses with nm-scale foil targets; (3) direct measurement of target density during relativistic interaction; (4) high harmonics generated with PW-scale short-pulse lasers could serve as unique backlighting sources for a wide range experiments; and (5) Trident can be a test bed to develop such experiments and the required instrumentation.

Hegelich, Bjorn Manuel [Los Alamos National Laboratory; Yin, Kin [Los Alamos National Laboratory; Albright, Brian J [Los Alamos National Laboratory; Bowers, Kevin J [Los Alamos National Laboratory; Gautier, C [Los Alamos National Laboratory; Huang, C [Los Alamos National Laboratory; Jung, D [Los Alamos National Laboratory; Letzring, S [Los Alamos National Laboratory; Palaniyappan, S [Los Alamos National Laboratory; Shah, R [Los Alamos National Laboratory; Wu, H [Los Alamos National Laboratory; Fernandez, J. C. [Los Alamos National Laboratory; Dromey, B [QUEENS UNIV BELFAST; Henig, A [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Horlein, R [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Kefer, D. [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Tajima, T [LUDWIG-MAXIMILIN-UNIV MUNCHEN; Yan, X [QUEENS UNIV BELFAST; Habs, D [LUDWIG-MAXIMILIAN-UNIV MUNCHEN

2011-01-31T23:59:59.000Z

329

High energy and power density nanotube-enhanced ultracapacitor design, modeling, testing, and predicted performance  

E-Print Network [OSTI]

Today's batteries are penalized by their poor cycleability (limited to few thousand cycles), shelf life, and inability to quickly recharge (limited to tens of minutes). Commercial ultracapacitors are energy storage systems ...

Signorelli, Riccardo (Riccardo Laurea)

2009-01-01T23:59:59.000Z

330

Heavy ion fusion science research for high energy density physics and fusion applications  

E-Print Network [OSTI]

cost direct plasma MHD direct conversion [38], as well as toT-lean targets and direct conversion for heavy ion fusion. [conversion loss of beam energy into x-rays. High ablation velocities with heavy ion direct

Logan, B.G.

2007-01-01T23:59:59.000Z

331

Multi-Megajoule NIF: Ushering In a New Era in High Energy Density Science  

SciTech Connect (OSTI)

This paper describes the status of the stadium-sized National Ignition Facility (NIF), the world's largest laser system and first operational multi-megajoule laser. The 192-beam NIF, located at Lawrence Livermore National Laboratory (LLNL), is 96% complete and scheduled for completion in March 2009. The NIF laser will produce nanosecond laser pulses with energies up to approximately 4 MJ in the infrared (laser wavelength = 1.053-{micro}m) and 2MJ in the ultraviolet (laser wavelength = 0.35-{micro}m). With these energies NIF will access conditions of pressure and temperature not previously available on earth, allowing it to conduct experiments in support of the nation's national security, energy, and fundamental science goals. First ignition experiments at NIF are scheduled for FY2010. This paper will provide an overview of the NIF laser and the ignition, energy, and fundamental science activities at NIF.

Keane, C; Moses, E I

2008-04-30T23:59:59.000Z

332

NEUTRON FLUX DENSITY AND SECONDARY-PARTICLE ENERGY SPECTRA AT THE 184-INCH SYNCHROCYCLOTRON MEDICAL FACILITY  

E-Print Network [OSTI]

Mischke, R. E. 1973a. Neutron-nucleus total and inelasticproduction of high-energy neutrons by stripping. Phys. Rev.1975. Dose rate due to neutrons around the alpha- Health

Smith, A.R.

2010-01-01T23:59:59.000Z

333

Improvements on carbon nanotube structures in high-energy density ultracapacitor electrode design  

E-Print Network [OSTI]

Ultracapacitors are a class of electrochemical energy storage device that is gaining significant industrial traction due to their high charging rate and cycle life compared to rechargeable batteries; however, they store ...

Jenicek, David P. (David Pierre)

2014-01-01T23:59:59.000Z

334

Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals  

E-Print Network [OSTI]

We calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each within two different parameter sets. A comparative analysis of the results obtained for odd-even mass staggerings, quasiparticle spectra, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using the EDF modelling

Dobaczewski, J; Bender, M; Robledo, L M; Shi, Yue

2015-01-01T23:59:59.000Z

335

Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments  

SciTech Connect (OSTI)

A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/?E of order 10?000 and spatial resolution better than 10 ?m. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

Hill, K. W., E-mail: khill@pppl.gov; Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lu, J. [Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing 400030 (China); Beiersdorfer, P.; Chen, H.; Magee, E. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2014-11-15T23:59:59.000Z

336

Low-momentum interactions with Brown-Rho-Ericson scalings, and the density dependence of the nuclear symmetry energy  

SciTech Connect (OSTI)

We have calculated the nuclear symmetry energy E{sub sym}({rho}) up to densities of 4-5{rho}{sub 0} with the effects from the Brown-Rho (BR) and Ericson scalings with the in-medium mesons included. Using the V{sub lowk} low-momentum interaction with and without such scalings, the equations of state (EOSs) of symmetric and asymmetric nuclear matter have been calculated using a ring-diagram formalism where the particle-particle-hole-hole ring diagrams are included to all orders. The EOSs for symmetric nuclear matter and neutron matter obtained with linear BR scaling are both overly stiff compared with the empirical constraints of Danielewicz et al. [Science 298, 1592 (2002)]. In contrast, satisfactory results are obtained by either using the nonlinear Ericson scaling or by adding a Skyrme-type three-nucleon force (TNF) to the unscaled V{sub lowk} interaction. Our results for E{sub sym}({rho}) obtained with the nonlinear Ericson scaling are in good agreement with the empirical values of Tsang et al. [Phys. Rev. Lett. 102, 122701 (2009)] and Li et al. [Phys. Rev. C 72, 064611 (2005)], while those with the TNF are slightly below these values. For densities below the nuclear saturation density {rho}{sub 0}, the results of the above calculations are nearly equivalent to each other and all are in satisfactory agreement with the empirical values.

Dong Huan; Kuo, T. T. S.; Machleidt, R. [Department of Physics and Astronomy, Stony Brook University, New York 11794-3800 (United States); Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States)

2011-05-15T23:59:59.000Z

337

Low-momentum interactions with Brown-Rho-Ericson scalings and the density dependence of the nuclear symmetry energy  

E-Print Network [OSTI]

We have calculated the nuclear symmetry energy $E_{sym}(\\rho)$ up to densities of $4 \\sim 5 \\rho_0$ with the effects from the Brown-Rho (BR) and Ericson scalings for the in-medium mesons included. Using the $V_{low-k}$ low-momentum interaction with and without such scalings, the equations of state (EOS) of symmetric and asymmetric nuclear matter have been calculated using a ring-diagarm formalism where the particle-particle-hole-hole ring diagrams are included to all orders. The EOS for symmetric nuclear matter and neutron matter obtained with linear BR scaling are both overly stiff compared with the empirical constraints of Danielewicz {\\it et al.} \\cite{daniel02}. In contrast, satisfactory results are obtained by either using the nonlinear Ericson scaling or by adding a Skyrme-type three-nucleon force (TNF) to the unscaled $V_{low-k}$ interaction. Our results for $E_{sym}(\\rho)$ obtained with the nonlinear Ericson scaling are in good agreement with the empirical values of Tsang {\\it et al.} \\cite{tsang09} and Li {\\it et al.} \\cite{li05}, while those with TNF are slightly below these values. For densities below the nuclear saturation density $\\rho_0$, the results of the above calculations are nearly equivalent to each other and all in satisfactory agreement with the empirical values.

Huan Dong; T. T. S. Kuo; R. Machleidt

2011-01-10T23:59:59.000Z

338

Constraining the density dependence of the nuclear symmetry energy from an X-ray bursting neutron star  

E-Print Network [OSTI]

Neutrons stars lighter than the Sun are basically composed of nuclear matter of density up to around twice normal nuclear density. In our recent analyses, we showed that possible simultaneous observations of masses and radii of such neutron stars could constrain $\\eta\\equiv(K_0L^2)^{1/3}$, a combination of the incompressibility of symmetric nuclear matter $K_0$ and the density derivative of the nuclear symmetry energy $L$ that characterizes the theoretical mass-radius relation. In this paper, we focus on the mass-radius constraint of the X-ray burster 4U 1724-307 given by Suleimanov et al. (2011). We therefrom obtain the constraint that $\\eta$ should be larger than around 130 MeV, which in turn leads to $L$ larger than around 110, 98, 89, and 78 MeV for $K_0=180$, 230, 280, and 360 MeV. Such a constraint on $L$ is more or less consistent with that obtained from the frequencies of quasi-periodic oscillations in giant flares observed in soft-gamma repeaters.

Sotani, Hajime; Oyamatsu, Kazuhiro

2015-01-01T23:59:59.000Z

339

Constraining the density dependence of the nuclear symmetry energy from an X-ray bursting neutron star  

E-Print Network [OSTI]

Neutrons stars lighter than the Sun are basically composed of nuclear matter of density up to around twice normal nuclear density. In our recent analyses, we showed that possible simultaneous observations of masses and radii of such neutron stars could constrain $\\eta\\equiv(K_0L^2)^{1/3}$, a combination of the incompressibility of symmetric nuclear matter $K_0$ and the density derivative of the nuclear symmetry energy $L$ that characterizes the theoretical mass-radius relation. In this paper, we focus on the mass-radius constraint of the X-ray burster 4U 1724-307 given by Suleimanov et al. (2011). We therefrom obtain the constraint that $\\eta$ should be larger than around 130 MeV, which in turn leads to $L$ larger than around 110, 98, 89, and 78 MeV for $K_0=180$, 230, 280, and 360 MeV. Such a constraint on $L$ is more or less consistent with that obtained from the frequencies of quasi-periodic oscillations in giant flares observed in soft-gamma repeaters.

Hajime Sotani; Kei Iida; Kazuhiro Oyamatsu

2015-01-08T23:59:59.000Z

340

Energy level alignment and quantum conductance of functionalized metal-molecule junctions: Density functional theory versus GW calculations  

SciTech Connect (OSTI)

We study the effect of functional groups (CH{sub 3}*4, OCH{sub 3}, CH{sub 3}, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+?), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GW (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, ?, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.

Jin, Chengjun; Markussen, Troels; Thygesen, Kristian S., E-mail: thygesen@fysik.dtu.dk [Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Strange, Mikkel; Solomon, Gemma C. [Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark)] [Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark)

2013-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Maximal Net Baryon Density in the Energy Region Covered by NICA  

E-Print Network [OSTI]

There are several theoretical indications that the energy region covered by the proposed NICA accelerator in Dubna is an extremely interesting one. We present a review of data obtained in relativistic heavy ion collisions and show that there is a gap around 10 GeV where more and better precise measurements are needed. The theoretical interpretation can only be clarified by covering this energy region. In particular the strangeness content needs to be determined, data covering the full phase space ($4 \\pi$) would be very helpful to establish the thermal parameters of a possible phase transition.

