National Library of Energy BETA

Sample records for doubling energy density

  1. Silicon-Nanowire Based Lithium Ion Batteries for Vehicles With Double the Energy Density

    SciTech Connect (OSTI)

    Stefan, Ionel; Cohen, Yehonathan

    2015-03-31

    Amprius researched and developed silicon nanowire anodes. Amprius then built and delivered high-energy lithium-ion cells that met the project’s specific energy goal and exceeded the project’s energy density goal. But Amprius’ cells did not meet the project’s cycle life goal, suggesting additional manufacturing process development is required. With DOE support, Amprius developed a new anode material, silicon, and a new anode structure, nanowire. During the project, Amprius also began to develop a new multi-step manufacturing process that does not involve traditional anode production processes (e.g. mixing, drying and calendaring).

  2. Cholesky-decomposed density MP2 with density fitting: Accurate MP2 and double-hybrid DFT energies for large systems

    SciTech Connect (OSTI)

    Maurer, Simon A.; Clin, Lucien; Ochsenfeld, Christian

    2014-06-14

    Our recently developed QQR-type integral screening is introduced in our Cholesky-decomposed pseudo-densities Mller-Plesset perturbation theory of second order (CDD-MP2) method. We use the resolution-of-the-identity (RI) approximation in combination with efficient integral transformations employing sparse matrix multiplications. The RI-CDD-MP2 method shows an asymptotic cubic scaling behavior with system size and a small prefactor that results in an early crossover to conventional methods for both small and large basis sets. We also explore the use of local fitting approximations which allow to further reduce the scaling behavior for very large systems. The reliability of our method is demonstrated on test sets for interaction and reaction energies of medium sized systems and on a diverse selection from our own benchmark set for total energies of larger systems. Timings on DNA systems show that fast calculations for systems with more than 500 atoms are feasible using a single processor core. Parallelization extends the range of accessible system sizes on one computing node with multiple cores to more than 1000 atoms in a double-zeta basis and more than 500 atoms in a triple-zeta basis.

  3. Spin projection with double hybrid density functional theory

    SciTech Connect (OSTI)

    Thompson, Lee M.; Hratchian, Hrant P.

    2014-07-21

    A spin projected double-hybrid density functional theory is presented that accounts for different scaling of opposite and same spin terms in the second order correction. This method is applied to three dissociation reactions which in the unprojected formalism exhibit significant spin contamination with higher spin states. This gives rise to a distorted potential surface and can lead to poor geometries and energies. The projected method presented is shown to improve the description of the potential over unprojected double hybrid density functional theory. Comparison is made with the reference states of the two double hybrid functionals considered here (B2PLYP and mPW2PLYP) in which the projected potential surface is degraded by an imbalance in the description of dynamic and static correlation.

  4. Energy in density gradient

    SciTech Connect (OSTI)

    Vranjes, J.; Kono, M.

    2015-01-15

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.

  5. High Energy Density Capacitors

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of todays best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  6. Double Flash | Open Energy Information

    Open Energy Info (EERE)

    Double Flash Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDoubleFlash&oldid599606...

  7. High Energy Density Microwaves

    SciTech Connect (OSTI)

    Phillips, R.M. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)

    1999-04-01

    These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)

  8. Density-dependent covariant energy density functionals

    SciTech Connect (OSTI)

    Lalazissis, G. A.

    2012-10-20

    Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

  9. Double-hybrid density-functional theory with meta-generalized-gradient approximations

    SciTech Connect (OSTI)

    Souvi, Sidi M. O. Sharkas, Kamal; Toulouse, Julien; CNRS, UMR 7616, Laboratoire de Chimie Thorique, F-75005 Paris

    2014-02-28

    We extend the previously proposed one-parameter double-hybrid density-functional theory [K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011)] to meta-generalized-gradient-approximation (meta-GGA) exchange-correlation density functionals. We construct several variants of one-parameter double-hybrid approximations using the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA functional and test them on test sets of atomization energies and reaction barrier heights. The most accurate variant uses the uniform coordinate scaling of the density and of the kinetic energy density in the correlation functional, and improves over both standard Kohn-Sham TPSS and second-order Mller-Plesset calculations.

  10. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect (OSTI)

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  11. High-Energy-Density Plasmas, Fluids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities High-Energy-Density Plasmas, Fluids science-innovationassetsimagesicon-science.jpg High-Energy-Density Plasmas, Fluids National security depends on science and ...

  12. Building a Universal Nuclear Energy Density Functional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building a Universal Nuclear Energy Density Functional Building a Universal Nuclear Energy Density Functional VaryMatrix.png Collaboration with mathematicians and computational...

  13. Probability distribution of the vacuum energy density

    SciTech Connect (OSTI)

    Duplancic, Goran; Stefancic, Hrvoje; Glavan, Drazen

    2010-12-15

    As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.

  14. Density Log | Open Energy Information

    Open Energy Info (EERE)

    Density Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Density Log Details Activities (7) Areas (6) Regions (0) NEPA(0) Exploration...

  15. Rock Density | Open Energy Information

    Open Energy Info (EERE)

    Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Density Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique...

  16. The Quantum Energy Density: Improved E

    SciTech Connect (OSTI)

    Krogel, Jaron; Yu, Min; Kim, Jeongnim; Ceperley, David M.

    2013-01-01

    We establish a physically meaningful representation of a quantum energy density for use in Quantum Monte Carlo calculations. The energy density operator, dened in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon \\gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total energy dierences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more eciently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total energy calculation.

  17. Oxides having high energy densities

    DOE Patents [OSTI]

    Ceder, Gerbrand; Kang, Kisuk

    2013-09-10

    Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

  18. Double Coil Condenser Apparatus - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Dosimetry Records System PIA, bechtel Jacobs Company, LLC Dosimetry Records System PIA, bechtel Jacobs Company, LLC Dosimetry Records System PIA, bechtel Jacobs Company, LLC PDF icon Dosimetry Records System PIA, bechtel Jacobs Company, LLC More Documents & Publications Electronic Document Management System PIA, BechtelJacobs Company, LLC Pension Estimate System PIA, Bechtel Jacobs Company, LLC Medgate, PIA, Bechtel Jacobs Company, LLC

    Double Coil Condenser Apparatus A glass

  19. High Energy Density Ultracapacitors | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    High Energy Cost Grant Program provides financial assistance for the improvement of energy generation, transmission, and distribution facilities servicing eligible rural communities with home energy costs that are over 275% of the national average. Grants under this program may be used for the acquisition, construction, installation, repair, replacement, or improvement of energy generation, transmission, or distribution facilities in communities with extremely high energy costs. On-grid and

  20. PLZT Nano-Precursors for High Energy Density Applications - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Find More Like This Return to Search PLZT Nano-Precursors for High Energy Density Applications Sandia National Laboratories Contact SNL About This Technology ...

  1. Synergy between pair coupled cluster doubles and pair density functional theory

    SciTech Connect (OSTI)

    Garza, Alejandro J.; Bulik, Ireneusz W.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2015-01-28

    Pair coupled cluster doubles (pCCD) has been recently studied as a method capable of accounting for static correlation with low polynomial cost. We present three combinations of pCCD with KohnSham functionals of the density and on-top pair density (the probability of finding two electrons on top of each other) to add dynamic correlation to pCCD without double counting. With a negligible increase in computational cost, these pCCD+DFT blends greatly improve upon pCCD in the description of typical problems where static and dynamic correlations are both important. We argue thatas a black-box method with low scaling, size-extensivity, size-consistency, and a simple quasidiagonal two-particle density matrixpCCD is an excellent match for pair density functionals in this type of fusion of multireference wavefunctions with DFT.

  2. Energy flux density in a thermoacoustic couple

    SciTech Connect (OSTI)

    Cao, N.; Chen, S. |; Olson, R.; Swift, G.W.

    1996-06-01

    The hydro- and thermodynamical processes near and within a thermoacoustic couple are simulated and analyzed by numerical solution of the compressible Navier-Stokes, continuity, and energy equations for an ideal gas, concentrating on the time-averaged energy flux density in the gas. The numerical results show details of the heat sink at one end of the plates in the thermoacoustic couple. 15 refs., 10 figs., 1 tab.

  3. Mitigating Breakdown in High Energy Density Perovskite Polymer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012 ...

  4. BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF...

    Office of Scientific and Technical Information (OSTI)

    BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF) Citation Details In-Document Search Title: BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF) The ...

  5. High Energy Density Laboratory Plasmas Program | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program NNSA invests in next ...

  6. High Energy Density Utracapacitors: Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors

    SciTech Connect (OSTI)

    2010-04-01

    Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitora battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy densityhigh energy density means more energy storage. FastCAP is redesigning the ultracapacitors internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAPs ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitors electrode, increasing the overall efficiency and energy density of the device.

  7. Energy levels of double triangular graphene quantum dots

    SciTech Connect (OSTI)

    Liang, F. X.; Jiang, Z. T. Zhang, H. Y.; Li, S.; Lv, Z. T.

    2014-09-28

    We investigate theoretically the energy levels of the coupled double triangular graphene quantum dots (GQDs) based on the tight-binding Hamiltonian model. The double GQDs including the ZZ-type, ZA-type, and AA-type GQDs with the two GQDs having the zigzag or armchair boundaries can be coupled together via different interdot connections, such as the direct coupling, the chains of benzene rings, and those of carbon atoms. It is shown that the energy spectrum of the coupled double GQDs is the amalgamation of those spectra of the corresponding two isolated GQDs with the modification triggered by the interdot connections. The interdot connection is inclined to lift up the degeneracies of the energy levels in different degree, and as the connection changes from the direct coupling to the long chains, the removal of energy degeneracies is suppressed in ZZ-type and AA-type double GQDs, which indicates that the two coupled GQDs are inclined to become decoupled. Then we consider the influences on the spectra of the coupled double GQDs induced by the electric fields applied on the GQDs or the connection, which manifests as the global spectrum redistribution or the local energy level shift. Finally, we study the symmetrical and asymmetrical energy spectra of the double GQDs caused by the substrates supporting the two GQDs, clearly demonstrating how the substrates affect the double GQDs' spectrum. This research elucidates the energy spectra of the coupled double GQDs, as well as the mechanics of manipulating them by the electric field and the substrates, which would be a significant reference for designing GQD-based devices.

  8. Category:Rock Density | Open Energy Information

    Open Energy Info (EERE)

    Rock Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Rock Density page? For detailed information on Rock Density as...

  9. Inductor Geometry With Improved Energy Density

    SciTech Connect (OSTI)

    Cui, H; Ngo, KDT; Moss, J; Lim, MHF; Rey, E

    2014-10-01

    The "constant-flux" concept is leveraged to achieve high magnetic-energy density, leading to inductor geometries with height significantly lower than that of conventional products. Techniques to shape the core and to distribute the winding turns to shape a desirable field profile are described for the two basic classes of magnetic geometries: those with the winding enclosed by the core and those with the core enclosed by the winding. A relatively constant flux distribution is advantageous not only from the density standpoint, but also from the thermal standpoint via the reduction of hot spots, and from the reliability standpoint via the suppression of flux crowding. In this journal paper on a constant-flux inductor (CFI) with enclosed winding, the foci are operating principle, dc analysis, and basic design procedure. Prototype cores and windings were routed from powder-iron disks and copper sheets, respectively. The design of CFI was validated by the assembled inductor prototype.

  10. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  11. The aerocapacitor: An electrochemical double-layer energy-storage device

    SciTech Connect (OSTI)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-10-01

    The authors have applied unique types of carbon foams developed at Lawrence Livermore National Laboratory (LLNL) to make an {open_quotes}aerocapacitor{close_quotes}. The aerocapacitor is a high power-density, high energy-density, electrochemical double-layer capacitor which uses carbon aerogels as electrodes. These electrodes possess very high surface area per unit volume and are electrically continuous in both the carbon and electrolyte phase on a 10 nm scale. Aerogel surface areas range from 100 to 700 m{sup 2}/cc (as measured by BET analysis), with bulk densities of 0.3 to 1.0 g/cc. This morphology permits stored energy to be released rapidly, resulting in high power densities (7.5 kW/kg). Materials parameterization has been performed, and device capacitances of several tens of Farads per gram and per cm{sup 3} of aerogel have been achieved.

  12. Electrical double layers and differential capacitance in molten salts from density functional theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Frischknecht, Amalie L.; Halligan, Deaglan O.; Parks, Michael L.

    2014-08-05

    Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. Inmore » conclusion, overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory.« less

  13. High Energy Density Laboratory Plasmas Program | National Nuclear...

    National Nuclear Security Administration (NNSA)

    High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems ...

  14. Building a Universal Nuclear Energy Density Functional

    SciTech Connect (OSTI)

    Carlson, Joe A.; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-30

    During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold:  First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties;  Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data;  Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  15. Building a Universal Nuclear Energy Density Functional

    SciTech Connect (OSTI)

    Bertulani, Carlos A.

    2014-09-10

    This grant had two components: Density functional theory and pairing and Nuclear reactions. This final report summarizes the activities for this SciDAC-2 project.

  16. Key Parameters Governing the Energy Density of Rechargeable Li...

    Office of Scientific and Technical Information (OSTI)

    of Rechargeable LiS Batteries Citation Details In-Document Search Title: Key Parameters Governing the Energy Density of Rechargeable LiS Batteries Authors: Gao, Jie ; ...

  17. Symmetry Energy as a Function of Density and Mass

    SciTech Connect (OSTI)

    Danielewicz, Pawel; Lee, Jenny

    2007-10-26

    Energy in nuclear matter is, in practice, completely characterized at different densities and asymmetries, when the density dependencies of symmetry energy and of energy of symmetric matter are specified. The density dependence of the symmetry energy at subnormal densities produces mass dependence of nuclear symmetry coefficient and, thus, can be constrained by that latter dependence. We deduce values of the mass dependent symmetry coefficients, by using excitation energies to isobaric analog states. The coefficient systematic, for intermediate and high masses, is well described in terms of the symmetry coefficient values of a{sub a}{sup V} = (31.5-33.5) MeV for the volume coefficient and a{sub a}{sup S} = (9-12) MeV for the surface coefficient. These two further correspond to the parameter values describing density dependence of symmetry energy, of L{approx}95 MeV and K{sub sym}{approx}25 MeV.

  18. Density-fitted singles and doubles coupled cluster on graphics processing units

    SciTech Connect (OSTI)

    Sherrill, David; Sumpter, Bobby G; DePrince, III, A. Eugene

    2014-01-01

    We adapt an algorithm for singles and doubles coupled cluster (CCSD) that uses density fitting (DF) or Cholesky decomposition (CD) in the construction and contraction of all electron repulsion integrals (ERI s) for use on heterogeneous compute nodes consisting of a multicore CPU and at least one graphics processing unit (GPU). The use of approximate 3-index ERI s ameliorates two of the major difficulties in designing scientific algorithms for GPU s: (i) the extremely limited global memory on the devices and (ii) the overhead associated with data motion across the PCI bus. For the benzene trimer described by an aug-cc-pVDZ basis set, the use of a single NVIDIA Tesla C2070 (Fermi) GPU accelerates a CD-CCSD computation by a factor of 2.1, relative to the multicore CPU-only algorithm that uses 6 highly efficient Intel core i7-3930K CPU cores. The use of two Fermis provides an acceleration of 2.89, which is comparable to that observed when using a single NVIDIA Kepler K20c GPU (2.73).

  19. DOE Zero Energy Ready Home Case Study: KB Home, Double ZeroHouse...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Double ZeroHouse 3.0, El Dorado Hill, CA DOE Zero Energy Ready Home Case Study: KB Home, Double ZeroHouse 3.0, El Dorado Hill, CA Case study of a DOE 2015 Housing Innovation Award ...

  20. Ensemble density functional theory method correctly describes bond dissociation, excited state electron transfer, and double excitations

    SciTech Connect (OSTI)

    Filatov, Michael; Huix-Rotllant, Miquel; Burghardt, Irene

    2015-05-14

    State-averaged (SA) variants of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, SA-REKS and state-interaction (SI)-SA-REKS, implement ensemble density functional theory for variationally obtaining excitation energies of molecular systems. In this work, the currently existing version of the SA-REKS method, which included only one excited state into the ensemble averaging, is extended by adding more excited states to the averaged energy functional. A general strategy for extension of the REKS-type methods to larger ensembles of ground and excited states is outlined and implemented in extended versions of the SA-REKS and SI-SA-REKS methods. The newly developed methods are tested in the calculation of several excited states of ground-state multi-reference systems, such as dissociating hydrogen molecule, and excited states of donor–acceptor molecular systems. For hydrogen molecule, the new method correctly reproduces the distance dependence of the lowest excited state energies and describes an avoided crossing between the doubly excited and singly excited states. For bithiophene–perylenediimide stacked complex, the SI-SA-REKS method correctly describes crossing between the locally excited state and the charge transfer excited state and yields vertical excitation energies in good agreement with the ab initio wavefunction methods.

  1. High Energy Density Laboratory Plasmas Program | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems have made possible the exploration of matter at extremely high energy density in the laboratory. Exciting new experimental regimes are being realized by exploiting the scientific capabilities of existing ICF Office facilities, as well as the relevant Department of Defense (DoD) and university

  2. High Energy Density Laboratory Plasmas | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration High Energy Density Laboratory Plasmas NNSA's Office of Inertial Confinement Fusion and DOE's Office of Science established a joint program in HEDLP in 2008. Initially, this program was a combination of work that was funded as part of the NNSA's Stewardship Science Academic Alliances Program in the research area of high energy density physics and the DOE Office of Science's HEDLP Program and Innovative Confinement Concepts Program. Steady advances in increasing the energy,

  3. Universal Nuclear Energy Density Functional (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Universal Nuclear Energy Density Functional Citation Details In-Document Search Title: Universal Nuclear Energy Density Functional An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate

  4. DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes, Double

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak, TX | Department of Energy Sterling Brook Custom Homes, Double Oak, TX DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes, Double Oak, TX DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes, Double Oak, TX Case study of a DOE Zero Energy Ready home in Double Oak, TX, north of Dallas, that scored a HERS 44 without PV. The 3,752-ft2 two-story home served as an energy-efficient model home for the custom home builder: 1,300 visitors toured the home, thousands

  5. Postmortem validation of breast density using dual-energy mammography

    SciTech Connect (OSTI)

    Molloi, Sabee Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.

  6. COLLOQUIUM: Frontiers in Plasma Science: A High Energy Density...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 13, 2016, 4:15pm to 5:30pm Colloquia MBG AUDITORIUM COLLOQUIUM: Frontiers in Plasma Science: A High Energy Density Perspective Dr. Bruce A. Remington Lawrence Livermore ...

  7. Secretary Moniz Unveils Roadmap to Double U.S. Energy Productivity by 2030

    Broader source: Energy.gov [DOE]

    Secretary Moniz unveiled a strategic plan laying out a roadmap to achieve the President’s goal to double U.S. energy productivity by 2030.

  8. BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF) (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF) Citation Details In-Document Search Title: BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF) The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and

  9. Electron density profile measurements at a self-focusing ion beam with high current density and low energy extracted through concave electrodes

    SciTech Connect (OSTI)

    Fujiwara, Y. Nakamiya, A.; Sakakita, H.; Innovative Plasma Technologies Group, National Institute of Advanced Industrial Science and Technology , Ibaraki ; Hirano, Y.; Laboratory of Physics, College of Science and Technologies, Nihon University, Tokyo ; Kiyama, S.; Koguchi, H.

    2014-02-15

    The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ?0.9 eV and ?8 10{sup 8} cm{sup ?3} at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.

  10. Fragment transition density method to calculate electronic coupling for excitation energy transfer

    SciTech Connect (OSTI)

    Voityuk, Alexander A.

    2014-06-28

    A general approach, the Fragment Transition Density (FTD) scheme, is introduced to estimate electronic coupling for excitation energy transfer in a molecular system. Within this method, the excitation energies and transition densities of the system are used to derive the coupling matrix element. The scheme allows one to treat systems where exciton donor and acceptor are close together and their exchange interaction and orbital overlap are significant. The FTD method can be applied in combination with any quantum mechanical approach to treat excited states of general nature including single-, double-, and higher excitations. Using FTD approach, we derive excitonic couplings for several systems computed with the CIS, TD DFT and MS-CASPT2 methods. In particular, it is shown that the estimated coupling values in DNA ?-stacks are strongly affected by the short-range electronic interaction of adjacent nucleobases.

  11. Fourth International Conference on High Energy Density Physics

    SciTech Connect (OSTI)

    Beg, Farhat

    2015-01-06

    The Fourth International Conference on High Energy Density Physics (ICHED 2013) was held in Saint Malo, France, at the Palais du Grand Large on 25-28 June 2013 (http://web.luli.polytechnique.fr/ICHED2013/). This meeting was the fourth in a series which was first held in 2008. This conference covered all the important aspects of High Energy Density Physics including fundamental topics from strong-field physics to creating new states of matter (including radiation-dominated, high-pressure quantum and relativistic plasmas) and ultra-fast lattice dynamics on the timescale of atomic transitions.

  12. Solar Energy Prices See Double-digit Declines in 2013; Trend...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Prices See Double-digit Declines in 2013; Trend Expected to Continue PV ... NREL's bottom-up PV cost modeling, and NREL's synthesis of PV market data and projections. ...

  13. Note: High-efficiency energy harvester using double-clamped piezoelectric beams

    SciTech Connect (OSTI)

    Zheng, Yingmei; Wu, Xuan; Parmar, Mitesh; Lee, Dong-weon

    2014-02-15

    In this study, an improvement in energy conversion efficiency has been reported, which is realized by using a double-clamped piezoelectric beam, based on uniaxial stretching strain. The buckling mechanism is applied to maximize axial stress in the double-clamped beam. The voltage generated by using the double-clamped piezoelectric beam is higher than that generated by using other conventional structures, such as bending cantilevers coated/sandwiched with piezoelectric film, which is proven both theoretically and experimentally. The power generation efficiency is enhanced by further optimizing the double-clamped structure. The optimized high-efficiency energy harvester utilizing double-clamped piezoelectric beams generates a peak output power of 80 μW, under an acceleration of 0.1g.

  14. Frontiers for Discovery in High Energy Density Physics

    SciTech Connect (OSTI)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  15. Finite-size instabilities in nuclear energy density functionals

    SciTech Connect (OSTI)

    Hellemans, V.; Heenen, P.-H.; Bender, M.

    2012-10-20

    The systematic lack of convergence of self-consistent mean-field calculations with certain parameterizations of the Skyrme energy density functional has been attributed to the appearance of finite-size instabilities. In this contribution, we investigate what happens at the instability associated with the C{sub 0}{sup {Delta}s}s{sub 0} Dot-Operator {Delta}s{sub 0} term in a high-spin state of the superdeformed band in {sup 194}Hg.

  16. Report: Global Share of Renewable Energy Could Double by 2030

    Broader source: Energy.gov [DOE]

    The global renewable energy share can reach and exceed 30% by 2030 at no extra cost, according to the International Renewable Energy Agency.

  17. Sefaira Serves A Double Helping of EnergyPlus with Collaboration on Top |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sefaira Serves A Double Helping of EnergyPlus with Collaboration on Top Sefaira Serves A Double Helping of EnergyPlus with Collaboration on Top November 19, 2015 - 10:52am Addthis Sefaira’s Real-Time Analysis plug-ins for Trimble SketchUp and Autodesk Revit give the user instant feedback on design changes. As of two weeks ago, these plug-ins now let the user select EnergyPlus as the simulation engine. Image credit: Sefaira. Sefaira's Real-Time Analysis plug-ins for

  18. Sustainable energy for all. Technical report of task force 2 in support of doubling the global rate of energy efficiency improvement and doubling the share of renewable energy in the global energy mix by 2030

    SciTech Connect (OSTI)

    Nakicenovic, Nebojsa; Kammen, Daniel; Jewell, Jessica

    2012-04-15

    The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force Two which is dedicated energy efficiency and renewable energy objectives. The report shows that doubling the rate of energy efficiency improvements and doubling the share of energy from renewable sources by 2030 is challenging but feasible if sufficient actions are implemented. Strong and well-informed government policies as well as extensive private investment should focus on the high impact areas identified by the task force.

  19. Towards the island of stability with relativistic energy density functionals

    SciTech Connect (OSTI)

    Prassa, V.; Niksic, T.; Lalazissis, G. A.; Vretenar, D.

    2012-10-20

    Relativistic energy density functionals (REDF) provide a complete and accurate, global description of nuclear structure phenomena. Modern semi-empirical functionals, adjusted to the nuclear matter equation of state and to empirical masses of deformed nuclei, are applied to studies of shapes of superheavy nuclei. The theoretical framework is tested in a comparison to empirical masses, quadrupole deformations, and energy barriers of actinide nuclei. The model is used in a self-consistent mean-field calculation of spherical, axial and triaxial shapes of superheavy nuclei, alpha-decay energies and lifetimes. The effect of explicit treatment of collective correlations is analyzed in calculations that consistently use a collective Hamiltonian model based on REDFs.

  20. High energy density Z-pinch plasmas using flow stabilization

    SciTech Connect (OSTI)

    Shumlak, U. Golingo, R. P. Nelson, B. A. Bowers, C. A. Doty, S. A. Forbes, E. G. Hughes, M. C. Kim, B. Knecht, S. D. Lambert, K. K. Lowrie, W. Ross, M. P. Weed, J. R.

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvn times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and scaling analyses will be presented. In addition to studying fundamental plasma science and high energy density physics, the ZaP and ZaP-HD experiments can be applied to laboratory astrophysics.

  1. High energy density capacitors using nano-structure multilayer technology

    SciTech Connect (OSTI)

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1992-08-01

    Today, many pulse power and industrial applications are limited by capacitor performance. While incremental improvements are anticipated from existing capacitor technologies, significant advances are needed in energy density to enable these applications for both the military and for American economic competitiveness. We propose a program to research and develop a novel technology for making high voltage, high energy density capacitors. Nano-structure multilayer technologies developed at LLNL may well provide a breakthrough in capacitor performance. Our controlled sputtering techniques are capable of laying down extraordinarily smooth sub-micron layers of dielectric and conductor materials. With this technology, high voltage capacitors with an order of magnitude improvement in energy density may be achievable. Well-understood dielectrics and new materials will be investigated for use with this technology. Capacitors developed by nano-structure multilayer technology are inherently solid state, exhibiting extraordinary mechanical and thermal properties. The conceptual design of a Notepad capacitor is discussed to illustrate capacitor and capacitor bank design and performance with this technology. We propose a two phase R&D program to address DNA`s capacitor needs for electro-thermal propulsion and similar pulse power programs. Phase 1 will prove the concept and further our understanding of dielectric materials and design tradeoffs with multilayers. Nano-structure multilayer capacitors will be developed and characterized. As our materials research and modeling prove successful, technology insertion in our capacitor designs will improve the possibility for dramatic performance improvements. In Phase 2, we will make Notepad capacitors, construct a capacitor bank and demonstrate its performance in a meaningful pulse power application. We will work with industrial partners to design full scale manufacturing and move this technology to industry for volume production.

  2. DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes, Double Oak, TX

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready home in Double Oak, TX, north of Dallas, that scored a HERS 44 without PV. The 3,752-ft2 two-story home served as an energy-efficient model home for the custom...

  3. Descriptions of carbon isotopes within the energy density functional theory

    SciTech Connect (OSTI)

    Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana; Tammam, M.

    2014-10-24

    Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.

  4. Energy Density Functional Study of Nuclear Matrix Elements for Neutrinoless {beta}{beta} Decay

    SciTech Connect (OSTI)

    Rodriguez, Tomas R. [GSI Helmholtzzentrum fuer Schwerionenforschung, D-64259 Darmstadt (Germany); Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); CEA, Irfu, SPhN, Centre de Saclay, F-911191 Gif-sur-Yvette (France); Martinez-Pinedo, Gabriel [GSI Helmholtzzentrum fuer Schwerionenforschung, D-64259 Darmstadt (Germany)

    2010-12-17

    We present an extensive study of nuclear matrix elements (NME) for the neutrinoless double-beta decay of the nuclei {sup 48}Ca, {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 116}Cd, {sup 124}Sn, {sup 128}Te, {sup 130}Te, {sup 136}Xe, and {sup 150}Nd based on state-of-the-art energy density functional methods using the Gogny D1S functional. Beyond-mean-field effects are included within the generating coordinate method with particle number and angular momentum projection for both initial and final ground states. We obtain a rather constant value for the NMEs around 4.7 with the exception of {sup 48}Ca and {sup 150}Nd, where smaller values are found. We analyze the role of deformation and pairing in the evaluation of the NME and present detailed results for the decay of {sup 150}Nd.

  5. Energy density matrix formalism for interacting quantum systems: a quantum Monte Carlo study

    SciTech Connect (OSTI)

    Krogel, Jaron T; Kim, Jeongnim; Reboredo, Fernando A

    2014-01-01

    We develop an energy density matrix that parallels the one-body reduced density matrix (1RDM) for many-body quantum systems. Just as the density matrix gives access to the number density and occupation numbers, the energy density matrix yields the energy density and orbital occupation energies. The eigenvectors of the matrix provide a natural orbital partitioning of the energy density while the eigenvalues comprise a single particle energy spectrum obeying a total energy sum rule. For mean-field systems the energy density matrix recovers the exact spectrum. When correlation becomes important, the occupation energies resemble quasiparticle energies in some respects. We explore the occupation energy spectrum for the finite 3D homogeneous electron gas in the metallic regime and an isolated oxygen atom with ground state quantum Monte Carlo techniques imple- mented in the QMCPACK simulation code. The occupation energy spectrum for the homogeneous electron gas can be described by an effective mass below the Fermi level. Above the Fermi level evanescent behavior in the occupation energies is observed in similar fashion to the occupation numbers of the 1RDM. A direct comparison with total energy differences demonstrates a quantita- tive connection between the occupation energies and electron addition and removal energies for the electron gas. For the oxygen atom, the association between the ground state occupation energies and particle addition and removal energies becomes only qualitative. The energy density matrix provides a new avenue for describing energetics with quantum Monte Carlo methods which have traditionally been limited to total energies.

  6. Design of Safer High-Energy Density Materials for Lithium-Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Safer High-Energy Density Materials for Lithium-Ion Cells Design of Safer High-Energy Density Materials for Lithium-Ion Cells 2012 DOE Hydrogen and Fuel Cells Program and ...

  7. Initial energy density and gluon distribution from the glasma in heavy-ion

    Office of Scientific and Technical Information (OSTI)

    collisions (Journal Article) | SciTech Connect Initial energy density and gluon distribution from the glasma in heavy-ion collisions Citation Details In-Document Search Title: Initial energy density and gluon distribution from the glasma in heavy-ion collisions We estimate the energy density and the gluon distribution associated with the classical fields describing the early-time dynamics of heavy-ion collisions. In the McLerran-Venugopalan model, we first decompose the energy density into

  8. Complex-energy approach to sum rules within nuclear density functional...

    Office of Scientific and Technical Information (OSTI)

    Complex-energy approach to sum rules within nuclear density functional theory Citation ... This content will become publicly available on April 27, 2016 Title: Complex-energy ...

  9. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-04

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K{sup +} beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  10. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  11. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  12. Metrology Challenges for High Energy Density Science Target Manufacture

    SciTech Connect (OSTI)

    Seugling, R M; Bono, M J; Davis, P

    2009-02-19

    Currently, High Energy Density Science (HEDS) experiments are used to support and qualify predictive physics models. These models assume ideal conditions such as energy (input) and device (target) geometry. The experiments rely on precision targets constructed from components with dimensions in the millimeter range, while having micrometer-scale, functional features, including planar steps, sine waves, and step-joint geometry on hemispherical targets. Future target designs will likely have features and forms that rival or surpass current manufacturing and characterization capability. The dimensional metrology of these features is important for a number of reasons, including qualification of sub-components prior to assembly, quantification of critical features on the as-built assemblies and as a feedback mechanism for fabrication process development. Variations in geometry from part to part can lead to functional limitations, such as unpredictable instabilities during an experiment and the inability to assemble a target from poorly matched sub-components. Adding to the complexity are the large number and variety of materials, components, and shapes that render any single metrology technique difficult to use with low uncertainty. Common materials include metal and glass foams, doped transparent and opaque plastics and a variety of deposited and wrought metals. A suite of metrology tools and techniques developed to address the many critical issues relevant to the manufacture of HEDS targets including interferometry, x-ray radiography and contact metrology are presented including two sided interferometry for absolute thickness metrology and low force probe technology for micrometer feature coordinate metrology.

  13. Measure Guideline: Deep Energy Enclosure Retrofit for Double-Stud Walls

    SciTech Connect (OSTI)

    Loomis, H.; Pettit, B.

