Powered by Deep Web Technologies
Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Casimir Energy Density at Planck Time: Cosmic Coincidence or Double Solution to the Cosmological Dark Energy Problem?  

E-Print Network (OSTI)

The Casimir energy density calculated for a spherical shell of radius equal to the size of the Universe projected back to the Planck time is almost equal to the present day critical density. Is it just a coincidence, or is it a solution to the ‘cosmic dark energy ’ and the ‘cosmic coincidence ’ problems? The correspondence is too close to be ignored as a coincidence, especially since this solution fits the conceptual and numerical ideas about the dark energy, and also answers why this energy is starting to dominate at the present era in the evolution of the Universe. It is startling to notice that the Casimir energy density of a spherical bounded space with its radius equal to the size of our present Universe scaled back to its size at the Planck time is almost exactly the critical energy density. It is perhaps not reasonable to discard this as a coincidence, since it solves the two important current problems in cosmology with vacuum energy [1], namely the problem of the smallness of the cosmological vacuum energy

C. S. Unnikrishnan

2002-01-01T23:59:59.000Z

2

High Energy Density Capacitors  

SciTech Connect

BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

None

2010-07-01T23:59:59.000Z

3

Density-dependent covariant energy density functionals  

Science Conference Proceedings (OSTI)

Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

Lalazissis, G. A. [Physics Department, Aristotle University of Thessaloniki, GR-54124 (Greece)

2012-10-20T23:59:59.000Z

4

Energy Densities for LLNL EMB  

Summary of Projected Power and Energy Density Parameters for the “New Generation” LLNL Electromechanical Batteries R.F. Post June 24, 2013

5

Building a Universal Nuclear Energy Density Functional  

NLE Websites -- All DOE Office Websites (Extended Search)

Building a Universal Nuclear Energy Density Functional Building a Universal Nuclear Energy Density Functional VaryMatrix.png Collaboration with mathematicians and computational...

6

The Quantum Energy Density: Improved E  

Science Conference Proceedings (OSTI)

We establish a physically meaningful representation of a quantum energy density for use in Quantum Monte Carlo calculations. The energy density operator, dened in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon \\gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total energy dierences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more eciently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total energy calculation.

Krogel, Jaron [University of Illinois, Urbana-Champaign; Yu, Min [Lawrence Berkeley National Laboratory (LBNL); Kim, Jeongnim [ORNL; Ceperley, David M. [University of Illinois, Urbana-Champaign

2013-01-01T23:59:59.000Z

7

Oxides having high energy densities  

DOE Patents (OSTI)

Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

Ceder, Gerbrand; Kang, Kisuk

2013-09-10T23:59:59.000Z

8

Definition: Power density | Open Energy Information  

Open Energy Info (EERE)

density density Jump to: navigation, search Dictionary.png Power density The rate of energy flow (power) per unit volume, area or mass. Common metrics include: horsepower per cubic inch, watts per square meter and watts per kilogram.[1][2] View on Wikipedia Wikipedia Definition Power density (or volume power density or volume specific power) is the amount of power (time rate of energy transfer) per unit volume. In energy transformers like batteries, fuel cells, motors, etc. but also power supply units or similar, power density refers to a volume. It is then also called volume power density which is expressed as W/m. Volume power density is sometimes an important consideration where space is constrained. In reciprocated internal combustion engines, power density- power per swept

9

Transport Energy Use and Population Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Energy Use and Population Density Transport Energy Use and Population Density Speaker(s): Masayoshi Tanishita Date: July 1, 2004 - 10:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Jonathan Sinton After Peter Newman and Jeffrey Kenworthy published "Cities and Automobile Dependence" in 1989, population density was brought to public attention as an important factor to explain transport mobility and energy use. However, several related issues still remain open: Is an increase in population density more effective than rising gas prices in reducing transport energy use? How much does per capita transport energy use change as population density in cities changes? And what kind of factors influence changes in population density? In this presentation, using city-level data in the US, Japan and other countries, the population-density elasticity of

10

High Energy Density Secondary Lithium Batteries  

High Energy Density Secondary Lithium Batteries Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

11

Density Log | Open Energy Information  

Open Energy Info (EERE)

Density Log Density Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Density Log Details Activities (6) Areas (6) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: provides data on the bulk density of the rock surrounding the well Stratigraphic/Structural: Stratigraphic correlation between well bores. Hydrological: Porosity of the formations loggesd can be calculated for the Density log andprovide an indication potential aquifers. Thermal: Cost Information Low-End Estimate (USD): 0.4040 centUSD 4.0e-4 kUSD 4.0e-7 MUSD 4.0e-10 TUSD / foot Median Estimate (USD): 0.6868 centUSD

12

Rock Density | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rock Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Density Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Density of different lithologic units. Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 10.001,000 centUSD 0.01 kUSD 1.0e-5 MUSD 1.0e-8 TUSD / sample

13

Methodology, morphology, and optimization of carbon nanotube growth for improved energy storage in a double layer capacitor  

E-Print Network (OSTI)

The goal of this thesis is to optimize the growth of carbon nanotubes (CNTs) on a conducting substrate for use as an electrode to improve energy density in a double-layer capacitor. The focus has been on several areas, ...

Ku, Daniel C. (Daniel Chung-Ming), 1985-

2009-01-01T23:59:59.000Z

14

Double Oak, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Double Oak, Texas: Energy Resources Double Oak, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.065122°, -97.1105669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.065122,"lon":-97.1105669,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

Dark Energy Density in Brane World  

E-Print Network (OSTI)

We present a possible explanation to the tiny positive cosmological constant under the frame of AdS$_5$ spacetime embedded by a dS$_4$ brane. We calculate the dark energy density by summing the zero point energy of massive scalar fields in AdS$_5$ spacetime. Under the assumption that the radius of AdS$_5$ spacetime is of the same magnitude as the radius of observable universe, the dark energy density in dS$_4$ brane is obtained, which is smaller than the observational value. The reasons are also discussed.

Hai-Bao Wen; Xin-Bing Huang

2005-02-08T23:59:59.000Z

16

HIGH ENERGY DENSITY ALUMINUM BATTERY - Energy Innovation Portal  

Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery ...

17

NREL: News Feature - Nation Could Double Energy Productivity  

NLE Websites -- All DOE Office Websites (Extended Search)

Nation Could Double Energy Productivity Nation Could Double Energy Productivity February 7, 2013 Photo of NREL Director Dan Arvizu speaking at NREL. Enlarge image NREL Director Dan Arvizu and a blue-ribbon panel of 20 energy experts said that the United States can double its energy productivity by 2030 - and do so in ways that bolster the nation's economy. In this photo, Arvizu speaks to commercial building stakeholders at NREL. Credit: Dennis Schroeder Researchers at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) have long understood that using energy more efficiently can be just as beneficial as finding new ways to produce energy more efficiently. On Feb. 7, NREL Director Dan Arvizu and a blue-ribbon panel of 20 energy experts drove that message home, declaring that the United States can

18

Instabilities in the Nuclear Energy Density Functional  

E-Print Network (OSTI)

In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.

M. Kortelainen; T. Lesinski

2010-02-05T23:59:59.000Z

19

High-Energy-Density Plasmas, Fluids  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Energy-Density Plasmas, Fluids High-Energy-Density Plasmas, Fluids /science-innovation/_assets/images/icon-science.jpg High-Energy-Density Plasmas, Fluids National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. TRIDENT target chamber Sasi Palaniyappan, right, and Rahul Shah left inside a target chamber where the TRIDENT short pulse laser is aimed at a very thin diamond- foil target, a fraction of a micrometer thick. The laser delivers a power on target of 150 Terawatts focused into a 7 micrometer spot, yielding laser brilliance over 100 times more intense than needed to make the target electrons fully relativistic. These experiments test novel methods of producing intense

20

An Optimization of Electrode Energy and Power Density through...  

NLE Websites -- All DOE Office Websites (Extended Search)

An Optimization of Electrode Energy and Power Density through of Variations in Inactive Material and Electrode Porosity Title An Optimization of Electrode Energy and Power Density...

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High Energy Density Laboratory Plasmas Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog High Energy Density Laboratory Plasmas Program Home > High Energy Density Laboratory Plasmas...

22

Symmetry energy in nuclear density functional theory  

E-Print Network (OSTI)

The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar

2013-07-22T23:59:59.000Z

23

Symmetry energy in nuclear density functional theory  

E-Print Network (OSTI)

The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

Nazarewicz, W; Satula, W; Vretenar, D

2013-01-01T23:59:59.000Z

24

Nuclear Energy Density Functionals Constrained by Low-Energy QCD  

E-Print Network (OSTI)

A microscopic framework of nuclear energy density functionals is reviewed, which establishes a direct relation between low-energy QCD and nuclear structure, synthesizing effective field theory methods and principles of density functional theory. Guided by two closely related features of QCD in the low-energy limit: a) in-medium changes of vacuum condensates, and b) spontaneous breaking of chiral symmetry; a relativistic energy density functional is developed and applied in studies of ground-state properties of spherical and deformed nuclei.

Vretenar, Dario

2008-01-01T23:59:59.000Z

25

Nuclear Energy Density Functionals Constrained by Low-Energy QCD  

E-Print Network (OSTI)

A microscopic framework of nuclear energy density functionals is reviewed, which establishes a direct relation between low-energy QCD and nuclear structure, synthesizing effective field theory methods and principles of density functional theory. Guided by two closely related features of QCD in the low-energy limit: a) in-medium changes of vacuum condensates, and b) spontaneous breaking of chiral symmetry; a relativistic energy density functional is developed and applied in studies of ground-state properties of spherical and deformed nuclei.

Dario Vretenar

2008-02-06T23:59:59.000Z

26

Energy trapping from Hagedorn densities of states  

E-Print Network (OSTI)

In this note, we construct simple stochastic toy models for holographic gauge theories in which distributions of energy on a collection of sites evolve by a master equation with some specified transition rates. We build in only energy conservation, locality, and the standard thermodynamic requirement that all states with a given energy are equally likely in equilibrium. In these models, we investigate the qualitative behavior of the dynamics of the energy distributions for different choices of the density of states for the individual sites. For typical field theory densities of states (\\log(\\rho(E)) ~ E^{\\alphaenergy spread out relatively quickly. For large N gauge theories with gravitational duals, the density of states for a finite volume of field theory degrees of freedom typically includes a Hagedorn regime (\\log(\\rho(E)) ~ E). We find that this gives rise to a trapping of energy in subsets of degrees of freedom for parametrically long time scales before the energy leaks away. We speculate that this Hagedorn trapping may be part of a holographic explanation for long-lived gravitational bound states (black holes) in gravitational theories.

Connor Behan; Klaus Larjo; Nima Lashkari; Brian Swingle; Mark Van Raamsdonk

2013-04-26T23:59:59.000Z

27

High Energy Density Utracapacitors: Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitor—a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density—high energy density means more energy storage. FastCAP is redesigning the ultracapacitor’s internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP’s ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor’s electrode, increasing the overall efficiency and energy density of the device.

None

2010-04-01T23:59:59.000Z

28

PROCESS FOR IMPROVING THE ENERGY DENSITY OF FEEDSTOCKS USING ...  

PROCESS FOR IMPROVING THE ENERGY DENSITY OF FEEDSTOCKS USING FORMATE SALTS United States Patent Application

29

Relativistic Nuclear Energy Density Functionals: adjusting parameters to binding energies  

E-Print Network (OSTI)

We study a particular class of relativistic nuclear energy density functionals in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance (high-momentum) correlations, as well as intermediate and long-range dynamics, are encoded in the medium (nucleon density) dependence of the strength functionals of an effective interaction Lagrangian. Guided by the density dependence of microscopic nucleon self-energies in nuclear matter, a phenomenological ansatz for the density-dependent coupling functionals is accurately determined in self-consistent mean-field calculations of binding energies of a large set of axially deformed nuclei. The relationship between the nuclear matter volume, surface and symmetry energies, and the corresponding predictions for nuclear masses is analyzed in detail. The resulting best-fit parametrization of the nuclear energy density functional is further tested in calculations of properties of spherical and deformed medium-heavy and heavy nuclei, including binding energies, charge radii, deformation parameters, neutron skin thickness, and excitation energies of giant multipole resonances.

T. Niksic; D. Vretenar; P. Ring

2008-09-08T23:59:59.000Z

30

The aerocapacitor: An electrochemical double-layer energy-storage device  

SciTech Connect

The authors have applied unique types of carbon foams developed at Lawrence Livermore National Laboratory (LLNL) to make an {open_quotes}aerocapacitor{close_quotes}. The aerocapacitor is a high power-density, high energy-density, electrochemical double-layer capacitor which uses carbon aerogels as electrodes. These electrodes possess very high surface area per unit volume and are electrically continuous in both the carbon and electrolyte phase on a 10 nm scale. Aerogel surface areas range from 100 to 700 m{sup 2}/cc (as measured by BET analysis), with bulk densities of 0.3 to 1.0 g/cc. This morphology permits stored energy to be released rapidly, resulting in high power densities (7.5 kW/kg). Materials parameterization has been performed, and device capacitances of several tens of Farads per gram and per cm{sup 3} of aerogel have been achieved.

Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

1997-10-01T23:59:59.000Z

31

The Quantum Energy Density: Improved Efficiency for Quantum Monte Carlo  

E-Print Network (OSTI)

We establish a physically meaningful representation of a quantum energy density for use in Quantum Monte Carlo calculations. The energy density operator, defined in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon "gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total energy differences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more efficiently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total energy calculation.

Krogel, Jaron T; Kim, Jeongnim; Ceperley, David M

2013-01-01T23:59:59.000Z

32

Few transportation fuels surpass the energy densities of ...  

U.S. Energy Information Administration (EIA)

Energy density and the cost, weight, and size of onboard energy storage are important characteristics of fuels for transportation. Fuels that require ...

33

Amplifying Magnetic Fields in High Energy Density Plasmas | U...  

Office of Science (SC) Website

Amplifying Magnetic Fields in High Energy Density Plasmas Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities...

34

Definition: Density Log | Open Energy Information  

Open Energy Info (EERE)

Density Log Density Log Jump to: navigation, search Dictionary.png Density Log Density logging is a well logging tool that can provide a continuous record of a formation's bulk density along the length of a borehole. In geology, bulk density is a function of the density of the minerals forming a rock (i.e. matrix) and the fluid enclosed in the pore spaces.[1] View on Wikipedia Wikipedia Definition Density logging is a well logging tool that can provide a continuous record of a formation's bulk density along the length of a borehole. In geology, bulk density is a function of the density of the minerals forming a rock and the fluid enclosed in the pore spaces. This is one of three well logging tools that are commonly used to calculate porosity, the other two being sonic logging and neutron porosity logging

35

SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS  

Science Conference Proceedings (OSTI)

We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

2010-12-20T23:59:59.000Z

36

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

E-Print Network (OSTI)

The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Liu, Min; Li, Zhuxia; Zhang, Fengshou

2010-01-01T23:59:59.000Z

37

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

E-Print Network (OSTI)

The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Min Liu; Ning Wang; Zhuxia Li; Fengshou Zhang

2010-11-17T23:59:59.000Z

38

The Free Energy of an Electrical Double Layer DEREK Y. C. CHAN AND D. JOHN MITCHELL  

E-Print Network (OSTI)

The Free Energy of an Electrical Double Layer DEREK Y. C. CHAN AND D. JOHN MITCHELL Department for the potential determining ions. The interaction free energy due to the overlap of two double layers has a simple The concept of the free energy of an elec- trical double layer is of considerable impor- tance in colloid

Chan, Derek Y C

39

Innovative High Energy Density Capacitor Design Offers Potential for Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative High Energy Density Capacitor Design Offers Potential Innovative High Energy Density Capacitor Design Offers Potential for Clean Energy Applications Innovative High Energy Density Capacitor Design Offers Potential for Clean Energy Applications June 10, 2011 - 4:46pm Addthis Similar system to the clustering tool that will manufacture TroyCap’s High Energy Density Nanolaminate Capacitor | Credit: TroyC Similar system to the clustering tool that will manufacture TroyCap's High Energy Density Nanolaminate Capacitor | Credit: TroyC Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy Can you imagine a photovoltaic module that's able to generate and store electricity on its own? Or an electric vehicle (EV) powered by a technology more durable than the advanced batteries in today's EVs? Malvern,

40

Innovative High Energy Density Capacitor Design Offers Potential for Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Energy Density Capacitor Design Offers Potential High Energy Density Capacitor Design Offers Potential for Clean Energy Applications Innovative High Energy Density Capacitor Design Offers Potential for Clean Energy Applications June 10, 2011 - 4:46pm Addthis Similar system to the clustering tool that will manufacture TroyCap’s High Energy Density Nanolaminate Capacitor | Credit: TroyC Similar system to the clustering tool that will manufacture TroyCap's High Energy Density Nanolaminate Capacitor | Credit: TroyC Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy Can you imagine a photovoltaic module that's able to generate and store electricity on its own? Or an electric vehicle (EV) powered by a technology more durable than the advanced batteries in today's EVs? Malvern, Pennsylvania's TroyCap, LLC is using nanolaminate technology patented by

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The nuclear energy density functional formalism  

E-Print Network (OSTI)

The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a {\\it Hamiltonian-based} picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel $E[g',g]$ at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a {\\it mathematically} meaningful fashion even if $E[g',g]$ does {\\it not} derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making {\\it any} reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a {\\it physical} standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.

T. Duguet

2013-09-02T23:59:59.000Z

42

047 Glass-Ceramic Composites for High Energy Density Capacitors  

Science Conference Proceedings (OSTI)

047 Glass-Ceramic Composites for High Energy Density Capacitors .... 150 Analysis of Hf-Ta Alloys for Oxidation Protection in Ultra High Temperature ...

43

Aluminum Oxynitride Dielectrics for High Energy Density Capacitor ...  

Science Conference Proceedings (OSTI)

Oct 15, 2006 ... Aluminum Oxynitride Dielectrics for High Energy Density Capacitor Applications by Kevin R. Bray, Richard L.C. Wu, Sandra Fries-Carr, and ...

44

Development of low-cost, compact, reliable, high energy density ceramic nanocomposite capacitors.  

SciTech Connect

The ceramic nanocomposite capacitor goals are: (1) more than double energy density of ceramic capacitors (cutting size and weight by more than half); (2) potential cost reductino (factor of >4) due to decreased sintering temperature (allowing the use of lower cost electrode materials such as 70/30 Ag/Pd); and (3) lower sintering temperature will allow co-firing with other electrical components.

Cooley, Erika J.; Monson, Todd C.; DiAntonio, Christopher Brian; Huber, Dale L.; Fellows, Benjamin D.; Stevens, Tyler E.; Roesler, Alexander William; Chavez, Tom P.; Winter, Michael R.

2010-05-01T23:59:59.000Z

45

Definition: Rock Density | Open Energy Information  

Open Energy Info (EERE)

in crustal rocks. Rock density is a physical characteristic that is governed by the chemical composition (in situ minerals) and pore spaces of a specific rock or rock type.1...

46

Symmetry energy at subnuclear densities deduced from nuclear masses  

E-Print Network (OSTI)

We examine how nuclear masses are related to the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate nuclear masses in a way dependent on the equation of state of asymmetric nuclear matter. We find by comparison with empirical two-proton separation energies that a smaller symmetry energy at subnuclear densities, corresponding to a larger density symmetry coefficient L, is favored. This tendency, which is clearly seen for nuclei that are neutron-rich, nondeformed, and light, can be understood from the property of the surface symmetry energy in a compressible liquid-drop picture.

Oyamatsu, Kazuhiro

2010-01-01T23:59:59.000Z

47

Symmetry energy at subnuclear densities deduced from nuclear masses  

E-Print Network (OSTI)

We examine how nuclear masses are related to the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate nuclear masses in a way dependent on the equation of state of asymmetric nuclear matter. We find by comparison with empirical two-proton separation energies that a smaller symmetry energy at subnuclear densities, corresponding to a larger density symmetry coefficient L, is favored. This tendency, which is clearly seen for nuclei that are neutron-rich, nondeformed, and light, can be understood from the property of the surface symmetry energy in a compressible liquid-drop picture.

Kazuhiro Oyamatsu; Kei Iida

2010-02-23T23:59:59.000Z

48

Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei  

E-Print Network (OSTI)

Expressing explicitly the parameters of the standard Skyrme interaction in terms of the macroscopic properties of asymmetric nuclear matter, we show in the Skyrme-Hartree-Fock approach that unambiguous correlations exist between observables of finite nuclei and nuclear matter properties. We find that existing data on neutron skin thickness Delta r(np) of Sn isotopes give an important constraint on the symmetry energy E(sym)(rho(0)) and its density slope L at saturation density rho(0). Combining these constraints with those from recent analyses of isospin diffusion and the double neutron/proton ratio in heavy-ion collisions at intermediate energies leads to a more stringent limit on L approximately independent of E(sym)(rho(0)). The implication of these new constraints on the Delta r(np) of (208)Pb as well as the core-crust transition density and pressure in neutron stars is discussed.

Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An; Xu, Jun.

2010-01-01T23:59:59.000Z

49

Density dependence of symmetry free energy of hot nuclei  

E-Print Network (OSTI)

The density and excitation energy dependence of symmetry energy and symmetry free energy for finite nuclei are calculated microscopically in a microcanonical framework taking into account thermal and expansion effects. A finite-range momentum and density dependent two-body effective interaction is employed for this purpose. The role of mass, isospin and equation of state (EoS) on these quantities is also investigated; our calculated results are in consonance with the available experimental data.

S. K. Samaddar; J. N. De; X. Vinas; M. Centelles

2008-04-15T23:59:59.000Z

50

A short remark on negative energy densities and quantum inequalities  

E-Print Network (OSTI)

In quantum field theory it is generally known that the energy density may be negative at a given point in spacetime. A number of papers have shown that there is a restriction on this energy density which is called a quantum inequality (QI). A QI is the lower bound to the "weighted average" of the energy density at a given point integrated over a time dependent sampling function. In this paper we give an example of a sampling function for which there is no QI.

Solomon, Dan

2009-01-01T23:59:59.000Z

51

A short remark on negative energy densities and quantum inequalities  

E-Print Network (OSTI)

In quantum field theory it is generally known that the energy density may be negative at a given point in spacetime. A number of papers have shown that there is a restriction on this energy density which is called a quantum inequality (QI). A QI is the lower bound to the "weighted average" of the energy density at a given point integrated over a time dependent sampling function. In this paper we give an example of a sampling function for which there is no QI.

Dan Solomon

2009-01-05T23:59:59.000Z

52

Sensitivity of nuclear stopping towards density dependent symmetry energy  

E-Print Network (OSTI)

The effect of density dependent symmetry energy on nuclear-stopping is studied using isospin-dependent quantum molecular dynamics model(IQMD). We have used the reduced isospin-dependent cross-section with soft(S) equation of state for the systems having different isostopic content, to explore the various aspects of nuclear stopping. The aim is to pin down the nature of the nuclear stopping with density dependent symmetry energy. Nuclear stopping is found to be sensitive towards the various forms of the density dependent symmetry energy. The nuclear stopping tends to decrease for the stiffer equation of state (EOS), i.e. larger values of gamma.

Karan Singh Vinayak; Suneel Kumar

2011-10-11T23:59:59.000Z

53

Sensitivity of nuclear stopping towards density dependent symmetry energy  

E-Print Network (OSTI)

The effect of density dependent symmetry energy on nuclear-stopping is studied using isospin-dependent quantum molecular dynamics model(IQMD). We have used the reduced isospin-dependent cross-section with soft(S) equation of state for the systems having different isostopic content, to explore the various aspects of nuclear stopping. The aim is to pin down the nature of the nuclear stopping with density dependent symmetry energy. Nuclear stopping is found to be sensitive towards the various forms of the density dependent symmetry energy. The nuclear stopping tends to decrease for the stiffer equation of state (EOS), i.e. larger values of gamma.

Vinayak, Karan Singh

2011-01-01T23:59:59.000Z

54

Energy density for chiral lattice fermions with chemical potential  

E-Print Network (OSTI)

We study a recently proposed formulation of overlap fermions at finite density. In particular we compute the energy density as a function of the chemical potential and the temperature. It is shown that overlap fermions with chemical potential reproduce the correct continuum behavior.

Gattringer, Christof

2007-01-01T23:59:59.000Z

55

The spectral density of the scattering matrix for high energies  

E-Print Network (OSTI)

We determine the density of eigenvalues of the scattering matrix of the Schrodinger operator with a short range potential in the high energy asymptotic regime. We give an explicit formula for this density in terms of the X-ray transform of the potential.

Daniel Bulger; Alexander Pushnitski

2011-10-17T23:59:59.000Z

56

The spectral density of the scattering matrix for high energies  

E-Print Network (OSTI)

We determine the density of eigenvalues of the scattering matrix of the Schrodinger operator with a short range potential in the high energy asymptotic regime. We give an explicit formula for this density in terms of the X-ray transform of the potential.

Bulger, Daniel

2011-01-01T23:59:59.000Z

57

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

residential transportation energy usage is vital for theDensity on Vehicle Usage and Energy Consumption Table 2Density on Vehicle Usage and Energy Consumption with

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

58

Does Cosmological Vacuum Energy Density have an Electric Reason ?  

E-Print Network (OSTI)

Rather uncomplicated calculations by hand display a surprising connection between the energy density of the vacuum and the diameter and age of the universe. Among other things, the result explains the observation of the accelerated expansion of the universe.

Claus W. Turtur

2004-03-11T23:59:59.000Z

59

The adsorption effect of C{sub 6}H{sub 5} on density of states for double wall carbon nanotubes by tight binding model  

SciTech Connect

A theoretical approach based on a tight-binding model is developed to study the effects of the adsorption of finite concentrations of C{sub 6}H{sub 5} gas molecules on double-walled carbon nanotube (DWCNT) electronic properties. To obtain proper hopping integrals and random on-site energies for the case of one molecule adsorption, the local density of states for various hopping integrals and random on-site energies are calculated. Since C{sub 6}H{sub 5} molecule is a donor with respect to the carbon nanotubes and their states should appear near the conduction band of the system, effects of various hopping integral deviations and on-site energies for one molecule adsorption are considered to find proper hopping and on-site energies consistent with expected n-type semiconductor. We found that adsorption of C{sub 6}H{sub 5} gas molecules could lead to a (8.0)-(20.0) DWCNT n-type semiconductor. The width of impurity adsorbed gas states in the density of states could be controlled by adsorbed gas concentration.

Fathalian, A., E-mail: a.fathalian@gmail.com [Razi University, Department of Physics (Iran, Islamic Republic of)

2012-06-15T23:59:59.000Z

60

Neutron skin uncertainties of Skyrme energy density functionals  

E-Print Network (OSTI)

Background: Neutron-skin thickness is an excellent indicator of isovector properties of atomic nuclei. As such, it correlates strongly with observables in finite nuclei that depend on neutron-to-proton imbalance and the nuclear symmetry energy that characterizes the equation of state of neutron-rich matter. A rich worldwide experimental program involving studies with rare isotopes, parity violating electron scattering, and astronomical observations is devoted to pinning down the isovector sector of nuclear models. Purpose: We assess the theoretical systematic and statistical uncertainties of neutron-skin thickness and relate them to the equation of state of nuclear matter, and in particular to nuclear symmetry energy parameters. Methods: We use the nuclear superfluid Density Functional Theory with several Skyrme energy density functionals and density dependent pairing. To evaluate statistical errors and their budget, we employ the statistical covariance technique. Results: We find that the errors on neutron skin increase with neutron excess. Statistical errors due to uncertain coupling constants of the density functional are found to be larger than systematic errors, the latter not exceeding 0.06 fm in most neutron-rich nuclei across the nuclear landscape. The single major source of uncertainty is the poorly determined slope L of the symmetry energy that parametrizes its density dependence. Conclusions: To provide essential constraints on the symmetry energy of the nuclear energy density functional, next-generation measurements of neutron skins are required to deliver precision better than 0.06 fm.

M. Kortelainen; J. Erler; W. Nazarewicz; N. Birge; Y. Gao; E. Olsen

2013-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Densities and energies of nuclei in dilute matter  

E-Print Network (OSTI)

We explore the ground-state properties of nuclear clusters embedded in a gas of nucleons with the help of Skyrme-Hartree-Fock microscopic calculations. Two alternative representations of clusters are introduced, namely coordinate-space and energy-space clusters. We parameterize their density profiles in spherical symmetry in terms of basic properties of the energy density functionals used and propose an analytical, Woods-Saxon density profile whose parameters depend, not only on the composition of the cluster, but also of the nucleon gas. We study the clusters' energies with the help of the local-density approximation, validated through our microscopic results. We find that the volume energies of coordinate-space clusters are determined by the saturation properties of matter, while the surface energies are strongly affected by the presence of the gas. We conclude that both the density profiles and the cluster energies are strongly affected by the gas and discuss implications for the nuclear EoS and related perspectives. Our study provides a simple, but microscopically motivated modeling of the energetics of clusterized matter at subsaturation densities, for direct use in consequential applications of astrophysical interest.

P. Papakonstantinou; J. Margueron; F. Gulminelli; Ad. R. Raduta

2013-05-01T23:59:59.000Z

62

The gravitational field energy density for symmetrical and asymmetrical systems  

E-Print Network (OSTI)

The relativistic theory of gravitation has the considerable difficulties by description of the gravitational field energy. Pseudotensor t00 in the some cases cannot be interpreted as energy density of the gravitational field. In [1] the approach was proposed, which allow to express the energy density of such a field through the components of a metric tensor. This approach based on the consideration of the isothermal compression of the layer consisted of the incoherent matter. It was employ to the cylindrically and spherically symmetrical static gravitational field. In presented paper the approach is developed.

Roald Sosnovskiy

2006-07-25T23:59:59.000Z

63

High Energy Density Laboratory Plasmas Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Program | National Nuclear Security Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog High Energy Density Laboratory Plasmas Program Home > High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems have made possible

64

Rock Density At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Rock Density At Alum Area (DOE GTP) Rock Density At Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Density At Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Rock Density Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Rock_Density_At_Alum_Area_(DOE_GTP)&oldid=402985" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

65

Energy Density Functional for Nuclei and Neutron Stars  

Science Conference Proceedings (OSTI)

Background: Recent observational data on neutron star masses and radii provide stringent constraints on the equation of state of neutron rich matter [ Annu. Rev. Nucl. Part. Sci. 62 485 (2012)]. Purpose: We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. Methods: We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. Results: The new functional TOV-min yields results for nuclear bulk properties (energy, rms radius, diffraction radius, and surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of 208Pb and the neutron star radius. Conclusions: We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but it also reproduces expected neutron star data within assumed error bands. This functional is expected to yield more reliable predictions in the region of very neutron rich heavy nuclei.

Erler, J. [UTK/ORNL/German Cancer Research Center-Heidelberg; Horowitz, C. J. [UTK/ORNL/Indiana University; Nazarewicz, Witold [UTK/ORNL/University of Warsaw; Rafalski, M. [UTK/ORNL; Reinhard, P.-G. [Universitat Erlangen, Germany

2013-01-01T23:59:59.000Z

66

Classical two-split interference effects in double photoionization of molecular hydrogen at high energies  

DOE Green Energy (OSTI)

The authors report a thorough theoretical study of one photon double ionization of H{sub 2}. They suggest that interference effects reported in one photon ionization will be reproducible in the case of double ionization when one of the photons carriers most of the available energy and the other electron is not observed. These calculations reproduce recent double photoionization experiments of H{sub 2}.

Horner, Daniel A [Los Alamos National Laboratory; Miyabe, S [LBNL; Rescigno, T N [LBNL; Mccurdy, C W [LBNL; Morales, F [MADRID, SPAIN; Martin, F [MADRID, SPAIN

2009-01-01T23:59:59.000Z

67

High Energy Density Laboratory Plasmas | National Nuclear Security  

National Nuclear Security Administration (NNSA)

| National Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog HEDLP High Energy Density Laboratory Plasmas Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > University Partnerships / Academic Alliances > High Energy Density Laboratory Plasmas

68

DUF6 Project Doubles Production in 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DUF6 Project Doubles Production in 2013 DUF6 Project Doubles Production in 2013 DUF6 Project Doubles Production in 2013 November 26, 2013 - 12:00pm Addthis LEXINGTON, Ky. - The conversion plants at EM's Paducah and Portsmouth sites surpassed a fiscal year 2013 goal by converting 13,679 metric tons of depleted uranium hexafluoride (DUF6), more than doubling production a year earlier. EM's Portsmouth Paducah Project Office (PPPO) and contractor Babcock & Wilcox Conversion Services LLC (BWCS) began operations in 2011 to convert the nation's 800,000-metric-ton inventory of DUF6 to more benign forms for sale, ultimate disposal or long-term storage. "Since 2011, we have been ramping up production to determine and achieve the safe, sustainable operating rate of the plants," said George E.

69

DUF6 Project Doubles Production in 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DUF6 Project Doubles Production in 2013 DUF6 Project Doubles Production in 2013 DUF6 Project Doubles Production in 2013 November 26, 2013 - 12:00pm Addthis LEXINGTON, Ky. - The conversion plants at EM's Paducah and Portsmouth sites surpassed a fiscal year 2013 goal by converting 13,679 metric tons of depleted uranium hexafluoride (DUF6), more than doubling production a year earlier. EM's Portsmouth Paducah Project Office (PPPO) and contractor Babcock & Wilcox Conversion Services LLC (BWCS) began operations in 2011 to convert the nation's 800,000-metric-ton inventory of DUF6 to more benign forms for sale, ultimate disposal or long-term storage. "Since 2011, we have been ramping up production to determine and achieve the safe, sustainable operating rate of the plants," said George E.

70

Role of density dependent symmetry energy in nuclear stopping  

E-Print Network (OSTI)

Information about the nuclear matter under the extreme conditions of temperature and density and the role of symmetry energy under these conditions is still a topic of crucial importance in the present day nuclear physics research. The multifragmentation, collective flow and the nuclear stopping is among the various rare phenomenon which can be observed in heavy-ion collisions at intermediate energies. The nuclear stopping, which is sensitive towards the symmetry energy has gained a lot of interest because it provides the possibility to examine the degree of thermalization or equilibration in the matter. Aim of the present study is to pin down the nuclear stopping for the different forms of density dependent symmetry energy

Vinayak, Karan Singh

2011-01-01T23:59:59.000Z

71

Role of density dependent symmetry energy in nuclear stopping  

E-Print Network (OSTI)

Information about the nuclear matter under the extreme conditions of temperature and density and the role of symmetry energy under these conditions is still a topic of crucial importance in the present day nuclear physics research. The multifragmentation, collective flow and the nuclear stopping is among the various rare phenomenon which can be observed in heavy-ion collisions at intermediate energies. The nuclear stopping, which is sensitive towards the symmetry energy has gained a lot of interest because it provides the possibility to examine the degree of thermalization or equilibration in the matter. Aim of the present study is to pin down the nuclear stopping for the different forms of density dependent symmetry energy

Karan Singh Vinayak; Suneel Kumar

2011-07-27T23:59:59.000Z

72

Soil Density/Moisture Gauge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Soil Density/Moisture Gauge Soil Density/Moisture Gauge Soil Density/Moisture Gauge This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of a soil moisture/density gauge (Class 7 - Radioactive). This exercise manual is one in a series of five scenarios developed by the Department of Energy Transportation Emergency Preparedness Program (TEPP). Responding agencies may include several or more of the following: local municipal and county fire, police, sheriff and Emergency Medical Services (EMS) personnel; state, local, and federal emergency response teams; emergency response contractors; and other emergency response resources that could potentially be provided by the carrier and the originating facility (shipper).

73

Gravitational Energy-Momentum Density in Teleparallel Gravity  

E-Print Network (OSTI)

In the context of a gauge theory for the translation group, a conserved energy-momentum gauge current for the gravitational field is obtained. It is a true spacetime and gauge tensor, and transforms covariantly under global Lorentz transformations. By rewriting the gauge gravitational field equation in a purely spacetime form, it becomes the teleparallel equivalent of Einstein's equation, and the gauge current reduces to the M{\\o}ller's canonical energy-momentum density of the gravitational field.