J. Cleymans

2010-05-22T23:59:59.000Z

342

Thermodynamics and heavy-quark free energies at finite temperature and density with two flavors of improved Wilson quarks  

E-Print Network [OSTI]

Thermodynamics of two-flavor QCD at finite temperature and density is studied on a $16^3 \\times 4$ lattice, using a renormalization group improved gauge action and the clover improved Wilson quark action. In the simulations along lines of constant $m_{\\rm PS}/m_{\\rm V}$, we calculate the Taylor expansion coefficients of the heavy-quark free energy with respect to the quark chemical potential ($\\mu_q$) up to the second order. By comparing the expansion coefficients of the free energies between quark($Q$)and antiquark($\\bar{Q}$), and between $Q$ and $Q$, we find a characteristic difference at finite $\\mu_q$ due to the first order coefficient of the Taylor expansion. We also calculate the quark number and isospin susceptibilities, and find that the second order coefficient of the quark number susceptibility shows enhancement around the pseudo-critical temperature.

Y. Maezawa; S. Aoki; S. Ejiri; T. Hatsuda; N. Ishii; K. Kanaya; N. Ukita; T. Umeda

2007-10-04T23:59:59.000Z

343

Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density  

E-Print Network [OSTI]

electron microscopy and transmission electron microscopy. The excellent performance of the assembled super- capacitors is also discussed and it is attributed to (i) effective utilization of the large surface area vehicles (HEV), there have been increasing demands of high-performance energy storage devices. Super

Qin, Lu-Chang

344

Energy density functionals from the strong-coupling limit applied to the anions of the He isoelectronic series  

SciTech Connect (OSTI)

Anions and radicals are important for many applications including environmental chemistry, semiconductors, and charge transfer, but are poorly described by the available approximate energy density functionals. Here we test an approximate exchange-correlation functional based on the exact strong-coupling limit of the Hohenberg-Kohn functional on the prototypical case of the He isoelectronic series with varying nuclear charge Z < 2, which includes weakly bound negative ions and a quantum phase transition at a critical value of Z, representing a big challenge for density functional theory. We use accurate wavefunction calculations to validate our results, comparing energies and Kohn-Sham potentials, thus also providing useful reference data close to and at the quantum phase transition. We show that our functional is able to bind H{sup ?} and to capture in general the physics of loosely bound anions, with a tendency to strongly overbind that can be proven mathematically. We also include corrections based on the uniform electron gas which improve the results.

Mirtschink, André; Gori-Giorgi, Paola [Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam (Netherlands)] [Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam (Netherlands); Umrigar, C. J. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853 (United States)] [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853 (United States); Morgan, John D. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States)] [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States)

2014-05-14T23:59:59.000Z

345

Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments  

SciTech Connect (OSTI)

A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ?400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C{sub 2}F{sub 6}, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ?400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

Herrmann, H. W., E-mail: herrmann@lanl.gov; Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Malone, R. M. [National Security Technologies, LLC, Los Alamos, New Mexico 87544 (United States); Rubery, M. S.; Horsfield, C. J. [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Zylstra, A. B. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shmayda, W. T. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

2014-11-15T23:59:59.000Z

346

Universal Nuclear Energy Density Functional: Tools and Resources from the UNEDF SciDAC Collaboration  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

UNEDF supports the Low-Energy Nuclear Physics National HPC Initiative. There are approximately 3,000 known nuclei, most of them produced in the laboratory, with an additional 6,000 that could in principle still be created. An understanding of the properties of these elements is crucial for future energy and defense applications. The long-term vision of UNEF is to arrive at a comprehensive and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. It seeks to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties.

347

Complex-energy approach to sum rules within nuclear density functional theory  

E-Print Network [OSTI]

The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or EDF. But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish an efficient framework to compute sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy FAM based on the QRPA. To compute sum rules, we carry out contour integration of the response function in the complex-energy plane. We benchmark our results against the conventional matrix formulation of the QRPA theory...

Hinohara, Nobuo; Nazarewicz, Witold; Olsen, Erik

2015-01-01T23:59:59.000Z

348

Optimizing minimum free-energy crossing points in solution: Linear-response free energy/spin-flip density functional theory approach  

SciTech Connect (OSTI)

Examining photochemical processes in solution requires understanding the solvent effects on the potential energy profiles near conical intersections (CIs). For that purpose, the CI point in solution is determined as the crossing between nonequilibrium free energy surfaces. In this work, the nonequilibrium free energy is described using the combined method of linear-response free energy and collinear spin-flip time-dependent density functional theory. The proposed approach reveals the solvent effects on the CI geometries of stilbene in an acetonitrile solution and those of thymine in water. Polar acetonitrile decreases the energy difference between the twisted minimum and twisted-pyramidalized CI of stilbene. For thymine in water, the hydrogen bond formation stabilizes significantly the CI puckered at the carbonyl carbon atom. The result is consistent with the recent simulation showing that the reaction path via this geometry is open in water. Therefore, the present method is a promising way of identifying the free-energy crossing points that play an essential role in photochemistry of solvated molecules.

Minezawa, Noriyuki, E-mail: minezawa@fukui.kyoto-u.ac.jp [Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103 (Japan)

2014-10-28T23:59:59.000Z

349

Probing Ligand Effects on the Redox Energies of [4Fe-4S] Clusters Using Broken-Symmetry Density Functional Theory  

SciTech Connect (OSTI)

A central issue in understanding redox properties of iron-sulfur proteins is determining the factors that tune the reduction potentials of the Fe-S clusters. Recently, Solomon and coworkers have shown that the Fe-S bond covalency of protein analogs measured by %L, the percent ligand character of the Fe 3d orbitals, from ligand K-edge X-ray absorption spectroscopy (XAS) correlates with the electrochemical redox potentials. Also, Wang and coworkers have measured electron detachment energies for iron-sulfur clusters without environmental perturbations by gas-phase photoelectron spectroscopy (PES). Here the correlations of the ligand character with redox energy and %L character are examined in [Fe?S?L?]2? clusters with different ligands by broken symmetry density functional theory (BS-DFT) calculations using the B3LYP functional together with PES and XAS experimental results. These gas-phase studies assess ligand effects independently of environmental perturbations and thus provide essential information for computational studies of iron-sulfur proteins. The B3LYP oxidation energies agree well with PES data, and the %L character obtained from natural bond orbital analysis correlates with XAS values, although it systematically underestimates them because of basis set effects. The results show that stronger electron-donating terminal ligands increase %Lt, the percent ligand character from terminal ligands, but decrease %Sb, the percent ligand character from the bridging sulfurs. Because the oxidized orbital has significant Fe-Lt antibonding character, the oxidation energy correlates well with %Lt. However, because the reduced orbital has varying contributions of both Fe-Lt and Fe-Sb antibonding character, the reduction energy does not correlate with either %Lt or %Sb. Overall, BSDFT calculations together with XAS and PES experiments can unravel the complex underlying factors in the redox energy and chemical bonding of the [4Fe-4S] clusters in iron-sulfur proteins.

Niu, Shuqiang; Ichiye, Toshiko

2009-05-14T23:59:59.000Z

350

Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources  

SciTech Connect (OSTI)

Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and changes in the weather conditions may produce significant density corrections, and that effect should be taken into account. This effect is chamber-dependent, indicating that a specific calibration is necessary for each particular chamber. To our knowledge, this correction has not been considered so far for SourceCheck ionization chambers, but its magnitude cannot be neglected in clinical practice. The atmospheric pressure and temperature at which the chamber was calibrated need to be taken into account, and they should be reported in the calibration certificate. In addition, each institution should analyze the particular response of its SourceCheck ionization chamber and compute the adequate correction factors. In the absence of a suitable pressure chamber, a possibility for this assessment is to take measurements at different altitudes, spanning a wide enough air density range.

Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario San Cecilio, E-18012 Granada (Spain)] [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario San Cecilio, E-18012 Granada (Spain); Perez-Calatayud, Jose [Servicio de Radioterapia, Unidad de Radiofísica, Hospital Universitario y Politécnico La Fe, E-46026 Valencia (Spain)] [Servicio de Radioterapia, Unidad de Radiofísica, Hospital Universitario y Politécnico La Fe, E-46026 Valencia (Spain); Simancas, Fernando; Lallena, Antonio M. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)] [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Gazdic-Santic, Maja [Department of Medical Physics and Radiation Safety, Clinical Centre of Sarajevo University, 71000 Sarajevo (Bosnia and Herzegovina)] [Department of Medical Physics and Radiation Safety, Clinical Centre of Sarajevo University, 71000 Sarajevo (Bosnia and Herzegovina)

2013-12-15T23:59:59.000Z

351

Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density  

SciTech Connect (OSTI)

BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

None

2010-10-01T23:59:59.000Z

352

Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes  

SciTech Connect (OSTI)

The preparation and characterization of high surface area ruthenium/carbon aerogel composite electrodes for use in electrochemical capacitors is reported. These new materials have been prepared by the chemical vapor impregnation of ruthenium into carbon aerogels to produce a uniform distribution of adherent {approx}20 {angstrom} nanoparticles on the aerogel surface. The electrochemically oxidized ruthenium particles contribute a pseudocapacitance to the electrode and dramatically improve the energy storage characteristics of the aerogel. These composites have demonstrated specific capacitances in excess of 200 F/g, in comparison to 95 F/g for the untreated aerogel.

Miller, J.M.; Dunn, B. [Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering; Tran, T.D.; Pekala, R.W. [Lawrence Livermore National Labs., CA (United States). Chemical Sciences Div.

1997-12-01T23:59:59.000Z

353

Creating, Diagnosing and Controlling High-energy-density Matter with Lasers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-GovNatural GasCourseCraigJeff Brooks| Princeton

354

Cell Analysis … High-Energy Density Cathodes and Anodes | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day with Secretary ChuEnergy Analysis …

355

Amplifying Magnetic Fields in High Energy Density Plasmas | U.S. DOE Office  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman ResourcesScienceHomeAboutLightAllen J.Ames SiteAmitof

356

TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S. TALKS1 | E nergy EBatteries.

357

Development of High Energy Density Lithium-Sulfur Cells | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Companya newHomogeneous ChargeMaterialsEnergy

358

A Stable Vanadium Redox-Flow Battery with High Energy Density for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSL Shell

359

MEMS Fuel Cells--Low Temp--High Power Density - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration -Lowell L. Wood,3,March 26,

360

Research on Factors Relating to Density and Climate Change | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge AndREII JumpInformation to Secure Energy

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Density Log at Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has beenFinancial IncentiveEnergy(LECBP)Fort

362

Particle vibrational coupling in covariant density functional theory  

E-Print Network [OSTI]

A consistent combination of covariant density functional theory (CDFT) and Landau-Migdal Theory of Finite Fermi Systems (TFFS) is presented. Both methods are in principle exact, but Landau-Migdal theory cannot describe ground state properties and density functional theory does not take into account the energy dependence of the self-energy and therefore fails to yield proper single-% particle spectra as well as the coupling to complex configurations in the width of giant resonances. Starting from an energy functional, phonons and their vertices are calculated without any further parameters. They form the basis of particle-vibrational coupling leading to an energy dependence of the self-energy and an induced energy-dependent interaction in the response equation. A subtraction procedure avoids double counting. Applications in doubly magic nuclei and in a chain of superfluid nuclei show excellent agreement with experimental data.