    2015-06-01

    This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution that provides insulation to the interior of the wall assembly with the use of a double stud wall. The guide describes two approaches to retrofitting the existing the walls: one involving replacement of the existing cladding, and the other that leaves the existing cladding in place. It discusses the design principles related to the use of various insulation types, and provides strategies and procedures for implementing the double stud wall retrofit. It also evaluates important moisture-related and indoor air quality measures that need to be implemented to achieve a durable, high performance wall.

  14. Measure Guideline: Deep Energy Enclosure Retrofit for Double-Stud Walls

    SciTech Connect (OSTI)

    Loomis, H.; Pettit, B.

    2015-06-22

    This Measure Guideline describes a deep energy enclosure retrofit solution that provides insulation to the interior of the wall assembly with the use of a double-stud wall. The guide describes two approaches to retrofitting the existing walls—one that involves replacing the existing cladding and the other that leaves the cladding in place. This guideline also covers the design principles related to the use of various insulation types and provides strategies and procedures for implementing the double-stud wall retrofit. It also includes an evaluation of important moisture-related and indoor air quality measures that need to be implemented to achieve a durable high-performance wall.

  15. File:Air Density Lab.pdf | Open Energy Information

    Open Energy Info (EERE)

    Air Density Lab.pdf Jump to: navigation, search File File history File usage Metadata File:Air Density Lab.pdf Size of this preview: 463 599 pixels. Other resolution: 464 600...

  16. Illinois: EERE-Sponsored Clean Energy Competition Launches 2012 Winners Success, Company Doubles in Size

    Broader source: Energy.gov [DOE]

    The winner of the 2012 National Clean Energy Business Plan Competition doubles its team size in one year. Company employee is recognized by Forbes Magazine as Energy 30 under 30.

  17. Building A Universal Nuclear Energy Density Functional (UNEDF)

    SciTech Connect (OSTI)

    Carlson, Joe, Los Alamos National Laboratory, Los Alamos, NM; Furnstahl, Dick, Ohio State University, Columbus, OH; Horoi, Mihai, Central Michigan University, Mount Pleasant, MI; Lusk, Rusty, Argonne National Laboratory, Argonne, IL; Nazarewicz, Witek, University of Tennessee, Knoxville, TN; Ng, Esmond, Berkeley National Laboratory, Berkeley, CA; Thompson, Ian, Lawrence Livermore National Laboratory, Livermore, CA; Vary, James, Iowa State University, Ames, Iowa

    2012-09-30

    During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.

  18. Upgrading of biorenewables to high energy density fuels

    SciTech Connect (OSTI)

    Gordon, John C; Batista, Enrique R; Chen, Weizhong; Currier, Robert P; Dirmyer, Matthew R; John, Kevin D; Kim, Jin K; Keith, Jason; Martin, Richard L; Pierpont, Aaron W; Silks Ill, L. A. "" Pete; Smythe, Mathan C; Sutton, Andrew D; Taw, Felicia L; Trovitch, Ryan J; Vasudevan, Kalyan V; Waidmann, Christopher R; Wu, Ruilian; Baker, R. Thomas; Schlaf, Marcel

    2010-12-07

    According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.

  19. Development of High Energy Density Lithium-Sulfur Cells | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 25_wang_2012_p.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: High Energy Lithium-Sulfur Cathodes Vehicle Technologies Office Merit Review 2014: Development of High Energy Density Lithium-Sulfur Cells

  20. On the role of electron energy distribution function in double frequency heating of electron cyclotron resonance ion source plasmas

    SciTech Connect (OSTI)

    Schachter, L. Dobrescu, S.; Stiebing, K. E.

    2014-02-15

    Double frequency heating (DFH) is a tool to improve the output of highly charged ions particularly from modern electron cyclotron resonance ion source installations with very high RF-frequencies. In order to gain information on the DFH-mechanism and on the role of the lower injected frequency we have carried out a series of dedicated experiments where we have put emphasis on the creation of a discrete resonance surface also for this lower frequency. Our well-established method of inserting an emissive MD (metal-dielectric) liner into the plasma chamber of the source is used in these experiments as a tool of investigation. In this way, the electron temperature and density for both ECR zones is increased in a controlled manner, allowing conclusions on the role of the change of the electron-energy-distribution function with and without DFH.

  1. Rock Density At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Density At Alum Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area...

  2. Complex-energy approach to sum rules within nuclear density functional...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Complex-energy approach to sum rules within nuclear density functional theory Citation Details In-Document Search This content will become publicly available on...

  3. Energy density functional analysis of shape coexistence in {sup 44}S

    SciTech Connect (OSTI)

    Li, Z. P.; Yao, J. M.; Vretenar, D.; Niksic, T.; Meng, J.

    2012-10-20

    The structure of low-energy collective states in the neutron-rich nucleus {sup 44}S is analyzed using a microscopic collective Hamiltonian model based on energy density functionals (EDFs). The calculated triaxial energy map, low-energy spectrum and corresponding probability distributions indicate a coexistence of prolate and oblate shapes in this nucleus.

  4. A novel zirconium K{alpha} imager for high energy density physics research

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect A novel zirconium K{alpha} imager for high energy density physics research Citation Details In-Document Search Title: A novel zirconium K{alpha} imager for high energy density physics research We report on the development and characterization of a zirconium K{alpha} imager for high energy density physics research. The imager consists of a spherically bent quartz crystal operating at 15.7 keV photon energy. We compare the performance of the imager in terms

  5. Initial energy density and gluon distribution from the glasma...

    Office of Scientific and Technical Information (OSTI)

    10.1103PhysRevC.79.024909; (c) 2009 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA) Country of Publication: United States Language: ...

  6. Electric Double-Layer Structure in Primitive Model Electrolytes. Comparing Molecular Dynamics with Local-Density Approximations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Giera, Brian; Lawrence Livermore National Lab.; Henson, Neil; Kober, Edward M.; Shell, M. Scott; Squires, Todd M.

    2015-02-27

    We evaluate the accuracy of local-density approximations (LDAs) using explicit molecular dynamics simulations of binary electrolytes comprised of equisized ions in an implicit solvent. The Bikerman LDA, which considers ions to occupy a lattice, poorly captures excluded volume interactions between primitive model ions. Instead, LDAs based on the Carnahan–Starling (CS) hard-sphere equation of state capture simulated values of ideal and excess chemical potential profiles extremely well, as is the relationship between surface charge density and electrostatic potential. Excellent agreement between the EDL capacitances predicted by CS-LDAs and computed in molecular simulations is found even in systems where ion correlations drivemore » strong density and free charge oscillations within the EDL, despite the inability of LDAs to capture the oscillations in the detailed EDL profiles.« less

  7. Low-energy pion double charge exchange and nucleon-nucleon correlations in nuclei

    SciTech Connect (OSTI)

    Leitch, M.J.

    1989-01-01

    Recent measurements of pion double-charge exchange (DCX) at energies 20 to 70 MeV are providing a new means for studying nucleon-nucleon correlations in nuclei. At these energies the nucleus is relatively transparent, allowing simpler theoretical models to be used in interpreting the data and leading to a clearer picture. Also the contribution to DCX of sequential charge-exchange scattering through the intermediate analog state is suppressed near 50 MeV and transitions through non-analog intermediate states become very important. Recent theoretical studies by several groups have shown that while transitions through the analog route involve relatively long nucleon-nucleon distances, those through non-analog intermediate states obtain nearly half their strength from nucleon pairs with less than 1 fermi separation. Thus DCX near 50 MeV is an excellent way to study short-range nucleon-nucleon correlations. 31 refs., 29 figs., 4 tabs.

  8. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    SciTech Connect (OSTI)

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.

  9. Mitigating Breakdown in High Energy Density Perovskite Polymer

    Broader source: Energy.gov (indexed) [DOE]

    Energy Most Catalyst Management Group employees had no previous experience with weatherization. | Photo by CMG Most Catalyst Management Group employees had no previous experience with weatherization. | Photo by CMG Lindsay Gsell What are the key facts? This Pontiac, Michigan weatherization company sees growth through Recovery Act. Catalyst Management Group will add nearly 50% more staff in the coming months. Employees new to the trade get weatherization training and mentoring. Leon Brown, an

  10. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-03-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

  11. Basic Research Needs for High Energy Density Laboratory Physics

    National Nuclear Security Administration (NNSA)

    On the cover: Invisible infrared light from the 200-trillion watt Trident Laser enters from the bottom to interact with a one-micrometer thick foil target in the center of the photo. The laser pulse produces a plasma - an ionized gas - many times hotter than the center of the sun, which lasts for a trillionth of a second. During this time some electrons from the foil are accelerated to virtually the speed of light, and some ions are accelerated to energies of tens of millions of volts. In this

  12. Vehicle Technologies Office Merit Review 2015: High Energy Density Lithium Battery

    Broader source: Energy.gov [DOE]

    Presentation given by Binghamton U.-SUNY at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy density...

  13. High energy density capacitors for power electronic applications using nano-structure multilayer technology

    SciTech Connect (OSTI)

    Barbee, T.W. Jr.; Johnson, G.W.

    1995-09-01

    Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

  14. Performance of bent-crystal x-ray microscopes for high energy density

    Office of Scientific and Technical Information (OSTI)

    physics research (Journal Article) | DOE PAGES Performance of bent-crystal x-ray microscopes for high energy density physics research This content will become publicly available on May 29, 2016 Title: Performance of bent-crystal x-ray microscopes for high energy density physics research We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission

  15. Excitation Energies Through the Locally Renormalized Equation-of-Motion Formalism: Singles and Doubles Model

    SciTech Connect (OSTI)

    Kowalski, Karol

    2006-09-28

    The stationary conditions obtained from approximate coupled-cluster functional derived from the Numerator-Denominator connected Expansion (NDC) [K. Kowalski, P. Piecuch, J Chem. Phys. 122 (2005) 074107] are employed to calculate the linear response of cluster amplitudes. A simple scheme that involves singly and doubly excited amplitudes, termed locally renormalized equation-of-motion approach with singles and doubles (LR-EOMCCSD), is compared with other excited-state methods that include up to two-body operators in the wavefunction expansion. In particular, the impact of the local denominators on the excitation energies is discussed in detail. Several benchmark calculations on the CH+, C?, N?, O?, CIOCI molecules are presented to illustrate the performance of the LR-EOMCCSD approach.

  16. Constraints on the inner edge of neutron star crusts from relativistic nuclear energy density functionals

    SciTech Connect (OSTI)

    Moustakidis, Ch. C.; Lalazissis, G. A.; Niksic, T.; Vretenar, D.; Ring, P.

    2010-06-15

    The transition density n{sub t} and pressure P{sub t} at the inner edge between the liquid core and the solid crust of a neutron star are analyzed using the thermodynamical method and the framework of relativistic nuclear energy density functionals. Starting from a functional that has been carefully adjusted to experimental binding energies of finite nuclei, and varying the density dependence of the corresponding symmetry energy within the limits determined by isovector properties of finite nuclei, we estimate the constraints on the core-crust transition density and pressure of neutron stars: 0.086 fm{sup -3}<=n{sub t}<0.090 fm{sup -3} and 0.3 MeV fm{sup -3}

  17. DOE Zero Energy Ready Home Case Study: KB Home, Double ZeroHouse 3.0, El

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dorado Hill, CA | Department of Energy Double ZeroHouse 3.0, El Dorado Hill, CA DOE Zero Energy Ready Home Case Study: KB Home, Double ZeroHouse 3.0, El Dorado Hill, CA Case study of a DOE 2015 Housing Innovation Award winning production home in the mixed-dry climate that got a HERS 44 without PV, or HERS -2 with PV, with 2x4 walls 16" on center walls with R-15 cavity plus 1" EPS exterior rigid foam, slab on grade with R-10 slab edge; unvented attic with R-38 blown fiberglass

  18. Independent control of electron energy and density using a rotating magnetic field in inductively coupled plasmas

    SciTech Connect (OSTI)

    Kondo, Takahiro; Ohta, Masayuki; Ito, Tsuyohito; Okada, Shigefumi

    2013-09-21

    Effects of a rotating magnetic field (RMF) on the electron energy distribution function (EEDF) and on the electron density are investigated with the aim of controlling the radical composition of inductively coupled plasmas. By adjusting the RMF frequency and generation power, the desired electron density and electron energy shift are obtained. Consequently, the amount and fraction of high-energy electrons, which are mostly responsible for direct dissociation processes of raw molecules, will be controlled externally. This controllability, with no electrode exposed to plasma, will enable us to control radical components and their flux during plasma processing.

  19. Thermodynamic analysis of energy density in pressure retarded osmosis: The impact of solution volumes and costs

    SciTech Connect (OSTI)

    Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.

    2015-08-01

    A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy density of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.

  20. Proceedings of the third international seminar on double layer capacitors and similar energy storage devices. Volume 3

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This book contains the papers presented at the Third International Seminar on Double Layer Capacitors and Similar Energy Storage Devices in December, 1993. The topics of the papers include basic electrochemical principles, testing of ultracapacitors and systems for application in electric powered vehicles, performance of capacitors, materials used in supercapacitors, and reliability of supercapacitors.

  1. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    SciTech Connect (OSTI)

    Chen, Chiping

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  2. Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries Citation Details In-Document Search Title: Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries Authors: Gao, Jie ; Abruña, Héctor D. Publication Date: 2014-03-06 OSTI Identifier: 1161939 DOE Contract Number: SC0001086 Resource Type: Journal Article Resource Relation: Journal Name: J. Phys. Chem. Lett.; Journal Volume: 5(5); Related Information: Emc2 partners

  3. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Meinhardt, Kerry D.; Chang, Hee -Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-11

    Here we demonstrate for the first time that planar Na-NiCl2 batteries can be operated at an intermediate temperature of 190°C with ultra-high energy density. A specific energy density of 350 Wh/kg, which is 3 times higher than that of conventional tubular Na-NiCl2 batteries operated at 280°C, was obtained for planar Na-NiCl2 batteries operated at 190°C over a long-term cell test (1000 cycles). The high energy density and superior cycle stability are attributed to the slower particle growth of the cathode materials (NaCl and Ni) at 190°C. The results reported in this work demonstrate that planar Na-NiCl2 batteries operated at anmore » intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.« less

  4. Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles...

    Office of Science (SC) Website

    Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles Basic Energy Sciences (BES) ... LS, DP, and BPU acknowledge support by the DOE, Office of Science, Office of ...

  5. Effects of the density of collision cascades: Separating contributions from dynamic annealing and energy spikes

    SciTech Connect (OSTI)

    Titov, A I; Karaseov, P A; Azarov, A Y; Kucheyev, S O

    2008-08-13

    We present a quantitative model for the efficiency of the molecular effect in damage buildup in semiconductors. Our model takes into account only one mechanism of the cascade density dependence: nonlinear energy spikes. In our three-dimensional analysis, the volume of each individual collision cascade is divided into small cubic cells, and the number of cells that have an average density of displacements above some threshold value is calculated. We assume that such cells experience a catastrophic crystalline-to-amorphous phase transition, while defects in the cells with lower displacement densities have perfect annihilation. For the two limiting cases of heavy (500 keV/atom {sup 209}Bi) and light (40 keV/atom {sup 14}N) ion bombardment of Si, theory predictions are in good agreement with experimental data for a threshold displacement density of 4.5 at.%. For intermediate density cascades produced by small 2.1 keV/amu PF{sub n} clusters, we show that dynamic annealing processes entirely dominate cascade density effects for PF{sub 2} ions, while energy spikes begin contributing in the case of PF{sub 4} cluster bombardment.

  6. Relativistic energy density functionals: Low-energy collective states of {sup 240}Pu and {sup 166}Er

    SciTech Connect (OSTI)

    Li, Z. P.; Niksic, T.; Vretenar, D.; Ring, P.; Meng, J.

    2010-06-15

    The empirical relativistic density-dependent, point-coupling energy density functional, adjusted exclusively to experimental binding energies of a large set of deformed nuclei with Aapprox =150-180 and Aapprox =230-250, is tested with spectroscopic data for {sup 166}Er and {sup 240}Pu. Starting from constrained self-consistent triaxial relativistic Hartree-Bogoliubov calculations of binding energy maps as functions of the quadrupole deformation in the beta-gamma plane, excitation spectra and E2 transition probabilities are calculated as solutions of the corresponding microscopic collective Hamiltonian in five dimensions for quadrupole vibrational and rotational degrees of freedom and compared with available data on low-energy collective states.

  7. Stochastic thermodynamics of fluctuating density fields: Non-equilibrium free energy differences under coarse-graining

    SciTech Connect (OSTI)

    Leonard, T.; Lander, B.; Seifert, U.; Speck, T.

    2013-11-28

    We discuss the stochastic thermodynamics of systems that are described by a time-dependent density field, for example, simple liquids and colloidal suspensions. For a time-dependent change of external parameters, we show that the Jarzynski relation connecting work with the change of free energy holds if the time evolution of the density follows the Kawasaki-Dean equation. Specifically, we study the work distributions for the compression and expansion of a two-dimensional colloidal model suspension implementing a practical coarse-graining scheme of the microscopic particle positions. We demonstrate that even if coarse-grained dynamics and density functional do not match, the fluctuation relations for the work still hold albeit for a different, apparent, change of free energy.

  8. Density dependence of the symmetry energy from neutron skin thickness in finite nuclei

    SciTech Connect (OSTI)

    Vinas, X.; Centelles, M.; Roca-Maza, X.; Warda, M.

    2012-10-20

    The density dependence of the symmetry energy, characterized by the parameter L, is studied using information provided by the neutron skin thickness in finite nuclei. An estimate of L is obtained from experimental data of antiprotonic atoms. We also discuss the ability of parity violating electron scatering to obtain information about the neutron skin thickness in {sup 208}Pb.

  9. Turning off the heat. Why America must double energy efficiency to save money and reduce global warming

    SciTech Connect (OSTI)

    Casten, T.R.

    1998-12-31

    Turning Off the Heat targets a main source of overuse of fossil fuels--the energy producers themselves who, through their government-approved monopolies have led to energy inefficiency and needless pollution. A leading authority with 20 years of experience in the development and operation of energy conversions in the development and operation of energy conversions, Thomas R. Casten clearly explains that the US and other nations of the world can, and must, double the efficiency of energy utilities. This efficiency improvement will lead to a reduction of electric prices by 30 to 40% and cut carbon dioxide emissions (a greenhouse gas) in half. Two-thirds of the fuel used to make US Electricity is wasted, resulting in higher energy prices and excess pollution. If market forces are unleased and monopolies ended, competition will save money and fuel, Casten says. Turning Off the Heat is an essential volume for policy-makers, legislators, leaders in industry, environmentalists, and concerned citizens.

  10. Measurements of continuous mix evolution in a high energy density shear flow

    SciTech Connect (OSTI)

    Loomis, E. Doss, F.; Flippo, K.; Fincke, J.

    2014-04-15

    We report on the novel integration of streaked radiography into a counter-flowing High Energy Density (HED) shear environment that continually measures a growing mix layer of Al separating two low-density CH foams. Measurements of the mix width allow us to validate compressible turbulence models and with streaked imaging, make this possible with a minimal number of experiments on large laser facilities. In this paper, we describe how the HED counter-flowing shear layer is created and diagnosed with streaked radiography. We then compare the streaked data to previous two-dimensional, single frame radiography and radiation hydrodynamic simulations of the experiment with inline compressible turbulent mix models.

  11. Electron density distribution in BaPb{sub 1-x}Sb{sub x}O{sub 3} superconducting oxides studied by double nuclear magnetic resonance methods

    SciTech Connect (OSTI)

    Piskunov, Yu. V. Ogloblichev, V. V.; Arapova, I. Yu.; Sadykov, A. V.; Gerashchenko, A. P.; Verkhovskii, S. V.

    2011-11-15

    The effect of charge disorder on the formation of an inhomogeneous state of the electron system in the conduction band in BaPb{sub 1-x}Sb{sub x}O{sub 3} superconducting oxides is investigated experimentally by NMR methods. The NMR spectra of {sup 17}O are measured systematically, and the contributions from {sup 17}O atoms with different cation nearest surroundings are identified. It is found that microscopic regions with an elevated spin density of charge carriers are formed within two coordination spheres near antimony ions. Nuclei of the superconducting phase of the oxide (regions with an elevated antimony concentration) microscopically distributed over the sample are detected in compounds with x = 0.25 and 0.33. Experiments in which a double resonance signal of the spin echo of {sup 17}O-{sup 207}Pb and {sup 17}O-{sup 121}Sb are measured in the metal phase of BaPb{sub 1-x}Sb{sub x}O{sub 3} oxides are carried out for the first time. The constants of indirect heteronuclear spin-spin {sup 17}O-{sup 207}Pb interaction are determined as functions of the local Knight shift {sub 207}Ks. The estimates of the constants of the indirect interaction between the nuclei of the nearest neighbors (O-Pb and Pb-Pb atoms) and analysis of evolution of the NMR spectra of {sup 17}O upon a change in the antimony concentration are convincing evidence in favor of the development of a microscopically inhomogeneous state of the electron system in the metal phase of BaPb{sub 1-x}Sb{sub x}O{sub 3} oxides.

  12. Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels

    SciTech Connect (OSTI)

    2012-01-09

    HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuels photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MITs technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuelscalled Hybrisolcan also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

  13. Orbital relaxation effects on Kohn–Sham frontier orbital energies in density functional theory

    SciTech Connect (OSTI)

    Zhang, DaDi; Zheng, Xiao; Li, Chen; Yang, Weitao

    2015-04-21

    We explore effects of orbital relaxation on Kohn–Sham frontier orbital energies in density functional theory by using a nonempirical scaling correction approach developed in Zheng et al. [J. Chem. Phys. 138, 174105 (2013)]. Relaxation of Kohn–Sham orbitals upon addition/removal of a fractional number of electrons to/from a finite system is determined by a systematic perturbative treatment. The information of orbital relaxation is then used to improve the accuracy of predicted Kohn–Sham frontier orbital energies by Hartree–Fock, local density approximation, and generalized gradient approximation methods. The results clearly highlight the significance of capturing the orbital relaxation effects. Moreover, the proposed scaling correction approach provides a useful way of computing derivative gaps and Fukui quantities of N-electron finite systems (N is an integer), without the need to perform self-consistent-field calculations for (N ± 1)-electron systems.

  14. Energy density dependence of hydrogen combustion efficiency in atmospheric pressure microwave plasma

    SciTech Connect (OSTI)

    Yoshida, T.; Ezumi, N.; Sawada, K.; Tanaka, Y.; Tanaka, M.; Nishimura, K.

    2015-03-15

    The recovery of tritium in nuclear fusion plants is a key issue for safety. So far, the oxidation procedure using an atmospheric pressure plasma is expected to be part of the recovery method. In this study, in order to clarify the mechanism of hydrogen oxidation by plasma chemistry, we have investigated the dependence of hydrogen combustion efficiency on gas flow rate and input power in the atmospheric pressure microwave plasma. It has been found that the combustion efficiency depends on energy density of absorbed microwave power. Hence, the energy density is considered as a key parameter for combustion processes. Also neutral gas temperatures inside and outside the plasma were measured by an optical emission spectroscopy method and thermocouple. The result shows that the neutral gas temperature in the plasma is much higher than the outside temperature of plasma. The high neutral gas temperature may affect the combustion reaction. (authors)

  15. The impact of Hall physics on magnetized high energy density plasma jets

    SciTech Connect (OSTI)

    Gourdain, P.-A.; Seyler, C. E.; Atoyan, L.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; Pikuz, S. A.; Potter, W. M.; Schrafel, P. C.; Shelkovenko, T. A.

    2014-05-15

    Hall physics is often neglected in high energy density plasma jets due to the relatively high electron density of such jets (n{sub e}???10{sup 19}?cm{sup ?3}). However, the vacuum region surrounding the jet has much lower densities and is dominated by Hall electric field. This electric field redirects plasma flows towards or away from the axis, depending on the radial current direction. A resulting change in the jet density has been observed experimentally. Furthermore, if an axial field is applied on the jet, the Hall effect is enhanced and ignoring it leads to serious discrepancies between experimental results and numerical simulations. By combining high currents (?1 MA) and magnetic field helicity (15 angle) in a pulsed power generator such as COBRA, plasma jets can be magnetized with a 10?T axial field. The resulting field enhances the impact of the Hall effect by altering the density profile of current-free plasma jets and the stability of current-carrying plasma jets (e.g., Z-pinches)

  16. High energy-density physics: From nuclear testing to the superlasers

    SciTech Connect (OSTI)

    Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.; Teller, E.

    1995-10-20

    We describe the role for the next-generation ``superlasers`` in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program.

  17. Nuclear energy density functionals: What we can learn about/from their global performance?

    SciTech Connect (OSTI)

    Afanasjev, A. V.; Agbemava, S. E.; Ray, D.; Ring, P.

    2014-10-15

    A short review of recent results on the global performance of covariant energy density functionals is presented. It is focused on an analysis of the accuracy of the description of physical observables of ground and excited states as well as to related theoretical uncertainties. In addition, a global analysis of pairing properties is presented and the impact of pairing on the position of two-neutron drip line is discussed.

  18. Neutron-star matter within the energy-density functional theory and neutron-star structure

    SciTech Connect (OSTI)

    Fantina, A. F.; Chamel, N.; Goriely, S.; Pearson, J. M.

    2015-02-24

    In this lecture, we will present some nucleonic equations of state of neutron-star matter calculated within the nuclear energy-density functional theory using generalized Skyrme functionals developed by the Brussels-Montreal collaboration. These equations of state provide a consistent description of all regions of a neutron star. The global structure of neutron stars predicted by these equations of state will be discussed in connection with recent astrophysical observations.

  19. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; et al

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  20. The high-energy-density counterpropagating shear experiment and turbulent self-heating

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doss, F. W.; Fincke, J. R.; Loomis, E. N.; Welser-Sherrill, L.; Flippo, K. A.

    2013-12-06

    The counterpropagating shear experiment has previously demonstrated the ability to create regions of shockdriven shear, balanced symmetrically in pressure and experiencing minimal net drift. This allows for the creation of a high-Mach-number high-energy-density shear environment. New data from the counterpropagating shear campaign is presented, and both hydrocode modeling and theoretical analysis in the context of a Reynolds-averaged-Navier-Stokes model suggest turbulent dissipation of energy from the supersonic flow bounding the layer is a significant driver in its expansion. A theoretical minimum shear flow Mach number threshold is suggested for substantial thermal-turbulence coupling.

  1. Interacting boson model from energy density functionals: {gamma}-softness and the related topics

    SciTech Connect (OSTI)

    Nomura, K.

    2012-10-20

    A comprehensive way of deriving the Hamiltonian of the interacting boson model (IBM) is described. Based on the fact that the multi-nucleon induced surface deformation in finite nucleus is simulated by effective boson degrees of freedom, the potential energy surface calculated with self-consistent mean-field method employing a given energy density functional (EDF) is mapped onto the IBM analog, and thereby the excitation spectra and transition rates with good symmetry quantum numbers are calculated. Recent applications of the proposed approach are reported: (i) an alternative robust interpretation of the {gamma}-soft nuclei and (ii) shape coexistence in lead isotopes.

  2. Carports with Solar Panels do Double Duty for Navy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carports with Solar Panels do Double Duty for Navy Carports with Solar Panels do Double Duty for Navy May 14, 2010 - 12:22pm Addthis Joshua DeLung What does this project do? In total, all of China Lake's solar PV projects generate enough electricity a year to power up to 1,200 houses on the grid provided by Southern California Edison, the local utility. The base estimates that it saves about $557,000 a year from the solar panels. At Naval Air Weapons Station China Lake, heat is a fact of life.

  3. Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meng, Qingping; Wu, Lijun; Welch, David O.; Zhu, Yimei

    2015-06-17

    We studied the lattice vibrations of two inter-penetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential, using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. In addition, as the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of themore » FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a non-zero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a “devil's staircase” behavior at a finite temperature.« less

  4. Development of high energy density fuels from mild gasification of coal

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    The overall objective of the program is the determination of the minimal processing requirements to produce High Energy Density Fuels (HEDF), meeting a minimal energy density of 130,000 Btu/gal (conventional jet fuels have energy densities in the vicinity of 115,000--120,000 Btu/gal) and having acceptable advanced fuel specifications in accordance with the three defined categories of HEDF. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. A task breakdown structure was developed containing eight key tasks. This report summarizes the work that Amoco Oil Company (AOC), as key subcontractor, performed in the execution of Task 4, Proposed Upgrading Schemes for Advanced Fuel. The intent of the Task 4 study was to represent all the candidate processing options, that were either studied in the experimental efforts of Task 3 or were available from the prior art in the open literature, in a linear program (LP) model. The LP model would allow scaling of the bench-scale Task 3 results to commercial scale and would perform economic evaluations on any combination of the processes which might be used to make HEDF. Section 2.0 of this report summarizes the process and economic bases used. Sections 3.0 and 4.0 details the economics and processing sensitivities for HEDF production. 1 ref., 15 figs., 9 tabs.

  5. A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Wang, Wei; Vijayakumar, M.; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang; Hu, Jian Z.; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo

    2011-05-01

    Low cost, high performance redox flow batteries are highly demanded for up to multi-megawatt levels of renewable and grid energy storage. Here, we report a new vanadium redox flow battery with a significant improvement over the current technologies. This new battery utilizes a sulfate-chloride mixed solution, which is capable of dissolving more than 2.5 M vanadium or about a 70% increase in the energy storage capacity over the current vanadium sulfate system. More importantly, the new electrolyte remains stable over a wide temperature range of -5 to 60oC, potentially eliminating the need of active heat management. Its high energy density, broad operational temperature window, and excellent electrochemical performance would lead to a significant reduction in the cost of energy storage, thus accelerating its market penetration.

  6. 12.6 keV Kr K-alpha X-ray Source For High Energy Density Physics...

    Office of Scientific and Technical Information (OSTI)

    12.6 keV Kr K-alpha X-ray Source For High Energy Density Physics Experiments Citation Details In-Document Search Title: 12.6 keV Kr K-alpha X-ray Source For High Energy Density...

  7. Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis

    SciTech Connect (OSTI)

    Yip, NY; Elimelech, M

    2014-09-16

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural -> anthropogenic -> engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.

  8. Quadrupole collective dynamics from energy density functionals: Collective Hamiltonian and the interacting boson model

    SciTech Connect (OSTI)

    Nomura, K.; Vretenar, D.; Niksic, T.; Otsuka, T.; Shimizu, N.

    2011-07-15

    Microscopic energy density functionals have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications, this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this paper, we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations and the interacting boson model (IBM). The two models are compared in a study of the evolution of nonaxial shapes in Pt isotopes. Starting from the binding energy surfaces of {sup 192,194,196}Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the {gamma}-vibration bands are compared to the corresponding sequences of experimental states.

  9. A low cost, high energy density and long cycle life potassium-sulfur battery for grid-scale energy storage

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Bowden, Mark E.; Sprenkle, Vincent L.; Liu, Jun

    2015-08-15

    Alkali metal-sulfur batteries are attractive for energy storage applications because of their high energy density. Among the batteries, lithium-sulfur batteries typically use liquid in the battery electrolyte, which causes problems in both performance and safety. Sodium-sulfur batteries can use a solid electrolyte such as beta alumina but this requires a high operating temperature. Here we report a novel potassium-sulfur battery with K+-conducting beta-alumina as the electrolyte. Our studies indicate that liquid potassium exhibits much better wettability on the surface of beta-alumina compared to liquid sodium at lower temperatures. Based on this observation, we develop a potassium-sulfur battery that can operate at as low as 150°C with excellent performance. In particular, the battery shows excellent cycle life with negligible capacity fade in 1000 cycles because of the dense ceramic membrane. This study demonstrates a new battery with a high energy density, long cycle life, low cost and high safety, which is ideal for grid-scale energy storage.

  10. High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage

    SciTech Connect (OSTI)

    2011-11-15

    HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in todays EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal batterywhich does not use any hazardous substancescan be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetaks converters can also run on the electric battery if needed and provide the required cooling and heating to the passengerseliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

  11. Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch

    SciTech Connect (OSTI)

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2010-01-15

    Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

  12. Three-dimensional modeling and analysis of a high energy density Kelvin-Helmholtz experiment

    SciTech Connect (OSTI)

    Raman, K. S.; Hurricane, O. A.; Park, H.-S.; Remington, B. A.; Robey, H.; Smalyuk, V. A.; Drake, R. P.; Krauland, C. M.; Kuranz, C. C.; Hansen, J. F.; Harding, E. C.

    2012-09-15

    A recent series of experiments on the OMEGA laser provided the first controlled demonstration of the Kelvin-Helmholtz (KH) instability in a high-energy-density physics context [E. C. Harding et al., Phys. Rev. Lett. 103, 045005, (2009); O. A. Hurricane et al., Phys. Plasmas 16, 056305, (2009)]. We present 3D simulations which resolve previously reported discrepancies between those experiments and the 2D simulation used to design them. Our new simulations reveal a three-dimensional mechanism behind the low density 'bubble' structures which appeared in the experimental x-ray radiographs at late times but were completely absent in the 2D simulations. We also demonstrate that the three-dimensional expansion of the walls of the target is sufficient to explain the 20% overprediction by 2D simulation of the late-time growth of the KH rollups. The implications of these results for the design of future experiments are discussed.