V. C. de Andrade; L. C. T. Guillen; J. G. Pereira

2000-03-27T23:59:59.000Z

74

LANL | Physics | Inertial Confinement Fusion and High Energy Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Inertial confinement and high density Inertial confinement and high density plasma physics Using the world's most powerful lasers, Physics Division scientists are aiming to create thermonuclear burn in the laboratory. The experimental research of the Physics Division's Inertial Confinement Fusion program is conducted at the National Ignition Facility at Lawrence Livermore National Laboratory, the OMEGA Laser Facility at the University of Rochester, and the Trident Laser Facility at Los Alamos. Within inertial confinement fusion and the high energy density area, Los Alamos specializes in hohlraum energetics, symmetry tuning, warm dense matter physics, and hydrodynamics in ultra-extreme conditions. When complete, this research will enable the exploitation of fusion as an energy resource and will enable advanced research in stockpile stewardship

75

Effect of Larch Forest Density on Snow Surface Energy Balance  

Science Conference Proceedings (OSTI)

It is established that the density of a larch forest strongly influences the snowmelt energy under its canopy. In the spring thaw of 1994, 1995, and 1996, the surface snowmelt at three different sites located at the southern foot of Mt. Iwate, ...

Kazuyoshi Suzuki; Takeshi Ohta

2003-12-01T23:59:59.000Z

76

Surface Symmetry Energy of Nuclear Energy Density Functionals.  

E-Print Network (OSTI)

??The thesis studies the bulk deformation properties of the Skyrme nuclear energy densityfunctionals. Following simple arguments based on the leptodermous expansion andliquid drop model, the… (more)

Nikolov, Nikola Iliev

2011-01-01T23:59:59.000Z

77

Sub-barrier Fusion Cross Sections with Energy Density Formalism  

E-Print Network (OSTI)

We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of $^{16}$O with $^{154,}$$^{144}$Sm,$^{186}$W and $^{208}$Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two $^{64}$Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

F. Muhammad Zamrun; K. Hagino; N. Takigawa

2006-06-07T23:59:59.000Z

78

Laboratory testing of high energy density capacitors for electric vehicles  

DOE Green Energy (OSTI)

Laboratory tests of advanced, high energy density capacitors in the Battery Test Laboratory of the Idaho National Engineering Laboratory have been performed to investigate their suitability for load-leveling the battery in an electric vehicle. Two types of devices were tested -- 3 V, 70 Farad, spiral wound, carbon-based, single cell devices and 20 V, 3. 5 Farad, mixed-oxide, multi-cell bipolar devices. The energy density of the devices, based on energy stored during charge to the rated voltage, was found to be 1--2 Wh/kg, which agreed well with that claimed by the manufacturers. Constant power discharge tests were performed at power densities up to 1500 W/kg. Discharges at higher power densities could have been performed had equipment been available to maintain constant power during discharges of less than one second. It was found that the capacitance of the devices were rate dependent with the rate dependency of the carbon-based devices being higher than that of the mixed-oxide devices. The resistance of both types of devices were relatively low being 20--30 milliohms. Testing done in the study showed that the advanced high energy density capacitors can be charged and discharged over cycles (PSFUDS) which approximate the duty cycle that would be encountered if the devices are used to load-level the battery in an electric vehicle. Thermal tests of the advanced capacitors in an insulated environment using the PSFUDS cycle showed the devices do not overheat with their temperatures increasing only 4--5{degrees}C for tests that lasted 5--7 hours. 7 refs., 33 figs., 11 tabs.

Burke, A.F.

1991-10-01T23:59:59.000Z

79

DENSITY  

Science Conference Proceedings (OSTI)

... Table 2: Principal mineral phases found in the granite rock. Mineral phase. ... Table 4. Average density of 12 granite rocks by Archimedes and CT. ...

2007-01-08T23:59:59.000Z

80

Performance of Double-Output Induction Generator for Wind Energy Conversion Systems  

Science Conference Proceedings (OSTI)

With growing concerns about environmental pollution and a possible energy shortage, great efforts have been taken by the governments around the world to implement renewable energy programs, based mainly on wind power, solar energy, small hydro-electric ... Keywords: Double-output induction generator (DOIG), steady state model, field-oriented control, dynamic model, PWM converters

B. Chitti Babu; K. B. Mohanty; C. Poongothai

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

residential transportation energy usage is vital for theDensity on Vehicle Usage and Energy Consumption ReferencesDensity on Vehicle Usage and Energy Consumption UCI-ITS-WP-

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

82

High Energy Density Physics and Exotic Acceleration Schemes  

Science Conference Proceedings (OSTI)

The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to be a very important field for diverse applications such as muon cooling, fusion energy research, and ultra-bright particle and radiation generation with high intensity lasers. We had several talks on these and other subjects, and many joint sessions with the Computational group, the EM Structures group, and the Beam Generation group. We summarize our groups' work in the following categories: vacuum acceleration schemes; ion acceleration; particle transport in solids; and applications to high energy density phenomena.

Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC

2005-09-27T23:59:59.000Z

83

Teleparallel Gravity and the Gravitational Energy-Momentum Density  

E-Print Network (OSTI)

In the context of the teleparallel equivalent of general relativity, we show that the energy-momentum density for the gravitational field can be described by a true spacetime tensor. It is also invariant under local (gauge) translations of the tangent space coordinates, but transforms covariantly only under global Lorentz transformations. When the gauge gravitational field equation is written in a purely spacetime form, it becomes the teleparallel equivalent of Einstein's equation, and we recover M{\\o}ller's expression for the canonical gravitational energy-momentum pseudotensor.

V. C. de Andrade; L. C. T. Guillen; J. G. Pereira

2000-11-22T23:59:59.000Z

84

Double Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Double Hot Springs Geothermal Area Double Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Double Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.048,"lon":-119.0283,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

85

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

DC. Steiner, R.L. (1994). Residential density and traveland Brownstone The Impact of Residential Density on VehicleUsage Total annual residential vehicular energy consumption

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

86

Sustainable energy for all. Technical report of task force 2 in support of doubling the global rate of energy efficiency improvement and doubling the share of renewable energy in the global energy mix by 2030  

SciTech Connect

The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force Two which is dedicated energy efficiency and renewable energy objectives. The report shows that doubling the rate of energy efficiency improvements and doubling the share of energy from renewable sources by 2030 is challenging but feasible if sufficient actions are implemented. Strong and well-informed government policies as well as extensive private investment should focus on the high impact areas identified by the task force.

Nakicenovic, Nebojsa [International Institute for Applied Systems Analysis and Vienna University of Technology (Austria); Kammen, Daniel [Univ. of California, Berkeley, CA (United States); Jewell, Jessica [International Institute for Applied Systems Analysis (Austria)

2012-04-15T23:59:59.000Z

87

TRIDENT high-energy-density facility experimental capabilities and diagnostics  

Science Conference Proceedings (OSTI)

The newly upgraded TRIDENT high-energy-density (HED) facility provides high-energy short-pulse laser-matter interactions with powers in excess of 200 TW and energies greater than 120 J. In addition, TRIDENT retains two long-pulse (nanoseconds to microseconds) beams that are available for simultaneous use in either the same experiment or a separate one. The facility's flexibility is enhanced by the presence of two separate target chambers with a third undergoing commissioning. This capability allows the experimental configuration to be optimized by choosing the chamber with the most advantageous geometry and features. The TRIDENT facility also provides a wide range of standard instruments including optical, x-ray, and particle diagnostics. In addition, one chamber has a 10 in. manipulator allowing OMEGA and National Ignition Facility (NIF) diagnostics to be prototyped and calibrated.

Batha, S. H.; Aragonez, R.; Archuleta, F. L.; Archuleta, T. N.; Benage, J. F.; Cobble, J. A.; Cowan, J. S.; Fatherley, V. E.; Flippo, K. A.; Gautier, D. C.; Gonzales, R. P.; Greenfield, S. R.; Hegelich, B. M.; Hurry, T. R.; Johnson, R. P.; Kline, J. L.; Letzring, S. A.; Loomis, E. N.; Lopez, F. E.; Luo, S. N. [Los Alamos National Laboratory, P.O. Box 1663, MS E526, Los Alamos, New Mexico 87545 (United States)] (and others)

2008-10-15T23:59:59.000Z

88

Energy density functional study of nuclear matrix elements for neutrinoless $??$ decay  

E-Print Network (OSTI)

We present an extensive study of nuclear matrix elements (NME) for the neutrinoless double beta decay of the nuclei $^{48}$Ca, $^{76}$Ge, $^{82}$Se, $^{96}$Zr, $^{100}$Mo, $^{116}$Cd, $^{124}$Sn, $^{128}$Te, $^{130}$Te, $^{136}$Xe, and $^{150}$Nd based on state-of-the-art energy density functional methods using the Gogny D1S functional. Beyond mean-field effects are included within the generating coordinate method with particle number and angular momentum projection for both initial and final ground states. We obtain a rather constant value for the NME's around 4.7 with the exception of $^{48}$Ca and $^{150}$Nd, where smaller values are found. We analyze the role of deformation and pairing in the evaluation of the NME and present detailed results for the decay of $^{150}$Nd.

Tomás R. Rodríguez; G. Martinez-Pinedo

2010-08-31T23:59:59.000Z

89

Density-based Energy Decomposition Analysis for Intermolecular Interactions with Variationally Determined Intermediate State Energies  

DOE Green Energy (OSTI)

The first purely density-based energy decomposition analysis (EDA) for intermolecular binding is developed within the density functional theory. The most important feature of this scheme is to variationally determine the frozen density energy, based on a constrained search formalism and implemented with the Wu-Yang algorithm [Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003) ]. This variational process dispenses with the Heitler-London antisymmetrization of wave functions used in most previous methods and calculates the electrostatic and Pauli repulsion energies together without any distortion of the frozen density, an important fact that enables a clean separation of these two terms from the relaxation (i.e., polarization and charge transfer) terms. The new EDA also employs the constrained density functional theory approach [Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 24502 (2005)] to separate out charge transfer effects. Because the charge transfer energy is based on the density flow in real space, it has a small basis set dependence. Applications of this decomposition to hydrogen bonding in the water dimer and the formamide dimer show that the frozen density energy dominates the binding in these systems, consistent with the noncovalent nature of the interactions. A more detailed examination reveals how the interplay of electrostatics and the Pauli repulsion determines the distance and angular dependence of these hydrogen bonds.

Wu, Q.; Ayers, P.W.; Zhang, Y.

2009-10-28T23:59:59.000Z

90

The Energy Density of the Quaternionic Field as Dark Energy in the Universe  

E-Print Network (OSTI)

In this article we describe a model of the universe consisting of a mixture of the ordinary matter and a so-called cosmic quaternionic field. The basic idea here consists in an attempt to interpret $\\Lambda$ as the energy density of the quaternionic field whose source is any form of energy including the proper energy density of this field. We set the energy density of this field to $\\Lambda$ and show that the ratio of ordinary dark matter energy density assigned to $\\Lambda$ is constant during the cosmic evolution. We investigate the interaction of the quaternionic field with the ordinary dark matter and show that this field exerts a force on the moving dark matter which might possible create the dark matter in the early universe. Such determined $\\Lambda$ fulfils the requirements asked from the dark energy. In this model of the universe, the cosmical constant, the fine-tuning and the age problems might be solved. Finally, we sketch the evolution of the universe with the cosmic quaternionic field and show that the energy density of the cosmic quaternionic field might be a possible candidate for the dark energy.

V. Majernik

2003-11-05T23:59:59.000Z

91

Curvature and Frontier Orbital Energies in Density Functional Theory  

SciTech Connect

Perdew et al. [Phys. Rev. Lett 49, 1691 (1982)] discovered and proved two different properties that exact Kohn-Sham density functional theory (DFT) must obey: (i) The exact total energy versus particle number must be a series of linear segments between integer electron points; (ii) Across an integer number of electrons, the exchange-correlation potential may ``jump’’ by a constant, known as the derivative discontinuity (DD). Here, we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT, the two are in fact two sides of the same coin. Absence of a derivative discontinuity necessitates deviation from piecewise linearity, and the latter can be used to correct for the former, thereby restoring the physical meaning of the orbital energies. Using selected small molecules, we show that this results in a simple correction scheme for any underlying functional, including semi-local and hybrid functionals as well as Hartree-Fock theory, suggesting a practical correction for the infamous gap problem of density functional theory. Moreover, we show that optimally-tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and show that this can be used as a sound theoretical basis for novel tuning strategies.

Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Kronik, Leeor; Baer, Roi

2012-12-20T23:59:59.000Z

92

Reduced density matrix hybrid approach: Application to electronic energy transfer  

SciTech Connect

Electronic energy transfer in the condensed phase, such as that occurring in photosynthetic complexes, frequently occurs in regimes where the energy scales of the system and environment are similar. This situation provides a challenge to theoretical investigation since most approaches are accurate only when a certain energetic parameter is small compared to others in the problem. Here we show that in these difficult regimes, the Ehrenfest approach provides a good starting point for a dynamical description of the energy transfer process due to its ability to accurately treat coupling to slow environmental modes. To further improve on the accuracy of the Ehrenfest approach, we use our reduced density matrix hybrid framework to treat the faster environmental modes quantum mechanically, at the level of a perturbative master equation. This combined approach is shown to provide an efficient and quantitative description of electronic energy transfer in a model dimer and the Fenna-Matthews-Olson complex and is used to investigate the effect of environmental preparation on the resulting dynamics.

Berkelbach, Timothy C.; Reichman, David R. [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Markland, Thomas E. [Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305 (United States)

2012-02-28T23:59:59.000Z

93

Pulsed power drivers for ICF and high energy density physics  

SciTech Connect

Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates {approximately}500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed {approximately}15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed.

Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

1995-12-31T23:59:59.000Z

94

The low-energy nuclear density of states and the saddle point approximation  

E-Print Network (OSTI)

The nuclear density of states plays an important role in nuclear reactions. At high energies, above a few MeV, the nuclear density of states is well described by a formula that depends on the smooth single particle density of states at the Fermi surface, the nuclear shell correction and the pairing energy. In this paper we present an analysis of the low energy behaviour of the nuclear density of states using the saddle point approximation and extensions to it. Furthermore, we prescribe a simple parabolic form for excitation energy, in the low energy limit, which may facilitate an easy computation of level densities.

Sanjay K. Ghosh; Byron K. Jennings

2001-07-30T23:59:59.000Z

95

CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES  

SciTech Connect

This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

Professor Bruce R. Kusse; Professor David A. Hammer

2007-04-18T23:59:59.000Z

96

Classical two-slit interference effects in double photoionization of molecular hydrogen at high energies  

DOE Green Energy (OSTI)

Recent experiments on double photoionization of H$_2$ with photon energies between 160 and 240 eV have revealed body-frame angular distributions that suggest classical two-slit interference effects may be present when one electron carries most of the available energy and the second electron is not observed. We report precise quantum mechanical calculations that reproduce the experimental findings. They reveal that the interpretation in terms of classical diffraction is only appropriate atsubstantially higher photon energies. At the energies considered in the experiment we offer an alternative explanation based on the mixing of two non-diffractive contributions by circularly polarized light.

Horner, Daniel A.; Miyabe, Shungo; Rescigno, Thomas N; McCurdy, C. William; Morales, Felipe; Martin, Fernando

2008-07-06T23:59:59.000Z

97

Metrology Challenges for High Energy Density Science Target Manufacture  

Science Conference Proceedings (OSTI)

Currently, High Energy Density Science (HEDS) experiments are used to support and qualify predictive physics models. These models assume ideal conditions such as energy (input) and device (target) geometry. The experiments rely on precision targets constructed from components with dimensions in the millimeter range, while having micrometer-scale, functional features, including planar steps, sine waves, and step-joint geometry on hemispherical targets. Future target designs will likely have features and forms that rival or surpass current manufacturing and characterization capability. The dimensional metrology of these features is important for a number of reasons, including qualification of sub-components prior to assembly, quantification of critical features on the as-built assemblies and as a feedback mechanism for fabrication process development. Variations in geometry from part to part can lead to functional limitations, such as unpredictable instabilities during an experiment and the inability to assemble a target from poorly matched sub-components. Adding to the complexity are the large number and variety of materials, components, and shapes that render any single metrology technique difficult to use with low uncertainty. Common materials include metal and glass foams, doped transparent and opaque plastics and a variety of deposited and wrought metals. A suite of metrology tools and techniques developed to address the many critical issues relevant to the manufacture of HEDS targets including interferometry, x-ray radiography and contact metrology are presented including two sided interferometry for absolute thickness metrology and low force probe technology for micrometer feature coordinate metrology.

Seugling, R M; Bono, M J; Davis, P

2009-02-19T23:59:59.000Z

98

Analysis of the Double Window in Saving Energy and Economical Efficiency in Nanjing in the Winter  

E-Print Network (OSTI)

With the rapid progress of the economy, heating in winter is widespread in the eastern area of China. According to the exterior-protected structure of buildings in Nanjing, the hourly and dynamic load of energy consumption during the time of heating in winter is simulated and calculated in the paper. Through calculations, the energy consumption of the different windows, walls and roofs is gained. By analyzing the results of these calculations, the conclusion that using a single frame-double plastic steel window can save energy by 37.68% is reached. As part of the economical efficiency analysis, an investment payback period is analyzed using the methods of static state and dynamic state. The analysis shows that by using single frame-double plastic steel window, the investment payback period is about 7 years.

Zhang, Y.; He, J.; Gao, S.

2006-01-01T23:59:59.000Z

99

Estimation of Surface Radiation and Energy Flux Densities from Single-Level Weather Data  

Science Conference Proceedings (OSTI)

A scheme is proposed that relates surface flux densities of sensible heat, latent heat, and momentum to routine weather data. The scheme contains parameterizations concerning the radiation components and the surface energy flux densities. The ...

Wim C. de Rooy; A. A. M. Holtslag

1999-05-01T23:59:59.000Z

100

Building A Universal Nuclear Energy Density Functional (UNEDF)  

Science Conference Proceedings (OSTI)

During the period of Dec. 1 2006 â?? Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.

Carlson, Joe, Los Alamos National Laboratory, Los Alamos, NM; Furnstahl, Dick, Ohio State University, Columbus, OH; Horoi, Mihai, Central Michigan University, Mount Pleasant, MI; Lusk, Rusty, Argonne National Laboratory, Argonne, IL; Nazarewicz, Witek, University of Tennessee, Knoxville, TN; Ng, Esmond, Berkeley National Laboratory, Berkeley, CA; Thompson, Ian, Lawrence Livermore National Laboratory, Livermore, CA; Vary, James, Iowa State University, Ames, Iowa

2012-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Upgrading of biorenewables to high energy density fuels  

DOE Green Energy (OSTI)

According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.

Gordon, John C [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Chen, Weizhong [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Dirmyer, Matthew R [Los Alamos National Laboratory; John, Kevin D [Los Alamos National Laboratory; Kim, Jin K [Los Alamos National Laboratory; Keith, Jason [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Pierpont, Aaron W [Los Alamos National Laboratory; Silks Ill, L. A. "" Pete [Los Alamos National Laboratory; Smythe, Mathan C [Los Alamos National Laboratory; Sutton, Andrew D [Los Alamos National Laboratory; Taw, Felicia L [Los Alamos National Laboratory; Trovitch, Ryan J [Los Alamos National Laboratory; Vasudevan, Kalyan V [Los Alamos National Laboratory; Waidmann, Christopher R [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Baker, R. Thomas [UNIV OF OTTAWWA; Schlaf, Marcel [UNIV OF GUELPH

2010-12-07T23:59:59.000Z

102

ESS 2012 Peer Review - Novel High Energy Density Dielectrics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response Time Cost Electrolytic Temperature Energy Response Time Cost Temperature Energy Response Time Cost Polymer Film Ceramic Temp Energy Response Time Cost 10C...

103

National Research Council Study on Frontiers in High-Energy-Density Physics  

E-Print Network (OSTI)

of Fusion Fusion Power Associates Washington, DC 19­21 November 2003 #12;E12541 High-energy-density physicsNational Research Council Study on Frontiers in High-Energy-Density Physics David D. Meyerhofer (HEDP) is a rapidly growing research area · Pressures in excess of 1 Mbar constitute high-energy

104

Few transportation fuels surpass the energy densities of gasoline ...  

U.S. Energy Information Administration (EIA)

Natural gas, either in liquefied form (LNG) or compressed (CNG), are lighter than gasoline but again have lower densities per unit volume.

105

Application of Critical Strain Energy Density to Predicting High-Burnup Fuel Rod Failure  

Science Conference Proceedings (OSTI)

This report documents responses to Nuclear Regulatory Commission (NRC) staff concerning application of critical strain energy density (CSED) to predicting high-burnup fuel rod failure.

2005-09-26T23:59:59.000Z

106

High Energy Density Anode Materials Based on SiO-SnCo/FeC for ...  

Science Conference Proceedings (OSTI)

Abstract Scope, High energy density anode material SiO-SnCoC is synthesized by mechanical alloying method and tested for lithium battery applications.

107

Loss of Quantum Coherence and Positivity of Energy Density in Semiclassical Quantum Gravity  

E-Print Network (OSTI)

In the semiclassical quantum gravity derived from the Wheeler-DeWitt equation, the energy density of a matter field loses quantum coherence due to the induced gauge potential from the parametric interaction with gravity in a non-static spacetime. It is further shown that the energy density takes only positive values and makes superposition principle hold true. By studying a minimal massive scalar field in a FRW spacetime background, we illustrate the positivity of energy density and obtain the classical Hamiltonian of a complex field from the energy density in coherent states.

Sang Pyo Kim; Kwang-Sup Soh

1998-07-09T23:59:59.000Z

108

ESS 2012 Peer Review - Low Cost, High-Energy Density Flywheel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Boeing Management Company. Copyright 2011 Boeing. All rights reserved. | 1 Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration" Mike Strasik Program...

109

"Using Magnetic Fields to Create and Control High Energy Density...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Princeton Plasma Physics Laboratory. All rights reserved. U.S. Department of Energy Princeton Plasma Physics Laboratory is a U.S. Department of Energy national...

110

Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics  

E-Print Network (OSTI)

The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system ...

Pilawa-Podgurski, R. C. N.

111

On the breaking and restoration of symmetries within the nuclear energy density functional formalism  

E-Print Network (OSTI)

We review the notion of symmetry breaking and restoration within the frame of nuclear energy density functional methods. We focus on key differences between wave-function- and energy-functional-based methods. In particular, we point to difficulties encountered within the energy functional framework and discuss new potential constraints on the underlying energy density functional that could make the restoration of broken symmetries better formulated within such a formalism. We refer to Ref.~\\cite{duguet10a} for details.

T. Duguet; J. Sadoudi

2010-10-19T23:59:59.000Z

112

Free energies, vacancy concentrations and density distribution anisotropies in hard--sphere crystals: A combined density functional and simulation study  

E-Print Network (OSTI)

We perform a comparative study of the free energies and the density distributions in hard sphere crystals using Monte Carlo simulations and density functional theory (employing Fundamental Measure functionals). Using a recently introduced technique (Schilling and Schmid, J. Chem. Phys 131, 231102 (2009)) we obtain crystal free energies to a high precision. The free energies from Fundamental Measure theory are in good agreement with the simulation results and demonstrate the applicability of these functionals to the treatment of other problems involving crystallization. The agreement between FMT and simulations on the level of the free energies is also reflected in the density distributions around single lattice sites. Overall, the peak widths and anisotropy signs for different lattice directions agree, however, it is found that Fundamental Measure theory gives slightly narrower peaks with more anisotropy than seen in the simulations. Among the three types of Fundamental Measure functionals studied, only the White Bear II functional (Hansen-Goos and Roth, J. Phys.: Condens. Matter 18, 8413 (2006)) exhibits sensible results for the equilibrium vacancy concentration and a physical behavior of the chemical potential in crystals constrained by a fixed vacancy concentration.

M. Oettel; S. Goerig; A. Haertel; H. Loewen; M. Radu; T. Schilling

2010-09-03T23:59:59.000Z

113

Kaon condensation in neutron stars and high density behaviour of nuclear symmetry energy  

E-Print Network (OSTI)

We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases.

S. Kubis; M. Kutschera

1999-07-24T23:59:59.000Z

114

AGE-1 WALLEYE POLLOCK IN THE EASTERN BERING SEA: DISTRIBUTION, ABUNDANCE, DIET, AND ENERGY DENSITY  

E-Print Network (OSTI)

AGE-1 WALLEYE POLLOCK IN THE EASTERN BERING SEA: DISTRIBUTION, ABUNDANCE, DIET, AND ENERGY DENSITY performed at sea · Energy density estimated using bomb calorimetry for samples from BASIS and MACE surveys · Confirm ages of age-0 and age-1 pollock using otoliths · Distribution of age-1's further north than age-0

115

Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density  

E-Print Network (OSTI)

supercapacitors of high energy density Qian Cheng a,b , Jie Tang a,b,**, Norio Shinya b , Lu-Chang Qin c as supercapacitor electrodes. Energy density of 188 Wh kgÃ?1 has been obtained. Graphene composite with carbon April 2013 Keywords: Supercapacitor Graphene Carbon nanotube PANI a b s t r a c t Graphene and single

Qin, Lu-Chang

116

Nuclear Physics A 770 (2006) 131 Relativistic nuclear energy density functional  

E-Print Network (OSTI)

Nuclear Physics A 770 (2006) 1­31 Relativistic nuclear energy density functional constrained by low 10 February 2006 Available online 3 March 2006 Abstract A relativistic nuclear energy density of Sn and Pb nuclei are studied as test cases for the isospin dependence of the underlying interactions

Weise, Wolfram

117

Adaptive nearest-nodes finite element method guided by gradient of linear strain energy density  

Science Conference Proceedings (OSTI)

In this paper, an adaptive finite element method is formulated based on the newly developed nearest-nodes finite element method (NN-FEM). In the adaptive NN-FEM, mesh modification is guided by the gradient of strain energy density, i.e., a larger gradient ... Keywords: Gradient of strain energy density, Mesh intensity, Mesh modification operator, Nearest-nodes finite element method

Yunhua Luo

2009-10-01T23:59:59.000Z

118

Microscopically-based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization  

E-Print Network (OSTI)

In a recent series of papers, Gebremariam, Bogner, and Duguet derived a microscopically based nuclear energy density functional by applying the Density Matrix Expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory (EFT) two- and three-nucleon interactions. Due to the structure of the chiral interactions, each coupling in the DME functional is given as the sum of a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the finite-range pion exchanges. Since the contact contributions have essentially the same structure as those entering empirical Skyrme functionals, a microscopically guided Skyrme phenomenology has been suggested in which the contact terms in the DME functional are released for optimization to finite-density observables to capture short-range correlation energy contributions from beyond Hartree-Fock. The present paper is the first attempt to assess the ability of the newly suggested DME functional, which has a much richer set of density dependencies than traditional Skyrme functionals, to generate sensible and stable results for nuclear applications. The results of the first proof-of-principle calculations are given, and numerous practical issues related to the implementation of the new functional in existing Skyrme codes are discussed. Using a restricted singular value decomposition (SVD) optimization procedure, it is found that the new DME functional gives numerically stable results and exhibits a small but systematic reduction of our test $\\chi^2$ function compared to standard Skyrme functionals, thus justifying its suitability for future global optimizations and large-scale calculations.

M. Stoitsov; M. Kortelainen; S. K. Bogner; T. Duguet; R. J. Furnstahl; B. Gebremariam; N. Schunck

2010-09-17T23:59:59.000Z

119

Double-plateau in the energy distribution of electrons scattered by ions-pairs in a strong laser field  

E-Print Network (OSTI)

Double-plateau in the energy distribution of electrons scattered by ions-pairs in a strong laser) The energy distribution of electrons scattered from single ions and from pairs of ions in a strong laser solution of the energy distribution for instantaneous Coulomb collisions in three dimensions

Kull, Hans-Jörg

120

Optimization of Power and Energy Densities in Supercapacitors  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Energy Storage: Materials, Systems and Applications. Presentation Title ...

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Estimates for the energy density of critical points of a class of conformally invariant variational problems  

E-Print Network (OSTI)

We show that the energy density of critical points of a class of conformally invariant variational problems with small energy on the unit 2-disk B_1 lies in the local Hardy space h^1(B_1). As a corollary we obtain a new proof of the energy convexity and uniqueness result for weakly harmonic maps with small energy on B_1.

Lamm, Tobias

2012-01-01T23:59:59.000Z

122

Energy density functional analysis of shape coexistence in {sup 44}S  

SciTech Connect

The structure of low-energy collective states in the neutron-rich nucleus {sup 44}S is analyzed using a microscopic collective Hamiltonian model based on energy density functionals (EDFs). The calculated triaxial energy map, low-energy spectrum and corresponding probability distributions indicate a coexistence of prolate and oblate shapes in this nucleus.

Li, Z. P.; Yao, J. M.; Vretenar, D.; Niksic, T.; Meng, J. [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Physics Department, Faculty of Science, University of Zagreb (Croatia); State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China)

2012-10-20T23:59:59.000Z

123

Forster Resonance Energy Transfer and Laser Fluorescent Analysis of Defects in DNA Double Helix  

E-Print Network (OSTI)

Real time laser induced fluorescence spectroscopy usage for microanalysis of DNA double helix defects is shown. The method is based on Forster resonance energy transfer (FRET) in intercalator-donor pair (acridine orange as a donor and ethidium bromide as an acceptor). Transition metal ions such as Cu(II), Cu(I), Ag(I), silver nanoparticles (AgNPs), photo- and thermo effects were used to cause double helix defects in DNA. FRET radii were experimentally estimated in background electrolyte solution (0.01 M NaNO3) and proved to be 3.9 +- 0.3 nm and the data are in satisfactory agreement with the theoretically calculated value Ro = 3.5 +- 0.3 nm. Concentration of DNA sites, exposed to Cu(II), Cu(I), Ag(I) ions, AgNPs impact as well as laser irradiation ({\\lambda} = 457 nm) and temperature, which are applicable for intercalation, were estimated in relative units. FRET method allows to estimate the concentration of double helix areas with high quality stability applicable for intercalation in DNA after it was subjec...

Bregadze, Vasil G; Giorgadze, Tamar G; Jaliashvili, Zaza V; Chkhaberidze, Jemal G; Monaselidze, Jamlet R; Khuskivadze, Temur B

2013-01-01T23:59:59.000Z

124

Short-range tensor interaction and high-density nuclear symmetry energy  

E-Print Network (OSTI)

Effects of the short-range tensor interaction on the density-dependence of nuclear symmetry energy are examined by applying an approximate expression for the second-order tensor contribution to the symmetry energy derived earlier by G.E. Brown and R. Machleidt. It is found that the uncertainty in the short-range tensor force leads directly to a divergent high-density behavior of the nuclear symmetry energy.

Li, Ang

2011-01-01T23:59:59.000Z

125

Determining the density dependence of the nuclear symmetry energy using heavy-ion reactions  

E-Print Network (OSTI)

We review recent progress in the determination of the subsaturation density behavior of the nuclear symmetry energy from heavy-ion collisions as well as the theoretical progress in probing the high density behavior of the symmetry energy in heavy-ion reactions induced by high energy radioactive beams. We further discuss the implications of these results for the nuclear effective interactions and the neutron skin thickness of heavy nuclei.

Lie-Wen Chen; Che Ming Ko; Bao-An Li; Gao-Chan Yong

2007-11-12T23:59:59.000Z

126

Few transportation fuels surpass the energy densities of gasoline ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions.

127

High Energy Density Lithium Capacitors Using Carbon-Carbon ...  

Science Conference Proceedings (OSTI)

We demonstrate a lithium capacitor which is capable of achieving high energy ... 3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and ...

128

Basic Research Needs for High Energy Density Laboratory Physics  

National Nuclear Security Administration (NNSA)

those of high-power lasers, pulsed-power machines and particle accelerators, and advanced energy systems. Furthermore, the program will help develop the workforce needed for future...

129

Free Energy Relationships in the Electrical Double Layer over Single-Layer Graphene  

Science Conference Proceedings (OSTI)

Fluid/solid interfaces containing singlelayer graphene are important in the areas of chemistry, physics, biology, and materials science, yet this environment is difficult to access with experimental methods, especially under flow conditions and in a label-free manner. Herein, we demonstrate the use of second harmonic generation to quantify the interfacial free energy at the fused silica/single-layer graphene/water interface at pH 7 and under conditions of flowing aqueous electrolyte solutions ranging in NaCl concentrations from 10 4 to 10 1 M. Our analysis reveals that single-layer graphene reduces the interfacial free energy density of the fused silica/water interface by a factor of up to 7, which is substantial given that many interfacial processes, including those that are electrochemical in nature, are exponentially sensitive to interfacial free energy density.

Achtyl, Jennifer L. [Northwestern University, Evanston; Vlassiouk, Ivan V [ORNL; Fulvio, Pasquale F [ORNL; Mahurin, Shannon Mark [ORNL; Dai, Sheng [ORNL; Geiger, Franz M. [Northwestern University, Evanston

2013-01-01T23:59:59.000Z

130

File:Air Density Lab.pdf | Open Energy Information  

Open Energy Info (EERE)

Air Density Lab.pdf Air Density Lab.pdf Jump to: navigation, search File File history File usage Metadata File:Air Density Lab.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 240 KB, MIME type: application/pdf, 4 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 09:36, 3 January 2014 Thumbnail for version as of 09:36, 3 January 2014 1,275 × 1,650, 4 pages (240 KB) Foteri (Talk | contribs) Category:Wind for Schools Portal CurriculaCategory:Wind for Schools High School Curricula You cannot overwrite this file. Edit this file using an external application (See the setup

131

Initial energy density of p+p collisions at the LHC  

E-Print Network (OSTI)

Accelerating, exact, explicit and simple solutions of relativistic hydrodynamics allow for a simple description of highly relativistic p+p collisions. These solutions yield a finite rapidity distribution, thus they lead to an advanced estimate of the initial energy density of high energy collisions. We show that such an advanced estimate yields an initial energy density in $\\sqrt{s}=7$ TeV p+p collisions at LHC aroundor above the critical energy density from lattice QCD, and a corresponding initial temperature above the critical temperature from QCD or the Hagedorn temperature. We also show, that several times the critical energy density may have been reached in high multiplicity events, hinting on a non-hadronic medium created in high multiplicity $\\sqrt{s}=7$ TeV p+p collisions.

Csanad, Mate

2013-01-01T23:59:59.000Z

132

Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers  

E-Print Network (OSTI)

The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied.

Min Liu; Ning Wang; Zhuxia Li; Xizhen Wu; Enguang Zhao

2005-09-26T23:59:59.000Z

133

Calculations of free energies in liquid and solid phases: Fundamental measure density-functional approach  

E-Print Network (OSTI)

Calculations of free energies in liquid and solid phases: Fundamental measure density, a theoretical description of the free energies and correlation functions of hard-sphere (HS) liquid and solid-Chandler-Andersen perturbation theory, free energies of liquid and solid phases with many interaction potentials can be obtained

Song, Xueyu

134

The spectral density of the scattering matrix of the magnetic Schrodinger operator for high energies  

E-Print Network (OSTI)

The scattering matrix of the Schrodinger operator with smooth short-range electric and magnetic potentials is considered. The asymptotic density of the eigenvalues of this scattering matrix in the high energy regime is determined. An explicit formula for this density is given. This formula involves only the magnetic vector-potential.

Daniel Bulger; Alexander Pushnitski

2012-08-21T23:59:59.000Z

135

4D-HD for high energy density plasmas: shedding light into rapidly...  

NLE Websites -- All DOE Office Websites (Extended Search)

D-HD for high energy density plasmas: shedding light into rapidly changing, opaque plasmas Wednesday, July 24, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Marta Fajardo,...