P. Ring; E. Litvinova

2010-06-21T23:59:59.000Z

363

High-energy-density solid and liquid hydrocarbon fuels. Final report, July 1987-December 1988  

SciTech Connect (OSTI)

The development of new high-energy hydrocarbon fuels for use in air-breathing missiles has been the objective of a number of investigations which have received support during the past decade through programs sponsored by the Air Force Systems Command and/or the Naval Air Systems Command. The key characteristics which must be met by potential cruise missile fuels have been described by Burdette and coworkers. A primary requirement in this regard is that candidate fuels must possess high net volumetric heat of combustion (preferably greater than 160,000 BTU/gallon). In order to meet the primary requirement of high net volumetric heat of combustion, hydrocarbon systems have been sought which maximize the ratio of carbon-atom to hydrogen-atom content have been sought that maximize the ratio n/m.(JES)

Marchand, A.P.

1989-02-01T23:59:59.000Z

364

The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network [OSTI]

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

E. I. Moses

2001-11-09T23:59:59.000Z

365

Observation and modeling of mixing-layer development in high-energy-density, blast-wave-driven shear flow  

SciTech Connect (OSTI)

In this work, we examine the hydrodynamics of high-energy-density (HED) shear flows. Experiments, consisting of two materials of differing density, use the OMEGA-60 laser to drive a blast wave at a pressure of ?50 Mbar into one of the media, creating a shear flow in the resulting shocked system. The interface between the two materials is Kelvin-Helmholtz unstable, and a mixing layer of growing width develops due to the shear. To theoretically analyze the instability's behavior, we rely on two sources of information. First, the interface spectrum is well-characterized, which allows us to identify how the shock front and the subsequent shear in the post-shock flow interact with the interface. These observations provide direct evidence that vortex merger dominates the evolution of the interface structure. Second, simulations calibrated to the experiment allow us to estimate the time-dependent evolution of the deposition of vorticity at the interface. The overall result is that we are able to choose a hydrodynamic model for the system, and consequently examine how well the flow in this HED system corresponds to a classical hydrodynamic description.

Di Stefano, C. A., E-mail: carlosds@umich.edu; Kuranz, C. C.; Klein, S. R.; Drake, R. P. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Malamud, G. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States) [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Physics, Nuclear Research Center-Negev, Beer-Sheva (Israel); Henry de Frahan, M. T.; Johnsen, E. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Shimony, A.; Shvarts, D. [Department of Physics, Nuclear Research Center-Negev, Beer-Sheva (Israel) [Department of Physics, Nuclear Research Center-Negev, Beer-Sheva (Israel); Department of Physics, Ben-Gurion University, Beer-Sheva (Israel); Smalyuk, V. A.; Martinez, D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

2014-05-15T23:59:59.000Z

366

Sustainability Double Degree Double Degree Info  

E-Print Network [OSTI]

Sustainability Double Degree Double Degree Info: · 36 credits in B for graduation. Sustainability Core: Take each course below for a total of 17 -20 credits. Term/Grade Course _____ ____ *NR 350 (4) Sustainable

Grünwald, Niklaus J.

367

Time-dependent Maxwell field operators and field energy density for an atom near a conducting wall  

E-Print Network [OSTI]

We consider the time evolution of the electric and magnetic field operators for a two-level atom, interacting with the electromagnetic field, placed near an infinite perfectly conducting wall. We solve iteratively the Heisenberg equations for the field operators and obtain the electric and magnetic energy density operators around the atom (valid for any initial state). Then we explicitly evaluate them for an initial state with the atom in its bare ground state and the field in the vacuum state. We show that the results can be physically interpreted as the superposition of the fields propagating directly from the atom and the fields reflected on the wall. Relativistic causality in the field propagation is discussed. Finally we apply these results to the calculation of the dynamical Casimir-Polder interaction energy in the far zone between two atoms when a boundary condition such as a conducting wall is present. Magnetic contributions to the interatomic Casimir-Polder interaction in the presence of the wall are also considered. We show that, in the limit of large times, the known results of the stationary case are recovered.

R. Vasile; R. Messina; R. Passante

2009-03-18T23:59:59.000Z

368

Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays  

SciTech Connect (OSTI)

Results are presented from experimental studies of the characteristics of the soft X-ray (SXR) source formed in the implosion of quasi-spherical arrays made of tungsten wires and metalized kapron fibers. The experiments were carried out at the Angara-5-1 facility at currents of up to 3 MA. Analysis of the spatial distribution of hard X-ray emission with photon energies above 20 keV in the pinch images taken during the implosion of quasi-spherical tungsten wire arrays (QTWAs) showed that a compact quasi-spherical plasma object symmetric with respect to the array axis formed in the central region of the array. Using a diffraction grazing incidence spectrograph, spectra of SXR emission with wavelengths of 20–400 Å from the central, axial, and peripheral regions of the emission source were measured with spatial resolutions along the array radius and height in the implosion of QTWAs. It is shown that the emission spectra of the SXR sources formed under the implosion of quasi-spherical and cylindrical tungsten wire arrays at currents of up to 3 MA have a maximum in the wavelength range of 50–150 Å. It is found that, during the implosion of a QTWA with a profiled linear mass, a redistribution of energy in the emission spectrum takes place, which indicates that, during 3D implosion, the energy of longitudinal motion of the array material additionally contributes to the radiation energy. It is also found that, at close masses of the arrays and close values of the current in the range of 2.4{sup ?3} MA, the average energy density in the emission source formed during the implosion of a quasi-spherical wire array is larger by a factor of 7 than in the source formed during the implosion of a cylindrical wire array. The experimental data were compared with results of 3D simulations of plasma dynamics and radiation generation during the implosion of quasi-spherical wire arrays with a profiled mass by using the MARPLE-3D radiative magnetohydrodynamic code, developed at the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.

Aleksandrov, V. V., E-mail: alexvv@triniti.ru [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Gasilov, V. A. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Grabovski, E. V.; Gritsuk, A. N., E-mail: griar@triniti.ru; Laukhin, Ya. N.; Mitrofanov, K. N.; Oleinik, G. M. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Ol’khovskaya, O. G. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Sasorov, P. V.; Smirnov, V. P.; Frolov, I. N. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Shevel’ko, A. P. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

2014-12-15T23:59:59.000Z

369

Calculation of nuclear matrix elements in neutrinoless double electron capture  

E-Print Network [OSTI]

We compute nuclear matrix elements for neutrinoless double electron capture on $^{152}$Gd, $^{164}$Er and $^{180}$W nuclei. Recent precise mass measurements for these nuclei have shown a large resonance enhancement factor that makes them the most promising candidates for observing this decay mode. We use an advanced energy density functional method which includes beyond mean-field effects such as symmetry restoration and shape mixing. Our calculations reproduce experimental charge radii and $B(E2)$ values predicting a large deformation for all these nuclei. This fact reduces significantly the values of the NMEs leading to half-lives larger than $10^{29}$ years for the three candidates.

Tomas R. Rodriguez; Gabriel Martinez-Pinedo

2012-03-05T23:59:59.000Z

370

Double Beta Decay  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:Directives Templates8. U.S.Donald R. Baer d37154DoorsDouble

371

Coupled-channels density-matrix approach to low-energy nuclear collision dynamics: A technique for quantifying quantum decoherence effects on reaction observables  

E-Print Network [OSTI]

The coupled-channels density-matrix technique for nuclear reaction dynamics, which is based on the Liouville-von Neumann equation with Lindblad dissipative terms, is developed with the inclusion of full angular momentum couplings. It allows a quantitative study of the role and importance of quantum decoherence in nuclear scattering. Formulae of asymptotic observables that can reveal effects of quantum decoherence are given. A method for extracting energy-resolved scattering information from the time-dependent density matrix is introduced. As an example, model calculations are carried out for the low-energy collision of the $^{16}$O projectile on the $^{154}$Sm target.

Alexis Diaz-Torres

2010-10-18T23:59:59.000Z

372

A New Method to Reconstruct the Energy and Determine the Composition of Cosmic Rays from the Measurement of Cherenkov Light and Particle Densities in Extensive Air Showers  

E-Print Network [OSTI]

A Monte-Carlo study to reconstruct energy and mass of cosmic rays with energies above 300 TeV using ground based measurements of the electromagnetic part of showers initiated in the atmosphere is presented. The shower properties determined with two detector arrays measuring the air Cherenkov light and the particle densities as realized at the HEGRA experiment are processed to determine the energy of the primary particle without the need of any hypothesis concerning its mass. The mass of the primary particle is reconstructed coarsely from the same observables in parallel to the energy determination.

A. Lindner

1998-01-15T23:59:59.000Z

373

Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries  

DOE Patents [OSTI]

Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

Deng, Haixia; Belharouak, Ilias; Amine, Khalil

2012-10-02T23:59:59.000Z

374

Low-momentum interactions with Brown-Rho-Ericson scalings and the density dependence of the nuclear symmetry energy  

E-Print Network [OSTI]

We have calculated the nuclear symmetry energy $E_{sym}(\\rho)$ up to densities of $4 \\sim 5 \\rho_0$ with the effects from the Brown-Rho (BR) and Ericson scalings for the in-medium mesons included. Using the $V_{low-k}$ low-momentum interaction with and without such scalings, the equations of state (EOS) of symmetric and asymmetric nuclear matter have been calculated using a ring-diagarm formalism where the particle-particle-hole-hole ring diagrams are included to all orders. The EOS for symmetric nuclear matter and neutron matter obtained with linear BR scaling are both overly stiff compared with the empirical constraints of Danielewicz {\\it et al.} \\cite{daniel02}. In contrast, satisfactory results are obtained by either using the nonlinear Ericson scaling or by adding a Skyrme-type three-nucleon force (TNF) to the unscaled $V_{low-k}$ interaction. Our results for $E_{sym}(\\rho)$ obtained with the nonlinear Ericson scaling are in good agreement with the empirical values of Tsang {\\it et al.} \\cite{tsang09} a...

Dong, Huan; Machleidt, R

2011-01-01T23:59:59.000Z

375

Wind Energy Finance (WEF): An Online Calculator for Economic Analysis of Wind Projects (Double-Gatefold Brochure)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP SignInWhoWillistonWEF Work? Inputs

376

Density and pair-density scaling for deriving the Euler equation in density-functional and pair-density-functional theory  

SciTech Connect (OSTI)

A link between density and pair density functional theories is presented. Density and pair density scaling are used to derive the Euler equation in both theories. Density scaling provides a constructive way of obtaining approximations for the Pauli potential. The Pauli potential (energy) of the density functional theory is expressed as the difference of the scaled and original exchange-correlation potentials (energies).

Nagy, A. [Department of Theoretical Physics, University of Debrecen, H-4010 Debrecen (Hungary)

2011-09-15T23:59:59.000Z

377

Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions  

SciTech Connect (OSTI)

To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, in p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.

Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy; Schild, David; Wiese, Claudia

2010-06-29T23:59:59.000Z

378

AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics  

SciTech Connect (OSTI)

This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

Sun, K. X.