  13. Complex-energy approach to sum rules within nuclear density functional theory

    SciTech Connect (OSTI)

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik

    2015-04-27

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish an efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.

  14. Complex-energy approach to sum rules within nuclear density functional theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik

    2015-04-27

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish anmore » efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.« less

  15. Identifying high energy density stream-reaches through refined geospatial resolution in hydropower resource assessment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pasha, M. Fayzul K.; Yang, Majntxov; Yeasmin, Dilruba; Saetern, Sen; Kao, Shih -Chieh; Smith, Brennan T.

    2016-01-07

    Benefited from the rapid development of multiple geospatial data sets on topography, hydrology, and existing energy-water infrastructures, the reconnaissance level hydropower resource assessment can now be conducted using geospatial models in all regions of the US. Furthermore, the updated techniques can be used to estimate the total undeveloped hydropower potential across all regions, and may eventually help identify further hydropower opportunities that were previously overlooked. To enhance the characterization of higher energy density stream-reaches, this paper explored the sensitivity of geospatial resolution on the identification of hydropower stream-reaches using the geospatial merit matrix based hydropower resource assessment (GMM-HRA) model. GMM-HRAmore » model simulation was conducted with eight different spatial resolutions on six U.S. Geological Survey (USGS) 8-digit hydrologic units (HUC8) located at three different terrains; Flat, Mild, and Steep. The results showed that more hydropower potential from higher energy density stream-reaches can be identified with increasing spatial resolution. Both Flat and Mild terrains exhibited lower impacts compared to the Steep terrain. Consequently, greater attention should be applied when selecting the discretization resolution for hydropower resource assessments in the future study.« less

  16. Monochromatic radiography of high energy density physics experiments on the MAGPIE generator

    SciTech Connect (OSTI)

    Hall, G. N. Burdiak, G. C.; Suttle, L.; Stuart, N. H.; Swadling, G. F.; Lebedev, S. V.; Smith, R. A.; Patankar, S.; Suzuki-Vidal, F.; Grouchy, P. de; Harvey-Thompson, A. J.; Bennett, M.; Bland, S. N.; Pickworth, L.; Skidmore, J.

    2014-11-15

    A monochromatic X-ray backlighter based on Bragg reflection from a spherically bent quartz crystal has been developed for the MAGPIE pulsed power generator at Imperial College (1.4 MA, 240ns) [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (2005)]. This instrument has been used to diagnose high energy density physics experiments with 1.865 keV radiation (Silicon He-?) from a laser plasma source driven by a ?7 J, 1 ns pulse from the Cerberus laser. The design of the diagnostic, its characterisation and performance, and initial results in which the instrument was used to radiograph a shock physics experiment on MAGPIE are discussed.

  17. Creating, Diagnosing and Controlling High-energy-density Matter with Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab October 22, 2013, 3:00pm to 4:15pm Colloquia MBG Auditorium Creating, Diagnosing and Controlling High-energy-density Matter with Lasers Dr. Yuan Ping Lawrence Livermore National Laboratory Abstract: PDF icon COLL.10.22.13A.pdf *** PLEASE NOTE SPECIAL DATE AND TIME OF THIS COLLOQUIUM *** Since their invention in 1960's, lasers with power spanning from KiloWatt to PetaWatt have been widely used in almost every branch of science, leading to numerous discoveries

  18. A novel zirconium K{alpha} imager for high energy density physics research

    SciTech Connect (OSTI)

    Akli, K. U.; Jiang, S.; Storm, M. S.; Krygier, A.; Freeman, R. R.; Sanchez del Rio, M.; Stephens, R. B.; Pereira, N. R.; Baronova, E. O.; Theobald, W.; Ping, Y.; McLean, H. S.; Patel, P. K.; Key, M. H.

    2011-12-15

    We report on the development and characterization of a zirconium K{alpha} imager for high energy density physics research. The imager consists of a spherically bent quartz crystal operating at 15.7 keV photon energy. We compare the performance of the imager in terms of integrated reflectivity (R{sub int}) and temperature dependent collection efficiency ({eta}{sub Te}) to that of the widely used Cu K{alpha} imager. Our collisional-radiative simulations show that the new imager can be reliably used up to 250 eV plasma temperature. Monte Carlo simulations show that for a 25 {mu}m thick tracer layer of zirconium, the contribution to K{alpha} production from photo-pumping is only 2%. We present, for the first time, 2D spatially resolved images of zirconium plasmas generated by a high intensity short pulse laser interacting with Zr solid targets.

  19. Long-Range Electric Vehicle Batteries: High Energy Density Lithium Batteries

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: In a battery, metal ions move between the electrodes through the electrolyte in order to store energy. Envia Systems is developing new silicon-based negative electrode materials for Li-Ion batteries. Using this technology, Envia will be able to produce commercial EV batteries that outperform todays technology by 2-3 times. Many other programs have attempted to make anode materials based on silicon, but have not been able to produce materials that can withstand charge/discharge cycles multiple times. Envia has been able to make this material which can successfully cycle hundreds of times, on a scale that is economically viable. Today, Envias batteries exhibit world-record energy densities.

  20. The National Ignition Facility: Ushering in a new age for high energy density science

    SciTech Connect (OSTI)

    Moses, E. I.; Boyd, R. N.; Remington, B. A.; Keane, C. J.; Al-Ayat, R.

    2009-04-15

    The National Ignition Facility (NIF) [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008); https://lasers.llnl.gov/], completed in March 2009, is the highest energy laser ever constructed. The high temperatures and densities achievable at NIF will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as access to new regimes in a variety of experiments relevant to x-ray astronomy, laser-plasma interactions, hydrodynamic instabilities, nuclear astrophysics, and planetary science. The experiments will impact research on black holes and other accreting objects, the understanding of stellar evolution and explosions, nuclear reactions in dense plasmas relevant to stellar nucleosynthesis, properties of warm dense matter in planetary interiors, molecular cloud dynamics and star formation, and fusion energy generation.

  1. High-Energy Density science at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.

    2016-03-01

    The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. Recently, our experiments have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on amore » scattering length comparable to the screening length. Moreover, this technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.« less

  2. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    SciTech Connect (OSTI)

    Attarian Shandiz, M. Gauvin, R.

    2014-10-28

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy was modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.

  3. 12.6 keV Kr K-alpha X-ray Source For High Energy Density Physics...

    Office of Scientific and Technical Information (OSTI)

    Kr K-alpha X-ray Source For High Energy Density Physics Experiments A high contrast 12.6 keV Kr Kalpha source has been demonstrated on the petawatt-class Titan laser facility. ...

  4. Validating density-functional theory simulations at high energy-density conditions with liquid krypton shock experiments to 850 GPa on Sandia's Z machine

    SciTech Connect (OSTI)

    Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; Shulenburger, Luke; Magyar, Rudolph J.; Flicker, Dawn G.

    2014-11-11

    We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). In conclusion, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.

  5. Validating density-functional theory simulations at high energy-density conditions with liquid krypton shock experiments to 850 GPa on Sandia's Z machine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; Shulenburger, Luke; Magyar, Rudolph J.; Flicker, Dawn G.

    2014-11-11

    We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). Inmore » conclusion, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.« less

  6. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national energy security by developing energy sources with limited impacts on environment ... Energy Engineering High Energy Density Plasmas, Fluids Information Science, ...

  7. On the feasibility of increasing the energy of laser-accelerated protons by using low-density targets

    SciTech Connect (OSTI)

    Brantov, A. V. Bychenkov, V. Yu.

    2015-06-15

    Optimal regimes of proton acceleration in the interaction of short high-power laser pulses with thin foils and low-density targets are determined by means of 3D numerical simulation. It is demonstrated that the maximum proton energy can be increased by using low-density targets in which ions from the front surface of the target are accelerated most efficiently. It is shown using a particular example that, for the same laser pulse, the energy of protons accelerated from a low-density target can be increased by one-third as compared to a solid-state target.

  8. High Energy Density Na-S/NiCl2 Hybrid Battery

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Lemmon, John P.; Kim, Jin Yong; Sprenkle, Vincent L.; Yang, Zhenguo

    2013-02-15

    High temperature (250-350C) sodium-beta alumina batteries (NBBs) are attractive energy storage devices for renewable energy integration and other grid related applications. Currently, two technologies are commercially available in NBBs, e.g., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. In this study, we investigated the combination of these two chemistries with a mixed cathode. In particular, the cathode of the cell consisted of molten NaAlCl4 as a catholyte and a mixture of Ni, NaCl and Na2S as active materials. During cycling, two reversible plateaus were observed in cell voltage profiles, which matched electrochemical reactions for Na-S and Na-NiCl2 redox couples. An irreversible reaction between sulfur species and Ni was identified during initial charge at 280C, which caused a decrease in cell capacity. The final products on discharge included Na2Sn with 1< n < 3, which differed from Na2S3 found in traditional Na-S battery. Reduction of sulfur in the mixed cathode led to an increase in overall energy density over ZEBRA batteries. Despite of the initial drop in cell capacity, the mixed cathode demonstrated relatively stable cycling with more than 95% of capacity retained over 60 cycles under 10mA/cm2. Optimization of the cathode may lead to further improvements in battery performance.

  9. Coupled-Channels Density-Matrix Approach to Low-Energy Nuclear Reaction Dynamics

    SciTech Connect (OSTI)

    Diaz-Torres, Alexis

    2011-10-28

    Atomic nuclei are complex, quantum many-body systems whose structure manifests itself through intrinsic quantum states associated with different excitation modes or degrees of freedom. Collective modes (vibration and/or rotation) dominate at low energy (near the ground-state). The associated states are usually employed, within a truncated model space, as a basis in (coherent) coupled channels approaches to low-energy reaction dynamics. However, excluded states can be essential, and their effects on the open (nuclear) system dynamics are usually treated through complex potentials. Is this a complete description of open system dynamics? Does it include effects of quantum decoherence? Can decoherence be manifested in reaction observables? In this contribution, I discuss these issues and the main ideas of a coupled-channels density-matrix approach that makes it possible to quantify the role and importance of quantum decoherence in low-energy nuclear reaction dynamics. Topical applications, which refer to understanding the astrophysically important collision {sup 12}C+{sup 12}C and achieving a unified quantum dynamical description of relevant reaction processes of weakly-bound nuclei, are highlighted.

  10. Experimental and Computational Studies of High Energy Density Plasma Streams Ablated from Fine Wires

    SciTech Connect (OSTI)

    Greenly, John B.; Seyler, Charles

    2014-03-30

    Experimental and computational studies of high energy density plasma streams ablated from fine wires. Laboratory of Plasma Studies, School of Electrical and Computer Engineering, Cornell University. Principal Investigators: Dr. John B. Greenly and Dr. Charles E. Seyler. This report summarizes progress during the final year of this project to study the physics of high energy density (HED) plasma streams of 10^17-10^20/cm3 density and high velocity (~100-500 km/s). Such streams are produced from 5-250 micrometer diameter wires heated and ionized by a 1 MA, 250 ns current pulse on the COBRA pulsed power facility at Cornell University. Plasma is ablated from the wires and is driven away to high velocity by unbalanced JxB force. A wire, or an array of wires, can persist as an essentially stationary, continuous source of this streaming plasma for >200 ns, even with driving magnetic fields of many Tesla and peak current densities in the plasma of many MA/cm2. At the heart of the ablation stream generation is the continuous transport of mass from the relatively cold, near-solid-density wire "core" into current-carrying plasma within 1 mm of the wire, followed by the magnetic acceleration of that plasma and its trapped flux to form a directed stream. In the first two years of this program, an advancing understanding of ablation physics led to the discovery of several novel wire ablation experimental regimes. In the final year, one of these new HED plasma regimes has been studied in quantitative detail. This regime studies highly reproducible magnetic reconnection in strongly radiating plasma with supersonic and superalfvenic flow, and shock structures in the outflow. The key discovery is that very heavy wires, e.g. 250 micrometer diameter Al or 150 micrometer Cu, behave in a qualitatively different way than the lighter wires typically used in wire-array Z-pinches. Such wires can be configured to produce a static magnetic X-point null geometry that stores magnetic and thermal energy; reconnection and outflow are triggered when the current begins to decrease and the electric field reverses. The reconnecting flow is driven by both magnetic and thermal pressure forces, and it has been found to be possible to vary the configuration so that one or the other dominates. The magnetic null extends into a current sheet that is heated and radiates strongly, with supersonic outflows. This is the first study of reconnection in this HED plasma regime. This compressible, radiative regime, and the triggering mechanism, may be relevant to solar and astrophysical processes. The PERSEUS extended MHD code has been developed for simulation of these phenomena, and will continue to be used and further developed to help interpret and understand experimental results, as well as to guide experimental design. The code is well-suited to simulations of shocks, and includes Hall and electron inertia physics that appear to be of importance in a number of ablation flow regimes, and definitely in the reconnection regime when gradient scales are comparable to the ion inertial scale. During the final year, our graduate student supported by this grant completed a new version of PERSEUS with the finite volume computational scheme replaced by a discontinuous Galerkin method that gives much less diffusive behavior and allows faster run time and higher spatial resolution. Thecode is now being used to study shock structures produced in the outflow region of the reconnection regime.

  11. Surface modified CFx cathode material for ultrafast discharge and high energy density

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Yang; Zhu, Yimei; Cai, Sendan; Wu, Lijun; Yang, Weijing; Xie, Jingying; Wen, Wen; Zheng, Jin-Cheng; Zheng, Yi

    2014-11-10

    Li/CFx primary possesses the highest energy density of 2180 W h kg⁻¹ among all primary lithium batteries. However, a key limitation for the utility of this type of battery is in its poor rate capability because the cathode material, CFx, is an intrinsically poor electronic conductor. Here, we report on our development of a controlled process of surface de-fluorination under mild hydrothermal conditions to modify the highly fluorinated CFx. The modified CFx, consisting of an in situ generated shell component of F-graphene layers, possesses good electronic conductivity and removes the transporting barrier for lithium ions, yielding a high-capacity performance andmore » an excellent rate-capability. Indeed, a capacity of 500 mA h g⁻¹ and a maximum power density of 44 800 W kg⁻¹ can be realized at the ultrafast rate of 30 C (24 A g⁻¹), which is over one order of magnitude higher than that of the state-of-the-art primary lithium-ion batteries.« less

  12. Surface modified CFx cathode material for ultrafast discharge and high energy density

    SciTech Connect (OSTI)

    Dai, Yang; Zhu, Yimei; Cai, Sendan; Wu, Lijun; Yang, Weijing; Xie, Jingying; Wen, Wen; Zheng, Jin-Cheng; Zheng, Yi

    2014-11-10

    Li/CFx primary possesses the highest energy density of 2180 W h kg⁻¹ among all primary lithium batteries. However, a key limitation for the utility of this type of battery is in its poor rate capability because the cathode material, CFx, is an intrinsically poor electronic conductor. Here, we report on our development of a controlled process of surface de-fluorination under mild hydrothermal conditions to modify the highly fluorinated CFx. The modified CFx, consisting of an in situ generated shell component of F-graphene layers, possesses good electronic conductivity and removes the transporting barrier for lithium ions, yielding a high-capacity performance and an excellent rate-capability. Indeed, a capacity of 500 mA h g⁻¹ and a maximum power density of 44 800 W kg⁻¹ can be realized at the ultrafast rate of 30 C (24 A g⁻¹), which is over one order of magnitude higher than that of the state-of-the-art primary lithium-ion batteries.

  13. Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fiksel, G.; Agliata, A.; Barnak, D.; Brent, G.; Chang, P. -Y.; Folnsbee, L.; Gates, G.; Hasset, D.; Lonobile, D.; Magoon, J.; et al

    2015-01-12

    Here, an upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energymore » storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.« less

  14. Performance of bent-crystal x-ray microscopes for high energy density physics research

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schollmeier, Marius S.; Geissel, Matthias; Shores, Jonathon E.; Smith, Ian C.; Porter, John L.

    2015-05-29

    We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission imaging or backlighter systems at large-scale high energy density physics facilities. Our analytic results are benchmarked with ray-tracing calculations as well as with experimental measurements from the 6.151 keV backlighter system at Sandia National Laboratories. Furthermore, the analytic expressions can be used for x-ray source positions anywhere between the Rowland circle and object plane. We discovered that this enables quick optimization of the performance of proposed but untested, bent-crystal microscope systems to findmore » the best compromise between FOV, image fluence, and spatial resolution for a particular application.« less

  15. Performance of bent-crystal x-ray microscopes for high energy density physics research

    SciTech Connect (OSTI)

    Schollmeier, Marius S.; Geissel, Matthias; Shores, Jonathon E.; Smith, Ian C.; Porter, John L.

    2015-05-29

    We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission imaging or backlighter systems at large-scale high energy density physics facilities. Our analytic results are benchmarked with ray-tracing calculations as well as with experimental measurements from the 6.151 keV backlighter system at Sandia National Laboratories. Furthermore, the analytic expressions can be used for x-ray source positions anywhere between the Rowland circle and object plane. We discovered that this enables quick optimization of the performance of proposed but untested, bent-crystal microscope systems to find the best compromise between FOV, image fluence, and spatial resolution for a particular application.

  16. Density functional theory calculations of magnetocrystalline anisotropy energies for (Fe1-xCox)2B

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Daene, Markus; Kim, Soo Kyung; Surh, Michael P.; Aberg, Daniel; Benedict, Lorin X.

    2015-06-15

    We present and discuss density functional theory calculations of magnetic properties of the family of ferromagnetic compounds, (Fe1-xCox)2B, focusing specifically on the magnetocrystalline anisotropy energy (MAE). Using periodic supercells of various sizes (up to 96 atoms), it is shown that the general qualitative features of the composition dependence of the MAE is in agreement with experimental findings, while our predicted magnitudes are larger than those of experiment. We find that the use of small supercells (6 and 12-atom) favors larger MAE values relative to a statistical sample of configurations constructed with 96-atom supercells. As a result, the effect of latticemore » relaxations is shown to be small. Calculations of the Curie temperature for this alloy are also presented.« less

  17. Quasi-particle energy spectra in local reduced density matrix functional theory

    SciTech Connect (OSTI)

    Lathiotakis, Nektarios N.; Helbig, Nicole; Rubio, Angel

    2014-10-28

    Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C{sub 20} isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids.

  18. Double opposite-end tubesheet design for a thermovoltaic energy converter

    DOE Patents [OSTI]

    Ashcroft, John M.; Campbell, Brian C.; Depoy, David M.

    2000-01-01

    A method and apparatus for the direct conversion of energy by thermovoltaic energy conversion having first and second tubesheets, at least one photon emitter plate secured to and extending from the first tubesheet, at least one cold plate secured to and extending from the second tubesheet, a plurality of thermovoltaic cells disposed along oppositely disposed exterior surfaces of the cold plate, and means cooperating with the tubesheet for maintaining a vacuum between the photon emitter plate and the cold plate.

  19. Learning Based Bidding Strategy for HVAC Systems in Double Auction Retail Energy Markets

    SciTech Connect (OSTI)

    Sun, Yannan; Somani, Abhishek; Carroll, Thomas E.

    2015-07-01

    In this paper, a bidding strategy is proposed using reinforcement learning for HVAC systems in a double auction market. The bidding strategy does not require a specific model-based representation of behavior, i.e., a functional form to translate indoor house temperatures into bid prices. The results from reinforcement learning based approach are compared with the HVAC bidding approach used in the AEP gridSMART® smart grid demonstration project and it is shown that the model-free (learning based) approach tracks well the results from the model-based behavior. Successful use of model-free approaches to represent device-level economic behavior may help develop similar approaches to represent behavior of more complex devices or groups of diverse devices, such as in a building. Distributed control requires an understanding of decision making processes of intelligent agents so that appropriate mechanisms may be developed to control and coordinate their responses, and model-free approaches to represent behavior will be extremely useful in that quest.

  20. Observation of finite-wavelength screening in high-energy-density matter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, D. A.; Vorberger, J.; Fletcher, L. B.; Baggott, R. A.; Divol, L.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Gregori, G.; Guymer, T. M.; et al

    2015-04-23

    A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye–Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye–Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressedmore » plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach.« less

  1. Building a Universal Nuclear Energy Density Functional (UNEDF): SciDAC-2 Project

    SciTech Connect (OSTI)

    Carlson, Joe; Furnstahl, Dick; Lusk, Rusty; Nazarewicz, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-06-30

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1, 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; and third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  2. Observation of finite-wavelength screening in high-energy-density matter

    SciTech Connect (OSTI)

    Chapman, D. A.; Vorberger, J.; Fletcher, L. B.; Baggott, R. A.; Divol, L.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Gregori, G.; Guymer, T. M.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Pak, A. E.; Gericke, D. O.

    2015-04-23

    A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye–Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye–Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressed plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach.

  3. Observation of finite-wavelength screening in high-energy-density matter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, D. A.; Vorberger, J.; Fletcher, L. B.; Baggott, R. A.; Divol, L.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Gregori, G.; Guymer, T. M.; et al

    2015-04-23

    A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye–Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye–Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressedmore »plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach.« less

  4. DOE Zero Energy Ready Home Case Study: KB Home — Double ZeroHouse, Lancaster, CA

    SciTech Connect (OSTI)

    none,

    2014-09-01

    The home that won a Production Builder award in the 2014 Housing Innovation Awards serves as a model for this builder, showcasing high-tech features including an electric car charging station; a compressed natural gas (CNG) car fueling station; a greywater recycling system that filters shower, sink, and clothes washer water for yard irrigation; smart appliances; and an electronic energy management system.

  5. Radiation from Ag high energy density Z-pinch plasmas and applications to lasing

    SciTech Connect (OSTI)

    Weller, M. E. Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Shrestha, I.; Stafford, A.; Keim, S. F.; Shlyaptseva, V. V.; Osborne, G. C.; Petkov, E. E.; Apruzese, J. P.; Giuliani, J. L.; Chuvatin, A. S.

    2014-03-15

    Silver (Ag) wire arrays were recently introduced as efficient x-ray radiators and have been shown to create L-shell plasmas that have the highest electron temperature (>1.8?keV) observed on the Zebra generator so far and upwards of 30?kJ of energy output. In this paper, results of single planar wire arrays and double planar wire arrays of Ag and mixed Ag and Al that were tested on the UNR Zebra generator are presented and compared. To further understand how L-shell Ag plasma evolves in time, a time-gated x-ray spectrometer was designed and fielded, which has a spectral range of approximately 3.55.0?. With this, L-shell Ag as well as cold L{sub ?} and L{sub ?} Ag lines was captured and analyzed along with photoconducting diode (PCD) signals (>0.8?keV). Along with PCD signals, other signals, such as filtered XRD (>0.2?keV) and Si-diodes (SiD) (>9?keV), are analyzed covering a broad range of energies from a few eV to greater than 53?keV. The observation and analysis of cold L{sub ?} and L{sub ?} lines show possible correlations with electron beams and SiD signals. Recently, an interesting issue regarding these Ag plasmas is whether lasing occurs in the Ne-like soft x-ray range, and if so, at what gains? To help answer this question, a non-local thermodynamic equilibrium (LTE) kinetic model was utilized to calculate theoretical lasing gains. It is shown that the Ag L-shell plasma conditions produced on the Zebra generator at 1.7 maximum current may be adequate to produce gains as high as 6?cm{sup ?1} for various 3p???3s transitions. Other potential lasing transitions, including higher Rydberg states, are also included in detail. The overall importance of Ag wire arrays and plasmas is discussed.

  6. 16 TAC, part 1, chapter 3, rule 3.38 Well Densities | Open Energy...

    Open Energy Info (EERE)

    1, chapter 3, rule 3.38 Well DensitiesLegal Abstract These regulations outline well density requirements in Texas. Published NA Year Signed or Took Effect 1989 Legal Citation...

  7. Mechanical confinement for improved energy storage density in BNT-BT-KNN lead-free ceramic capacitors

    SciTech Connect (OSTI)

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul

    2014-08-15

    With the advent of modern power electronics, embedded circuits and non-conventional energy harvesting, the need for high performance capacitors is bound to become indispensible. The current state-of-art employs ferroelectric ceramics and linear dielectrics for solid state capacitance. However, lead-free ferroelectric ceramics propose to offer significant improvement in the field of electrical energy storage owing to their high discharge efficiency and energy storage density. In this regards, the authors have investigated the effects of compressive stress as a means of improving the energy storage density of lead-free ferroelectric ceramics. The energy storage density of 0.91(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-0.07BaTiO{sub 3}-0.02(K{sub 0.5}Na{sub 0.5})NbO{sub 3} ferroelectric bulk ceramic was analyzed as a function of varying levels of compressive stress and operational temperature .It was observed that a peak energy density of 387 mJ.cm{sup -3} was obtained at 100 MPa applied stress (25{sup o}C). While a maximum energy density of 568 mJ.cm{sup -3} was obtained for the same stress at 80{sup o}C. These values are indicative of a significant, 25% and 84%, improvement in the value of stored energy compared to an unloaded material. Additionally, material's discharge efficiency has also been discussed as a function of operational parameters. The observed phenomenon has been explained on the basis of field induced structural transition and competitive domain switching theory.

  8. Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Collaboration: Pierre Auger Collaboration

    2013-05-01

    We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than ∼ (0.06−5) × 10{sup −4} Mpc{sup −3} at 95% CL, depending on the magnitude of the magnetic deflections. Similar bounds, in the range (0.2−7) × 10{sup −4} Mpc{sup −3}, were obtained for sources following the local matter distribution.

  9. Free Energy Calculations of Crystalline Hard Sphere Complexes Using Density Functional Theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gunawardana, K. G.S.H.; Song, Xueyu

    2014-12-22

    Recently developed fundamental measure density functional theory (FMT) is used to study binary hard sphere (HS) complexes in crystalline phases. By comparing the excess free energy, pressure and phase diagram, we show that the fundamental measure functional yields good agreements to the available simulation results of AB, AB2 and AB13 crystals. Additionally, we use this functional to study the HS models of five binary crystals, Cu5Zr(C15b), Cu51Zr14(β), Cu10Zr7(φ), CuZr(B2) and CuZr2 (C11b), which are observed in the Cu-Zr system. The FMT functional gives well behaved minimum for most of the hard sphere crystal complexes in the two dimensional Gaussian space,more » namely a crystalline phase. However, the current version of FMT functional (white Bear) fails to give a stable minimum for the structure Cu10Zr7(φ). We argue that the observed solid phases for the HS models of the Cu-Zr system are true thermodynamic stable phases and can be used as a reference system in perturbation calculations.« less

  10. Magnetic reconnection in high-energy-density laser-produced plasmas

    SciTech Connect (OSTI)

    Fox, W.; Bhattacharjee, A.; Germaschewski, K.

    2012-05-15

    Recently, novel experiments on magnetic reconnection have been conducted in laser-produced plasmas in a high-energy-density regime. Individual plasma bubbles self-generate toroidal, mega-gauss-scale magnetic fields through the Biermann battery effect. When multiple bubbles are created at small separation, they expand into one another, driving reconnection of this field. Reconnection in the experiments was reported to be much faster than allowed by both Sweet-Parker, and even Hall-MHD theories, when normalized to the nominal magnetic fields self-generated by single bubbles. Through particle-in-cell simulations (both with and without a binary collision operator), we model the bubble interaction at parameters and geometry relevant to the experiments. This paper discusses in detail the reconnection regime of the laser-driven experiments and reports the qualitative features of simulations. We find substantial flux-pileup effects, which boost the relevant magnetic field for reconnection in the current sheet. When this is accounted for, the normalized reconnection rates are much more in line with standard two-fluid theory of reconnection. At the largest system sizes, we additionally find that the current sheet is prone to breakup into plasmoids.

  11. A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement

    SciTech Connect (OSTI)

    Yu, XW; Manthiram, A

    2015-01-01

    Liquid-phase polysulfide catholytes are attracting much attention in lithium-sulfur (Li-S) batteries as they provide a facile dispersion and homogeneous distribution of the sulfur active material in the conductive matrix. However, the organic solvents used in lithium-polysulfide (Li-PS) batteries play an important role and have an impact on the physico-chemical characteristics of polysulfides. For instance, significantly higher voltages (similar to 2.7 V) of the S/S-n(2-) (4 <= n <= 8) redox couple are observed in Li-PS batteries with dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP) solvents. Accordingly, high power Li-PS batteries are presented here with the catholyte prepared with NMP solvent and operated with the highly reversible sulfur/long-chain polysulfide redox couple. On the other hand, a remarkable cyclability enhancement of the Li-PS battery is observed with the long-chain, ether-based tetraglyme (TEGDME) solvent. The voltage enhancement and the cyclability enhancement of the Li-PS batteries are attributed to the solvation effect, viscosity, and volatility of the solvents. Finally, highly concentrated polysulfide catholytes are successfully synthesized, with which high energy density Li-PS batteries are demonstrated by employing a multi-walled carbon nanotube (MWCNT) fabric electrode.

  12. Free Energy Calculations of Crystalline Hard Sphere Complexes Using Density Functional Theory

    SciTech Connect (OSTI)

    Gunawardana, K. G.S.H.; Song, Xueyu

    2014-12-22

    Recently developed fundamental measure density functional theory (FMT) is used to study binary hard sphere (HS) complexes in crystalline phases. By comparing the excess free energy, pressure and phase diagram, we show that the fundamental measure functional yields good agreements to the available simulation results of AB, AB2 and AB13 crystals. Additionally, we use this functional to study the HS models of five binary crystals, Cu5Zr(C15b), Cu51Zr14(?), Cu10Zr7(?), CuZr(B2) and CuZr2 (C11b), which are observed in the Cu-Zr system. The FMT functional gives well behaved minimum for most of the hard sphere crystal complexes in the two dimensional Gaussian space, namely a crystalline phase. However, the current version of FMT functional (white Bear) fails to give a stable minimum for the structure Cu10Zr7(?). We argue that the observed solid phases for the HS models of the Cu-Zr system are true thermodynamic stable phases and can be used as a reference system in perturbation calculations.

  13. Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries

    SciTech Connect (OSTI)

    Tan, Jinwang; Tartakovsky, Alexandre M.; Ferris, Kim F.; Ryan, Emily M.

    2016-01-01

    Dendrite formation on the electrode surface of high energy density lithium (Li) batteries causes safety problems and limits their applications. Suppressing dendrite growth could significantly improve Li battery performance. Dendrite growth and morphology is a function of the mixing in the electrolyte near the anode interface. Most research into dendrites in batteries focuses on dendrite formation in isotropic electrolytes (i.e., electrolytes with isotropic diffusion coefficient). In this work, an anisotropic diffusion reaction model is developed to study the anisotropic mixing effect on dendrite growth in Li batteries. The model uses a Lagrangian particle-based method to model dendrite growth in an anisotropic electrolyte solution. The model is verified by comparing the numerical simulation results with analytical solutions, and its accuracy is shown to be better than previous particle-based anisotropic diffusion models. Several parametric studies of dendrite growth in an anisotropic electrolyte are performed and the results demonstrate the effects of anisotropic transport on dendrite growth and morphology, and show the possible advantages of anisotropic electrolytes for dendrite suppression.

  14. Amplifying Magnetic Fields in High Energy Density Plasmas | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Magazine, Vol. 2, No. 1: The Clean Energy Manufacturing Issue Amped Up! Magazine, Vol. 2, No. 1: The Clean Energy Manufacturing Issue 3-D Printed Molds Hold Promise for Enhanced Wind Energy Manufacturing 3-D Printed Molds Hold Promise for Enhanced Wind Energy Manufacturing The Energy Department is exploring the production of wind energy blade molds through 3-D printing, which could reduce production time from about a year to six weeks. EERE Announces the Energy Materials

  15. Application of nuclear density functionals to lepton number violating weak processes

    SciTech Connect (OSTI)

    Rodriguez, Tomas R.; Martinez-Pinedo, Gabriel

    2012-10-20

    We present an application of energy density functional methods with the Gogny interaction to the calculation of nuclear matrix elements (NME) for neutrinoless double beta decay and double electron capture. Beyond mean field effects have been included by particle number and angular momentum restoration and shape mixing within the generator coordinate method (GCM) framework. We analyze in detail the NME for {sup 116}Cd nucleus which is one of the most promising candidates to detect neutrinoless double beta decay.

  16. Density Log at Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley...

  17. Rock Density At Silver Peak Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Density At Silver Peak Area (DOE GTP) Exploration Activity Details Location Silver Peak Area...

  18. Density Log at Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss...

  19. Density Log at Silver Peak Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Silver Peak Area (DOE GTP) Exploration Activity Details Location Silver Peak...