136

ESS 2012 Peer Review - Novel High Energy Density Dielectrics for Scalable Capacitor Needs - Geoff Brennecka, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novel High Energy Density Novel High Energy Density Dielectrics for Scalable Capacitor Needs 27 September 2012 Geoff Brennecka The author gratefully acknowledges the support of Dr. Imre Gyuk and the Department of Energy's Office of Electricity Delivery and Energy Reliability. 400nF 2000V Project  Currently-available capacitor options force undesired choices:  (power, capacitance) vs. reliability  performance vs. (temperature, voltage) stability  Capacitors are often not deployed where they could be beneficial, or are deployed and fail (or are severely derated)  Stationary storage and related applications can realize significant value via improved capacitor performance and reliability  Improve reliability and efficiency of high temperature power electronics

137

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

138

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Download CX-007050: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09192011...

139

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Download CX-007052: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-Ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09192011...

140

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Download CX-007055: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09192011...

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

2012 Jonathan G. Lange IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING  

E-Print Network (OSTI)

1 ©2012 Jonathan G. Lange #12;1 IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING ABSTRACT Lithium-ion batteries are commonly used as energy storage devices in a variety of applications. The cathode architectures and materials have a large influence on the performance of lithium-ion batteries

Braun, Paul

142

Why is the nuclear symmetry energy so uncertain at supra-saturation densities?  

E-Print Network (OSTI)

Within the Thomas-Fermi model for isospin asymmetric nuclear matter, the nuclear symmetry energy can be expressed explicitly in terms of the isospin-dependence of the nucleon-nucleon strong interaction. Respective effects of the in-medium three-body interaction and the two-body short-range tensor force due to the $\\rho$ meson exchange as well as the short-range nucleon correlation on the high-density behavior of the nuclear symmetry energy are demonstrated in a transparent way. Possible physics origins of the extremely uncertain nuclear symmetry energy at supra-saturation densities are discussed.

Xu, Chang

2009-01-01T23:59:59.000Z

143

Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density  

Science Conference Proceedings (OSTI)

The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

Bake, Muhammad Ali; Xie Baisong [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Shan Zhang [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Hong Xueren [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Hongyu [Department of Physics, Anshan Normal University, Anshan 114005 (China); Shanghai Bright-Tech Information Technology Co. Ltd, Shanghai 200136 (China)

2012-08-15T23:59:59.000Z

144

Towards a Microscopic Reaction Description Based on Energy Density Functionals  

SciTech Connect

A microscopic calculation of reaction cross sections for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all particle-hole excitations in the target and one-nucleon pickup channels. The particle-hole states may be regarded as doorway states through which the flux flows to more complicated configurations, and subsequently to long-lived compound nucleus resonances. Target excitations for {sup 40,48}Ca, {sup 58}Ni, {sup 90}Zr and {sup 144}Sm were described in a random-phase framework using a Skyrme functional. Reaction cross sections obtained agree very well with experimental data and predictions of a state-of-the-art fitted optical potential. Couplings between inelastic states were found to be negligible, while the pickup channels contribute significantly. The effect of resonances from higher-order channels was assessed. Elastic angular distributions were also calculated within the same method, achieving good agreement with experimental data. For the first time observed absorptions are completely accounted for by explicit channel coupling, for incident energies between 10 and 70 MeV, with consistent angular distribution results.

Nobre, G A; DIetrich, F S; Escher, J E; Thompson, I J; Dupuis, M; Terasaki, J; Engel, J

2011-09-26T23:59:59.000Z

145

Expansion-Free Evolving Spheres Must Have Inhomogeneous Energy Density Distributions  

E-Print Network (OSTI)

In a recent paper a systematic study on shearing expansion-free spherically symmetric distributions was presented. As a particular case of such systems, the Skripkin model was mentioned, which corresponds to a nondissipative perfect fluid with a constant energy density. Here we show that such a model is inconsistent with junction conditions. It is shown that in general for any nondissipative fluid distribution, the expansion-free condition requires the energy density to be inhomogeneous. As an example we consider the case of dust, which allows for a complete integration.

L. Herrera; G. Le Denmat; N. O. Santos

2009-03-27T23:59:59.000Z

146

Free energy density for mean field perturbation of states of a one-dimensional spin chain  

E-Print Network (OSTI)

Motivated by recent developments on large deviations in states of the spin chain, we reconsider the work of Petz, Raggio and Verbeure in 1989 on the variational expression of free energy density in the presence of a mean field type perturbation. We extend their results from the product state case to the Gibbs state case in the setting of translation-invariant interactions of finite range. In the special case of a locally faithful quantum Markov state, we clarify the relation between two different kinds of free energy densities (or pressure functions).

Fumio Hiai; Milan Mosonyi; Hiromichi Ohno; Denes Petz

2007-06-28T23:59:59.000Z

147

Expansion-free evolving spheres must have inhomogeneous energy density distributions  

Science Conference Proceedings (OSTI)

In a recent paper a systematic study on shearing expansion-free spherically symmetric distributions was presented. As a particular case of such systems, the Skripkin model was mentioned, which corresponds to a nondissipative perfect fluid with a constant energy density. Here we show that such a model is inconsistent with junction conditions. It is shown that in general for any nondissipative fluid distribution, the expansion-free condition requires the energy density to be inhomogeneous. As an example we consider the case of dust, which allows for a complete integration.

Herrera, L. [Escuelade Fisica Facultadde Ciencias, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Le Denmat, G. [LERMA-PVI, Universite Paris 06, Observatoire de Paris, CNRS, 3 rue Galilee, Ivry sur Seine 94200 (France); Santos, N. O. [LERMA-PVI, Universite Paris 06, Observatoire de Paris, CNRS, 3 rue Galilee, Ivry sur Seine 94200 (France); Laboratorio Nacional de Computacao Cientifica, 25651-070 Petropolis Rio de Janeiro (Brazil)

2009-04-15T23:59:59.000Z

148

Matter density perturbations and effective gravitational constant in modified gravity models of dark energy  

E-Print Network (OSTI)

We derive the equation of matter density perturbations on sub-horizon scales for a general Lagrangian density f(R, phi, X) that is a function of a Ricci scalar R, a scalar field phi and a kinetic term X=-(nabla phi)^2/2. This is useful to constrain modified gravity dark energy models from observations of large-scale structure and weak lensing. We obtain the solutions for the matter perturbation delta_m as well as the gravitational potential Phi for some analytically solvable models. In a f(R) dark energy model with the Lagrangian density f(R)=alpha R^{1+m}-Lambda, the growth rates of perturbations exhibit notable differences from those in the standard Einstein gravity unless m is very close to 0. In scalar-tensor models with the Lagrangian density f=F(phi)R+2p(phi,X) we relate the models with coupled dark energy scenarios in the Einstein frame and reproduce the equations of perturbations known in the current literature by making a conformal transformation. We also estimate the evolution of perturbations in both Jordan and Einstein frames when the energy fraction of dark energy is constant during the matter-dominated epoch.

Shinji Tsujikawa

2007-05-08T23:59:59.000Z

149

T-682:Double free vulnerability in MapServer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2:Double free vulnerability in MapServer 2:Double free vulnerability in MapServer T-682:Double free vulnerability in MapServer August 2, 2011 - 4:08pm Addthis PROBLEM: Double free vulnerability in MapServer PLATFORM: All versions may be susceptible to SQL injection under certain circumstances ABSTRACT: MapServer developers have discovered flaws in the OGC filter support in MapServer. Specific code is used in support of WFS, WMS-SLD and SOS specifications. All versions may be susceptible to SQL injection under certain circumstances. The extent of the vulnerability depends on the MapServer version, relational database and mapfile configuration being used. All users are strongly encouraged to upgrade to these latest releases. reference LINKS: Double-free in msAddImageSymbol() when filename is a http resource

150

Heavy quark free energies and screening at finite temperature and density  

E-Print Network (OSTI)

We study the free energies of heavy quarks calculated from Polyakov loop correlation functions in full 2-flavour QCD using the p4-improved staggered fermion action. A small but finite Baryon number density is included via Taylor expansion of the fermion determinant in the Baryo-chemical potential mu. For temperatures above Tc we extract Debye screening masses from the large distance behaviour of the free energies and compare their mu-dependence to perturbative results.

M. Doring; S. Ejiri; O. Kaczmarek; F. Karsch; E. Laermann

2005-09-27T23:59:59.000Z

151

Nature of the beam-density effect on energy loss by nonrelativistic charged-particle beams  

DOE Green Energy (OSTI)

The authors present a new formulation of the beam-density effect on energy loss by charged particles passing through matter, which exhibits an increased loss with a beam-shape dependence. This arises from a long-range dipolelike term contained in the two-particle vicinage function for cooperative energy loss by a pair of nonrelativistic particles. A new analytic expression for the vicinage function, which exhibits the long-range term, is also presented.

Rule, D.W.; Crawford, O.H.

1984-03-12T23:59:59.000Z

152

Nuclear energy density functional from chiral two- and three-nucleon interactions  

E-Print Network (OSTI)

An improved density-matrix expansion is used to calculate the nuclear energy density functional from chiral two- and three-nucleon interactions. The two-body interaction comprises long-range one- and two-pion exchange contributions and a set of contact terms contributing up to fourth power in momenta. In addition we employ the leading order chiral three-nucleon interaction with its parameters $c_E, c_D$ and $c_{1,3,4}$ fixed in calculations of nuclear few-body systems. With this input the nuclear energy density functional is derived to first order in the two- and three-nucleon interaction. We find that the strength functions $F_\

J. W. Holt; N. Kaiser; W. Weise

2011-07-29T23:59:59.000Z

153

Shock waves in a Z-pinch and the formation of high energy density plasma  

Science Conference Proceedings (OSTI)

A Z-pinch liner, imploding onto a target plasma, evolves in a step-wise manner, producing a stable, magneto-inertial, high-energy-density plasma compression. The typical configuration is a cylindrical, high-atomic-number liner imploding onto a low-atomic-number target. The parameters for a terawatt-class machine (e.g., Zebra at the University of Nevada, Reno, Nevada Terawatt Facility) have been simulated. The 2-1/2 D MHD code, MACH2, was used to study this configuration. The requirements are for an initial radius of a few mm for stable implosion; the material densities properly distributed, so that the target is effectively heated initially by shock heating and finally by adiabatic compression; and the liner's thickness adjusted to promote radial current transport and subsequent current amplification in the target. Since the shock velocity is smaller in the liner, than in the target, a stable-shock forms at the interface, allowing the central load to accelerate magnetically and inertially, producing a magneto-inertial implosion and high-energy density plasma. Comparing the implosion dynamics of a low-Z target with those of a high-Z target demonstrates the role of shock waves in terms of compression and heating. In the case of a high-Z target, the shock wave does not play a significant heating role. The shock waves carry current and transport the magnetic field, producing a high density on-axis, at relatively low temperature. Whereas, in the case of a low-Z target, the fast moving shock wave preheats the target during the initial implosion phase, and the later adiabatic compression further heats the target to very high energy density. As a result, the compression ratio required for heating the low-Z plasma to very high energy densities is greatly reduced.

Rahman, H. U. [Magneto-Inertial Fusion Technologies Inc. (MIFTI), Irvine, California 92612 (United States) and Department of Physics, University of California Irvine, Irvine, California 92697 (United States); Wessel, F. J. [Department of Physics, University of California Irvine, Irvine California 92697 (United States); Ney, P. [Mount San Jacinto College, Menifee, California 92584 (United States); Presura, R. [University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada 89557-0208 (United States); Ellahi, Rahmat [Department of Mathematics and Statistics, FBAS, IIU, Islamabad (Pakistan) and Department of Mechanical Engineering, University of California Riverside, Riverside, California 92521 (United States); Shukla, P. K. [Department of Mechanical and Aerospace Engineering and Center for Energy Research, University of California San Diego, La Jolla, California 92093 (United States)

2012-12-15T23:59:59.000Z

154

High Thermal Energy Storage Density LiNO3-NaNO3-KNO3-KNO2 ...  

Science Conference Proceedings (OSTI)

Presentation Title, High Thermal Energy Storage Density LiNO3-NaNO3-KNO3- KNO2 Quaternary Molten Salts for Parabolic Trough Solar Power Generation.

155

Construction of the free energy landscape by the density functional theory  

E-Print Network (OSTI)

On the basis of the density functional theory, we give a clear definition of the free energy landscape. To show the usefulness of the definition, we construct the free energy landscape for rearrangement of atoms in an FCC crystal of hard spheres. In this description, the cooperatively rearranging region (CRR) is clealy related to the hard spheres involved in the saddle between two adjacent basins. A new concept of the simultaneously rearranging region (SRR) emerges naturally as spheres defined by the difference between two adjacent basins. We show that the SRR and the CRR can be determined explicitly from the free energy landscape. 1 1

Takashi Yoshidome; Akira Yoshimori; Takashi Odagaki

2005-01-01T23:59:59.000Z

156

Colle-Salvetti-type local density functional for the exchange-correlation energy in two dimensions  

Science Conference Proceedings (OSTI)

We derive an approximate local density functional for the exchange-correlation energy to be used in density-functional calculations of two-dimensional systems. In the derivation we employ the Colle-Salvetti wave function within the scheme of Salvetti and Montagnani [Phys. Rev. A 63, 052109 (2001)] to satisfy the sum rule for the exchange-correlation hole. We apply the functional to the two-dimensional homogeneous electron gas as well as to a set of quantum dots and find a very good agreement with exact reference data.

Sakiroglu, S. [Nanoscience Center, Department of Physics, University of Jyvaeskylae, P. O. Box 35, FI-40014 Jyvaeskylae (Finland); Physics Department, Faculty of Arts and Sciences, Dokuz Eyluel University, 35160 Izmir (Turkey); Raesaenen, E. [Nanoscience Center, Department of Physics, University of Jyvaeskylae, P. O. Box 35, FI-40014 Jyvaeskylae (Finland)

2010-07-15T23:59:59.000Z

157

Activation energy of degradation in GaAlAs double heterostructure laser diodes  

SciTech Connect

Aging test of GaAlAs double heterostructure (DH) laser diodes is performed in the temperature range of 50--180 /sup 0/C. In samples for the aging test, AuSn-alloy bonding solder is used and the facet coating with Al/sub 2/O/sub 3/ film is performed. Samples are operated in the light emitting diode (LED) mode with the application of the constant current of 4 kA/cm/sup 2/ and 6 kA/cm/sup 2/ at temperatures above 80 /sup 0/C and in the automatic power control (APC) lasing mode with the constant optical power of 5 mW/facet at 50 and 70 /sup 0/C. The activation energy is 0.5 eV obtained from the results of the LED mode operation at 4 kA/cm/sup 2/. The parameter to evaluate the degradation is the current at which the optical power at 25 /sup 0/C is 5 mW/facet. This parameter includes the deterioration of the external differencial efficiency. It is shown that the increasing rates of this parameter are almost the same at the same temperature between the LED mode operation at 4 kA/cm/sup 2/ and 6 kA/cm/sup 2/. The increasing rate is almost the same when samples are operated in the APC lasing mode. Twenty-three samples operated at 70 /sup 0/C maintain the optical power of 5 mW/facet set initially over 5000 h. The averaged increasing rate of that parameter in these samples is 7.1 x 10/sup -6//h. The activation energy of 0.5 eV is almost the same as that of GaAlAs DH LED's which is 0.56 eV. It is presumed that point defects which disperse homogeneously cause the degradation of laser diodes and this degradation mode seemed to be the same as LED owing to the improvements against the facet degradation and the contact degradation.

Imai, H.; Hori, K.; Takusagawa, M.; Wakita, K.

1981-05-01T23:59:59.000Z

158

Study of fusion dynamics using Skyrme energy density formalism with different surface corrections  

E-Print Network (OSTI)

Within the framework of Skyrme energy density formalism, we investigate the role of surface corrections on the fusion of colliding nuclei. For this, the coefficient of surface correction was varied between 1/36 and 4/36, and its impact was studied on about 180 reactions. Our detailed investigations indicate a linear relationship between the fusion barrier heights and strength of the surface corrections. Our analysis of the fusion barriers advocate the strength of surface correction of 1/36.

Ishwar Dutt; Narinder K. Dhiman

2010-11-19T23:59:59.000Z

159

Carports with Solar Panels do Double Duty for Navy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carports with Solar Panels do Double Duty for Navy Carports with Solar Panels do Double Duty for Navy Carports with Solar Panels do Double Duty for Navy May 14, 2010 - 12:22pm Addthis Joshua DeLung What does this project do? In total, all of China Lake's solar PV projects generate enough electricity a year to power up to 1,200 houses on the grid provided by Southern California Edison, the local utility. The base estimates that it saves about $557,000 a year from the solar panels. At Naval Air Weapons Station China Lake, heat is a fact of life. The base is located on the edge of the Mojave Desert near Ridgecrest, Calif., where the blistering summer heat can actually peel the paint off cars. Longtime desert residents know how to deal with it, but thanks to an ongoing environmental program, many base employees no longer have to do so. Since

160

Communication: Density functional theory overcomes the failure of predicting intermolecular interaction energies  

Science Conference Proceedings (OSTI)

Density-functional theory (DFT) revolutionized the ability of computational quantum mechanics to describe properties of matter and is by far the most often used method. However, all the standard variants of DFT fail to predict intermolecular interaction energies. In recent years, a number of ways to go around this problem has been proposed. We show that some of these approaches can reproduce interaction energies with median errors of only about 5% in the complete range of intermolecular configurations. Such errors are comparable to typical uncertainties of wave-function-based methods in practical applications. Thus, these DFT methods are expected to find broad applications in modelling of condensed phases and of biomolecules.

Podeszwa, Rafal [Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice (Poland); Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Szalewicz, Krzysztof [Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice (Poland)

2012-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Development of high energy density fuels from mild gasification of coal  

SciTech Connect

The overall objective of the program is the determination of the minimal processing requirements to produce High Energy Density Fuels (HEDF), meeting a minimal energy density of 130,000 Btu/gal (conventional jet fuels have energy densities in the vicinity of 115,000--120,000 Btu/gal) and having acceptable advanced fuel specifications in accordance with the three defined categories of HEDF. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. A task breakdown structure was developed containing eight key tasks. This report summarizes the work that Amoco Oil Company (AOC), as key subcontractor, performed in the execution of Task 4, Proposed Upgrading Schemes for Advanced Fuel. The intent of the Task 4 study was to represent all the candidate processing options, that were either studied in the experimental efforts of Task 3 or were available from the prior art in the open literature, in a linear program (LP) model. The LP model would allow scaling of the bench-scale Task 3 results to commercial scale and would perform economic evaluations on any combination of the processes which might be used to make HEDF. Section 2.0 of this report summarizes the process and economic bases used. Sections 3.0 and 4.0 details the economics and processing sensitivities for HEDF production. 1 ref., 15 figs., 9 tabs.

Not Available

1990-10-01T23:59:59.000Z

162

A Microelectromechanical High-Density Energy Storage/Rapid Release System  

DOE Green Energy (OSTI)

One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

Rodgers, M. Steven; Allen, Jim J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Sam L.

1999-07-21T23:59:59.000Z

163

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage  

SciTech Connect

Low cost, high performance redox flow batteries are highly demanded for up to multi-megawatt levels of renewable and grid energy storage. Here, we report a new vanadium redox flow battery with a significant improvement over the current technologies. This new battery utilizes a sulfate-chloride mixed solution, which is capable of dissolving more than 2.5 M vanadium or about a 70% increase in the energy storage capacity over the current vanadium sulfate system. More importantly, the new electrolyte remains stable over a wide temperature range of -5 to 60oC, potentially eliminating the need of active heat management. Its high energy density, broad operational temperature window, and excellent electrochemical performance would lead to a significant reduction in the cost of energy storage, thus accelerating its market penetration.

Li, Liyu; Kim, Soowhan; Wang, Wei; Vijayakumar, M.; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang; Hu, Jian Z.; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo

2011-05-01T23:59:59.000Z

164

The Use of Density Meters and Microprocessors for Energy Measurement and Control  

E-Print Network (OSTI)

ANSI/API 2530 shows how natural gas volume and weight flow rates may be calculated from the differential pressure across an in-line orifice plate. AGA Report No.5 uses these equations and known relationships between specific gravity and calorific value, to calculate the energy flow rate. Both publications point to weight flow rate as the simplest and most direct approach to energy flow rate and indicate much wider use for equations originally developed for natural gas. This paper discusses the advantages of density measurement and shows how a single, in-line density meter may be used with an easily programmed micro-processor to provide rapid, reliable, low-cost, on-line solutions to the flow and energy equations, without using specific gravity meters and calorimeters. Similar techniques enable computation of calorific values to produce a so-called "flameless calorimeter" and measurement and feed-forward control of fuel gas supplies for steam generators, process furnaces, etc., thereby improving combustion and process efficiencies and promoting energy savings. These techniques increase in value as fuel costs rise and as industry is forced to use more variable gas supplies.

Balls, B. W.; Agar, J.

1979-01-01T23:59:59.000Z

165

Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels  

SciTech Connect

HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

None

2012-01-09T23:59:59.000Z

166

High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage  

SciTech Connect

HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today’s EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery—which does not use any hazardous substances—can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak’s converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers—eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

None

2011-11-15T23:59:59.000Z

167

Optimal estimation of free energies and stationary densities from multiple biased simulations  

E-Print Network (OSTI)

When studying high-dimensional dynamical systems such as macromolecules, quantum systems and polymers, a prime concern is the identification of the most probable states and their stationary probabilities or free energies. Often, these systems have metastable regions or phases, prohibiting to estimate the stationary probabilities by direct simulation. Efficient sampling methods such as umbrella sampling, metadynamics and conformational flooding have developed that perform a number of simulations where the system's potential is biased such as to accelerate the rare barrier crossing events. A joint free energy profile or stationary density can then be obtained from these biased simulations with weighted histogram analysis method (WHAM). This approach (a) requires a few essential order parameters to be defined in which the histogram is set up, and (b) assumes that each simulation is in global equilibrium. Both assumptions make the investigation of high-dimensional systems with previously unknown energy landscape ...

Wu, Hao

2013-01-01T23:59:59.000Z

168

Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch  

SciTech Connect

Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

Prevosto, L.; Mancinelli, B. [Departamento Ing. Electromecanica, Grupo de Descargas Electricas, Universidad Tecnologica Nacional, Regional Venado Tuerto, Las Heras 644, Venado Tuerto, Santa Fe 2600 (Argentina); Artana, G. [Departamento Ing. Mecanica, Laboratorio de Fluidodinamica, Facultad de Ingenieria (UBA), Paseo Colon 850 (C1063ACV), Buenos Aires (Argentina); Kelly, H. [Departamento de Fisica, Instituto de Fisica del Plasma (CONICET), Facultad de Ciencias Exactas y Naturales (UBA), Ciudad Universitaria Pab. I, Buenos Aires 1428 (Argentina)

2010-01-15T23:59:59.000Z

169

Optimization of Polymer-based Nanocomposites for High Energy Density Applications  

E-Print Network (OSTI)

Monolithic materials are not meeting the increasing demand for flexible, lightweight and compact high energy density dielectrics. This limitation in performance is due to the trade-off between dielectric constant and dielectric breakdown. Insulating polymers are of interest owing to their high inherent electrical resistance, low dielectric loss, flexibility, light weight, and low cost; however, capacitors produced with dielectric polymers are limited to an energy density of ~1-2 J/cc. Polymer nanocomposites, i.e., high dielectric particles embedded into a high dielectric breakdown polymer, are promising candidates to overcome the limitations of monolithic materials for energy storage applications. The main objective of this dissertation is to simultaneously increase the dielectric permittivity and dielectric breakdown without increasing the loss, resulting in a significant enhancement in the energy density over the unmodified polymer. The key is maintaining a low volume content to ensure a high inter-particle distance, effectively minimizing the effect of local field on the composite's dielectric breakdown. The first step is studying the particle size and aspect ratio effects on the dielectric properties to ensure a judicious choice in order to obtain the highest enhancement. The best results, as a combination of dielectric constant, loss and dielectric breakdown, were with the particles with the highest aspect ratio. Further improvement in the dielectric behavior is observed when the nanoparticles surface is chemically tailored to tune transport properties. The particles treatment leads to better dispersion, planar distribution and stronger interaction with the polymer matrix. The planar distribution of the high aspect ratio particles is essential to limit the enhancement of local fields, where minimum local fields result in higher dielectric breakdown in the composite. The most significant improvement in the dielectric properties is achieved with chemically-treated nano TiO2 with an aspect ratio of 14 at a low 4.6 vol% loading, where the energy density increased by 500% compared to pure PVDF. At this loading, simultaneous enhancement in the dielectric constant and dielectric breakdown occurs while the dielectric loss remains in the same range as that of the pristine polymer.

Barhoumi Ep Meddeb, Amira

2012-05-01T23:59:59.000Z

170

Double-Edged Sword: Russia’s Use of Energy as Leverage in the Near Abroad.  

E-Print Network (OSTI)

??This work explores Russia’s use of energy as leverage in the near abroad. This work argues that different strategies of using energy, such as moderation… (more)

Visotzky, Alexander M.

2009-01-01T23:59:59.000Z

171

Magnetized Bianchi Type $VI_{0}$ Barotropic Massive String Universe with Decaying Vacuum Energy Density $?$  

E-Print Network (OSTI)

Bianchi type $VI_{0}$ massive string cosmological models using the technique given by Letelier (1983) with magnetic field are investigated. To get the deterministic models, we assume that the expansion ($\\theta$) in the model is proportional to the shear ($\\sigma$) and also the fluid obeys the barotropic equation of state. It was found that vacuum energy density $\\Lambda \\propto \\frac{1}{t^{2}}$ which matches with natural units. The behaviour of the models from physical and geometrical aspects in presence and absence of magnetic field is also discussed.

Anirudh Pradhan; Raj Bali

2008-05-22T23:59:59.000Z

172

Angular and energy distribution of fragment ions in dissociative double photoionization of acetylene molecules at 39 eV  

SciTech Connect

The two-body dissociation reactions of the dication, C{sub 2}H{sub 2}{sup 2+}, produced by 39.0 eV double photoionization of acetylene molecules, have been studied by coupling photoelectron-photoion-photoion coincidence and ion imaging techniques. The results provide the kinetic energy and angular distributions of product ions. The analysis of the results indicates that the dissociation leading to C{sub 2}H{sup +}+H{sup +} products occurs through a metastable dication with a lifetime of 108 {+-} 22 ns, and a kinetic energy release (KER) distribution exhibiting a maximum at {approx}4.3 eV with a full width at half maximum (FWHM) of about 60%. The reaction leading to CH{sub 2}{sup +}+C{sup +} occurs in a time shorter than the typical rotational period of the acetylene molecules (of the order of 10{sup -12} s). The KER distribution of product ions for this reaction, exhibits a maximum at {approx}4.5 eV with a FWHM of about 28%. The symmetric dissociation, leading to CH{sup +} + CH{sup +}, exhibits a KER distribution with a maximum at {approx}5.2 eV with a FWHM of 44%. For the first two reactions the angular distributions of ion products also indicate that the double photoionization of acetylene occurs when the neutral molecule is mainly oriented perpendicularly to the light polarization vector.

Alagia, M. [IOM CNR Laboratorio TASC, I-34012 Trieste (Italy); Callegari, C.; Richter, R. [Sincrotrone Trieste, Area Science Park, 34149 Basovizza, Trieste (Italy); Candori, P.; Falcinelli, S.; Vecchiocattivi, F. [Dipartimento di Ingegneria Civile ed Ambientale, 06125 Perugia (Italy); Pirani, F. [Dipartimento di Chimica dell'Universita di Perugia, 06123 Perugia (Italy); Stranges, S. [IOM CNR Laboratorio TASC, I-34012 Trieste (Italy); Dipartimento di Chimica, Universita di Roma ''La Sapienza'', 00185 Roma (Italy)

2012-05-28T23:59:59.000Z

173

Long-Range Electric Vehicle Batteries: High Energy Density Lithium Batteries  

SciTech Connect

Broad Funding Opportunity Announcement Project: In a battery, metal ions move between the electrodes through the electrolyte in order to store energy. Envia Systems is developing new silicon-based negative electrode materials for Li-Ion batteries. Using this technology, Envia will be able to produce commercial EV batteries that outperform today’s technology by 2-3 times. Many other programs have attempted to make anode materials based on silicon, but have not been able to produce materials that can withstand charge/discharge cycles multiple times. Envia has been able to make this material which can successfully cycle hundreds of times, on a scale that is economically viable. Today, Envia’s batteries exhibit world-record energy densities.

None

2010-01-01T23:59:59.000Z

174

Thulium heat source for high-endurance and high-energy density power systems  

DOE Green Energy (OSTI)

We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW{sub th} coupled with a power conversion efficiency of {approximately}30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs.

Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

1991-05-01T23:59:59.000Z

175

Accurate Bond Energies of Hydrocarbons from Complete Basis Set Extrapolated Multi-Reference Singles and Doubles Configuration Interaction  

Science Conference Proceedings (OSTI)

Quantum chemistry has become one of the most reliable tools for characterizing the thermochemical underpinnings of reactions, such as bond dissociation energies (BDEs). The accurate prediction of these particular properties (BDEs) are challenging for ab initio methods based on perturbative corrections or coupled cluster expansions of the single-determinant Hartree-Fock wave function: the processes of bond breaking and forming are inherently multi-configurational and require an accurate description of non-dynamical electron correlation. To this end, we present a systematic ab initio approach for computing BDEs that is based on three components: (1) multi-reference single and double excitation configuration interaction (MRSDCI) for the electronic energies; (2) a two-parameter scheme for extrapolating MRSDCI energies to the complete basis set limit; and (3) DFT-B3LYP calculations of minimumenergy structures and vibrational frequencies to account for zero point energy and thermal corrections. We validated our methodology against a set of reliable experimental BDE values of C*C and C*H bonds of hydrocarbons. The goal of chemical accuracy is achieved, on average, without applying any empirical corrections to the MRSDCI electronic energies. We then use this composite scheme to make predictions of BDEs in a large number of hydrocarbon molecules for which there are no experimental data, so as to provide needed thermochemical estimates for fuel molecules.

Oyeyemi, Victor B.; Pavone, Michele; Carter, Emily A.

2011-11-03T23:59:59.000Z

176

Application of nuclear density functionals to lepton number violating weak processes  

Science Conference Proceedings (OSTI)

We present an application of energy density functional methods with the Gogny interaction to the calculation of nuclear matrix elements (NME) for neutrinoless double beta decay and double electron capture. Beyond mean field effects have been included by particle number and angular momentum restoration and shape mixing within the generator coordinate method (GCM) framework. We analyze in detail the NME for {sup 116}Cd nucleus which is one of the most promising candidates to detect neutrinoless double beta decay.

Rodriguez, Tomas R.; Martinez-Pinedo, Gabriel [Technische Universitaet Darmstadt, Magdalenenstr. 12, D-64289, Darmstadt (Germany) and GSI Helmholtzzentrum fuer Schwerionenforschung, Plankstr. 1, D-64291 Darmstadt (Germany)

2012-10-20T23:59:59.000Z

177

A study of fast electron energy transport in relativistically intense laser-plasma interactions with large density scalelengths  

SciTech Connect

A systematic experimental and computational investigation of the effects of three well characterized density scalelengths on fast electron energy transport in ultra-intense laser-solid interactions has been performed. Experimental evidence is presented which shows that, when the density scalelength is sufficiently large, the fast electron beam entering the solid-density plasma is best described by two distinct populations: those accelerated within the coronal plasma (the fast electron pre-beam) and those accelerated near or at the critical density surface (the fast electron main-beam). The former has considerably lower divergence and higher temperature than that of the main-beam with a half-angle of {approx}20 Degree-Sign . It contains up to 30% of the total fast electron energy absorbed into the target. The number, kinetic energy, and total energy of the fast electrons in the pre-beam are increased by an increase in density scalelength. With larger density scalelengths, the fast electrons heat a smaller cross sectional area of the target, causing the thinnest targets to reach significantly higher rear surface temperatures. Modelling indicates that the enhanced fast electron pre-beam associated with the large density scalelength interaction generates a magnetic field within the target of sufficient magnitude to partially collimate the subsequent, more divergent, fast electron main-beam.

Scott, R. H. H.; Norreys, P. A. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Perez, F.; Baton, S. D. [LULI, Ecole Polytechnique, UMR 7605, CNRS/CEA/UPMC, Route de Saclay, 91128 Palaiseau (France); Santos, J. J.; Nicolai, Ph.; Hulin, S. [Univ. Bordeaux/CNRS/CEA, CELIA, UMR 5107, 33405 Talence (France); Ridgers, C. P. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Davies, J. R. [GoLP, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Lancaster, K. L.; Trines, R. M. G. M. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Bell, A. R.; Tzoufras, M. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Rose, S. J. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

2012-05-15T23:59:59.000Z

178

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

DC. Steiner, R.L. (1994). Residential density and traveland Brownstone The Impact of Residential Density on VehicleWP-05-1 The Impact of Residential Density on Vehicle Usage

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

179

Double Degenerate Binary Systems  

Science Conference Proceedings (OSTI)

In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

Yakut, K. [University of Ege, Department of Astronomy and Space Sciences, 35100-Izmir (Turkey)

2011-09-21T23:59:59.000Z

180

A background free double beta decay experiment  

E-Print Network (OSTI)

We present a new detection scheme for rejecting backgrounds in neutrino less double beta decay experiments. It relies on the detection of Cherenkov light emitted by electrons in the MeV region. The momentum threshold is tuned to reach a good discrimination between background and good events. We consider many detector concepts and a range of target materials. The most promising is a high-pressure 136Xe emitter for which the required energy threshold is easily adjusted. Combination of this concept and a high pressure Time Projection Chamber could provide an optimal solution. A simple and low cost effective solution is to use the Spherical Proportional Counter that provides two delayed signals from ionization and Cherenkov light. In solid-state double beta decay emitters, because of their higher density, the considered process is out of energy range. An alternative solution could be the development of double decay emitters with lower density by using for instance the aerogel technique. It is surprising that a technology used for particle identification in high-energy physics becomes a powerful tool for rejecting backgrounds in such low-energy experiments.

Ioannis Giomataris

2010-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Rock Density At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Density At Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Density At Silver Peak Area (DOE GTP) Exploration...

182

Density Log at Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Density Log at Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Fort Bliss Area (DOE GTP) Exploration...

183

Single- and double-electron capture processes in low-energy collisions of N{sup 3+} with He  

SciTech Connect

Single-electron capture (SEC) and double-electron capture (DEC) processes in collisions of ground state N{sup 3+} (2s{sup 2} {sup 1}S) ions with He are investigated by using the quantum-mechanical molecular-orbital close-coupling (QMOCC) method. The ab initio adiabatic potentials, radial and rotational coupling matrices utilized in QMOCC calculations, are obtained from the multireference single- and double-excitation configuration interaction approach. Total and state-selective SEC and DEC cross sections are presented in the low-energy range from 0.1 eV to 15 keV (i.e., 0.007 eV/u -1.07 keV/u) and rate coefficients in the temperature range from 10{sup 4} to 10{sup 7} K. Our results indicate that the SEC dominates the charge-transfer process in the considered energy region of this collision system and the SEC cross sections are nearly constant in the relatively high-collision energy region, while the DEC cross sections are about 2 orders of magnitude smaller. It is found that, for the SEC processes, in the dominant mechanisms, electrons are captured to exoergic channels N{sup 2+} (2s2p{sup 2} {sup 2}D,{sup 2}S), and for the DEC processes, they are captured to N{sup +} (2s{sup 2}2p{sup 2} {sup 1}D,{sup 1}S). Our calculations also reveal that rotational couplings become important at E > 10 eV/u for SEC and E > 200 eV/u for DEC processes.