2011-05-31T23:59:59.000Z

379

A study of density of states and ground states in hydrophobic-hydrophilic protein folding models by equi-energy sampling  

E-Print Network [OSTI]

A study of density of states and ground states in hydrophobic-hydrophilic protein folding models June 2006 We propose an equi-energy EE sampling approach to study protein folding in the two a detailed study of the thermodynamics of HP protein folding, in particular, on the temperature dependence

Kou, Samuel

380

On the Divergence of the Negative Energy Density Equation in both Alcubierre and Natario Warp Drive Spacetimes: No Divergence At All  

E-Print Network [OSTI]

On the Divergence of the Negative Energy Density Equation in both Alcubierre and Natario Warp Drive 19, 2013 Abstract Warp Drives are solutions of the Einstein Field Equations that allows superluminal: The Alcubierre warp drive discovered in 1994 and the Natario warp drive discovered in 2001. However as stated

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Gedanken densities and exact constraints in density functional theory  

SciTech Connect (OSTI)

Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA’s. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.

Perdew, John P. [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States) [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States); Ruzsinszky, Adrienn; Sun, Jianwei [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States)] [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Burke, Kieron [Department of Chemistry and Department of Physics, University of California, Irvine, California 92697 (United States)] [Department of Chemistry and Department of Physics, University of California, Irvine, California 92697 (United States)

2014-05-14T23:59:59.000Z

382

The Performance of Density Functionals for Sulfate-Water Clusters  

SciTech Connect (OSTI)

The performance of 24 density functionals, Hartree-Fock, and MP2 is assessed with respect to the energetics of 49 sulfate-water clusters with between three and six water molecules. Included among the density functionals are GGA, meta-GGA, hybrid GGA, hybrid meta-GGA, and double hybrid density functionals, as well as the LDA. Three types of dispersion corrections (VV10, XDM, and -D) are tested in conjunction with these functionals. The functionals are compared using the relative and binding energies of the sulfatewater clusters as the main criteria. It is discovered that a majority of current density functionals are unable to simultaneously capture the physics necessary to describe both the relative and binding energies of the anionic solvation clusters. The only density functionals that perform acceptably with respect to both measures are XYG3 and XYGJOS, primarily due to their balanced treatment of exchange and correlation. On the other hand, density functionals with exact exchange that lack nonlocal correlation tend to perform well only for the relative energies. However, there is evidence that hybrid density functionals that provide a more comprehensive treatment of local correlation through their dependence on the kinetic energy density and their ability to treat the inhomogeneities in the present system can partially resolve this issue. While dispersion correction functionals cannot replace the accuracy provided by MP2 correlation, it is shown that the proper combination of a hybrid GGA functional with a dispersion correction functional can lead to drastic improvements in the binding energies of the parent functional, while preserving its performance with respect to the relative energies.

Mardirossian, Narbe; Lambrecht, Daniel S.; McCaslin, Laura; Xantheas, Sotiris S.; Head-Gordon, Martin P.

2013-03-12T23:59:59.000Z

383

Attosecond Double-Slit Experiment  

SciTech Connect (OSTI)

A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (slits) of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying visibility depending on the degree of which-way information are measured. A situation in which one and the same electron encounters a single and a double slit at the same time is observed. The investigation of the fringes makes possible interferometry on the attosecond time scale. From the number of visible fringes, for example, one derives that the slits are extended over about 500 as.

Lindner, F.; Schaetzel, M.G.; Baltuska, A.; Goulielmakis, E. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Walther, H. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany); Krausz, F. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany); Institut fuer Photonik, Technische Universitaet Wien, Gusshausstr. 27, A-1040 Vienna (Austria); Milosevic, D.B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Bauer, D. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Becker, W. [Max-Born-Institut, Max-Born-Str. 2a, 12489 Berlin (Germany); Paulus, G.G. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany); Department of Physics, Texas A and M University, College Station, Texas 77843-4242 (United States)

2005-07-22T23:59:59.000Z

384

Shape and pairing fluctuations effects on neutrinoless double beta decay nuclear matrix elements  

E-Print Network [OSTI]

Nuclear matrix elements (NME) for the most promising candidates to detect neutrinoless double beta decay have been computed with energy density functional methods including deformation and pairing fluctuations explicitly on the same footing. The method preserves particle number and angular momentum symmetries and can be applied to any decay without additional fine tunings. The finite range density dependent Gogny force is used in the calculations. An increase of $10\\%-40\\%$ in the NME with respect to the ones found without the inclusion of pairing fluctuations is obtained, reducing the predicted half-lives of these isotopes.

Nuria López Vaquero; Tomás R. Rodríguez; J. Luis Egido

2014-01-03T23:59:59.000Z

385

Experimental densities, entropies and energies for pure H?S and equimolar mixtures of H?S/CH? and H?S/CO? between 300 and 500 K  

E-Print Network [OSTI]

and temperature data for H 5, H 5/CH and H S/CO were 2 2 4 2 2 measured between 300 and 500 K and 0 to 60 MPa using the Burnett- coupled isochoric technique. Second and third virial coefficients, densities, entropies and energies were derived from the pressure..., M , which has temperature and pressure R as independent variables, is defined in a similar fashion M (T, P) = M(T, P) ? M (T, P) (20) The density and pressure residual functions are related as follows 0 M (T, P) ? M (T, p) = ( -ln 2 if M=V or H...

Liu, Chung Hsiu

1985-01-01T23:59:59.000Z

386

Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries  

SciTech Connect (OSTI)

Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

Wu, H

2011-08-18T23:59:59.000Z

387

Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high-density reactive bed  

E-Print Network [OSTI]

1 Thermochemical process for seasonal storage of solar energy: characterization and modeling to maximize the use of solar energy for house heating, it is interesting to valorize the solar energy excess efficiency, and a 20 per cent share of renewable). The use of renewable energies and in particular solar

Paris-Sud XI, Université de

388

Symmetry Energy  

E-Print Network [OSTI]

Examination of symmetry energy is carried out on the basis of an elementary binding-energy formula. Constraints are obtained on the energy value at the normal nuclear density and on the density dependence of the energy at subnormal densities.

P. Danielewicz

2006-07-15T23:59:59.000Z

389

Symmetry Energy  

E-Print Network [OSTI]

Examination of symmetry energy is carried out on the basis of an elementary binding-energy formula. Constraints are obtained on the energy value at the normal nuclear density and on the density dependence of the energy at subnormal densities.

Danielewicz, P

2006-01-01T23:59:59.000Z

390

Molecular Dynamics Study of the Electrical Double Layer at Silver...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

double layer at AgClaqueous electrolyte (KCl) interfaces are presented, accompanied by a new force field and properties of bulk AgCl computed using planewave density functional...

391

Electrochemical Double Layered Capacitor Development and Implementation System  

E-Print Network [OSTI]

Electrochemical Double Layered Capacitors (EDLC's) are becoming a more popular topic of research for hybrid power systems, especially vehicles. They are known for their high power density, high cycle life, low internal resistance, and wider...

Strunk, Gavin

2014-08-31T23:59:59.000Z

392

Pair densities in density functional theory  

E-Print Network [OSTI]

The exact interaction energy of a many-electron system is determined by the electron pair density, which is not well-approximated in standard Kohn-Sham density functional models. Here we study the (complicated but well-defined) exact universal map from density to pair density. We show that many common functionals, including the most basic version of the LDA (Dirac exchange with no correlation contribution), arise from particular approximations of this map. We develop an algorithm to compute the map numerically, and apply it to one-parameter families {a*rho(a*x)} of one-dimensional homogeneous and inhomogeneous single-particle densities. We observe that the pair density develops remarkable multiscale patterns which strongly depend on both the particle number and the "width" 1/a of the single-particle density. The simulation results are confirmed by rigorous asymptotic results in the limiting regimes a>>1 and a<<1. For one-dimensional homogeneous systems, we show that the whole spectrum of patterns is rep...

Chen, Huajie

2015-01-01T23:59:59.000Z

393

Time-resolved measurements of double layer evolution in expanding plasma  

SciTech Connect (OSTI)

Observations in steady-state plasmas confirm predictions that formation of a current-free double layer in a plasma expanding into a chamber of larger diameter is accompanied by an increase in ionization upstream of the double layer. The upstream plasma density increases sharply at the same driving frequency at which a double layer appears. For driving frequencies at which no double layer appears, large electrostatic instabilities are observed. Time-resolved measurements in pulsed discharges indicate that the double layer initially forms for all driving frequencies. However, for particularly strong double layers, instabilities appear early in the discharge and the double layer collapses.

Scime, E. E.; Biloiu, I. A.; Carr, J. Jr.; Thakur, S. Chakraborty; Galante, M.; Hansen, A.; Houshmandyar, S.; Keesee, A. M.; McCarren, D.; Sears, S. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Biloiu, C. [Varian Associates, Gloucester, Massachusetts 01930 (United States); Sun, X. [Tri-Alpha Corporation, Foothill Ranch, California 92610 (United States)

2010-05-15T23:59:59.000Z

394

Density Functional Theory in Transition-Metal Chemistry: Relative Energies of Low-Lying States of Iron Compounds and the Effect of Spatial Symmetry Breaking  

SciTech Connect (OSTI)

The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The ground and lower excited states of Fe2, Fe2 -, and FeO+ were studied using a number of density functional theory (DFT) methods. Specific attention was paid to the relative state energies, the internuclear distances (re), and the harmonic vibrational frequencies (öe). A number of factors influencing the calculated values of these properties were examined. These include basis sets, the nature of the density functional chosen, the percentage of Hartree- Fock exchange in the density functional, and constraints on orbital symmetry. A number of different types of generalized gradient approximation (GGA) density functionals (straight GGA, hybrid GGA, meta-GGA, and hybrid meta-GGA) were examined, and it was found that the best results were obtained with hybrid GGA or hybrid meta-GGA functionals that contain nonzero fractions of HF exchange; specifically, the best overall results were obtained with B3LYP, M05, and M06, closely followed by B1LYP. One significant observation was the effect of enforcing symmetry on the orbitals. When a degenerate orbital (ð or ä) is partially occupied in the 4¼ excited state of FeO+, reducing the enforced symmetry (from C6v to C4v to C2v) results in a lower energy since these degenerate orbitals are split in the lower symmetries. The results obtained were compared to higher level ab initio results from the literature and to recent PBE+U plane wave results by Kulik et al. (Phys. Rev. Lett. 2006, 97, 103001). It was found that some of the improvements that were afforded by the semiempirical +U correction can also be accomplished by improving the form of the DFT functional and, in one case, by not enforcing high symmetry on the orbitals.

Sorkin, Anastassia; Iron, Mark A.; Truhlar, Donald G.

2008-02-01T23:59:59.000Z

395

SISGR: Improved Electrical Energy Storage with Electrochemical Double Layer Capacitance Based on Novel Carbon Electrodes, New Electrolytes, and Thorough Development of a Strong Science Base  

SciTech Connect (OSTI)

The broad objective of the SISGR program is to advance the fundamental scientific understanding of electrochemical double layer capacitance (EDLC) and thus of ultracapacitor systems composed of a new type of electrode based on chemically modified graphene (CMG) and (primarily) with ionic liquids (ILs) as the electrolyte. Our team has studied the interplay between graphene-based and graphene-derived carbons as the electrode materials in electrochemical double layer capacitors (EDLC) systems on the one hand, and electrolytes including novel ionic liquids (ILs), on the other, based on prior work on the subject.