  20. Density Log at Alum Area (Moos & Ronne, 2010) | Open Energy Informatio...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Alum Area (Moos & Ronne, 2010) Exploration Activity Details Location Alum...

  1. Density Log at Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Fish Lake Valley Area (DOE GTP) Exploration...

  2. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    SciTech Connect (OSTI)

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  3. Stimulated scattering in laser driven fusion and high energy density physics experiments

    SciTech Connect (OSTI)

    Yin, L. Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J.; Kirkwood, R. K.; Milovich, J.

    2014-09-15

    In laser driven fusion and high energy density physics experiments, one often encounters a k?{sub D} range of 0.15?

  4. Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499

    SciTech Connect (OSTI)

    Smith, K.

    2013-10-01

    Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

  5. Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities

    SciTech Connect (OSTI)

    Slough, John

    2015-02-01

    To take advantage of the smaller scale, higher density regime of fusion an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. What is proposed is a more flexible metallic liner compression scheme that minimizes the kinetic energy required to reach fusion. It is believed that it is possible to accomplish this at sub-megajoule energies. This however will require operation at very small scale. To have a realistic hope of inexpensive, repetitive operation, it is essential to have the liner kinetic energy under a megajoule which allows for the survivability of the vacuum and power systems. At small scale the implosion speed must be reasonably fast to maintain the magnetized plasma (FRC) equilibrium during compression. For limited liner kinetic energy, it becomes clear that the thinnest liner imploded to the smallest radius consistent with the requirements for FRC equilibrium lifetime is desired. The proposed work is directed toward accomplishing this goal. Typically an axial (Z) current is employed for liner compression. There are however several advantages to using a θ-pinch coil. With the θ-pinch the liner currents are inductively driven which greatly simplifies the apparatus and vacuum system, and avoids difficulties with the post implosion vacuum integrity. With fractional flux leakage, the foil liner automatically provides for the seed axial compression field. To achieve it with optimal switching techniques, and at an accelerated pace however will require additional funding. This extra expense is well justified as the compression technique that will be enabled by this funding is unique in the ability to implode individual segments of the liner at different times. This is highly advantageous as the liner can be imploded in a manner that maximizes the energy transfer to the FRC. Production of shaped liner implosions for additional axial compression can thus be readily accomplished with the modified power modules. The additional energy and switching capability proposed will thus provide for optimal utilization of the liner energy. The following tasks were outlined for the three year effort: (1) Design and assemble the foil liner compression test structure and chamber including the compression bank and test foils [Year 1]. (2) Perform foil liner compression experiments and obtain performance data over a range on liner dimensions and bank parameters [Year 2]. (3) Carry out compression experiments of the FRC plasma to Megagauss fields and measure key fusion parameters [Year 3]. (4) Develop numerical codes and analyze experimental results, and determine the physics and scaling for future work [Year 1-3]. The principle task of the project was to design and assemble the foil liner FRC formation chamber, the full compression test structure and chamber including the compression bank. This task was completed successfully. The second task was to test foils in the test facility constructed in year one and characterize the performance obtained from liner compression. These experimental measurements were then compared with analytical predictions, and numerical code results. The liner testing was completed and compared with both the analytical results as well as the code work performed with the 3D structural dynamics package of ANSYS Metaphysics®. This code is capable of modeling the dynamic behavior of materials well into the non-linear regime (e.g. a bullet hit plate glass). The liner dynamic behavior was found to be remarkably close to that predicted by the 3D structural dynamics results. Incorporating a code that can also include the magnetics and plasma physics has also made significant progress at the UW. The remaining test bed construction and assembly task is was completed, and the FRC formation and merging experiments were carried out as planned. The liner compression of the FRC to Megagauss fields was not performed due to not obtaining a sufficiently long lived FRC during the final year of the grant. Modifications planned to correct this deficiency included a larger FRC source as well as a much larger liner driver energy storage system. Due to discontinuation of the grant neither of these improvements were carried out.

  6. Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for High Energy Density plasmas at energies below 10 keV

    SciTech Connect (OSTI)

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2014-07-15

    The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities. We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.

  7. Vehicle Technologies Office Merit Review 2014: High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Farasis Energy, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy density Li...

  8. Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book

    SciTech Connect (OSTI)

    Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

    1997-10-21

    Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

  9. Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams

    DOE Patents [OSTI]

    Gammel, George M.; Kugel, Henry W.

    1992-10-06

    A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

  10. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    SciTech Connect (OSTI)

    Xu, X. Q.; Ma, J. F.; Li, G. Q.

    2014-12-15

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode (ELM) crashes and the consistent collisionality scaling of ELM energy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELM energy losses vs collisionality via a density scan. Linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1?density plays a major role in determining the ELM energy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. The critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.

  11. MEMS Fuel Cells--Low Temp--High Power Density - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing SummaryRechargeable batteries presently provide limited energy ... provides more than three times the operating time possible with rechargeable batteries. ...

  12. Design of Safer High-Energy Density Materials for Lithium-Ion Cells |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 63_belharouak_2012_o.pdf More Documents & Publications Process Development and Scale-up of Advanced Cathode Materials Novel Composite Cathode Structures FY 2012 Annual Progress Report for Energy Storage R&D

  13. High Energy Density Physics and Applications with a State-of-the-Art Compact X-Pinch

    SciTech Connect (OSTI)

    Beg, Farhat N

    2013-08-14

    Recent advances in technology has made possible to create matter with extremely high energy density (energy densities and pressure exceeding 1011 J/m3 and 1 Mbar respectively). The field is new and complex. The basic question for high energy density physics (HEDP) is how does matter behave under extreme conditions of temperature, pressure, density and electromagnetic radiation? The conditions for studying HEDP are normally produced using high intensity short pulse laser, x-rays, particle beams and pulsed power z-pinches. Most of these installations occupy a large laboratory floor space and require a team consisting of a large number of scientists and engineers. This limits the number of experiments that can be performed to explore and understand the complex physics. A novel way of studying HEDP is with a compact x-pinch in university scale laboratory. The x-pinch is a configuration in which a pulsed current is passed through two or more wires placed between the electrodes making the shape of the letter X. Extreme conditions of magnetic field (> 200 MGauss for less than 1 ns), temperature (1 keV) and density (~ 1022 cm-3) are produced at the cross-point, where two wires make contact. Further, supersonic jets are produced on either side of the cross-point. The physics of the formation of the plasma at the cross-point is complex. It is not clear what role radiation plays in the formation of high energy density plasma (>> 1011 J/m3) at the cross-point. Nor it is understood how the supersonic jets are formed. Present numerical codes do not contain complex physics that can take into account some of these aspects. Indeed, a comprehensive experimental study could answer some of the questions, which are relevant to wide-ranging fields such as inertial confinement fusion, astrophysical plasmas, high intensity laser plasma interactions and radiation physics. The main aim of the proposal was to increase the fundamental understanding of high energy density physics and particularly address the key issues associated with x-pinches, which include radiation transport, energetic particle transport, supersonic jet formation, using state-of-the-art compact pulsed power drivers. All the primary objectives of the proposed work were met. These objectives include: Understanding of the fundamental physics of hot and dense plasma formation, implosion to less than 1 m size due to the radiation enhanced collapse and energetic electron heating, Study of the jet formation mechanism, which is of interest due to the astrophysical jets and deposition of energy by energetic electrons in jets, Characterization of an x-pinch as a point x-ray source for the phase contrast radiography of beryllium cryogenic targets for the National Ignition Facility (NIF) experiments. The work carried out included a strong educational component involving both undergraduate and graduate students. Several undergraduate students from University of California San Diego participated in this project. A post-doctoral fellow, Dr. Simon Bott and two graduate students, David Haas and Erik Shipton contributed to every aspect of this project. The success of the project can be judged from the fact that fifteen peer-reviewed papers were published in high quality journals. In addition several presentations were made to a number of scientific meetings.

  14. A novel zirconium K{alpha} imager for high energy density physics...

    Office of Scientific and Technical Information (OSTI)

    imager consists of a spherically bent quartz crystal operating at 15.7 keV photon energy. ... plasmas generated by a high intensity short pulse laser interacting with Zr solid targets. ...

  15. Development of Large Format Lithium Ion Cells with Higher Energy Density

    Broader source: Energy.gov (indexed) [DOE]

    Applications Enabling Production of Lightweight Magnesium Parts for Near-Term Automotive Applications | Department of Energy General Motors LLC - Warren, MI An integrated super-vacuum die casting process uses a new magnesium alloy to potentially achieve a 50% energy savings compared to the multi-piece, multi-step, stamping and joining process currently used to manufacture car doors. By substituting magnesium for steel inner panels, car doors could weigh 60% less, resulting in serious fuel

  16. Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals

    SciTech Connect (OSTI)

    Dobaczewski, J.; Afanasjev, A. V.; Bender, M.; Shi, Yue

    2015-07-29

    In this study, we calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 ≤ Z ≤ 104 and 144 ≤ N ≤ 156, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each with two different parameter sets. A comparative analysis of the results obtained for quasiparticle spectra, odd–even and two-particle mass staggering, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using the EDF modelling.

  17. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect (OSTI)

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10 000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  18. Universal Nuclear Energy Density Functional: Tools and Resources from the UNEDF SciDAC Collaboration

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    UNEDF supports the Low-Energy Nuclear Physics National HPC Initiative. There are approximately 3,000 known nuclei, most of them produced in the laboratory, with an additional 6,000 that could in principle still be created. An understanding of the properties of these elements is crucial for future energy and defense applications. The long-term vision of UNEF is to arrive at a comprehensive and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. It seeks to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties.

  19. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments

    SciTech Connect (OSTI)

    Herrmann, H. W. Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Batha, S. H.; Malone, R. M.; Rubery, M. S.; Horsfield, C. J.; Stoeffl, W.; Zylstra, A. B.; Shmayda, W. T.

    2014-11-15

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ?400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C{sub 2}F{sub 6}, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ?400 more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  20. Energy density functionals from the strong-coupling limit applied to the anions of the He isoelectronic series

    SciTech Connect (OSTI)

    Mirtschink, Andr; Gori-Giorgi, Paola; Umrigar, C. J.; Morgan, John D.

    2014-05-14

    Anions and radicals are important for many applications including environmental chemistry, semiconductors, and charge transfer, but are poorly described by the available approximate energy density functionals. Here we test an approximate exchange-correlation functional based on the exact strong-coupling limit of the Hohenberg-Kohn functional on the prototypical case of the He isoelectronic series with varying nuclear charge Z < 2, which includes weakly bound negative ions and a quantum phase transition at a critical value of Z, representing a big challenge for density functional theory. We use accurate wavefunction calculations to validate our results, comparing energies and Kohn-Sham potentials, thus also providing useful reference data close to and at the quantum phase transition. We show that our functional is able to bind H{sup ?} and to capture in general the physics of loosely bound anions, with a tendency to strongly overbind that can be proven mathematically. We also include corrections based on the uniform electron gas which improve the results.

  1. Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

  2. Optimizing minimum free-energy crossing points in solution: Linear-response free energy/spin-flip density functional theory approach

    SciTech Connect (OSTI)

    Minezawa, Noriyuki

    2014-10-28

    Examining photochemical processes in solution requires understanding the solvent effects on the potential energy profiles near conical intersections (CIs). For that purpose, the CI point in solution is determined as the crossing between nonequilibrium free energy surfaces. In this work, the nonequilibrium free energy is described using the combined method of linear-response free energy and collinear spin-flip time-dependent density functional theory. The proposed approach reveals the solvent effects on the CI geometries of stilbene in an acetonitrile solution and those of thymine in water. Polar acetonitrile decreases the energy difference between the twisted minimum and twisted-pyramidalized CI of stilbene. For thymine in water, the hydrogen bond formation stabilizes significantly the CI puckered at the carbonyl carbon atom. The result is consistent with the recent simulation showing that the reaction path via this geometry is open in water. Therefore, the present method is a promising way of identifying the free-energy crossing points that play an essential role in photochemistry of solvated molecules.

  3. Vehicle Technologies Office Merit Review 2015: High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Farasis at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy density Li-ion cells for...

  4. Energy conversion system involving change in the density of an upwardly moving liquid

    DOE Patents [OSTI]

    Petrick, Michael (Jolliet, IL)

    1989-01-01

    A system for converting thermal energy into electrical energy includes a fluid reservoir, a relatively high boiling point fluid such as lead or a lead alloy within the reservoir, a downcomer defining a vertical fluid flow path communicating at its upper end with the reservoir and an upcomer defining a further vertical fluid flow path communicating at its upper end with the reservoir. A variable area nozzle of rectangular section may terminate the upper end of the upcomer and the lower end of the of the downcomer communicates with the lower end of the upcomer. A mixing chamber is located at the lower end portion of the upcomer and receives a second relatively low boiling point fluid such as air, the mixing chamber serving to introduce the low boiling point fluid into the upcomer so as to produce bubbles causing the resultant two-phase fluid to move at high velocity up the upcomer. Means are provided for introducing heat into the system preferably between the lower end of the downcomer and the lower end of the upcomer. Power generating means are associated with the one of the vertical fluid flow paths one such power generating means being a magneto hydrodynamic electrical generator.

  5. Multilayer co-extrusion technique for developing high energy density organic devices.

    SciTech Connect (OSTI)

    Spangler, Scott W.; Schroeder, John Lee; Mrozek, Randy; Bieg, Lothar Franz; Rao, Rekha Ranjana; Lenhart, Joseph Ludlow; Stavig, Mark Edwin; Cole, Phillip James; Mondy, Lisa Ann; Winter, Michael R.; Schneider, Duane Allen

    2009-11-01

    The purpose of this project is to develop multi-layered co-extrusion (MLCE) capabilities at Sandia National Laboratories to produce multifunctional polymeric structures. Multi-layered structures containing layers of alternating electrical, mechanical, optical, or structural properties can be applied to a variety of potential applications including energy storage, optics, sensors, mechanical, and barrier applications relevant to the internal and external community. To obtain the desired properties, fillers must be added to the polymer materials that are much smaller than the end layer thickness. We developed two filled polymer systems, one for conductive layers and one for dielectric layers and demonstrated the potential for using MLCE to manufacture capacitors. We also developed numerical models to help determine the material and processing parameters that impact processing and layer stability.

  6. Building a Universal Nuclear Energy Density Functional (UNEDF). SciDAC-2 Project

    SciTech Connect (OSTI)

    Vary, James P.; Carlson, Joe; Furnstahl, Dick; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witek; Ng, Esmond; Thompson, Ian

    2012-09-29

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out. The UNEDF SciDAC project has developed several key computational codes and algorithms for reaching the goal of solving the nuclear quantum many-body problem throughout the chart of nuclei. Without such developments, scientific progress would not be possible. In addition the UNEDF SciDAC successfully applied these developments to solve many forefront research problems.

  7. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    SciTech Connect (OSTI)

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A. L.

    2014-03-15

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100?ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.

  8. Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dobaczewski, J.; Afanasjev, A. V.; Bender, M.; Robledo, L. M.; Shi, Yue

    2015-07-29

    In this study, we calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 ≤ Z ≤ 104 and 144 ≤ N ≤ 156, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each with two different parameter sets. A comparative analysis of the results obtained for quasiparticle spectra, odd–even and two-particle mass staggering, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using themore » EDF modelling.« less

  9. Technical Note: Relation between dual-energy subtraction of CT images for electron density calibration and virtual monochromatic imaging

    SciTech Connect (OSTI)

    Saito, Masatoshi

    2015-07-15

    Purpose: For accurate tissue inhomogeneity correction in radiotherapy treatment planning, the author previously proposed a simple conversion of the energy-subtracted computed tomography (CT) number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide ρ{sub e} range. The purpose of the present study was to reveal the relation between the ΔHU image for ρ{sub e} calibration and a virtually monochromatic CT image by performing numerical analyses based on the basis material decomposition in dual-energy CT. Methods: The author determined the weighting factor, α{sub 0}, of the ΔHU–ρ{sub e} conversion through numerical analyses of the International Commission on Radiation Units and Measurements Report-46 human body tissues using their attenuation coefficients and given ρ{sub e} values. Another weighting factor, α(E), for synthesizing a virtual monochromatic CT image from high- and low-kV CT images, was also calculated in the energy range of 0.03 < E < 5 MeV, assuming that cortical bone and water were the basis materials. The mass attenuation coefficients for these materials were obtained using the XCOM photon cross sections database. The effective x-ray energies used to calculate the attenuation were chosen to imitate a dual-source CT scanner operated at 80–140 and 100–140 kV/Sn. Results: The determined α{sub 0} values were 0.455 for 80–140 kV/Sn and 0.743 for 100–140 kV/Sn. These values coincided almost perfectly with the respective maximal points of the calculated α(E) curves located at approximately 1 MeV, in which the photon-matter interaction in human body tissues is exclusively the incoherent (Compton) scattering. Conclusions: The ΔHU image could be regarded substantially as a CT image acquired with monoenergetic 1-MeV photons, which provides a linear relationship between CT numbers and electron densities.

  10. High Energy Density Ultracapacitors

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. High Energy Density Ultracapacitors

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  12. DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes — Village Park Eco Home, Double Park, TX

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This builder won a Custom Builder honor in the 2014 Housing Innovation Awards for this showcase home that serves as an energy-efficient model home for the custom home builder: 1,300 visitors toured the home, thousands more learned about the home’s advanced construction via the webpage, YouTube, Twitter, Facebook, Instagram, and Pinterest.

  13. Coupled-channels density-matrix approach to low-energy nuclear collision dynamics: A technique for quantifying quantum decoherence effects on reaction observables

    SciTech Connect (OSTI)

    Diaz-Torres, Alexis

    2010-11-15

    The coupled-channels density-matrix technique for nuclear reaction dynamics, which is based on the Liouville-von Neumann equation with Lindblad dissipative terms, is developed with the inclusion of full angular momentum couplings. It allows a quantitative study of the role and importance of quantum decoherence in nuclear scattering. Formulas of asymptotic observables that can reveal effects of quantum decoherence are given. A method for extracting energy-resolved scattering information from the time-dependent density matrix is introduced. As an example, model calculations are carried out for the low-energy collision of the {sup 16}O projectile on the {sup 154}Sm target.

  14. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    DOE Patents [OSTI]

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  15. Double-band Electrode Channel Flow DEMS Cell > Research Highlights...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Density-Functional Theory of Electrochemistry Double-band Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced...

  16. An Assessment of Density Functional Methods for Potential Energy Curves of Nonbonded Interactions: The XYG3 and B97-D Approximations

    SciTech Connect (OSTI)

    Vazquez-Mayagoitia, Alvaro; Sherrill, David; Apra, Edoardo; Sumpter, Bobby G

    2010-01-01

    A recently proposed double-hybrid functional called XYG3 and a semilocal GGA functional (B97-D) with a semiempirical correction for van der Waals interactions have been applied to study the potential energy curves along the dissociation coordinates of weakly bound pairs of molecules governed by London dispersion and induced dipole forces. Molecules treated in this work were the parallel sandwich, T-shaped, and parallel-displaced benzene dimer, (C6H6)2; hydrogen sulfide and benzene, H2S C6H6; methane and benzene, CH4 C6H6; the methane dimer, (CH4)2; and the pyridine dimer, (C5H5N)2. We compared the potential energy curves of these functionals with previously published benchmarks at the coupled cluster singles, doubles, and perturbative triplets [CCSD(T)] complete-basis-set limit. Both functionals, XYG3 and B97-D, exhibited very good performance, reproducing accurate energies for equilibrium distances and a smooth behavior along the dissociation coordinate. Overall, we found an agreement within a few tenths of one kcal mol-1 with the CCSD(T) results across the potential energy curves.

  17. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions

    SciTech Connect (OSTI)

    Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy; Schild, David; Wiese, Claudia

    2010-06-29

    To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, in p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.

  18. AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics

    SciTech Connect (OSTI)

    Sun, K. X.

    2011-05-31

    This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

  19. Thermo-fluid dynamic design study of single and double-inflow radial and single-stage axial steam turbines for open-cycle thermal energy conversion net power-producing experiment facility in Hawaii

    SciTech Connect (OSTI)

    Schlbeiri, T. . Dept. of Mechanical Engineering)

    1990-03-01

    The results of the study of the optimum thermo-fluid dynamic design concept are presented for turbine units operating within the open-cycle ocean thermal energy conversion (OC-OTEC) systems. The concept is applied to the first OC-OTEC net power producing experiment (NPPE) facility to be installed at Hawaii's natural energy laboratory. Detailed efficiency and performance calculations were performed for the radial turbine design concept with single and double-inflow arrangements. To complete the study, the calculation results for a single-stage axial steam turbine design are also presented. In contrast to the axial flow design with a relatively low unit efficiency, higher efficiency was achieved for single-inflow turbines. Highest efficiency was calculated for a double-inflow radial design, which opens new perspectives for energy generation from OC-OTEC systems.

  20. Gedanken densities and exact constraints in density functional theory

    SciTech Connect (OSTI)

    Perdew, John P.; Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 ; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron

    2014-05-14

    Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA’s. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.

  1. TU-F-18A-04: Use of An Image-Based Material-Decomposition Algorithm for Multi-Energy CT to Determine Basis Material Densities

    SciTech Connect (OSTI)

    Li, Z; Leng, S; Yu, L; McCollough, C

    2014-06-15

    Purpose: Published methods for image-based material decomposition with multi-energy CT images have required the assumption of volume conservation or accurate knowledge of the x-ray spectra and detector response. The purpose of this work was to develop an image-based material-decomposition algorithm that can overcome these limitations. Methods: An image-based material decomposition algorithm was developed that requires only mass conservation (rather than volume conservation). With this method, using multi-energy CT measurements made with n=4 energy bins, the mass density of each basis material and of the mixture can be determined without knowledge of the tube spectra and detector response. A digital phantom containing 12 samples of mixtures from water, calcium, iron, and iodine was used in the simulation (Siemens DRASIM). The calibration was performed by using pure materials at each energy bin. The accuracy of the technique was evaluated in noise-free and noisy data under the assumption of an ideal photon-counting detector. Results: Basis material densities can be estimated accurately by either theoretic calculation or calibration with known pure materials. The calibration approach requires no prior information about the spectra and detector response. Regression analysis of theoretical values versus estimated values results in excellent agreement for both noise-free and noisy data. For the calibration approach, the R-square values are 0.9960+/−0.0025 and 0.9476+/−0.0363 for noise-free and noisy data, respectively. Conclusion: From multi-energy CT images with n=4 energy bins, the developed image-based material decomposition method accurately estimated 4 basis material density (3 without k-edge and 1 with in the range of the simulated energy bins) even without any prior information about spectra and detector response. This method is applicable to mixtures of solutions and dissolvable materials, where volume conservation assumptions do not apply. CHM receives research support from NIH and Siemens Healthcare.

  2. Monitoring of Double Stud Wall Moisture Conditions in the Northeast

    SciTech Connect (OSTI)

    Ueno, K.

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing.; Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  3. Feasibility of a super high-energy-density battery of the Li/Br/F sub 3 electrochemical system. Final report, 15 August 1989-14 May 1990

    SciTech Connect (OSTI)

    Frysz, C.A.; Pyszczek, M.F.; Ebel, S.J.

    1990-08-16

    Feasibility studies on the practical aspects of developing a lithium/bromine trifluoride battery have been studied. Efforts directed toward identifying materials for porous electrode separators, glasses for insulated electrical feed-throughs, and metals for lid, case and current collector fabrication via electrochemical testing techniques have resulted in a list of materials suitable for these applications. Prototype cells utilizing a spirally wound electrode configuration have been constructed and discharged. The use of lithium salts as an electrolyte additive has been explored, and has shown a positive effect on discharge performance. Through the use of currently available technology, however, the lithium/bromine trifluoride couple has not delivered energy density comparable to other high energy density lithium systems. This investigation has revealed that practical Li/BrF3 cell development will require further extensive fundamental electrochemical research.

  4. Equation of state and heavy-quark free energy at finite temperature and density in two flavor lattice QCD with Wilson quark action

    SciTech Connect (OSTI)

    Ejiri, S.; Maezawa, Y.; Ukita, N.; Aoki, S.; Hatsuda, T.; Ishii, N.; Kanaya, K.; Umeda, T.

    2010-07-01

    We study the equation of state at finite temperature and density in two-flavor QCD with the renormalization group improved gluon action and the clover-improved Wilson quark action on a 16{sup 3}x4 lattice. Along the lines of constant physics at m{sub PS}/m{sub V}=0.65 and 0.80, we compute the second and forth derivatives of the grand canonical partition function with respect to the quark chemical potential {mu}{sub q}=({mu}{sub u}+{mu}{sub d})/2 and the isospin chemical potential {mu}{sub I}=({mu}{sub u}-{mu}{sub d})/2 at vanishing chemical potentials, and study the behaviors of thermodynamic quantities at finite {mu}{sub q} using these derivatives for the case {mu}{sub I}=0. In particular, we study density fluctuations at nonezero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to {mu}{sub q}. To suppress statistical fluctuations, we also examine new techniques applicable at low densities. We find a large enhancement in the fluctuation of the quark number when the density increased near the pseudocritical temperature, suggesting a critical point at finite {mu}{sub q} terminating the first order transition line between hadronic and quark-gluon-plasma phases. This result agrees with the previous results using staggered-type quark actions qualitatively. Furthermore, we study heavy-quark free energies and Debye screening masses at finite density by measuring the first and second derivatives of these quantities for various color channels of heavy quark-quark and quark-antiquark pairs. The results suggest that, to the leading order of {mu}{sub q}, the interaction between two quarks becomes stronger at finite densities, while that between quark and antiquark becomes weaker.

  5. Double photoionization of helium with synchrotron x-rays: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This report contains papers on the following topics: Overview and comparison of photoionization with charged particle impact; The ratio of double to single ionization of helium: the relationship of photon and bare charged particle impact ionization; Double photoionization of helium at high energies; Compton scattering of photons from electrons bound in light elements; Electron ionization and the Compton effect in double ionization of helium; Elimination of two atomic electrons by a single energy photon; Double photoionization of helium at intermediate energies; Double Photoionization: Gauge Dependence, Coulomb Explosion; Single and Double Ionization by high energy photon impact; The effect of Compton Scattering on the double to single ionization ratio in helium; and Double ionization of He by photoionization and Compton scattering. These papers have been cataloged separately for the database.

  6. Joint Density-Functional Theory of Electrochemistry > Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During the Chemical Transformation from Cobalt to Cobalt Phosphide Nanoparticles Joint Density-Functional Theory of Electrochemistry Double-band Electrode Channel Flow DEMS Cell...

  7. Generation of very low energy-spread electron beams using low-intensity laser pulses in a low-density plasma

    SciTech Connect (OSTI)

    Upadhyay, Ajay K.; Samant, Sushil Arun; Sarkar, Deepangkar; Krishnagopal, Srinivas; Jha, Pallavi

    2011-03-15

    The possibility of obtaining high-energy electron beams of high quality by using a low-density homogeneous plasma and a low-intensity laser (just above the self-injection threshold in the bubble regime) has been explored. Three-dimensional simulations are used to demonstrate, for the first time, an energy-spread of less than 1%, from self-trapping. More specifically, for a plasma density of 2x10{sup 18} cm{sup -3} and a laser intensity of a{sub 0}=2, a high-energy (0.55 GeV), ultrashort (1.4 fs) electron beam with very low energy-spread (0.55%) and high current (3 kA) is obtained. These parameters satisfy the requirements for drivers of short-wavelength free-electron lasers. It is also found that the quality of the electron beam depends strongly on the plasma length, which therefore needs to be optimized carefully to get the best performance in the experiments.

  8. A double-double/double-single computation package

    Energy Science and Technology Software Center (OSTI)

    2004-12-01

    The DDFUNIDSFUN software permits a new or existing Fortran-90 program to utilize double-double precision (approx. 31 digits) or double-single precision (approx. 14 digits) arithmetic. Double-double precision is required by a rapidly expandirtg body of scientific computations in physics and mathematics, for which the conventional 64-bit IEEE computer arithmetic (about 16 decimal digit accuracy) is not sufficient. Double-single precision permits users of systems that do not have hardware 64-bit IEEE arithmetic (such as some game systems)more » to perform arithmetic at a precision nearly as high as that of systems that do. Both packages run significantly faster Than using multiple precision or arbitrary precision software for this purpose. The package includes an extensive set of low-level routines to perform high-precision arithmetic, including routines to calculate various algebraic and transcendental functions, such as square roots, sin, ccc, exp, log and others. In addition, the package includes high-level translation facilities, so that Fortran programs can utilize these facilities by making only a few changes to conventional Fortran programs. In most cases, the only changes that are required are to change the type statements of variables that one wishes to be treated as multiple precision, plus a few other minor changes. The DDFUN package is similar in functionality to the double-double part of the GD package, which was previously written at LBNL. However, the DDFUN package is written exclusively in Fortran-90, thus avoidIng difficulties that some users experience when using GD, which includes both Fortran-90 and C++ code.« less

  9. double-action | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture Project No.: ... a solvent that results in a less-expensive, more energy efficient CO2 scrubbing system. ...

  10. Vehicle Technologies Office Merit Review 2014: Development of Large Format Lithium Ion Cells with Higher Energy Density

    Broader source: Energy.gov [DOE]

    Presentation given by XALT Energy LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of large format...

  11. Chromosome doubling method

    DOE Patents [OSTI]

    Kato, Akio

    2006-11-14

    The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.

  12. SISGR: Improved Electrical Energy Storage with Electrochemical Double Layer Capacitance Based on Novel Carbon Electrodes, New Electrolytes, and Thorough Development of a Strong Science Base

    SciTech Connect (OSTI)

    Ruoff, Rodney S.; Alam, Todd M.; Bielawski, Christopher W.; Chabal, Yves; Hwang, Gyeong; Ishii, Yoshitaka; Rogers, Robin

    2014-07-23

    The broad objective of the SISGR program is to advance the fundamental scientific understanding of electrochemical double layer capacitance (EDLC) and thus of ultracapacitor systems composed of a new type of electrode based on chemically modified graphene (CMG) and (primarily) with ionic liquids (ILs) as the electrolyte. Our team has studied the interplay between graphene-based and graphene-derived carbons as the electrode materials in electrochemical double layer capacitors (EDLC) systems on the one hand, and electrolytes including novel ionic liquids (ILs), on the other, based on prior work on the subject.

  13. Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wu, H

    2011-08-18

    Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

  14. *NEW!* Doubling Geothermal Generation Capacity by 2020: A Strategic

    Energy Savers [EERE]

    Analysis | Department of Energy *NEW!* Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis *NEW!* Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis PDF icon NREL Doubling Geothermal Capacity.pdf More Documents & Publications Geothermal Exploration Policy Mechanisms Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios track 1: systems analysis | geothermal 2015 peer review

  15. Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis PDF icon NREL Doubling Geothermal Capacity.pdf More Documents & Publications Geothermal Exploration Policy Mechanisms Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios track 1: systems analysis | geothermal 2015 peer review

  16. Estimation of the electron density and radiative energy losses in a calcium plasma source based on an electron cyclotron resonance discharge

    SciTech Connect (OSTI)

    Potanin, E. P. Ustinov, A. L.

    2013-06-15

    The parameters of a calcium plasma source based on an electron cyclotron resonance (ECR) discharge were calculated. The analysis was performed as applied to an ion cyclotron resonance system designed for separation of calcium isotopes. The plasma electrons in the source were heated by gyrotron microwave radiation in the zone of the inhomogeneous magnetic field. It was assumed that, in such a combined trap, the energy of the extraordinary microwave propagating from the high-field side was initially transferred to a small group of resonance electrons. As a result, two electron components with different transverse temperatures-the hot resonance component and the cold nonresonance component-were created in the plasma. The longitudinal temperatures of both components were assumed to be equal. The entire discharge space was divided into a narrow ECR zone, where resonance electrons acquired transverse energy, and the region of the discharge itself, where the gas was ionized. The transverse energy of resonance electrons was calculated by solving the equations for electron motion in an inhomogeneous magnetic field. Using the law of energy conservation and the balance condition for the number of hot electrons entering the discharge zone and cooled due to ionization and elastic collisions, the density of hot electrons was estimated and the dependence of the longitudinal temperature T{sub e Parallel-To} of the main (cold) electron component on the energy fraction {beta} lost for radiation was obtained.