Liu, X. J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Wang, J. G. [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Qu, Y. Z. [College of Material Sciences and Optoelectronic Technology, Graduate University of the Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China); Buenker, R. J. [Fachbereich C-Mathematik und Naturwissenschaften, Bergische Universitaet Wuppertal, D-42097 Wuppertal (Germany)

2011-10-15T23:59:59.000Z

184

Characterization of a broad energy germanium detector and application to neutrinoless double beta decay search in Ge-76  

E-Print Network (OSTI)

The performance of a 630g commercial broad energy germanium (BEGe) detector has been systematically investigated. Energy resolution, linearity, stability vs. high-voltage (HV) bias, thickness and uniformity of dead layers have been measured and found to be excellent. Special attention has been dedicated to the study of the detector response as a function of bias HV. The nominal depletion voltage being 3000V, the detector under investigation shows a peculiar behavior for biases around 2000V: in a narrow range of about 100V the charge collection is strongly reduced. The detector seems to be composed by two parts: a small volume around the HV contact where charges are efficiently collected as at higher voltage, and a large volume where charges are poorly collected. A qualitative explanation of this behavior is presented. An event-by-event pulse shape analysis based on A/E (maximum amplitude of the current pulse over the total energy released in the detector) has been applied to events in different energy regions and found very effective in rejecting non localized events. In conclusion, BEGe detectors are excellent candidates for the second phase of GERDA, an experiment devoted to neutrinoless double beta decay of Ge-76.

M. Agostini; E. Bellotti; R. Brugnera; C. M. Cattadori; A. D'Andragora; A. di Vacri; A. Garfagnini; M. Laubenstein; L. Pandola; C. A. Ur

2010-12-23T23:59:59.000Z

185

Extended CO Solid: A New Class of High Energy Density Material  

DOE Green Energy (OSTI)

Covalently bonded extended phases of molecular solids made of first- and second-row elements at high pressures are a new class of materials with advanced optical, mechanical and energetic properties. The existence of such extended solids has recently been demonstrated using diamond anvil cells in several systems, including N{sub 2}, CO{sub 2},and CO. However, the microscopic quantities produced at the formidable high-pressure/temperature conditions have limited the characterization of their predicted novel properties including high-energy content. In this paper, we present the first experimental evidence that these extended low-Z solids are indeed high energy density materials via milligram-scale high-pressure synthesis, recovery and characterization of polymeric CO (p-CO). Our spectroscopic data reveal that p-CO is a random polymer made of lactonic entities and conjugated C=C with an energy content rivaling or exceeding that of HMX. Solid p-CO explosively decomposes to CO{sub 2} and glassy carbon and thus might be used as an advanced energetic material.

Lipp, M J; Evans, W J; Baer, B J; Yoo, C

2004-10-14T23:59:59.000Z

186

High Energy Density Na-S/NiCl2 Hybrid Battery  

SciTech Connect

High temperature (250-350°C) sodium-beta alumina batteries (NBBs) are attractive energy storage devices for renewable energy integration and other grid related applications. Currently, two technologies are commercially available in NBBs, e.g., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. In this study, we investigated the combination of these two chemistries with a mixed cathode. In particular, the cathode of the cell consisted of molten NaAlCl4 as a catholyte and a mixture of Ni, NaCl and Na2S as active materials. During cycling, two reversible plateaus were observed in cell voltage profiles, which matched electrochemical reactions for Na-S and Na-NiCl2 redox couples. An irreversible reaction between sulfur species and Ni was identified during initial charge at 280°C, which caused a decrease in cell capacity. The final products on discharge included Na2Sn with 1< n < 3, which differed from Na2S3 found in traditional Na-S battery. Reduction of sulfur in the mixed cathode led to an increase in overall energy density over ZEBRA batteries. Despite of the initial drop in cell capacity, the mixed cathode demonstrated relatively stable cycling with more than 95% of capacity retained over 60 cycles under 10mA/cm2. Optimization of the cathode may lead to further improvements in battery performance.

Lu, Xiaochuan; Lemmon, John P.; Kim, Jin Yong; Sprenkle, Vincent L.; Yang, Zhenguo (Gary) [Gary

2013-02-15T23:59:59.000Z

187

Coupled-channels density-matrix approach to low-energy nuclear reaction dynamics  

E-Print Network (OSTI)

Atomic nuclei are complex, quantum many-body systems whose structure manifests itself through intrinsic quantum states associated with different excitation modes or degrees of freedom. Collective modes (vibration and/or rotation) dominate at low energy (near the ground-state). The associated states are usually employed, within a truncated model space, as a basis in (coherent) coupled channels approaches to low-energy reaction dynamics. However, excluded states can be essential, and their effects on the open (nuclear) system dynamics are usually treated through complex potentials. Is this a complete description of open system dynamics? Does it include effects of quantum decoherence? Can decoherence be manifested in reaction observables? In this contribution, I discuss these issues and the main ideas of a coupled-channels density-matrix approach that makes it possible to quantify the role and importance of quantum decoherence in low-energy nuclear reaction dynamics. Topical applications, which refer to understanding the astrophysically important collision $^{12}$C + $^{12}$C and achieving a unified quantum dynamical description of relevant reaction processes of weakly-bound nuclei, are highlighted.

Alexis Diaz-Torres

2010-09-02T23:59:59.000Z

188

Double Moral Hazard and the Energy Efficiency Gap Louis-Gatan Giraudet1  

E-Print Network (OSTI)

information asymmetries, a classic market failure that has received little attention in the energy efficiency prove such investments are subject to market failures. Since then, economic analysis has sought to identify and quantify market failures that induce an `energy efficiency gap,' i.e., a suboptimal level

Paris-Sud XI, Université de

189

Symmetry energy effects on the mixed hadron-quark phase at high baryon density  

Science Conference Proceedings (OSTI)

The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Relativistic mean-field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Due to the different symmetry term in the two phases, isospin effects appear to be rather significant. With increasing isospin asymmetry the binodal transition line of the (T,{rho}{sub B}) diagram is lowered to a region accessible through heavy-ion collisions in the energy range of the new planned facilities (e.g., the FAIR/NICA projects). Some observable effects are suggested, in particular an isospin distillation mechanism with a more isospin asymmetric quark phase, to be seen in charged meson yield ratios, and an onset of quark number scaling of the meson-baryon elliptic flows. The presented isospin effects on the mixed phase appear to be robust with respect to even large variations of the poorly known symmetry term at high baryon density in the hadron phase. The dependence of the results on a suitable treatment of isospin contributions in effective QCD Lagrangian approaches, at the level of explicit isovector parts and/or quark condensates, is discussed.

Di Toro, M.; Greco, V.; Plumari, S. [Laboratori Nazionali del Sud INFN, I-95123 Catania (Italy); Pysics and Astronomy Department, University of Catania (Italy); Liu, B. [IHEP, Chinese Academy of Sciences, Beijing (China); Theoretical Physics Center for Scientific Facilities, Chinese Academy of Sciences, 100049 Beijing (China); Baran, V. [Pysics Faculty, University of Bucharest and NIPNE-HH (Romania); Colonna, M. [Laboratori Nazionali del Sud INFN, I-95123 Catania (Italy)

2011-01-15T23:59:59.000Z

190

Improved double planar probe data analysis technique  

Science Conference Proceedings (OSTI)

Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data.

Ghim, Young-chul; Hershkowitz, Noah [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2009-03-15T23:59:59.000Z

191

SAND2011-6616A Page 1 Session 2: High Energy Density, Plasmas, Magnetic Fields  

National Nuclear Security Administration (NNSA)

616A 616A Page 1 Session 2: High Energy Density, Plasmas, Magnetic Fields Dynamical Materials Experiments on Sandia's Z Machine: Obtaining Data with High Precision at HED Conditions Thomas R. Mattsson and Seth Root Sandia National Laboratories, Albuquerque, NM USA Summary: The Z machine at Sandia National Laboratories has successfully been used to study a wide range of materials under extreme conditions. In this paper, we will discuss the methodology resulting in high-pressure measurements at multi-Mbar pressures as well as present experimental data for shock compression of poly methyl-pentene, a hydrocarbon plastic. Introduction During the last few years, there has been a notable increase in the interest of high-pressure science. The increase in interest has been driven by the remarkable capabilities of new and improved platforms like

192

Model Spectral Energy Distributions of Circumstellar Debris Disks I. Analytic Disk Density Distributions  

E-Print Network (OSTI)

We present results of a study aimed at deriving fundamental properties of circumstellar debris disks from observed infrared to submillimeter spectral energy distributions. This investigation is motivated by increasing telescope/detector sensitivity, in particular the expected availability of the Space Infrared Telescope Facility (SIRTF) followed by the Stratospheric Observatory for Infrared Astronomy (SOFIA), which will enable detailed studies with large source samples of late stage circumstellar disk and planetary system evolution. We base our study on an analytic model of the disk density distribution and geometry, taking into account existing constraints from observations and results of theoretical investigations of debris disks. We also outline the effects of the most profound characteristics of circumstellar dust including the grain size distribution and dust chemical composition. In particular we find that an increasing iron content in silicates mainly causes an increase of the dust absorption effiency and thus increases the dust reemission continuum. Furthermore, the influence of the sp 2 /sp 3 hybridization

Sebastian Wolf; Lynne A. Hillenbr

2003-01-01T23:59:59.000Z

193

Spectral Energy Distributions of Circumstellar Debris Disks I. Analytic Disk Density Distributions  

E-Print Network (OSTI)

We present results of a study aimed at deriving fundamental properties of circumstellar debris disks from observed infrared to submillimeter spectral energy distributions. This investigation is motivated by increasing telescope/detector sensitivity, in particular the expected availability of the Space Infrared Telescope Facility (SIRTF) followed by the Stratospheric Observatory for Infrared Astronomy (SOFIA), which will enable detailed studies with large source samples of late stage circumstellar disk and planetary system evolution. We base our study on an analytic model of the disk density distribution and geometry, taking into account existing constraints from observations and results of theoretical investigations of debris disks. We also outline the effects of the most profound characteristics of circumstellar dust including the grain size distribution and dust chemical composition.

Sebastian Wolf; Lynne Hillenbrand

2003-06-23T23:59:59.000Z

194

CX-009192 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9192 CX-009192 (0674-1542) Sila Nanotechnologies Inc. - Doubling the Energy Density of Lithium-Ion Batteries for Transportation CX(s) Applied: B3.6 Date: 08302012 Location(s):...

195

Double opposite-end tubesheet design for a thermovoltaic energy converter  

DOE Patents (OSTI)

A method and apparatus for the direct conversion of energy by thermovoltaic energy conversion having first and second tubesheets, at least one photon emitter plate secured to and extending from the first tubesheet, at least one cold plate secured to and extending from the second tubesheet, a plurality of thermovoltaic cells disposed along oppositely disposed exterior surfaces of the cold plate, and means cooperating with the tubesheet for maintaining a vacuum between the photon emitter plate and the cold plate.

Ashcroft, John M. (Scotia, NY); Campbell, Brian C. (Scotia, NY); Depoy, David M. (Clifton Park, NY)

2000-01-01T23:59:59.000Z

196

Double opposite-end tubesheet design for a thermovoltaic energy converter  

DOE Patents (OSTI)

A method and apparatus are disclosed for the direct conversion of energy by thermovoltaic energy conversion having first and second tubesheets, at least one photon emitter plate secured to and extending from the first tubesheet, at least one cold plate secured to and extending from the second tubesheet, a plurality of thermovoltaic cells disposed along oppositely disposed exterior surfaces of the cold plate, and means cooperating with the tubesheet for maintaining a vacuum between the photon emitter plate and the cold plate.

Ashcroft, John M.; Campbell, Brain C.; DePoy, David M.

1997-12-01T23:59:59.000Z

197

3-D Density Model Of Mt Etna Volcano (Southern Italy) | Open Energy  

Open Energy Info (EERE)

3-D Density Model Of Mt Etna Volcano (Southern Italy) 3-D Density Model Of Mt Etna Volcano (Southern Italy) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3-D Density Model Of Mt Etna Volcano (Southern Italy) Details Activities (0) Areas (0) Regions (0) Abstract: A detailed density model of Mt. Etna and its surrounding areas has been evaluated using a 3-D inversion of the gravimetric data acquired in the 1980's. Several high-density and low-density bodies are found, penetrating from shallow depths as far down as 12 km bsl. A positive correlation (in terms of location, extent, density, and velocity) is established between several anomalies of the density model and features identified in previously published seismic tomographies. A prominent high-density body extending down to 7 km bsl is recognized in the southern

198

Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials  

E-Print Network (OSTI)

We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

Biehs, Svend-Age

2011-01-01T23:59:59.000Z

199

Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials  

E-Print Network (OSTI)

We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

Svend-Age Biehs

2011-03-15T23:59:59.000Z

200

Scattering Length Density Calculator  

Science Conference Proceedings (OSTI)

... For energy dependent cross sections please go to ... The neutron scattering length density is defined ... To calculate scattering length densities enter a ...

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Determination of energy scales in few-electron double quantum dots  

SciTech Connect

The capacitive couplings between gate-defined quantum dots and their gates vary considerably as a function of applied gate voltages. The conversion between gate voltages and the relevant energy scales is usually performed in a regime of rather symmetric dot-lead tunnel couplings strong enough to allow direct transport measurements. Unfortunately, this standard procedure fails for weak and possibly asymmetric tunnel couplings, often the case in realistic devices. We have developed methods to determine the gate voltage to energy conversion accurately in the different regimes of dot-lead tunnel couplings and demonstrate strong variations of the conversion factors. Our concepts can easily be extended to triple quantum dots or even larger arrays.

Taubert, D.; Ludwig, S. [Center for NanoScience and Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Geschwister-Scholl-Platz 1, D-80539 Muenchen (Germany); Schuh, D. [Institut fuer Experimentelle Physik, Universitaet Regensburg, D-93040 Regensburg (Germany); Wegscheider, W. [Laboratory for Solid State Physics, ETH Zuerich, CH-8093 Zuerich (Switzerland)

2011-12-15T23:59:59.000Z

202

Collective Focusing of Intense Ion Beam Pulses for High-energy Density Physics Applications  

SciTech Connect

The collective focusing concept in which a weak magnetic lens provides strong focusing of an intense ion beam pulse carrying a neutralizing electron background is investigated by making use of advanced particle-in-cell simulations and reduced analytical models. The original analysis by Robertson Phys. Rev. Lett. 48, 149 (1982) is extended to the parameter regimes of particular importance for several high-energy density physics applications. The present paper investigates (1) the effects of non-neutral collective focusing in a moderately strong magnetic field; (2) the diamagnetic effects leading to suppression of the applied magnetic field due to the presence of the beam pulse; and (3) the influence of a finite-radius conducting wall surrounding the beam cross-section on beam neutralization. In addition, it is demonstrated that the use of the collective focusing lens can significantly simplify the technical realization of the final focusing of ion beam pulses in the Neutralized Drift Compression Experiment-I (NDCX-I) , and the conceptual designs of possible experiments on NDCX-I are investigated by making use of advanced numerical simulations. 2011 American Institute of Physics

Mikhail A. Dorf, Igor D. Kaganovich, Edward A. Startsev and Ronald C. Davidson

2011-04-27T23:59:59.000Z

203

Magnetic reconnection in high-energy-density laser-produced plasmas  

SciTech Connect

Recently, novel experiments on magnetic reconnection have been conducted in laser-produced plasmas in a high-energy-density regime. Individual plasma bubbles self-generate toroidal, mega-gauss-scale magnetic fields through the Biermann battery effect. When multiple bubbles are created at small separation, they expand into one another, driving reconnection of this field. Reconnection in the experiments was reported to be much faster than allowed by both Sweet-Parker, and even Hall-MHD theories, when normalized to the nominal magnetic fields self-generated by single bubbles. Through particle-in-cell simulations (both with and without a binary collision operator), we model the bubble interaction at parameters and geometry relevant to the experiments. This paper discusses in detail the reconnection regime of the laser-driven experiments and reports the qualitative features of simulations. We find substantial flux-pileup effects, which boost the relevant magnetic field for reconnection in the current sheet. When this is accounted for, the normalized reconnection rates are much more in line with standard two-fluid theory of reconnection. At the largest system sizes, we additionally find that the current sheet is prone to breakup into plasmoids.

Fox, W.; Bhattacharjee, A.; Germaschewski, K. [Center for Integrated Computation and Analysis of Reconnection and Turbulence, and Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of New Hampshire, Durham, New Hampshire 03824 (United States)

2012-05-15T23:59:59.000Z

204

Recent developments in classical density functional theory: Internal energy functional and diagrammatic structure of fundamental measure theory  

E-Print Network (OSTI)

An overview of several recent developments in density functional theory for classical inhomogeneous liquids is given. We show how Levy's constrained search method can be used to derive the variational principle that underlies density functional theory. An advantage of the method is that the Helmholtz free energy as a functional of a trial one-body density is given as an explicit expression, without reference to an external potential as is the case in the standard Mermin-Evans proof by reductio ad absurdum. We show how to generalize the approach in order to express the internal energy as a functional of the one-body density distribution and of the local entropy distribution. Here the local chemical potential and the bulk temperature play the role of Lagrange multipliers in the Euler-Lagrange equations for minimiziation of the functional. As an explicit approximation for the free-energy functional for hard sphere mixtures, the diagrammatic structure of Rosenfeld's fundamental measure density unctional is laid out. Recent extensions, based on the Kierlik-Rosinberg scalar weight functions, to binary and ternary non-additive hard sphere mixtures are described.

M. Schmidt; M. Burgis; W. S. B. Dwandaru; G. Leithall; P. Hopkins

2012-12-27T23:59:59.000Z

205

Energy and Momentum densities of cosmological models, with equation of state $?=?$, in general relativity and teleparallel gravity  

E-Print Network (OSTI)

We calculated the energy and momentum densities of stiff fluid solutions, using Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum complexes, in both general relativity and teleparallel gravity. In our analysis we get different results comparing the aforementioned complexes with each other when calculated in the same gravitational theory, either this is in general relativity and teleparallel gravity. However, interestingly enough, each complex's value is the same either in general relativity or teleparallel gravity. Our results sustain that (i) general relativity or teleparallel gravity are equivalent theories (ii) different energy-momentum complexes do not provide the same energy and momentum densities neither in general relativity nor in teleparallel gravity. In the context of the theory of teleparallel gravity, the vector and axial-vector parts of the torsion are obtained. We show that the axial-vector torsion vanishes for the space-time under study.

Ragab M. Gad

2006-03-19T23:59:59.000Z

206

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Understanding total residential transportation energy usageon Vehicle Usage and Energy Consumption total annual fuelUsage and Energy Consumption Gasoline-equivalent gallons per year total

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

207

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Vehicle Usage and Energy Consumption Table 2 Housing Unitsresidential vehicular energy consumption is graphed as aon Vehicle Usage and Energy Consumption with vehicles, but

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

208

Wide energy-window view on the density of states and hole mobility of poly(p-phenylene vinylene)  

E-Print Network (OSTI)

Using an electrochemically gated transistor, we achieved controlled and reversible doping of poly(p-phenylene vinylene) in a large concentration range. Our data open a wide energy-window view on the density of states (DOS) and show, for the first time, that the core of the DOS function is Gaussian, while the low-energy tail has a more complex structure. The hole mobility increases by more than four orders of magnitude when the electrochemical potential is scanned through the DOS.

I. N. Hulea; H. B. Brom; A. J. Houtepen; D. Vanmaekelbergh; J. J. Kelly; E. A. Meulenkamp

2004-09-09T23:59:59.000Z

209

Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499  

SciTech Connect

Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

Smith, K.

2013-10-01T23:59:59.000Z

210

Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics  

Science Conference Proceedings (OSTI)

This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

Sun, K.

2011-05-04T23:59:59.000Z

211

Studies of Velocity Fluctuations in the Lower Atmosphere Using the MU Radar. Part II: Momentum Fluxes and Energy Densities  

Science Conference Proceedings (OSTI)

This paper describes a study of the frequency spectra, the vertical profiles of energy density, and the momentum flux of the motion field observed during a six-day campaign in March 1986 using the MU Radar in Shigaraki, Japan. Our results reveal ...

David C. Fritts; Toshitaka Tsuda; Thomas E. VanZandt; Steven A. Smith; Toru Sato; Shoichiro Fukao; Susumu Kato

1990-01-01T23:59:59.000Z

212

Recent advances in the use of density functional theory to design efficient solar energy-based renewable systems  

Science Conference Proceedings (OSTI)

This article reviews the use of Density Functional Theory (DFT) to study the electronic and optical properties of solar-active materials and dyes used in solar energy conversion applications (dye-sensitized solar cells and water splitting). We first give a brief overview of the DFT its development

Ramy Nashed; Yehea Ismail; Nageh K. Allam

2013-01-01T23:59:59.000Z

213

Density Log at Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Density Log at Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

214

Density Log at Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Silver Peak Area (DOE GTP) Exploration Activity Details...

215

Density Log at Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Gabbs Valley Area (DOE GTP) Exploration Activity...

216

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-009192 (0674-1542) Sila Nanotechnologies Inc. - Doubling the Energy Density of Lithium-Ion Batteries for Transportation CX(s) Applied: B3.6 Date: 08302012 Location(s):...

217

Research on Factors Relating to Density and Climate Change | Open Energy  

Open Energy Info (EERE)

Research on Factors Relating to Density and Climate Change Research on Factors Relating to Density and Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Research on Factors Relating to Density and Climate Change Agency/Company /Organization: National Association of Home Builders Focus Area: Multi-sector Impact Evaluation Topics: Policy Impacts Resource Type: Reports, Journal Articles, & Tools Website: www.nahb.org/fileUpload_details.aspx?contentID=139993 This document talks about the increase residential density, primarily on the grounds that it will reduce vehicle miles traveled,a measure that is closely related to the GHG emissions from driving. References Retrieved from "http://en.openei.org/w/index.php?title=Research_on_Factors_Relating_to_Density_and_Climate_Change&oldid=515031"

218

High energy density batteries. (Latest citations from the INSPEC: Information Services for the Physics and Engineering Communities database). Published Search  

SciTech Connect

The bibliography contains citations concerning high energy density electric batteries. Battery electrolyte materials such as sodium-sulfur, lithium-aluminum, nickel-cadmium, lithium-thionyl, lithium-lead, sodium-sodiumpolysulfide, nickel-iron, nickel-zinc, and alkali-sulfur are examined. Test methods for these high energy batteries are discussed. Molten salt electrochemical studies for high energy cells are included. Military applications are also presented. (Contains a minimum of 63 citations and includes a subject term index and title list.)

Not Available

1993-10-01T23:59:59.000Z

219

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

on Vehicle Usage and Energy Consumption References Bento,Vehicle Usage and Energy Consumption UCI-ITS-WP-05-1 Thomason Vehicle Usage and Energy Consumption Thomas F. Golob

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

220

A Self-Gravitational Upper Bound on Localized Energy, Including that of Virtual Particles and Quantum Fields, which Yields a Passable "Dark Energy" Density Estimate  

E-Print Network (OSTI)

The self-gravitational correction to a localized spherically symmetric static energy distribution is obtained from an upgraded Newtonian model which is energetically self-consistent, and is also obtained from the Birkhoff-theorem extension of the unique "Newtonian" form of the free-space Schwarzschild metric into the interior region of its self-gravitationally corrected source. The two approaches yield identical results, which include a strict prohibition on the gravitational redshift factor ever being other than finite, real and positive. Consequently, the self-gravitationally corrected energy within a sphere of radius r is bounded by r times the "Planck force", namely the fourth power of c divided by G. Even in the absence of spherical symmetry, the same bound, to within a factor of two, is shown to apply. That energy bound rules out any physical singularity at the Schwarzschild radius, and it also cuts off the mass deviation of any interacting quantum virtual particle at the Planck mass. Because quantum uncertainty makes the minimum energy of a quantum field infinite, such a field's self-gravitationally corrected energy essentially attains the Planck force times that field's boundary radius r. Roughly estimating r as c times the age of the universe yields a "dark energy" density of 1.7 joules per cubic kilometer. But if r is put to the Planck length appropriate to the birth of the universe, that energy density changes to the enormous Planck unit value, which could quite conceivably drive primordial "inflation". The density of "dark energy" decreases as the universe expands, but more slowly than the density of ordinary matter decreases. Its evolution suggests "dark energy" has inhomogeneities, which may be "dark matter".

Steven Kenneth Kauffmann

2012-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Kenworthy (1989a). Gasoline consumption and cities. JournalVehicle Usage and Energy Consumption Table 2 Housing Unitsvehicular energy consumption is graphed as a function of

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

222

Density Log at Alum Area (Moos & Ronne, 2010) | Open Energy Information  

Open Energy Info (EERE)

Moos & Ronne, 2010) Moos & Ronne, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Alum Geothermal Area (Moos & Ronne, 2010) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Density Log Activity Date Usefulness useful DOE-funding Unknown Notes Density, photo-electric factor (PEF), neutron, and gamma ray (GR) logs provided sufficient information to clearly delineate basement lithologic variations, suggesting that pulsed neutron logs may not in many cases be needed, and density and electrical resistivity data were important to calibrate structural models based on surface surveys. References Daniel Moos, Joel Ronne (2010) Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Results From The Alum 25-29 Well,

223

The Materials genome : rapid materials screening for renewable energy using high-throughput density functional theory  

E-Print Network (OSTI)

This thesis relates to the emerging field of high-throughput density functional theory (DFT) computation for materials design and optimization. Although highthroughput DFT is a promising new method for materials discovery, ...

Jain, Anubhav, Ph.D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

224

CO2/oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal-Air Type Rechargeable Batteries  

E-Print Network (OSTI)

We present theoretical analysis on why and how rechargeable metal-air type batteries can be made significantly safer and more practical by utilizing CO2/oxalate conversions instead of O2/peroxide or O2/hydroxide ones, in the positive electrode. Metal-air batteries, such as the Li-air one, may have very large energy densities, comparable to that of gasoline, theoretically allowing for long range all-electric vehicles. There are, however, still significant challenges, especially related to the safety of their underlying chemistries, the robustness of their recharging and the need of supplying high purity O2 from air to the battery. We point out that the CO2/oxalate reversible electrochemical conversion is a viable alternative of the O2-based ones, allowing for similarly high energy density and almost identical voltage, while being much safer through the elimination of aggressive oxidant peroxides and the use of thermally stable, non-oxidative and environmentally benign oxalates instead.

Nemeth, Karoly

2013-01-01T23:59:59.000Z

225

Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams  

DOE Patents (OSTI)

A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

Gammel, George M. (Merrick, NY); Kugel, Henry W. (Somerset, NJ)

1992-10-06T23:59:59.000Z

226

Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams  

DOE Patents (OSTI)

A method and apparatus for determining the power, momentum, energy, and power density profile for high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

Gammel, G.M.; Kugel, H.W.

1991-12-31T23:59:59.000Z

227

Radiated energy and impurity density changes during intensive hydrogen influx in the PLT tokamak  

DOE Green Energy (OSTI)

During a discharge a puff of hydrogen is admitted, sufficient to more than triple the plasma density, and the resulting changes in various plasma parameters are determined. The absolute densities of various wall and limiter (carbon) materials are found to decrease by a substantial fraction, probably as a result of lowered peripheral temperature. The radiation pattern deduced from spectroscopically determined plasma composition is in good quantitative agreement with direct bolometric measurements. In the interior of the discharge radiation constitutes only a small part of the power input. Neither the radiated power nor the power input changes very markedly as a result of the density rise, since the effects of temperature and plasma composition changes tend to compensate each other.

Hinnov, E.; Hosea, J.; Hsuan, H.; Jobes, F.; Meservey, E.; Schmidt, G.; Suckewer, S.

1981-12-01T23:59:59.000Z

228

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Kenworthy (1989a). Gasoline consumption and cities. Journalon Vehicle Usage and Energy Consumption References Bento,Vehicle Usage and Energy Consumption UCI-ITS-WP-05-1 Thomas

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

229

Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration  

SciTech Connect

GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

None

2010-10-01T23:59:59.000Z

230

MEMS Fuel Cells--Low Temp--High Power Density - Energy Innovation ...  

Rechargeable batteries presently provide limited energy ... as well as to manufacture the fuel cell via a continuous integration ... Microfluidic systems with ...

231

Improving lithium-ion battery power and energy densities using novel cathode architectures and materials.  

E-Print Network (OSTI)

??Lithium-ion batteries are commonly used as energy storage devices in a variety of applications. The cathode architectures and materials have a large influence on the… (more)

Lange, Jonathan

2012-01-01T23:59:59.000Z

232

High thermal energy storage density molten salts for parabolic trough solar power generation.  

E-Print Network (OSTI)

??New alkali nitrate-nitrite systems were developed by using thermodynamic modeling and the eutectic points were predicted based on the change of Gibbs energy of fusion.… (more)

Wang, Tao

2011-01-01T23:59:59.000Z

233

Tomographic reconstruction of high energy density plasmas with picosecond temporal resolution  

SciTech Connect

Three-dimensional reconstruction of the electron density in a plasma can be obtained by passing multiple beams at different field angles simultaneously through a plasma and performing a tomographic reconstruction of the measured field-dependent phase profiles. In this letter, a relatively simple experimental setup is proposed and simulations are carried out to verify the technique. The plasma distribution is modeled as a discreet number of phase screens and a Zernike polynomial representation of the phase screens is used to reconstruct the plasma profile. Using a subpicosecond laser, the complete three-dimensional electron density of the plasma can be obtained with a time resolution limited only by the transit time of the probe through the plasma.

Baker, K L

2005-09-20T23:59:59.000Z

234

The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

Moses, E I

2001-01-01T23:59:59.000Z

235

High-Intensity and High-Density Charge-Exchange Injection Studies into the CERN PS Booster at Intermediate Energies  

E-Print Network (OSTI)

For the high brilliance LHC ultimate beam and the high intensity CNGS beam, single batch injections into the CERN Proton Synchrotron (PS) will be used to increase the overall machine intensity compared with the present double batch injections. Charge-exchange injection into the PS Booster with a new linac at intermediate energies is thus examined. A key parameter to consider is the energy dependence of beam incoherent tune shifts at injection. Increasing the linac energy from the present 50 MeV to 160 MeV should yield a safer tune shift. For each PS Booster ring, a charge-exchange injection scheme is envisaged inside a proper straight section, redesigned with new bends to make a local bump and using the existing fast bump magnets for horizontal phase-space painting. ACCSIM simulations for charge-exchange injection at 160 MeV have been investigated for both LHC and CNGS beams. After optimizing the parameters that are used for the space charge tracking routines, the results of the simulations agree well with ex...

Martini, M

2004-01-01T23:59:59.000Z

236

Fast Calculations of Electrostatic Solvation Free Energy from Reconstructed Solvent Density Using Proximal Radial Distribution Functions  

SciTech Connect

Although detailed atomic models may be applied for a full description of solvation, simpler phenomenologicalmodels are particularly useful to interpret the results for scanning many large, complex systems, where a full atomic model is too computationally expensive to use. Among the most costly are solvation free-energy evaluations by simulation. Here we develop a fast way to calculate electrostatic solvation free energy while retaining much of the accuracy of explicit solvent free-energy simulation. The basis of our method is to treat the solvent not as a structureless dielectric continuum but as a structured medium by making use of universal proximal radial distribution functions. Using a deca-alanine peptide as a test case, we compare the use of our theory with free-energy simulations and traditional continuum estimates of the electrostatic solvation free energy.

Lin, Bin; Wong, Ka-Yiu; Hu, Char Y.; Kokubo, Hironori; Pettitt, Bernard M.

2011-07-07T23:59:59.000Z

237

High energy and power density nanotube-enhanced ultracapacitor design, modeling, testing, and predicted performance  

E-Print Network (OSTI)

Today's batteries are penalized by their poor cycleability (limited to few thousand cycles), shelf life, and inability to quickly recharge (limited to tens of minutes). Commercial ultracapacitors are energy storage systems ...

Signorelli, Riccardo (Riccardo Laurea)

2009-01-01T23:59:59.000Z

238

Instability and Diapycnal Momentum Transport in a Double-Diffusive, Stratified Shear Layer  

Science Conference Proceedings (OSTI)

The linear stability of a double-diffusively stratified, inflectional shear flow is investigated. Double-diffusive stratification has little effect on shear instability except when the density ratio R? is close to unity. Double-diffusive ...

William D. Smyth; Satoshi Kimura

2007-06-01T23:59:59.000Z

239

Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications  

Science Conference Proceedings (OSTI)

We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density Almost-Equal-To 2 Multiplication-Sign 10{sup 16} cm{sup -3}, electron temperature Almost-Equal-To 1.4 eV, velocity Almost-Equal-To 30 km/s, M Almost-Equal-To 14, ionization fraction Almost-Equal-To 0.96, diameter Almost-Equal-To 5 cm, and length Almost-Equal-To 20 cm. These values approach the range needed by the Plasma Liner Experiment, which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is at the very low end of the 8-160 times drop predicted by ideal hydrodynamic theory of a constant-M jet.

Hsu, S. C.; Moser, A. L.; Awe, T. J.; Davis, J. S.; Dunn, J. P. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Merritt, E. C.; Adams, C. S. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); University of New Mexico, Albuquerque, New Mexico 87131 (United States); Brockington, S. J. E.; Case, A.; Messer, S. J.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 20151 (United States); Cassibry, J. T. [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Gilmore, M. A.; Lynn, A. G. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

2012-12-15T23:59:59.000Z

240

Restoration of the Derivative Discontinuity in Kohn-Sham Density Functional Theory: An Efficient Scheme for Energy Gap Correction  

E-Print Network (OSTI)

From the perspective of perturbation theory, we propose a systematic procedure for the evaluation of the derivative discontinuity (DD) of the exchange-correlation energy functional in Kohn-Sham density functional theory (KS-DFT), wherein the exact DD can in principle be obtained by summing up all the perturbation corrections to infinite order. Truncation of the perturbation series at low order yields an efficient scheme for obtaining the approximate DD. While the zeroth-order theory yields a vanishing DD, the first-order correction to the DD can be expressed as an explicit universal functional of the ground-state density and the KS lowest unoccupied molecular orbital density, allowing the direct evaluation of the DD in the standard KS method without extra computational cost. The fundamental gap can be predicted by adding the estimated DD to the KS gap. This scheme is shown to be accurate in the prediction of the fundamental gaps for a wide variety of atoms and molecules.

Jeng-Da Chai; Po-Ta Chen

2012-11-03T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability  

E-Print Network (OSTI)

The evaluation of reaction energies between solids using density functional theory (DFT) is of practical importance in many technological fields and paramount in the study of the phase stability of known and predicted ...

Hautier, Geoffroy

242

THERMODYNAMICS AND HEAVY-QUARK FREE ENERGIES AT FINITE TEMPERATURE AND DENSITY WITH TWO FLAVORS OF IMPROVED WILSON QUARKS.  

SciTech Connect

Thermodynamics of two-flavor QCD at finite temperature and density is studied on a 16{sup 3} x 4 lattice, using a renormalization group improved gauge action and the clover improved Wilson quark action. In the simulations along lines of constant m{sub PS}/m{sub V}, we calculate the Taylor expansion coefficients of the heavy-quark free energy with respect to the quark chemical potential ({mu}{sub q}) up to the second order. By comparing the expansion coefficients of the free energies between quark(Q) and antiquark({anti Q}), and between Q and Q, we find a characteristic difference at finite {mu}{sub q} due to the first order coefficient of the Taylor expansion. We also calculate the quark number and isospin susceptibilities, and find that the second order coefficient of the quark number susceptibility shows enhancement around the pseudo-critical temperature.

MAEZAWA,Y.; HATSUDA, T.; AOKI, S.; KANAYA, K.; EJIRI, S.; ISHII, N.; UKITA, N.; UMEDA, T.

2007-07-30T23:59:59.000Z

243

The tensor part of the Skyrme energy density functional. III. Time-odd terms at high spin  

E-Print Network (OSTI)

This article extends previous studies on the effect of tensor terms in the Skyrme energy density functional by breaking of time-reversal invariance. We have systematically probed the impact of tensor terms on properties of superdeformed rotational bands calculated within the cranked Hartree-Fock-Bogoliubov approach for different parameterizations covering a wide range of values for the isoscalar and isovector tensor coupling constants. We analyze in detail the contribution of the tensor terms to the energies and dynamical moments of inertia and study their impact on quasi-particle spectra. Special attention is devoted to the time-odd tensor terms, the effect of variations of their coupling constants and finite-size instabilities.