Ruoff, Rodney S. [PI; Alam, Todd M. [co-PI; Bielawski, Christopher W. [co-PI; Chabal, Yves [co-PI; Hwang, Gyeong [co-PI; Ishii, Yoshitaka [co-PI; Rogers, Robin [co-PI

2014-07-23T23:59:59.000Z

396

Double Chooz: Latest results  

E-Print Network [OSTI]

The latest results from the Double Chooz experiment on the neutrino mixing angle $\\theta_{13}$ are presented. A detector located at an average distance of 1050 m from the two reactor cores of the Chooz nuclear power plant has accumulated a live time of 467.90 days, corresponding to an exposure of 66.5 GW-ton-year (reactor power $\\times$ detector mass $\\times$ live time). A revised analysis has boosted the signal efficiency and reduced the backgrounds and systematic uncertainties compared to previous publications, paving the way for the two detector phase. The measured $\\sin^2 2\\theta_{13} = 0.090^{+0.032}_{-0.029}$ is extracted from a fit to the energy spectrum. A deviation from the prediction above a visible energy of 4 MeV is found, being consistent with an unaccounted reactor flux effect, which does not affect the $\\theta_{13}$ result. A consistent value of $\\theta_{13}$ is measured in a rate-only fit to the number of observed candidates as a function of the reactor power, confirming the robustness of the result.

J. I. Crespo-Anadón; for the Double Chooz collaboration

2014-12-11T23:59:59.000Z

397

Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems  

SciTech Connect (OSTI)

Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ?{sub ?} and oscillator strengths f{sub ?} for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ?{sub ?}(R) curves along the bond dissociation coordinate R for the molecules LiH, Li{sub 2}, and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate.

Meer, R. van; Gritsenko, O. V. [Faculty of Exact Sciences, Theoretical Chemistry, VU University, Amsterdam (Netherlands) [Faculty of Exact Sciences, Theoretical Chemistry, VU University, Amsterdam (Netherlands); WCU Program, Dep. of Chemistry, Pohang Univ. of Science and Techn., Pohang (Korea, Republic of); Baerends, E. J. [Faculty of Exact Sciences, Theoretical Chemistry, VU University, Amsterdam (Netherlands) [Faculty of Exact Sciences, Theoretical Chemistry, VU University, Amsterdam (Netherlands); WCU Program, Dep. of Chemistry, Pohang Univ. of Science and Techn., Pohang (Korea, Republic of); Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

2014-01-14T23:59:59.000Z

398

Carrier Density and Compensation in Semiconductors with Multi Dopants and Multi Transition Energy Levels: The Case of Cu Impurity in CdTe: Preprint  

SciTech Connect (OSTI)

Doping is one of the most important issues in semiconductor physics. The charge carrier generated by doping can profoundly change the properties of semiconductors and their performance in optoelectronic device applications, such as solar cells. Using detailed balance theory and first-principles calculated defect formation energies and transition energy levels, we derive general formulae to calculate carrier density for semiconductors with multi dopants and multi transition energy levels. As an example, we studied CdTe doped with Cu, in which VCd, CuCd, and Cui are the dominant defects/impurities. We show that in this system, when Cu concentration increases, the doping properties of the system can change from a poor p-type, to a poorer p-type, to a better p-type, and then to a poor p-type again, in good agreement with experimental observation of CdTe-based solar cells.

Wei, S. H.; Ma, J.; Gessert, T. A.; Chin, K. K.

2011-07-01T23:59:59.000Z

399

Double Beta Decay: Scintillators  

E-Print Network [OSTI]

Scintillator detectors can be used in experiments searching for neutrinoless double beta decay. A wide variety of double beta decay candidate isotopes can be made into scintillators or can be loaded into scintillators. Experimental programs developing liquid xenon, inorganic crystals, and Nd-loaded liquid scintillator are described in this review. Experiments with 48Ca and 150Nd benefit from their high endpoint which places the neutrinoless double beta decay signal above most backgrounds from natural radioactivity.

Mark C. Chen

2008-10-20T23:59:59.000Z

400

Wavelength-doubling optical parametric oscillator  

DOE Patents [OSTI]

A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.

Armstrong, Darrell J. (Albuquerque, NM); Smith, Arlee V. (Albuquerque, NM)

2007-07-24T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ab initio-driven nuclear energy density functional method. A proposal for safe/correlated/improvable parametrizations of the off-diagonal EDF kernels  

E-Print Network [OSTI]

This programmatic paper lays down the possibility to reconcile the necessity to resum many-body correlations into the energy kernel with the fact that safe multi-reference energy density functional (EDF) calculations cannot be achieved whenever the Pauli principle is not strictly enforced, as is for example the case when many-body correlations are parametrized under the form of empirical density dependencies. Our proposal is to exploit a newly developed ab initio many-body formalism to guide the construction of safe, explicitly correlated and systematically improvable parametrizations of the {\\it off-diagonal} energy and norm kernels that lie at the heart of the nuclear EDF method. The many-body formalism of interest relies on the concepts of symmetry breaking {\\it and} restoration that have made the fortune of the nuclear EDF method and is, as such, amenable to this guidance. After elaborating on our proposal, we briefly outline the project we plan to execute in the years to come.

Duguet, T; Ebran, J -P; Lesinski, T; Somà, V

2015-01-01T23:59:59.000Z

402

Vehicle Technologies Office Merit Review 2014: Development of Large Format Lithium Ion Cells with Higher Energy Density  

Broader source: Energy.gov [DOE]

Presentation given by XALT Energy LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of large format...

403

Double beta decay experiments  

E-Print Network [OSTI]

The present status of double beta decay experiments are reviewed. The results of the most sensitive experiments, NEMO-3 and CUORICINO, are discussed. Proposals for future double beta decay experiments are considered. In these experiments sensitivity for the effective neutrino mass will be on the level of (0.1-0.01) eV.

A. S. Barabash

2006-02-22T23:59:59.000Z

404

Double beta decay experiments  

E-Print Network [OSTI]

The present status of double beta decay experiments is reviewed. The results of the most sensitive experiments are discussed. Proposals for future double beta decay experiments with a sensitivity to the $$ at the level of (0.01--0.1) eV are considered.

A. S. Barabash

2011-07-28T23:59:59.000Z

405

Estimation of the electron density and radiative energy losses in a calcium plasma source based on an electron cyclotron resonance discharge  

SciTech Connect (OSTI)

The parameters of a calcium plasma source based on an electron cyclotron resonance (ECR) discharge were calculated. The analysis was performed as applied to an ion cyclotron resonance system designed for separation of calcium isotopes. The plasma electrons in the source were heated by gyrotron microwave radiation in the zone of the inhomogeneous magnetic field. It was assumed that, in such a combined trap, the energy of the extraordinary microwave propagating from the high-field side was initially transferred to a small group of resonance electrons. As a result, two electron components with different transverse temperatures-the hot resonance component and the cold nonresonance component-were created in the plasma. The longitudinal temperatures of both components were assumed to be equal. The entire discharge space was divided into a narrow ECR zone, where resonance electrons acquired transverse energy, and the region of the discharge itself, where the gas was ionized. The transverse energy of resonance electrons was calculated by solving the equations for electron motion in an inhomogeneous magnetic field. Using the law of energy conservation and the balance condition for the number of hot electrons entering the discharge zone and cooled due to ionization and elastic collisions, the density of hot electrons was estimated and the dependence of the longitudinal temperature T{sub e Parallel-To} of the main (cold) electron component on the energy fraction {beta} lost for radiation was obtained.

Potanin, E. P., E-mail: potanin@imp.kiae.ru; Ustinov, A. L. [National Research Centre Kurchatov Institute (Russian Federation)

2013-06-15T23:59:59.000Z

406

Double acting bit holder  

DOE Patents [OSTI]

A double acting bit holder that permits bits held in it to be resharpened during cutting action to increase energy efficiency by reducing the amount of small chips produced. The holder consist of: a stationary base portion capable of being fixed to a cutter head of an excavation machine and having an integral extension therefrom with a bore hole therethrough to accommodate a pin shaft; a movable portion coextensive with the base having a pin shaft integrally extending therefrom that is insertable in the bore hole of the base member to permit the moveable portion to rotate about the axis of the pin shaft; a recess in the movable portion of the holder to accommodate a shank of a bit; and a biased spring disposed in adjoining openings in the base and moveable portions of the holder to permit the moveable portion to pivot around the pin shaft during cutting action of a bit fixed in a turret to allow front, mid and back positions of the bit during cutting to lessen creation of small chip amounts and resharpen the bit during excavation use.

Morrell, Roger J. (Blommington, MN); Larson, David A. (Minneapolis, MN); Ruzzi, Peter L. (Eagan, MN)

1994-01-01T23:59:59.000Z

407

Density Functional Theory for Fractional Particle Number: Derivative Discontinuity of the Energy at the Maximum Number of Bound Electrons  

E-Print Network [OSTI]

The derivative discontinuity in the exact exchange-correlation potential of ensemble Density Functional Theory (DFT) is investigated at the specific integer number that corresponds to the maximum number of bound electrons, $J_{max}$. A recently developed complex-scaled analog of DFT is extended to fractional particle numbers and used to study ensembles of both bound and metastable states. It is found that the exact exchange-correlation potential experiences discontinuous jumps at integer particle numbers including $J_{max}$. For integers below $J_{max}$ the jump is purely real because of the real shift in the chemical potential. At $J_{max}$, the jump has a non-zero imaginary component reflecting the finite lifetime of the $(J_{max}+1)$ state.

Daniel L. Whitenack; Yu Zhang; Adam Wasserman

2011-11-08T23:59:59.000Z

408

Impact of the energy loss spatial profile and shear viscosity to entropy density ratio for the Mach cone vs. head shock signals produced by a fast moving parton in a quark-gluon plasma  

E-Print Network [OSTI]

We compute the energy and momentum deposited by a fast moving parton in a quark-gluon plasma using linear viscous hydrodynamics with an energy loss per unit length profile proportional to the path length and with different values of the shear viscosity to entropy density ratio. We show that when varying these parameters, the transverse modes still dominate over the longitudinal ones and thus energy and momentum is preferentially deposited along the head-shock, as in the case of a constant energy loss per unit length profile and the lowest value for the shear viscosity to entropy density ratio.