  17. Enhancement in current density and energy conversion efficiency of 3-dimensional MFC anodes using pre-enriched consortium and continuous supply of electron donors

    SciTech Connect (OSTI)

    Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A

    2011-01-01

    Using a pre-enriched microbial consortium as the inoculum and continuous supply of carbon source, improvement in performance of a three-dimensional, flow-through MFC anode utilizing ferricyanide cathode was investigated. The power density increased from 170 W/m3 (1800 mW/m2) to 580 W/m3 (6130 mW/m2), when the carbon loading increased from 2.5 g/l-day to 50 g/l-day. The coulombic efficiency (CE) decreased from 90% to 23% with increasing carbon loading. The CEs are among the highest reported for glucose and lactate as the substrate with the maximum current density reaching 15.1 A/m2. This suggests establishment of a very high performance exoelectrogenic microbial consortium at the anode. A maximum energy conversion efficiency of 54% was observed at a loading of 2.5 g/l-day. Biological characterization of the consortium showed presence of Burkholderiales and Rhodocyclales as the dominant members. Imaging of the biofilms revealed thinner biofilms compared to the inoculum MFC, but a 1.9-fold higher power density.

  18. Solid Double-Layered Hydroxide Catalysts for Lignin Decomposition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Solid Double-Layered Hydroxide Catalysts for Lignin Decomposition National Renewable Energy...

  19. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

  20. Exact nonlinear excitations in double-degenerate plasmas

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M.

    2012-06-15

    In this work, we use the conventional hydrodynamics formalism and incorporate the Chew-Goldberger-Low double-adiabatic theory to evaluate the nonlinear electrostatic ion excitations in double-degenerate (electron spin-orbit degenerate) magnetized quantum plasmas. Based on the Sagdeev pseudopotential method, an exact general pseudopotential is calculated which leads to the allowed Mach-number range criteria for such localized density structures in an anisotropic magnetized plasma. We employ the criteria on the Mach-number range for diverse magnetized quantum plasma with different equations of state. It is remarked that various plasma fractional parameters such as the system dimensionality, ion-temperature, relativistic-degeneracy, Zeeman-energy, and plasma composition are involved in the stability of an obliquely propagating nonlinear ion-acoustic wave in a double-degenerate quantum plasma. Current study is most appropriate for nonlinear wave analysis in dense astrophysical magnetized plasma environments such as white-dwarfs and neutron-star crusts where the strong magnetic fields can be present.

  1. Monochromatic x-ray radiography for areal-density measurement of inertial fusion energy fuel in fast ignition experiment

    SciTech Connect (OSTI)

    Fujioka, Shinsuke; Fujiwara, Takashi; Tanabe, Minoru; Nishimura, Hiroaki; Nagatomo, Hideo; Ohira, Shinji; Shiraga, Hiroyuki; Azechi, Hiroshi; Inubushi, Yuichi

    2010-10-15

    Ultrafast, two-dimensional x-ray imaging is an important diagnostics for the inertial fusion energy research, especially in investigating implosion dynamics at the final stage of the fuel compression. Although x-ray radiography was applied to observing the implosion dynamics, intense x-rays emitted from the high temperature and dense fuel core itself are often superimposed on the radiograph. This problem can be solved by coupling the x-ray radiography with monochromatic x-ray imaging technique. In the experiment, 2.8 or 5.2 keV backlight x-rays emitted from laser-irradiated polyvinyl chloride or vanadium foils were selectively imaged by spherically bent quartz crystals with discriminating the out-of-band emission from the fuel core. This x-ray radiography system achieved 24 {mu}m and 100 ps of spatial and temporal resolutions, respectively.

  2. Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion

    SciTech Connect (OSTI)

    Mohanty, Debasish; Li, Jianlin; Abraham, Daniel P.; Huq, Ashfia; Payzant, E. Andrew; Wood, David L.; Daniel, Claus

    2014-09-30

    Discovery of high-voltage layered lithium-and manganese-rich (LMR) composite oxide electrode has dramatically enhanced the energy density of current Li-ion energy storage systems. However, practical usage of these materials is currently not viable because of their inability to maintain a consistent voltage profile (voltage fading) during subsequent charge-discharge cycles. This report rationalizes the cause of this voltage fade by providing the evidence of layer to spinel-like (LSL) structural evolution pathways in the host Li1.2Mn0.55Ni0.15Co0.1O2 LMR composite oxide. By employing neutron powder diffraction, and temperature dependent magnetic susceptibility, we show that LSL structural rearrangement in LMR oxide occurs through a tetrahedral cation intermediate via: i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(LiLioct →LiLitet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [LiTM oct → LiLitet]; and ii) migration of Mn from the octahedral sites of the transition metal layer to the permanent octahedral site of lithium layer via tetrahedral site of lithium layer [MnTMoct MnLitet MnLioct)]. The findings opens the door to the potential routes to mitigate this atomic restructuring in the high-voltage LMR composite oxide cathodes by manipulating the composition/structure for practical use in high-energy-density lithium-ion batteries.

  3. Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mohanty, Debasish; Li, Jianlin; Abraham, Daniel P.; Huq, Ashfia; Payzant, E. Andrew; Wood, David L.; Daniel, Claus

    2014-09-30

    Discovery of high-voltage layered lithium-and manganese-rich (LMR) composite oxide electrode has dramatically enhanced the energy density of current Li-ion energy storage systems. However, practical usage of these materials is currently not viable because of their inability to maintain a consistent voltage profile (voltage fading) during subsequent charge-discharge cycles. This report rationalizes the cause of this voltage fade by providing the evidence of layer to spinel-like (LSL) structural evolution pathways in the host Li1.2Mn0.55Ni0.15Co0.1O2 LMR composite oxide. By employing neutron powder diffraction, and temperature dependent magnetic susceptibility, we show that LSL structural rearrangement in LMR oxide occurs through a tetrahedral cationmore » intermediate via: i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(LiLioct →LiLitet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [LiTM oct → LiLitet]; and ii) migration of Mn from the octahedral sites of the transition metal layer to the permanent octahedral site of lithium layer via tetrahedral site of lithium layer [MnTMoct MnLitet MnLioct)]. The findings opens the door to the potential routes to mitigate this atomic restructuring in the high-voltage LMR composite oxide cathodes by manipulating the composition/structure for practical use in high-energy-density lithium-ion batteries.« less

  4. Double distributions and evolution equations

    SciTech Connect (OSTI)

    A.V. Radyushkin

    1998-05-01

    Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive meson electroproduction processes require a generalization of usual parton distributions for the case when long-distance information is accumulated in nonforward matrix elements < p{prime} {vert_bar}O(0,z){vert_bar}p > of quark and gluon light-cone operators. In their previous papers the authors used two types of nonperturbative functions parameterizing such matrix elements: double distributions F(x,y;t) and nonforward distribution functions F{sub {zeta}}(X;t). Here they discuss in more detail the double distributions (DD's) and evolution equations which they satisfy. They propose simple models for F(x,y;t=0) DD's with correct spectral and symmetry properties which also satisfy the reduction relations connecting them to the usual parton densities f(x). In this way, they obtain self-consistent models for the {zeta}-dependence of nonforward distributions. They show that, for small {zeta}, one can easily obtain nonforward distributions (in the X > {zeta} region) from the parton densities: F{sub {zeta}} (X;t=0) {approx} f(X{minus}{zeta}/2).

  5. Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage Metal-Air Ionic Liquid (MAIL) Batteries

    SciTech Connect (OSTI)

    2009-12-21

    Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the batterys main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASUs new battery system could be both cheaper and safer than todays Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

  6. Wavelength-doubling optical parametric oscillator

    DOE Patents [OSTI]

    Armstrong, Darrell J. (Albuquerque, NM); Smith, Arlee V. (Albuquerque, NM)

    2007-07-24

    A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.

  7. HIA 2015 DOE Zero Energy Ready Home Case Study: KB Home, Double ZeroHouse 3.0, El Dorado Hill, CA

    Energy Savers [EERE]

    3.0 El Dorado Hills, CA DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in to give you

  8. Double acting bit holder

    DOE Patents [OSTI]

    Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.

    1994-01-01

    A double acting bit holder that permits bits held in it to be resharpened during cutting action to increase energy efficiency by reducing the amount of small chips produced. The holder consist of: a stationary base portion capable of being fixed to a cutter head of an excavation machine and having an integral extension therefrom with a bore hole therethrough to accommodate a pin shaft; a movable portion coextensive with the base having a pin shaft integrally extending therefrom that is insertable in the bore hole of the base member to permit the moveable portion to rotate about the axis of the pin shaft; a recess in the movable portion of the holder to accommodate a shank of a bit; and a biased spring disposed in adjoining openings in the base and moveable portions of the holder to permit the moveable portion to pivot around the pin shaft during cutting action of a bit fixed in a turret to allow front, mid and back positions of the bit during cutting to lessen creation of small chip amounts and resharpen the bit during excavation use.

  9. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Merritt, E. C.; Doss, F. W.; Loomis, E. N.; Flippo, K. A.; Kline, J. L.

    2015-06-24

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varyingmore » two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. In addition, we also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths.« less

  10. New Electrode Manufacturing Process Equipment: Novel High Energy Density Lithium-Ion Cell Designs via Innovative Manufacturing Process Modules for Cathode and Integrated Separator

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the batterys components to free up more space within the cell for storage.

  11. Density functional theory calculations of magnetocrystalline anisotropy energies for (Fe1-xCox)2B

    SciTech Connect (OSTI)

    Daene, Markus; Kim, Soo Kyung; Surh, Michael P.; Aberg, Daniel; Benedict, Lorin X.

    2015-06-15

    We present and discuss density functional theory calculations of magnetic properties of the family of ferromagnetic compounds, (Fe1-xCox)2B, focusing specifically on the magnetocrystalline anisotropy energy (MAE). Using periodic supercells of various sizes (up to 96 atoms), it is shown that the general qualitative features of the composition dependence of the MAE is in agreement with experimental findings, while our predicted magnitudes are larger than those of experiment. We find that the use of small supercells (6 and 12-atom) favors larger MAE values relative to a statistical sample of configurations constructed with 96-atom supercells. As a result, the effect of lattice relaxations is shown to be small. Calculations of the Curie temperature for this alloy are also presented.

  12. Skin explosion of double-layer conductors in fast-rising high magnetic fields

    SciTech Connect (OSTI)

    Chaikovsky, S. A. Datsko, I. M.; Labetskaya, N. A.; Ratakhin, N. A.

    2014-04-15

    An experiment has been performed to study the electrical explosion of thick cylindrical conductors using the MIG pulsed power generator capable of producing a peak current of 2.5 MA within 100?ns rise time. The experimental goal was to compare the skin explosion of a solid conductor with that of a double-layer conductor whose outer layer had a lower conductivity than the inner one. It has been shown that in magnetic fields of peak induction up to 300?T and average induction rise rate 3??10{sup 9}?T/s, the double-layer structure of a conductor makes it possible to achieve higher magnetic induction at the conductor surface before it explodes. This can be accounted for, in particular, by the reduction of the ratio of the Joule heat density to the energy density of the magnetic field at the surface of a double-layer conductor due to redistribution of the current density over the conductor cross section.

  13. OZSPEC-2: An improved broadband high-resolution elliptical crystal x-ray spectrometer for high-energy density physics experiments (invited)

    SciTech Connect (OSTI)

    Heeter, R. F.; Anderson, S. G.; Booth, R.; Brown, G. V.; Emig, J.; Fulkerson, S.; McCarville, T.; Norman, D.; Schneider, M. B.; Young, B. K. F.

    2008-10-15

    A novel time, space, and energy-resolved x-ray spectrometer has been developed which produces, in a single snapshot, a broadband and relatively calibrated spectrum of the x-ray emission from a high-energy density laboratory plasma. The opacity zipper spectrometer (OZSPEC-1) records a nearly continuous spectrum for x-ray energies from 240 to 5800 eV in a single shot. The second-generation OZSPEC-2, detailed in this work, records fully continuous spectra on a single shot from any two of these three bands: 270-650, 660-1580, and 1960-4720 eV. These instruments thus record thermal and line radiation from a wide range of plasmas. These instruments' single-shot bandwidth is unmatched in a time-gated spectrometer; conversely, other broadband instruments are either time-integrated (using crystals or gratings), lack spectral resolution (diode arrays), or cover a lower energy band (gratings). The OZSPECs are based on the zipper detector, a large-format (100x35 mm) gated microchannel plate detector, with spectra dispersed along the 100 mm dimension. OZSPEC-1 and -2 both use elliptically bent crystals of OHM, RAP, and/or PET. Individual spectra are gated in 100 ps. OZSPEC-2 provides one-dimensional spatial imaging with 30-50 {mu}m resolution over a 1500 {mu}m field of view at the source. The elliptical crystal design yields broad spectral coverage with resolution E/{delta}E>500, strong rejection of hard x-ray backgrounds, and negligible source broadening for extended sources. Near-term applications include plasma opacity measurements, detailed spectra of inertial fusion Hohlraums, and laboratory astrophysics experiments.

  14. Technical Note: Exploring the limit for the conversion of energy-subtracted CT number to electron density for high-atomic-number materials

    SciTech Connect (OSTI)

    Saito, Masatoshi; Tsukihara, Masayoshi

    2014-07-15

    Purpose: For accurate tissue inhomogeneity correction in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted CT number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide ρ{sub e} range. The purpose of this study is to address the limitations of the conversion method with respect to atomic number (Z) by elucidating the role of partial photon interactions in the ΔHU–ρ{sub e} conversion process. Methods: The authors performed numerical analyses of the ΔHU–ρ{sub e} conversion for 105 human body tissues, as listed in ICRU Report 46, and elementary substances with Z = 1–40. Total and partial attenuation coefficients for these materials were calculated using the XCOM photon cross section database. The effective x-ray energies used to calculate the attenuation were chosen to imitate a dual-source CT scanner operated at 80–140 kV/Sn under well-calibrated and poorly calibrated conditions. Results: The accuracy of the resultant calibrated electron density,ρ{sub e}{sup cal}, for the ICRU-46 body tissues fully satisfied the IPEM-81 tolerance levels in radiotherapy treatment planning. If a criterion of ρ{sub e}{sup cal}/ρ{sub e} − 1 is assumed to be within ±2%, the predicted upper limit of Z applicable for the ΔHU–ρ{sub e} conversion under the well-calibrated condition is Z = 27. In the case of the poorly calibrated condition, the upper limit of Z is approximately 16. The deviation from the ΔHU–ρ{sub e} linearity for higher Z substances is mainly caused by the anomalous variation in the photoelectric-absorption component. Conclusions: Compensation among the three partial components of the photon interactions provides for sufficient linearity of the ΔHU–ρ{sub e} conversion to be applicable for most human tissues even for poorly conditioned scans in which there exists a large variation of effective x-ray energies owing to beam-hardening effects arising from the mismatch between the sizes of the object and the calibration phantom.

  15. SU-E-J-19: Accuracy of Dual-Energy CT-Derived Relative Electron Density for Proton Therapy Dose Calculation

    SciTech Connect (OSTI)

    Mullins, J; Duan, X; Kruse, J; Herman, M; Bues, M

    2014-06-01

    Purpose: To determine the suitability of dual-energy CT (DECT) to calculate relative electron density (RED) of tissues for accurate proton therapy dose calculation. Methods: DECT images of RED tissue surrogates were acquired at 80 and 140 kVp. Samples (RED=0.19?2.41) were imaged in a water-equivalent phantom in a variety of configurations. REDs were calculated using the DECT numbers and inputs of the high and low energy spectral weightings. DECT-derived RED was compared between geometric configurations and for variations in the spectral inputs to assess the sensitivity of RED accuracy versus expected values. Results: RED accuracy was dependent on accurate spectral input influenced by phantom thickness and radius from the phantom center. Material samples located at the center of the phantom generally showed the best agreement to reference RED values, but only when attenuation of the surrounding phantom thickness was accounted for in the calculation spectra. Calculated RED changed by up to 10% for some materials when the sample was located at an 11 cm radius from the phantom center. Calculated REDs under the best conditions still differed from reference values by up to 5% in bone and 14% in lung. Conclusion: DECT has previously been used to differentiate tissue types based on RED and Z for binary tissue-type segmentation. To improve upon the current standard of empirical conversion of CT number to RED for treatment planning dose calculation, DECT methods must be able to calculate RED to better than 3% accuracy throughout the image. The DECT method is sensitive to the accuracy of spectral inputs used for calculation, as well as to spatial position in the anatomy. Effort to address adjustments to the spectral calculation inputs based on position and phantom attenuation will be required before DECT-determined RED can achieve a consistent level of accuracy for application in dose calculation.

  16. Monitoring of Double-Stud Wall Moisture Conditions in the Northeast

    SciTech Connect (OSTI)

    Ueno, K.

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double-stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double-stud walls were monitored in Zone 5A (Massachusetts); three double-stud assemblies were compared.

  17. Double layer capacitor prospects look good

    SciTech Connect (OSTI)

    1995-07-01

    The Fourth International Seminar in Double Layer Capacitors and similar energy devices has been sponsored again by Dr. S.P. Wolsky and Dr. Nikola Marincic. The seminar was held in December 1994, at Deerfield Beach, FL. This report provides a brief description of information on supercapacitors.

  18. Double resonator cantilever accelerometer

    DOE Patents [OSTI]

    Koehler, Dale R.

    1984-01-01

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  19. Double resonator cantilever accelerometer

    DOE Patents [OSTI]

    Koehler, D.R.

    1982-09-23

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  20. Energy Department Invests $6 Million to Increase Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    As part of the Administration's effort to cut energy waste in the nation's buildings and double energy productivity by 2030, the Energy Department today announced nearly 6 million ...

  1. Accelerate Energy Productivity 2030 Launch

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy kicked off Accelerate Energy Productivity 2030. This initiative supports President Obama’s goal to double our energy productivity by 2030.

  2. A compact double-pass Raman backscattering amplifier/compressor

    SciTech Connect (OSTI)

    Ren, J.; Li, S.; Morozov, A.; Suckewer, S.; Yampolsky, N. A.; Malkin, V. M.; Fisch, N. J.

    2008-05-15

    The enhancement of stimulated Raman backscattering (SRBS) amplification was demonstrated by introducing a plasma density gradient along the pump and the seed interaction path and by a novel double-pass design. The energy transfer efficiency was significantly improved to a level of 6.4%. The seed pulse was amplified by a factor of more than 20 000 from the input in a 2 mm long plasma, which also exceeded the intensity of the pump pulse by 2 orders of magnitude. This was accompanied by very effective pulse compression, from 500 fs to 90 fs in the first pass measurements and in the second pass down to approximately 50 fs, as it is indicated by the energy-pulse duration relation. Further improvements to the energy transfer efficiency and the SRBS performance by extending the region of resonance is also discussed where a uniform {approx}4 mm long plasma channel for SRBS was generated by using two subsequent laser pulses in an ethane gas jet.

  3. Experimental investigations of electron density and ion energy distributions in dual-frequency capacitively coupled plasmas for Ar/CF{sub 4} and Ar/O{sub 2}/CF{sub 4} discharges

    SciTech Connect (OSTI)

    Liu, Jia; Liu, Yong-Xin; Gao, Fei; Wang, You-Nian, E-mail: ynwang@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Bi, Zhen-Hua [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2014-01-07

    The electron density and ion energy distribution (IED) are investigated in low-pressure dual-frequency capacitively coupled Ar/CF{sub 4} (90%/10%) and Ar/O{sub 2}/CF{sub 4} (80%/10%/10%) plasmas. The relations between controllable parameters, such as high-frequency (HF) power, low-frequency (LF) power and gas pressure, and plasma parameters, such as electron density and IEDs, are studied in detail by utilizing a floating hairpin probe and an energy resolved quadrupole mass spectrometer, respectively. In our experiment, the electron density is mainly determined by the HF power and slightly influenced by the LF power. With increasing gas pressure, the electron density first goes up rapidly to a maximum value and then decreases at various HF and LF powers. The HF power also plays a considerable role in affecting the IEDs under certain conditions and the ion energy independently controlled by the LF source is discussed here. For clarity, some numerical results obtained from a two-dimensional fluid model are presented.

  4. EA-1136: Double Tracks Test Site, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Nevada Operations Office to conduct environmental restoration operations at the Double Tracks test site...

  5. Double Beta Decay Experiments

    SciTech Connect (OSTI)

    Nanal, Vandana [Dept. of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005 (India)

    2011-11-23

    At present, neutrinoless double beta decay is perhaps the only experiment that can tell us whether the neutrino is a Dirac or a Majorana particle. Given the significance of the 0{nu}{beta}{beta}, there is a widespread interest for these rare event studies employing a variety of novel techniques. This paper describes the current status of DBD experiments. The Indian effort for an underground NDBD experiment at the upcoming INO laboratory is also presented.

  6. Double Beta Decay

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Double Beta Decay Measuring the Mass of the Neutrino One of the most elusive and exotic subatomic particles being investigated around the world today is the neutrino. Understanding the family of neutrino particles and how they interact with other matter (and among themselves) has become one the most intensive physics research efforts ever attempted by mankind. With a virtually undetectable mass, and without electric charge, these weakly interacting particles have been devilishly difficult to

  7. A double-layer based model of ion confinement in electron cyclotron resonance ion source

    SciTech Connect (OSTI)

    Mascali, D. Neri, L.; Celona, L.; Castro, G.; Gammino, S.; Ciavola, G.; Torrisi, G.; Universit Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dellInformazione, delle Infrastrutture e dellEnergia Sostenibile, Via Graziella, I-89100 Reggio Calabria ; Sorbello, G.; Universit degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica, Viale Andrea Doria 6, 95125 Catania

    2014-02-15

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this barrier confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  8. Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces

    SciTech Connect (OSTI)

    Feng, Guang; Jiang, Deen; Cummings, Peter T

    2012-01-01

    Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulations reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased ion density per unit area of electrode surface as the OLC becomes smaller.

  9. DOE Tour of Zero Floorplans: Double ZeroHouse 3.0 by KB Home | Department

    Energy Savers [EERE]

    of Energy Double ZeroHouse 3.0 by KB Home DOE Tour of Zero Floorplans: Double ZeroHouse 3.0 by KB Home DOE Tour of Zero Floorplans: Double ZeroHouse 3.0 by KB Home

  10. Comparison of transition densities in the DDHMS model of pre-equilibrium emission

    SciTech Connect (OSTI)

    Brito, L.; Carlson, B. V.

    2014-11-11

    The DDHMS (double differential hybrid Monte Carlo simulation) model treats nucleon-induced pre-equilibrium reactions as a series of particle-particle and particle-hole interactions in the space of energy and angle. This work compares spectra obtained within the model using diferent approximations to the density of accessible states. The calculations are performed with the EMPIRE reaction model code, a modular system containing several nuclear reaction models that permits a fairly complete descritpion of the reaction, from elastic scattering and absorption through the pre-equilbrium stage to the final decay by statistical emission.

  11. Identification of Catalysts and Materials for a High-Energy Density Biochemical Fuel Cell: Cooperative Research and Development Final Report, CRADA Number CRD-09-345

    SciTech Connect (OSTI)

    Ghirardi, M.; Svedruzic, D.

    2013-07-01

    The proposed research attempted to identify novel biochemical catalysts, catalyst support materials, high-efficiency electron transfer agents between catalyst active sites and electrodes, and solid-phase electrolytes in order to maximize the current density of biochemical fuel cells that utilize various alcohols as substrates.

  12. Kinetic model for an auroral double layer that spans many gravitational

    Office of Scientific and Technical Information (OSTI)

    scale heights (Journal Article) | SciTech Connect Kinetic model for an auroral double layer that spans many gravitational scale heights Citation Details In-Document Search Title: Kinetic model for an auroral double layer that spans many gravitational scale heights The electrostatic potential profile and the particle densities of a simplified auroral double layer are found using a relaxation method to solve Poisson's equation in one dimension. The electron and ion distribution functions for

  13. "Airborne Wind Energy - Harnessing a Vast, Untapped Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Source" | Princeton Plasma Physics Lab November 14, 2012, 4:15pm Colloquia MBG Auditorium "Airborne Wind Energy - Harnessing a Vast, Untapped Renewable Energy Source" Dr. Kenneth Jensen Makani Power Inc. At just 500 m above the ground, the average power density of the wind is double that at 100 m where wind turbines typically reside. This makes high-altitude wind one of the most concentrated forms of renewable energy after hydro-power. Building conventional wind turbines at

  14. Energy Secretary Moniz Dedicates Clean Energy Research Center...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dedicates Clean Energy Research Center, New Supercomputer Energy Secretary Moniz Dedicates ... more than doubled generation of electricity from wind, solar and geothermal sources. ...

  15. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  16. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  17. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  18. Status Update of the Majorana Demonstrator Neutrinoless Double Beta Decay

    Office of Scientific and Technical Information (OSTI)

    Experiment (Technical Report) | SciTech Connect Technical Report: Status Update of the Majorana Demonstrator Neutrinoless Double Beta Decay Experiment Citation Details In-Document Search Title: Status Update of the Majorana Demonstrator Neutrinoless Double Beta Decay Experiment × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit

  19. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    Office of Scientific and Technical Information (OSTI)

    (Thesis/Dissertation) | SciTech Connect Thesis/Dissertation: Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment Citation Details In-Document Search Title: Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  20. Proposed mechanism to represent the suppression of dark current density by four orders with low energy light ion (H{sup ?}) implantation in quaternary alloy-capped InAs/GaAs quantum dot infrared photodetectors

    SciTech Connect (OSTI)

    Mandal, A.; Ghadi, H.; Mathur, K.L.; Basu, A.; Subrahmanyam, N.B.V.; Singh, P.; Chakrabarti, S.

    2013-08-01

    Graphical abstract: - Abstract: Here we propose a carrier transport mechanism for low energy H{sup ?} ions implanted InAs/GaAs quantum dot infrared photodetectors supportive of the experimental results obtained. Dark current density suppression of up to four orders was observed in the implanted quantum dot infrared photodetectors, which further demonstrates that they are effectively operational. We concentrated on determining how defect-related material and structural changes attributed to implantation helped in dark current density reduction for InAs/GaAs quantum dot infrared photodetectors. This is the first study to report the electrical carrier transport mechanism of H{sup ?} ion-implanted InAs/GaAs quantum dot infrared photodetectors.

  1. Energy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 16, 2015 Secretary Moniz Unveils Roadmap to Double U.S. Energy Productivity by 2030 Secretary Moniz unveiled a strategic plan laying out a roadmap to achieve the...

  2. Corrections to the neutrinoless double-{beta}-decay operator in the shell model

    SciTech Connect (OSTI)

    Engel, Jonathan; Hagen, Gaute [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255 (United States); Physics Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831 (United States)

    2009-06-15

    We use diagrammatic perturbation theory to construct an effective shell-model operator for the neutrinoless double-{beta} decay of {sup 82}Se. The starting point is the same Bonn-C nucleon-nucleon interaction that is used to generate the Hamiltonian for recent shell-model calculations of double-{beta} decay. After first summing high-energy ladder diagrams that account for short-range correlations and then adding diagrams of low order in the G matrix to account for longer-range correlations, we fold the two-body matrix elements of the resulting effective operator with transition densities from the recent shell-model calculation to obtain the overall nuclear matrix element that governs the decay. Although the high-energy ladder diagrams suppress this matrix element at very short distances as expected, they enhance it at distances between one and two fermis, so that their overall effect is small. The corrections due to longer-range physics are large, but cancel one another so that the fully corrected matrix element is comparable to that produced by the bare operator. This cancellation between large and physically distinct low-order terms indicates the importance of a reliable nonperturbative calculation.

  3. Developing a bright 17 keV x-ray source for probing high-energy-density states of matter at high spatial resolution

    SciTech Connect (OSTI)

    Huntington, C. M.; Park, H.-S.; Maddox, B. R.; Barrios, M. A.; Benedetti, R.; Braun, D. G.; Landen, O. L.; Wehrenberg, C. E.; Remington, B. A.; Hohenberger, M.; Regan, S. P.

    2015-04-15

    A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 μm wide slit in a Ta substrate to aperture the Nb He{sub α} x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were used—a “prepulse” shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated.

  4. Double-Difference Tomography for Sequestration MVA

    SciTech Connect (OSTI)

    Westman, Erik

    2008-12-31

    Analysis of synthetic data was performed to determine the most cost-effective tomographic monitoring system for a geologic carbon sequestration injection site. Double-difference tomographic inversion was performed on 125 synthetic data sets: five stages of CO2 plume growth, five seismic event regions, and five geophone arrays. Each resulting velocity model was compared quantitatively to its respective synthetic velocity model to determine an accuracy value. The results were examined to determine a relationship between cost and accuracy in monitoring, verification, and accounting applications using double-difference tomography. The geophone arrays with widely-varying geophone locations, both laterally and vertically, performed best. Additionally, double difference seismic tomography was performed using travel time data from a carbon sequestration site at the Aneth oil field in southeast Utah as part of a Department of Energy initiative on monitoring, verification, and accounting (MVA) of sequestered CO2. A total of 1,211 seismic events were recorded from a borehole array consisting of 22 geophones. Artificial velocity models were created to determine the ease with which different CO2 plume locations and sizes can be detected. Most likely because of the poor geophone arrangement, a low velocity zone in the Desert Creek reservoir can only be detected when regions of test site containing the highest ray path coverage are considered. MVA accuracy and precision may be improved through the use of a receiver array that provides more comprehensive ray path coverage.

  5. Cation ordering and effect of biaxial strain in double perovskite CsRbCaZnCl6

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pilania, G.; Uberuaga, B. P.

    2015-03-19

    Here, we investigate the electronic structure, energetics of cation ordering, and effect of biaxial strain on double perovskite CsRbCaZnCl6 using first-principles calculations based on density functional theory. The two constituents (i.e., CsCaCl3 and RbZnCl3) forming the double perovskite exhibit a stark contrast. While CsCaCl3 is known to exist in a cubic perovskite structure and does not show any epitaxial strain induced phase transitions within an experimentally accessible range of compressive strains, RbZnCl3 is thermodynamically unstable in the perovskite phase and exhibits ultra-sensitive response at small epitaxial strains if constrained in the perovskite phase. We show that combining the two compositionsmore » in a double perovskite structure not only improves overall stability but also the strain-polarization coupling of the material. Our calculations predict a ground state with P4/nmm space group for the double perovskite, where A-site cations (i.e., Cs and Rb) are layer-ordered and B-site cations (i.e., Ca and Zn) prefer a rocksalt type ordering. The electronic structure and bandgap in this system are shown to be quite sensitive to the B-site cation ordering and is minimally affected by the ordering of A-site cations. We find that at experimentally accessible compressive strains CsRbCaZnCl6 can be phase transformed from its paraelectric ground state to an antiferroelectric state, where Zn atoms contribute predominantly to the polarization. Furthermore, both energy difference and activation barrier for a transformation between this antiferroelectric state and the corresponding ferroelectric configuration are predicted to be small. As a result, the computational approach presented here opens a new pathway towards a rational design of novel double perovskites with improved strain response and functionalities.« less

  6. ENERGY

    Energy Savers [EERE]

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http:energy.govqtr 2015-01-13 Page 2 The United States faces serious ...

  7. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy /newsroom/_assets/images/energy-icon.png Energy Research into alternative forms of energy, and improving and securing the power grid, is a major national security imperative. Health Space Computing Energy Earth Materials Science Technology The Lab All Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  8. High density laser-driven target

    DOE Patents [OSTI]

    Lindl, John D.

    1981-01-01

    A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.

  9. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the Energy Sector (76) Achieving Higher Energy Density in Flow Batteries at Lower Cost with MetILs (481) Advanced Energy Industries, Inc. SEGIS Developments (1772)...

  10. Probable new type of reaction mechanism: Double. cap alpha. direct transfer process

    SciTech Connect (OSTI)

    Xu Shu-wei; Wu Guo-hua; Miao Rong-zhi; Han Fei

    1983-10-01

    It is assumed that /sup 8/Be consists of two ..cap alpha.. particles which are close to each other in configuration space. A spectroscopic density of /sup 8/Be cluster in the residue nuclei is then obtained, which is proportional to the square of the preformation probability of ..cap alpha.. particle at nuclear surface. Using the improved method of parametrization of EFR-DWBA overlap integral,/sup 1//sup en-dash//sup 2/ we calculate the double differential energy spectra and angular distributions of ..cap alpha.. particles for the reactions /sup 209/Bi (/sup 12/C, ..cap alpha..) /sup 217/Fr and extract the preformation probability of ..cap alpha.. particle at the surface of /sup 217/Fr nuclei from fitting the experimental data. The agreement within the range of calculation error between the preformation probabilities extracted from transfer reactions and ..cap alpha.. decay suggests that the reaction /sup 209/Bi(/sup 12/C, ..cap alpha..) /sup 217/Fr may be explained as a double ..cap alpha.. direct transfer process.

  11. Ions in solution: Density corrected density functional theory (DC-DFT)

    SciTech Connect (OSTI)

    Kim, Min-Cheol; Sim, Eunji; Burke, Kieron

    2014-05-14

    Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HO·Cl{sup −} and HO·H{sub 2}O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.

  12. Double field theory inspired cosmology

    SciTech Connect (OSTI)

    Wu, Houwen; Yang, Haitang E-mail: hyanga@scu.edu.cn

    2014-07-01

    Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.