V. Hellemans; P. -H. Heenen; M. Bender

2011-12-15T23:59:59.000Z

244

Primary cell of high energy density in which the anode active material is an alkali metal  

Science Conference Proceedings (OSTI)

A primary cell of high specific energy in which the anode active material is an alkali metal and the cathode active material is sulphur oxychloride which simultaneously acts as an electrolyte solvent, said electrolyte further containing a dissolved salt and a co-solvent. The co-solvent is chosen from among phosphoryl chloride and benzoyl chloride; the dissolved salt is lithium tetrachloroaluminate.

Gabano, J.

1983-02-01T23:59:59.000Z

245

Correcting Density Functional Theory for Accurate Predictions of Compound Enthalpies of Formation: Fitted Elemental-Phase Reference Energies  

Science Conference Proceedings (OSTI)

Despite the great success that theoretical approaches based on density functional theory have in describing properties of solid compounds, accurate predictions of the enthalpies of formation ({Delta}H{sub f}) of insulating and semiconducting solids still remain a challenge. This is mainly due to incomplete error cancellation when computing the total energy differences between the compound total energy and the total energies of its elemental constituents. In this paper we present an approach based on GGA + U calculations, including the spin-orbit coupling, which involves fitted elemental-phase reference energies (FERE) and which significantly improves the error cancellation resulting in accurate values for the compound enthalpies of formation. We use an extensive set of 252 binary compounds with measured {Delta}H{sub f} values (pnictides, chalcogenides, and halides) to obtain FERE energies and show that after the fitting, the 252 enthalpies of formation are reproduced with the mean absolute error MAE = 0.054 eV/atom instead of MAE {approx} 0.250 eV/atom resulting from pure GGA calculations. When applied to a set of 55 ternary compounds that were not part of the fitting set the FERE method reproduces their enthalpies of formation with MAE = 0.048 eV/atom. Furthermore, we find that contributions to the total energy differences coming from the spin-orbit coupling can be, to a good approximation, separated into purely atomic contributions which do not affect {Delta}H{sub f}. The FERE method, hence, represents a simple and general approach, as it is computationally equivalent to the cost of pure GGA calculations and applies to virtually all insulating and semiconducting compounds, for predicting compound {Delta}H{sub f} values with chemical accuracy. We also show that by providing accurate {Delta}H{sub f} the FERE approach can be applied for accurate predictions of the compound thermodynamic stability or for predictions of Li-ion battery voltages.

Stevanovic, V.; Lany, S.; Zhang, X.; Zunger, A.

2012-03-15T23:59:59.000Z

246

Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes  

SciTech Connect

The preparation and characterization of high surface area ruthenium/carbon aerogel composite electrodes for use in electrochemical capacitors is reported. These new materials have been prepared by the chemical vapor impregnation of ruthenium into carbon aerogels to produce a uniform distribution of adherent {approx}20 {angstrom} nanoparticles on the aerogel surface. The electrochemically oxidized ruthenium particles contribute a pseudocapacitance to the electrode and dramatically improve the energy storage characteristics of the aerogel. These composites have demonstrated specific capacitances in excess of 200 F/g, in comparison to 95 F/g for the untreated aerogel.

Miller, J.M.; Dunn, B. [Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering; Tran, T.D.; Pekala, R.W. [Lawrence Livermore National Labs., CA (United States). Chemical Sciences Div.

1997-12-01T23:59:59.000Z

247

Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density  

Science Conference Proceedings (OSTI)

BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

None

2010-10-01T23:59:59.000Z

248

The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors  

E-Print Network (OSTI)

The Effect of Single Walled Carbon Nanotubes on Lithium- Ion Batteries and Electric Double Layer on the overall performance of Li-ion batteries and EDLCs. SWNTs were incorporated into the anode of the Lithium-ion is used because of its high surface area. Lithium-ion Batteries ·Higher energy density than other

Mellor-Crummey, John

249

(DDBS) System Doubles Pot Suction, Reduces Roof Emission  

Science Conference Proceedings (OSTI)

... Suction (DDBS) System Doubles Pot Suction, Reduces Roof Emission .... Phase Change Materials in Thermal Energy Storage for Concentrating Solar Power ...

250

High-energy-density solid and liquid hydrocarbon fuels. Final report, July 1987-December 1988  

Science Conference Proceedings (OSTI)

The development of new high-energy hydrocarbon fuels for use in air-breathing missiles has been the objective of a number of investigations which have received support during the past decade through programs sponsored by the Air Force Systems Command and/or the Naval Air Systems Command. The key characteristics which must be met by potential cruise missile fuels have been described by Burdette and coworkers. A primary requirement in this regard is that candidate fuels must possess high net volumetric heat of combustion (preferably greater than 160,000 BTU/gallon). In order to meet the primary requirement of high net volumetric heat of combustion, hydrocarbon systems have been sought which maximize the ratio of carbon-atom to hydrogen-atom content have been sought that maximize the ratio n/m.(JES)

Marchand, A.P.

1989-02-01T23:59:59.000Z

251

Multilayer co-extrusion technique for developing high energy density organic devices.  

DOE Green Energy (OSTI)

The purpose of this project is to develop multi-layered co-extrusion (MLCE) capabilities at Sandia National Laboratories to produce multifunctional polymeric structures. Multi-layered structures containing layers of alternating electrical, mechanical, optical, or structural properties can be applied to a variety of potential applications including energy storage, optics, sensors, mechanical, and barrier applications relevant to the internal and external community. To obtain the desired properties, fillers must be added to the polymer materials that are much smaller than the end layer thickness. We developed two filled polymer systems, one for conductive layers and one for dielectric layers and demonstrated the potential for using MLCE to manufacture capacitors. We also developed numerical models to help determine the material and processing parameters that impact processing and layer stability.

Spangler, Scott W.; Schroeder, John Lee; Mrozek, Randy (Army Research Lab, Adelphi, MD); Bieg, Lothar Franz; Rao, Rekha Ranjana; Lenhart, Joseph Ludlow (Army Research Lab, Adelphi, MD); Stavig, Mark Edwin; Cole, Phillip James (Northrop-Grumman, Herndon, VA); Mondy, Lisa Ann; Winter, Michael R.; Schneider, Duane Allen

2009-11-01T23:59:59.000Z

252

The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

E. I. Moses

2001-11-09T23:59:59.000Z

253

Wind Energy Finance (WEF): An Online Calculator for Economic Analysis of Wind Projects (Double-Gatefold Brochure)  

Wind Powering America (EERE)

How Does WEF Work? How Does WEF Work? Inputs The user enters data about the project, including: * General assumptions * Capital costs * Operating expenses * Financing assumptions * Tax assumptions * Economic assumptions * Financial constraining assumptions. Extensive help notes describe each input and provide reasonable default values. Outputs * Minimum energy payment to meet financial criteria * Levelized cost of energy * Payback period * Net present value * Internal rate of return * Summary and detailed cash flows. As an alternative option, if the user enters a first-year energy payment, the program will calculate the rate of return, coverage ratios, etc. Wind Energy Finance (WEF): An Online Calculator for Economic Analysis of Wind Projects The National Renewable Energy Laboratory created

254

From Swords to Plowshares: The US/Russian Collaboration in High Energy Density Physics Using Pulsed Power  

SciTech Connect

Since 1992, the All-Russian Scientific Research Institute of Experimental Physics and the Los Alamos National Laboratory, the institutes that designed the first nuclear weapons of the Soviet Union and the US, respectively, have been working together in fundamental research related to pulsed power and high energy density science. This collaboration has enabled scientists formerly engaged in weapons activities to redirect their attention to peaceful pursuits of wide benefit to the technical community. More than thirty joint experiments have been performed at Sarov and Los Alamos in areas as diverse as solid state physics in high magnetic fields, fusion plasma formation, isentropic compression of noble gases, and explosively driven-high current generation technology. Expanding on the introductory comments of the conference plenary presentation, this paper traces the origins of this collaboration and briefly reviews the scientific accomplishments. Detailed reports of the scientific accomplishments can be found in other papers in these proceedings and in other publications.

Younger, S.M.; Fowler, C.M.; Lindemuth, I.; Chernyshev, V.K.; Mokhov, V.N.; Pavlovskii, A.I.

1999-03-15T23:59:59.000Z

255

Nanoscale Energy-Filtered Scanning Confocal Electron Microscopy Using a Double-Aberration-Corrected Transmission Electron Microscope  

SciTech Connect

We demonstrate that a transmission electron microscope fitted with two spherical-aberration correctors can be operated as an energy-filtered scanning confocal electron microscope. A method for establishing this mode is described and initial results showing 3D chemical mapping with nanoscale sensitivity to height and thickness changes in a carbon film are presented. Importantly, uncorrected chromatic aberration does not limit the depth resolution of this technique and moreover performs an energy-filtering role, which is explained in terms of a combined depth and energy-loss response function.

Wang Peng; Behan, Gavin; Kirkland, Angus I.; Nellist, Peter D. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Takeguchi, Masaki; Hashimoto, Ayako; Mitsuishi, Kazutaka [National Institute for Materials Science, 3-13 Sakura, Tsukuba, 305-0003 (Japan); Shimojo, Masayuki [Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

2010-05-21T23:59:59.000Z

256

Coupled-channels density-matrix approach to low-energy nuclear collision dynamics: A technique for quantifying quantum decoherence effects on reaction observables  

E-Print Network (OSTI)

The coupled-channels density-matrix technique for nuclear reaction dynamics, which is based on the Liouville-von Neumann equation with Lindblad dissipative terms, is developed with the inclusion of full angular momentum couplings. It allows a quantitative study of the role and importance of quantum decoherence in nuclear scattering. Formulae of asymptotic observables that can reveal effects of quantum decoherence are given. A method for extracting energy-resolved scattering information from the time-dependent density matrix is introduced. As an example, model calculations are carried out for the low-energy collision of the $^{16}$O projectile on the $^{154}$Sm target.

Alexis Diaz-Torres

2010-10-18T23:59:59.000Z

257

Density and pair-density scaling for deriving the Euler equation in density-functional and pair-density-functional theory  

Science Conference Proceedings (OSTI)

A link between density and pair density functional theories is presented. Density and pair density scaling are used to derive the Euler equation in both theories. Density scaling provides a constructive way of obtaining approximations for the Pauli potential. The Pauli potential (energy) of the density functional theory is expressed as the difference of the scaled and original exchange-correlation potentials (energies).

Nagy, A. [Department of Theoretical Physics, University of Debrecen, H-4010 Debrecen (Hungary)

2011-09-15T23:59:59.000Z

258

Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries  

DOE Patents (OSTI)

Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

Deng, Haixia; Belharouak, Ilias; Amine, Khalil

2012-10-02T23:59:59.000Z

259

Double Crystal Analyzer System  

Science Conference Proceedings (OSTI)

... 2002 Page 2. Bloomberg Center for Physics & Astronomy • Johns Hopkins University • Baltimore • Maryland MACS Double ...

2002-02-25T23:59:59.000Z

260

AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics  

Science Conference Proceedings (OSTI)

This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

Sun, K. X.

2011-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21 - 12130 of 28,560 results. 21 - 12130 of 28,560 results. Download CX-007052: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-Ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Menlo Park, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-007052-categorical-exclusion-determination Download CX-007053: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-Ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/21/2011 Location(s): Farmington Hills, Michigan Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office http://energy.gov/nepa/downloads/cx-007053-categorical-exclusion-determination

262

High Thermal Energy Storage Density LiNO3-KNO3-NaNO2-KNO2 ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Conversion – Photovoltaic, Concentrating Solar Power, and ... the energy storage capacity for concentrating solar power generation systems. ... Investigation on the Inhomogeneous Property Distribution of AZO Thin Film ...

263

Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries  

DOE Green Energy (OSTI)

Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

Wu, H

2011-08-18T23:59:59.000Z

264

Scaling of Energy Gain with Plasma Parameters in a Plasma Wakefield Accelerator  

SciTech Connect

We have recently demonstrating the doubling of the energy of particles of the ultra-short, ultra-relativistic electron bunches of the Stanford Linear Accelerator Center [1]. This energy doubling occurred in a plasma only 85 cm-long with a density of {approx} 2.6 x 10{sup 17} e{sup -}/cm{sup -3}. This milestone is the result of systematic measurements that show the scaling of the energy gain with plasma length and density, and show the reproducibility and the stability of the acceleration process. We show that the energy gain increases linearly with plasma length from 13 to 31 cm. These are key steps toward the application of beam-driven plasma accelerators or plasma wakefield accelerators (PWFA) to doubling the energy of a future linear collider without doubling its length.

Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; /SLAC; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

2008-01-28T23:59:59.000Z

265

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2011 0, 2011 CX-007030: Categorical Exclusion Determination Chemistry of Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior CX(s) Applied: B3.6 Date: 09/20/2011 Location(s): Cambridge, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory September 19, 2011 CX-007055: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Pawcatuck, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 19, 2011 CX-007052: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-Ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Menlo Park, California

266

Symmetry Energy  

E-Print Network (OSTI)

Examination of symmetry energy is carried out on the basis of an elementary binding-energy formula. Constraints are obtained on the energy value at the normal nuclear density and on the density dependence of the energy at subnormal densities.

P. Danielewicz

2006-07-15T23:59:59.000Z

267

Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation  

E-Print Network (OSTI)

Kohn-Sham density functional theory is one of the most widely used electronic structure theories. Uniform discretization of the Kohn-Sham Hamiltonian generally results in a large number of basis functions per atom in order to resolve the rapid oscillations of the Kohn-Sham orbitals around the nuclei. Previous attempts to reduce the number of basis functions per atom include the usage of atomic orbitals and similar objects, but the atomic orbitals generally require fine tuning in order to reach the chemical accuracy. We present a novel discretization scheme that adaptively and systematically builds the rapid oscillations of the Kohn-Sham orbitals around the nuclei as well as environmental effects into the basis functions. The resulting basis functions are localized in the real space, and are discontinuous in the global domain. The continuous Kohn-Sham orbitals and the electron density are evaluated from the discontinuous basis functions using the discontinuous Galerkin (DG) framework. Our method is implemented...

Lin, Lin; Ying, Lexing; E, Weinan

2011-01-01T23:59:59.000Z

268

Carrier Density and Compensation in Semiconductors with Multi Dopants and Multi Transition Energy Levels: The Case of Cu Impurity in CdTe: Preprint  

DOE Green Energy (OSTI)

Doping is one of the most important issues in semiconductor physics. The charge carrier generated by doping can profoundly change the properties of semiconductors and their performance in optoelectronic device applications, such as solar cells. Using detailed balance theory and first-principles calculated defect formation energies and transition energy levels, we derive general formulae to calculate carrier density for semiconductors with multi dopants and multi transition energy levels. As an example, we studied CdTe doped with Cu, in which VCd, CuCd, and Cui are the dominant defects/impurities. We show that in this system, when Cu concentration increases, the doping properties of the system can change from a poor p-type, to a poorer p-type, to a better p-type, and then to a poor p-type again, in good agreement with experimental observation of CdTe-based solar cells.

Wei, S. H.; Ma, J.; Gessert, T. A.; Chin, K. K.

2011-07-01T23:59:59.000Z

269

Low-Energy Charge-Density Excitations in MgB2: Striking Interplay Between Single-Particle and Collective Behavior for Large Momenta  

Science Conference Proceedings (OSTI)

A sharp feature in the charge-density excitation spectra of single-crystal MgB{sub 2}, displaying a remarkable cosinelike, periodic energy dispersion with momentum transfer (q) along the c* axis, has been observed for the first time by high-resolution nonresonant inelastic x-ray scattering (NIXS). Time-dependent density-functional theory calculations show that the physics underlying the NIXS data is strong coupling between single-particle and collective degrees of freedom, mediated by large crystal local-field effects. As a result, the small-q collective mode residing in the single-particle excitation gap of the B {pi} bands reappears periodically in higher Brillouin zones. The NIXS data thus embody a novel signature of the layered electronic structure of MgB{sub 2}.

Cai,Y.; Chow, P.; Restrepo, O.; Takano, Y.; Kito, H.; Ishii, H.; Chen, C.; Liang, K.; Chen, C.; et al.

2006-01-01T23:59:59.000Z

270

Quantum chromodynamics and nuclear physics at extreme energy density. Progress report, May 15, 1993--May 14, 1994  

SciTech Connect

This report briefly discusses the following topics: quark-gluon plasma and high-energy collisions; hadron structure and chiral dynamics; nonperturbative studies and nonabelian gauge theories; and studies in quantum field theory.

Mueller, B.; Springer, R.P.

1994-05-15T23:59:59.000Z

271

Impact of Increasing Urban Density on Local Climate: Spatial and Temporal Variations in the Surface Energy Balance in Melbourne, Australia  

Science Conference Proceedings (OSTI)

Variations in urban surface characteristics are known to alter the local climate through modification of land surface processes that influence the surface energy balance and boundary layer and lead to distinct urban climates. In Melbourne, ...

Andrew M. Coutts; Jason Beringer; Nigel J. Tapper

2007-04-01T23:59:59.000Z

272

Estimation of the electron density and radiative energy losses in a calcium plasma source based on an electron cyclotron resonance discharge  

SciTech Connect

The parameters of a calcium plasma source based on an electron cyclotron resonance (ECR) discharge were calculated. The analysis was performed as applied to an ion cyclotron resonance system designed for separation of calcium isotopes. The plasma electrons in the source were heated by gyrotron microwave radiation in the zone of the inhomogeneous magnetic field. It was assumed that, in such a combined trap, the energy of the extraordinary microwave propagating from the high-field side was initially transferred to a small group of resonance electrons. As a result, two electron components with different transverse temperatures-the hot resonance component and the cold nonresonance component-were created in the plasma. The longitudinal temperatures of both components were assumed to be equal. The entire discharge space was divided into a narrow ECR zone, where resonance electrons acquired transverse energy, and the region of the discharge itself, where the gas was ionized. The transverse energy of resonance electrons was calculated by solving the equations for electron motion in an inhomogeneous magnetic field. Using the law of energy conservation and the balance condition for the number of hot electrons entering the discharge zone and cooled due to ionization and elastic collisions, the density of hot electrons was estimated and the dependence of the longitudinal temperature T{sub e Parallel-To} of the main (cold) electron component on the energy fraction {beta} lost for radiation was obtained.

Potanin, E. P., E-mail: potanin@imp.kiae.ru; Ustinov, A. L. [National Research Centre Kurchatov Institute (Russian Federation)

2013-06-15T23:59:59.000Z

273

Double acting bit holder  

DOE Patents (OSTI)

A double acting bit holder that permits bits held in it to be resharpened during cutting action to increase energy efficiency by reducing the amount of small chips produced. The holder consist of: a stationary base portion capable of being fixed to a cutter head of an excavation machine and having an integral extension therefrom with a bore hole therethrough to accommodate a pin shaft; a movable portion coextensive with the base having a pin shaft integrally extending therefrom that is insertable in the bore hole of the base member to permit the moveable portion to rotate about the axis of the pin shaft; a recess in the movable portion of the holder to accommodate a shank of a bit; and a biased spring disposed in adjoining openings in the base and moveable portions of the holder to permit the moveable portion to pivot around the pin shaft during cutting action of a bit fixed in a turret to allow front, mid and back positions of the bit during cutting to lessen creation of small chip amounts and resharpen the bit during excavation use.

Morrell, Roger J. (Blommington, MN); Larson, David A. (Minneapolis, MN); Ruzzi, Peter L. (Eagan, MN)

1994-01-01T23:59:59.000Z

274

Quasicontinuous decay spectra of superdeformed bands in {sup 192,194}Pb and energy gaps in level density at moderate angular momenta  

Science Conference Proceedings (OSTI)

The quasicontinuous spectra associated with the decay of the superdeformed bands in {sup 192,194}Pb have been extracted. The rapid rise in the {gamma}-ray intensity in these spectra for E{sub {gamma}}(less-or-similar sign)1.8 MeV is interpreted to arise from the dramatic increase in level density above the energy gap for even-even nuclei. This energy gap has been found to be {approx_equal}0.95(10) MeV at 6({Dirac_h}/2{pi}) in {sup 194}Pb and (approx =)0.4{sub -0.1}{sup +0.4} MeV at 10({Dirac_h}/2{pi}) in {sup 192}Pb. (c) 2000 The American Physical Society.

McNabb, D. P. [Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Cizewski, J. A. [Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903 (United States); Khoo, T. L. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Lauritsen, T. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Hauschild, K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Ding, K. Y. [Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903 (United States); Fotiades, N. [Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903 (United States); Younes, W. [Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903 (United States); Archer, D. E. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bauer, R. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] (and others)

2000-03-01T23:59:59.000Z

275

Electrical characteristics of double stacked Ppy-PVA supercapacitor for powering biomedical MEMS devices  

Science Conference Proceedings (OSTI)

This paper discusses planar and double stacked supercapacitors with interwoven electrodes. Here, we study surface charge densities and capacitance performances of planar and sandwiched double stacked interdigital electrodes MEMS supercapacitors, and ... Keywords: BioMEMS, Double stacked supercapacitor, Polypyrrole (Ppy), Polyvinyl alcohol (PVA)

Hafzaliza Erny Zainal Abidin, Azrul Azlan Hamzah, Burhanuddin Yeop Majlis, Jumril Yunas, Norihan Abdul Hamid, Ummikalsom Abidin

2013-11-01T23:59:59.000Z

276

Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors  

Science Conference Proceedings (OSTI)

Electric double-layer capacitors (EDLCs) are electrical devices that store energy by adsorption of ionic species at the inner surface of porous electrodes. Compared with aqueous electrolytes, ionic liquid and organic electrolytes have the advantage of larger potential windows, making them attractive for the next generation of EDLCs with superior energy and power densities. The performance of both ionic liquid and organic electrolyte EDLCs hinges on the judicious selection of the electrode pore size and the electrolyte composition, which requires a comprehension of the charging behavior from a microscopic view. In this Perspective, we discuss predictions from the classical density functional theory (CDFT) on the dependence of the capacitance on the pore size for ionic liquid and organic electrolyte EDLCs. CDFT is applicable to electrodes with the pore size ranging from that below the ionic dimensionality to mesoscopic scales, thus unique for investigating the electrochemical behavior of the confined electrolytes for EDLC applications.

Jiang, Deen [ORNL; Wu, Jianzhong [University of California, Riverside

2013-01-01T23:59:59.000Z

277

Density rise experiment on PLT  

SciTech Connect

The evolution of the density profile in PLT during intense gas puffing is documented and analyzed. Measurements of the spectrum of low energy edge neutrals and of the change in central neutral density indicate that charge-exchange processes alone cannot account for the central density rise. The transient density profile changes can be reproduced numerically by a diffusivity of approx. 10/sup 4/ cm/sup 2//s, and a spatially averaged inward flow of 10/sup 3/ cm/s. These transport coefficients are 10 ..-->.. 10/sup 2/ times larger than neoclassical. The ion energy confinement is reduced, the small scale density fluctuations are increased, and runaway electrons losses are increased during the density rise.

Strachan, J.D.; Bretz, N.; Mazzucato, E.

1982-05-01T23:59:59.000Z

278

New Electrode Manufacturing Process Equipment: Novel High Energy Density Lithium-Ion Cell Designs via Innovative Manufacturing Process Modules for Cathode and Integrated Separator  

Science Conference Proceedings (OSTI)

BEEST Project: Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the battery’s components to free up more space within the cell for storage.

None

2010-07-01T23:59:59.000Z

279

Stability of critical bubble in stretched fluid of square-gradient density-functional model with triple-parabolic free energy  

E-Print Network (OSTI)

The square-gradient density-functional model with triple-parabolic free energy, that was used previously to study the homogeneous bubble nucleation [J. Chem. Phys. 129, 104508 (2008)], is used to study the stability of the critical bubble nucleated within the bulk under-saturated stretched fluid. The stability of the bubble is studied by solving the Schr\\"odinger equation for the fluctuation. The negative eigenvalue corresponds to the unstable growing mode of the fluctuation. Our results show that there is only one negative eigenvalue whose eigenfunction represents the fluctuation that corresponds to the isotropically growing or shrinking nucleus. In particular, this negative eigenvalue survives up to the spinodal point. Therefore the critical bubble is not fractal or ramified near the spinodal.

Masao Iwamatsu; Yutaka Okabe

2010-06-11T23:59:59.000Z

280

Density | OpenEI  

Open Energy Info (EERE)

Density Density Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Excitation functions of proton-induced reactions on natural Nd in the 10-30 MeV energy range, and production of radionuclides relevant for double-? decay  

E-Print Network (OSTI)

A preferred candidate for neutrinoless double-{\\beta} decay, 150Nd, is present in natural neodymium at an abundance level of 5.64%. However, neodymium could be activated by cosmic rays during the period it spends on the Earth's surface. Its activation by protons is therefore of interest when it comes to estimating the possible disturbance effects and increased background during neutrinoless double-{\\beta}-decay experiments like Sudbury Neutrino Observatory plus liquid scintillator (SNO+). In most cases, we lack experimental data on proton-induced reactions on neodymium. Therefore, a measurement of cross sections has been performed for the formation of 141Pm, 143Pm, 144Pm, 146Pm, 148Pm, 148Pmm, 149Pm, 150Pm, 140Nd, 141Nd, 147Nd, 149Nd, 138Prm, 139Pr, 142Pr, and 139Ce by 10-30 MeV protons. Oxidation-protected metal foil targets of natural isotopic abundance were irradiated by the usual stacked-foil technique on the external proton beam of the isochronous cyclotron U-120M at the Nuclear Physics Institute at \\v{R}e\\v{z} near Prague. Special attention was paid to the excitation functions of long-lived radionuclides. The measured data were compared with TENDL-2010 library data (TALYS code).

O. Lebeda; V. Lozza; P. Schrock; J. Štursa; K. Zuber

2012-02-23T23:59:59.000Z

282

Quarkonium at nonzero isospin density  

E-Print Network (OSTI)

We calculate the energies of quarkonium bound states in the presence of a medium of nonzero isospin density using lattice QCD. The medium, created using a canonical (fixed isospin charge) approach, induces a reduction of ...

Detmold, William

283

~A four carbon alcohol. It has double the amount of carbon of ethanol, which equates to a substantial increase in harvestable energy (Btu's).  

E-Print Network (OSTI)

to a substantial increase in harvestable energy (Btu's). ~Butanol is safer to handle with a Reid Value of 0.33 psi is easily recovered, increasing the energy yield of a bushel of corn by an additional 18 percent over the energy yield of ethanol produced from the same quantity of corn. ~Current butanol prices as a chemical

Toohey, Darin W.

284

High-energy-density batteries. January 1975-November 1989 (Citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for January 1975-November 1989  

SciTech Connect

This bibliography contains citations concerning high-energy-density electric batteries. Battery-electrolyte materials such as sodium-sulfur, lithium-aluminum, nickel-cadmium, lithium-thionyl, lithium-lead, sodium-sodiumpolysulfide, nickel-iron, nickel-zinc, and alkali-sulfur are examined. Test methods for these high-energy batteries are discussed. Molten salt electrochemical studies for high-energy cells are included. Military applications are also presented. (Contains 99 citations fully indexed and including a title list.)

Not Available

1989-12-01T23:59:59.000Z

285

Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage – Metal-Air Ionic Liquid (MAIL) Batteries  

SciTech Connect

Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the battery’s main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASU’s new battery system could be both cheaper and safer than today’s Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

2009-12-21T23:59:59.000Z

286

Form-stable crystalline polymer pellets for thermal energy storage: high density polyethylene intermediate products. Final report, October 1, 1977--January 31, 1978  

DOE Green Energy (OSTI)

The primary objectives of this program were to demonstrate: (1) that form-stable high density polyethylene (HDPE), which has been shown to have desirable properties as a phase-change type of thermal energy storage material, could be produced by processing in a polyethylene plant for a projected price near 26 cents/lb; and (2) that the raw material, ethylene, will be available in the very long-term from alternate sources (other than petroleum and natural gas). These objectives were accomplished. Production of useful, form-stable HDPE pellets by radiation cross-linking was demonstrated. Such pellets are estimated to be obtainable at 26 cents/lb, using large-volume (> or equal to 10,000,000 lb/yr) in-plant processing. Well-developed technologies exist for obtaining ethylene from coal and plant (or biomass) sources, thus assuring its long-term availability and therefore that of polyethylene. A cost-benefit analysis of the HDPE thermal energy storage system was conducted over its 120 to 140/sup 0/C optimum operating range which is most suited for absorption air conditioning. The HDPE is more cost effective than either rocks, ethylene glycol, or pressurized water and is even competitive with a hypothetical 5 cents/lb salt-hydrate melting in this temperature range. These results applied, as appropriate, to both air and liquid transfer systems.

Botham, R.A.; Ball, G.L. III; Jenkins, G.H.; Salyer, I.O.

1978-01-01T23:59:59.000Z

287

Final Technical Report, DOE Grant DE-FG02-98ER54496, Physics of High-Energy-Density X Pinch Plasmas  

SciTech Connect

Abstract for the Final Technical Report, DOE Grant DE-FG02-98ER54496 An X-pinch plasma is produced by driving a high current (100-500 kiloamperes) through two or more fine wires that cross and touch at a point, forming an X in the case of two wires. The wires explode because of the high current, and then the resulting plasma is imploded radially inward by the magnetic field from the current. When the imploding material briefly stagnates at very small radius and high density, an intense burst of x-rays is produced and the plasma disassembles as rapidly as it imploded. When this project began, we could confidently state that at its minimum radius, X pinch plasmas made from such materials as titanium and molybdenum might be as hot as 10,000,000 K and had densities almost as high as the solid wire density, but their X-ray pulse durations were below one billionth of a second. We could also say that the X pinch was useful for point-projection imaging of rapidly changing objects, such as exploding wires, with high resolution, indicative of a very small X-ray source spot size. We can now confidently say that X-pinch plasma temperatures at the moment of the X-ray burst are 10-25 million K in titanium, molybdenum and several other wire X-pinches based upon the spectrum of emitted X-rays in the radiation burst. By the same means, as well as from the penetration of X-rays through the dense plasma, we know that ion densities are close to or higher than one-tenth of the density of the original (solid) wire material in molybdenum and a few other X-pinch plasmas. Furthermore, using the diffraction of X-rays radiated by the X-pinch when it reaches minimum radius, we have determined that the x-ray source size is about 1 thousandth of a millimeter for such wire materials as molybdenum and niobium, while it is 2-10 times larger for tungsten, titanium and aluminum wires. Finally, using a very high speed X-ray imaging “streak camera,” we have determined that X pinch X-ray pulses can be as short as 30 trillionths of a second. Additional experiments have demonstrated that a spherical shell of plasma expands away from the cross point region after the x-ray burst. It reaches millimeter scale in a few billionths of a second, leaving a small (less than 0.1 millimeter) gap in the middle that enables energetic electrons to be accelerated to 10 or a few 10’s of kilovolts of energy. In addition to gaining an understanding of the physics of the X pinch plasmas, we have had to develop several new X-ray diagnostic devices in order to obtain and verify the above results. On the non-technical side, 4 students have completed Ph.D.s working under the auspices of this project, including one woman, and another woman has begun her Ph.D. research under this project. In addition, several undergraduate students have worked with us on the X-pinch experiments, including one who is now a graduate student in plasma physics at Princeton University.

David Hammer

2008-12-03T23:59:59.000Z

288

DOUBLE MAJORS Imaging Science + ...  

E-Print Network (OSTI)

DOUBLE MAJORS Imaging Science + ... Applied Mathematics Biomedical Sciences Computer Science Undergraduate Research Internships and Cooperative Education (Co-op) (optional) Study Abroad WHY IMAGING SCIENCE Science: BS, MS, PhD Color Science: MS, PhD BS + MS/PhD Combos HUMAN VISION BIO- MEDICAL ASTRO- PHYSICS

Zanibbi, Richard

289

A matterless double slit  

E-Print Network (OSTI)

Double-slits provide incoming photons with a choice. Those that survive the passage have chosen from two possible paths which interfere to distribute them in a wave-like manner. Such wave-particle duality continues to be challenged and investigated in a broad range of disciplines with electrons, neutrons, helium atoms, C60 fullerenes, Bose-Einstein condensates and biological molecules. All variants have hitherto involved material constituents. We present a matterless double-slit scenario in which photons generated from virtual electron-positron pair annihilation in head-on collisions of a probe laser field with two ultra-intense laser beams form a double-slit interference pattern. Such electromagnetic fields are predicted to induce material-like behaviour in the vacuum, supporting elastic scattering between photons. Our double-slit scenario presents on the one hand a realisable method to observe photon-photon scattering, and demonstrates on the other, the possibility of both controlling light with light and non-locally investigating features of the quantum vacuum's structure.

B. King; A. Di Piazza; C. H. Keitel

2013-01-29T23:59:59.000Z

290

Double-digit growth  

SciTech Connect

The global need for additional generating capacity continues to grow at double digit rates in some cases. Opportunities for partnerships and joint ventures vary considerably by country and region. A closer look is taken at five countries where the playing fields are increasingly tipping to favor outside partners in power development projects -- India, Indonesia, Malaysia, Thailand, and Mexico.

Cartselos, T.; Meade, W.; Hernandez, L.

1993-09-01T23:59:59.000Z

291

THE n-DISTRIBUTION OF ELECTRONS AND DOUBLE LAYERS IN THE ELECTRON-BEAM-RETURN-CURRENT SYSTEM OF SOLAR FLARES  

SciTech Connect

We investigate processes in the electron-beam-return-current system in the impulsive phase of solar flares to answer a question about the formation of the n-electron distribution detected in this phase of solar flares. An evolution of the electron-beam-return-current system with an initial local density depression is studied using a three-dimensional electromagnetic particle-in-cell model. In the system the strong double layer is formed. Its electric field potential increases with the electron beam flux. In this electric field potential, the electrons of background plasma are strongly accelerated and propagate in the return-current direction. The high-energy part of their distribution at the high-potential side of the strong double layer resembles that of the n-distribution. Thus, the detection of the n-distributions, where a form of the high-energy part of the distribution is the most important, can indicate the presence of strong double layers in solar flares. The similarity between processes in solar flare loops and those in the downward current region of the terrestrial aurora, where the double layers were observed by FAST satellite, supports this idea.

Karlicky, Marian, E-mail: karlicky@asu.cas.cz [Astronomical Institute of the Academy of Sciences of the Czech Republic, CZ-25165 Ondrejov (Czech Republic)

2012-05-01T23:59:59.000Z

292

High Energy Density Laboratory Plasmas  

E-Print Network (OSTI)

faciliBes 1st users of MECI in FY13 Recognize common interests NNSA/FES Compliment NNSA investments Stability ­ investments in HEDLP: people, departments

293

Comparative Study of Selected Wave Function and Density Functional Methods for Noncovalent Interaction Energy Calculations Using the Extended S22 Data Set  

Science Conference Proceedings (OSTI)

In this paper, an extension of the S22 data set of Jurecka et al. (Jure?ka, P.; Šponer, J.; ?erný, J.; Hobza, P. Phys. Chem. Chem. Phys. 2006, 8, 1985.), the data set of benchmark CCSD(T)/CBS interaction energies of twenty-two noncovalent complexes in equilibrium geometries, is presented. The S22 data set has been extended by including the stretched (one shortened and three elongated) complex geometries of the S22 data set along the main noncovalent interaction coordinate. The goal of this work is to assess the accuracy of the popular wave function methods (MP2-, MP3- and, CCSD-based) and density functional methods (with and without empirical correction for the dispersion energy) for noncovalent complexes based on a statistical evaluation not only in equilibrium, but also in nonequilibrium geometries. The results obtained in this work provide information on whether an accurate and balanced description of the different interaction types and complex geometry distortions can be expected from the tested methods. This information has an important implication in the calculation of large molecular complexes, where the number of distant interacting molecular fragments, often in far from equilibrium geometries, increases rapidly with the system size. The best performing WFT methods were found to be the SCS-CCSD (spin-component scaled CCSD, according to Takatani, T.; Hohenstein, E. G.; Sherrill, C. D. J. Chem. Phys. 2008, 128, 124111), MP2C (dispersion-corrected MP2, according to Hesselmann, A. J. Chem. Phys. 2008, 128, 144112), and MP2.5 (scaled MP3, according to Pito?ák, M.; Neogrády, P.; ?erný, J.; Grimme, S.; Hobza, P. ChemPhysChem 2009, 10, 282.). Since none of the DFT methods fulfilled the required statistical criteria proposed in this work, they cannot be generally recommended for large-scale calculations. The DFT methods still have the potential to deliver accurate results for large molecules, but most likely on the basis of an error cancellation.