Alejandro Ayala; Jorge David Castano-Yepes; Isabel Dominguez; Maria Elena Tejeda-Yeomans

2014-12-18T23:59:59.000Z

409

Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors  

SciTech Connect (OSTI)

Electric double-layer capacitors (EDLCs) are electrical devices that store energy by adsorption of ionic species at the inner surface of porous electrodes. Compared with aqueous electrolytes, ionic liquid and organic electrolytes have the advantage of larger potential windows, making them attractive for the next generation of EDLCs with superior energy and power densities. The performance of both ionic liquid and organic electrolyte EDLCs hinges on the judicious selection of the electrode pore size and the electrolyte composition, which requires a comprehension of the charging behavior from a microscopic view. In this Perspective, we discuss predictions from the classical density functional theory (CDFT) on the dependence of the capacitance on the pore size for ionic liquid and organic electrolyte EDLCs. CDFT is applicable to electrodes with the pore size ranging from that below the ionic dimensionality to mesoscopic scales, thus unique for investigating the electrochemical behavior of the confined electrolytes for EDLC applications.

Jiang, Deen [ORNL; Wu, Jianzhong [University of California, Riverside

2013-01-01T23:59:59.000Z

410

Pair extended coupled cluster doubles  

E-Print Network [OSTI]

The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreoever, pEC...

Henderson, Thomas M; Scuseria, Gustavo E

2015-01-01T23:59:59.000Z

411

Detecting Double Beta Decays Using Nuclear Emulsions  

E-Print Network [OSTI]

Neutrino nature and absolute mass scale are major questions in particle physics which cannot be addressed by the present neutrino oscillation program. To answer these two questions, several neutrinoless double beta decay experiments are underway or planed for the near future. These experiments, mainly use bolometric techniques or gaseous counters coupled with scintillator detectors. The energy resolution is better in bolometric experiments but experiments coupling tracking with calorimetry have the advantage of observing the two electron tracks and remove many background sources. Here, we present a proposal of using nuclear emulsions to observe double beta decays. This technique has the advantage of precise tracking and vertexing even for low energy electrons.

Marcos Dracos

2008-05-20T23:59:59.000Z

412

A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass  

SciTech Connect (OSTI)

The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

Agrawal, Rakesh

2014-02-21T23:59:59.000Z

413

Neutrinoless double beta decay  

E-Print Network [OSTI]

The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations are presented as well as the current status of experiments. Finally an outlook towards the future, work on nuclear matrix elements and alternative processes is given.

K. Zuber

2012-01-23T23:59:59.000Z

414

Neutrinoless Double $?$-Decay  

E-Print Network [OSTI]

The neutrinoless double $\\beta$-decay is reviewed. Model independent evidence in favor of neutrino masses and mixing is briefly summarized. The data of the recent experiments on the search for $0\

S. M. Bilenky

2004-03-23T23:59:59.000Z

415

Excitation functions of proton-induced reactions on natural Nd and production of radionuclides relevant for double beta decay: Completing measurement in 5-35 MeV energy range  

E-Print Network [OSTI]

Cross-sections for the proton-induced reactions on natural neodymium in energy regions 5-10 MeV and 30-35 MeV were measured using the cyclotron U-120M at the Nuclear Physics Institute at Rez near Prague. This measurement completes the investigation previously done in the 10-30 MeV energy range. Results revealed practical production thresholds and secondary maxima and minima in the excitation functions. It allowed for more appropriate calculation of thick target yields and production rates of many longer-lived radionuclides potentially disturbing the search for neutrinoless double beta decay. Measured cross-sections are consistent with our previously published data.

O. Lebeda; V. Lozza; J. Petzoldt; J. Stursa; V. Zdychova; K. Zuber

2015-04-16T23:59:59.000Z

416

Double Beta Decay  

E-Print Network [OSTI]

The motivation, present status, and future plans of the search for the neutrinoless double beta decay are reviewed. It is argued that, motivated by the recent observations of neutrino oscillations, there is a reasonable hope that neutrinoless double beta decay corresponding to the neutrino mass scale suggested by oscillations, of about 50 meV, actually exists. The challenges to achieve the sensitivity corresponding to this mass scale, and plans to overcome them, are described.

Steven R. Elliott; Petr Vogel

2002-02-27T23:59:59.000Z

417

12.6 keV Kr K-alpha X-ray Source For High Energy Density Physics Experiments  

SciTech Connect (OSTI)

A high contrast 12.6 keV Kr K{alpha} source has been demonstrated on the petawatt-class Titan laser facility. The contrast ratio (K{alpha} to continuum) is 65, with a competitive ultra short pulse laser to x-ray conversion efficiency of 10{sup -5}. Filtered shadowgraphy indicates that the Kr K{alpha} and K{beta} x-rays are emitted from a roughly 1 x 2 mm emission volume, making this source suitable for area backlighting and scattering. Spectral calculations indicate a typical bulk electron temperature of 50-70 eV (i.e. mean ionization state 13-16), based on the observed ratio of K{alpha} to K{beta}. Kr gas jets provide a debris-free high energy K{alpha} source for time-resolved diagnosis of dense matter.

Kugland, N; Constantin, C G; Niemann, C; Neumayer, P; Chung, H; Doppner, T; Kemp, A; Glenzer, S H; Girard, F

2008-04-22T23:59:59.000Z

418

Enhancement of proton acceleration field in laser double-layer target interaction  

SciTech Connect (OSTI)

A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of ?C/?m. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.

Gu, Y. J. [Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai 200433 (China) [Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Department of Advanced Interdisciplinary Sciences, Utsunomiya University, Yohtoh 7-1-2, Utsunomiya 321-8585 (Japan); Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X. [Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai 200433 (China)] [Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Kawata, S.; Izumiyama, T. [Department of Advanced Interdisciplinary Sciences, Utsunomiya University, Yohtoh 7-1-2, Utsunomiya 321-8585 (Japan)] [Department of Advanced Interdisciplinary Sciences, Utsunomiya University, Yohtoh 7-1-2, Utsunomiya 321-8585 (Japan); Ma, Y. Y. [College of Science, National University of Defense Technology, Changsha 410073 (China)] [College of Science, National University of Defense Technology, Changsha 410073 (China)

2013-07-15T23:59:59.000Z

419

Neutrinoless Double Beta Decay in Supersymmetric Seesaw model  

E-Print Network [OSTI]

Inspired by the recent HEIDELBERG-MOSCOW double beta decay experiment, we discuss the neutrinoless double beta decay in the supersymmetric seesaw model. Our numerical analysis indicates that we can naturally explain the data of the observed neutrinoless double beta decay, as well as that of the solar and atmospheric neutrino experiments with at least one Majorana-like sneutrino of middle energy scale in the model.

Tai-Fu Feng; Xue-Qian Li; Yan-An Luo

2002-09-26T23:59:59.000Z

420

Simulating one-photon absorption and resonance Raman scattering spectra using analytical excited state energy gradients within time-dependent density functional theory  

SciTech Connect (OSTI)

A parallel implementation of analytical time-dependent density functional theory gra- dients is presented for the quantum chemistry program NWChem. The implementation is based on the Lagrangian approach developed by Furche and Ahlrichs. To validate our implementation, we first calculate the Stokes shifts for a range of organic dye molecules using a diverse set of exchange-correlation functionals (traditional density functionals, global hybrids and range-separated hybrids) followed by simulations of the one-photon absorption and resonance Raman scattering spectrum of the phenoxyl radical, the well-studied dye molecule rhodamine 6G and a molecular host-guest complex (TTF?CBPQT4+). The study of organic dye molecules illustrates that B3LYP and CAM-B3LYP generally give the best agreement with experimentally determined Stokes shifts unless the excited state is a charge transfer state. Absorption, resonance Raman, and fluorescence simulations for the phenoxyl radical indicate that explicit solvation may be required for accurate characterization. For the host-guest complex and rhodamine 6G, it is demonstrated that absorption spectra can be simulated in good agreement with experiment for most exchange-correlation functionals. However, because one-photon absorption spectra generally lack well-resolved vibrational features, resonance Raman simulations are necessary to evaluate the accuracy of the exchange-correlation functional for describing a potential energy surface.

Silverstein, Daniel W.; Govind, Niranjan; van Dam, Hubertus JJ; Jensen, Lasse

2013-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

China Energy Databook - Rev. 4  

E-Print Network [OSTI]

Per Capita Primary Energy Consumption, 1990 (CommercialPRIMARY ENERGY PRIMARY ENERGY CONSUMPTION China recentlyto 22.3% of primary energy consumption (1993), doubling in

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

422

Stability of critical bubble in stretched fluid of square-gradient density-functional model with triple-parabolic free energy  

E-Print Network [OSTI]

The square-gradient density-functional model with triple-parabolic free energy, that was used previously to study the homogeneous bubble nucleation [J. Chem. Phys. 129, 104508 (2008)], is used to study the stability of the critical bubble nucleated within the bulk under-saturated stretched fluid. The stability of the bubble is studied by solving the Schr\\"odinger equation for the fluctuation. The negative eigenvalue corresponds to the unstable growing mode of the fluctuation. Our results show that there is only one negative eigenvalue whose eigenfunction represents the fluctuation that corresponds to the isotropically growing or shrinking nucleus. In particular, this negative eigenvalue survives up to the spinodal point. Therefore the critical bubble is not fractal or ramified near the spinodal.

Masao Iwamatsu; Yutaka Okabe

2010-06-11T23:59:59.000Z

423

ACCELERATE ENERGY  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ACCELERATE ENERGY PRODUCTIVITY 2030 A Partnership To Double U.S. Energy Productivity By 2030 LEARN MORE AT: www.energy2030.org "I'm issuing a new goal for America: let's cut in...

424

Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage – Metal-Air Ionic Liquid (MAIL) Batteries  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the battery’s main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASU’s new battery system could be both cheaper and safer than today’s Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

None

2009-12-21T23:59:59.000Z

425

Double layer capacitor prospects look good  

SciTech Connect (OSTI)

The Fourth International Seminar in Double Layer Capacitors and similar energy devices has been sponsored again by Dr. S.P. Wolsky and Dr. Nikola Marincic. The seminar was held in December 1994, at Deerfield Beach, FL. This report provides a brief description of information on supercapacitors.

NONE

1995-07-01T23:59:59.000Z

426

Density Functional Theory (DFT) Rob Parrish  

E-Print Network [OSTI]

Density Functional Theory (DFT) Rob Parrish robparrish@gmail.com 1 #12;Agenda · The mechanism Easy to do this Why? Because of Hermitian Operators: Kinetic Energy Density: #12;Density Functional The density completely defines the observable state of the system: The way in which it does so (the functional

Sherrill, David

427

Increased Upstream Ionization due to Formation of a Double Layer  

SciTech Connect (OSTI)

We report observations that confirm a theoretical prediction that formation of a current-free double layer in a plasma expanding into a chamber of larger diameter is accompanied by an increase in ionization upstream of the double layer. The theoretical model argues that the increased ionization is needed to balance the difference in diffusive losses upstream and downstream of the expansion region. In our expanding helicon source experiments, we find that the upstream plasma density increases sharply at the same antenna frequency at which the double layer appears.

Thakur, S. Chakraborty; Harvey, Z.; Biloiu, I. A.; Hansen, A.; Hardin, R. A.; Przybysz, W. S.; Scime, E. E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

2009-01-23T23:59:59.000Z

428

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Abstract--This paper presents techniques to reduce energy  

E-Print Network [OSTI]

energy, they also introduce errors that affect the performance quality. To compensate for these errors reduction and dynamic reduction for Discrete Cosine Transform shows, on average, 33% to 46% reduction overhead and achieve significant energy reduction with little quality degradation. Index Terms--low-power

Kambhampati, Subbarao

429

Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 9Be+28Si, 144Sm, and 208Pb Systems at Near-Coulomb-Barrier Energies using Double Folding Potential  

E-Print Network [OSTI]

Based on the extended optical model with the double folding potential, in which the polarization potential is decomposed into direct reaction (DR) and fusion parts, simultaneous $\\chi^{2}$ analyses are performed of elastic scattering and fusion cross section data for the $^{9}$Be+$^{28}$Si, $^{144}$Sm, and $^{208}$Pb systems at near-Coulomb-barrier energies. We find that the real part of the resultant DR part of the polarization potential is systematically repulsive for all the targets considered, which is consistent with the results deduced from the Continuum Discretized Coupled Channel (CDCC) calculations taking into account the polarization effects due to breakup. Further, it is found that both DR and fusion parts of the extracted polarization potentials satisfy the dispersion relation.

W. Y. So; T. Udagawa; K. S. Kim; S. W. Hong; B. T. Kim

2010-03-14T23:59:59.000Z

430

THE n-DISTRIBUTION OF ELECTRONS AND DOUBLE LAYERS IN THE ELECTRON-BEAM-RETURN-CURRENT SYSTEM OF SOLAR FLARES  

SciTech Connect (OSTI)

We investigate processes in the electron-beam-return-current system in the impulsive phase of solar flares to answer a question about the formation of the n-electron distribution detected in this phase of solar flares. An evolution of the electron-beam-return-current system with an initial local density depression is studied using a three-dimensional electromagnetic particle-in-cell model. In the system the strong double layer is formed. Its electric field potential increases with the electron beam flux. In this electric field potential, the electrons of background plasma are strongly accelerated and propagate in the return-current direction. The high-energy part of their distribution at the high-potential side of the strong double layer resembles that of the n-distribution. Thus, the detection of the n-distributions, where a form of the high-energy part of the distribution is the most important, can indicate the presence of strong double layers in solar flares. The similarity between processes in solar flare loops and those in the downward current region of the terrestrial aurora, where the double layers were observed by FAST satellite, supports this idea.

Karlicky, Marian, E-mail: karlicky@asu.cas.cz [Astronomical Institute of the Academy of Sciences of the Czech Republic, CZ-25165 Ondrejov (Czech Republic)

2012-05-01T23:59:59.000Z

431

Generation of a quasi-monoenergetic high energy proton beam from a vacuum-sandwiched double layer target irradiated by an ultraintense laser pulse  

SciTech Connect (OSTI)

An acceleration mechanism to generate a high energy proton beam with a narrow energy spread in the laser-induced plasma acceleration of a proton beam is proposed; this mechanism employs two thin foils separated by a narrow vacuum gap. Instead of a thin sheath field at the plasma surfaces, it utilizes an electrostatic field formed in the bulk of the plasma. From a one-dimensional fluid analysis, it has been found that with an appropriate target thickness, protons on the front surface of the second layer can be fed into the plasma, in which the protons are accelerated by an electrostatic field built into the bulk of the plasma. This leads to a proton beam with higher energy and a narrower energy spread than those accelerated at the rear surface of the second layer. The acceleration mechanism is also verified by a two-dimensional particle-in-cell simulation. With a 27-fs long and 2×10{sup 19} W/cm{sup 2} intense laser pulse, a proton beam with an 18-MeV peak energy and a 35% energy spread is generated. The peak energy is higher than that from the rear surface of the second layer by a factor of 3.

Nam Kim, Kyung; Lee, Kitae, E-mail: klee@kaeri.re.kr; Hee Park, Seong; Young Lee, Ji; Uk Jeong, Young; Vinokurov, Nikolay [Center for Quantum-Beam-based Radiation Research, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] [Center for Quantum-Beam-based Radiation Research, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Gi Kim, Yong [Department of Physics, Kongju National University, Kongju (Korea, Republic of)] [Department of Physics, Kongju National University, Kongju (Korea, Republic of)

2014-04-15T23:59:59.000Z

432

Testing time-dependent density functional theory with depopulated molecular orbitals for predicting electronic excitation energies of valence, Rydberg, and charge-transfer  

E-Print Network [OSTI]

Testing time-dependent density functional theory with depopulated molecular orbitals for predicting functionals for time-dependent density functional theory calculations of valence and Rydberg electronic functional that performs well for both ground-state properties and time-dependent density functional theory

Truhlar, Donald G

433

DOUBLE MAJORS Imaging Science + ...  

E-Print Network [OSTI]

DOUBLE MAJORS Imaging Science + ... Applied Mathematics Biomedical Sciences Computer Science Undergraduate Research Internships and Cooperative Education (Co-op) (optional) Study Abroad WHY IMAGING SCIENCE Science: BS, MS, PhD Color Science: MS, PhD BS + MS/PhD Combos HUMAN VISION BIO- MEDICAL ASTRO- PHYSICS

Zanibbi, Richard

434

Neutrinoless double beta decay  

E-Print Network [OSTI]

The status of the search for neutrinoless double beta decay is reviewed. The effort to reach the sensitivity needed to cover the effective Majorana neutrino mass corresponding to the degenerate and inverted mass hierarchy is described. Various issues concerning the theory (and phenomenology) of the relation between the $0\

Petr Vogel

2006-11-17T23:59:59.000Z

435

Double hadron leptoproduction in the nuclear medium  

E-Print Network [OSTI]

First measurement of double-hadron production in deep-inelastic scattering has been measured with the HERMES spectrometer at HERA using a 27.6 GeV positron beam with deuterium, nitrogen, krypton and xenon targets. The influence of the nuclear medium on the ratio of double-hadron to single-hadron yields has been investigated. Nuclear effects are clearly observed but with substantially smaller magnitude and reduced $A$-dependence compared to previously measured single-hadron multiplicity ratios. The data are in fair agreement with models based on partonic or pre-hadronic energy loss, while they seem to rule out a pure absorptive treatment of the final state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter.

Airapetian, A; Akopov, Z; Amarian, M; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Belostotskii, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Borysenko, A; Brüll, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E G; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Gavrilov, G; Karibian, V; Giordano, F; Grebenyuk, O; Gregor, I M; Griffioen, K; Guler, H; Hadjidakis, C; Hartig, M; Hasch, D; Hasegawa, T; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Keri, T; Kinney, E; Kiselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Kravchenko, P; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Lenisa, P; Liebing, P; Linden-Levy, L A; Lorenzon, W; Lü, J; Lu, S; Ma, B Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Michler, T; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Negodaev, M; Nowak, Wolf-Dieter; Ohsuga, H; Osborne, A; Perez-Benito, R; Pickert, N; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shearer, C; Shibata, T A; Shutov, V; Sinram, K; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Streit, J; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Van Haarlem, Y; Veretennikov, D; Vikhrov, V; Vogel, C; Wang, S; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P

2006-01-01T23:59:59.000Z

436

Precision Muon Reconstruction in Double Chooz  

E-Print Network [OSTI]

We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a through-going muon intersecting the center of the detector, the resolution is ~40 mm in each transverse dimension. High quality muon reconstruction is an important tool for reducing the impact of the cosmogenic isotope background in Double Chooz.

Double Chooz collaboration; Y. Abe; J. C. dos Anjos; J. C. Barriere; E. Baussan; I. Bekman; M. Bergevin; T. J. C. Bezerra; L. Bezrukov; E. Blucher; C. Buck; J. Busenitz; A. Cabrera; E. Caden; L. Camilleri; R. Carr; M. Cerrada; P. -J. Chang; E. Chauveau; P. Chimenti; A. P. Collin; E. Conover; J. M. Conrad; J. I. Crespo-Anadón; K. Crum; A. Cucoanes; E. Damon; J. V. Dawson; D. Dietrich; Z. Djurcic; M. Dracos; M. Elnimr; A. Etenko; M. Fallot; F. von Feilitzsch; J. Felde; S. M. Fernandes; V. Fischer; D. Franco; M. Franke; H. Furuta; I. Gil-Botella; L. Giot; M. Göger-Neff; L. F. G. Gonzalez; L. Goodenough; M. C. Goodman; C. Grant; N. Haag; T. Hara; J. Haser; M. Hofmann; G. A. Horton-Smith; A. Hourlier; M. Ishitsuka; J. Jochum; C. Jollet; F. Kaether; L. N. Kalousis; Y. Kamyshkov; D. M. Kaplan; T. Kawasaki; E. Kemp; H. de Kerret; D. Kryn; M. Kuze; T. Lachenmaier; C. E. Lane; T. Lasserre; A. Letourneau; D. Lhuillier; H. P. Lima Jr; M. Lindner; J. M. López-Casta no; J. M. LoSecco; B. Lubsandorzhiev; S. Lucht; J. Maeda; C. Mariani; J. Maricic; J. Martino; T. Matsubara; G. Mention; A. Meregaglia; T. Miletic; R. Milincic; A. Minotti; Y. Nagasaka; Y. Nikitenko; P. Novella; M. Obolensky; L. Oberauer; A. Onillon; A. Osborn; C. Palomares; I. M. Pepe; S. Perasso; P. Pfahler; A. Porta; G. Pronost; J. Reichenbacher; B. Reinhold; M. Röhling; R. Roncin; S. Roth; B. Rybolt; Y. Sakamoto; R. Santorelli; A. C. Schilithz; S. Schönert; S. Schoppmann; M. H. Shaevitz; R. Sharankova; S. Shimojima; V. Sibille; V. Sinev; M. Skorokhvatov; E. Smith; J. Spitz; A. Stahl; I. Stancu; L. F. F. Stokes; M. Strait; A. Stüken; F. Suekane; S. Sukhotin; T. Sumiyoshi; Y. Sun; R. Svoboda; K. Terao; A. Tonazzo; H. H. Trinh Thi; G. Valdiviesso; N. Vassilopoulos; C. Veyssiere; M. Vivier; S. Wagner; H. Watanabe; C. Wiebusch; L. Winslow; M. Wurm; G. Yang; F. Yermia; V. Zimmer

2014-08-15T23:59:59.000Z

437

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy Source: US DOE 10/2010 Hydrogen and Fuel Cell Technologies ­ Upcoming Workshops & Solicitations Source: US DOE 10/2010 2 #12; Double Renewable Energy Capacity by 2012 Update Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program Fuel

438

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Richard Farmer Hydrogen Business Council September 14, 2010 #12; Double Renewable Energy Capacity by 2012 Invest $150 Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy Mountain States

439

High Energy Density Laboratory Plasmas  

E-Print Network [OSTI]

faciliBes 1st users of MECI in FY13 Recognize common interests NNSA/FES Compliment NNSA investments Stability ­ investments in HEDLP: people, departments

440

Density Log | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer7353872°, -70.1939087° LoadingMoosLog Jump

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Rock Density | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm It is classified as ASHRAEDensity

442

Canonical density matrix perturbation theory  

E-Print Network [OSTI]

Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free energy ensembles in tight-binding, Hartree-Fock or Kohn-Sham density functional theory. The canonical density matrix perturbation theory can be used to calculate temperature dependent response properties from the coupled perturbed self-consistent field equations as in density functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large non-metallic materials and metals at high temperatures.