  13. Bound states in a hyperbolic asymmetric double-well

    SciTech Connect (OSTI)

    Hartmann, R. R.

    2014-01-15

    We report a new class of hyperbolic asymmetric double-well whose bound state wavefunctions can be expressed in terms of confluent Heun functions. An analytic procedure is used to obtain the energy eigenvalues and the criterion for the potential to support bound states is discussed.

  14. Visualization of electronic density

    SciTech Connect (OSTI)

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan

    2015-04-22

    An atoms volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  15. Visualization of electronic density

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  16. Double stranded nucleic acid biochips

    DOE Patents [OSTI]

    Chernov, Boris; Golova, Julia

    2006-05-23

    This invention describes a new method of constructing double-stranded DNA (dsDNA) microarrays based on the use of pre-synthesized or natural DNA duplexes without a stem-loop structure. The complementary oligonucleotide chains are bonded together by a novel connector that includes a linker for immobilization on a matrix. A non-enzymatic method for synthesizing double-stranded nucleic acids with this novel connector enables the construction of inexpensive and robust dsDNA/dsRNA microarrays. DNA-DNA and DNA-protein interactions are investigated using the microarrays.

  17. Double layer -- a particle accelerator in the magnetosphere

    SciTech Connect (OSTI)

    Fu, Xiangrong

    2015-07-16

    Slides present the material under the following topics: Introduction (What is a double layer (DL)? Why is it important? Key unsolved problems); Theory -- time-independent solutions of 1D Vlasov--Poisson system; Particle-in-cell simulations (Current-driven DLs); and Electron acceleration by DL (Betatron acceleration). Key problems include the generation mechanism, stability, and electron acceleration. In summary, recent observations by Van Allen Probes show large number of DLs in the outer radiation belt, associated with enhanced flux of relativistic electrons. Simulations show that ion acoustic double layers can be generated by field-aligned currents. Thermal electrons can gain energy via betatron acceleration in a dipole magnetic field.

  18. Access to a New Plasma Edge State with High Density and Pressures using Quiescent H-mode

    SciTech Connect (OSTI)

    Solomon, Wayne M.; Snyder, P. B.; Burrell, K. H.; Fenstermacher, M. E.; Garofalo, A. M.; Grierson, B. A.; Loarte, A.; McKee, G. R.; Nazikian, R; Osborne, T. H.

    2014-07-01

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over standard edge localized mode (ELM)ing H-mode at these parameters. The thermal energy confinement time increases both as a result of the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.

  19. Excellent performances of energy harvester using cantilever driving double-clamped 0.7Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.3PbTiO{sub 3} plates and symmetric middle-stops

    SciTech Connect (OSTI)

    Zeng, Zhou; Xu, Qing; Ren, Bo; Lin, Di; Di, Wenning; Luo, Haosu Wang, Dong

    2015-10-26

    We present a high performance nonlinear piezoelectric energy harvester constituted by a cantilever with symmetrically middle-stops and double-clamped piezoelectric plates based on piezoelectric single crystal 0.7Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.3PbTiO{sub 3}. Electrical properties of the device under different excitation frequencies, accelerations, and load resistances are studied systematically. Under a low acceleration of 3 m/s{sup 2} (0.3 g), a peak voltage of 26.2 V and a maximum normalized power of 25.6 mW/g{sup 2} were obtained across a matching impedance of 600 kΩ with favorable bandwidths. The low excitation acceleration and excellent performances indicate that the device can be a promising candidate for energy harvesting in low-power electronics and wireless sensors.

  20. Improved analysis techniques for cylindrical and spherical double probes

    SciTech Connect (OSTI)

    Beal, Brian; Brown, Daniel; Bromaghim, Daron; Johnson, Lee; Blakely, Joseph

    2012-07-15

    A versatile double Langmuir probe technique has been developed by incorporating analytical fits to Laframboise's numerical results for ion current collection by biased electrodes of various sizes relative to the local electron Debye length. Application of these fits to the double probe circuit has produced a set of coupled equations that express the potential of each electrode relative to the plasma potential as well as the resulting probe current as a function of applied probe voltage. These equations can be readily solved via standard numerical techniques in order to determine electron temperature and plasma density from probe current and voltage measurements. Because this method self-consistently accounts for the effects of sheath expansion, it can be readily applied to plasmas with a wide range of densities and low ion temperature (T{sub i}/T{sub e} Much-Less-Than 1) without requiring probe dimensions to be asymptotically large or small with respect to the electron Debye length. The presented approach has been successfully applied to experimental measurements obtained in the plume of a low-power Hall thruster, which produced a quasineutral, flowing xenon plasma during operation at 200 W on xenon. The measured plasma densities and electron temperatures were in the range of 1 Multiplication-Sign 10{sup 12}-1 Multiplication-Sign 10{sup 17} m{sup -3} and 0.5-5.0 eV, respectively. The estimated measurement uncertainty is +6%/-34% in density and +/-30% in electron temperature.

  1. High energy density battery with cathode composition

    SciTech Connect (OSTI)

    Nalewajek, D.; Eibeck, R. E.; Sukornick, B.

    1985-10-22

    A cell which employs an active metal anode such as lithium and a liquid organic electrolyte that is improved by the use of a cathode comprised of carbon fluoride chloride is described. The cathode comprises a carbon fluoride chloride of the general formula (C /SUB y/ F /SUB x/ Cl /SUB z/ ) /SUB n/ wherein y is 1 to 2, x is greater than 0 to 1.2, z is less than or equal to0.1 and n defines the number of repeating units occurring in the carbon fluoride chloride molecule of high molecular weight. The resulting battery has improved discharge and shelf-life characteristics.

  2. New Electrode Designs for Ultrahigh Energy Density

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  3. Search for High Energy Density Cathode Materials

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  4. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  5. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet -Ming; Carter, W. Craig; Duduta, Mihai; Limthongkul, Pimpa

    2015-10-06

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  6. Accelerate Energy Productivity 2030 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives » Accelerate Energy Productivity 2030 Accelerate Energy Productivity 2030 On September 16, 2015, the U.S. Department of Energy and its partners, the Council on Competitiveness and the Alliance to Save Energy, released Accelerate Energy Productivity 2030: A Strategic Roadmap for American Energy Innovation, Economic Growth, and Competitiveness (Roadmap). This effort supports the goal the President set in his 2013 State of the Union address to double energy productivity, measured by

  7. Energy

    Office of Legacy Management (LM)

    ..) ".. _,; ,' . ' , ,; Depar?.me.nt ,of.' Energy Washington; DC 20585 : . ' , - $$ o"\ ' ~' ,' DEC ?;$ ;y4,,, ~ ' .~ The Honorable John Kalwitz , 200 E. Wells Street Milwaukee, W~isconsin 53202, . . i :. Dear,Mayor 'Kalwitz: " . " Secretary of Energy Hazel' O'Leary has announceha new,approach 'to,openness in " the Department of Ene~rgy (DOE) and its communications with'the public. In -. support of~this initiative, we areipleased to forward the enclosed information

  8. Development of a simple 2.45 GHz microwave plasma with a repulsive double hexapole configuration

    SciTech Connect (OSTI)

    Arciaga, Marko; Ulano, April; Lee, Henry Jr.; Lledo, Rumar; Ramos, Henry; Tumlos, Roy

    2008-09-15

    A simple and inexpensive 2.45 GHz microwave plasma source with a repulsive double hexapole configuration is described and characterized. In this work, the operation of the source is shown to be flexible in terms of electron density, electron temperature, and plasma uniformity even at low-pressures (approximately millitorr). It allows for easy control of the electron temperature (2-3.8 eV) and density ({approx}10{sup 9}-10{sup 10} cm{sup -3}) by removing either of the two hexapoles or by varying the separation distance between the two hexapoles. Characterization was done via information gathered from the usual Langmuir probe measurements for electron temperature and density. The source makes a resonant surface with its repulsive double hexapole magnetic configuration providing an additional longitudinal confinement near the walls midway between the two hexapoles. Magnetic field maps are presented for varying double hexapole distances. Power delivery for various settings is also presented.

  9. Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles...

    Office of Science (SC) Website

    Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community ...

  10. Conditions for establishing quasistable double layers in the Earth's auroral upward current region

    SciTech Connect (OSTI)

    Main, D. S.; Newman, D. L.; Ergun, R. E.

    2010-12-15

    The strength and stability of simulated double layers at the ionosphere-auroral cavity boundary have been studied as a function of cold ionospheric electron temperature and density. The simulations are performed with an open boundary one-dimensional particle-in- cell (PIC) simulation and are initialized by imposing a density cavity within the simulation domain. The PIC simulation includes H{sup +} and O{sup +} ion beams, a hot H{sup +} background population, cold ionospheric electrons, and a hot electron population. It is shown that a double layer remains quasistable for a variety of initial conditions and plasma parameters. The average potential drop of the double layer is found to increase as the cold electron temperature decreases. However, in terms of cold electron density, the average potential drop of the double layer is found to increase up to some critical cold electron density and decreases above this value. Comparisons with FAST observations are made and agreement is found between simulation results and observations in the shape and width of the double layer. This study helps put a constraint on the plasma conditions in which a DL can be expected to form and remain quasistable.

  11. DOE Tour of Zero: Double ZeroHouse 3.0 by KB Home | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KB Home hosted a grand opening event and gave tours to college students and members of the media. 14 of 14 The KB Home DoubleZero House 3.0 is a zero energy home, producing as much ...

  12. Period-doubling reconstructions of semiconductor partial dislocations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, Ji -Sang; Huang, Bing; Wei, Su -Huai; Kang, Joongoo; McMahon, William E.

    2015-09-18

    Atomic-scale understanding and control of dislocation cores is of great technological importance, because they act as recombination centers for charge carriers in optoelectronic devices. Using hybrid density-functional calculations, we present period-doubling reconstructions of a 90° partial dislocation in GaAs, for which the periodicity of like-atom dimers along the dislocation line varies from one to two, to four dimers. The electronic properties of a dislocation change drastically with each period doubling. The dimers in the single-period dislocation are able to interact, to form a dispersive one-dimensional band with deep-gap states. However, the inter-dimer interaction for the double-period dislocation becomes significantly reduced;more » hence, it is free of mid-gap states. The Ga core undergoes a further period-doubling transition to a quadruple-period reconstruction induced by the formation of small hole polarons. Lastly, the competition between these dislocation phases suggests a new passivation strategy via population manipulation of the detrimental single-period phase.« less

  13. Minimal Doubling and Point Splitting

    SciTech Connect (OSTI)

    Creutz, M.

    2010-06-14

    Minimally-doubled chiral fermions have the unusual property of a single local field creating two fermionic species. Spreading the field over hypercubes allows construction of combinations that isolate specific modes. Combining these fields into bilinears produces meson fields of specific quantum numbers. Minimally-doubled fermion actions present the possibility of fast simulations while maintaining one exact chiral symmetry. They do, however, introduce some peculiar aspects. An explicit breaking of hyper-cubic symmetry allows additional counter-terms to appear in the renormalization. While a single field creates two different species, spreading this field over nearby sites allows isolation of specific states and the construction of physical meson operators. Finally, lattice artifacts break isospin and give two of the three pseudoscalar mesons an additional contribution to their mass. Depending on the sign of this mass splitting, one can either have a traditional Goldstone pseudoscalar meson or a parity breaking Aoki-like phase.

  14. Dense strongly coupled plasma in double laser pulse ablation of lithium: Experiment and simulation

    SciTech Connect (OSTI)

    Kumar, Ajai; Sivakumaran, V.; Ganesh, R.; Joshi, H. C. [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Ashwin, J. [Weizmann Institute of Science, Rehovot - 76100 (Israel)] [Weizmann Institute of Science, Rehovot - 76100 (Israel)

    2013-08-15

    In a simple method of low power nano-second double pulsed laser ablation experiment in collinear geometry, formation of high density strongly coupled plasma is demonstrated. Using time-resolved measurements of the Stark broadened line width and line intensity ratio of the emission lines, the density and temperature of the plasma were estimated respectively. In this experiment, it is shown that ions are strongly coupled (ion-ion coupling parameter comes out to be >4). For comparison, both single and double pulsed laser ablations are presented. For the estimated experimental plasma parameters, first principle Langevin dynamics simulation corroborates the existence of a strongly coupled regime.

  15. Nickelcobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets with a 3D nanonetwork structure as supercapacitive materials

    SciTech Connect (OSTI)

    Yan, Tao; Li, Ruiyi; Li, Zaijun

    2014-03-01

    Graphical abstract: The microwave heating reflux approach was developed for the fabrication of nickelcobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets, in which ammonia and ethanol were used as the precipitator and medium for the synthesis. The obtained composite shows a 3D flowerclusters morphology with nanonetwork structure and largely enhanced supercapacitive performance. - Highlights: The paper reported the microwave synthesis of nickelcobalt layered double hydroxide/graphene composite. The novel synthesis method is rapid, green, efficient and can be well used to the mass production. The as-synthesized composite offers a 3D flowerclusters morphology with nanonetwork structure. The composite offers excellent supercapacitive performance. This study provides a promising route to design and synthesis of advanced graphene-based materials with the superiorities of time-saving and cost-effective characteristics. - Abstract: The study reported a novel microwave heating reflux method for the fabrication of nickelcobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets (GS/NiCo-LDH). Ammonia and ethanol were employed as precipitant and reaction medium for the synthesis, respectively. The resulting GS/NiCo-LDH offers a 3D flowerclusters morphology with nanonetwork structure. Due to the greatly enhanced rate of electron transfer and mass transport, the GS/NiCo-LDH electrode exhibits excellent supercapacitive performances. The maximum specific capacitance was found to be 1980.7 F g{sup ?1} at the current density of 1 A g{sup ?1}. The specific capacitance can remain 1274.7 F g{sup ?1} at the current density of 15 A g{sup ?1} and it has an increase of about 2.9% after 1500 cycles. Moreover, the study also provides a promising approach for the design and synthesis of metallic double hydroxides/graphene hybrid materials with time-saving and cost-effective characteristics, which can be potentially applied in the energy storage/conversion devices.

  16. What can we learn from neutrinoless double beta decay experiments? (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect What can we learn from neutrinoless double beta decay experiments? Citation Details In-Document Search Title: What can we learn from neutrinoless double beta decay experiments? × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  17. Doubling Geothermal Generation Capacity by 2020: A Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis PDF icon NREL Doubling Geothermal ...

  18. Periodic subsystem density-functional theory

    SciTech Connect (OSTI)

    Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide

    2014-11-07

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  19. Energy

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    M onthly Energy Re< view Ila A a m 0 II 8 IIIW *g U In this issue: New data on nuclear electricity in Eastern Europe (Table 10.4) 9'Ij a - Ordering Information This publication...

  20. SolidEnergy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SolidEnergy Systems National Clean Energy Business Plan Competition SolidEnergy Systems Massachusetts Institute of Technology The Polymer Ionic Liquid (PIL) lithium battery combines the safety and energy density of a solid polymer lithium battery and the high performance of a lithium-ion battery. The battery developed by SolidEnergy achieves high energy density that works safely over a wide temperature range, which makes it ideal for electric vehicles and consumer electronics where both energy

  1. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation ...

  2. Wildlife Densities and Habitat Use Across Temporal and Spatial Scales on the Mid-Atlantic Outer Continental Shelf. Final Report to the Department of Energy EERE Wind & Water Power Technologies Office

    SciTech Connect (OSTI)

    Williams, Kathryn A.; Stenhouse, Iain J.; Johnson, Sarah M.; Connelly, Emily E.

    2015-10-01

    The Mid-Atlantic Baseline Studies Project helped address environmental barriers to offshore wind energy development in the mid-Atlantic region by providing regulators, developers, and other stakeholders with comprehensive baseline ecological data and analyses. Project funders and collaborators from a range of academic institutions, non-governmental organizations, federal agencies, foundations, and private companies came together to study bird, sea turtle, and marine mammal distributions, densities, and movements on the mid-Atlantic Outer Continental Shelf between 2012 and 2014. Specific project activities and goals included the following: (1) Conduct standardized surveys to quantify bird, sea turtle, and marine mammal densities seasonally and annually throughout the study region and identify important habitat use or aggregation areas. (2) Develop statistical models to help understand the drivers of wildlife distribution and abundance patterns. (3) Use individual tracking data for several focal bird species to provide information on population connectivity and individual movements that is complementary to survey data. (4) Identify species that are likely to be exposed to offshore wind energy development activities in the mid-Atlantic study area. (5) Develop U.S.-based technological resources and assessment methods for future monitoring efforts, including a comparison of high resolution digital video aerial surveys to boat-based surveys. (6) Help meet data needs associated with National Environmental Policy Act (NEPA), Marine Mammal Protection Act, and Endangered Species Act requirements, by contributing several years of data and analysis towards future Environmental Impact Statements. This report consists of six parts: Project overview (executive summary and Chapters 1-2); Examining wildlife distributions and relative abundance from a digital video aerial survey platform (Chapters 3-6); Examining wildlife distributions and abundance using boat-based surveys (Chapters 7-12); Integrating data across survey platforms (Chapters 13-19); Individual movements and habitat use for focal bird species (Chapters 20-25); and Nocturnal avian migration monitoring (Chapters 26-27). Boat-based and digital video aerial surveys each had specific advantages and disadvantages, but were largely complementary (Chapters 1, 5, 13-14). Digital aerial surveys were particularly useful for covering offshore areas at broad scales, where general distributions of taxonomic groups were a priority; boat surveys could provide more detailed data on species identities and behaviors, but were more limited in geographic scope due to their slower survey pace. The mid-Atlantic study area was important for wintering and breeding taxa, and its location also made it a key migratory corridor. There was considerable variation in species composition and spatial patterns by season, largely driven by dynamic environmental conditions (Chapters 12, 15, and 20-22). Habitat gradients in nearshore waters, however, were reliable influences on productivity and patterns of species distributions and abundance. Areas within about 30-40 km of the coast offshore of the mouths of Chesapeake and Delaware Bays, as well as to the south of Delaware Bay along the coast, were consistent hotspots of abundance and species diversity, regardless of survey methodology or analytical approach (Chapters 2, 12, 17). Inter-annual variation was substantial, and the importance of certain environmental variables in predicting animal distributions indicates that these species may well respond to future environmental shifts brought about by anthropogenic effects and climatic change. This study is an important first step, however, towards understanding how bird, marine mammal, and sea turtle populations in the mid-Atlantic may be exposed to offshore wind energy development and other anthropogenic activities. The results of this study provide insight to help address environmental permitting requirements for current and future offshore development projects, and serve as a starting point for more site-specific studies, risk analyses, and evaluation of potential measures to avoid and minimize those risks.

  3. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage The challenge of creating new advanced batteries and energy storage ... We develop more robust, safer and higher-energy density lithium-ion batteries, while using ...

  4. Density Equalizing Map Projections

    Energy Science and Technology Software Center (OSTI)

    1995-07-01

    A geographic map is mathematically transformed so that the subareas of the map are proportional to a given quantity such as population. In other words, population density is equalized over the entire map. The transformed map can be used as a display tool, or it can be statistically analyzed. For example, cases of disease plotted on the transformed map should be uniformly distributed at random, if disease rates are everywhere equal. Geographic clusters of diseasemore » can be readily identified, and their statistical significance determined, on a density equalized map.« less

  5. Booster double harmonic setup notes

    SciTech Connect (OSTI)

    Gardner, C. J.

    2015-02-17

    The motivation behind implementing a booster double harmonic include the reduced transverse space charge force from a reduced peak beam current and reduced momentum spread of the beam, both of which can be achieved from flattening the RF bucket. RF capture and acceleration of polarized protons (PP) is first set up in the single harmonic mode with RF harmonic h=1. Once capture and acceleration have been set up in the single harmonic mode, the second harmonic system is brought on and programmed to operate in concert with the single harmonic system.

  6. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  7. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  8. Corrections to the Neutrinoless Double-Beta-Decay Operator in the Shell Model

    SciTech Connect (OSTI)

    Engel, Jonathan [University of North Carolina, Chapel Hill; Hagen, Gaute [ORNL

    2009-01-01

    We use diagrammatic perturbation theory to construct an effective shell-model operator for the neutrinoless double beta decay of ^{82}Se. The starting point is the same Bonn-C nucleon-nucleon interaction that is used to generate the Hamiltonian in state-of-the-art shell-model calculations. After first summing high-energy ladder diagrams that account for short-range correlations and then adding diagrams of low order in the G matrix to account for longer-range correlations, we fold the two-body matrix elements of the resulting effective operator with transition densities from an existing shell-model calculation to obtain the overall nuclear matrix element that governs the decay. Although the high-energy ladder diagrams suppress this matrix element at very short distances as expected, they enhance it at distances between one and two fermis, so that their overall effect is small. The corrections due to longer-range physics are large, but cancel one another so that the fully corrected matrix element is comparable to that produced by the bare operator. This cancellation between large and physically distinct low-order terms indicates the importance of a reliable nonperturbative calculation.

  9. Tritium emissions from 200 East Area Double-Shell Tanks

    SciTech Connect (OSTI)

    Bachand, D.D.

    1994-11-28

    This document evaluates the need for tritium sampling of the emissions from the 200 East Area Double Shell Tanks based on the requirements of {open_quotes}National Emission Standards for Hazardous Air Pollutants{close_quotes} (NESHAP). The NESHAP requirements are specified in 40 Code of Federal Regulation (CFR), Part 61, Subpart H; {open_quotes}National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities{close_quotes}.

  10. Orbital-optimized density cumulant functional theory

    SciTech Connect (OSTI)

    Sokolov, Alexander Yu. Schaefer, Henry F.

    2013-11-28

    In density cumulant functional theory (DCFT) the electronic energy is evaluated from the one-particle density matrix and two-particle density cumulant, circumventing the computation of the wavefunction. To achieve this, the one-particle density matrix is decomposed exactly into the mean-field (idempotent) and correlation components. While the latter can be entirely derived from the density cumulant, the former must be obtained by choosing a specific set of orbitals. In the original DCFT formulation [W. Kutzelnigg, J. Chem. Phys. 125, 171101 (2006)] the orbitals were determined by diagonalizing the effective Fock operator, which introduces partial orbital relaxation. Here we present a new orbital-optimized formulation of DCFT where the energy is variationally minimized with respect to orbital rotations. This introduces important energy contributions and significantly improves the description of the dynamic correlation. In addition, it greatly simplifies the computation of analytic gradients, for which expressions are also presented. We offer a perturbative analysis of the new orbital stationarity conditions and benchmark their performance for a variety of chemical systems.

  11. Effect of cooler electrons on a compressive ion acoustic solitary wave in a warm ion plasma Forbidden regions, double layers, and supersolitons

    SciTech Connect (OSTI)

    Ghosh, S. S.; Sekar Iyengar, A. N.

    2014-08-15

    It is observed that the presence of a minority component of cooler electrons in a three component plasma plays a deterministic role in the evolution of solitary waves, double layers, or the newly discovered structures called supersolitons. The inclusion of the cooler component of electrons in a single electron plasma produces sharp increase in nonlinearity in spite of a decrease in the overall energy of the system. The effect maximizes at certain critical value of the number density of the cooler component (typically 15%20%) giving rise to a hump in the amplitude variation profile. For larger amplitudes, the hump leads to a forbidden region in the ambient cooler electron concentration which dissociates the overall existence domain of solitary wave solutions in two distinct parameter regime. It is observed that an inclusion of the cooler component of electrons as low as < 1% affects the plasma system significantly resulting in compressive double layers. The solution is further affected by the cold to hot electron temperature ratio. In an adequately hotter bulk plasma (i.e., moderately low cold to hot electron temperature ratio), the parameter domain of compressive double layers is bounded by a sharp discontinuity in the corresponding amplitude variation profile which may lead to supersolitons.

  12. Spatio-temporal evolution and breaking of double layers: A description using Lagrangian hydrodynamics

    SciTech Connect (OSTI)

    Kaw, Predhiman; Sengupta, Sudip; Singh Verma, Prabal [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2012-10-15

    The nonlinear development and collapse (breaking) of double layers in the long scale length limit is well described by equations for the cold ion fluid with quasineutrality. It is shown that electron dynamics is responsible for giving an 'equation of state' with negative ratio of specific heats to this fluid. Introducing a transformation for the density variable, the governing equation for the transformed quantity in terms of Lagrange variables turns out exactly to be a linear partial differential equation. This equation has been analyzed in various limits of interest. Nonlinear development of double layers with a sinusoidal initial disturbance and collapse of double layers with an initial perturbation in the form of a density void are analytically investigated.

  13. Reformulation of Density Functional Theory for N-Representable Densities and the Resolution of the v-Representability Problem

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gonis, A.; Zhang, X. G.; Stocks, G. M.; Nicholson, D. M.

    2015-10-23

    Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of themore » density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.« less

  14. Reformulation of Density Functional Theory for N-Representable Densities and the Resolution of the v-Representability Problem

    SciTech Connect (OSTI)

    Gonis, A.; Zhang, X. G.; Stocks, G. M.; Nicholson, D. M.

    2015-10-23

    Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of the density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.

  15. High density photovoltaic

    SciTech Connect (OSTI)

    Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S.

    1997-10-14

    Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

  16. A study on the Fresnel diffraction of {sup 6}He by means of different microscopic density distributions

    SciTech Connect (OSTI)

    Aygun, M.; Boztosun, I.; Sahin, Y.

    2012-08-15

    The elastic scattering of the halo nucleus {sup 6}He from heavy targets such as {sup 197}Au and {sup 208}Pb has been investigated in order to explain the Coulomb rainbow peak due to the Fresnel-type diffraction observed in the experimental data. In order to examine the role of nuclear potential to describe {sup 6}He + {sup 197}Au and {sup 6}He + {sup 208}Pb systems, we have used the no-core shell model, few-body and Gaussian-shaped density distributions at various energies. The microscopic real parts of the complex nuclear potential have been obtained by using the double-folding model for each of the density distribution and the phenomenological imaginary potentials have been taken as the standard Woods-Saxon shape. We have observed that fewbody and Gaussian-shaped density distributions have given standard Fresnel-type diffraction results, a classical scattering pattern with Coulomb rainbow peak whereas the nuclear potential obtained by using the no-core shell-model density distribution has provided the reduction at Fresnel peak and has given more consistent results with the experimental data.

  17. Inner-shell and double ionization potentials of aminophenol isomers.

    SciTech Connect (OSTI)

    Kryzhevoi, N. V.; Santra, R.; Cederbaum, L. S.

    2011-01-01

    A comprehensive study of single and double core ionization potentials of the aminophenol molecule is reported. The role of relaxation, correlation, relativistic, and basis set effects in these potentials is clarified. Special attention is paid to the isomer dependence of the single and double core ionization potentials. Some of them are also compared with the respective values of the phenol and aniline molecules. It is shown that the core level single ionization potentials of the para-, meta-, and ortho-aminophenol molecules differ only slightly from each other, rendering these structural isomers challenging to distinguish for conventional x-ray photoelectron spectroscopy. In contrast, the energy needed to remove two core electrons from different atoms depends noticeably on the mutual arrangement and even on the relative orientations of the hydroxyl and amine groups. Together with the electrostatic repulsion between the two core holes, relaxation effects accompanying double core ionization play a crucial role here. The pronounced sensitivity of the double ionization potentials, therefore, enables a spectroscopic characterization of the electronic structure of aminophenol isomers by means of x-ray two-photon photoelectron spectroscopy.

  18. U.S. Department of Energy Fuel Cell Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy gy p proj jects efficiency * Double renewable energy * One million plug-in hybrid cars generation by 2012 Presidential on the road by 2015 Priorities * Weatherize one ...

  19. Energy Department Announces New Private Sector Partnership to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "A renewable energy economy is a true opportunity to create new jobs, reinvigorate America's competitiveness and support the president's goal of doubling renewable energy in the ...

  20. Double perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, K.D.

    1991-01-01

    Alkali metal doped double perovskites containing manganese and at least one of cobalt, iron and nickel are useful in the oxidative coupling of alkane to higher hydrocarbons.

  1. Chiral dynamics and peripheral transverse densities

    SciTech Connect (OSTI)

    Granados, Carlos G.; Weiss, Christian

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  2. Hanford Begins New Campaign to Remove Excess Water from Double-Shell Tanks

    Energy Savers [EERE]

    | Department of Energy Begins New Campaign to Remove Excess Water from Double-Shell Tanks Hanford Begins New Campaign to Remove Excess Water from Double-Shell Tanks September 30, 2014 - 12:00pm Addthis The 242-A Evaporator facility. The 242-A Evaporator facility. RICHLAND, Wash. - EM's Office of River Protection has begun operating its evaporator facility to remove about 800,000 gallons of excess water from Hanford's double-shell tanks of high-level radioactive and chemical waste. "In

  3. EERE Success Story-Nebraska: Company More than Doubles Annual Sales and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employees | Department of Energy Nebraska: Company More than Doubles Annual Sales and Employees EERE Success Story-Nebraska: Company More than Doubles Annual Sales and Employees August 21, 2013 - 12:38pm Addthis Hexagon Lincoln, of Lincoln, Nebraska, has more than doubled its workforce and added a fourth shift for 24-hour/7-days-a-week operation to accommodate growing demand for its carbon fiber composite tanks. With EERE support, Hexagon developed a new trailer that uses high-strength

  4. TWC Committee: Draft Advice re: Double-Shell Tank AY-102, v.4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15/2013 TWC Committee: Draft Advice re: Double-Shell Tank AY-102, v.4 Dunning, Panesko, Holland, Cimon, Larsen Page 1 of 2 Draft Advice re: Double-Shell Tank AY-102 and Leaking Single-Shell Tanks Background: The U.S. Department of Energy - Office of River Protection (DOE-ORP) announced at the Tank Waste Committee meeting on April 10, 2013 that the cause of the leak in the bottom of double- shell tank AY-102 was due to corrosive materials on the tank floor. This waste has now leaked into the

  5. The problem of the universal density functional and the density matrix functional theory

    SciTech Connect (OSTI)

    Bobrov, V. B. Trigger, S. A.

    2013-04-15

    The analysis in this paper shows that the Hohenberg-Kohn theorem is the constellation of two statements: (i) the mathematically rigorous Hohenberg-Kohn lemma, which demonstrates that the same ground-state density cannot correspond to two different potentials of an external field, and (ii) the hypothesis of the existence of the universal density functional. Based on the obtained explicit expression for the nonrel-ativistic particle energy in a local external field, we prove that the energy of the system of more than two non-interacting electrons cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting electrons. It means that the Hohenberg-Kohn lemma cannot provide justification of the universal density functional for fermions. At the same time, statements of the density functional theory remain valid when considering any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional corresponds to the cases of noninteracting particles and to interaction in the Hartree-Fock approximation.

  6. National CHP Roadmap: Doubling Combined Heat and Power Capacity in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States by 2010, March 2001 | Department of Energy CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 The National CHP Roadmap document is the culmination of more than 18 state, regional, national, and international workshops, and numerous discussions, planning studies, and assessments. The origin of these activities was a conference held

  7. All orders results for self-crossing Wilson loops mimicking double parton

    Office of Scientific and Technical Information (OSTI)

    scattering (Journal Article) | SciTech Connect All orders results for self-crossing Wilson loops mimicking double parton scattering Citation Details In-Document Search Title: All orders results for self-crossing Wilson loops mimicking double parton scattering × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  8. Industrial mixing techniques for Hanford double-shell tanks

    SciTech Connect (OSTI)

    Daymo, E.A.

    1997-09-01

    Jet mixer pumps are currently the baseline technology for sludge mobilization and mixing in one-million gallon double-shell tanks at the Hanford and Savannah River Sites. Improvements to the baseline jet mixer pump technology are sought because jet mixer pumps have moving parts that may fail or require maintenance. Moreover, jet mixers are relatively expensive, they heat the waste, and, in some cases, may not mobilize enough of the sludge. This report documents a thorough literature search for commercially available applicable mixing technologies that could be used for double-shell tank sludge mobilization and mixing. Textbooks, research articles, conference proceedings, mixing experts, and the Thomas Register were consulted to identify applicable technologies. While there are many commercial methods that could be used to mobilize sludge or mix the contents of a one-million gallon tank, few will work given the geometrical constraints (e.g., the mixer must fit through a 1.07-m-diameter riser) or the tank waste properties (e.g., the sludge has such a high yield stress that it generally does not flow under its own weight). Pulsed fluid jets and submersible Flygt mixers have already been identified at Hanford and Savannah River Sites for double-shell tank mixing applications. While these mixing technologies may not be applicable for double-shell tanks that have a thick sludge layer at the bottom (since too many of these mixers would need to be installed to mobilize most of the sludge), they may have applications in tanks that do not have a settled solids layer. Retrieval projects at Hanford and other U.S. Department of Energy sites are currently evaluating the effectiveness of these mixing techniques for tank waste applications. The literature search did not reveal any previously unknown technologies that should be considered for sludge mobilization and mixing in one-million gallon double-shell tanks.