Grafova, Lucie; Pitonak, Michal; Rezac, Jan; Hobza, Pavel

2010-08-10T23:59:59.000Z

294

Critical cavity in the stretched fluid studied using square-gradient density-functional model with triple-parabolic free energy  

E-Print Network (OSTI)

The generic square-gradient density-functional model with triple-parabolic free energy is used to study the stability of a cavity introduced into the stretched liquid. The various properties of the critical cavity, which is the largest stable cavity within the liquid, are compared with those of the critical bubble of the homogeneous bubble nucleation. It is found that the size of the critical cavity is always smaller than that of the critical bubble, while the work of formation of the former is always higher than the latter in accordance with the conjectures made by Punnathanam and Corti [J. Chem. Phys. {\\bf 119}, 10224 (2003)] deduced from the Lennard-Jones fluids. Therefore their conjectures about the critical cavity size and the work of formation would be more general and valid even for other types of liquid such as metallic liquid or amorphous. However, the scaling relations they found for the critical cavity in the Lennard-Jones fluid are marginally satisfied only near the spinodal.

Masao Iwamatsu

2009-04-04T23:59:59.000Z

295

Spin Density Matrix Elements in Exclusive rho^0 Electroproduction on 1H and 2H Targets at 27.5 GeV Beam Energy  

E-Print Network (OSTI)

Spin Density Matrix Elements (SDMEs) describing the angular distribution of exclusive rho^0 electroproduction and decay are determined in the HERMES experiment with 27.6 GeV beam energy and unpolarized hydrogen and deuterium targets. Eight (fifteen) SDMEs that are related (unrelated) to the longitudinal polarization of the beam are extracted in the kinematic region 1 GeV^2 < Q^2 < 7 GeV^2, 3.0 GeV < W < 6.3 GeV, and -t < 0.4 GeV^2. Within the given experimental uncertainties, a hierarchy of relative sizes of helicity amplitudes is observed. Kinematic dependences of all SDMEs on Q^2 and t are presented, as well as the longitudinal-to-transverse rho^0 electroproduction cross section ratio as a function of Q^2. A small but statistically significant deviation from the hypothesis of s-channel helicity conservation is observed. An indication is seen of a contribution of unnatural-parity-exchange amplitudes; these amplitudes are naturally generated with a quark-exchange mechanism.

HERMES Collaboration; A. Airapetian

2009-01-06T23:59:59.000Z

296

Some challenges for Nuclear Density Functional Theory  

E-Print Network (OSTI)

We discuss some of the challenges that the DFT community faces in its quest for the truly universal energy density functional applicable over the entire nuclear chart.

T. Duguet; K. Bennaceur; T. Lesinski; J. Meyer

2006-06-20T23:59:59.000Z

297

Lattice Boltzmann Method for Multiphase Flows with High Density and Viscosity Ratios  

NLE Websites -- All DOE Office Websites (Extended Search)

Lattice Boltzmann Method for Multiphase Flows with High Density and Viscosity Ratios Lattice Boltzmann Method for Multiphase Flows with High Density and Viscosity Ratios Seckin Gokaltun, Dwayne McDaniel and David Roelant Florida International University, Miami, FL Background As a result of atomic weapons production, millions of gallons of radioactive waste was generated and stored in underground tanks at various U.S. Department of Energy sites. Department of Energy is currently in the process of transferring the waste from single shell tanks to double shell tanks. Various waste retrieval and processing methods are employed during the transfer of the waste. One such method, pulsed-air mixing, involves injection of discrete pulses of compressed air or inert gas at the bottom of the tank to produce large bubbles that rise due to buoyancy and mix the waste in the tank

298

Equation-of-state for fluids at high densities-hydrogen isotope measurements and thermodynamic derivations  

DOE Green Energy (OSTI)

Hydrogen isotopes play an important role in energy technologies, in particular, the compression to high densities for initiation of controlled thermonuclear fusion energy. At high densities the properties of the compressed hydrogen isotopes depart drastically from ideal thermodynamic predictions. The measurement of accurate data including the author's own recent measurements of n-H/sub 2/ and n-D/sub 2/ in the range 75 to 300 K and 0.2 to 2.0 GPa (2 to 20 kbar) is reviewed. An equation-of-state of the Benedict type is fit to these data with a double-process least-squares computer program. The results are reviewed and compared with existing data and with a variety of theoretical work reported for fluid hydrogens. A new heuristic correlation is presented for simplicity in predicting volumes and sound velocity at high pressures. 9 figures, 1 table.

Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

1977-01-01T23:59:59.000Z

299

Kinetic Alfven double layer formed by electron viscosity  

SciTech Connect

The effect of the electron viscosity on the kinetic Alfven solitary wave is investigated. It is found that small electron viscosity changes the electron motion along the magnetic field producing a boundary layer, and thus that in a low beta electron-ion plasma({beta} Much-Less-Than m{sub e}/m{sub i}), an obliquely propagating kinetic solitary Alfven wave can become a double layer. This double layer can exist in the sub-Alfvenic and super-Alfvenic regimes. The length scale of density drop for this double layer is on the order of that of the conventional kinetic solitary Alfven wave, and thus this double layer can accelerate electrons on a very short length scale.

Woo, M. H.; Ryu, C.-M. [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Choi, C. R. [Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701 (Korea, Republic of)

2012-07-15T23:59:59.000Z

300

Double domino driver  

DOE Patents (OSTI)

The double domino driver is fully differential and is optimized for low switching noise and power. The noise behavior and power dissipation is improved by limiting the signal swing. The domino driver consists of a combination of mini drivers, each of which is switched on in two steps. In the first step a voltage equal to a fraction of the supply voltage propagates through the chain of mini drivers and turn them partially on. In the second step the voltage is increased to its maximum value and is made to propagate through the chain, turning the mini drivers completely on. The rise and fall time of the output signal can be increased by adding mini drivers. For a 5 volt supply voltage with 5 mini drivers the switching noise in decreased to levels less than 100 micro volts. The power dissipation with this driver is least as compared to ECL and other logic systems. The double domino driver is useful in communication and VLSI systems.

Vanstraelen, G.F.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Controlling Defect Density in Polymer-Fullerene Bulk Heterojunction ...  

Science Conference Proceedings (OSTI)

Controlling Defect Density in Polymer-Fullerene Bulk Heterojunction Solar Cells by Optimizing ... Engineering Carbon Nanomaterials for Energy Application.

302

Measurements of the Effects of Gravity Waves in the Middle Atmosphere Using Parametric Models of Density Fluctuations. Part II: Energy Dissipation and Eddy Diffusion  

Science Conference Proceedings (OSTI)

Part I of this series demonstrated the advantages of parametric models in estimating the gravity wave spectrum from density fluctuation measurements using a large power-aperture-product Rayleigh-scatter lidar. The spectra calculated using the ...

R. J. Sica

1999-05-01T23:59:59.000Z

303

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 24070 of 31,917 results. 61 - 24070 of 31,917 results. Download CX-009192 (0674-1542) Sila Nanotechnologies Inc. - Doubling the Energy Density of Lithium-Ion Batteries for Transportation CX(s) Applied: B3.6 Date: 08/30/2012 Location(s): Georgia Offices(s): Advanced Research Projects Agency-Energy http://energy.gov/nepa/downloads/cx-009192 Article Department of Energy Formally Commits $1 Billion in Recovery Act Funding to FutureGen 2.0 U.S. Energy Secretary Steven Chu today announced that the Department of Energy has signed final cooperative agreements with the FutureGen Industrial Alliance and Ameren Energy Resources that formally commit $1 billion in Recovery Act funding to build FutureGen 2.0. http://energy.gov/fe/articles/department-energy-formally-commits-1-billion-recovery-act

304

Double Photoionization of Aligned Molecular Hydrogen  

SciTech Connect

We present converged, completely ab initio calculations ofthe triple differential cross sections for double photoionization ofaligned H2 molecules for a photon energy of 75.0 eV. The method ofexterior complex scaling, implemented with both the discrete variablerepresentation and B-splines, is used to solve the Schroedinger equationfor a correlated continuum wave function corresponding to a single photonhaving been absorbed by a correlated initial state. Results for a fixedinternuclear distance are compared with recent experiments and show thatintegration over experimental angular and energy resolutions is necessaryto produce good qualitative agreement, but does not eliminate somediscrepancies. Limitations of current experimental resolution are shownto sometimes obscure interesting details of the crosssection.

Vanroose, Wim; Horner, Daniel A.; Martin, Fernando; Rescigno,Thomas N.; McCurdy, C. William

2006-07-21T23:59:59.000Z

305

A van der Waals density functional mapping of attraction in DNA dimers  

E-Print Network (OSTI)

The dispersion interaction between a pair of parallel DNA double-helix structures is investigated by means of the van der Waals density functional (vdW-DF) method. Each double-helix structure consists of an infinite repetition of one B-DNA coil with 10 base pairs. This parameter-free density functional theory (DFT) study illustrates the initial step in a proposed vdW-DF computational strategy for large biomolecular problems. The strategy is to first perform a survey of interaction geometries, based on the evaluation of the van der Waals (vdW) attraction, and then limit the evaluation of the remaining DFT parts (specifically the expensive study of the kinetic-energy repulsion) to the thus identified interesting geometries. Possibilities for accelerating this second step is detailed in a separate study. For the B-DNA dimer, the variation in van der Waals attraction is explored at relatively short distances (although beyond the region of density overlap) for a 360 degrees rotation. This study highlights the role...

Londero, Elisa; Schroder, Elsebeth

2013-01-01T23:59:59.000Z

306

Double Decrement Approach  

NLE Websites -- All DOE Office Websites (Extended Search)

5E 5E Market and Policy Barriers for Demand Response Providing Ancillary Services in U.S. Markets Peter Cappers, Jason MacDonald, Charles Goldman Environmental Energy Technologies Division March 2013 This work described in this report was funded by the Department of Energy Office of Energy Efficiency and Renewable Energy and Office of Electricity Delivery and Energy Reliability, under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or

307

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Consumption & Efficiency. Energy use in homes, commercial buildings, ... more than doubling the solar thermal generating capacity in the United ...

308

DoubleDip: leveraging thermoelectric harvesting for low power monitoring of sporadic water use  

Science Conference Proceedings (OSTI)

We present DoubleDip, a low power monitoring system for enabling non-intrusive water flow detection. DoubleDip taps into minute thermal gradients in pipes for both replenishing energy reserves and performing low power wakeup. One of the remaining issues ... Keywords: energy harvesting, low power, sustainability, thermoelectric, water monitoring

Paul Martin; Zainul Charbiwala; Mani Srivastava

2012-11-01T23:59:59.000Z

309

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 - 10410 of 29,416 results. 01 - 10410 of 29,416 results. Download CX-007049: Categorical Exclusion Determination Advanced Vehicle Testing and Evaluation CX(s) Applied: A9, B5.1 Date: 09/19/2011 Location(s): Stanfield, Arizona Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-007049-categorical-exclusion-determination Download CX-007050: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Beachwood, Ohio Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office http://energy.gov/nepa/downloads/cx-007050-categorical-exclusion-determination Download CX-007052: Categorical Exclusion Determination

310

Identification of Catalysts and Materials for a High-Energy Density Biochemical Fuel Cell: Cooperative Research and Development Final Report, CRADA Number CRD-09-345  

DOE Green Energy (OSTI)

The proposed research attempted to identify novel biochemical catalysts, catalyst support materials, high-efficiency electron transfer agents between catalyst active sites and electrodes, and solid-phase electrolytes in order to maximize the current density of biochemical fuel cells that utilize various alcohols as substrates.

Ghirardi, M.; Svedruzic, D.

2013-07-01T23:59:59.000Z

311

A Double-Pulsar System - A Rare Laboratory for Relativistic Gravity and Plasma Physics  

E-Print Network (OSTI)

The clock-like properties of pulsars moving in the gravitational fields of their unseen neutron-star companions have allowed unique tests of general relativity and provided evidence for gravitational radiation. We report here the detection of the 2.8-sec pulsar J0737-3039B as the companion to the 23-ms pulsar J0737-3039A in a highly-relativistic double-neutron-star system, allowing unprecedented tests of fundamental gravitational physics. We observe a short eclipse of J0737-3039A by J0737-3039B and orbital modulation of the flux density and pulse shape of J0737-3039B, probably due to the influence of J0737-3039A's energy flux upon its magnetosphere. These effects will allow us to probe magneto-ionic properties of a pulsar magnetosphere.

A. G. Lyne; M. Burgay; M. Kramer; A. Possenti; R. N. Manchester; F. Camilo; M. A. McLaughlin; D. R. Lorimer; N. D'Amico; B. C. Joshi; J. Reynolds; P. C. C. Freire

2004-01-07T23:59:59.000Z

312

Double Barrier Resonant Tunneling Transistor with a Fully Two Dimensional Emitter  

SciTech Connect

A novel planar resonant tunneling transistor is demonstrated. The growth structure is similar to that of a double-barrier resonant tunneling diode (RTD), except for a fully two-dimensional (2D) emitter formed by a quantum well. Current is fed laterally into the emitter, and the 2D--2D resonant tunneling current is controlled by a surface gate. This unique device structure achieves figures-of-merit, i.e. peak current densities and peak voltages, approaching that of state-of-the-art RTDs. Most importantly, sensitive control of the peak current and voltage is achieved by gating of the emitter quantum well subband energy. This quantum tunneling transistor shows exceptional promise for ultra-high speed and multifunctional operation at room temperature.

MOON,J.S.; SIMMONS,JERRY A.; RENO,JOHN L.; BACA,WES E.; BLOUNT,MARK A.; HIETALA,VINCENT M.; JONES,ERIC D.

2000-07-13T23:59:59.000Z

313

Double Decrement Approach  

NLE Websites -- All DOE Office Websites (Extended Search)

01E 01E Quantifying the Impacts of Time- based Rates, Enabling Technology, and Other Treatments in Consumer Behavior Studies: Protocols and Guidelines Peter Cappers, Annika Todd, Michael Perry, Bernie Neenan, and Richard Boisvert Environmental Energy Technologies Division July 2013 The work described in this report was co-funded by the Department of Energy's Office of Electricity Delivery and Energy Reliability's Smart Grid Investment Grant program, under Contract No. DE-AC02- 05CH11231, and the Electric Power Research Institute, Inc. (EPRI). The report was jointly written by Lawrence Berkeley National Laboratory and EPRI. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work co-sponsored by the United States

314

Alloy by Double Mechanical Milling  

Science Conference Proceedings (OSTI)

The results show that the morphology of double mechanical milling powder is regular and the TiAl phase and Ti3Al phase were observed in the powders.

315

Massive Type II in Double Field Theory  

E-Print Network (OSTI)

We provide an extension of the recently constructed double field theory formulation of the low-energy limits of type II strings, in which the RR fields can depend simultaneously on the 10-dimensional space-time coordinates and linearly on the dual winding coordinates. For the special case that only the RR one-form of type IIA carries such a dependence, we obtain the massive deformation of type IIA supergravity due to Romans. For T-dual configurations we obtain a `massive' but non-covariant formulation of type IIB, in which the 10-dimensional diffeomorphism symmetry is deformed by the mass parameter.

Olaf Hohm; Seung Ki Kwak

2011-08-24T23:59:59.000Z

316

Double Photoionization of excited Lithium and Beryllium  

SciTech Connect

We present total, energy-sharing and triple differential cross sections for one-photon, double ionization of lithium and beryllium starting from aligned, excited P states. We employ a recently developed hybrid atomic orbital/ numerical grid method based on the finite-element discrete-variable representation and exterior complex scaling. Comparisons with calculated results for the ground-state atoms, as well as analogous results for ground-state and excited helium, serve to highlight important selection rules and show some interesting effects that relate to differences between inter- and intra-shell electron correlation.

Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.

2010-05-20T23:59:59.000Z

317

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 15150 of 26,764 results. 41 - 15150 of 26,764 results. Download CX-007054: Categorical Exclusion Determination Construction of a Mock-up of the Mixed Oxide Aqueous Polishing Building Active Gallery on the 249-F Pad CX(s) Applied: B1.15 Date: 09/06/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-007054-categorical-exclusion-determination Download CX-007055: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Pawcatuck, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-007055-categorical-exclusion-determination

318

Estimate of dielectric density using spectroscopic ellipsometry  

Science Conference Proceedings (OSTI)

The optical dielectric functions for hafnium oxide and hafnium silicate films were extracted from spectroscopic ellipsometry measurements and the density then calculated using a previously proposed method. The values obtained were then compared to those ... Keywords: Density, Gadolinium oxide, Hafnium silicate, Medium energy ion scattering, Spectroscopic ellipsometry, X-ray reflectometry

W. Davey; O. Buiu; M. Werner; I. Z. Mitrovic; S. Hall; P. Chalker

2009-07-01T23:59:59.000Z

319

High density laser-driven target  

DOE Patents (OSTI)

A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.

Lindl, John D. (San Ramon, CA)

1981-01-01T23:59:59.000Z

320

Double-super-connected digraphs  

Science Conference Proceedings (OSTI)

A strongly connected digraph D is said to be super-connected if every minimum vertex-cut is the out-neighbor or in-neighbor set of a vertex. A strongly connected digraph D is said to be double-super-connected if every minimum vertex-cut is both the out-neighbor ... Keywords: Cartesian product, Double-super-connected, Lexicographic product, Line digraphs, Super-connected

Juan Liu; Jixiang Meng; Zhao Zhang

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities  

Science Conference Proceedings (OSTI)

FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long–term and ...

Dennis Baldocchi; Eva Falge; Lianhong Gu; Richard Olson; David Hollinger; Steve Running; Peter Anthoni; Ch Bernhofer; Kenneth Davis; Robert Evans; Jose Fuentes; Allen Goldstein; Gabriel Katul; Beverly Law; Xuhui Lee; Yadvinder Malhi; Tilden Meyers; William Munger; Walt Oechel; K. T. Paw; Kim Pilegaard; H. P. Schmid; Riccardo Valentini; Shashi Verma; Timo Vesala; Kell Wilson; Steve Wofsy

2001-11-01T23:59:59.000Z

322

Innovative fuel designs for high power density pressurized water reactor  

E-Print Network (OSTI)

One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

Feng, Dandong, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

323

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71 - 15580 of 29,416 results. 71 - 15580 of 29,416 results. Download CX-009192 (0674-1542) Sila Nanotechnologies Inc. - Doubling the Energy Density of Lithium-Ion Batteries for Transportation CX(s) Applied: B3.6 Date: 08/30/2012 Location(s): Georgia Offices(s): Advanced Research Projects Agency-Energy http://energy.gov/nepa/downloads/cx-009192 Download CX-009194: Categorical Exclusion Determination (0674-1610) TVN Systems, Inc. - Hydrogen/Bromine Electrical Energy Storage System CX(s) Applied: B3.6 Date: 09/06/2012 Location(s): Kansas, Tennessee Offices(s): Advanced Research Projects Agency-Energy http://energy.gov/nepa/downloads/cx-009194-categorical-exclusion-determination Download CX-009522: Categorical Exclusion Determination Nevada-City-North Las Vegas CX(s) Applied: A1, A9, B1.32, B2.5, B5.1

324

Categorical Exclusion Determinations: California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 20, 2011 September 20, 2011 CX-010375: Categorical Exclusion Determination Replace Existing Firehouse CX(s) Applied: B1.15 Date: 09/20/2011 Location(s): California Offices(s): Berkeley Site Office September 19, 2011 CX-007052: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-Ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Menlo Park, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 19, 2011 CX-007056: Categorical Exclusion Determination Interstate Electrification Improvement CX(s) Applied: B5.1 Date: 09/19/2011 Location(s): California, Iowa, Maine, Missouri, Montana, Nevada, New Mexico, Tennessee, Utah, Virginia, Washington Office(s): Energy Efficiency and Renewable Energy, Savannah River

325

AAAS Office of Opportunities in Science The Double Bind  

E-Print Network (OSTI)

of scientists regardless of race, ethnicity or gender. Conserving of their time and energies, they tackled. Science careers in the context of gender and race or ethnic bias have been a major part of our lives of biases related to both their race or ethnicity and gender, constituting a double bind. Programs

Ortiz, Christine

326

Chaotic Behaviors in the Response of a Quasigeostrophic Oceanic Double Gyre to Seasonal External Forcing  

Science Conference Proceedings (OSTI)

In an oceanic double-gyre system, nonlinear oscillations of the ocean under seasonally changing external forcing are investigated using a 1.5-layer quasigeostrophic model and a simple model related to energy balance of the oceanic double gyre. In ...

Shinya Shimokawa; Tomonori Matsuura

2010-07-01T23:59:59.000Z

327

Decimal System and Double Digits  

NLE Websites -- All DOE Office Websites (Extended Search)

Decimal System and Double Digits Decimal System and Double Digits Name: Ken Status: other Grade: other Country: Canada Date: April 2011 Question: If the origin of the decimal system reflects counting on ten fingers and if zero came into use after the decimal system had been established why did we not create a single symbol for our tenth digit rather than use the double digit 10? If T were to represent the tenth number this would have created a counting system where the number series 1,2...9,T is followed by the same series having a 1 to the left then followed by the same series having a 2 to the left, etc. The T would be the last number in a series of ten single digits rather than be the first number in a series of double digits. The symbol zero would be used only between negative one and positive one because it represents the existence of nothing and, therefore, would have no other function.

328

Variational Two-electron Reduced Density Matrix Theory for Many ...  

E-Print Network (OSTI)

Sep 16, 2005 ... Abstract: The energy and properties of a many-electron atom or ... of a two- electron reduced density matrix (2-RDM) that is constrained to ...

329

The Reduced Density Matrix Method for Electronic Structure ...  

E-Print Network (OSTI)

Oct 14, 2003 ... This suggested to Mayer that the ground state energy. – and density matrix information – could be economically computed by simply carrying ...

330

First-Principles Density Functional Theory Study of Grain Boundary ...  

Science Conference Proceedings (OSTI)

Presentation Title, First-Principles Density Functional Theory Study of Grain ... It was found that both the vacancy formation energy and diffusion activation ...

331

Optimization Online - The Reduced Density Matrix Method for ...  

E-Print Network (OSTI)

Oct 16, 2003 ... The Reduced Density Matrix Method for Electronic Structure Calculations ... Calculations of the ground state energy and the dipole moment are ...

332

Conditions for establishing quasistable double layers in the Earth's auroral upward current region  

SciTech Connect

The strength and stability of simulated double layers at the ionosphere-auroral cavity boundary have been studied as a function of cold ionospheric electron temperature and density. The simulations are performed with an open boundary one-dimensional particle-in- cell (PIC) simulation and are initialized by imposing a density cavity within the simulation domain. The PIC simulation includes H{sup +} and O{sup +} ion beams, a hot H{sup +} background population, cold ionospheric electrons, and a hot electron population. It is shown that a double layer remains quasistable for a variety of initial conditions and plasma parameters. The average potential drop of the double layer is found to increase as the cold electron temperature decreases. However, in terms of cold electron density, the average potential drop of the double layer is found to increase up to some critical cold electron density and decreases above this value. Comparisons with FAST observations are made and agreement is found between simulation results and observations in the shape and width of the double layer. This study helps put a constraint on the plasma conditions in which a DL can be expected to form and remain quasistable.

Main, D. S. [Department of Physics, John Brown University, Siloam Springs, Arkansas 72761 (United States); Newman, D. L. [Center for Integrated Plasma Studies, University of Colorado, Boulder, Colorado 80309 (United States); Ergun, R. E. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303 (United States)

2010-12-15T23:59:59.000Z

333

Improved power source for doubling the exchange time interval of LLC.  

SciTech Connect

This LDRD project attempts to use novel electrochemical techniques to understand the reaction mechanism that limits the discharge reaction of lithium CF{sub x} chemistry. If this advanced component development and exploratory investigations efforts are successful we will have a High Energy Density Li Primary Battery Technology with the capability to double the run time in the same volume, or provide the same energy in a much smaller volume. These achievements would be a substantial improvement over commercial Li/Thionyl chloride battery technology. The Li(CF{sub x}){sub n} chemistry has the highest theoretical energy (and capacity) and hence very attractive for long life battery applications. However, the practical open circuit voltage (OCV) is only 3.2 V which is {approx}1.3 V lower than the thermodynamic cell voltage (for an in depth explanation of the voltage depression refer to 'Introduction'). The presence of intermediate has been invoked to explain the lower OCV of the cell. Due to the reduction in cell voltage the cell out put is reduced by {approx}40%. To account for the initial voltage loss a mechanism has been proposed which involves the formation of a ternary compound (like C(LiF){sub x}). But neither its presence nor its nature has been confirmed. Our work will seek to develop understanding of the voltage depression with a goal to produce a primary battery with improved properties that will have significant impact in furthering advancements.

Nagasubramanian, Ganesan

2008-12-01T23:59:59.000Z

334

Improved power source for doubling the exchange time interval of LLC.  

DOE Green Energy (OSTI)

This LDRD project attempts to use novel electrochemical techniques to understand the reaction mechanism that limits the discharge reaction of lithium CF{sub x} chemistry. If this advanced component development and exploratory investigations efforts are successful we will have a High Energy Density Li Primary Battery Technology with the capability to double the run time in the same volume, or provide the same energy in a much smaller volume. These achievements would be a substantial improvement over commercial Li/Thionyl chloride battery technology. The Li(CF{sub x}){sub n} chemistry has the highest theoretical energy (and capacity) and hence very attractive for long life battery applications. However, the practical open circuit voltage (OCV) is only 3.2 V which is {approx}1.3 V lower than the thermodynamic cell voltage (for an in depth explanation of the voltage depression refer to 'Introduction'). The presence of intermediate has been invoked to explain the lower OCV of the cell. Due to the reduction in cell voltage the cell out put is reduced by {approx}40%. To account for the initial voltage loss a mechanism has been proposed which involves the formation of a ternary compound (like C(LiF){sub x}). But neither its presence nor its nature has been confirmed. Our work will seek to develop understanding of the voltage depression with a goal to produce a primary battery with improved properties that will have significant impact in furthering advancements.

Nagasubramanian, Ganesan

2008-12-01T23:59:59.000Z

335

Design of a 50 TW/20 J chirped-Pulse Amplification Laser for High-Energy-Density Plasma Physics Experiments at the Nevada Terawatt Facility of the University of Nevada  

DOE Green Energy (OSTI)

We have developed a conceptual design for a 50 TW/20 J short-pulse laser for performing high-energy-density plasma physics experiments at the Nevada Terawatt Facility of the University of Nevada, Reno. The purpose of the laser is to develop proton and x-ray radiography techniques, to use these techniques to study z-pinch plasmas, and to study deposition of intense laser energy into both magnetized and unmagnetized plasmas. Our design uses a commercial diode-pumped Nd:glass oscillator to generate 3-nJ. 200-fs mode-locked pulses at 1059 m. An all-reflective grating stretcher increases pulse duration to 1.1 ns. A two-stage chirped-pulse optical parametric amplifier (OPCPA) using BBO crystals boosts pulse energy to 12 mJ. A chain using mixed silicate-phosphate Nd:glass increases pulse energy to 85 J while narrowing bandwidth to 7.4 nm (FWHM). About 50 J is split off to the laser target chamber to generate plasma while the remaining energy is directed to a roof-mirror pulse compressor, where two 21 cm x 42 cm gold gratings recompress pulses to {approx}350 fs. A 30-cm-focal-length off-axis parabolic reflector (OAP) focuses {approx}20 J onto target, producing an irradiance of 10{sup 19} W/cm{sup 2} in a 10-{micro}m-diameter spot. This paper describes planned plasma experiments, system performance requirements, the laser design, and the target area design.

Erlandson, A C; Astanovitskiy, A; Batie, S; Bauer, B; Bayramian, A; Caird, J A; Cowan, T; Ebbers, C; Fuchs, J; Faretto, H; Glassman, J; Ivanov, V; LeGalloudec, B; LeGalloudec, N; Letzring, S; Payne, S; Stuart, B

2003-09-07T23:59:59.000Z

336

Savings Project: How to Weatherstrip Double-Hung (or Sash) Windows...  

NLE Websites -- All DOE Office Websites (Extended Search)

Double-Hung (or Sash) Windows Addthis Project Level Easy Energy Savings 5 - 10% Time to Complete 1 hour Overall Cost 5 - 10 Look for air leaks in these common places in...

337

Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics  

Science Conference Proceedings (OSTI)

Pb(Zr,Ti)O3 (PZT) based compositions have been challenging to texture or grow in a single crystal form due to the incongruent melting point of ZrO2. Here we demonstrate the method for achieving 90% textured PZT-based ceramics and further show that it can provide highest known energy density in piezoelectric materials through enhancement of piezoelectric charge and voltage coefficients (d and g). Our method provides more than 5 increase in the ratio d(textured)/d(random). A giant magnitude of d g coefficient with value of 59 000 10 15 m2 N 1 (comparable to that of the single crystal counterpart and 359% higher than that of the best commercial compositions) was obtained.

Yan, Yongke [Bio-Inspired Materials and Devices Laboraory (BMDL); Cho, Kyung-Hoon [Bio-Inspired Materials and Devices Laboraory (BMDL); Maurya, Deepam [ORNL; Kumar, Amit [ORNL; Kalinin, Sergei V [ORNL; Khachaturyan, Armen [State University of New Jersey, The; Priya, Shashank [ORNL

2013-01-01T23:59:59.000Z

338

Explanation of observed interference patterns in the differential cross section for double photoionization of H2  

DOE Green Energy (OSTI)

We present the results of numerical calculations on the single photon double photoionization of H{sub 2} for energies between 130 eV and 240 eV. We find that our results are in excellent agreement with experimental observations. However, our interpretation of the observed interference pattern at these energies is that it is due to mixing of parallel and perpendicular components through circularly polarized light rather than due to classical double slit diffraction.

Horner, Daniel A [Los Alamos National Laboratory; Miyabe, Shungo [UC-DAVIS; Morales, Felipe [UNIV AUTONOMA DE MADRID; Martin, Fernando [UNIV AUTONOMA DE MADRID; Rescigno, Thomas N [LBNL; Mccurdy, C William [LBNL

2009-01-01T23:59:59.000Z

339

Hierarchy in a double braneworld  

Science Conference Proceedings (OSTI)

We show that the hierarchy between the Planck and the weak scales can follow from the tendency of gravitons and fermions to localize at different edges of a thick double wall embedded in an AdS{sub 5} spacetime without reflection symmetry. This double wall is a stable BPS thick-wall solution with two subwalls located at its edges; fermions are coupled to the scalar field through Yukawa interactions, but the lack of reflection symmetry forces them to be localized in one of the subwalls. We show that the graviton zero-mode wave function is suppressed in the fermion edge by an exponential function of the distance between the subwalls, and that the massive modes decouple so that Newtonian gravity is recuperated.

Guerrero, Rommel; Rodriguez, R. Omar [Unidad de Investigacion en Ciencias Matematicas, Universidad Centroccidental Lisandro Alvarado, 400 Barquisimeto (Venezuela); Melfo, Alejandra; Pantoja, Nelson [Centro de Fisica Fundamental, Universidad de Los Andes, Merida (Venezuela)

2006-10-15T23:59:59.000Z

340

EERE News: Energy Department, Treasury Announce Availability...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

has more than doubled clean, renewable energy generation from wind, solar, and geothermal sources, and has strengthened its position as a global leader in the clean energy...

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Single-Nucleon Densities  

NLE Websites -- All DOE Office Websites (Extended Search)

Densities Densities This web page presents single-nucleon densities calculated for a variety of nuclei in the range A=2-10 with some preliminary results for A=11,12. These are from variational Monte Carlo calculations (VMC) using the Argonne v18 two-nucleon and Urbana X three-nucleon potentials (AV18+UX). (Urbana X is intermediate between the Urbana IX and Illinois-7 models; it has the form of UIX supplemented with a two-pion S-wave piece, while the strengths of its terms are taken from the IL7 model. It does NOT have the three-pion-ring term of IL7.) These VMC wave functions are the starting trial functions for a number of recent Green's function Monte Carlo (GFMC) calculations: Brida, et al., Phys. Rev. C 84, 024319 (2011); McCutchan, et al., Phys. Rev. C 86, 024315 (2012);

342

Electrical double layers at shock fronts in glow discharges and afterglows  

Science Conference Proceedings (OSTI)

This paper examines the propagation of spark-generated shockwaves (1.0density, and, for all cases, we measured an increase in the electron number density at the shock front. By comparing the increase in electron number density at the shock front in the active discharge and in the afterglow, we conclude that electrons with a temperature much greater than room temperature can be compressed at the shock front. The ratio of electron number density before and after the shock front can be approximately predicted using the Rankine-Hugoniot relationship. The large gradient in electron density, and hence a large gradient in the flux of charged species, created a region of space-charge separation, i.e., a double layer, at the shock front. The double layer balances the flux of charged particles on both sides of the shock front. The double layer voltage drop was measured in the current-carrying discharge using floating probes and compared with previous models. As well, we measured argon 1s{sup 5} metastable-state density and demonstrate that metastable-state neutral species can be compressed across a shock front and approximately predicted using the Rankine-Hugoniot relationship.

Siefert, Nicholas S. [Air Force Research Laboratory, Wright Patterson, Ohio 45433 (United States)

2010-12-15T23:59:59.000Z

343

Spatio-temporal evolution and breaking of double layers: A description using Lagrangian hydrodynamics  

Science Conference Proceedings (OSTI)

The nonlinear development and collapse (breaking) of double layers in the long scale length limit is well described by equations for the cold ion fluid with quasineutrality. It is shown that electron dynamics is responsible for giving an 'equation of state' with negative ratio of specific heats to this fluid. Introducing a transformation for the density variable, the governing equation for the transformed quantity in terms of Lagrange variables turns out exactly to be a linear partial differential equation. This equation has been analyzed in various limits of interest. Nonlinear development of double layers with a sinusoidal initial disturbance and collapse of double layers with an initial perturbation in the form of a density void are analytically investigated.

Kaw, Predhiman; Sengupta, Sudip; Singh Verma, Prabal [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

2012-10-15T23:59:59.000Z

344

NERSC's Franklin Supercomputer Upgraded to Double Its Scientific Capability  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC's Franklin NERSC's Franklin Supercomputer Upgraded to Double Its Scientific Capability NERSC's Franklin Supercomputer Upgraded to Double Its Scientific Capability July 20, 2009 OCEAN EDDIES: This image comes from a computer simulation modeling eddies in the ocean. An interesting feature is the abundance of eddies away from the equator, which is shown in the center of the image at y=0. This research collaboration led by Paola Cessi of the Scripps Institute of Oceanography performed over 15,000 years worth of deep ocean circulation simulations with 1.6 million processor core hours on the upgraded Franklin system. The Department of Energy's (DOE) National Energy Research Scientific Computing (NERSC) Center has officially accepted a series of upgrades to its Cray XT4 supercomputer, providing the facility's 3,000 users with twice

345

WATER-LITHIUM BROMIDE DOUBLE-EFFECT ABSORPTION COOLING ANALYSIS  

Office of Scientific and Technical Information (OSTI)

WATER-LITHIUM BROMIDE DOUBLE-EFFECT WATER-LITHIUM BROMIDE DOUBLE-EFFECT ABSORPTION COOLING ANALYSIS Gary C . V l i e t , Michael B . Lawson, and Rudolf0 A . Lithgow Center f o r Energy Studies The University of Texas a t Austin December 1980 Final Report f o r Contract: DE AC03-79SF10540 (Mu1 tiple-Effect Absorption Cycle Solar Cooling) with the U.S. Department of Energy DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

346

Synergetic effects of double laser pulses for the formation of mild plasma in water: Toward non-gated underwater laser-induced breakdown spectroscopy  

Science Conference Proceedings (OSTI)

We experimentally study the dynamics of the plasma induced by the double-laser-pulse irradiation of solid target in water, and find that an appropriate choice of the pulse energies and pulse interval results in the production of an unprecedentedly mild (low-density) plasma, the emission spectra of which are very narrow even without the time-gated detection. The optimum pulse interval and pulse energies are 15-30 {mu}s and about {approx}1 mJ, respectively, where the latter values are much smaller than those typically employed for this kind of study. In order to clarify the mechanism for the formation of mild plasma we examine the role of the first and second laser pulses, and find that the first pulse produces the cavitation bubble without emission (and hence plasma), and the second pulse induces the mild plasma in the cavitation bubble. These findings may present a new phase of underwater laser-induced breakdown spectroscopy.