Niklasson, Anders M N; Rubensson, Emanuel H; Rudberg, Elias

2015-01-01T23:59:59.000Z

443

EA-1136: Double Tracks Test Site, Nye County, Nevada  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Nevada Operations Office to conduct environmental restoration operations at the Double Tracks test site...

444

Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces  

SciTech Connect (OSTI)

Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulations reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased ion density per unit area of electrode surface as the OLC becomes smaller.

Feng, Guang [ORNL; Jiang, Deen [ORNL; Cummings, Peter T [ORNL

2012-01-01T23:59:59.000Z

445

WHY SEARCH FOR DOUBLE BETA DECAY?  

E-Print Network [OSTI]

the search for neutrinoless double beta decay may prove verySearching for neutrinoless double beta decay is the onlysensitivity of neutrinoless double beta decay. The potential

Kayser, B.

2010-01-01T23:59:59.000Z

446

Band Tunneling through Double Barrier in Bilayer Graphene  

E-Print Network [OSTI]

By taking into account the full four band energy spectrum, we calculate the transmission probability and conductance of electrons across symmetric and asymmetric double potential barrier with a confined interlayer potential difference in bilayer graphene. For energies less than the interlayer coupling \\gamma_{1}, E \\gamma_{1}, we obtain four possible ways for transmission resulting from the two propagating modes. We compute the associated transmission probabilities as well as their contribution to the conductance, study the effect of the double barrier geometry.

Hasan A. Alshehab; Hocine Bahlouli; Abderrahim El Mouhafid; Ahmed Jellal

2014-01-20T23:59:59.000Z

447

Critical cavity in the stretched fluid studied using square-gradient density-functional model with triple-parabolic free energy  

E-Print Network [OSTI]

The generic square-gradient density-functional model with triple-parabolic free energy is used to study the stability of a cavity introduced into the stretched liquid. The various properties of the critical cavity, which is the largest stable cavity within the liquid, are compared with those of the critical bubble of the homogeneous bubble nucleation. It is found that the size of the critical cavity is always smaller than that of the critical bubble, while the work of formation of the former is always higher than the latter in accordance with the conjectures made by Punnathanam and Corti [J. Chem. Phys. {\\bf 119}, 10224 (2003)] deduced from the Lennard-Jones fluids. Therefore their conjectures about the critical cavity size and the work of formation would be more general and valid even for other types of liquid such as metallic liquid or amorphous. However, the scaling relations they found for the critical cavity in the Lennard-Jones fluid are marginally satisfied only near the spinodal.

Masao Iwamatsu

2009-04-04T23:59:59.000Z

448

Energy Department Recognizes 11 Manufacturers for Energy Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to Grow Washington, D.C.-Building on the Administration's efforts to double energy productivity and help American businesses save money by saving energy, the Energy Department...

449

High power density supercapacitors using locally aligned carbon nanotube electrodes  

E-Print Network [OSTI]

High power density supercapacitors using locally alignedof high power density supercapacitors and other similarcells [6], and for supercapacitors [7–18]. As unique energy

Du, C S; Yeh, J; Pan, Ning

2005-01-01T23:59:59.000Z

450

Half-lives of Double $?^+$-decay with Two Neutrinos  

E-Print Network [OSTI]

Nuclear double $\\beta ^-$-decays with two neutrinos were observed for many years and a systematic law describing the relation between their half-lives and decay energies was also proposed recently [Phys. Rev. C89, 064603 (2014)]. However, double $\\beta ^+$-decay ($\\beta ^+\\beta^+)$ with emission of both two positrons and two neutrinos has not been observed up to date. In this article, we perform a systematic analysis on the candidates of double $\\beta ^+$-decay, based on the 2012 nuclear mass table. Eight nuclei are found to be the good candidates for double $\\beta ^+$-decay and their half-lives are predicted according to the generalization of the systematic law to double $\\beta ^+$-decay. As far as we know, there is no theoretical result on double $\\beta ^+$-decay of nucleus $^{154}Dy$ and our result is the first prediction on this nucleus. This is also the first complete research on eight double $\\beta ^+$-decay candidates based on the available data of nuclear masses. It is expected that the calculated half-lives of double $\\beta ^+$-decay in this article will be useful for future experimental search of double $\\beta ^+$-decay.

Yuejiao Ren; Zhongzhou Ren

2015-01-07T23:59:59.000Z

451

Double tracks test site characterization report  

SciTech Connect (OSTI)

This report presents the results of site characterization activities performed at the Double Tracks Test Site, located on Range 71 North, of the Nellis Air Force Range (NAFR) in southern Nevada. Site characterization activities included reviewing historical data from the Double Tracks experiment, previous site investigation efforts, and recent site characterization data. The most recent site characterization activities were conducted in support of an interim corrective action to remediate the Double Tracks Test Site to an acceptable risk to human health and the environment. Site characterization was performed using a phased approach. First, previously collected data and historical records sere compiled and reviewed. Generalized scopes of work were then prepared to fill known data gaps. Field activities were conducted and the collected data were then reviewed to determine whether data gaps were filled and whether other areas needed to be investigated. Additional field efforts were then conducted, as required, to adequately characterize the site. Characterization of the Double Tracks Test Site was conducted in accordance with the US Department of Energy`s (DOE) Streamlined Approach for Environmental Restoration (SAFER).

NONE

1996-05-01T23:59:59.000Z

452

Double Beta Decay Experiments  

SciTech Connect (OSTI)

At present, neutrinoless double beta decay is perhaps the only experiment that can tell us whether the neutrino is a Dirac or a Majorana particle. Given the significance of the 0{nu}{beta}{beta}, there is a widespread interest for these rare event studies employing a variety of novel techniques. This paper describes the current status of DBD experiments. The Indian effort for an underground NDBD experiment at the upcoming INO laboratory is also presented.

Nanal, Vandana [Dept. of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005 (India)

2011-11-23T23:59:59.000Z

453

Performance and application of a double-crystal monochromator in the energy region 800 less than or equal to h. nu. less than or equal to 4500 eV  

SciTech Connect (OSTI)

The performance and application of an ultra-high-vacuum compatible constant-deviation double-crystal monochromator (JUMBO) in operation at SSRL is demonstrated. The monochromator can be operated with any of four pairs of crystals interchangeable in situ. An electronic-maximum-search feedback loop optimizes the intensity of the spatially fixed outgoing beam as the photon energy is scanned. The monochromatic beam is focussed (approx. 1.5 mm x 5 mm) onto the sample by a toroidal mirror. Monochromator crystals of beryl(10 anti 10), InSb(111) and Ge(111) have been tested in the energy regions 800 to 1540 eV, 1690 to 4000 eV and 1930 to 4500 eV, respectively. The performance of these crystals with regard to the resolution, the intensity, the level of scattered light, and the contribution of higher orders have been determined. Various effects arising from a radiation-induced temperature gradient in the monochromator crystals are discussed.

Hussain, Z.; Umbach, E.; Shirley, D.A.; Stoehr, V.; Feldhaus, J.

1981-07-01T23:59:59.000Z

454

High performance double pulse doped pseudomorphic AlGaAs/InGaAs transistors grown by molecular-beam epitaxy  

SciTech Connect (OSTI)

Double pulse doped AlGaAs/InGaAs pseudomorphic high electron mobility transistors have been grown by molecular-beam epitaxy on GaAs substrates. Hall mobilities in excess of 7100 cm{sup 2}/V s at 300 K and 25000 cm{sup 2}/V s at 77 K are obtained with a sheet density of 3 x 10{sup 12} cm{sup {minus}2}. Photoluminescence measurements indicate that two electronic subbands are occupied, and the subband energies are determined. The doping pulses are resolved in secondary ion mass spectrometry measurements. Using a double recess process, transistors have been fabricated that have produced state of the art microwave performance. At 10 GHz a 1.2 mm device has simultaneously achieved a power added efficiency of 70%, output power of 0.97 W, and gain of 10 dB. 17 refs., 5 figs., 1 tab.

Hoke, W.E.; Lyman, P.S.; Labossier, W.H.; Brierley, S.K.; Hendriks, H.T.; Shanfield, S.R.; Aucoin, L.M.; Kazior, T.E. [Raytheon Research Division, Lexington, MA (United States)] [Raytheon Research Division, Lexington, MA (United States)

1992-05-01T23:59:59.000Z

455

On a Wind-Driven, Double-Gyre, Quasi-Geostrophic Ocean Model ...  

E-Print Network [OSTI]

The main objectives of this paper are to adapt an efficient and accurate spectral- ... energy. Thus, the study of the double-gyre motion will provide a better ...

Shen, J., et al.

1999-10-05T23:59:59.000Z

456

Some challenges for Nuclear Density Functional Theory  

E-Print Network [OSTI]

We discuss some of the challenges that the DFT community faces in its quest for the truly universal energy density functional applicable over the entire nuclear chart.

T. Duguet; K. Bennaceur; T. Lesinski; J. Meyer

2006-06-20T23:59:59.000Z

457

An increased estimate of the merger rate of double neutron  

E-Print Network [OSTI]

-star merger rate in the Galaxy is crucial in order to predict whether current gravity wave detectors of only a few double-neutron-star binaries with merger times less than the age of the Universe. Here we position and flux density for the pulsar. Knowledge of the pulsar position with subarcsecond precision

Sarkissian, John M.

458

Double Ended Guillotine Break in a Prismatic Block VHTR Lower Plenum Air Ingress Scenario  

E-Print Network [OSTI]

The double ended guillotine break leading to density-driven air ingress has been identified as a low probability yet high consequence event for Very High Temperature Reactor (VHTR). The lower plenum of the VHTR contains the core support structure...

Hartley, Jessica

2012-10-19T23:59:59.000Z

459

DENSITY FUNCTIONAL THEORY OF FIELD THEORETICAL SYSTEMS  

E-Print Network [OSTI]

DENSITY FUNCTIONAL THEORY OF FIELD THEORETICAL SYSTEMS E. Engel Inst. fur Theor. Physik background of relativistic density functional theory is emphasized and its consequences for relativistic Kohn-Sham equations are shown. The local density approximation for the exchange energy functional is reviewed

Engel, Eberhard

460

Quantum critical benchmark for density functional theory  

E-Print Network [OSTI]

Two electrons at the threshold of ionization represent a severe test case for electronic structure theory. A pseudospectral method yields a very accurate density of the two-electron ion with nuclear charge close to the critical value. Highly accurate energy components and potentials of Kohn-Sham density functional theory are given, as well as a useful parametrization of the critical density. The challenges for density functional approximations and the strength of correlation are also discussed.

Paul E. Grabowski; Kieron Burke

2014-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Dynamics of ion acoustic double layers in a magnetized two-population electrons plasma  

SciTech Connect (OSTI)

The obliquely propagating ion acoustic (IA) double-layers are investigated in a magnetized two population electron plasmas. The extended Korteweg–de Vries equation is derived by using the reductive perturbation technique. The effect of obliqueness (l{sub z}) and magnitude of the externa