  9. State densities and spectrum fluctuations: Information propagation in complex nuclei

    SciTech Connect (OSTI)

    French, J.B.; Kota, V.K.B.

    1988-01-01

    At excitation energies in nuclei where the state density is unambiguously defined there is a sharp separation between the smoothed spectrum (which defines the density) and fluctuations about it which have recently been studied with a view to understanding some aspects of quantum chaos. We briefly review these two complementary subjects, paying special attention to: the role of the effective interaction in determining the density; the calculation of interacting-particle state and level densities, and of expectation values of interesting operators; the information about the effective nucleon-nucleon interaction which is carried both by the density and the fluctuations. 28 refs., 1 fig.

  10. Double bevel construction of a diamond anvil

    DOE Patents [OSTI]

    Moss, W.C.

    1988-10-11

    A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached. 8 figs.

  11. Double-duct liquid metal magnetohydrodynamic engine

    DOE Patents [OSTI]

    Haaland, Carsten M.

    1997-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  12. Double-duct liquid metal magnetohydrodynamic engine

    DOE Patents [OSTI]

    Haaland, Carsten M.

    1995-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  13. Origin of superstructures in (double) perovskite thin films

    SciTech Connect (OSTI)

    Shabadi, V. Major, M.; Komissinskiy, P.; Vafaee, M.; Radetinac, A.; Baghaie Yazdi, M.; Donner, W.; Alff, L.

    2014-09-21

    We have investigated the origin of superstructure peaks as observed by X-ray diffraction of multiferroic Bi(Fe{sub 0.5}Cr{sub 0.5})O{sub 3} thin films grown by pulsed laser deposition on single crystal SrTiO{sub 3} substrates. The photon energy dependence of the contrast between the atomic scattering factors of Fe and Cr is used to rule out a chemically ordered double perovskite Bi{sub 2}FeCrO{sub 6} (BFCO). Structural calculations suggest that the experimentally observed superstructure occurs due to unequal cation displacements along the pseudo-cubic [111] direction that mimic the unit cell of the chemically ordered compound. This result helps to clarify discrepancies in the correlations of structural and magnetic order reported for Bi{sub 2}FeCrO{sub 6}. The observation of a superstructure in itself is not a sufficient proof of chemical order in double perovskites.

  14. State and Local Energy Investment Partnerships: Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnerships for Low Cost Clean Energy The Vision 1. Double the deployment of wind, solar, geothermal, and other renewable electricity generation by 2020. 2. Cut in half ...

  15. Opportunities & Challenges for Microgrids and Distributed Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Overall Efficiency > 66% World's First Absorption Chiller with a Fuel Cell Thermal Energy Storage is Being Installed to Optimize the Efficiencies Placeholder for Doubling Our ...

  16. Dixie Valley Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Plant Information Facility Type Double Flash Owner Terra-Gen Operating Co. Energy Purchaser Southern California Edison Number of Units 1.0...

  17. Instability limits for spontaneous double layer formation

    SciTech Connect (OSTI)

    Carr, J. Jr.; Department of Physics, Texas Lutheran University, Seguin, Texas 78155 ; Galante, M. E.; McCarren, D.; Scime, E. E.; Sears, S.; VanDervort, R. W.; Magee, R. M.; TriAlpha Energy, Inc., Foothill Ranch, California 92610 ; Reynolds, E.

    2013-11-15

    We present time-resolved measurements that demonstrate that large amplitude electrostatic instabilities appear in pulsed, expanding helicon plasmas at the same time as particularly strong double layers appear in the expansion region. A significant cross-correlation between the electrostatic fluctuations and fluctuations in the number of ions accelerated by the double layer electric field is observed. No correlation is observed between the electrostatic fluctuations and ions that have not passed through the double layer. These measurements confirm that the simultaneous appearance of the electrostatic fluctuations and the double layer is not simple coincidence. In fact, the accelerated ion population is responsible for the growth of the instability. The double layer strength, and therefore, the velocity of the accelerated ions, is limited by the appearance of the electrostatic instability.

  18. Reliability Estimation for Double Containment Piping

    SciTech Connect (OSTI)

    L. Cadwallader; T. Pinna

    2012-08-01

    Double walled or double containment piping is considered for use in the ITER international project and other next-generation fusion device designs to provide an extra barrier for tritium gas and other radioactive materials. The extra barrier improves confinement of these materials and enhances safety of the facility. This paper describes some of the design challenges in designing double containment piping systems. There is also a brief review of a few operating experiences of double walled piping used with hazardous chemicals in different industries. This paper recommends approaches for the reliability analyst to use to quantify leakage from a double containment piping system in conceptual and more advanced designs. The paper also cites quantitative data that can be used to support such reliability analyses.

  19. Thirteen States Receive Energy Department Awards to Drive Greater Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, Save Money | Department of Energy Thirteen States Receive Energy Department Awards to Drive Greater Energy Efficiency, Save Money Thirteen States Receive Energy Department Awards to Drive Greater Energy Efficiency, Save Money November 26, 2013 - 2:44pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on the Obama Administration's efforts to double energy productivity by 2030 and help communities save on energy bills, the Energy Department today awarded nearly $4

  20. Thirteen States Receive Energy Department Awards to Drive Greater Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, Save Money | Department of Energy Thirteen States Receive Energy Department Awards to Drive Greater Energy Efficiency, Save Money Thirteen States Receive Energy Department Awards to Drive Greater Energy Efficiency, Save Money November 26, 2013 - 12:00am Addthis Building on the Obama Administration's efforts to double energy productivity by 2030 and help communities save on energy bills, the Energy Department today awarded nearly $4 million to 13 states to increase statewide

  1. Energy Department Launches Competition to Drive Innovations in Wave Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Competition to Drive Innovations in Wave Energy Energy Department Launches Competition to Drive Innovations in Wave Energy April 27, 2015 - 2:13pm Addthis The Energy Department today announced the opening of the registration period for the Wave Energy Prize competition that aims to double the state-of-the-art performance of wave energy conversion (WEC) devices over the next two years. By accelerating the development of WEC devices that capture more energy from ocean

  2. Double-disc gate valve

    DOE Patents [OSTI]

    Wheatley, Seth J.

    1979-01-01

    This invention relates to an improvement in a conventional double-disc gate valve having a vertically movable gate assembly including a wedge, spreaders slidably engaged therewtih, a valve disc carried by the spreaders. When the gate assembly is lowered to a selected point in the valve casing, the valve discs are moved transversely outward to close inlet and outlet ports in the casing. The valve includes hold-down means for guiding the disc-and-spreader assemblies as they are moved transversely outward and inward. If such valves are operated at relatively high differential pressures, they sometimes jam during opening. Such jamming has been a problem for many years in gate valves used in gaseous diffusion plants for the separtion of uranium isotopes. The invention is based on the finding that the above-mentioned jamming results when the outlet disc tilts about its horizontal axis in a certain way during opening of the valve. In accordance with the invention, tilting of the outlet disc is maintained at a tolerable value by providing the disc with a rigid downwardly extending member and by providing the casing with a stop for limiting inward arcuate movement of the member to a preselected value during opening of the valve.

  3. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, J.D.

    1991-11-19

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.

  4. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, James D. (Castro Valley, CA)

    1991-01-01

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  5. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, James D. (Castro Valley, CA)

    1992-01-01

    Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  6. Low density microcellular foams

    DOE Patents [OSTI]

    Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.

    1985-10-02

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.

  7. Low density microcellular foams

    DOE Patents [OSTI]

    Aubert, James H.; Clough, Roger L.; Curro, John G.; Quintana, Carlos A.; Russick, Edward M.; Shaw, Montgomery T.

    1987-01-01

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.

  8. Earth: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    largest of the terrestrial planets in the Solar System in terms of diameter, mass and density." Worldwide Alternative Energy Investments The following table summarizes worldwide...

  9. Study of a double bubbler for material balance in liquids

    SciTech Connect (OSTI)

    Hugues Lambert

    2013-09-01

    The objective of this project was to determine the potential of a double bubbler to measure density and fluid level of the molten salt contained in an electrorefiner. Such in-situ real-time measurements can provide key information for material balances in the pyroprocessing of the nuclear spent fuel. This theoretical study showed this technique has a lot of promise. Four different experiments were designed and performed. The first three experiments studied the influence of a variety of factors such as depth difference between the two tubes, gas flow rate, the radius of the tubes and determining the best operating conditions. The last experiment purpose was to determine the precision and accuracy of the apparatus during specific conditions. The elected operating conditions for the characterization of the system were a difference of depth of 25 cm and a flow rate of 55 ml/min in each tube. The measured densities were between 1,000 g/l and 1,400g/l and the level between 34cm and 40 cm. The depth difference between the tubes is critical, the larger, the better. The experiments showed that the flow rate should be the same in each tube. The concordances with theoretical predictions were very good. The density precision was very satisfying (spread<0.1%) and the accuracy was about 1%. For the level determination, the precision was also very satisfying (spread<0.1%), but the accuracy was about 3%. However, those two biases could be corrected with calibration curves. In addition to the aqueous systems studied in the present work, future work will focus on examining the behavior of the double bubbler instrumentation in molten salt systems. The two main challenges which were identified in this work are the effect of the temperature and the variation of the superficial tension.

  10. Density functional theory based generalized effective fragment potential method

    SciTech Connect (OSTI)

    Nguyen, Kiet A. E-mail: ruth.pachter@wpafb.af.mil; Pachter, Ruth E-mail: ruth.pachter@wpafb.af.mil; Day, Paul N.

    2014-06-28

    We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes.

  11. Explosive double salts and preparation

    DOE Patents [OSTI]

    Cady, Howard H.; Lee, Kien-yin

    1984-01-01

    Applicants have discovered a new composition of matter which is an explosive addition compound of ammonium nitrate (AN) and diethylenetriamine trinitrate (DETN) in a 50:50 molar ratio. The compound is stable over extended periods of time only at temperatures higher than 46.degree. C., decomposing to a fine-grained eutectic mixture (which is also believed to be new) of AN and DETN at temperatures lower than 46.degree. C. The compound of the invention has an x-ray density of 1.61 g/cm.sup.3, explodes to form essentially only gaseous products, has higher detonation properties (i.e., detonation velocity and pressure) than those of any mechanical mixture having the same density and composition as the compound of the invention, is a quite insensitive explosive material, can be cast at temperatures attainable by high pressure steam, and is prepared from inexpensive ingredients. Methods of preparing the compound of the invention and the fine-grained eutectic composition of the invention are given.

  12. Development of High Power Density Driveline for Vehicles | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss058_fenske_2011_o.pdf More Documents & Publications Development of High Power Density Driveline for Vehicles Vehicle Technologies Office Merit Review 2014: Development of High Power Density Driveline for Vehicles Vehicle Technologies Office Merit Review 2015: Development of High Power Density

  13. Energy Department Announces $10 Million to Advance Innovative, Energy-Saving Lighting Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of cutting energy waste and doubling energy productivity by 2030, the Energy Department today announced nearly $10 million to support research, development, and manufacturing of solid-state lighting (SSL) technologies across the country.

  14. Energy Department Takes Major Steps to Increase U.S. Energy Productivity and Manufacturing

    Broader source: Energy.gov [DOE]

    The Department of Energy today announced expansions of its Clean Energy Manufacturing Initiative in support of the American manufacturing sector and a new initiative to support President Obama’s goal of doubling energy productivity by 2030.

  15. Probability density function method for variable-density pressure-gradient-driven turbulence and mixing

    SciTech Connect (OSTI)

    Bakosi, Jozsef; Ristorcelli, Raymond J

    2010-01-01

    Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.

  16. Double-reed exhaust valve engine

    DOE Patents [OSTI]

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  17. Development of double-decker pulse radiolysis

    SciTech Connect (OSTI)

    Kan, K.; Kondoh, T.; Yang, J.; Ogata, A.; Norizawa, K.; Yoshida, Y.

    2012-07-15

    Double-decker pulse radiolysis (DDPR), which utilizes double-decker electron beams, was investigated to develop a new pulse radiolysis with a high time resolution. The double-decker electron beams were generated by injecting two UV pulses into a photocathode radio-frequency gun. In the pulse radiolysis, one electron beam was used as a pump beam, and the other was converted to a probe pulse. Finally, as its first application, the DDPR was successfully used for observing solvated electrons in water, with a 10%-90% rise time of 8.6 ps.

  18. Combined local-density and dynamical mean field theory calculations...

    Office of Scientific and Technical Information (OSTI)

    a combination of the local-density approximation (LDA) and dynamical mean field theory (DMFT), or LDA+DMFT. The 4f moment, spectra, and the total energy among other properties are ...

  19. The role of seniority-zero states in nuclear level densities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Åberg, S.; Carlsson, B. G.; Døssing, Th.; Möller, P.

    2015-06-01

    At low excitation energies seniority-zero states dominate the level density of K=0 bands in deformed even–even nuclei, while they play no role at higher excitation energies. We describe the level densities in a Fermi-gas model as well as in a combinatorial level-density model and compare to detailed experimental data for some rare-earth nuclei.

  20. The role of seniority-zero states in nuclear level densities

    SciTech Connect (OSTI)

    berg, S.; Carlsson, B. G.; Dssing, Th.; Mller, P.

    2015-06-01

    At low excitation energies seniority-zero states dominate the level density of K=0 bands in deformed eveneven nuclei, while they play no role at higher excitation energies. We describe the level densities in a Fermi-gas model as well as in a combinatorial level-density model and compare to detailed experimental data for some rare-earth nuclei.

  1. A DENSITY-INDEPENDENT FORMULATION OF SMOOTHED PARTICLE HYDRODYNAMICS

    SciTech Connect (OSTI)

    Saitoh, Takayuki R.; Makino, Junichiro

    2013-05-01

    The standard formulation of the smoothed particle hydrodynamics (SPH) assumes that the local density distribution is differentiable. This assumption is used to derive the spatial derivatives of other quantities. However, this assumption breaks down at the contact discontinuity. At the contact discontinuity, the density of the low-density side is overestimated while that of the high-density side is underestimated. As a result, the pressure of the low-density (high-density) side is overestimated (underestimated). Thus, unphysical repulsive force appears at the contact discontinuity, resulting in the effective surface tension. This tension suppresses fluid instabilities. In this paper, we present a new formulation of SPH, which does not require the differentiability of density. Instead of the mass density, we adopt the internal energy density (pressure) and its arbitrary function, which are smoothed quantities at the contact discontinuity, as the volume element used for the kernel integration. We call this new formulation density-independent SPH (DISPH). It handles the contact discontinuity without numerical problems. The results of standard tests such as the shock tube, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, point-like explosion, and blob tests are all very favorable to DISPH. We conclude that DISPH solved most of the known difficulties of the standard SPH, without introducing additional numerical diffusion or breaking the exact force symmetry or energy conservation. Our new SPH includes the formulation proposed by Ritchie and Thomas as a special case. Our formulation can be extended to handle a non-ideal gas easily.

  2. Laser Propagation in Nanostructured Ultra-Low-Density Materials (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Laser Propagation in Nanostructured Ultra-Low-Density Materials Citation Details In-Document Search Title: Laser Propagation in Nanostructured Ultra-Low-Density Materials × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology.

  3. Energy Department Invests $14 Million to Increase Energy Efficiency of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nation's Homes and Buildings | Department of Energy Invests $14 Million to Increase Energy Efficiency of Nation's Homes and Buildings Energy Department Invests $14 Million to Increase Energy Efficiency of Nation's Homes and Buildings May 9, 2016 - 12:08pm Addthis As part of the Administration's effort to cut energy waste in the nation's buildings and double energy productivity by 2030, the Energy Department today announced $14 million to dramatically increase the efficiency of our nation's

  4. Contained Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    manufactures, markets and sells direct carbon fuel cells with breakthrough energy density. References: Contained Energy Inc1 This article is a stub. You can help OpenEI by...

  5. Double logarithmic asymptotic behavior in quantum chromodynamics

    SciTech Connect (OSTI)

    Kirschner, R.

    1981-08-01

    The double logarithmic contributions to the quark-(anti)quark scattering and annihilation amplitudes are summed to all orders in quantum chromodynamics. The results are a generalization of the calculations of Gorshkov et al. in the case of quantum electrodynamics.

  6. Double bevel construction of a diamond anvil

    DOE Patents [OSTI]

    Moss, W.C.

    1987-02-06

    Use of double or multiple bevel culet geometry on a diamond anvil to provide increased sample pressure and stability for a given force applied to the diamond tables. 7 figs.

  7. A Microscopic Double-Slit Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microscopic Double-Slit Experiment Print Two centuries ago, Thomas Young performed the classic demonstration of the wave nature of light. He placed a screen with two tiny slits in...

  8. DUF6 Project Doubles Production in 2013

    Broader source: Energy.gov [DOE]

    LEXINGTON, Ky. – The conversion plants at EM’s Paducah and Portsmouth sites surpassed a fiscal year 2013 goal by converting 13,679 metric tons of depleted uranium hexafluoride (DUF6), more than doubling production a year earlier.

  9. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-17

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste.

  10. Energy Department Recognizes 11 Manufacturers for Energy Efficiency Achievements

    Broader source: Energy.gov [DOE]

    Building on the Administration’s efforts to double energy productivity and help American businesses save money by saving energy, the Energy Department today recognized 11 companies that have met ambitious energy-efficiency goals through the Better Buildings, Better Plants Program. Across the country, manufacturers spend more than $200 billion each year to power their plants.

  11. Savings Project: How to Weatherstrip Double-Hung (or Sash) Windows |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy to Weatherstrip Double-Hung (or Sash) Windows Savings Project: How to Weatherstrip Double-Hung (or Sash) Windows Addthis Project Level Easy Energy Savings 5 - 10% Time to Complete 1 hour Overall Cost $5 - $10 Look for air leaks in these common places in your home. | Photo courtesy of U.S. EPA. Look for air leaks in these common places in your home. | Photo courtesy of U.S. EPA. You can use weatherstripping in your home to seal air leaks around movable joints, such as

  12. Double Shock Experiments and Reactive Flow Modeling of High Pressure...

    Office of Scientific and Technical Information (OSTI)

    Double Shock Experiments and Reactive Flow Modeling of High Pressure LX-17 Detonation Reaction Product States Citation Details In-Document Search Title: Double Shock Experiments ...

  13. SciTech Connect: "neutrinoless double beta decay"

    Office of Scientific and Technical Information (OSTI)

    neutrinoless double beta decay" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "neutrinoless double beta decay" Semantic Semantic Term Title:...

  14. Optical transmission through double-layer, laterally shifted...

    Office of Scientific and Technical Information (OSTI)

    Title: Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays We measure the transmission of infra-red radiation through double-layer metal ...

  15. Double shell tank waste analysis plan

    SciTech Connect (OSTI)

    Mulkey, C.H.; Jones, J.M.

    1994-12-15

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations.

  16. Influence of suprathermal background electrons on strong auroral double layers: Laminar and turbulent regimes

    SciTech Connect (OSTI)

    Newman, D. L.; Goldman, M. V.; Sen, N. [Center for Integrated Plasma Studies, University of Colorado at Boulder, Boulder, Colorado 80309 (United States); Andersson, L.; Ergun, R. E. [Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, Boulder, Colorado 80309 (United States)

    2008-07-15

    A series of one-dimensional Vlasov simulations [Newman et al., Phys. Plasmas 15, 072902 (2008), this issue] show that a sufficiently dense and hot suprathermal electron population can stabilize strong laminar double layers over long periods while regulating their strength and velocity. When suprathermals are less dense or absent, the double layers tend to be sporadic and turbulent. A detailed comparison of the laminar and turbulent regimes reveals that the disruption of the laminar state can be triggered by kinetically modified Buneman instabilities on the low-potential side of the double layer, and by density perturbations that develop into nonlinear coherent shocklike structures on the high-potential side. These findings suggest that the suprathermal electrons may be responsible for suppressing both of these routes to disruption of the laminar state.

  17. ?Linear Gas Jet with Tailored Density Profile"

    SciTech Connect (OSTI)

    KRISHNAN, Mahadevan

    2012-12-10

    Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.

  18. Ion acoustic solitons/double layers in two-ion plasma revisited

    SciTech Connect (OSTI)

    Lakhina, G. S. Singh, S. V. Kakad, A. P.

    2014-06-15

    Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M?>?1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M?density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge.

  19. EnergyPlus | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EnergyPlus EnergyPlus Architecture firm Skidmore, Owings & Merrill (SOM) used EnergyPlus to design a new 380,000 square foot federal office building in West Virginia. The building has an advanced ventilated double facade and uses low-energy underfloor air distribution and is designed to achieve energy savings of 30% below code.<br /> Image credit: Jason Kirkpatrick, SOM. Architecture firm Skidmore, Owings & Merrill (SOM) used EnergyPlus to design a new 380,000 square foot federal

  20. Characterization of an atmospheric double arc argon-nitrogen plasma source

    SciTech Connect (OSTI)

    Tu, X.; Cheron, B. G.; Yan, J. H.; Yu, L.; Cen, K. F.

    2008-05-15

    In the framework of studies devoted to hazardous waste destruction, an original dc double anode plasma torch has been designed and tested, which produces an elongated, weak fluctuation and reproducible plasma jet at atmospheric pressure. The arc instabilities and dynamic behavior of the double arc argon-nitrogen plasma jet are investigated through the oscillations of electrical signals by combined means of fast Fourier transform and Wigner distribution. In our experiment, the restrike mode is identified as the typical fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra and Wigner distributions exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which reveals that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the undulation of the power supply and both arc roots motion on the anode channels. In addition, the microscopic properties of the plasma jet inside and outside the arc chamber are investigated by means of optical emission spectroscopy, which yields excitation, electronic, rotational, and vibrational temperatures, as well as the electron number density. The results allow us to examine the validity criteria of a local thermodynamic equilibrium (LTE) state in the plasma arc. The measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the atmospheric double arc argon-nitrogen plasma in the core region is close to the LTE state under our experimental conditions.

  1. Soil Density/Moisture Gauge

    Broader source: Energy.gov [DOE]

    This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of a soil moisture/density gauge (Class 7 -...

  2. Screening Tool for Providers of Double-Stranded DNA - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDF Document Publication 11-G00227ID2510 (2).pdf (829 KB) Technology Marketing SummaryThe ... method composed of a system and software.BenefitsHelps safeguard the advancing ...

  3. Double Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  4. Material Balance Assessment for Double-Shell Tank Waste Pipeline Transfer

    SciTech Connect (OSTI)

    Onishi, Yasuo; Wells, Beric E.; Hartley, Stacey A.; Enderlin, Carl W.; White, Mike

    2002-10-30

    PNNL developed a material balance assessment methodology based on conservation of mass for detecting leaks and mis-routings in pipeline transfer of double-shell tank waste at Hanford. The main factors causing uncertainty in these transfers are variable property and tank conditions of density, existence of crust, and surface disturbance due to mixer pump operation during the waste transfer. The methodology was applied to three waste transfers from Tanks AN-105 and AZ-102.

  5. Controlling chaos in the Bose-Einstein condensate system of a double lattice

    SciTech Connect (OSTI)

    Wang Zhixia Ni Zhengguo; Cong Fuzhong; Liu Xueshen; Chen Lei

    2011-02-15

    We study the chaotic dynamics in the Bose-Einstein condensate (BEC) system of a double lattice. Chaotic space-time evolution is investigated for the particle number density in a BEC. By changing of the s-wave scattering length with a Feshbach resonance, the chaotic behavior can be well controlled to enter into periodicity. Numerical calculation shows that there is periodic orbit according to the s-wave scattering length only if the maximal Lyapunov exponent of the system is negative.

  6. Computation of the free energy due to electron density fluctuation of a solute in solution: A QM/MM method with perturbation approach combined with a theory of solutions

    SciTech Connect (OSTI)

    Suzuoka, Daiki; Takahashi, Hideaki Morita, Akihiro

    2014-04-07

    We developed a perturbation approach to compute solvation free energy ?? within the framework of QM (quantum mechanical)/MM (molecular mechanical) method combined with a theory of energy representation (QM/MM-ER). The energy shift ? of the whole system due to the electronic polarization of the solute is evaluated using the second-order perturbation theory (PT2), where the electric field formed by surrounding solvent molecules is treated as the perturbation to the electronic Hamiltonian of the isolated solute. The point of our approach is that the energy shift ?, thus obtained, is to be adopted for a novel energy coordinate of the distribution functions which serve as fundamental variables in the free energy functional developed in our previous work. The most time-consuming part in the QM/MM-ER simulation can be, thus, avoided without serious loss of accuracy. For our benchmark set of molecules, it is demonstrated that the PT2 approach coupled with QM/MM-ER gives hydration free energies in excellent agreements with those given by the conventional method utilizing the Kohn-Sham SCF procedure except for a few molecules in the benchmark set. A variant of the approach is also proposed to deal with such difficulties associated with the problematic systems. The present approach is also advantageous to parallel implementations. We examined the parallel efficiency of our PT2 code on multi-core processors and found that the speedup increases almost linearly with respect to the number of cores. Thus, it was demonstrated that QM/MM-ER coupled with PT2 deserves practical applications to systems of interest.

  7. Water Power News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    period for the Wave Energy Prize competition that aims to double the state-of-the-art performance of wave energy conversion (WEC) devices over the next two years. By...

  8. On the bonding nature of electron states for the Fe-Mo double perovskite

    SciTech Connect (OSTI)

    Carvajal, E.; Cruz-Irisson, M.; Oviedo-Roa, R.; Navarro, O.

    2014-05-15

    The electronic transport as well as the effect of an external magnetic field has been investigated on manganese-based materials, spinels and perovskites. Potential applications of double perovskites go from magnetic sensors to electrodes in solid-oxide fuel cells; besides the practical interests, it is known that small changes in composition modify radically the physical properties of double perovskites. We have studied the Sr{sub 2}FeMoO{sub 6} double perovskite compound (SFMO) using first-principles density functional theory. The calculations were done within the generalized gradient approximation (GGA) scheme with the Perdew-Burke-Ernzerhof (PBE) functional. We have made a detailed analysis of each electronic state and the charge density maps around the Fermi level. For the electronic properties of SFMO it was used a primitive cell, for which we found the characteristic half-metallic behavior density of states composed by e{sub g} and t{sub 2g} electrons from Fe and Mo atoms. Those peaks were tagged as bonding or antibonding around the Fermi level at both, valence and conduction bands.

  9. Ultrasonic probe for inspecting double-wall tube

    DOE Patents [OSTI]

    Cook, Kenneth V. (Clinton, TN); Cunningham, Jr., Robert A. (Powell, TN); Murrin, Horace T. (Alcoa, TN)

    1983-01-01

    An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.

  10. Ultrasonic probe for inspecting double-wall tube. [Patent application

    DOE Patents [OSTI]

    Cook, K.V.; Cunningham, R.A. Jr.; Murrin, H.T.

    1981-05-29

    An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.

  11. Energy 101: Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Energy 101: Geothermal Energy

  12. A Microscopic Double-Slit Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Microscopic Double-Slit Experiment A Microscopic Double-Slit Experiment Print Wednesday, 29 February 2012 00:00 Two centuries ago, Thomas Young performed the classic demonstration of the wave nature of light. He placed a screen with two tiny slits in front of a single light source, effectively converting it into a two-centered source. On a second screen far away, he saw a pattern of light and dark diffraction fringes, a well-known hallmark of wave interference. Along with later studies using

  13. The double-beta decay: Theoretical challenges

    SciTech Connect (OSTI)

    Horoi, Mihai

    2012-11-20

    Neutrinoless double beta decay is a unique process that could reveal physics beyond the Standard Model of particle physics namely, if observed, it would prove that neutrinos are Majorana particles. In addition, it could provide information regarding the neutrino masses and their hierarchy, provided that reliable nuclear matrix elements can be obtained. The two neutrino double beta decay is an associate process that is allowed by the Standard Model, and it was observed for about ten nuclei. The present contribution gives a brief review of the theoretical challenges associated with these two process, emphasizing the reliable calculation of the associated nuclear matrix elements.

  14. On the neutrinoless double ?{sup +}/EC decays

    SciTech Connect (OSTI)

    Suhonen, Jouni

    2013-12-30

    The neutrinoless double positron-emission/electron-capture (0??{sup +}/EC) decays are studied for the magnitudes of the involved nuclear matrix elements (NMEs). Decays to the ground state, 0{sub gs}{sup +}, and excited 0{sup +} states are discussed. The participant many-body wave functions are evaluated in the framework of the quasiparticle random-phase approximation (QRPA). Effective, G-matrix-derived nuclear forces are used in realistic single-particle model spaces. The channels ?{sup +}?{sup +}, ?{sup +}EC, and the resonant neutrinoless double electron capture (R0?ECEC) are discussed.

  15. Attractor comparisons based on density

    SciTech Connect (OSTI)

    Carroll, T. L.

    2015-01-15

    Recognizing a chaotic attractor can be seen as a problem in pattern recognition. Some feature vector must be extracted from the attractor and used to compare to other attractors. The field of machine learning has many methods for extracting feature vectors, including clustering methods, decision trees, support vector machines, and many others. In this work, feature vectors are created by representing the attractor as a density in phase space and creating polynomials based on this density. Density is useful in itself because it is a one dimensional function of phase space position, but representing an attractor as a density is also a way to reduce the size of a large data set before analyzing it with graph theory methods, which can be computationally intensive. The density computation in this paper is also fast to execute. In this paper, as a demonstration of the usefulness of density, the density is used directly to construct phase space polynomials for comparing attractors. Comparisons between attractors could be useful for tracking changes in an experiment when the underlying equations are too complicated for vector field modeling.

  16. Energy Overview and A Perspective on Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center May 11, 2010 Washington National Harbor U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector 2 Double Renewable Energy Capacity by 2012 ...

  17. Inter-American Development Bank (IDB) | Open Energy Information

    Open Energy Info (EERE)

    IDB Expands Climate and Clean Energy Facility to Finance Energy Efficiency, Self-supply Renewables and Adaptation The IDB has doubled the size of its Climate and Clean Energy...

  18. Thermal decomposition of 1,3,3-trinitroazetidine (TNAZ): A density functional theory and ab initio study

    SciTech Connect (OSTI)

    Veals, Jeffrey D.; Thompson, Donald L.

    2014-04-21

    Density functional theory and ab initio methods are employed to investigate decomposition pathways of 1,3,3-trinitroazetidine initiated by unimolecular loss of NO{sub 2} or HONO. Geometry optimizations are performed using M06/cc-pVTZ and coupled-cluster (CC) theory with single, double, and perturbative triple excitations, CCSD(T), is used to calculate accurate single-point energies for those geometries. The CCSD(T)/cc-pVTZ energies for NO{sub 2} elimination by NN and CN bond fission are, including zero-point energy (ZPE) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can occur by a concerted H-atom and nitramine NO{sub 2} group elimination or by a concerted H-atom and nitroalkyl NO{sub 2} group elimination via barriers (at the CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of these four decomposition steps from energetically most favored to least favored is: NO{sub 2} elimination by NN bond fission, HONO elimination involving the nitramine NO{sub 2} group, HONO elimination involving a nitroalkyl NO{sub 2} group, and finally NO{sub 2} elimination by CN bond fission.

  19. Low density carbonized composite foams

    DOE Patents [OSTI]

    Kong, Fung-Ming

    1991-01-01

    A carbonized composite foam having a density less than about 50 mg/cm.sup.3 and individual cell sizes no greater than about 1 .mu.m in diameter is described, and the process of making it.

  20. Low density carbonized composite foams

    DOE Patents [OSTI]

    Kong, Fung-Ming

    1993-01-01

    A carbonized composite foam having a density less than about 50 mg/cm.sup.3 and individual cell sizes no greater than about 1 .mu.m in diameter is described, and the process of making it.

  1. EA-1905: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Final Environmental Assessment EA-1905: Final Environmental Assessment Department of Energy Funding For Double Eagle Water System, Carlsbad, New Mexico (November 2011) For more...

  2. Del Ranch (Hoch) Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Hide Map Geothermal Resource Area Salton Sea Geothermal Area Geothermal Region Gulf of California Rift Zone Plant Information Facility Type Double Flash Owner CalEnergy...

  3. Kizildere II Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Information Facility Type Double Flash, Binary Owner Zorlu Enerji Developer Zorlu Enerji Energy Purchaser TEDAS Commercial Online Date 2013 Power Plant Data Type of Plant Number...

  4. Informing Energy Efficiency through Data

    Broader source: Energy.gov [DOE]

    The White House today announced several updates to the Energy Departments Better Buildings Initiative, a cornerstone of the President's Climate Action Plan, aimed at doubling American energy productivity by 2030 while motivating corporate and public-sector leaders across the country to save energy through voluntary commitments.

  5. Low density metal hydride foams

    DOE Patents [OSTI]

    Maienschein, Jon L.; Barry, Patrick E.