Sakka, Tetsuo [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Institute of Sustainability Science, Kyoto University, Uji, Kyoto 611-0011 (Japan); Tamura, Ayaka; Nakajima, Takashi; Fukami, Kazuhiro; Ogata, Yukio H. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan)

2012-05-07T23:59:59.000Z

347

Multiple density layered insulator  

DOE Patents (OSTI)

A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

Alger, T.W.

1994-09-06T23:59:59.000Z

348

Multiple density layered insulator  

DOE Patents (OSTI)

A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

Alger, Terry W. (Tracy, CA)

1994-01-01T23:59:59.000Z

349

Double-core excitations in formamide can be probed by X-ray double-quantum-coherence spectroscopy  

Science Conference Proceedings (OSTI)

The attosecond, time-resolved X-ray double-quantum-coherence four-wave mixing signals of formamide at the nitrogen and oxygen K-edges are simulated using restricted excitation window time-dependent density functional theory and the excited core hole approximation. These signals, induced by core exciton coupling, are particularly sensitive to the level of treatment of electron correlation, thus providing direct experimental signatures of electron and core-hole many-body effects and a test of electronic structure theories.

Zhang Yu; Healion, Daniel; Biggs, Jason D.; Mukamel, Shaul [Department of Chemistry, University of California, 450 Rowland Hall, Irvine, California 92697 (United States)

2013-04-14T23:59:59.000Z

350

Nonperturbative theory of double photoionization of the hydrogen molecule  

DOE Green Energy (OSTI)

We present completely ab initio nonperturbative calculations of the integral and single differential cross sections for double photoionization of H2 for photon energies from 53.9 to 75.7 eV. The method of exterior complex scaling, implemented with B-splines, is used to solve the Schrodinger equation for a correlated continuum wave function corresponding to a single photon having been absorbed by a correlated initial state. The results are in good agreement with experimental integral cross sections.

Vanroose, W.; Martin, F.; Rescigno, T.N.; McCurdy, C.W.

2004-10-01T23:59:59.000Z

351

wave power density | OpenEI  

Open Energy Info (EERE)

power density power density Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. Source Electric Power Research Institute (EPRI) Date Released December 05th, 2011 (2 years ago) Date Updated Unknown Keywords EPRI MHK NREL ocean Virginia Tech wave wave power density Data application/pdf icon Download Full Report (pdf, 8.8 MiB) Quality Metrics Level of Review Some Review Comment

352

Middle School Academic Competition - Double Elimination | U.S. DOE Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Academic Competition - Double Academic Competition - Double Elimination National Science Bowl® (NSB) NSB Home About High School Middle School Attending National Event Volunteers 2013 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2013 Competition Results Middle School Academic Competition - Double Elimination Print Text Size: A A A RSS Feeds FeedbackShare Page No-Loss Bracket .pdf file (42KB) (Final Results) Challengers' Bracket .pdf file (42KB) (Final Results) Last modified: 4/29/2013 11:22:57 AM

353

High School Academic Competition - Double Elimination | U.S. DOE Office of  

NLE Websites -- All DOE Office Websites (Extended Search)

Double Double Elimination National Science Bowl® (NSB) NSB Home About High School Middle School Attending National Event Volunteers 2013 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2013 Competition Results High School Academic Competition - Double Elimination Print Text Size: A A A RSS Feeds FeedbackShare Page No-Loss Bracket .pdf file (45KB)(Final Results) Challengers' Bracket .pdf file (42KB) (Final Results) Last modified: 4/29/2013 11:56:04 AM

354

One-dimensional particle-in-cell simulation of a current-free double layer in an expanding plasma  

Science Conference Proceedings (OSTI)

A one-dimensional particle-in-cell code using Monte Carlo collision techniques (MCC/PIC) for both ions and electrons is used to simulate our earlier experimental results which showed that a current-free electric double layer (DL) can form in a plasma expanding along a diverging magnetic field. These results differ from previous experimental or simulation systems where the double layers are driven by a current or by imposed potential differences. Both experiment and simulation show accelerated ions with energies up to about 60 eV on the low potential side of the plasma. A new numerical method is added to the conventional PIC scheme to simulate inductive electron heating, as distinct from the more common capacitively driven simulations. A loss process is introduced along the axis of the simulation to mimic the density decrease along the axis of an expanding plasma in a diverging magnetic field. The results from the MCC/PIC presented here suggest that the expansion rate compared to the ionization frequency is a critical parameter for the existence of the DL. For the DL to be absolutely current free, the source wall has to be allowed to charge: having both ends of the simulation at the same potential always resulted in a current flow. Also, the effect of the neutral pressure and of the size of the diffusion chamber are investigated. Finally we show that this particular type of DL has electrons in Boltzmann equilibrium and that it creates a supersonic ion beam.

Meige, Albert; Boswell, Rod W.; Charles, Christine; Turner, Miles M. [Space Plasma and Plasma Processing, Plasma Research Laboratory, Research School of Physical Sciences and Engineering, Australian National University, Australian Capital Territory, 0200 (Australia); Plasma Research Laboratory, School of Physical Sciences and National Centre for Plasma Science and Technology, Dublin City University, Dublin (Ireland)

2005-05-15T23:59:59.000Z

355

Contained Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Zip 44120 Sector Carbon Product Develops, manufactures, markets and sells direct carbon fuel cells with breakthrough energy density. References Contained Energy Inc1 LinkedIn...

356

Double the Charge from One Photon in Organic Photovoltaics | U.S. DOE  

Office of Science (SC) Website

Double the Charge from One Photon in Organic Photovoltaics Double the Charge from One Photon in Organic Photovoltaics Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » February 2013 Double the Charge from One Photon in Organic Photovoltaics First observation of key intermediate state in the conversion of one photon to two electrons. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of XY Zhu, Columbia University Electron energy distribution as a function of time for pentacene (lower)

357

Density Functional Theory Approach to Nuclear Fission  

E-Print Network (OSTI)

The Skyrme nuclear energy density functional theory (DFT) is used to model neutron-induced fission in actinides. This paper focuses on the numerical implementation of the theory. In particular, it reports recent advances in DFT code development on leadership class computers, and presents a detailed analysis of the numerical accuracy of DFT solvers for near-scission calculations.

N. Schunck

2012-12-13T23:59:59.000Z

358

Building Energy Software Tools Directory: DesignBuilder  

NLE Websites -- All DOE Office Websites (Extended Search)

naturally ventilated buildings, buildings with daylighting control, double facades, advanced solar shading strategies etc. Screen Shots Keywords Building energy simulation,...

359

High density photovoltaic  

DOE Green Energy (OSTI)

Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S. [Spire Corp., Bedford, MA (United States)

1997-10-14T23:59:59.000Z

360

A Double Smoothing Technique for Constrained Convex ...  

E-Print Network (OSTI)

In this paper, we propose an efficient approach for solving a class of convex opti- ... accelerate our scheme, we introduce a novel double smoothing technique ...

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Micromegas readouts for double beta decay searches  

E-Print Network (OSTI)

Double beta $\\beta\\beta$ decay experiments are one of the most active research topics in Neutrino Physics. The measurement of the neutrinoless mode $0\

Cebrián, S; Ferrer-Ribas, E; Galán, J; García, J A; Giomataris, I; Gómez, H; Herrera, D C; Iguaz, F J; Irastorza, I G; Luzón, G; Rodríguez, A; Seguí, L; Tomás, A

2010-01-01T23:59:59.000Z

362

Micromegas readouts for double beta decay searches  

E-Print Network (OSTI)

Double beta $\\beta\\beta$ decay experiments are one of the most active research topics in Neutrino Physics. The measurement of the neutrinoless mode $0\

S. Cebrián; T. Dafni; E. Ferrer-Ribas; J. Galán; J. A. García; I. Giomataris; H. Gómez; D. C. Herrera; F. J. Iguaz; I. G. Irastorza; G. Luzón; A. Rodríguez; L. Seguí; A. Tomás

2010-09-09T23:59:59.000Z

363

Double Patenting--One Patent per Invention  

Science Conference Proceedings (OSTI)

Double Patenting—One Patent per Invention. Arnold B. Silverman. Patent claims recite the scope of protection provided by a patent. The Patent Statute ...

364

Double perovskite catalysts for oxidative coupling  

DOE Patents (OSTI)

Alkali metal doped double perovskites containing manganese and at least one of cobalt, iron and nickel are useful in the oxidative coupling of alkane to higher hydrocarbons.

Campbell, K.D.

1991-01-01T23:59:59.000Z

365

Full Counting Statistics of Photons Emitted by Double Quantum Dot  

E-Print Network (OSTI)

We analyze the full counting statistics of photons emitted by a double quantum dot (DQD) to a high-quality microwave transmission line due to the dipole coupling. We show that at the resonant condition between the energy splitting of the DQD and the photon energy in the transmission line, photon statistics exhibits both a sub-Poissonian distribution and antibunching. In the ideal case, when the system decoherence stems only from photodetection, the photon noise is reduced below one-half of the noise for the Poisson distribution. The photon distribution remains sub-Poissonian even at moderate decoherence in the DQD.

Canran Xu; Maxim G. Vavilov

2013-03-27T23:59:59.000Z

366

Goos-Hanchen like Shifts in Graphene Double Barriers  

E-Print Network (OSTI)

We study the Goos-Hanchen like shifts for Dirac fermions in graphene scattered by double barrier structures. After obtaining the solution for the energy spectrum, we use the boundary conditions to explicitly determine the Goos-Hanchen like shifts and the associated transmission probability. We analyze these two quantities at resonances by studying their {main} characteristics as a function of the energy and electrostatic potential parameters. To check the validity of our computations we recover previous results obtained for a single barrier under appropriate limits.

Ahmed Jellal; Ilham Redouani; Youness Zahidi; Hocine Bahlouli

2013-06-24T23:59:59.000Z

367

Kernridge project does double duty  

SciTech Connect

The huge volume of steam that Kernridge Oil Co. generates to increase production of heavy crude oil from California's South Belridge field may do double duty. The company, a subsidiary of Shell Oil Co., is in the planning stages with a cogeneration project that would produce enough electricity to meet the electric needs of a community of more than 200,000 people. Meanwhile, Kernridge continues to exceed projections used in the acquisition assessment for the former Belridge Oil Co. properties which the Kernridge parent, Shell, bought in December 1979. The company formed Kernridge early in 1980 to operate the former Belridge properties. Since taking over, Kernridge has pursued development aggressively and has increased production to 65,000 bopd from the previous owner's 42,000 bopd.

Not Available

1981-10-01T23:59:59.000Z

368

Energy Programs | Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Solar Energy Harnessing the Sun's Power for Fuel and Electricity Page 1 of 2 Solar Panels Featured Publication: Artificial Photosynthesis The average power need of the world's energy economy is 13 terawatts - a thousand trillion watts of power - and by 2050, that amount is expected to double. Fossil fuels and other nonrenewable sources are not the answer to the world's ever-expanding need for energy. Also, burning oil, coal or natural gas pollutes the atmosphere and contributes to global warming, which threatens the long-term viability of the earth and its inhabitants. Efficient utilization of energy from the sun may provide a solution to this important problem. The amount of clean, renewable energy derived from the sun in just one hour would meet the world's energy needs for a year. If

369

Industrial mixing techniques for Hanford double-shell tanks  

Science Conference Proceedings (OSTI)

Jet mixer pumps are currently the baseline technology for sludge mobilization and mixing in one-million gallon double-shell tanks at the Hanford and Savannah River Sites. Improvements to the baseline jet mixer pump technology are sought because jet mixer pumps have moving parts that may fail or require maintenance. Moreover, jet mixers are relatively expensive, they heat the waste, and, in some cases, may not mobilize enough of the sludge. This report documents a thorough literature search for commercially available applicable mixing technologies that could be used for double-shell tank sludge mobilization and mixing. Textbooks, research articles, conference proceedings, mixing experts, and the Thomas Register were consulted to identify applicable technologies. While there are many commercial methods that could be used to mobilize sludge or mix the contents of a one-million gallon tank, few will work given the geometrical constraints (e.g., the mixer must fit through a 1.07-m-diameter riser) or the tank waste properties (e.g., the sludge has such a high yield stress that it generally does not flow under its own weight). Pulsed fluid jets and submersible Flygt mixers have already been identified at Hanford and Savannah River Sites for double-shell tank mixing applications. While these mixing technologies may not be applicable for double-shell tanks that have a thick sludge layer at the bottom (since too many of these mixers would need to be installed to mobilize most of the sludge), they may have applications in tanks that do not have a settled solids layer. Retrieval projects at Hanford and other U.S. Department of Energy sites are currently evaluating the effectiveness of these mixing techniques for tank waste applications. The literature search did not reveal any previously unknown technologies that should be considered for sludge mobilization and mixing in one-million gallon double-shell tanks.

Daymo, E.A.

1997-09-01T23:59:59.000Z

370

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 09302014 Menlo Park, CA Silicon-Nanowire-Based Lithium-Ion Batteries with Doubling Energy Density Materials research and testing to double energy density of lithium-ion...

371

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

302014 Farmington Hills, MI Silicon-Nanowire-Based Lithium-Ion Batteries with Doubling Energy Density Materials research and testing to double energy density of lithium-ion...

372

Double bevel construction of a diamond anvil  

DOE Patents (OSTI)

A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached. 8 figs.

Moss, W.C.

1988-10-11T23:59:59.000Z

373

Hanford double shell tank corrosion monitoring instrument tree prototype  

Science Conference Proceedings (OSTI)

High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion.

Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

1995-11-01T23:59:59.000Z

374

Energy  

Site Map; Printable Version; Share this resource. Send a link to Full Size Image - Energy Innovation Portalto someone by E-mail; Share Full Size Image - Energy ...

375

Double-duct liquid metal magnetohydrodynamic engine  

DOE Patents (OSTI)

An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

Haaland, Carsten M. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

376

Double-duct liquid metal magnetohydrodynamic engine  

DOE Patents (OSTI)

An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

Haaland, Carsten M. (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

377

Reliability Estimation for Double Containment Piping  

Science Conference Proceedings (OSTI)

Double walled or double containment piping is considered for use in the ITER international project and other next-generation fusion device designs to provide an extra barrier for tritium gas and other radioactive materials. The extra barrier improves confinement of these materials and enhances safety of the facility. This paper describes some of the design challenges in designing double containment piping systems. There is also a brief review of a few operating experiences of double walled piping used with hazardous chemicals in different industries. This paper recommends approaches for the reliability analyst to use to quantify leakage from a double containment piping system in conceptual and more advanced designs. The paper also cites quantitative data that can be used to support such reliability analyses.

L. Cadwallader; T. Pinna

2012-08-01T23:59:59.000Z

378

Study of a double bubbler for material balance in liquids  

Science Conference Proceedings (OSTI)

The objective of this project was to determine the potential of a double bubbler to measure density and fluid level of the molten salt contained in an electrorefiner. Such in-situ real-time measurements can provide key information for material balances in the pyroprocessing of the nuclear spent fuel. This theoretical study showed this technique has a lot of promise. Four different experiments were designed and performed. The first three experiments studied the influence of a variety of factors such as depth difference between the two tubes, gas flow rate, the radius of the tubes and determining the best operating conditions. The last experiment purpose was to determine the precision and accuracy of the apparatus during specific conditions. The elected operating conditions for the characterization of the system were a difference of depth of 25 cm and a flow rate of 55 ml/min in each tube. The measured densities were between 1,000 g/l and 1,400g/l and the level between 34cm and 40 cm. The depth difference between the tubes is critical, the larger, the better. The experiments showed that the flow rate should be the same in each tube. The concordances with theoretical predictions were very good. The density precision was very satisfying (spread<0.1%) and the accuracy was about 1%. For the level determination, the precision was also very satisfying (spread<0.1%), but the accuracy was about 3%. However, those two biases could be corrected with calibration curves. In addition to the aqueous systems studied in the present work, future work will focus on examining the behavior of the double bubbler instrumentation in molten salt systems. The two main challenges which were identified in this work are the effect of the temperature and the variation of the superficial tension.

Hugues Lambert

2013-09-01T23:59:59.000Z

379

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Density CX(s) Applied: B3.6 Date: 09192011 Location(s): Menlo Park, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology...

380

Anomalous evolution of Ar metastable density with electron density in high density Ar discharge  

SciTech Connect

Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. On the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.

Park, Min; Chang, Hong-Young [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); You, Shin-Jae; Kim, Jung-Hyung [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon, 305-306 (Korea, Republic of); Shin, Yong-Hyeon

2011-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tunable Raman spectroscopy study of CVD and peapod-derived bundled and individual double-wall carbon nanotubes  

E-Print Network (OSTI)

We use 40 laser excitation energies to analyze the differences in the Raman spectra from chemical vapor deposition-derived double-wall carbon nanotube (CVD-DWNT) bundles, fullerene-derived DWNT bundles (C[subscript 60]-DWNTs), ...

Dresselhaus, Mildred

382

Charge Density Wave Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Fisher Research Group Fisher Research Group Layered Chalcogenides 29 February 2008 Controlling the Wave by Brad Plummer, SLAC Communications Stanford University researchers working in part at SSRL have discovered a novel set of properties pertaining to a compound of materials called tritellurides. These compounds, composed of three atoms of tellurium and a single atom of one of the rare earth elements, demonstrate unique electronic properties that can be controlled by altering the temperature of the material. The tritellurides display phenomena known as charge density waves (CDW). In a normal conductive metal, electrons persist in a "sea" wherein they are evenly distributed and equally available, or conductive. A CDW occurs under certain circumstances and causes the electrons to clump together, lowering their availability, and thereby lowering the compound's conductivity. Tellurium, when crystallized into quasi-two-dimensional planes and combined with rare earth elements, produces a material with CDWs that can be manipulated and controlled.

383

Low density microcellular foams  

DOE Patents (OSTI)

Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

LeMay, James D. (Castro Valley, CA)

1992-01-01T23:59:59.000Z

384

Low density microcellular foams  

DOE Patents (OSTI)

Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

LeMay, James D. (Castro Valley, CA)

1991-01-01T23:59:59.000Z

385

Density Coordinate Mixed Layer Models  

Science Conference Proceedings (OSTI)

The development of mixed layer models in so-called density coordinates is discussed. Density coordinates, or isopycnal coordinates as they are sometimes called, are becoming increasingly popular for use in ocean models due to their highly ...

William K. Dewar

2001-02-01T23:59:59.000Z

386

Probability density function method for variable-density pressure-gradient-driven turbulence and mixing  

SciTech Connect

Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.

Bakosi, Jozsef [Los Alamos National Laboratory; Ristorcelli, Raymond J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

387

Energy Department Invests to Drive Down Costs of Carbon Capture...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

doubled renewable energy generation from wind and solar power. However, coal and other fossil fuels still provide 80 percent of our energy, 70 percent of our electricity, and...

388

High-density Fuel Development for High Performance Research ...  

Science Conference Proceedings (OSTI)

Abstract Scope, High density UMo (7-12wt% Mo) fuel for high performance research ... High Energy X-ray Diffraction Study of Deformation Behavior of Alloy HT9.

389

Effective pairing interactions with isospin density dependence  

Science Conference Proceedings (OSTI)

We perform Hartree-Fock-Bogoliubov (HFB) calculations for semi-magic calcium, nickel, tin, and lead isotopes and N=20,28,50, and 82 isotones using density-dependent pairing interactions recently derived from a microscopic nucleon-nucleon interaction. These interactions have an isovector component so that the pairing gaps in symmetric and neutron matter are reproduced. Our calculations well account for the experimental data for the neutron number dependence of binding energy, two-neutron separation energy, and odd-even mass staggering of these isotopes. This result suggests that by introducing the isovector term in the pairing interaction, one can construct a global effective pairing interaction that is applicable to nuclei in a wide range of the nuclear chart. It is also shown with the local density approximation that the pairing field deduced from the pairing gaps in infinite matter reproduces qualitatively well the pairing field for finite nuclei obtained with the HFB method.

Margueron, J. [Institut de Physique Nucleaire, IN2P3-CNRS and Universite Paris-Sud, F-91406 Orsay Cedex (France); Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, 965-8580 Fukushima (Japan); Sagawa, H. [Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, 965-8580 Fukushima (Japan); Hagino, K. [Department of Physics, Tohoku University, Sendai, 980-8578 (Japan)

2008-05-15T23:59:59.000Z

390

Fully automated, fixed exit, in vacuum double-multilayer monochromator for synchrotron-based hard X-ray micro-imaging applications  

Science Conference Proceedings (OSTI)

We present a double multilayer monochromator (DMM) design which has been realized for the BAMline(BESSY-II light source, Germany) as well as in an updated version for the TopoTomo beamline (ANKA light source. Germany)[1-4]. The latter contains two pairs of multilayer stripes in order to avoid absorption edges of the coating material. For both DMMs, the second multilayer offers a meridional bending option for beam compression to increase the available photon flux density. Each multilayer mirror is equipped with a vertical stage for height adjustments allowing for compensation of varying incoming beam heights and giving a certain flexibility choosing the offset. The second multilayer can be moved in the beam direction in order to cover the full energy range available. Furthermore, a white beam option is available.

Rack, Alexander; Weitkamp, Timm [European Synchrotron Radiation Facility (ESRF), BP 220, F-38043 Grenoble (France); Forschungszentrum Karlsruhe / K.I.T.-ANKA, Pf. 3640, D-76021 Karlsruhe (Germany); Riesemeier, Heinrich [Federal Institute for Materials Research and Testing, D-12200 Berlin (Germany); Vagovic, Patrik; Trabelsi, Sondes Bauer; Baumbach, Tilo [Forschungszentrum Karlsruhe / K.I.T.-ANKA, Pf. 3640, D-76021 Karlsruhe (Germany); Siewert, Frank [Helmholtz Zentrum Berlin / BESSY II, Albert-Einstein- Str. 15, D-12489 Berlin (Germany); Dietsch, Reiner [AXO Dresden GmbH, Siegfried-Raedel-Str. 31, D-01809 Heidenau (Germany); Diete, Wolfgang; Waterstradt, Timm [ACCEL Instruments GmbH (now Bruker Advanced Supercon), Friedrich-Ebert-Str. 1, D-51429 Bergisch Gladbach (Germany)

2010-06-23T23:59:59.000Z

391

"Airborne Wind Energy - Harnessing a Vast, Untapped Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

November 14, 2012, 4:15pm November 14, 2012, 4:15pm Colloquia MBG Auditorium "Airborne Wind Energy - Harnessing a Vast, Untapped Renewable Energy Source" Dr. Kenneth Jensen Makani Power Inc. At just 500 m above the ground, the average power density of the wind is double that at 100 m where wind turbines typically reside. This makes high-altitude wind one of the most concentrated forms of renewable energy after hydro-power. Building conventional wind turbines at this height is uneconomical, which begs the question: how do we harness this concentrated and completely untapped resource? Makani Power is developing a novel airborne wind turbine (AWT), which consists of a turbine-carrying aircraft that is tethered to the ground. Propelled by the wind, the AWT travels in a circular path (similar to the

392

Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determines Double-Shell Tank Leaked Waste From Inner Tank Determines Double-Shell Tank Leaked Waste From Inner Tank Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank October 22, 2012 - 12:00pm Addthis Media Contacts Lori Gamache, ORP 509-372-9130 John Britton, WRPS 509-376-5561 RICHLAND - The Department of Energy's Office of River Protection (ORP), working with its Hanford tank operations contractor Washington River Protection Solutions, has determined that there is a slow leak of chemical and radioactive waste into the annulus space in Tank AY-102, the approximately 30-inch area between the inner primary tank and the outer tank that serves as the secondary containment for these types of tanks. This is the first time a double-shell tank (DST) leak from the primary tank into the annulus has been identified. There is no indication of waste in

393

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 4, 2012 April 4, 2012 The National Renewable Energy Lab's (NREL) utility rate database is a great resource for developers entering the Apps for Energy competition. | Map courtesy of NREL. Developer Resources for Apps for Energy Are you interested in participating in the Apps for Energy competition? Be sure to check out this list of resources that can help developers create energy apps. April 3, 2012 The DNA replication origin recognition complex (ORC) is a six-protein machine with a slightly twisted half-ring structure (yellow). ORC is proposed to wrap around and bend approximately 70 base pairs of double stranded DNA (red and blue). When a replication initiator Cdc6 (green) joins ORC, the partial ring is now complete and ready to load another protein onto the DNA. This last protein (not shown) is the enzyme that unwinds the double stranded DNA so each strand can be replicated. | Illustration courtesy of Brookhaven Lab.

394

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2012 4, 2012 The National Renewable Energy Lab's (NREL) utility rate database is a great resource for developers entering the Apps for Energy competition. | Map courtesy of NREL. Developer Resources for Apps for Energy Are you interested in participating in the Apps for Energy competition? Be sure to check out this list of resources that can help developers create energy apps. April 3, 2012 The DNA replication origin recognition complex (ORC) is a six-protein machine with a slightly twisted half-ring structure (yellow). ORC is proposed to wrap around and bend approximately 70 base pairs of double stranded DNA (red and blue). When a replication initiator Cdc6 (green) joins ORC, the partial ring is now complete and ready to load another protein onto the DNA. This last protein (not shown) is the enzyme that unwinds the double stranded DNA so each strand can be replicated. | Illustration courtesy of Brookhaven Lab.

395

The string of variable density: Further results  

Science Conference Proceedings (OSTI)

We analyze the problem of calculating the solutions and the spectrum of a string with arbitrary density and fixed ends. We build a perturbative scheme which uses a basis of WKB-type functions and obtain explicit expressions for the eigenvalues and eigenfunctions of the string. Using this approach we show that it is possible to derive the asymptotic (high energy) behavior of the string, obtaining explicit expressions for the first three coefficients (the first two can also be obtained with the WKB method). Finally, using an iterative approach we also obtain analytical expressions for the low energy behavior of the eigenvalues and eigenfunctions of a string with rapidly oscillating density, recovering (in a simpler way) results in the literature. - Highlights: > We devise a perturbative approach to finding the modes of a string with arbitrary density. > We obtain explicitly the first three coefficients of the asymptotic high energy expansion. > We apply our findings to a series of examples, obtaining both analytical and numerical results.

Amore, Paolo, E-mail: paolo.amore@gmail.com

2011-09-15T23:59:59.000Z

396

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS  

Science Conference Proceedings (OSTI)

M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste.

MACKEY, T.C.

2006-03-17T23:59:59.000Z

397

T-686: IBM Tivoli Integrated Portal Java Double Literal Denial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

686: IBM Tivoli Integrated Portal Java Double Literal Denial of Service Vulnerability T-686: IBM Tivoli Integrated Portal Java Double Literal Denial of Service Vulnerability August...

398

Energy  

Science Conference Proceedings (OSTI)

Energy. Summary: Key metrologies/systems: Scanning tunneling microscopy and one- and two-photon photoemission/Model ...

2012-10-02T23:59:59.000Z

399

Energy  

Home. Site Map; Printable Version; Share this resource. About; Search; Categories (15) Advanced Materials; Biomass and Biofuels; Building Energy Efficiency ...

400

Why DNA is a double helix  

NLE Websites -- All DOE Office Websites (Extended Search)

Guest14 Location: NA Country: NA Date: NA Question: Why is DNA in a double-helix shape? Replies: The why questions are always the worst. Why is anything the way it is? The...

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

D-branes and doubled geometry  

E-Print Network (OSTI)

We define the open string version of the nonlinear sigma model on doubled geometry introduced by Hull and Reid-Edwards, and derive its boundary conditions. These conditions include the restriction of D-branes to maximally isotropic submanifolds as well as a compatibility condition with the Lie algebra structure on the doubled space. We demonstrate a systematic method to derive and classify D-branes from the boundary conditions, in terms of embeddings both in the doubled geometry and in the physical target space. We apply it to the doubled three-torus with constant H-flux and find D0-, D1-, and D2-branes, which we verify transform consistently under T-dualities mapping the system to f-, Q- and R-flux backgrounds.

Cecilia Albertsson; Tetsuji Kimura; Ronald A. Reid-Edwards

2008-06-11T23:59:59.000Z

402

Double layer capacitors : automotive applications and modeling  

E-Print Network (OSTI)

This thesis documents the work on the modeling of double layer capacitors (DLCs) and the validation of the modeling procedure. Several experiments were conducted to subject the device under test to a variety of ...

New, David Allen, 1976-

2004-01-01T23:59:59.000Z

403

Development of large volume double ring penning plasma discharge source for efficient light emissions  

Science Conference Proceedings (OSTI)

In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd{sub 2}Fe{sub 14}B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of {approx}0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is {approx}2 Multiplication-Sign 10{sup 11} cm{sup -3}, which is around one order of magnitude larger than that of single ring arrangement.

Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan [Microwave Tubes Division, CSIR-Central Electronics and Engineering Research Institute, Pilani-333031 (India); Chowdhuri, Malay Bikas; Manchanda, Ranjana [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)

2012-12-15T23:59:59.000Z

404

Magnetohydrodynamics in Tokamak Reactors and its Effect on Plasma Density  

E-Print Network (OSTI)

The world’s energy consumption is at a crossroads. While petroleum coffers continuously yield enough petroleum to meet the current state of energy consumption, increases in energy consumption and advancements in technology bear significant weight on our ability to maintain current standards. Looking ahead, plasma fusion is a means of yielding vast amounts of clean, renewable and virtually limitless amounts of energy. With many advancements taking place since the 1950’s, the current Tokamak reactor claims to be able to produce more energy than it consumes, realizing a dream over 60 years in the making. Many characteristics, including plasma density, have to be tuned to maintain optimal conditions. By using finite element method embodied in COMSOL and first principles, one attempts to show how the plasma density evolves through a Tokomak’s modes of operation and to quantify the density against a known standard.

Morelli, Franco

2011-12-01T23:59:59.000Z

405

Double Bottom Line Project Report:Assessing Social Impact In Double Bottom Line Ventures  

E-Print Network (OSTI)

of Key Characteristics Glossary Method Summaries Theories ofin double bottom line ventures methods catalog glossary ofterms glossary of terms This glossary defines the variables

Rosenzweig, William

2004-01-01T23:59:59.000Z

406

Theory of a one-dimensional double-X atom interferometer  

E-Print Network (OSTI)

The dynamics of an atom waveguide X-junction beam splitter becomes truly 1D in a regime of low temperatures and densities and large positive scattering lengths where the transverse mode becomes frozen and the many-body Schrodinger dynamics becomes exactly soluble via a generalized Fermi-Bose mapping theorem. We analyze the interferometric response of a double-X interferometer of this type due to potential differences between the interferometer arms.

Marvin D. Girardeau; Kunal K. Das; Ewan M. Wright

2002-03-08T23:59:59.000Z

407

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Many Devils Wash, Shiprock Site, New Mexico http:energy.govlmdownloadsgeology-and-groundwater-investigation-many-devils-wash-shiprock-site Article T-682:Double free...

408

Cool! Nanoparticle Research Points to Energy Savings  

Science Conference Proceedings (OSTI)

... The double-bubble effect enhances boiling heat transfer and, ultimately, could help to boost the energy efficiency of industrial-sized cooling systems ...

2011-05-02T23:59:59.000Z

409

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Download Meeting Materials: November 5-6, 2001 NEAC Meeting, DoubleTree Hotel, Arlington, Virginia http:energy.govnedownloadsmeeting-materials-november-5-6-2...

410

Large-Scale Calculations of the Double-Beta Decay of 76Ge, 130Te, 136Xe, and 150Nd in the Deformed Self-Consistent Skyrme Quasiparticle Random-Phase Approximation  

E-Print Network (OSTI)

We use the axially-deformed Skyrme Quasiparticle Random-Phase Approximation (QRPA) together with the SkM* energy-density functional, both as originally presented and with the time-odd part adjusted to reproduce the Gamow-Teller resonance energy in 208Pb, to calculate the matrix elements governing the neutrinoless double-beta decay of 76Ge, 130Te, 136Xe, and 150Nd. Our matrix elements in 130Te and 136Xe are significantly smaller than those of previous QRPA calculations, primarily because of the difference in pairing or deformation between the initial and final nuclei. In 76Ge and 150Nd our results are similar to those of less computationally intensive QRPA calculations. We suspect the 76Ge result, however, because we are forced to use a spherical ground-state, even though the HFB indicates a deformed minimum.

M. T. Mustonen; J. Engel

2013-01-29T23:59:59.000Z

411

Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Energy Efficiency » Homes Science & Innovation » Energy Efficiency » Homes Homes New Savings Projects provide step-by-step instructions on home energy efficiency improvements. Learn how to weatherstrip double-hung (or sash) windows. Also check out our guide to sealing air leaks with caulk. New Savings Projects provide step-by-step instructions on home energy efficiency improvements. Learn how to weatherstrip double-hung (or sash) windows. Also check out our guide to sealing air leaks with caulk. Our homes are a major source of energy use in the U.S. Improving the

412

Modeling of Sulfate Double-salts in Nuclear Wastes  

Science Conference Proceedings (OSTI)

Due to limited tank space at Hanford and Savannah River, the liquid nuclear wastes or supernatants have been concentrated in evaporators to remove excess water prior to the hot solutions being transferred to underground storage tanks. As the waste solutions cooled, the salts in the waste exceeded the associated solubility limits and precipitated in the form of saltcakes. The initial step in the remediation of these saltcakes is a rehydration process called saltcake dissolution. At Hanford, dissolution experiments have been conducted on small saltcake samples from five tanks. Modeling of these experimental results, using the Environmental Simulation Program (ESP), are being performed at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University. The River Protection Project (RPP) at Hanford will use these experimental and theoretical results to determine the amount of water that will be needed for its dissolution and retrieval operations. A comprehensive effort by the RPP and the Tank Focus Area continues to validate and improve the ESP and its databases for this application. The initial effort focused on the sodium, fluoride, and phosphate system due to its role in the formation of pipeline plugs. In FY 1999, an evaluation of the ESP predictions for sodium fluoride, trisodium phosphate dodecahydrate, and natrophosphate clearly indicated that improvements to the Public database of the ESP were needed. One of the improvements identified was double salts. The inability of any equilibrium thermodynamic model to properly account for double salts in the system can result in errors in the predicted solid-liquid equilibria (SLE) of species in the system. The ESP code is evaluated by comparison with experimental data where possible. However, data does not cover the range of component concentrations and temperatures found in many tank wastes. Therefore, comparison of ESP with another code is desirable, and may illuminate problems with both. For this purpose, the SOLGASMIX code was used in conjunction with a small private database developed at ORNL. This code calculates thermodynamic equilibria through minimization of Gibbs Energy, and utilizes the Pitzer model for activity coefficients. The sodium nitrate-sulfate double salt and the sodium fluoride-sulfate double salt were selected for the FY 2000 validation study of ESP. Even though ESP does not include the sulfate-nitrate double salt, this study found that this omission does not appear to be a major consequence. In this case, the solubility predictions with and without the sulfate-nitrate double salt are comparable. In contrast, even though the sulfate-fluoride double salt is included within the ESP databank, comparison to previous experimental results indicates that ESP underestimates solubility. Thus, the prediction for the sulfate-fluoride system needs to be improved. A main consequence of the inability to accurately predict the SLE of double salts is its impact on the predicted ionic strength of the solution. The ionic strength has been observed to be an important factor in the formation of pipeline plugs. To improve the ESP prediction, solubility tests on the sulfate-fluoride system are underway at DIAL, and these experimental results will be incorporated into the Public database by OLI System, Inc. Preliminary ESP simulations also indicated difficulties with the SLE prediction for anhydrous sodium sulfate. The Public database for the ESP does not include fundamental parameters for this solid in mixed solutions below 32.4 C. The limitation, in the range of anhydrous sodium sulfate, leads to convergence problems in ESP and to inaccurate predictions of solubility near the invariant point when sodium sulfate decahydrate and other salts, such as sodium nitrate, were present. These difficulties were partially corrected through the use of an additional database. In conclusion, these results indicate the need for experimental data at temperatures above 25 C and in solutions containing both nitrate and hydroxide. Furthermore, the validation and do

Toghiani, B.

2000-10-30T23:59:59.000Z

413

Coastal zone wind energy. Part I. Potential wind power density fields based on 3-D model simulations of the dominant wind regimes for three east and Gulf coast areas  

DOE Green Energy (OSTI)

The results of applying a numerical model of the atmosphere to the problem of locating areas of maximum wind power are presented. Three US coastal regions, of approximately 10/sup 5/ km/sup 2/ area each, are investigated. For each region the spatial distribution of daily average power density (W m/sup -2/) for the lowest 100 m of the atmosphere is given for the three most prevalent weather regimes. These distributions are then combined to form an estimate of the annual average power density for each region. Comparisons with long-term climatological data at stations within each region show good agreement between model estimated and observed wind power density for two of the three regions studied.

Garstang, M.; Pielke, R.A.; Snow, J.W.

1980-04-01T23:59:59.000Z

414

January 3, 2014 - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Few transportation fuels surpass the energy densities of gasoline and diesel › (Article originally published on Feburary 14, 2013) Energy density and ...

415

Energy  

Science Conference Proceedings (OSTI)

There has been a significant progress in converting solar energy using silicon technology to replace fossil fuels. However, its high cost of production has led ...

416

Energy  

Efficient, Low-cost Microchannel Heat Exchanger. Return to Marketing Summary. Skip footer navigation to end of page. ... Energy Innovation Portal on Facebook;

417

Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

energy, including Fundamental advances in nuclear fuels Nonproliferation safeguards Reactor concepts Reactor waste disposition Animation of new reactor concept for deep space...

418

Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Energy Express Licensing Accelerator-Driven Transmutation Of Spent Fuel Elements Express Licensing Acid-catalyzed dehydrogenation of amine-boranes Express Licensing Air Breathing Direct Methanol Fuel Cell Express Licensing Aligned Crystalline Semiconducting Film On A Glass Substrate And Method Of Making Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Apparatus for Producing Voltage and Current Pulses Express Licensing Biaxially oriented film on flexible polymeric substrate Express Licensing Corrosion Test Cell For Bipolar Plates Express Licensing Device for hydrogen separation and method Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Energy Efficient Synthesis Of Boranes Express Licensing

419

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

and hydrogen as alternative fuels is in energy storage.hydrogen energy density and cost goals is not possible using current compressed hydrogen storageenergy density of electricity storage in batteries or hydrogen

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

420

SUPPRESSION OF ENERGETIC ELECTRON TRANSPORT IN FLARES BY DOUBLE LAYERS  

SciTech Connect

During flares and coronal mass ejections, energetic electrons from coronal sources typically have very long lifetimes compared to the transit times across the systems, suggesting confinement in the source region. Particle-in-cell simulations are carried out to explore the mechanisms of energetic electron transport from the corona to the chromosphere and possible confinement. We set up an initial system of pre-accelerated hot electrons in contact with ambient cold electrons along the local magnetic field and let it evolve over time. Suppression of transport by a nonlinear, highly localized electrostatic electric field (in the form of a double layer) is observed after a short phase of free-streaming by hot electrons. The double layer (DL) emerges at the contact of the two electron populations. It is driven by an ion-electron streaming instability due to the drift of the back-streaming return current electrons interacting with the ions. The DL grows over time and supports a significant drop in temperature and hence reduces heat flux between the two regions that is sustained for the duration of the simulation. This study shows that transport suppression begins when the energetic electrons start to propagate away from a coronal acceleration site. It also implies confinement of energetic electrons with kinetic energies less than the electrostatic energy of the DL for the DL lifetime, which is much longer than the electron transit time through the source region.

Li, T. C.; Drake, J. F.; Swisdak, M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States)

2012-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Effects of a static electric field on nonsequential double ionization  

SciTech Connect

Using a three-dimensional semiclassical method, we perform a systematic analysis of the effects of an additional static electric field on nonsequential double ionization (NSDI) of a helium atom in an intense, linearly polarized laser field. It is found that the static electric field influences not only the ionization rate, but also the kinetic energy of the ionized electron returning to the parent ion, in such a way that, if the rate is increased, then the kinetic energy of the first returning electron is decreased, and vice versa. These two effects compete in NSDI. Since the effect of the static electric field on the ionization of the first electron plays a more crucial role in the competition, the symmetric double-peak structure of the He{sup 2+} momentum distribution parallel to the polarization of the laser field is destroyed. Furthermore, the contribution of the trajectories with multiple recollisions to the NSDI is also changed dramatically by the static electric field. As the static electric field increases, the trajectories with two recollisions, which start at the time when the laser and the static electric field are in the same direction, become increasingly important for the NSDI.

Li Hongyun [Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Department of Physics, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Peking University, Beijing 100871 (China); Wang Bingbing; Li Xiaofeng; Fu Panming [Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Chen Jing; Liu Jie [Center for Nonlinear Studies, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Jiang Hongbing; Gong Qihuang [Department of Physics, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Peking University, Beijing 100871 (China); Yan Zongchao [Department of Physics, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick, E3B 5A3 (Canada); Research Academy of Science and Technology, Harbin Institute of Technology, Harbin 150001 (China)

2007-09-15T23:59:59.000Z

422

Density-based logistic regression  

Science Conference Proceedings (OSTI)

This paper introduces a nonlinear logistic regression model for classification. The main idea is to map the data to a feature space based on kernel density estimation. A discriminative model is then learned to optimize the feature weights as well as ... Keywords: density estimation, logistic regression, medical prediction, nonlinear classification

Wenlin Chen, Yixin Chen, Yi Mao, Baolong Guo

2013-08-01T23:59:59.000Z

423

Michigan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Density CX(s) Applied: B3.6 Date: 09212011 Location(s): Farmington Hills, Michigan Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office...

424

Full Counting Statistics of Photons Emitted by Double Quantum Dot  

E-Print Network (OSTI)

We analyze the full counting statistics of photons emitted by a double quantum dot (DQD) coupled to a high-quality microwave resonator by electric dipole interaction. We show that at the resonant condition between the energy splitting of the DQD and the photon energy in the resonator, photon statistics exhibits both a sub-Poissonian distribution and antibunching. In the ideal case, when the system decoherence stems only from photodetection, the photon noise is reduced below one-half of the noise for the Poisson distribution and is consistent with current noise. The photon distribution remains sub-Poissonian even at moderate decoherence in the DQD. We demonstrate that Josephson junction based photomultipliers can be used to experimentally assess statistics of emitted photons.

Canran Xu; Maxim G. Vavilov

2013-03-27T23:59:59.000Z

425

Turbulent Density Spectrum in Solar Wind Plasma  

E-Print Network (OSTI)

The density fluctuation spectrum in the solar wind reveals a Kolmogorov-like scaling with a spectral slope of -5/3 in wavenumber space. The energy transfer process in the magnetized solar wind, characterized typically by MHD turbulence, over extended length-scales remains an unresolved paradox of modern turbulence theories, raising the question of how a compressible magnetofluid exhibits a turbulent spectrum that is characteristic of an incompressible hydrodynamic fluid. To address these questions, we have undertaken three-dimensional time dependent numerical simulations of a compressible magnetohydrodynamic fluid describing super-Alfv\\'enic, supersonic and strongly magnetized plasma fluid. It is shown that a Kolmogorov-like density spectrum can develop by plasma motions that are dominated by Alfv\\'enic cascades whereas compressive modes are dissipated.

Shaikh, Dastgeer

2009-01-01T23:59:59.000Z

426

Density Spectrum in the Solar Wind Plasma  

E-Print Network (OSTI)

The density fluctuation spectrum in the solar wind reveals a Kolmogorov-like scaling with a spectral slope of -5/3 in wavenumber space. The energy transfer process in the magnetized solar wind, characterized typically by MHD turbulence, over extended length-scales remains an unresolved paradox of modern turbulence theories, raising the question of how a compressible magnetofluid exhibits a turbulent spectrum that is characteristic of an incompressible hydrodynamic fluid. To address these questions, we have undertaken three-dimensional time dependent numerical simulations of a compressible magnetohydrodynamic fluid describing super-Alfv\\'enic, supersonic and strongly magnetized plasma fluid. It is shown that a Kolmogorov-like density spectrum can develop by plasma motions that are dominated by Alfv\\'enic cascades whereas compressive modes are dissipated.

Shaikh, Dastgeer

2009-01-01T23:59:59.000Z

427

Double and single ionization of He and H{sub 2} by slow protons and antiprotons  

DOE Green Energy (OSTI)

Double and single ionization of He and H{sub 2} by proton (p) and antiproton ({bar p})impact in the energy region below 50 keV was studied theoretically by using the semiclassical molecular picture. As the energy decreased, the ratio of the double- to the single-ionization cross section increased for impact and decreased for p impact for both He and H{sub 2}. These trends are consistent with recent measurements for He. Ionization mechanisms differ distinctly for p impact and {bar p} impact. For p impact, the dominant mechanism for double ionization at the lower energies is sequential ladder climbing by the two electrons through various excited channels and finally into the continuum. For {bar p} impact, in contrast, the approaching negative charge distorts both the He and H{sub 2} electron clouds toward the other side of the nucleus and decreases the electron binding energies. These effects enhance electron-electron interactions, increasing double ionization. For the H{sub 2}, an effect of molecular orientation is an additional complication in determining the dynamics.

Kimura, Mineo [Argonne National Lab., IL (United States)]|[Rice Univ., Houston, TX (United States). Dept. of Physics; Shimamura, Isao [Riken, Inc., Wako, Saitama (Japan). Institute of Physical and Chemical Research; Inokuti, Mitio [Argonne National Lab., IL (United States)

1994-12-31T23:59:59.000Z

428

The double-arm barn door tracker  

NLE Websites -- All DOE Office Websites (Extended Search)

How to build a double-arm barn door tracker How to build a double-arm barn door tracker | Jefferson Lab Home Page | Science Education Home Page | Construction Notes/Photos Page | Sources: Sky & Telescope April 1989 (p436 - p441) [very good] Sky & Telescope February 1988 (p213 - p214) Original concept by Dave Trott A single-arm barn door tracker, driven by a straight screw, accumulates tangent error as time passes. Most of this error can be eliminated by adding a second hinged arm to the standard arrangement. There are four types of double-arm trackers, each with a different geometry. A comparison of accumulated error (in arc seconds) and construction parameters is given below: Error Chart [Apparently Type 1 is very bad and not worth constructing?? The two Type 4 drives vary in beta. This results in shifting the region of maximum error

429

Hydrogen-based electrochemical energy storage - Energy ...  

An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage ...

430

The double-beta decay: Theoretical challenges  

Science Conference Proceedings (OSTI)

Neutrinoless double beta decay is a unique process that could reveal physics beyond the Standard Model of particle physics namely, if observed, it would prove that neutrinos are Majorana particles. In addition, it could provide information regarding the neutrino masses and their hierarchy, provided that reliable nuclear matrix elements can be obtained. The two neutrino double beta decay is an associate process that is allowed by the Standard Model, and it was observed for about ten nuclei. The present contribution gives a brief review of the theoretical challenges associated with these two process, emphasizing the reliable calculation of the associated nuclear matrix elements.

Horoi, Mihai [Department of Physics, Central Michigan University, Mount Pleasant, Michigan, 48859 (United States)

2012-11-20T23:59:59.000Z

431

Scintillating bolometers for Double Beta Decay search  

E-Print Network (OSTI)

In the field of Double Beta Decay (DBD) searches, the use of high resolution detectors in which background can be actively discriminated is very appealing. Scintillating bolometers containing a Double Beta Decay emitter can largely fulfill this very interesting possibility. In this paper we present the latest results obtained with CdWO4 and CaMoO4 crystals. Moreover we report, for the first time, a very interesting feature of CaMoO4 bolometers: the possibility to discriminate beta-gamma events from those induced by alpha particles thanks to different thermal pulse shape.

Gironi, Luca

2009-01-01T23:59:59.000Z

432

Scintillating bolometers for Double Beta Decay search  

E-Print Network (OSTI)

In the field of Double Beta Decay (DBD) searches, the use of high resolution detectors in which background can be actively discriminated is very appealing. Scintillating bolometers containing a Double Beta Decay emitter can largely fulfill this very interesting possibility. In this paper we present the latest results obtained with CdWO4 and CaMoO4 crystals. Moreover we report, for the first time, a very interesting feature of CaMoO4 bolometers: the possibility to discriminate beta-gamma events from those induced by alpha particles thanks to different thermal pulse shape.

Luca Gironi

2009-11-05T23:59:59.000Z

433

Gravitational energy  

E-Print Network (OSTI)

Observers at rest in a stationary spacetime flat at infinity can measure small amounts of rest-mass+internal energies+kinetic energies+pressure energy in a small volume of fluid attached to a local inertial frame. The sum of these small amounts is the total "matter energy" for those observers. The total mass-energy minus the matter energy is the binding gravitational energy. Misner, Thorne and Wheeler evaluated the gravitational energy of a spherically symmetric static spacetime. Here we show how to calculate gravitational energy in any static and stationary spacetime for isolated sources with a set of observers at rest. The result of MTW is recovered and we find that electromagnetic and gravitational 3-covariant energy densities in conformastatic spacetimes are of opposite signs. Various examples suggest that gravitational energy is negative in spacetimes with special symmetries or when the energy-momentum tensor satisfies usual energy conditions.

Joseph Katz

2005-10-20T23:59:59.000Z

434

Energy News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 31, 2013 October 31, 2013 Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Innovative Hybrid Technology to Deploy Cost-Competitive, Clean Energy and Improve Plant Efficiency October 22, 2013 Energy Department Announces $60 Million to Drive Affordable, Efficient Solar Power Building on President Obama's broad-based plan to cut carbon pollution and support clean energy innovation across the country, Energy Secretary Moniz announced about $60 million to support innovative solar energy research and development. October 21, 2013 FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking

435

Energy content: 43 to 47 KJ/gram not much different from candlewax or candybars (physical density of gasoline is about .73 times that of water (.73 g/cc...it floats!).  

E-Print Network (OSTI)

Joules in 2000. Everyday Usage and Energy Equivalencies Everyday Usage and Energy Equivalencies 1 barrel of oilGASOLINE: Energy content: 43 to 47 KJ/gram not much different from candlewax or candybars (physical-C-C-C-C-C-C-C-C-H Decane | | | | | | | | | | H H H H H H H H H H Typical molecules found in gasoline Rough Values of Power

436

Dynamical density functional theory for dense atomic liquids  

E-Print Network (OSTI)

Starting from Newton's equations of motion, we derive a dynamical density functional theory (DDFT) applicable to atomic liquids. The theory has the feature that it requires as input the Helmholtz free energy functional from equilibrium density functional theory. This means that, given a reliable equilibrium free energy functional, the correct equilibrium fluid density profile is guaranteed. We show that when the isothermal compressibility is small, the DDFT generates the correct value for the speed of sound in a dense liquid. We also interpret the theory as a dynamical equation for a coarse grained fluid density and show that the theory can be used (making further approximations) to derive the standard mode coupling theory that is used to describe the glass transition. The present theory should provide a useful starting point for describing the dynamics of inhomogeneous atomic fluids.

A. J. Archer

2006-04-25T23:59:59.000Z

437

On the possible common nature of double extensive air showers and aligned events  

Science Conference Proceedings (OSTI)

Double extensive air showers and aligned events at energies in the region E Greater-Than-Or-Equivalent-To 10{sup 16} eV were discovered more than a quarter of a century ago. However, there is still no satisfactory explanation of their nature. In the present study, it is assumed that these two types of events have common nature, stemming from the break of a string that arises in the interaction of ultrahigh-energy particles.

Yakovlev, V. I. [Russian Academy of Sciences, Lebedev Institute of Physics (Russian Federation)

2012-07-15T23:59:59.000Z

438

Low density carbonized composite foams  

DOE Patents (OSTI)

A carbonized composite foam having a density less than about 50 mg/cm{sup 3} and individual cell sizes no greater than about 1 {mu}m in diameter is described, and the process of making it. 3 figs.

Kong, Fung-Ming.

1989-12-07T23:59:59.000Z

439

The Role of Nuclear Motion in the Photo-Double Ionization ofMolecular Hydrogen  

DOE Green Energy (OSTI)

We examine the origin of recently observed variations with internuclear distance (R) of the fully differential cross sections for double ionization of aligned H2 by absorption of a single photon. Using the results of fully converged numerical solutions of the Schroedinger equation, we show that these variations arise primarily from pronounced differences in the R-dependence of the parallel and perpendicular components of the ionization amplitude. We also predict that R-dependences should be readily observable in the asymmetry parameter for photo-double ionization, even in experimental measurements that are not differential in the energy sharings between ejected photo-electrons.

Horner, Daniel A.; Vanroose, Wim; Rescigno, Thomas N.; Martin,Fernando; McCurdy, C. William

2006-10-26T23:59:59.000Z

440

Double Higgs Production at the LHC as a robust test of Little Higgs models  

E-Print Network (OSTI)

We analyze double Higgs boson production at the LHC in the context of Little Higgs models. In double Higgs production, the diagrams involved are directly related to those that cause the cancellation of the quadratic divergence of the Higgs self-energy, so this mode provides a robust prediction for this class of models. We find that in extensions of this model with the inclusion of a so-called T-parity, there is a significant enhancement in the cross sections as compared to the Standard Model.

Claudio O. Dib; Rogerio ROsenfeld; Alfonso Zerwekh

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The density of surface states as the total time delay  

E-Print Network (OSTI)

For a scattering problem of tight-binding Bloch electrons by a weak random surface potential, a generalized Levinson theorem is put forward showing the equality of the total density of surface states and the density of the total time delay. The proof uses explicit formulas for the wave operators in the new rescaled energy and interaction (REI) representation, as well as an index theorem for adequate associated operator algebras.

Hermann Schulz-Baldes

2013-05-09T23:59:59.000Z

442

The benchmark of gutzwiller density functional theory in hydrogen systems  

SciTech Connect

We propose an approximate form of the exchange-correlation energy functional for the Gutzwiller density functional theory. It satisfies certain physical constraints in both weak and strong electron correlation limits. We benchmark the Gutzwiller density functional approximation in the hydrogen systems, where the static correlation error is shown to be negligible. The good transferability is demonstrated by applications to the hydrogen molecule and some crystal structures.

Yao, Y.; Wang, Cai-Zhuang; Ho, Kai-Ming

2012-02-23T23:59:59.000Z

443

A Microscopic Double-Slit Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

A Microscopic Double-Slit A Microscopic Double-Slit Experiment A Microscopic Double-Slit Experiment Print Wednesday, 29 February 2012 00:00 Two centuries ago, Thomas Young performed the classic demonstration of the wave nature of light. He placed a screen with two tiny slits in front of a single light source, effectively converting it into a two-centered source. On a second screen far away, he saw a pattern of light and dark diffraction fringes, a well-known hallmark of wave interference. Along with later studies using particles instead of light, the experiment played a crucial role in establishing the validity of wave-particle duality, a puzzling concept that has ultimately become central to the interpretation of complementarity in quantum mechnanics. In a new twist on this classic experiment, the double slit (with light waves) has been replaced by a diatomic molecule (with electron waves). At ALS Beamline 10.0.1, researchers have shown that diatomic molecules can serve as two-center emitters of electron waves and that traces of electron-wave interference can be directly observed in precise measurements of vibrationally resolved photoionization spectra.

444

The Dynamics of Double Monsoon Onsets  

Science Conference Proceedings (OSTI)

Double monsoon onset develops when the strong convection in the Bay of Bengal is accompanied by the monsoonlike circulation and appears in the Indian Ocean in early May, which is about 3 weeks earlier than the climatological date of the onset (1 ...

Maria K. Flatau; Piotr J. Flatau; Daniel Rudnick

2001-11-01T23:59:59.000Z

445

Double?Quantum Light Scattering by Molecules  

Science Conference Proceedings (OSTI)

Double?quantum light scattering by a system of molecules is discussed in this paper. Expressions have been obtained for the scattered light intensity considering both the coherent and incoherent contributions. In that coherent contributions are also considered in this treatment

R. Bersohn; Yoh?Han Pao; H. L. Frisch

1966-01-01T23:59:59.000Z

446

Energy  

Office of Legacy Management (LM)

..) ".. ..) ".. _,; ,' . ' , ,; Depar?.me.nt ,of.' Energy Washington; DC 20585 : . ' , - $$ o"\ ' ~' ,' DEC ?;$ ;y4,,, ~ ' .~ The Honorable John Kalwitz , 200 E. Wells Street Milwaukee, W~isconsin 53202, . . i :. Dear,Mayor 'Kalwitz: " . " Secretary of Energy Hazel' O'Leary has announceha new,approach 'to,openness in " the Department of Ene~rgy (DOE) and its communications with'the public. In -. support of~this initiative, we areipleased to forward the enclosed information related to the Milwaukee Ai.rport site in your jurisdiction that performed work, for DOE orits predecessor agencies. information; use, and retention. ., This information .is provided for your '/ ,' DOE's Formerly Utilized Sites Remedial:'Action~'Prog&is responsible for ,"'

447

Dark Energy  

E-Print Network (OSTI)

After some remarks about the history and the mystery of the vacuum energy I shall review the current evidence for a cosmologically significant nearly homogeneous exotic energy density with negative pressure (`Dark Energy'). Special emphasis will be put on the recent polarization measurements by WMAP and their implications. I shall conclude by addressing the question: Do the current observations really imply the existence of a dominant dark energy component?

Norbert Straumann

2003-11-26T23:59:59.000Z

448

Nuclear Density Functional Theory and the Equation of State  

E-Print Network (OSTI)

A nuclear density functional can be used to find the binding energy and shell structure of nuclei and the energy gap in superconducting nuclear matter. In this paper, we study the possible application of a nuclear density functional theory to nuclear astrophysics. From energy density functional theory, we can deduce the interaction between nucleons to find a rough estimate of the charge radius of the specific nuclei. Compared to the Finite-Range Thomas Fermi model, we include three-body forces, which might be important at densities several times that of nuclear matter density. We also add the momentum dependent interaction to take into account the effective mass of the nucleons. We study matter in the neutron star crust using the Wigner-Seitz cell method. By constructing the mass-radius relation of neutron stars and investigating lepton-rich nuclear matter in proto-neutron stars, we find that the density functional can be used to construct an equation of state of hot dense matter.

Yeunhwan Lim

2011-04-06T23:59:59.000Z

449

Nuclear Density Functional Theory and the Equation of State  

E-Print Network (OSTI)

A nuclear density functional can be used to find the binding energy and shell structure of nuclei and the energy gap in superconducting nuclear matter. In this paper, we study the possible application of a nuclear density functional theory to nuclear astrophysics. From energy density functional theory, we can deduce the interaction between nucleons to find a rough estimate of the charge radius of the specific nuclei. Compared to the Finite-Range Thomas Fermi model, we include three-body forces, which might be important at densities several times that of nuclear matter density. We also add the momentum dependent interaction to take into account the effective mass of the nucleons. We study matter in the neutron star crust using the Wigner-Seitz cell method. By constructing the mass-radius relation of neutron stars and investigating lepton-rich nuclear matter in proto-neutron stars, we find that the density functional can be used to construct an equation of state of hot dense matter.

Lim, Yeunhwan

2011-01-01T23:59:59.000Z

450

China and India account for half of global energy growth through ...  

U.S. Energy Information Administration (EIA)

Strong economic growth leads China and India to more than double their combined energy demand by 2035, accounting for one-half of the world's energy growth according ...

451

Energy Flux We discuss various ways of describing energy flux and related quantities.  

E-Print Network (OSTI)

Chapter 6 Energy Flux We discuss various ways of describing energy flux and related quantities. 6.0.1 Energy Current Density The energy current density is given by the Poynting vector S = E Ã? H (6.1) where all quantities are real. The Poynting vector gives the instantaneous lo- cal energy current density

Palffy-Muhoray, Peter

452

Middle School Academic Competition - Double Elimination | U.S. DOE Office  

Office of Science (SC) Website

Academic Competition - Double Academic Competition - Double Elimination National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2012 Competition Results Middle School Academic Competition - Double Elimination Print Text Size: A A A RSS Feeds FeedbackShare Page No-Loss Bracket .pdf file (247KB) Challengers' Bracket .pdf file (240KB)

453

High School Academic Competition - Double Elimination | U.S. DOE Office of  

Office of Science (SC) Website

Double Double Elimination National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2012 Competition Results High School Academic Competition - Double Elimination Print Text Size: A A A RSS Feeds FeedbackShare Page No-Loss Bracket .pdf file (76KB) Challengers' Bracket .pdf file (67KB) Last modified: 4/15/2013 1:39:57

454

Savings Project: How to Weatherstrip Double-Hung (or Sash) Windows |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weatherstrip Double-Hung (or Sash) Windows Weatherstrip Double-Hung (or Sash) Windows Savings Project: How to Weatherstrip Double-Hung (or Sash) Windows Addthis Project Level Easy Energy Savings 5 - 10% Time to Complete 1 hour Overall Cost $5 - $10 Look for air leaks in these common places in your home. | Photo courtesy of U.S. EPA. Look for air leaks in these common places in your home. | Photo courtesy of U.S. EPA. You can use weatherstripping in your home to seal air leaks around movable joints, such as windows or doors. To determine how much weatherstripping you will need, add the perimeters of all windows and doors to be weatherstripped, then add about 10 percent to accommodate any waste. When choosing the type of weatherstripping to use, take in consideration that the product can come in varying depths and widths. Choose a type of

455

Controlling double ionization of atoms in an intense bichromatic laser pulse  

SciTech Connect

We consider the classical dynamics of a two-electron system subjected to an intense bichromatic linearly polarized laser pulse. By varying the parameters of the field, such as the phase lag and the relative amplitude between the two colors of the field, we observe several trends from the statistical analysis of a large ensemble of trajectories initially in the ground-state energy of the helium atom: high sensitivity of the sequential double-ionization component, low sensitivity of the intensities where nonsequential double ionization occurs, while the corresponding yields can vary drastically. All these trends hold irrespective of which parameter is varied: the phase lag or the relative amplitude. We rationalize these observations by an analysis of the phase-space structures that drive the dynamics of this system and determine the extent of double ionization. These trends turn out to be mainly regulated by the dynamics of the inner electron.

Kamor, A.; Uzer, T. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430 (United States); Mauger, F.; Chandre, C. [Centre de Physique Theorique, CNRS, Aix-Marseille Universite, Campus de Luminy, case 907, 13288 Marseille cedex 09 (France)

2011-03-15T23:59:59.000Z

456

A Ni-Fe Layered Double Hydroxide-Carbon Nanotube Complex for Water Oxidation  

E-Print Network (OSTI)

Highly active, durable and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions including water splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel iron layered double hydroxide nanoplates on mildly oxidized multi-walled carbon nanotubes. Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-layered double hydroxide. The nanoplates were covalently attached to a network of nanotubes, affording excellent electrical wiring to the nanoplates. The ultra-thin Ni-Fe layered double hydroxide nanoplates/carbon nanotube complex was found to exhibit unusually high electro-catalytic activity and stability for oxygen evolution and outperformed commercial precious metal Ir catalysts.

Gong, Ming; Wang, Hailiang; Liang, Yongye; Wu, Justin Zachary; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie

2013-01-01T23:59:59.000Z

457

On the classical solution for the double-brane background in open string field theory  

E-Print Network (OSTI)

Murata and Schnabl recently proposed solutions for the multiple-brane backgrounds in Witten's open bosonic string field theory. The solutions contain some singularities, and in one particular regularization, the double-brane solution reproduces the desired energy and the Ellwood invariant, which is conjectured to represent coupling to a closed string. However, it turned out that the equation of motion is slightly violated. In this paper, we propose another regularization method for the double-brane solution. The regularized solution is realized as a superposition of the wedge states with operator insertions. It respects the equation of motion both contracted with the solution itself and with the states in the Fock space. It reproduces the desired double-brane tension, while the expected Ellwood invariant is not obtained.

Masuda, Toru

2012-01-01T23:59:59.000Z

458

A monochromatic x-ray imaging system for characterizing low-density foams  

SciTech Connect

In High Energy Density (HED) laser experiments, targets often require small, low-density, foam components. However, their limited size can preclude single component characterization, forcing one to rely solely on less accurate bulk measurements. We have developed a monochromatic imaging a system to characterize both the density and uniformity of single component low-mass foams. This x-ray assembly is capable of determining line-averaged density variations near the 1% level, and provides statistically identical results to those obtained at the Brookhaven's NSLS. This system has the added benefit of providing two-dimensional density data, allowing an assessment of density uniformity.

Lanier, Nicholas E. [Los Alamos National Laboratory; Taccetti, Jose M. [Los Alamos National Laboratory; Hamilton, Christopher E. [Los Alamos National Laboratory

2012-05-04T23:59:59.000Z

459

Double Your Kinetic Energy: Disappearance of the Classical Limit in ...  

Science Conference Proceedings (OSTI)

New Saccharification Process of Cellulosic Biomass by Microwave Irradiation · Novel Lamination Method for Large Armor Panels · Raman Spectroscopy for ...

460

Angolan oil production has doubled since 2003 - Today in Energy ...  

U.S. Energy Information Administration (EIA)

International oil companies, including Chevron, ExxonMobil, Total, Eni, and BP, play a major role in Angola, operating most production.

Note: This page contains sample records for the topic "doubling energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Quasi-equilibrium electron density along a magnetic field line  

SciTech Connect

A methodology is developed to determine the density of high-energy electrons along a magnetic field line for a low-{beta} plasma. This method avoids the expense and statistical noise of traditional particle tracking techniques commonly used for high-energy electrons in bombardment plasma generators. By preserving the magnetic mirror and assuming a mixing timescale, typically the elastic collision frequency with neutrals, a quasi-equilibrium electron distribution can be calculated. Following the transient decay, the analysis shows that both the normalized density and the reduction fraction due to collision converge to a single quasi-equilibrium solution.

Mao, Hann-Shin; Wirz, Richard [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095 (United States)

2012-11-26T23:59:59.000Z

462

Carports with Solar Panels do Double Duty for Navy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carports with Solar Panels do Double Duty for Navy Carports with Solar Panels do Double Duty for Navy May 14, 2010 - 12:22pm Addthis Joshua DeLung What does this project do? In...

463

EA-1136: Double Tracks Test Site, Nye County, Nevada | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Double Tracks Test Site, Nye County, Nevada EA-1136: Double Tracks Test Site, Nye County, Nevada SUMMARY This EA evaluates the environmental impacts of the proposal for the U.S....

464

The Small Quantum Group as a Quantum Double  

E-Print Network (OSTI)

We prove that the quantum double of the quasi-Hopf algebra View the MathML source of We prove that the quantum double of the quasi-Hopf algebra Aq(g)

Etingof, Pavel I.

465

Minimally doubled fermions at one-loop level  

E-Print Network (OSTI)

Single fermionic degrees of freedom together with standard chiral symmetry at finite lattice spacing, correct continuum limit and local interactions only are precluded by the Nielsen-Ninomiya no-go theorem. The class of minimally doubled fermion actions exhibits exactly two chiral modes. Recent interest in these actions has been sparked by the investigation of fermionic actions defined on "hyperdiamond" lattices. Due to the necessity of breaking hypercubic symmetry explicitly, radiative corrections generate operator mixings with relevant and marginal operators that should vanish in continuum QCD. These cannot be avoided and must be taken into account in particular by a peculiar wave-function renormalisation and additive momentum renormalisation. Renormalisation properties at one-loop level of the self-energy, local bilinears and conserved vector and axial-vector currents are presented for Borici-Creutz and Karsten-Wilczek actions. Distinct differences and similarities between both actions are elucidated.

Capitani, Stefano; Wittig, Hartmut

2009-01-01T23:59:59.000Z

466

Search for ? + / EC double beta decay of 120 Te  

Science Conference Proceedings (OSTI)

We present a search for ? + / EC double beta decay of 120 Te performed with the CUORICINO experiment

C. Tomei; The CUORICINO Collaboration

2011-01-01T23:59:59.000Z

467

Tank characterization for Double-Shell Tank 241-AP-102  

SciTech Connect

This document provides the characterization information and interprets the data for Double-Shell Tank AP-102.

DeLorenzo, D.S.; DiCenso, A.T.; Amato, L.C.; Weyns-Rollosson, M.I.; Smith, D.J. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Simpson, B.C.; Welsh, T.L. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

468

System Specification for the Double Shell Tank (DST) System  

Science Conference Proceedings (OSTI)

This document establishes the functional, performance, design, development, interface and test requirements for the Double-Shell Tank System.

GRENARD, C.E.

2000-04-21T23:59:59.000Z

469

Double layer capacitance of carbon foam electrodes  

DOE Green Energy (OSTI)

We have evaluated a wide variety of microcellular carbon foams prepared by the controlled pyrolysis and carbonization of several polymers including: polyacrylonitrile (PAN), polymethacrylonitrile (PMAN), resorcinol/formaldehyde (RF), divinylbenzene/methacrylonitrile (DVB), phenolics (furfuryl/alcohol), and cellulose polymers such as Rayon. The porosity may be established by several processes including: Gelation (1-5), phase separation (1-3,5-8), emulsion (1,9,10), aerogel/xerogel formation (1,11,12,13), replication (14) and activation. In this report we present the complex impedance analysis and double layer charging characteristics of electrodes prepared from one of these materials for double layer capacitor applications, namely activated cellulose derived microcellular carbon foam.

Delnick, F.M.; Ingersoll, D. [Sandia National Labs., Albuquerque, NM (United States); Firsich, D. [EG& G Mound Lab., Miamisburg, OH (United States)

1993-11-01T23:59:59.000Z

470

Development of asymmetric double probe formula and its application for collisional plasmas  

SciTech Connect

The ratio of the electron and ion saturation currents in single probe I-V characteristics for microwave-sustained plasma jets at atmospheric pressure are found to be much smaller than the value expected from the standard high-pressure single probe theory providing an over estimation of electron temperatures. By assuming that the single probe characteristic behaves as an asymmetric double probe when the electron to ion saturation current ratio is reduced, the whole characteristics may be fitted and significantly lower electron temperatures may be derived. In this study, asymmetric double probe theory for collisional plasmas is developed and employed to microwave-sustained helium plasma jets in order to estimate the plasma parameters (electron temperature and plasma density) at atmospheric pressure avoiding the overestimation of electron temperature.

Saito, S.; Razzak, M. A.; Takamura, S.; Talukder, M. R. [Faculty of Engineering, Aichi Institute of Technology, 470-0392 Toyota (Japan)

2010-06-15T23:59:59.000Z

471

Frequency-doubled vertical-external-cavity surface-emitting laser  

DOE Patents (OSTI)

A frequency-doubled semiconductor vertical-external-cavity surface-emitting laser (VECSEL) is disclosed for generating light at a wavelength in the range of 300-550 nanometers. The VECSEL includes a semiconductor multi-quantum-well active region that is electrically or optically pumped to generate lasing at a fundamental wavelength in the range of 600-1100 nanometers. An intracavity nonlinear frequency-doubling crystal then converts the fundamental lasing into a second-harmonic output beam. With optical pumping with 330 milliWatts from a semiconductor diode pump laser, about 5 milliWatts or more of blue light can be generated at 490 nm. The device has applications for high-density optical data storage and retrieval, laser printing, optical image projection, chemical-sensing, materials processing and optical metrology.

Raymond, Thomas D. (Edgewood, NM); Alford, William J. (Albuquerque, NM); Crawford, Mary H. (Albuquerque, NM); Allerman, An