    1991-01-01

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  6. Status of the MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-Beta

    Office of Scientific and Technical Information (OSTI)

    Decay (Conference) | SciTech Connect Status of the MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-Beta Decay Citation Details In-Document Search Title: Status of the MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-Beta Decay × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  7. Low missing mass, single and double diffraction dissociation at the LHC

    SciTech Connect (OSTI)

    Jenkovszky, L. L.; Kuprash, O. E.; Orava, R.; Salii, A.

    2014-12-15

    The cross sections for single and double diffraction dissociation at low missing masses are calculated for the LHC energies on the basis of the dual (Regge) model under the assumption of a dominant contribution of the exchange of the Pomeron Regge pole. The model reproduces the rich resonance structure in the region of low missing masses M{sub x}. Diffractively excited states lie on the nucleon trajectory M{sub x} supplemented with the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing-mass dependence of the differential and integrated single and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  8. The Global Energy Challenge

    ScienceCinema (OSTI)

    Crabtree, George

    2010-01-08

    The expected doubling of global energy demand by 2050 challenges our traditional patterns of energy production, distribution and use.   The continued use of fossil fuels raises concerns about supply, security, environment and climate.  New routes are needed for the efficient conversion of energy from chemical fuel, sunlight, and heat to electricity or hydrogen as an energy carrier and finally to end uses like transportation, lighting, and heating. Opportunities for efficient new energy conversion routes based on nanoscale materials will be presented, with emphasis on the sustainable energy technologies they enable.

  9. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  10. Renewable Energy Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Update Steve Lindenberg, Senior Advisor June 27, 2012 Message from the President "... I will not walk away from the promise of clean energy. I will not walk away from workers ... I will not cede the wind or solar or battery industry ... It's time ... to double down on a clean energy industry that has never been more promising." - President Obama, State of the Union, 24 January 2012 2 EERE Goals Clean Electricity: 80 percent by 2035 Transportation * Renewable

  11. Alpha Backgrounds for HPGe Detectors in Neutrinoless Double-Beta Decay Experiments

    SciTech Connect (OSTI)

    Johnson, R. A. [University of Washington, Seattle; Burritt, T. H. [University of Washington, Seattle; Elliott, S. R. [Los Alamos National Laboratory (LANL); Gehman, V. M. [Los Alamos National Laboratory (LANL); Guiseppe, V.E. [University of South Dakota; Wilkerson, J. F. [UNC/Triangle Univ. Nucl. Lab, Durham, NC/ORNL

    2012-01-01

    The Majorana Experiment will use arrays of enriched HPGe detectors to search for the neutrinoless double-beta decay of 76Ge. Such a decay, if found, would show lepton-number violation and confirm the Majorana nature of the neutrino. Searches for such rare events are hindered by obscuring backgrounds which must be understood and mitigated as much as possible. A potentially important background contribution to this and other double-beta decay experiments could come from decays of alpha-emitting isotopes in the 232Th and 238U decay chains on or near the surfaces of the detectors. An alpha particle emitted external to an HPGe crystal can lose energy before entering the active region of the detector, either in some external-bulk material or within the dead region of the crystal. The measured energy of the event will only correspond to a partial amount of the total kinetic energy of the alpha and might obscure the signal from neutrinoless double-beta decay. A test stand was built and measurements were performed to quantitatively assess this background. We present results from these measurements and compare them to simulations using Geant4. These results are then used to measure the alpha backgrounds in an underground detector in situ. We also make estimates of surface contamination tolerances for double-beta decay experiments using solid-state detectors.

  12. Innovative Financing for Clean Energy Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Financing for Clean Energy Technologies Innovative Financing for Clean Energy Technologies December 7, 2015 - 3:00pm Addthis Melanie A. Kenderdine Melanie A. Kenderdine Director of the Office of Energy Policy and Systems Analysis Just last week, President Obama and leaders from 20 other countries announced that they will double their governments' investments in clean energy R&D over the next five years through Mission Innovation, while a parallel effort, the Breakthrough Energy

  13. Lower-Energy Energy Storage System (LEESS) Component Evaluation (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Lower-Energy Energy Storage System (LEESS) Component Evaluation Citation Details In-Document Search Title: Lower-Energy Energy Storage System (LEESS) Component Evaluation Alternate hybrid electric vehicle (HEV) energy storage systems (ESS) such as lithium-ion capacitors (LICs) and electrochemical double-layer capacitor (EDLC) modules have the potential for improved life, superior cold temperature performance, and lower long-term cost projections relative to

  14. R and D of crystal scintillators from enriched isotopes for high sensitivity double ? decay experiments

    SciTech Connect (OSTI)

    Danevich, F. A. [Institute for Nuclear Research, Kyiv (Ukraine)

    2013-12-30

    Experiments to search for neutrinoless double beta decay enters to a new phase when a sensitivity on the level of T{sub 1/2}?10{sup 26}?10{sup 28} yr is required. Scintillating low temperature detectors possess important properties required for high-sensitivity double beta decay experiments: presence of elements of interest, high energy resolution and detection efficiency, low level of background thanks to excellent particle discrimination ability. High concentration of isotope of interest and as low as possible radioactive contamination are important requirements to crystal scintillators. Other crucial issues are maximal output of detectors and minimal loss of enriched materials. Prospects of several scintillation materials, enriched in isotopes promising for double beta decay experiments, are discussed.

  15. Energy Department Invests $4 Million to Strengthen Building America Industry Partnerships for High Performance Housing Innovation

    Broader source: Energy.gov [DOE]

    As part of the administration's effort to cut energy waste in the nation's buildings and double energy productivity by 2030, the Energy Department today announced $4 million to develop and demonstrate new energy efficiency solutions for the nation's homes.

  16. High-energy x-ray response of photographic films: models and measurement

    SciTech Connect (OSTI)

    Henke, B.L.; Uejio, J.Y.; Stone, G.F.; Dittmore, C.H.; Fujiwara, F.G.

    1986-11-01

    A detailed characterization has been established for the new, high-sensitivity double-emulsion Kodak Direct Exposure Film (DEF). The experimental data base consisted of density-versus-exposure measurements that were duplicated at several laboratories for x radiations in the 1000-10,000-eV region. The absortpion and geometric properties of the film were determined, which, along with the density-exposure data, permitted the application of a relatively simple analytical model description for the optical density, D, as a function of the intensity, I (photons/..mu..m/sup 2/), the photon energy, E (eV), and the angle of incidence, 0, of the exposing radiation. A detailed table is presented for the I values corresponding to optical densities in the 0.2--2.0 range and to photon energies, E (eV), in the 1000-10,000-eV region. Experimentally derived conversion relations have been obtained that allow the density values to be expressed as either diffuse of specular. Also presented here is a similar characterization of the complementary, single-emulsion x-ray film, Kodak SB-5 (or 392). For the 1000-10,000-eV region this x-ray film is appreciably less sensitive but has higher resolution.

  17. High Density Sensor Network Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Density Sensor Network Development

  18. Determination of effective mechanical properties of a double-layer beam by means of a nano-electromechanical transducer

    SciTech Connect (OSTI)

    Hocke, Fredrik; Pernpeintner, Matthias; Gross, Rudolf; Zhou, Xiaoqing; Kippenberg, Tobias J.; Schliesser, Albert; Huebl, Hans

    2014-09-29

    We investigate the mechanical properties of a doubly clamped, double-layer nanobeam embedded into an electromechanical system. The nanobeam consists of a highly pre-stressed silicon nitride and a superconducting niobium layer. By measuring the mechanical displacement spectral density both in the linear and the nonlinear Duffing regime, we determine the pre-stress and the effective Young's modulus of the nanobeam. An analytical double-layer model quantitatively corroborates the measured values. This suggests that this model can be used to design mechanical multilayer systems for electro- and optomechanical devices, including materials controllable by external parameters such as piezoelectric, magnetostrictive, or in more general multiferroic materials.

  19. Topological defects in electric double layers of ionic liquids at carbon interfaces

    SciTech Connect (OSTI)

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; Cummings, Peter T.; Kalinin, Sergei V.; Balke, Nina

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here we utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.

  20. Topological defects in electric double layers of ionic liquids at carbon interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; Cummings, Peter T.; Kalinin, Sergei V.; Balke, Nina

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here wemore » utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.« less

  1. Sensitivity of CUORE to Neutrinoless Double-Beta Decay (Journal...

    Office of Scientific and Technical Information (OSTI)

    Sensitivity of CUORE to Neutrinoless Double-Beta Decay Citation Details In-Document Search Title: Sensitivity of CUORE to Neutrinoless Double-Beta Decay In this paper, we study the...

  2. Sensitivity of CUORE to Neutrinoless Double-Beta Decay (Journal...

    Office of Scientific and Technical Information (OSTI)

    Sensitivity of CUORE to Neutrinoless Double-Beta Decay Citation Details In-Document Search Title: Sensitivity of CUORE to Neutrinoless Double-Beta Decay You are accessing a...

  3. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC...

    Office of Scientific and Technical Information (OSTI)

    Title: HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS M&D Professional Services, Inc. (M&D) is under subcontract to Pacific ...

  4. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY...

    Office of Scientific and Technical Information (OSTI)

    Title: HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL ... the definition of the design ground motion or in the properties of the tank-waste system. ...

  5. National CHP Roadmap: Doubling Combined Heat and Power Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States ...

  6. Radiopurity control in the NEXT-100 double beta decay experiment

    SciTech Connect (OSTI)

    lvarez, V.; Crcel, S.; Cervera, A.; Daz, J.; Ferrario, P.; Gil, A.; Gmez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martn-Albo, J.; Martnez, A.; Monrabal, F.; Muoz Vidal, J.; Nebot-Guinot, M.; Rodrguez, J.; Serra, L.; Simn, A.; Sofka, C.; Sorel, M. [Instituto de Fsica Corpuscular (IFIC), CSIC and Universitat de Valncia, 46980 Paterna, Valencia (Spain)] [Instituto de Fsica Corpuscular (IFIC), CSIC and Universitat de Valncia, 46980 Paterna, Valencia (Spain); and others

    2013-08-08

    An extensive material screening and selection process is underway in the construction of the 'Neutrino Experiment with a Xenon TPC' (NEXT), intended to investigate neutrinoless double beta decay using a high-pressure xenon gas TPC filled with 100 kg of Xe enriched in {sup 136}Xe. Determination of the radiopurity levels of the materials is based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterrneo de Canfranc (Spain) and also on Glow Discharge Mass Spectrometry. Materials to be used in the shielding, pressure vessel, electroluminescence and high voltage components and energy and tracking readout planes have been already taken into consideration. The measurements carried out are presented, describing the techniques and equipment used, and the results obtained are shown, discussing their implications for the NEXT experiment.

  7. Machine learning bandgaps of double perovskites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; Ramprasad, R.; Gubernatis, J. E.; Lookman, T.

    2016-01-19

    The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the mostmore » crucial and relevant predictors. As a result, the developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance.« less

  8. High-density fluid compositions

    SciTech Connect (OSTI)

    Sanders, D.C.

    1981-09-29

    Clear, high-density fluids suitable for use as well completion, packing, and perforation media comprise aqueous solutions of zinc bromide and calcium bromide having densities lying in the range of about 14.5 up to about 18.0 pounds per gallon and measured PH's lying in the range of about 3.5 up to about 6.0. Optionally, such fluids may also comprise calcium chloride and/or a soluble film-forming amine-based corrosion inhibitor. Such fluids under conditions of ordinary use exhibit low corrosion rates and have crystallization points lying well below the range of temperatures under which they are used.

  9. Double-clad nuclear fuel safety rod

    DOE Patents [OSTI]

    McCarthy, William H.; Atcheson, Donald B.; Vaidyanathan, Swaminathan

    1984-01-01

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  10. Entanglement purification with double selection (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Entanglement purification with double selection Citation Details In-Document Search Title: Entanglement purification with double selection We investigate an entanglement purification protocol with double-selection process, which works under imperfect local operations. Compared with the usual protocol with single selection, this double-selection method has higher noise thresholds for the local operations and quantum communication channels and achieves higher fidelity of purified

  11. National Clean Energy Business Plan Competition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to meet the world's growing energy storage demand. The Polymer Ionic Liquid (PIL) rechargeable lithium battery has four times the energy density of a conventional...

  12. Basic energy properties of electrolytic solutions database. ...

    Office of Scientific and Technical Information (OSTI)

    Basic energy properties of electrolytic solutions database. Viscosity, thermal conductivity, density, enthalpy Citation Details In-Document Search Title: Basic energy properties ...

  13. Batteries and Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research ... We develop more robust, safer and higher-energy density lithium-ion batteries, while using ...

  14. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors

    SciTech Connect (OSTI)

    Simon, P.; Gogotsi, Y.

    2010-06-21

    Electrochemical capacitors, also known as supercapacitors, are energy storage devices that fill the gap between batteries and dielectric capacitors. Thanks to their unique features, they have a key role to play in energy storage and harvesting, acting as a complement to or even a replacement of batteries which has already been achieved in various applications. One of the challenges in the supercapacitor area is to increase their energy density. Some recent discoveries regarding ion adsorption in microporous carbon exhibiting pores in the nanometre range can help in designing the next generation of high-energy-density supercapacitors.

  15. Energy storage device with large charge separation

    DOE Patents [OSTI]

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  16. Plasma digital density determining device

    DOE Patents [OSTI]

    Sprott, Julien C.; Lovell, Thomas W.; Holly, Donald J.

    1976-01-01

    The density of a decaying plasma in an electrically conducting enclosure is determined by applying an excitation to the cavity formed by the enclosure and counting digitally the number of resonant frequencies traversed by the combination of the cavity and the decaying plasma.

  17. Plasmons in spatially separated double-layer graphene nanoribbons

    SciTech Connect (OSTI)

    Bagheri, Mehran, E-mail: mh-bagheri@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran 19835-63113 (Iran, Islamic Republic of); Bahrami, Mousa [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, 08860 Castelldefels (Barcelona) (Spain)

    2014-05-07

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons.

  18. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems have made possible the exploration of matter at extremely high energy density in the laboratory. Exciting new experimental regimes are being realized by exploiting the scientific capabilities of existing ICF Office facilities, as well as the relevant Department of Defense (DoD) and university

  19. Frequency-doubled vertical-external-cavity surface-emitting laser

    DOE Patents [OSTI]

    Raymond, Thomas D.; Alford, William J.; Crawford, Mary H.; Allerman, Andrew A.

    2002-01-01

    A frequency-doubled semiconductor vertical-external-cavity surface-emitting laser (VECSEL) is disclosed for generating light at a wavelength in the range of 300-550 nanometers. The VECSEL includes a semiconductor multi-quantum-well active region that is electrically or optically pumped to generate lasing at a fundamental wavelength in the range of 600-1100 nanometers. An intracavity nonlinear frequency-doubling crystal then converts the fundamental lasing into a second-harmonic output beam. With optical pumping with 330 milliWatts from a semiconductor diode pump laser, about 5 milliWatts or more of blue light can be generated at 490 nm. The device has applications for high-density optical data storage and retrieval, laser printing, optical image projection, chemical-sensing, materials processing and optical metrology.

  20. Background Suppression Using Pulse Shape Analysis with a BEGe Detector for Neutrinoless Double Beta Decay Search with GERDA

    SciTech Connect (OSTI)

    Budjas, Dusan; Schoenert, Stefan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Chkvorets, Oleg [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Department of Physics, Laurentian University, Ramsey Lake Road, P3E 2C6 Sudbury, Ontario (Canada)

    2009-12-17

    A pulse shape analysis for distinguishing between double beta decay-like interactions and multiple-scattered photons was performed for the first time using a BEGe-type detector. This discrimination method is included in the research and development for the second phase of the GERDA experiment, since active background suppression techniques are necessary to reach sensitivity for the {sup 76}Ge neutrinoless double beta decay half life of >10{sup 26} years. A suppression of backgrounds in the energy region of interest around the {sup 76}Ge Q{sub {beta}}{sub {beta}} = 2039 keV is demonstrated, with (0.93{+-}0.08)% survival probability for events from {sup 60}Co, (21{+-}3)% for {sup 226}Ra, and (40{+-}2)% for {sup 228}Th. This performance is achieved with (89{+-}1)% acceptance of {sup 228}Th double escape events, which are analogous to double beta decay.

  1. Statistical density modification using local pattern matching

    DOE Patents [OSTI]

    Terwilliger, Thomas C.

    2007-01-23

    A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.

  2. A Microscopic Double-Slit Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy A Michigan County Unearths Savings with Geothermal Energy A Michigan County Unearths Savings with Geothermal Energy January 22, 2013 - 9:55am Addthis Kent County Correctional Facility is saving energy and money with a new closed-loop geothermal system. | Photo courtesy of Kent County Administrator's Office. Kent County Correctional Facility is saving energy and money with a new closed-loop geothermal system. | Photo courtesy of Kent County Administrator's Office. Christina Stowers

  3. Double-Win "Algal Turf Scrubbers" Help to Clean Up Baltimore Harbor and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cars | Department of Energy Double-Win "Algal Turf Scrubbers" Help to Clean Up Baltimore Harbor and Fuel Cars Double-Win "Algal Turf Scrubbers" Help to Clean Up Baltimore Harbor and Fuel Cars April 11, 2016 - 2:42pm Addthis Algae absorb nutrients and produce oxygen-ecosystem services that are vital to the health of impaired water bodies like the Chesapeake Bay and Gulf of Mexico. Energy Department-funded researchers are investigating how to mimic these natural

  4. Uncertainty Quantification and Propagation in Nuclear Density...

    Office of Scientific and Technical Information (OSTI)

    and Propagation in Nuclear Density Functional Theory Citation Details In-Document Search Title: Uncertainty Quantification and Propagation in Nuclear Density Functional ...

  5. ARM - Lesson Plans: Air Density and Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teachers' Toolbox Lesson Plans Lesson Plans: Air Density and Temperature Objective The objective of this activity is to investigate the effect of temperature on the density of air. ...

  6. Energy Storage

    SciTech Connect (OSTI)

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10-8 mol/s/cm2 were achieved.

  7. Direct experimental determination of spectral densities of molecular complexes

    SciTech Connect (OSTI)

    Pachn, Leonardo A.; Brumer, Paul

    2014-11-07

    Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need to be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.

  8. The density gradient effect on quantum Weibel instability

    SciTech Connect (OSTI)

    Mahdavi, M. Khodadadi Azadboni, F.

    2015-03-15

    The Weibel instability plays an important role in stopping the hot electrons and energy deposition mechanism in the fast ignition of inertial fusion process. In this paper, the effects of the density gradient and degeneracy on Weibel instability growth rate are investigated. Calculations show that decreasing the density degenerate in the plasma corona, near the relativistic electron beam emitting region by 8.5% leads to a 92% reduction in the degeneracy parameter and about 90% reduction in Weibel instability growth rate. Also, decreasing the degenerate density near the fuel core by 8.5% leads to 1% reduction in the degeneracy parameter and about 8.5% reduction in Weibel instability growth rate. The Weibel instability growth rate shrinks to zero and the deposition condition of relativistic electron beam energy can be shifted to the fuel core for a suitable ignition by increasing the degeneracy parameter in the first layer of plasma corona.

  9. Reliable Energy Level Alignment at Physisorbed Molecule-Metal...

    Office of Scientific and Technical Information (OSTI)

    at Physisorbed Molecule-Metal Interfaces from Density Functional Theory Title: Reliable Energy Level Alignment at Physisorbed Molecule-Metal Interfaces from Density Functional ...

  10. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    SciTech Connect (OSTI)

    Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvnic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagates in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvn waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.

  11. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  12. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  13. Neutrinoless double beta decay and neutrino masses

    SciTech Connect (OSTI)

    Duerr, Michael [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2012-07-27

    Neutrinoless double beta decay (0{nu}{beta}{beta}) is a promising test for lepton number violating physics beyond the standard model (SM) of particle physics. There is a deep connection between this decay and the phenomenon of neutrino masses. In particular, we will discuss the relation between 0{nu}{beta}{beta} and Majorana neutrino masses provided by the so-called Schechter-Valle theorem in a quantitative way. Furthermore, we will present an experimental cross check to discriminate 0{nu}{beta}{beta} from unknown nuclear background using only one isotope, i.e., within one experiment.

  14. The double contact nature of TT Herculis

    SciTech Connect (OSTI)

    Terrell, Dirk; Nelson, Robert H. E-mail: bob.nelson@shaw.ca

    2014-03-01

    We present new radial velocities and photometry of the short-period Algol TT Herculis. Previous attempts to model the light curves of the system have met with limited success, primarily because of the lack of a reliable mass ratio. Our spectroscopic observations are the first to result in radial velocities for the secondary star, and thus provide a spectroscopic mass ratio. Simultaneous analysis of the radial velocities and new photometry shows that the system is a double contact binary, with a rapidly rotating primary that fills its limiting lobe.

  15. A Microscopic Double-Slit Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microscopic Double-Slit Experiment Print Two centuries ago, Thomas Young performed the classic demonstration of the wave nature of light. He placed a screen with two tiny slits in front of a single light source, effectively converting it into a two-centered source. On a second screen far away, he saw a pattern of light and dark diffraction fringes, a well-known hallmark of wave interference. Along with later studies using particles instead of light, the experiment played a crucial role in

  16. Optical double-slit particle measuring system

    DOE Patents [OSTI]

    Tichenor, D.A.; Wang, J.C.F.; Hencken, K.R.

    1982-03-25

    A method for in situ measurement of particle size is described. The size information is obtained by scanning an image of the particle across a double-slit mask and observing the transmitted light. This method is useful when the particle size of primary interest is 3..mu..m and larger. The technique is well suited to applications in which the particles are non-spherical and have unknown refractive index. It is particularly well suited to high temperature environments in which the particle incandescence provides the light source.

  17. A Microscopic Double-Slit Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Microscopic Double-Slit Experiment Print Two centuries ago, Thomas Young performed the classic demonstration of the wave nature of light. He placed a screen with two tiny slits in front of a single light source, effectively converting it into a two-centered source. On a second screen far away, he saw a pattern of light and dark diffraction fringes, a well-known hallmark of wave interference. Along with later studies using particles instead of light, the experiment played a crucial role in

  18. A Microscopic Double-Slit Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Microscopic Double-Slit Experiment Print Two centuries ago, Thomas Young performed the classic demonstration of the wave nature of light. He placed a screen with two tiny slits in front of a single light source, effectively converting it into a two-centered source. On a second screen far away, he saw a pattern of light and dark diffraction fringes, a well-known hallmark of wave interference. Along with later studies using particles instead of light, the experiment played a crucial role in

  19. A Microscopic Double-Slit Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Microscopic Double-Slit Experiment Print Two centuries ago, Thomas Young performed the classic demonstration of the wave nature of light. He placed a screen with two tiny slits in front of a single light source, effectively converting it into a two-centered source. On a second screen far away, he saw a pattern of light and dark diffraction fringes, a well-known hallmark of wave interference. Along with later studies using particles instead of light, the experiment played a crucial role in

  20. Optical double-slit particle measuring system

    DOE Patents [OSTI]

    Hencken, Kenneth R. (Pleasanton, CA); Tichenor, Daniel A. (Freemont, CA); Wang, James C. F. (Livermore, CA)

    1984-01-01

    A method for in situ measurement of particle size is described. The size information is obtained by scanning an image of the particle across a double-slit mask and observing the transmitted light. This method is useful when the particle size of primary interest is 3 .mu.m and larger. The technique is well suited to applications in which the particles are non-spherical and have unknown refractive index. It is particularly well suited to high temperature environments in which the particle incandescence provides the light source.

  1. Double acting stirling engine phase control

    DOE Patents [OSTI]

    Berchowitz, David M.

    1983-01-01

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  2. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOE Patents [OSTI]

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  3. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOE Patents [OSTI]

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  4. Two-dimensional double layer in plasma in a diverging magnetic field

    SciTech Connect (OSTI)

    Saha, S. K.; Raychaudhuri, S.; Chowdhury, S.; Janaki, M. S.; Hui, A. K.

    2012-09-15

    Plasma created by an inductive RF discharge is allowed to expand along a diverging magnetic field. Measurement of the axial plasma potential profile reveals the formation of an electric double layer near the throat of the expansion chamber. An accelerated ion beam has been detected in the downstream region, confirming the presence of the double layer. The 2-D nature of the ion energy distribution function of the downstream plasma has been studied by a movable ion energy analyser, which shows that the beam radius increases along the axial distance. The 2-D structure of the plasma potential has been studied by a movable emissive probe. The existence of a secondary lobe in the contour plot of plasma equipotential is a new observation. It is also an interesting observation that the most diverging magnetic field line not intercepting the junction of the discharge tube and the expansion chamber has an electric field aligned with it.

  5. A DOUBLE-PEAKED OUTBURST OF A 0535+26 OBSERVED WITH INTEGRAL, RXTE, AND SUZAKU

    SciTech Connect (OSTI)

    Caballero, I.; Barragan, L.; Wilms, J.; Kreykenbohm, I.; Ferrigno, C.; Klochkov, D.; Suchy, S.; Santangelo, A.; Staubert, R.; Zurita Heras, J. A.; Kretschmar, P.; Fuerst, F.; Rothschild, R.; Finger, M. H.; Camero-Arranz, A.; Makishima, K.; Enoto, T.; Iwakiri, W.; and others

    2013-02-20

    The Be/X-ray binary A 0535+26 showed a normal (type I) outburst in 2009 August. It is the fourth in a series of normal outbursts associated with the periastron, but is unusual because it presented a double-peaked light curve. The two peaks reached a flux of {approx}450 mCrab in the 15-50 keV range. We present results of the timing and spectral analysis of INTEGRAL, RXTE, and Suzaku observations of the outburst. The energy-dependent pulse profiles and their evolution during the outburst are studied. No significant differences with respect to other normal outbursts are observed. The centroid energy of the fundamental cyclotron line shows no significant variation during the outburst. A spectral hardening with increasing luminosity is observed. We conclude that the source is accreting in the sub-critical regime. We discuss possible explanations for the double-peaked outburst.

  6. Energy Department Invests $6 Million to Increase Energy Efficiency of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Schools, Offices, Stores and other U.S. Buildings | Department of Energy 6 Million to Increase Energy Efficiency of Schools, Offices, Stores and other U.S. Buildings Energy Department Invests $6 Million to Increase Energy Efficiency of Schools, Offices, Stores and other U.S. Buildings May 5, 2015 - 11:10am Addthis As part of the Administration's effort to cut energy waste in the nation's buildings and double energy productivity by 2030, the Energy Department today announced nearly $6 million

  7. Faraday-effect polarimeter-interferometer system for current density measurement on EAST

    SciTech Connect (OSTI)

    Liu, H. Q.; Jie, Y. X. Zou, Z. Y.; Li, W. M.; Wang, Z. X.; Qian, J. P.; Yang, Y.; Zeng, L.; Wei, X. C.; Hu, L. Q.; Wan, B. N.; Ding, W. X.; Brower, D. L.; Lan, T.; Li, G. S.

    2014-11-15

    A multichannel far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique is under development for current density and electron density profile measurements in the EAST tokamak. Novel molybdenum retro-reflectors are mounted in the inside wall for the double-pass optical arrangement. A Digital Phase Detector with 250 kHz bandwidth, which will provide real-time Faraday rotation angle and density phase shift output, have been developed for use on the POINT system. Initial calibration indicates the electron line-integrated density resolution is less than 5 10{sup 16} m{sup ?2} (?2), and the Faraday rotation angle rms phase noise is <0.1.

  8. DOE Science Showcase - Neutrinoless Double Beta Decay | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy, Office of Scientific and Technical Information Neutrinoless Double Beta Decay "Ultra High Purity Electro-Formed Copper" Image Credit: PNNL. Neutrinos are created as a result of certain types of radioactive decay, or nuclear reactions such as those that take place in the Sun, in nuclear reactors, or when cosmic rays hit atoms. These particles are known to exist in three states: as electron neutrinos, muon neutrinos, and tau neutrinos. The neutrino is associated with an

  9. In the OSTI Collections: Neutrinoless Double Beta Decay-Are Neutrinos and

    Office of Scientific and Technical Information (OSTI)

    Antineutrinos the Same? | OSTI, US Dept of Energy, Office of Scientific and Technical Information Neutrinoless Double Beta Decay-Are Neutrinos and Antineutrinos the Same? Dr. Watson computer sleuthing scientist. Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information Observational Obstacles Experiments References Reports available from SciTech Connect and E-print Network Organizations and Laboratories Additional Reference Figure 1. The

  10. High School Academic Competition - Double Elimination | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Double Elimination National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building

  11. High School Academic Competition - Double Elimination | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Double Elimination National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building

  12. Middle School Academic Competition - Double Elimination | U.S. DOE Office

    Office of Science (SC) Website

    of Science (SC) Academic Competition - Double Elimination National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy

  13. Double Retort System for Materials Compatibility Testing

    SciTech Connect (OSTI)

    V. Munne; EV Carelli

    2006-02-23

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the Space Nuclear Power Plant (SNPP) for Project Prometheus (References a and b) there was a need to investigate compatibility between the various materials to be used throughout the SNPP. Of particular interest was the transport of interstitial impurities from the nickel-base superalloys, which were leading candidates for most of the piping and turbine components to the refractory metal alloys planned for use in the reactor core. This kind of contamination has the potential to affect the lifetime of the core materials. This letter provides technical information regarding the assembly and operation of a double retort materials compatibility testing system and initial experimental results. The use of a double retort system to test materials compatibility through the transfer of impurities from a source to a sink material is described here. The system has independent temperature control for both materials and is far less complex than closed loops. The system is described in detail and the results of three experiments are presented.

  14. Density variations and anomalies in palladium compacts

    SciTech Connect (OSTI)

    Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.

    1992-05-14

    Low-density compacts of palladium powder have relative densities of about 30{plus minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a steer's head.'' it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.

  15. Density variations and anomalies in palladium compacts

    SciTech Connect (OSTI)

    Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.

    1992-05-14

    Low-density compacts of palladium powder have relative densities of about 30{plus_minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a ``steer`s head.`` it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.

  16. Energy Secretary Ernest Moniz Visits WIPP

    Broader source: Energy.gov [DOE]

    Energy Secretary Ernest Moniz accepts special recognition on behalf of DOE for support of the expansion and upgrade to Carlsbad’s Double Eagle Water System from Mayor Dale Janway (right) at a town hall-style meeting this month.

  17. Communication: Self-interaction correction with unitary invariance in density functional theory

    SciTech Connect (OSTI)

    Pederson, Mark R.; Ruzsinszky, Adrienn; Perdew, John P.; Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122

    2014-03-28

    Standard spin-density functionals for the exchange-correlation energy of a many-electron ground state make serious self-interaction errors which can be corrected by the Perdew-Zunger self-interaction correction (SIC). We propose a size-extensive construction of SIC orbitals which, unlike earlier constructions, makes SIC computationally efficient, and a true spin-density functional. The SIC orbitals are constructed from a unitary transformation that is explicitly dependent on the non-interacting one-particle density matrix. When this SIC is applied to the local spin-density approximation, improvements are found for the atomization energies of molecules.

  18. DENSITY CONTROL IN A REACTOR

    DOE Patents [OSTI]

    Marshall, J. Jr.

    1961-10-24

    A reactor is described in which natural-uranium bodies are located in parallel channels which extend through the graphite mass in a regular lattice. The graphite mass has additional channels that are out of the lattice and contain no uranium. These additional channels decrease in number per unit volume of graphite from the center of the reactor to the exterior and have the effect of reducing the density of the graphite more at the center than at the exterior, thereby spreading neutron activity throughout the reactor. (AEC)

  19. Double-regge exchange limit for the γp→ K⁺K⁻p reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shi, M.; Danilkin, I. V.; Fernández-Ramírez, C.; Mathieu, V.; Pennington, M. R.; Schott, D.; Szczepaniak, A. P.

    2015-02-01

    We apply the generalized Veneziano model (B₅ model) in the double-Regge exchange limit to the γp→K⁺K⁻p reaction. Four different cases defined by the possible combinations of the signature factors of leading Regge exchanges ((K*,a₂/f₂), (K*,ρ/ω), (K*₂,a₂/f₂), and (K*₂,ρ/ω)) have been simulated through the Monte Carlo method. Suitable event candidates for the double-Regge exchange high-energy limit were selected employing Van Hove plots as a better alternative to kinematical cuts in the K⁺K⁻p Dalitz plot. In this way we predict and analyze the double-Regge contribution to the K⁺K⁻p Dalitz plot, which constitutes one of the major backgrounds in the search for strangeonia,more » hybrids and exotics using γp→K⁺K⁻p reaction. We expect that data currently under analysis, and that to come in the future, will allow verification of the double-Regge behavior and a better assessment of this component of the amplitude.« less

  20. Novel and Optimized Materials Phases for High Energy Density Batteries

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting