Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

MHK Projects/Dorchester Maurice Tidal | Open Energy Information  

Open Energy Info (EERE)

Dorchester Maurice Tidal Dorchester Maurice Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3262,"lon":-74.938,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

2

MHK Projects/Maurice River Tidal | Open Energy Information  

Open Energy Info (EERE)

Maurice River Tidal Maurice River Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3261,"lon":-74.9379,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

3

Dorchester County- Renewable Zoning  

Energy.gov (U.S. Department of Energy (DOE))

Dorchester County zoning codes specifically permit solar arrays and small wind turbines in many zoning districts.

4

Dorchester, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dorchester, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0030238, -90.3356912 Loading map... "minzoom":false,"mappingservice":...

5

Maurice, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maurice, Louisiana: Energy Resources Maurice, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.1085368°, -92.1245688° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.1085368,"lon":-92.1245688,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

6

Introductory Remarks - Maurice Goldhaber, Director, Brookhaven National  

NLE Websites -- All DOE Office Websites (Extended Search)

contents as they appeared in the original proceedings contents as they appeared in the original proceedings Return to 1968 Proceedings Home Page Directly Jump to 1st Week 2nd Week 3rd Week 4th Week 5th Week 6th Week Author Index Introductory Remarks - Maurice Goldhaber, Director, Brookhaven National Laboratory iii Editor's Preface - Albert G. Prodell, Brookhaven National Laboratory iv Introduction - John P. Blewett, Brookhaven National Laboratory v FIRST WEEK - SUPERCONDUCTING RF CAVITIES AND LINACS Chairman: H.A. Schwettman, Stanford University (Photos) The Development of Low Temperature Technology at Stanford and its Relevance to High Energy Physics 1 H. Alan Schwettman, Stanford University Q Measurements on Superconducting Cavities at S-Band 13 H. Hahn, H.J. Halama, and E.H. Foster, Brookhaven National Laboratory

7

MHK Technologies/RED HAWK | Open Energy Information  

Open Energy Info (EERE)

RED HAWK RED HAWK < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage RED HAWK.jpg Technology Profile Primary Organization Natural Currents Energy Services Project(s) where this technology is utilized *MHK Projects/Avalon Tidal *MHK Projects/BW2 Tidal *MHK Projects/Cape Cod Tidal Energy Project *MHK Projects/Cape May Tidal Energy *MHK Projects/Cohansey River Tidal Energy *MHK Projects/Dorchester Maurice Tidal *MHK Projects/Fishers Island Tidal Energy Project *MHK Projects/Gastineau Channel Tidal *MHK Projects/Highlands Tidal Energy Project *MHK Projects/Killisnoo Tidal Energy *MHK Projects/Margate Tidal *MHK Projects/Maurice River Tidal *MHK Projects/Mohawk MHK Project *MHK Projects/Orient Point Tidal *MHK Projects/Rockaway Tidal Energy Plant

8

Tidal Energy  

Office of Scientific and Technical Information (OSTI)

into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from Tidal Streams in the United States, Energy Citations...

9

Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE))

Some of the oldest ocean energy technologies use tidal power. All coastal areas experience two high tides and two low tides over a period of slightly more than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about 40 sites on Earth with tidal ranges of this magnitude.

10

Natural Currents Energy Services | Open Energy Information  

Open Energy Info (EERE)

Natural Currents Energy Services Natural Currents Energy Services Jump to: navigation, search Name Natural Currents Energy Services Address 24 Roxanne Blvd Place Highland Zip 12528 Sector Marine and Hydrokinetic Phone number 845-691-4008 Website http://www.naturalcurrents.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Angoon Tidal Energy Plant Avalon Tidal BW2 Tidal Cape Cod Tidal Energy Project Cape May Tidal Energy Cohansey River Tidal Energy Cuttyhunk Tidal Energy Plant Dorchester Maurice Tidal Fishers Island Tidal Energy Project Gastineau Channel Tidal Highlands Tidal Energy Project Housatonic Tidal Energy Plant

11

Maurice Goldhaber, 1998 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Maurice Goldhaber, 1998 Maurice Goldhaber, 1998 The Enrico Fermi Award Fermi Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's 1950's Ceremony The Life of Enrico Fermi Contact Information The Enrico Fermi Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-9395 E: fermi.award@science.doe.gov 1990's Maurice Goldhaber, 1998 Print Text Size: A A A RSS Feeds FeedbackShare Page Citation For his lifetime of distinguished research in nuclear and particle physics, including his experiments providing key support for the standard model, and for his superb contribution to science by his leadership and vision as a manager of research. His ideas and research results have had a wide impact

12

Tidal heating and tidal evolution in the solar system  

E-Print Network (OSTI)

In this thesis, we examine the effects of tidal dissipation on solid bodies in application and in theory. First, we study the effects of tidal heating and tidal evolution in the Saturnian satellite system. We constrain the ...

Meyer, Jennifer Ann

2011-01-01T23:59:59.000Z

13

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

14

Tidal Wetlands Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

Most activities occurring in or near tidal wetlands are regulated, and this section contains information on such activities and required permit applications for proposed activities. Applications...

15

Tidal Response in Estuaries  

Science Conference Proceedings (OSTI)

A new general theory has been developed to determine both the tidal response of estuaries and the effects of cross-channel tidal barriers on this response. The theory is shown to be widely applicable and provides a connecting framework against ...

D. Prandle; M. Rahman

1980-10-01T23:59:59.000Z

16

Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Add description List of Tidal Energy Incentives Retrieved from "http:en.openei.orgwindex.php?titleTidalEnergy&oldid267201" Category: Articles with outstanding TODO tasks...

17

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the cost per kilowatt-hour of tidal power is not competitive with conventional fossil fuel power. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last...

18

A Comparison of Tidal Conversion Parameterizations for Tidal Models  

Science Conference Proceedings (OSTI)

The conversion of barotropic to baroclinic tidal energy in the global abyssal ocean is calculated using three different formulations. The calculations are done both offline, that is, using externally given tidal currents to estimate the energy ...

J. A. Mattias Green; Jonas Nycander

2013-01-01T23:59:59.000Z

19

Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating  

E-Print Network (OSTI)

Traditionally stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high enough levels to induce a runaway greenhouse for a long enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses," and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits in the habitable zone (HZ). However, these planets are not habitable as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulate the evolution of hypothetical planetary systems in a quasi-continuous ...

Barnes, Rory; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, Rene

2012-01-01T23:59:59.000Z

20

Overland Tidal Power Generation Using Modular Tidal Prism  

SciTech Connect

Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Tidal Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal Energy Basics Tidal Energy Basics Tidal Energy Basics August 16, 2013 - 4:26pm Addthis Photo of the ocean rising along the beach. Some of the oldest ocean energy technologies use tidal power. All coastal areas experience two high tides and two low tides over a period of slightly more than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about 40 sites on Earth with tidal ranges of this magnitude. Currently, there are no tidal power plants in the United States, but conditions are good for tidal power generation in the Pacific Northwest and the Atlantic Northeast regions. Tidal Energy Technologies Tidal energy technologies include barrages or dams, tidal fences, and tidal

22

Ocean Tidal and Wave Energy  

Science Conference Proceedings (OSTI)

First published in 2000, the annual Renewable Energy Technical Assessment Guide (TAG-RE) provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. This excerpt from the 2005 TAG-RE addresses ocean tidal and wave energy conversion technologies, which offer promise for converting the significant energy potential available in ocean tidal currents and waves to electricity in the future.

2005-12-19T23:59:59.000Z

23

Ecological safety of tidal-power projects  

SciTech Connect

The operating regime of tidal power plants requires ecological monitoring of their associated water area.

Fedorov, M. P.; Shilin, M. B. [St. Petersburg State Polytechnic University (Russian Federation)

2010-07-15T23:59:59.000Z

24

Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

Earth Tidal Analysis Earth Tidal Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Earth Tidal Analysis Details Activities (6) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Enables estimation of in-situ reservoir elastic parameters. Stratigraphic/Structural: Hydrological: Enables estimation of in-situ reservoir hydraulic parameters. Thermal: Dictionary.png Earth Tidal Analysis: Earth tidal analysis is the measurement of the impact of tidal and barometric fluctuations on effective pore volume in a porous reservoir. Other definitions:Wikipedia Reegle

25

Tidal Electric | Open Energy Information  

Open Energy Info (EERE)

Electric Electric Jump to: navigation, search Name Tidal Electric Place London, Greater London, United Kingdom Zip SW19 8UY Product Developed a technology named 'tidal lagoons' to build tidal electric projects. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

Tidal | OpenEI Community  

Open Energy Info (EERE)

Tidal Tidal Home Ocop's picture Submitted by Ocop(5) Member 18 April, 2013 - 13:41 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing claims of LCOE, DOE has developed-for its own use-a standardized cost and performance data reporting process to facilitate uniform calculation of LCOE from MHK device developers. This standardization framework is only the first version in what is anticipated to be an iterative process that involves industry and the broader DOE stakeholder community. Multiple files are attached here for review and comment.Upload Files: application/vnd.openxmlformats-officedocument.wordprocessingml.document icon device_performance_validation_data_request.docx application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon

27

Tidal Current Predictions Using Rotary Empirical Orthogonal Functions  

Science Conference Proceedings (OSTI)

In the conventional point tidal analysis approach, a set of tidal harmonic constituents is derived from each time series of currents. These sets of tidal constituents are then used to predict the tidal currents. For a large database of current ...

Betty Ng

1993-12-01T23:59:59.000Z

28

On Tidal Damping in Laplace's Global Ocean  

Science Conference Proceedings (OSTI)

Laplace's tidal equations are augmented by dissipation in a bottom boundary layer that is intermediate in character between those of Ekman and Stokes. Laplace's tidal equation for a global ocean remains second-order and self-adjoint, but the ...

John W. Miles

1986-02-01T23:59:59.000Z

29

Tidal Diffusivity: A Mechanism for Frontogenesis  

Science Conference Proceedings (OSTI)

It is hypothesized that tidal mixing may provide a diffusivity mechanism for frontogenesis. It stems from the fact that tidal diffusivity varies in the opposite sense from the water depth, so the vertically integrated diffusivity may exhibit a ...

Hsien-Wang Ou; Chang-Ming Dong; Dake Chen

2003-04-01T23:59:59.000Z

30

Tidal Mixing Signatures in the Indonesian Seas  

Science Conference Proceedings (OSTI)

Expressions of low-frequency tidal periods are found throughout the Indonesian Seas' temperature field, supporting the hypothesis that vertical mixing is enhanced within the Indonesian Seas by the tides. The thermal signatures of tidal mixing ...

Amy Ffield; Arnold L. Gordon

1996-09-01T23:59:59.000Z

31

Interview of Maurice Bloch  

E-Print Network (OSTI)

, though I quite liked rugby; I had been very good at boxing in France but did not continue for long in England because the games master thought it was a good idea; I became a very keen brass rubber as a child; I like music and regret never having a chance...

Bloch, Maurice

2008-09-19T23:59:59.000Z

32

Tidal Hydraulic Generators Ltd | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Generators Ltd Jump to: navigation, search Name Tidal Hydraulic Generators Ltd Address 14 Thislesboon Drive Place Mumbles Zip SA3 4HY Sector Marine and Hydrokinetic Phone...

33

Hydropower, Wave and Tidal Technologies Available for ...  

Site Map; Printable Version; Share this resource. Send a link to Hydropower, Wave and Tidal Technologies Available for Licensing - Energy Innovation Portalto someone ...

34

Tidal Transport in the Florida Current and Its Relationship to Tidal Heights and Cable Voltages  

Science Conference Proceedings (OSTI)

A linear relationship between tidal height (sea level of tidal frequencies) and tidal transport near 27N in the Straits of Florida is confirmed. Transport estimates from this relationship for the O1 and M2 constituents are compared with those ...

Dennis A. Mayer; Jimmy C. Larsen

1986-12-01T23:59:59.000Z

35

Spectral Scaling in a Tidal Boundary Layer  

Science Conference Proceedings (OSTI)

The simple scaling of a tidal bottom boundary layer by the shear velocity, u*, and the wall to the wall describes well the mean Bow field. To test the full extent of this scaling measurements were made of the turbulence spectra in a natural tidal ...

Thomas F. Gross; Arthur R. M. Nowell

1985-05-01T23:59:59.000Z

36

Tidal Heating of Extra-Solar Planets  

E-Print Network (OSTI)

Extra-solar planets close to their host stars have likely undergone significant tidal evolution since the time of their formation. Tides probably dominated their orbital evolution once the dust and gas had cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget that governed the planet's physical properties, including its radius, which in many cases may be measured by observing transit events. Typically, tidal heating increases as a planet moves inward toward its star and then decreases as its orbit circularizes. Here we compute the plausible heating histories for several planets with measured radii, using the same tidal parameters for the star and planet that had been shown to reconcile the eccentricity distribution of close-in planets with other extra-solar planets. Several planets are discussed, including for example HD 209458 b, which may have undergone substantial tida...

Jackson, Brian; Barnes, Rory

2008-01-01T23:59:59.000Z

37

Tidal Heating of Extra-Solar Planets  

E-Print Network (OSTI)

Extra-solar planets close to their host stars have likely undergone significant tidal evolution since the time of their formation. Tides probably dominated their orbital evolution once the dust and gas had cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget that governed the planet's physical properties, including its radius, which in many cases may be measured by observing transit events. Typically, tidal heating increases as a planet moves inward toward its star and then decreases as its orbit circularizes. Here we compute the plausible heating histories for several planets with measured radii, using the same tidal parameters for the star and planet that had been shown to reconcile the eccentricity distribution of close-in planets with other extra-solar planets. Several planets are discussed, including for example HD 209458 b, which may have undergone substantial tidal heating during the past billion years, perhaps enough to explain its large measured radius. Our models also show that GJ 876 d may have experienced tremendous heating and is probably not a solid, rocky planet. Theoretical models should include the role of tidal heating, which is large, but time-varying.

Brian Jackson; Richard Greenberg; Rory Barnes

2008-02-29T23:59:59.000Z

38

Tidal Conversion at a Submarine Ridge  

Science Conference Proceedings (OSTI)

The radiative flux of internal wave energy (the tidal conversion) powered by the oscillating flow of a uniformly stratified fluid over a two-dimensional submarine ridge is computed using an integral-equation method. The problem is characterized ...

Franois Ptrlis; Stefan Llewellyn Smith; W. R. Young

2006-06-01T23:59:59.000Z

39

TIDAL INTERACTIONS IN MERGING WHITE DWARF BINARIES  

SciTech Connect

The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q {sub 1} {approx} 7 x 10{sup 10} and Q {sub 2} {approx} 2 x 10{sup 7}, for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling of the WDs, these estimated values of Q represent the upper limits. A large Q {sub 1} for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.

Piro, Anthony L., E-mail: piro@caltech.edu [Theoretical Astrophysics, California Institute of Technology, 1200 East California Boulevard, M/C 350-17, Pasadena, CA 91125 (United States)

2011-10-20T23:59:59.000Z

40

Half Moon Cove Tidal Project. Feasibility report  

DOE Green Energy (OSTI)

The proposed Half Moon Cove Tidal Power Project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The project would be the first tidal electric power generating plant in the United States of America. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

Not Available

1980-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Tidal Sails AS | Open Energy Information  

Open Energy Info (EERE)

Sails AS Sails AS Jump to: navigation, search Name Tidal Sails AS Address Standgaten 130 Place Haugesund Zip 5531 Sector Marine and Hydrokinetic Phone number +32 474 98 06 16 Website http://www.tidalsails.com Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Tidal Sails This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Tidal_Sails_AS&oldid=678479" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties

42

Tidal Energy Limited | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Limited (TEL) Tidal Energy Limited (TEL) Place Cardiff, Wales, United Kingdom Zip CF23 8RS Product Tidal stream device developer. Coordinates 51.48125°, -3.180734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.48125,"lon":-3.180734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

Tidal Energy Test Platform | Open Energy Information  

Open Energy Info (EERE)

Test Platform Test Platform Jump to: navigation, search Basic Specifications Facility Name Tidal Energy Test Platform Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Offshore Berth Water Type Saltwater Cost(per day) Contact POC Special Physical Features The Tidal Testing Platform is presently a 10.7m long x 3m wide pontoon barge with a derrick and an opening for deploying tidal energy devices. The platform is intentionally configured to be adaptive for the changing needs of different devices. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None

44

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal Energy Project Brings Change, Opportunity to Local Community All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community July 24, 2012 - 2:40pm...

45

A Geostrophic Adjustment Model of a Tidal Mixing Front  

Science Conference Proceedings (OSTI)

This paper presents a model of a tidal mixing front as occurring between well mixed and (seasonally) stratified water in tidally energetic areas in continental shelf seas. The model examines the geostrophic adjustment of a stratified two-layer ...

G. J. F. van Heijst

1985-09-01T23:59:59.000Z

46

Tidal Generation Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name Tidal Generation Ltd Address University Gate East Park Row Place Bristol, United Kingdom Zip BS1 5UB Sector Marine and Hydrokinetic Product Tidal Generation is developing a 1MW fully submerged tidal turbine to generate electricity from tidal currents in water depths up to 50m. Phone number 4.41E+11 Website http://www.tidalgeneration.co. Coordinates 42.55678°, -88.050449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.55678,"lon":-88.050449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

Turbulence Characteristics in a Tidal Channel  

Science Conference Proceedings (OSTI)

A broadband ADCP and a moored microstructure instrument (TAMI) were deployed in a tidal channel of 30-m depth and with peak speeds of 1 m s?1. The measurements enable us to derive profiles of stress, turbulent kinetic energy (TKE), the rate of ...

Youyu Lu; Rolf G. Lueck; Daiyan Huang

2000-05-01T23:59:59.000Z

48

Resonant Tidal Disruption in Galactic Nuclei  

E-Print Network (OSTI)

It has recently been shown that the rate of angular momentum relaxation in nearly-Keplerian star clusters is greatly increased by a process termed resonant relaxation (Rauch & Tremaine 1996), who also argued that tidal disruption of stars in galactic nuclei containing massive black holes could be noticeably enhanced by this process. We describe here the results of numerical simulations of resonant tidal disruption which quantitatively test the predictions made by Rauch & Tremaine. The simulation method is based on an N-body routine incorporating cloning of stars near the loss cone and a semi-relativistic symplectic integration scheme. We also briefly describe the discovery of chaos in the Wisdom-Holman symplectic integrator applied to highly eccentric orbits and propose a modified integration scheme that remains robust under these conditions. We find that resonant disruption rates exceed their non-resonant counterparts by an amount consistent with the predictions; in particular, we estimate the net tidal disruption rate for a fully resonant cluster to be about twice that of its non-resonant counterpart. No significant enhancement in rates is observed outside the critical radius. Relativistic quenching of the effect is found to occur for hole masses M>8*10^7 solar masses. The numerical results combined with the observed properties of galactic nuclei indicate that for most galaxies the resonant enhancement to tidal disruption rates will be very small.

Kevin P. Rauch; Brian Ingalls

1997-10-24T23:59:59.000Z

49

Tidal Flow through the Straits of Dover  

Science Conference Proceedings (OSTI)

Results are presented from the first long-term deployment of the Mark II OSCR high-frequency radar system. This new system measures surface currents at 700 preselected locations every 20 minutes at a range up to 25 km offshore. Tidal analysis, in ...

D. Prandle; S. G. Loch; R. Player

1993-01-01T23:59:59.000Z

50

2008 NWFSC Tidal Freshwater Genetics Results  

SciTech Connect

Genetic Analysis of Juvenile Chinook Salmon for inclusion in 'Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008. Annual Report to Bonneville Power Administration, Contract DE-AC05-76RL01830.'

David Teel

2009-05-01T23:59:59.000Z

51

MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information  

Open Energy Info (EERE)

Deep Gen Tidal Turbines Deep Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal Generation Ltd Project(s) where this technology is utilized *MHK Projects/Tidal Generation Ltd EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The DEEP Gen 1 MW fully submerged tidal turbine best exploits resources in depths 30m The horizontal axis turbine is inexpensive to construct and easy to install due to the lightweight 80 tons MW support structure allows rapid removal and replacement of powertrains enabling safe maintenance in a dry environment and is located out of the wave zone for improved survivability

52

Reservoir response to tidal and barometric effects  

DOE Green Energy (OSTI)

Solid earth tidal strain and surface loading due to fluctuations in barometric pressure have the effect, although extremely minute, of dilating or contracting the effective pore volume in a porous reservoir. If a well intersects the formation, the change in pore pressure can be measured with sensitive quartz pressure gauges. Mathematical models of the relevant fluid dynamics of the well-reservoir system have been generated and tested against conventional well pumping results or core data at the Salton Sea Geothermal Field (SSGF), California and at the Raft River, Geothermal Field (RRGF), Idaho. Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters.

Hanson, J.M.

1980-05-29T23:59:59.000Z

53

Gas/Star Offsets in Tidal Tails  

E-Print Network (OSTI)

We use numerical simulations to study the development of gas/star offsets in the tidal tails of merging galaxies. These offsets are shown to be a natural consequence of the radially extended HI spatial distribution in disk galaxies, coupled with internal dissipation in the gaseous component driven by the interaction. This mechanism explains the observed gas/star offsets in interacting galaxies without invoking interactions with a hot (unseen) gaseous component.

Mihos, C

2000-01-01T23:59:59.000Z

54

Gas/Star Offsets in Tidal Tails  

E-Print Network (OSTI)

We use numerical simulations to study the development of gas/star offsets in the tidal tails of merging galaxies. These offsets are shown to be a natural consequence of the radially extended HI spatial distribution in disk galaxies, coupled with internal dissipation in the gaseous component driven by the interaction. This mechanism explains the observed gas/star offsets in interacting galaxies without invoking interactions with a hot (unseen) gaseous component.

Chris Mihos

2000-08-09T23:59:59.000Z

55

MHK Technologies/Tidal Defense and Energy System TIDES | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Tidal Defense and Energy System TIDES MHK Technologies/Tidal Defense and Energy System TIDES < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Defense and Energy System TIDES.jpg Technology Profile Primary Organization Oceana Energy Company Project(s) where this technology is utilized *MHK Projects/Astoria Tidal Energy *MHK Projects/Cape Islands Tidal Energy Project *MHK Projects/Central Cook Inlet Tidal Energy Project *MHK Projects/Icy Passage Tidal Energy Project *MHK Projects/Kachemak Bay Tidal Energy Project *MHK Projects/Kendall Head Tidal Energy *MHK Projects/Kennebec *MHK Projects/Penobscot Tidal Energy Project *MHK Projects/Portsmouth Area Tidal Energy Project *MHK Projects/Wrangell Narrows Tidal Energy Project Technology Resource Click here Current/Tidal

56

MHK Technologies/Tidal Sails | Open Energy Information  

Open Energy Info (EERE)

Sails Sails < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Sails.jpg Technology Profile Primary Organization Tidal Sails AS Technology Resource Click here Current Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Tidal Sails device is a series of underwater sails affixed to wires strung across the tidal stream at an angle The sails are driven back and forth by the tidal flow between two stations at one of which the generator is installed Technology Dimensions Device Testing Date Submitted 26:04.6 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Sails&oldid=681675

57

MHK Technologies/Tidal Lagoons | Open Energy Information  

Open Energy Info (EERE)

Tidal Lagoons Tidal Lagoons < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Lagoons.jpg Technology Profile Primary Organization Tidal Electric Project(s) where this technology is utilized *MHK Projects/Dandong City *MHK Projects/Swansea Bay Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description idal Lagoons are situated a mile or more offshore in high tidal range areas, and use a rubble mound impoundment structure and low-head hydroelectric bulb turbines. Shallow tidal flats provide the most economical sites. Multi-cell Tidal Lagoons provide higher load factors (about 62%) and have the flexibility to shape the output curve in order to dispatch power in response to demand price signals. The impoundment structure is a conventional rubble mound breakwater (loose rock, concrete, and marine sheetpiles are among the types of appropriate materials for the impoundment structure), with ordinary performance specifications and is built from the most economical materials. The barrage is much shorter than an impoundment structure with the same output capacity, but the barrage is a much larger structure. The offshore tidal generator uses conventional low-head hydroelectric generation equipment and control systems. The equipment consists of a mixed-flow reversible bulb turbine, a generator, and the control system. Manufacturers/suppliers include Alstom, GE, Kvaerner, Siemens, Voith, Sulzer, and others.

58

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

Biomass and Biofuels Hydropower, Wave and Tidal Industrial ... raw materials suggests the need for elimination of these materials from electric motors ...

59

Lyman Alpha Absorption and Tidal Debris  

E-Print Network (OSTI)

The origin and evolution of structure in the Universe is one of the major questions occupying astronomers today. An understanding of the Lyalpha absorbers seen in QSO spectra is an important part of this program since such absorbers can be traced back to very high redshifts. Their mere existence places constraints on the physical state of the intergalactic medium. The discovery of Lyalpha absorbers at low redshift allows us to estimate for the first time what fraction of low redshift Lyalpha absorbers are (i) randomly distributed, (ii) distributed like galaxies but not physically associated with luminous objects, (iii) actually part of the halos of luminous galaxies, or (iv) tidal tails within galaxy groups. Results from the sightline to the QSO 3C273 suggest that the majority of the absorbers are not associated with galaxies, but that there is a significant subset that are. The absorbers associated with galaxies may be produced in enormous gaseous disks surrounding normal spiral galaxies, or may be tidal material bound up in small groups of galaxies

Simon L. Morris

1994-09-29T23:59:59.000Z

60

Reynolds Stress and Turbulent Energy Production in a Tidal Channel  

Science Conference Proceedings (OSTI)

A high-frequency (1.2 MHz) acoustic Doppler current profiler (ADCP) moored on the seabed has been used to observe the mean and turbulent flow components in a narrow tidally energetic channel over six tidal cycles at neap and spring tides. The ...

Tom P. Rippeth; Eirwen Williams; John H. Simpson

2002-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Some new conceptions in the approach to harnessing tidal energy  

Science Conference Proceedings (OSTI)

This paper outlines a method of converting the energy of ocean tides into electrical and other forms of industrial energy. The main disadvantage of extracting tidal power arises from the low density of tidal power per unit area of the ocean. This leads to the high cost of required investment for the production of a substantial volume of the energy. 10 refs.

Gorlov, A.M.

1981-01-01T23:59:59.000Z

62

Hawaii Ocean Current Resources and Tidal Turbine Assessment  

Science Conference Proceedings (OSTI)

Interest in converting the kinetic energy of ocean current and tidal flow into electrical power has increased in recent years. This report focuses on the ocean current resource in Hawaii, which includes tidal flows as well as uni-directional oceanic current flows around the main Hawaiian Islands, with the exception of Kauai, from the shoreline to approximately the 2000-m depth contour.

2008-09-02T23:59:59.000Z

63

Tidal Energetics over the Chatham Rise, New Zealand  

Science Conference Proceedings (OSTI)

Separate one-month current meter deployments in 1996 and 1997 over the Chatham Rise, east of New Zealand, show that tidal phases are both stable in time and close to those derived from a barotropic tidal model, while amplitudes show coefficients ...

Stephen M. Chiswell

2000-09-01T23:59:59.000Z

64

Hydra Tidal Energy Technology AS | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Technology AS Tidal Energy Technology AS Jump to: navigation, search Name Hydra Tidal Energy Technology AS Address PO Box 399 Place Harstad Zip 9484 Sector Marine and Hydrokinetic Year founded 2001 Phone number (+47) 77 06 08 08 Website http://http://www.hydratidal.i Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: MORILD Demonstration Plant Morild 2 This company is involved in the following MHK Technologies: MORILD 2 Floating Tidal Power System Morild Power Plant This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Hydra_Tidal_Energy_Technology_AS&oldid=678333

65

MHK Technologies/TidalStar | Open Energy Information  

Open Energy Info (EERE)

TidalStar TidalStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage TidalStar.jpg Technology Profile Primary Organization Bourne Energy Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The horizontal axis TidalStar device uses a bidirectional twin rotor turbine to produce approximately 50 kW at peak capacity in both ebb and flood tides Technology Dimensions Length (m) 6 Width (m) 6 Freeboard (m) 1 Technology Nameplate Capacity (MW) 5 Device Testing Date Submitted 46:38.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/TidalStar&oldid=681677

66

Water Mixing in a Tidal Current and the Effect of Turbulence on Tidal Exchange through a Strait  

Science Conference Proceedings (OSTI)

By means of numerical calculations of the Lagrangian movement of water particles released in a turbulent tidal current during three cycles of the M2 tide, the mechanism of tidal mixing of the inner and outer waters divided initially by a strait ...

Toshiyuki Awaji

1982-06-01T23:59:59.000Z

67

Quantifying Turbulence for Tidal Power Applications  

SciTech Connect

Using newly collected data from a tidal power site in Puget Sound, WA, metrics for turbulence quantification are assessed and discussed. The quality of raw ping Acoustic Doppler Current Profiler (ADCP) data for turbulence studies is evaluated against Acoustic Doppler Velocimeter (ADV) data at a point. Removal of Doppler noise from the raw ping data is shown to be a crucial step in turbulence quantification. Excluding periods of slack tide, the turbulent intensity estimates at a height of 4.6 m above the seabed are 8% and 11% from the ADCP and ADV, respectively. Estimates of the turbulent dissipation rate are more variable, from 10e-3 to 10e-1 W/m^3. An example analysis of coherent Turbulent Kinetic Energy (TKE) is presented.

Thomson, Jim; Richmond, Marshall C.; Polagye, Brian; Durgesh, Vibhav

2010-08-01T23:59:59.000Z

68

THE ENVIRONMENTAL DEPENDENCE OF THE INCIDENCE OF GALACTIC TIDAL FEATURES  

Science Conference Proceedings (OSTI)

In a sample of 54 galaxy clusters (0.04 < z < 0.15) containing 3551 early-type galaxies suitable for study, we identify those with tidal features both interactively and automatically. We find that {approx}3% have tidal features that can be detected with data that reach a 3{sigma} sensitivity limit of 26.5 mag arcsec{sup -2}. Regardless of the method used to classify tidal features, or the fidelity imposed on such classifications, we find a deficit of tidally disturbed galaxies with decreasing clustercentric radius that is most pronounced inside of {approx}0.5 R{sub 200}. We cannot distinguish whether the trend arises from an increasing likelihood of recent mergers with increasing clustercentric radius or a decrease in the lifetime of tidal features with decreasing clustercentric radius. We find no evidence for a relationship between local density and the incidence of tidal features, but our local density measure has large uncertainties. We find interesting behavior in the rate of tidal features among cluster early-types as a function of clustercentric radius and expect such results to provide constraints on the effect of the cluster environment on the structure of galaxy halos, the build-up of the red sequence of galaxies, and the origin of the intracluster stellar population.

Adams, Scott M.; Zaritsky, Dennis [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Sand, David J.; Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Santa Barbara, CA 93117 (United States); Bildfell, Chris; Pritchet, Chris [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Hoekstra, Henk [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands)

2012-11-01T23:59:59.000Z

69

Ocean Tidal Dissipation and its Role in Solar System Satellite Evolution  

E-Print Network (OSTI)

Magma ocean dissipation . . . . . . . . . . . . . . . .of the ocean . . . . . . . . . . . . . . . . . . . . . .Tidally-driven flow in global satellite oceans

Chen, Erinna

2013-01-01T23:59:59.000Z

70

MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information  

Open Energy Info (EERE)

Jiangxia Tidal Power Station Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary Organization China Guodian Corporation Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description There are 6 bulb turbine generator units operating in both ebb and flood tides with a total installed capacity up to 3 9 MW Technology Dimensions Technology Nameplate Capacity (MW) 3 9 Device Testing Date Submitted 14:15.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Jiangxia_Tidal_Power_Station&oldid=681601

71

Reservoir response to tidal and barometric effects | Open Energy  

Open Energy Info (EERE)

to tidal and barometric effects to tidal and barometric effects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Reservoir response to tidal and barometric effects Details Activities (2) Areas (2) Regions (0) Abstract: Solid earth tidal strain and surface loading due to fluctuations in barometric pressure have the effect, although extremely minute, of dilating or contracting the effective pore volume in a porous reservoir. If a well intersects the formation, the change in pore pressure can be measured with sensitive quartz pressure gauges. Mathematical models of the relevant fluid dynamics of the well-reservoir system have been generated and tested against conventional well pumping results or core data at the Salton Sea Geothermal Field (SSGF), California and at the Raft River,

72

Residual Circulations Due to Bottom Roughness Variability under Tidal Flows  

Science Conference Proceedings (OSTI)

Tidal flows over irregular bathymetry are known to produce residual circulation flows due to nonlinear interaction with gradients of depth. Using the depth-averaged vorticity equations, the generation of residual vorticity and residual flows due ...

Thomas F. Gross; Francisco E. Werner

1994-07-01T23:59:59.000Z

73

Tidal Motion in Submarine CanyonsA Laboratory Experiment  

Science Conference Proceedings (OSTI)

The reasons for the large-amplitude tidal motion observed in oceanic submarine canyons have been explored with a laboratory experiment. A barotropic tide was forced in a stratified tank, containing continental shelf-slope topography into which a ...

Peter G. Baines

1983-02-01T23:59:59.000Z

74

Estimating Open-Ocean Barotropic Tidal Dissipation: The Hawaiian Ridge  

Science Conference Proceedings (OSTI)

The generalized inverse of a regional model is used to estimate barotropic tidal dissipation along the Hawaiian Ridge. The model, based on the linear shallow-water equations, incorporates parameterizations for the dissipation of energy via ...

Edward D. Zaron; Gary D. Egbert

2006-06-01T23:59:59.000Z

75

Boils and Turbulence in a Weakly Stratified Shallow Tidal Sea  

Science Conference Proceedings (OSTI)

Measurements of turbulence are made in a weakly but variably stratified region of tidal straining in the eastern Irish Sea using turbulence sensors profiling vertically through the water column on the Fast Light Yo-yo (FLY) profiler and ...

S. A. Thorpe; J. A. M. Green; J. H. Simpson; T. R. Osborn; W. A. M. Nimmo Smith

2008-08-01T23:59:59.000Z

76

Asymmetric Tidal Mixing due to the Horizontal Density Gradient  

Science Conference Proceedings (OSTI)

Stratification and turbulent mixing exhibit a floodebb tidal asymmetry in estuaries and continental shelf regions affected by horizontal density gradients. The authors use a large-eddy simulation (LES) model to investigate the penetration of a ...

Ming Li; John Trowbridge; Rocky Geyer

2008-02-01T23:59:59.000Z

77

Three-Dimensional Tidal Flow in an Elongated, Rotating Basin  

Science Conference Proceedings (OSTI)

The three-dimensional tidal circulation in an elongated basin of arbitrary depth is described with a linear, constant-density model on the f plane. Rotation fundamentally alters the lateral flow, introducing a lateral recirculation comparable in ...

Clinton D. Winant

2007-09-01T23:59:59.000Z

78

Instability of Baroclinic Tidal Flow in a Stratified Fjord  

Science Conference Proceedings (OSTI)

The TaylorGoldstein equation is used to investigate the stability of a baroclinic tidal flow observed in a stratified fjord. The flow is analyzed at hourly intervals when turbulent dissipation measurements were made. The critical gradient ...

Zhiyu Liu

2010-01-01T23:59:59.000Z

79

Low-Pass Filters to Suppress Inertial and Tidal Frequencies  

Science Conference Proceedings (OSTI)

A systematic way is given to design digital filters which allow clear separation of signals with periods of a few days from noise of higher frequency, particularly tidal and inertial. Several examples are given which pass little high-frequency ...

Rory O. R. Y. Thompson

1983-06-01T23:59:59.000Z

80

Observations of Quasi-Two-Dimensional Turbulence in Tidal Currents  

Science Conference Proceedings (OSTI)

Observational evidence for the existence of quasi-two-dimensional turbulence in tidal currents is derived from the auto- and cross-correlation spectra of vertically separated current meters. The observed quasi- two-dimensional turbulence seems to ...

C. Veth; J. T. F. Zimmerman

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Decadal Climate Variability: Is There a Tidal Connection?  

Science Conference Proceedings (OSTI)

A possible connection between oceanic tides and climate variability arises from modulations in tidally induced vertical mixing. The idea is reexamined here with emphasis on near-decadal time scales. Occasional extreme tides caused by unusually ...

Richard D. Ray

2007-07-01T23:59:59.000Z

82

A Simple Parameterization of Turbulent Tidal Mixing near Supercritical Topography  

Science Conference Proceedings (OSTI)

A simple parameterization for tidal dissipation near supercritical topography, designed to be applied at deep midocean ridges, is presented. In this parameterization, radiation of internal tides is quantified using a linear knife-edge model. ...

Jody M. Klymak; Sonya Legg; Robert Pinkel

2010-09-01T23:59:59.000Z

83

MHK Technologies/Sabella subsea tidal turbine | Open Energy Information  

Open Energy Info (EERE)

subsea tidal turbine subsea tidal turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Description It is characterised by a turbine configuration on the seafloor, without impinging on the surface. These turbines are stabilised by gravity and/or are anchored according to the nature of the seafloor. They are pre-orientated in the direction of the tidal currents, and the profile of their symmetrical blades helps to capture the ebb and flow. The rotor activated, at slow speeds (10 to 15 rpm), by the tides powers a generator, which exports the electricity produced to the coast via a submarine cable anchored and embedded at its landfall.

84

MHK Technologies/Tidal Stream Turbine | Open Energy Information  

Open Energy Info (EERE)

Stream Turbine Stream Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream Turbine.jpg Technology Profile Primary Organization StatoilHydro co owned by Hammerfest Strong Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A fully operational 300kW prototype tidal turbine has been running in Norway since 2003 and has achieved good results It s the world s first tidal turbine to supply electricity directly to the onshore grid In the autumn of 2008 Hammerfest Str�m signed an intention agreement with Scottish Power to further develop tidal technology in the UK A 1 MW turbine is currently under development

85

Relationships between Tidal Dynamics and Bathymetry in Strongly Convergent Estuaries  

Science Conference Proceedings (OSTI)

Localized analytical solutions are derived for the propagation of a single (predominant) tidal constituent in estuaries with strongly convergent triangular cross sections. The advective term is neglected, and the friction term is linearized. The ...

D. Prandle

2003-12-01T23:59:59.000Z

86

Nonrotating black hole in a post-Newtonian tidal environment  

E-Print Network (OSTI)

We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces the equations of motion for the black hole and the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.

Stephanne Taylor; Eric Poisson

2008-06-18T23:59:59.000Z

87

MHK Technologies/Scotrenewables Tidal Turbine SRTT | Open Energy  

Open Energy Info (EERE)

Scotrenewables Tidal Turbine SRTT Scotrenewables Tidal Turbine SRTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Scotrenewables Tidal Turbine SRTT.jpg Technology Profile Primary Organization Scotrenewables Project(s) where this technology is utilized *MHK Projects/Scotrenewables EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Scotrenewables Tidal Turbine (SRTT) system is a free-floating rotor-based tidal current energy converter. The concept in its present configuration involves dual counter-rotating horizontal axis rotors driving generators within sub-surface nacelles, each suspended from separate keel and rotor arm sections attached to a single surface-piercing cylindrical buoyancy tube. The device is anchored to the seabed via a yoke arrangement. A separate flexible power and control umbilical line connects the device to a subsea junction box. The rotor arm sections are hinged to allow each two-bladed rotor to be retracted so as to be parallel with the longitudinal axis of the buoyancy tube, giving the system a transport draught of less than 4.5m at full-scale to facilitate towing the device into harbors for maintenance.

88

MHK Technologies/Tidal Stream | Open Energy Information  

Open Energy Info (EERE)

Stream Stream < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream.jpg Technology Profile Primary Organization Tidal Stream Project(s) where this technology is utilized *MHK Projects/Thames at Chiswick Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The TidalStream SST (Semi-Submersible Turbine) is designed for deep water, typically 60m+ (e.g., Pentland Firth) where it is too deep to mount turbines rigidly to the seabed and too rough for surface floaters to survive. Tidal Stream SST consists of turbines connected to unique semi-submersible spar buoys that are moored to the seabed using anchors through swing-arms. This ensures automatic alignment to the tidal flow to maximize energy capture. By blowing the water ballast, the device will rise, rotate, and float to the surface still tethered to the base to allow for on- or off-site maintenance. By releasing the tether arm the device can be towed to a harbor at the end of its life or for major repair or exchange.

89

2007 NWFSC Tidal Freshwater Genetics Results  

SciTech Connect

Genetic Analysis of Juvenile Chinook Salmon for inclusion in 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, lower Columbia River, 2007. Final report submitted to the Bonneville Power Administration, Contract DE-AC05-76RLO1830.' Genotypic data were collected for 108 Chinook salmon and used in the genetic stock identification analysis. Results of the mixture analysis are presented in Table 1. Percentage estimates for four genetic stock groups (West Cascade Tributary Fall, Willamette River Spring, Deschutes River Fall, and Upper Columbia River Summer/Fall) ranged from 11% to 43%, all with non-zero lower 95% confidence intervals. Small contributions were also estimated for the West Cascade Tributary Spring (3%) and Snake River Fall (6%) stock groups. Results of individual fish probability assignments were summed by collection date (Figure 1) and site (Figure 2). Assignment probabilities for the most likely stock group for each individual ranged from 0.51 to 1.00 with approximately 60% of the assignments greater than 0.90 (data not shown). Nearly all of the low probability assignments were fish with assignments split between the Deschutes River Fall and Upper Columbia River Summer/Fall groups.

David Teel

2008-03-18T23:59:59.000Z

90

Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Earth Tidal Analysis At Raft River Geothermal Area(1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters. References Hanson, J. M. (29 May 1980) Reservoir response to tidal and barometric effects

91

MHK Technologies/Rotech Tidal Turbine RTT | Open Energy Information  

Open Energy Info (EERE)

Rotech Tidal Turbine RTT Rotech Tidal Turbine RTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Rotech Tidal Turbine RTT.jpg Technology Profile Primary Organization Lunar Energy Project(s) where this technology is utilized *MHK Projects/Lunar Energy St David s Peninsula Pembrokeshire South Wales UK *MHK Projects/Lunar Energy Wando Hoenggan Waterway South Korea Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description he Rotech Tidal Turbine (RTT) is a bi-directional horizontal axis turbine housed in a symmetrical venturi duct. The Venturi duct draws the existing ocean currents into the RTT in order to capture and convert energy into electricity. Use of a gravity foundation will allow the RTT to be deployed quickly with little or no seabed preparation at depths in excess of 40 meters. This gives the RTT a distinct advantage over most of its competitors and opens up a potential energy resource that is five times the size of that available to companies using pile foundations.

92

Interruption of Tidal Disruption Flares By Supermassive Black Hole Binaries  

E-Print Network (OSTI)

Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing Lambda cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nuclei is essential in identifying the binaries in observations from the IR band through optical to X-ray. Recently, the flares in optical, UV, and X-ray caused by supermassive black holes (SMBHs) tidally disrupting nearby stars have been successfully used to observationally probe single SMBHs in normal galaxies. In this Letter, we investigate the accretion of the gaseous debris of a tidally disrupted star by a SMBHB. Using both stability analysis of three-body systems and numerical scattering experiments, we show that the accretion of stellar debris gas, which initially decays with time $\\propto t^{-5/3}$, would stop at a time $T_{\\rm tr} \\simeq \\eta T_{\\rm b}$. Here, $\\eta \\sim0.25$ and $T_{\\rm b}$ is the orbital period of the SMBHB. After a period of interruption, the accretion recurs discretely at time $T_{\\rm r} \\simeq \\xi T_b$, where $\\xi \\sim 1$. Both $\\eta$ and $\\xi$ sensitively depend on the orbital parameters of the tidally disrupted star at the tidal radius and the orbit eccentricity of SMBHB. The interrupted accretion of the stellar debris gas gives rise to an interrupted tidal flare, which could be used to identify SMBHBs in non-active galaxies in the upcoming transient surveys.

F. K. Liu; S. Li; Xian Chen

2009-10-21T23:59:59.000Z

93

Consequences of Strong Compression in Tidal Disruption Events  

E-Print Network (OSTI)

The tidal disruption of a star by a supermassive black hole (SMBH) is a highly energetic event with consequences dependent on the degree to which the star plunges inside the SMBH's tidal sphere. We introduce a new analytic model for tidal disruption events (TDEs) to analyze the dependence of these events on beta, the ratio of the tidal radius to the orbital pericenter. We find, contrary to most previous work, that the spread in debris energy for a TDE is largely constant for all beta. This result has important consequences for optical transient searches targeting TDEs, which we discuss. We quantify leading-order general relativistic corrections to this spread in energy and find that they are small. We also examine the role of stellar spin, and find that a combination of spin-orbit misalignment, rapid rotation, and high beta may increase the spread in debris energy. Finally, we quantify for the first time the gravitational wave emission due to the strong compression of a star in a high-beta TDE. Although this signal is unlikely to be detectable for disruptions of main sequence stars, the tidal disruption of a white dwarf by an intermediate mass black hole can produce a strong signal visible to Advanced LIGO at tens of megaparsecs.

Nicholas Stone; Re'em Sari; Abraham Loeb

2012-10-11T23:59:59.000Z

94

NATIONAL GEODATABASE OF TIDAL STREAM POWER RESOURCE IN USA  

Science Conference Proceedings (OSTI)

A geodatabase of tidal constituents is developed to present the regional assessment of tidal stream power resource in the USA. Tidal currents are numerically modeled with the Regional Ocean Modeling System (ROMS) and calibrated with the available measurements of tidal current speeds and water level surfaces. The performance of the numerical model in predicting the tidal currents and water levels is assessed by an independent validation. The geodatabase is published on a public domain via a spatial database engine with interactive tools to select, query and download the data. Regions with the maximum average kinetic power density exceeding 500 W/m2 (corresponding to a current speed of ~1 m/s), total surface area larger than 0.5 km2 and depth greater than 5 m are defined as hotspots and documented. The regional assessment indicates that the state of Alaska (AK) has the largest number of locations with considerably high kinetic power density, followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL).

Smith, Brennan T [ORNL; Neary, Vincent S [ORNL; Stewart, Kevin M [ORNL

2012-01-01T23:59:59.000Z

95

MHK Technologies/KESC Tidal Generator | Open Energy Information  

Open Energy Info (EERE)

KESC Tidal Generator KESC Tidal Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage KESC Tidal Generator.jpg Technology Profile Primary Organization Kinetic Energy Systems Project(s) where this technology is utilized *MHK Projects/Newfound Harbor Project Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Tidal Generator is based on free flow hydrodynamics for regions that have flood and ebb tides. Strategically attached to bridges, pilings, river, channel, or sea bottoms, this multi-directional generator contains two sets of turbine blades. As the tide flows inward the inward turbine blades opens to maximum rotor diameter while the outward turbine closes into the outward cone-shaped hub to create a hydro dynamically clean surface for water to flow without drag. The center diameter is 75% of the diameter of the turbine blades at full rotor extension for stability.

96

CLIMATE INSTABILITY ON TIDALLY LOCKED EXOPLANETS  

Science Conference Proceedings (OSTI)

Feedbacks that can destabilize the climates of synchronously rotating rocky planets may arise on planets with strong day-night surface temperature contrasts. Earth-like habitable planets maintain stable surface liquid water over geologic time. This requires equilibrium between the temperature-dependent rate of greenhouse-gas consumption by weathering, and greenhouse-gas resupply by other processes. Detected small-radius exoplanets, and anticipated M-dwarf habitable-zone rocky planets, are expected to be in synchronous rotation (tidally locked). In this paper, we investigate two hypothetical feedbacks that can destabilize climate on planets in synchronous rotation. (1) If small changes in pressure alter the temperature distribution across a planet's surface such that the weathering rate goes up when the pressure goes down, a runaway positive feedback occurs involving increasing weathering rate near the substellar point, decreasing pressure, and increasing substellar surface temperature. We call this feedback enhanced substellar weathering instability (ESWI). (2) When decreases in pressure increase the fraction of surface area above the melting point (through reduced advective cooling of the substellar point), and the corresponding increase in volume of liquid causes net dissolution of the atmosphere, a further decrease in pressure will occur. This substellar dissolution feedback can also cause a runaway climate shift. We use an idealized energy balance model to map out the conditions under which these instabilities may occur. In this simplified model, the weathering runaway can shrink the habitable zone and cause geologically rapid 10{sup 3}-fold atmospheric pressure shifts within the habitable zone. Mars may have undergone a weathering runaway in the past. Substellar dissolution is usually a negative feedback or weak positive feedback on changes in atmospheric pressure. It can only cause runaway changes for small, deep oceans and highly soluble atmospheric gases. Both instabilities are suppressed if the atmosphere has a high radiative efficiency. Our results are most relevant for atmospheres that are thin, have low greenhouse-gas radiative efficiency, and have a principal greenhouse gas that is also the main constituent of the atmosphere. ESWI also requires land near the substellar point, and tectonic resurfacing (volcanism, mountain-building) is needed for large jumps in pressure. These results identify a new pathway by which habitable-zone planets can undergo rapid climate shifts and become uninhabitable.

Kite, Edwin S.; Manga, Michael [Department of Earth and Planetary Science, University of California at Berkeley, CA 94720 (United States); Gaidos, Eric, E-mail: edwin.kite@gmail.com [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

2011-12-10T23:59:59.000Z

97

MHK Technologies/Tidal Delay | Open Energy Information  

Open Energy Info (EERE)

Delay Delay < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Delay.png Technology Profile Primary Organization Woodshed Technologies Ltd Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Tidal Delay utilizes an existing natural land formation such as a peninsula or isthmus that creates a natural tidal barrier separating moving rising and falling bodies of seawater As the seawater on each side of the natural barrier rises and falls the device captures the energy resulting from the difference in water levels across the barrier using proven hydroelectric technology The device utilizes a standard impulse turbine installed in siphon pipe over under the natural barrier

98

MHK Technologies/Tidal Hydraulic Generators THG | Open Energy Information  

Open Energy Info (EERE)

Generators THG Generators THG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Hydraulic Generators THG.jpg Technology Profile Primary Organization Tidal Hydraulic Generators Ltd Project(s) where this technology is utilized *MHK Projects/Ramsey Sound Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The concept of generating energy in this way is made unique by our novel design feature. The generator, devised in 1998, is a hydraulic accumulator system, involving relatively small revolving blades which gather power to a central collector, where electricity is generated. The generator, which is situated under water, is 80 metres square, stands at 15 metres high, and is designed to run for a minimum of ten years without service.

99

The environmental interactions of tidal and wave energy generation devices  

Science Conference Proceedings (OSTI)

Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

Frid, Chris, E-mail: c.l.j.frid@liv.ac.uk [School of Environmental Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB (United Kingdom); Andonegi, Eider, E-mail: eandonegi@azti.es [AZTI-Tecnalia, Txatxarramendi ugartea, z/g E-48395 Sukarrieta (Bizkaia) (Spain); Depestele, Jochen, E-mail: jochen.depestele@ilvo.vlaanderen.be [Institute for Agricultural and Fisheries Research, Ankerstraat 1, B-8400 Oostende (Belgium); Judd, Adrian, E-mail: Adrian.Judd@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Rihan, Dominic, E-mail: Dominic.RIHAN@ec.europa.eu [Irish Sea Fisheries Board, P.O. Box 12 Dun Laoghaire, Co. Dublin (Ireland); Rogers, Stuart I., E-mail: stuart.rogers@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Kenchington, Ellen, E-mail: Ellen.Kenchington@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth Canada, NS B2Y 4A2 (Canada)

2012-01-15T23:59:59.000Z

100

MHK Technologies/Tidal Barrage | Open Energy Information  

Open Energy Info (EERE)

Barrage Barrage < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Barrage.jpg Technology Profile Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description No information provided Technology Dimensions Device Testing Date Submitted 01:04.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Barrage&oldid=681672" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Tidal indicators in the spacetime of a rotating deformed mass  

E-Print Network (OSTI)

Tidal indicators are commonly associated with the electric and magnetic parts of the Riemann tensor (and its covariant derivatives) with respect to a given family of observers in a given spacetime. Recently, observer-dependent tidal effects have been extensively investigated with respect to a variety of special observers in the equatorial plane of the Kerr spacetime. This analysis is extended here by considering a more general background solution to include the case of matter which is also endowed with an arbitrary mass quadrupole moment. Relation with curvature invariants and Bel-Robinson tensor, i.e., observer-dependent super-energy density and super-Poynting vector, are investigated too.

Donato Bini; Kuantay Boshkayev; Andrea Geralico

2013-06-20T23:59:59.000Z

102

Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Mountain Geothermal Area (1984) Mountain Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be

103

MHK Projects/Kendall Head Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Kendall Head Tidal Energy Kendall Head Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

104

MHK Technologies/Tidal Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s) where this technology is utilized *MHK Projects/Race Rocks Demonstration Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description Turbine is positioned by anchoring and cabling Energy extraction from flow that is transverse to the rotation axis Turbines utilize both lift and drag Mooring Configuration Gravity base although other options are currently being explored Technology Dimensions Device Testing Date Submitted 10/8/2010

105

Tidal Dynamics and Residual Circulation in a Well-Mixed Inverse Estuary  

Science Conference Proceedings (OSTI)

The tidal and residual circulations in Laguna San Ignacio (LSI), a well-mixed evaporative lagoon located on the Pacific coast of the Baja California peninsula in Mexico, is described based on surveys and moored observations. At tidal periods ...

Clinton D. Winant; Guillermo Gutirrez de Velasco

2003-07-01T23:59:59.000Z

106

New Interactive Map Reveals U.S. Tidal Energy Resources | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interactive Map Reveals U.S. Tidal Energy Resources Interactive Map Reveals U.S. Tidal Energy Resources New Interactive Map Reveals U.S. Tidal Energy Resources July 7, 2011 - 10:50am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology Mike Reed Water Power Program Manager, Water Power Program Tidal energy -- a renewable, predictable resource available up and down America's coastlines -- holds great promise for clean energy generation. And now, a first of its kind database gives researchers deeper insight into the potential of this energy resource for the United States.

107

Depth-Dependent Studies of Tidally Induced Residual Currents on the Sides of Georges Bank  

Science Conference Proceedings (OSTI)

Using a depth-dependent tidal model, the tidally induced residual currents on the northern and southern sections of Georges Bank are computed and the effects of various physical parameters on the current are examined. Because of significant on-...

Kim-Tai Tee

1985-12-01T23:59:59.000Z

108

A Numerical Study of Stratified Tidal Rectification over Finite-Amplitude Banks. Part I: Symmetric Banks  

Science Conference Proceedings (OSTI)

Tidal rectification over a two-dimensional finite-amplitude symmetrical bank is studied using the Blumberg and Mellor primitive equation coastal ocean circulation model (ECOM-si). In the homogeneous case, the nonlinear interaction of tidal ...

Changsheng Chen; Robert C. Beardsley

1995-09-01T23:59:59.000Z

109

Adaptation of Classical Tidal Harmonic Analysis to Nonstationary Tides, with Application to River Tides  

Science Conference Proceedings (OSTI)

One of the most challenging areas in tidal analysis is the study of nonstationary signals with a tidal component, as they confront both current analysis methods and dynamical understanding. A new analysis tool has been developed, NS_TIDE, adapted ...

Pascal Matte; David A. Jay; Edward D. Zaron

2013-03-01T23:59:59.000Z

110

The Cascade of Tidal Energy from Low to High Modes on a Continental Slope  

Science Conference Proceedings (OSTI)

The linear transfer of tidal energy from large to small scales is quantified for small tidal excursion over a near-critical continental slope. A theoretical framework for low-wavenumber energy transfer is derived from flat bottom vertical modes ...

Samuel M. Kelly; Jonathan D. Nash; Kim I. Martini; Matthew H. Alford; Eric Kunze

2012-07-01T23:59:59.000Z

111

Tidal Eulerian Residual Currents over a Slope: Analytical and Numerical Frictionless Models  

Science Conference Proceedings (OSTI)

The Eulerian residual tidal currents generated over a continental slope are examined. Using the assumption of a Poincar wave, the linear frictionless solution of a semidiurnal tidal wave propagating from the deep ocean to a constant depth ...

Robert Maz; Gilbert Langlois; Franois Grosjean

1998-07-01T23:59:59.000Z

112

Residual Currents Induced by Asymmetric Tidal Mixing in Weakly Stratified Narrow Estuaries  

Science Conference Proceedings (OSTI)

Residual currents induced by asymmetric tidal mixing were examined for weakly stratified, narrow estuaries using analytical and numerical models. The analytical model is an extension of the work of R. K. McCarthy, with the addition of tidal ...

Peng Cheng; Arnoldo Valle-Levinson; Huib E. de Swart

2010-09-01T23:59:59.000Z

113

A Model of Tidal Rectification by Potential Vorticity Mixing. Part I: Homogeneous Ocean  

Science Conference Proceedings (OSTI)

In previous studies of tidal generation of mean flow over varying topography, the rectification mechanism has generally invoked bottom friction as a source of tidal flux of momentum and vorticity (hence referred asfriction mechanism). The ...

Hsien-Wang Ou

1999-04-01T23:59:59.000Z

114

The Role of Advection, Straining, and Mixing on the Tidal Variability of Estuarine Stratification  

Science Conference Proceedings (OSTI)

Data from the Hudson River estuary demonstrate that the tidal variations in vertical salinity stratification are not consistent with the patterns associated with along-channel tidal straining. These observations result from three additional ...

Malcolm E. Scully; W. Rockwell Geyer

2012-05-01T23:59:59.000Z

115

IEC 61400-25 protocol based monitoring and control protocol for tidal current power plant  

Science Conference Proceedings (OSTI)

Wind energy and tidal current power have a common operation principle. Tidal current power converts kinetic energy of fluid to electric power. The communication infrastructure is very important to control the system and to monitor the working conditions ... Keywords: IEC 61400-25, monitoring, remote control, tidal current power

Jung Woo Kim; Hong Hee Lee

2010-09-01T23:59:59.000Z

116

Pasture and Soil Management Following Tidal Saltwater Intrusion  

E-Print Network (OSTI)

When land is flooded by saltwater, as after a hurricane tidal surge, it can long-term effects on soil productivity and fertility. This publication explains how to reclaim flooded pasture land. Having soil tested for salinity is an important step.

Provin, Tony; Redmon, Larry; McFarland, Mark L.; Feagley, Sam E.

2009-05-26T23:59:59.000Z

117

A SENSITIVITY ANALYSIS FOR A TIDALLY-INFLUENCED RIVERINE SYSTEM  

E-Print Network (OSTI)

-integrated, finite element coastal circulation code that solves the nonlinear shallow water equations, ADCIRC- 2DDI water. The model is forced with seven main tidal constituents at the open ocean boundary: M2, M4, M6, N2 entire experience at UCF; Dr. Gour-Tsyh (George) Yeh and Dr. John D. Dietz for serving on my committee

Central Florida, University of

118

TWO CHEMICAL SPILL PATTERNS IN TIDALLY DOMINATED SAN DIEGO BAY  

E-Print Network (OSTI)

6 TWO CHEMICAL SPILL PATTERNS IN TIDALLY DOMINATED SAN DIEGO BAY Peter C. Chu and Kleanthis, Inc., 70 Dean Knauss Drive, Narragansett, RI 02882, USA ABSTRACT A coupled hydrodynamic-chemical spill model is used to investigate the chemical spill in the San Diego Bay. The hydrodynamic model shows

Chu, Peter C.

119

Tidal flow over threedimensional topography generates outofforcingplane harmonics  

E-Print Network (OSTI)

energy conversion from the barotropic to the baroclinic tide. The generation of internal waves by tidal, a significant amount of the energy converted from barotropic to baroclinic tides can be generated perpendicular of a sphere, J. Fluid Mech., 183, 439­450. Baines, P. G. (2007), Internal tide generation by seamounts, Deep

Texas at Austin. University of

120

Analysis of Supercritical Stratified Tidal Flow in a Scottish Fjord  

Science Conference Proceedings (OSTI)

The baroclinic tidal regime of the fjord Loch Etive (Scotland) is studied. Analysis is performed on the basis of both in situ data and numerical simulations, with the use of a fully nonlinear nonhydrostatic fine-resolution model. It was found ...

Nataliya Stashchuk; Mark Inall; Vasiliy Vlasenko

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Low-head tidal power in South Carolina. Feasibility study  

DOE Green Energy (OSTI)

This report details the possibilities of extracting tidal power from sites with moderate tides and naturally occurring storage locations (estuaries). The important points covered include: available power, power extraction, and the best locations and techniques to utilize the tides in South Carolina.

Not Available

1981-12-01T23:59:59.000Z

122

Radar Measurement of Tidal Winds at Stratospheric Heights over Arecibo  

Science Conference Proceedings (OSTI)

Wind oscillations of tidal periods that showed a marked downward phase progression were detected at the lower stratosphere using the Arecibo radar. The amplitudes of 15 m s?1 were inferred for both diurnal and semidiurnal components, much larger ...

Shoichiro Fukao; Toru Sato; Norikazu Yamasaki; Robert M. Harper; Susumu Kato

1980-11-01T23:59:59.000Z

123

Dorchester, New Hampshire: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

567382°, -71.9486943° 567382°, -71.9486943° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7567382,"lon":-71.9486943,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

Dorchester County, South Carolina: Energy Resources | Open Energy  

Open Energy Info (EERE)

0383°, -80.543845° 0383°, -80.543845° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1680383,"lon":-80.543845,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Dorchester County, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

9°, -76.1783739° 9°, -76.1783739° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.4152819,"lon":-76.1783739,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 January 27, 2012 - 11:30am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program

127

MHK Projects/East Foreland Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

East Foreland Tidal Energy East Foreland Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.2223,"lon":-151.905,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

128

MHK Projects/Margate Tidal | Open Energy Information  

Open Energy Info (EERE)

Margate Tidal Margate Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3793,"lon":-74.4384,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

129

MHK Projects/Cuttyhunk Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Cuttyhunk Tidal Energy Plant Cuttyhunk Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7778,"lon":-70.8489,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

130

MHK Projects/Wrangell Narrows Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Wrangell Narrows Tidal Energy Project Wrangell Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.6324,"lon":-132.936,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

131

MHK Projects/Astoria Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Astoria Tidal Energy Astoria Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7172,"lon":-73.9703,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

132

MHK Projects/Cohansey River Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cohansey River Tidal Energy Cohansey River Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3829,"lon":-75.2995,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

133

MHK Projects/Orient Point Tidal | Open Energy Information  

Open Energy Info (EERE)

Orient Point Tidal Orient Point Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0748,"lon":-72.9461,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

134

MHK Projects/Gastineau Channel Tidal | Open Energy Information  

Open Energy Info (EERE)

Gastineau Channel Tidal Gastineau Channel Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.295,"lon":-134.407,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

135

MHK Projects/Highlands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Project Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3432,"lon":-73.9977,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

136

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Piscataqua Tidal Hydrokinetic Energy Project Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1055,"lon":-70.7912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

137

MHK Projects/Paimpol Brehat tidal farm | Open Energy Information  

Open Energy Info (EERE)

Paimpol Brehat tidal farm Paimpol Brehat tidal farm < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.869,"lon":-2.98546,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

138

MHK Projects/Turnagain Arm Tidal | Open Energy Information  

Open Energy Info (EERE)

Turnagain Arm Tidal Turnagain Arm Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

139

MHK Projects/Wiscasset Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Wiscasset Tidal Energy Plant Wiscasset Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8146,"lon":-69.8697,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

140

MHK Projects/Nantucket Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Nantucket Tidal Energy Plant Nantucket Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.389,"lon":-70.5134,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

MHK Projects/Kingsbridge Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Kingsbridge Tidal Energy Project Kingsbridge Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1008,"lon":-74.0495,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

142

MHK Projects/Rockaway Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Rockaway Tidal Energy Plant Rockaway Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5667,"lon":-73.922,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

143

MHK Projects/Muskeget Channel Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Muskeget Channel Tidal Energy Muskeget Channel Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3501,"lon":-70.3995,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

144

MHK Projects/Killisnoo Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Killisnoo Tidal Energy Killisnoo Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.4724,"lon":-134.56,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

145

MHK Projects/Deception Pass Tidal Energy Hydroelectric Project | Open  

Open Energy Info (EERE)

Deception Pass Tidal Energy Hydroelectric Project Deception Pass Tidal Energy Hydroelectric Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.4072,"lon":-122.643,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

146

MHK Projects/Lubec Narrows Tidal | Open Energy Information  

Open Energy Info (EERE)

Lubec Narrows Tidal Lubec Narrows Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8652,"lon":-66.9828,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

147

MHK Projects/Housatonic Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Housatonic Tidal Energy Plant Housatonic Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2713,"lon":-73.0883,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

148

MHK Projects/Tidal Energy Project Portugal | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Project Portugal Tidal Energy Project Portugal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.702,"lon":-9.13445,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

149

MHK Projects/Treat Island Tidal | Open Energy Information  

Open Energy Info (EERE)

Treat Island Tidal Treat Island Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

150

MHK Projects/Penobscot Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Penobscot Tidal Energy Project Penobscot Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5404,"lon":-68.7838,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

151

MHK Projects/Cape May Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cape May Tidal Energy Cape May Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9668,"lon":-74.963,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

152

MHK Projects/Salem Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Salem Tidal Energy Salem Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5739,"lon":-75.5438,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

153

MHK Projects/Angoon Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Angoon Tidal Energy Plant Angoon Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.5034,"lon":-134.58,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

154

MHK Projects/Seaflow Tidal Energy System | Open Energy Information  

Open Energy Info (EERE)

Seaflow Tidal Energy System Seaflow Tidal Energy System < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.2353,"lon":-3.8356,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

155

Evolution of star clusters in arbitrary tidal fields  

E-Print Network (OSTI)

We present a novel and flexible tensor approach to computing the effect of a time-dependent tidal field acting on a stellar system. The tidal forces are recovered from the tensor by polynomial interpolation in time. The method has been implemented in a direct-summation stellar dynamics integrator (NBODY6) and test-proved through a set of reference calculations: heating, dissolution time and structural evolution of model star clusters are all recovered accurately. The tensor method is applicable to arbitrary configurations, including the important situation where the background potential is a strong function of time. This opens up new perspectives in stellar population studies reaching to the formation epoch of the host galaxy or galaxy cluster, as well as for star-burst events taking place during the merger of large galaxies. A pilot application to a star cluster in the merging galaxies NGC 4038/39 (the Antennae) is presented.

Renaud, Florent; Boily, Christian

2011-01-01T23:59:59.000Z

156

The Development of Gas/Star Offsets in Tidal Tails  

E-Print Network (OSTI)

We present models of interacting galaxies in order to study the development of spatial offsets between the gaseous and stellar components in tidal tails. Observationally, such offsets are observed to exist over large scales (e.g., NGC 3690; Hibbard et al. 2000), suggesting an interaction between the tidal gas and some (unseen) hot ISM. Instead, our models show these offsets are a natural consequence of the radially extended HI spatial distribution in disk galaxies, coupled with internal dissipation in the gaseous component driven by the interaction. This mechanism is most effective in systems involved in very prograde interactions, and explains the observed gas/star offsets in interacting galaxies without invoking interactions with a hot ISM, starburst ionization, or dust obscuration within the tails.

Chris Mihos

2000-11-06T23:59:59.000Z

157

The Development of Gas/Star Offsets in Tidal Tails  

E-Print Network (OSTI)

We present models of interacting galaxies in order to study the development of spatial offsets between the gaseous and stellar components in tidal tails. Observationally, such offsets are observed to exist over large scales (e.g., NGC 3690; Hibbard et al. 2000), suggesting an interaction between the tidal gas and some (unseen) hot ISM. Instead, our models show these offsets are a natural consequence of the radially extended HI spatial distribution in disk galaxies, coupled with internal dissipation in the gaseous component driven by the interaction. This mechanism is most effective in systems involved in very prograde interactions, and explains the observed gas/star offsets in interacting galaxies without invoking interactions with a hot ISM, starburst ionization, or dust obscuration within the tails.

Mihos, C

2001-01-01T23:59:59.000Z

158

MHK Projects/Cook Inlet Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cook Inlet Tidal Energy Cook Inlet Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.6893,"lon":-151.437,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

159

MHK Projects/BW2 Tidal | Open Energy Information  

Open Energy Info (EERE)

BW2 Tidal BW2 Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3264,"lon":-74.9336,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

160

MHK Projects/Avalon Tidal | Open Energy Information  

Open Energy Info (EERE)

Avalon Tidal Avalon Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1068,"lon":-74.7463,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

MHK Projects/Admirality Inlet Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Admirality Inlet Tidal Energy Project Admirality Inlet Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.1169,"lon":-122.76,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

162

EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA  

Energy.gov (U.S. Department of Energy (DOE))

This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. DOE is a cooperating agency.

163

Tidal Stream Power Web GIS Tool | Open Energy Information  

Open Energy Info (EERE)

Tidal Stream Power Web GIS Tool Tidal Stream Power Web GIS Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Tidal Stream Power Web GIS Tool Agency/Company /Organization: Georgia Tech Savannah Sector: Energy Focus Area: Renewable Energy Resource Type: Software/modeling tools User Interface: Website Website: www.tidalstreampower.gatech.edu/ Country: United States Web Application Link: www.tidalstreampower.gatech.edu/ Cost: Free UN Region: Northern America Coordinates: 32.167482°, -81.212405° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.167482,"lon":-81.212405,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

UNITED STATES DEPARTMENT OF COMMERCE * Maurice ...  

Science Conference Proceedings (OSTI)

... (2) Dead-time correction was made according to the methods described by Heinrich, et al [7]. The value of the dead- time, t, was 2.3 usec. ...

2011-08-01T23:59:59.000Z

165

DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Tidal Energy DOE Science Showcase - Tidal Energy Point absorbers generate electricity by converting the energy in waves using a float that rides the waves and is attached to a moored conversion device. The Department of Energy's Water Power Program Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from Tidal Streams in the United States, Energy Citations Database Georgia Tech's Tidal Energy Resources Database U.S. Renewable Resources Atlas , NREL Tidal energy research in WorldWideScience.org OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading...

166

Tidal Heating of Terrestrial Extra-Solar Planets and Implications for their Habitability  

E-Print Network (OSTI)

The tidal heating of hypothetical rocky (or terrestrial) extra-solar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth's, which may enhance the planet's habitability. In other cases, excessive tidal heating may result in Io-like planets with violent volcanism, probably rendering them unsuitable for life. On water-rich planets, tidal heating may generate sub-surface oceans analogous to Europa's with similar prospects for habitability. Tidal heating may enhance the outgassing of volatiles, contributing to the formation and replenishment of a planet's atmosphere. To address these issues, we model the tidal heating and evolution of hypothetical extra-solar terrestrial planets. The results presented here constrain the orbital and physical properties required for planets to be habitable.

Brian Jackson; Rory Barnes; Richard Greenberg

2008-08-20T23:59:59.000Z

167

Tidal Heating of Terrestrial Extra-Solar Planets and Implications for their Habitability  

E-Print Network (OSTI)

The tidal heating of hypothetical rocky (or terrestrial) extra-solar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth's, which may enhance the planet's habitability. In other cases, excessive tidal heating may result in Io-like planets with violent volcanism, probably rendering them unsuitable for life. On water-rich planets, tidal heating may generate sub-surface oceans analogous to Europa's with similar prospects for habitability. Tidal heating may enhance the outgassing of volatiles, contributing to the formation and replenishment of a planet's atmosphere. To address these issues, we model the tidal heating and evolution of hypothetical extra-solar terrestrial planets. The results presented here constrain the orbital and physical properties required for planets to be habitable.

Jackson, Brian; Greenberg, Richard

2008-01-01T23:59:59.000Z

168

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project July 24, 2012 - 1:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Today, Energy Secretary Steven Chu recognized the nation's first commercial, grid-connected tidal energy project off the coast of Eastport, Maine. Leveraging a $10 million investment from the Energy Department, Ocean Renewable Power Company (ORPC) will deploy its first commercial tidal energy device into Cobscook Bay this summer. The project, which injected $14 million into the local economy and has supported more than 100 local and supply chain jobs, represents the first tidal energy project in the United States with long-term contracts to sell electricity

169

Fracture orientation analysis by the solid earth tidal strain method | Open  

Open Energy Info (EERE)

orientation analysis by the solid earth tidal strain method orientation analysis by the solid earth tidal strain method Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fracture orientation analysis by the solid earth tidal strain method Details Activities (1) Areas (1) Regions (0) Abstract: A new practical method has been developed to estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of tidal and barometric strain analysis.

170

MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open Energy  

Open Energy Info (EERE)

Uldolmok Pilot Tidal Current Power Plant Uldolmok Pilot Tidal Current Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uldolmok Pilot Tidal Current Power Plant.jpg Technology Profile Primary Organization Korea East West Power Co LTD Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description The tidal current power plant uses current energy that can be differentiated from a typical tidal power plant using marine energy The latter confines water in a dam and when released it gets processed in a turbine to produce electric power The tidal current power plant on the other hand does not need a dam thus concerns of social dislocations and degradation of ecosystems primarily endangering marine life can be avoided

171

Assessment of Strike of Adult Killer Whales by an OpenHydro Tidal Turbine Blade  

SciTech Connect

Report to DOE on an analysis to determine the effects of a potential impact to an endangered whale from tidal turbines proposed for deployment in Puget Sound.

Carlson, Thomas J.; Elster, Jennifer L.; Jones, Mark E.; Watson, Bruce E.; Copping, Andrea E.; Watkins, Michael L.; Jepsen, Richard A.; Metzinger, Kurt

2012-02-01T23:59:59.000Z

172

Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation  

E-Print Network (OSTI)

Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density

Bertschinger, Edmund

173

Modeling the Limits and Effects of Energy?Extraction from Tidal...  

NLE Websites -- All DOE Office Websites (Extended Search)

agree well with analytical solution by Garrett & Cummins (2004, 2005) Extractable Max Power Function of (tidal amplitude, volume flux) P model 2,154 MW; P analytical ...

174

Earth Tidal Analysis At Salton Sea Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

80) 80) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Salton Sea Geothermal Area (1980) Exploration Activity Details Location Salton Sea Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters.

175

List of Tidal Energy Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 538 Tidal Energy Incentives. CSV (rows 1-500) CSV (rows 501-538) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Environmental Regulations Connecticut Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Biomass/Biogas

176

An HI Threshold for Star Cluster Formation in Tidal Debris  

E-Print Network (OSTI)

Super star clusters are young, compact star clusters found in the central regions of interacting galaxies. Recently, they have also been reported to preferentially form in certain tidal tails, but not in others. In this paper, we have used 21 cm HI maps and the Hubble Space Telescope Wide Field Planetary Camera 2 images of eight tidal tail regions of four merging galaxy pairs to compare the kiloparsec scale HI distribution with the location of super star clusters found from the optical images. For most of the tails, we find that there is an increase in super star cluster density with increasing projected HI column density, such that the star cluster density is highest when log N(HI) >= 20.6 cm^{-2}, but equal to the background count rate at lower HI column density. However, for two tails (NGC 4038/39 Pos A and NGC 3921), there is no significant star cluster population despite the presence of gas at high column density. This implies that the N(HI) threshold is a necessary but not sufficient condition for clust...

Maybhate, A; Hibbard, J E; Charlton, J C; Palma, C; Knierman, K A; English, J

2007-01-01T23:59:59.000Z

177

An HI Threshold for Star Cluster Formation in Tidal Debris  

E-Print Network (OSTI)

Super star clusters are young, compact star clusters found in the central regions of interacting galaxies. Recently, they have also been reported to preferentially form in certain tidal tails, but not in others. In this paper, we have used 21 cm HI maps and the Hubble Space Telescope Wide Field Planetary Camera 2 images of eight tidal tail regions of four merging galaxy pairs to compare the kiloparsec scale HI distribution with the location of super star clusters found from the optical images. For most of the tails, we find that there is an increase in super star cluster density with increasing projected HI column density, such that the star cluster density is highest when log N(HI) >= 20.6 cm^{-2}, but equal to the background count rate at lower HI column density. However, for two tails (NGC 4038/39 Pos A and NGC 3921), there is no significant star cluster population despite the presence of gas at high column density. This implies that the N(HI) threshold is a necessary but not sufficient condition for cluster formation. Gas volume density is likely to provide a more direct criterion for cluster formation, and other factors such as gas pressure or strength of encounter may also have an influence. Comparison of HI thresholds needed for formation of different types of stellar structures await higher resolution HI and optical observations of larger numbers of interacting galaxies.

A. Maybhate; J. Masiero; J. E. Hibbard; J. C. Charlton; C. Palma; K. A. Knierman; J. English

2007-07-24T23:59:59.000Z

178

RED CLUMP STARS IN THE SAGITTARIUS TIDAL STREAMS  

SciTech Connect

We have probed a section (l {approx} 150, b {approx} -60) of the trailing tidal arm of the Sagittarius dwarf spheroidal galaxy by identifying a sample of Red Clump (RC) stream stars. RC stars are not generally found in the halo field, but are found in significant numbers in both the Sagittarius galaxy and its tidal streams, making them excellent probes of stream characteristics. Our target sample was selected using photometric data from the Sloan Digital Sky Survey, Data Release 6, which was constrained in color to match the Sagittarius RC stars. Spectroscopic observations of the target stars were conducted at Kitt Peak National Observatory using the WIYN telescope. The resulting spectroscopic sample is magnitude limited and contains both main-sequence disk stars and evolved RC stars. We have developed a method to systematically separate these two stellar classes using kinematic information and a Bayesian approach for surface gravity determination. The resulting RC sample allows us to determine an absolute stellar density of {rho} = 2.7 {+-} 0.5 RC stars kpc{sup -3} at this location in the stream. Future measurements of stellar densities for a variety of populations and at various locations along the streams will lead to a much improved understanding of the original nature of the Sagittarius galaxy and the physical processes controlling its disruption and subsequent stream generation.

Carrell, Kenneth; Chen Yuqin [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Wilhelm, Ronald, E-mail: carrell@nao.cas.cn [Physics and Astronomy Department, University of Kentucky, Lexington, KY 40506 (United States)

2012-07-15T23:59:59.000Z

179

Numerical simulation and analysis to tidal currents and wave field of pearl river  

Science Conference Proceedings (OSTI)

A hydrodynamic model (MOCOE) is used in tidal current and wave calculation in Yamen river, which is one of the eight estuaries of Pearl River. The method of combining curvilinear orthogonal coordinates in the horizontal direction with Sigma mapping coordinates ... Keywords: curvilinear orthogonal, numerical simulation, tidal currents

Wu Hongxu

2009-11-01T23:59:59.000Z

180

ADCP Measurements of Momentum Balance and Dynamic Topography in a Constricted Tidal Channel  

Science Conference Proceedings (OSTI)

The dynamics of tidal flow through inlets are not fully understood; observations are scarce because of the small spatial scales over which the flow varies. This paper gives the first detailed measurements of the 2D structure of tidal currents and ...

Ross Vennell

2006-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mapping the tidal motion of an Antarctic ice shelf from space  

E-Print Network (OSTI)

grounded and floating ice). Loss of clarity of phase cycles (noise) ­ likely due to changes on the ice-eyes" suggests a ridgeline is running under the ice. The phase (colour) cycles represent the difference in tidalMapping the tidal motion of an Antarctic ice shelf from space Malcolm McMillan1 , Andrew Shepherd

182

Tidal Energy Dissipation at the Sill of Sechelt Inlet, British Columbia  

Science Conference Proceedings (OSTI)

The energy budget of a tidally active, shallow silled fjord is discussed. Constriction of the flow over the shallow sill causes a reduction in tidal amplitude and a phase lag across the sill. A generalized expression for the total power extracted ...

Scott W. Tinis; Stephen Pond

2001-12-01T23:59:59.000Z

183

Transport and Resuspension of Fine Particles in a Tidal Boundary Layer near a Small Peninsula  

Science Conference Proceedings (OSTI)

The authors present a theory on the transport and resuspension of fine particles in a tidal boundary layer when the ambient tidal flow is nonuniform due to a peninsula along the coastline. As a first step toward better physical understanding the ...

Chiang C. Mei; Chimin Chian; Feng Ye

1998-11-01T23:59:59.000Z

184

Cyclonic Spirals in Tidally Accelerating Bottom Boundary Layers in the Zhujiang (Pearl River) Estuary  

Science Conference Proceedings (OSTI)

A velocity spiral in the tidally accelerating bottom boundary layer (BBL) was defined as a directional shear of the prevailing flow with the elevation and the tidal phase. However, so far there is no information on the spiral for the oscillatory ...

Jiaxue Wu; Huan Liu; Jie Ren; Junjie Deng

2011-06-01T23:59:59.000Z

185

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

186

Energy Department Invests $16 Million to Harness Wave and Tidal Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million to Harness Wave and Tidal 6 Million to Harness Wave and Tidal Energy Energy Department Invests $16 Million to Harness Wave and Tidal Energy August 29, 2013 - 2:35pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United States and responsible development of this clean, renewable energy

187

Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Tidal Analysis At Raft River Geothermal Area Tidal Analysis At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis To estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. Notes A new practical method has been developed. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of

188

Energy Department Invests $16 Million to Develop Wave and Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million to Develop Wave and Tidal 6 Million to Develop Wave and Tidal Energy Technologies Energy Department Invests $16 Million to Develop Wave and Tidal Energy Technologies August 29, 2013 - 12:00pm Addthis Image of machinery to generate energy using tides. As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides, and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United

189

Gravitational signals due to tidal interactions between white dwarfs and black holes  

E-Print Network (OSTI)

In this paper we compute the gravitational signal emitted when a white dwarf moves around a black hole on a closed or open orbit using the affine model approach. We compare the orbital and the tidal contributions to the signal, assuming that the star moves in a safe region where, although very close to the black hole, the strength of the tidal interaction is insufficient to provoque the stellar disruption. We show that for all considered orbits the tidal signal presents sharp peaks corresponding to the excitation of the star non radial oscillation modes, the amplitude of which depends on how deep the star penetrates the black hole tidal radius and on the type of orbit. Further structure is added to the emitted signal by the coupling between the orbital and the tidal motion.

C. Casalvieri; V. Ferrari; A. Stavridis

2005-08-08T23:59:59.000Z

190

Gravitational signals due to tidal interactions between white dwarfs and black holes  

E-Print Network (OSTI)

In this paper we compute the gravitational signal emitted when a white dwarf moves around a black hole on a closed or open orbit using the affine model approach. We compare the orbital and the tidal contributions to the signal, assuming that the star moves in a safe region where, although very close to the black hole, the strength of the tidal interaction is insufficient to provoque the stellar disruption. We show that for all considered orbits the tidal signal presents sharp peaks corresponding to the excitation of the star non radial oscillation modes, the amplitude of which depends on how deep the star penetrates the black hole tidal radius and on the type of orbit. Further structure is added to the emitted signal by the coupling between the orbital and the tidal motion.

Casalvieri, C; Stavridis, A

2006-01-01T23:59:59.000Z

191

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

192

MHK Technologies/MORILD 2 Floating Tidal Power System | Open Energy  

Open Energy Info (EERE)

MORILD 2 Floating Tidal Power System MORILD 2 Floating Tidal Power System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MORILD 2 Floating Tidal Power System.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/Morild 2 Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Hydra Tidal´s Morild II tidal power plant technology at-a-glance: - A unique and patented floating tidal power plant - Prototype has an installed effect of 1,5 MW - Turbine diameter of 23 meters - Each turbine is pitchable - 4 turbines with a total of 8 turbine blades - Unique wooden turbine blades - The MORILD II can be anchored at different depths, thus it can be positioned in spots with ideal tidal stream conditions - The plant carries a sea vessel verification, and is both towable and dockable - The floating installation enables maintenance in surface position, and on site - The MORILD II will be remotely operated, and has on-shore surveillance systems - Technology patented for all relevant territories The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

193

OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES  

SciTech Connect

Using archival Sloan Digital Sky Survey (SDSS) multi-epoch imaging data (Stripe 82), we have searched for the tidal disruption of stars by supermassive black holes in non-active galaxies. Two candidate tidal disruption events (TDEs) are identified. The TDE flares have optical blackbody temperatures of 2 Multiplication-Sign 10{sup 4} K and observed peak luminosities of M{sub g} = -18.3 and -20.4 ({nu}L{sub {nu}} = 5 Multiplication-Sign 10{sup 42}, 4 Multiplication-Sign 10{sup 43} erg s{sup -1}, in the rest frame); their cooling rates are very low, qualitatively consistent with expectations for tidal disruption flares. The properties of the TDE candidates are examined using (1) SDSS imaging to compare them to other flares observed in the search, (2) UV emission measured by GALEX, and (3) spectra of the hosts and of one of the flares. Our pipeline excludes optically identifiable AGN hosts, and our variability monitoring over nine years provides strong evidence that these are not flares in hidden AGNs. The spectra and color evolution of the flares are unlike any SN observed to date, their strong late-time UV emission is particularly distinctive, and they are nuclear at high resolution arguing against these being first cases of a previously unobserved class of SNe or more extreme examples of known SN types. Taken together, the observed properties are difficult to reconcile with an SN or an AGN-flare explanation, although an entirely new process specific to the inner few hundred parsecs of non-active galaxies cannot be excluded. Based on our observed rate, we infer that hundreds or thousands of TDEs will be present in current and next-generation optical synoptic surveys. Using the approach outlined here, a TDE candidate sample with O(1) purity can be selected using geometric resolution and host and flare color alone, demonstrating that a campaign to create a large sample of TDEs, with immediate and detailed multi-wavelength follow-up, is feasible. A by-product of this work is quantification of the power spectrum of extreme flares in AGNs.

Van Velzen, Sjoert; Farrar, Glennys R. [Center for Cosmology and Particle Physics, New York University, NY 10003 (United States); Gezari, Suvi [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Morrell, Nidia [Carnegie Observatories, Las Campanas Observatory, Casillas 601, La Serena (Chile); Zaritsky, Dennis [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Oestman, Linda [Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Smith, Mathew [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701 (South Africa); Gelfand, Joseph [New York University-Abu Dhabi, Abu Dhabi (United Arab Emirates); Drake, Andrew J., E-mail: s.vanvelzen@astro.ru.nl [Center for Advance Computing Research, California Institute of Technology, Pasadena, CA 91225 (United States)

2011-11-10T23:59:59.000Z

194

Tidal disruption flares from stars on eccentric orbits  

E-Print Network (OSTI)

We study tidal disruption and subsequent mass fallback for stars approaching supermassive black holes on bound orbits, by performing three dimensional Smoothed Particle Hydrodynamics simulations with a pseudo-Newtonian potential. We find that the mass fallback rate decays with the expected -5/3 power of time for parabolic orbits, albeit with a slight deviation due to the self-gravity of the stellar debris. For eccentric orbits, however, there is a critical value of the orbital eccentricity, significantly below which all of the stellar debris is bound to the supermassive black hole. All the mass therefore falls back to the supermassive black hole in a much shorter time than in the standard, parabolic case. The resultant mass fallback rate considerably exceeds the Eddington accretion rate and substantially differs from the -5/3 power of time.

Kimitake Hayasaki; Nicholas Stone; Abraham Loeb

2012-10-03T23:59:59.000Z

195

Observing Lense-Thirring Precession in Tidal Disruption Flares  

E-Print Network (OSTI)

When a star is tidally disrupted by a supermassive black hole (SMBH), the streams of liberated gas form an accretion disk after their return to pericenter. We demonstrate that Lense-Thirring precession in the spacetime around a rotating SMBH can produce significant time evolution of the disk angular momentum vector, due to both the periodic precession of the disk and the nonperiodic, differential precession of the bound debris streams. Jet precession and periodic modulation of disk luminosity are possible consequences. The persistence of the jetted X-ray emission in the Swift J164449.3+573451 flare suggests that the jet axis was aligned with the spin axis of the SMBH during this event.

Nicholas Stone; Abraham Loeb

2011-09-29T23:59:59.000Z

196

Tidal Energy System for On-Shore Power Generation  

DOE Green Energy (OSTI)

Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-scale, for ti

Bruce, Allan J

2012-06-26T23:59:59.000Z

197

Tidal Energy System for On-Shore Power Generation  

SciTech Connect

Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-sca

Bruce, Allan J

2012-06-26T23:59:59.000Z

198

Evaluation of subsurface fracture geometry using fluid pressure response to solid earth tidal strain  

DOE Green Energy (OSTI)

The nature of solid earth tidal strain and surface load deformation due to the influence of gravitational forces and barometric pressure loading are discussed. The pore pressure response to these types of deformation is investigated in detail, including the cases of a confined aquifer intersected by a well and a discrete fracture intersected by a well. The integration of the tidal response method with conventional pump tests in order to independently calculate the hydraulic parameters of the fracture-formation system is discussed. How advanced spectral analysis methods, coupled with correlation analysis can be used to extract the tidal response signals from the pressure record is shown. Uncertainties in the signals are estimated using various information-theoretic methods in order to place a confidence level at which we can safely assume that the measured signal is indeed of tidal origin. A detailed case study of the method carried out at the Raft River Geothermal Reservoir in Idaho is presented. All of the analyzed tidal data is presented and the results of the computed fracture orientation using the solid earth tidal strain approach are compared with the extensive field work carried out at Raft River over the past decade. The direction that future work in the continuing development of this technology should take is discussed, including: (1) the present need for an expanded data base for the confirmation of present tidal strain response models, and (2) improvement in response models.

Hanson, J.M.

1984-09-01T23:59:59.000Z

199

Challenges and Instrumentation Solutions to Understanding the Nature of Tidal Flows  

NLE Websites -- All DOE Office Websites (Extended Search)

Approach to Characterization of Full-Spectrum Approach to Characterization of Full-Spectrum Turbulence Near Current Tidal Energy Devices Presented by Brett Prairie of Rockland Scientific at the Marine and Hydrokinetic Technology and Environmental Instrumentation, Measurement & Computer Modeling Workshop Broomfield, Colorado July 9 - 11, 2012 ©2012 Rockland Scientific Inc. Presentation Agenda ©2012 Rockland Scientific Inc. 1. Introduction & Background 2. The importance of full-spectrum turbulence characterization for current tidal energy project development 3. How non-acoustic measurements can characterize small-scale turbulence near current tidal energy devices 4. Development of a continuous monitoring system to measure full-spectrum turbulence for the National Renewable Energy Laboratory

200

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Coastal Countercurrent and Mesoscale Eddy Formation by Tidal Rectification near an Oceanic Cape  

Science Conference Proceedings (OSTI)

Cape St. James is an extensive triangular-shaped promontory located in a tidally energetic region at the southern tip of the Queen Charlotte Islands approximately 150 km off the mainland coast or British Columbia. Several years of oceanographic ...

Richard E. Thomson; Robert E. Wilson

1987-11-01T23:59:59.000Z

202

Regulation of Tidal and Wave Energy Projects (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal and Wave Energy Projects (Maine) Tidal and Wave Energy Projects (Maine) Regulation of Tidal and Wave Energy Projects (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements

203

Form Drag and Mixing Due to Tidal Flow past a Sharp Point  

Science Conference Proceedings (OSTI)

Barotropic tidal currents flowing over rough topography may be slowed by two bottom boundaryrelated processes: tangential stress of the bottom boundary layer, which is generally well represented by a quadratic drag law, and normal stress from ...

Kathleen A. Edwards; Parker MacCready; James N. Moum; Geno Pawlak; Jody M. Klymak; Alexander Perlin

2004-06-01T23:59:59.000Z

204

Optimal Control Theory Applied to an Objective Analysis of a Tidal Current Mapping by HF Radar  

Science Conference Proceedings (OSTI)

Optimal control can provide a tool to perform an optimization of a tidal model via a data assimilation operation. A pilot study is presented here to test the theoretical and numerical feasibility of an assimilation of HF radar current ...

Jean-Luc Devenon

1990-04-01T23:59:59.000Z

205

The Effect of Channel Length on the Residual Circulation in Tidally Dominated Channels  

Science Conference Proceedings (OSTI)

With an analytic model, this paper describes the subtidal circulation in tidally dominated channels of different lengths, with arbitrary lateral depth variations. The focus is on an important parameter associated with the reversal of the exchange ...

Chunyan Li; James ODonnell

2005-10-01T23:59:59.000Z

206

Internal Hydraulic Jumps and Overturning Generated by Tidal Flow over a Tall Steep Ridge  

Science Conference Proceedings (OSTI)

Recent observations from the Hawaiian Ridge indicate episodes of overturning and strong dissipation coupled with the tidal cycle near the top of the ridge. Simulations with realistic topography and stratification suggest that this overturning has ...

Sonya Legg; Jody Klymak

2008-09-01T23:59:59.000Z

207

Surface Pressure Response to Elevated Tidal Heating Sources: Comparison of Earth and Mars  

Science Conference Proceedings (OSTI)

Modern atmospheric tidal theory has shown that the dominance of the terrestrial semidiurnal surface pressure oscillation, relative to its diurnal counterpart, is the result of the elevated heating source generated by solar heating of ...

Richard W. Zurek

1980-05-01T23:59:59.000Z

208

Spectral Estimates of Gravity Wave Energy and Momentum Fluxes. Part III: Gravity Wave-Tidal Interactions  

Science Conference Proceedings (OSTI)

An application of the gravity wave parameterization scheme developed in the companion papers by Fritts and VanZandt and Fritts and Lu to the mutual interaction of gravity waves and tidal motions is presented. The results suggest that interaction ...

Wentong Lu; David C. Fritts

1993-11-01T23:59:59.000Z

209

Tidal Mixing Events on the Deep Flanks of Kaena Ridge, Hawaii  

Science Conference Proceedings (OSTI)

A 3-month mooring deployment (AugustNovember 2002) was made in 2425-m depth, on the south flank of Kaena Ridge, Hawaii, to examine tidal variations within 200 m of the steeply sloping bottom. Horizontal currents and vertical displacements, ...

Jerome Aucan; Mark A. Merrifield; Douglas S. Luther; Pierre Flament

2006-06-01T23:59:59.000Z

210

Tidally Forced Internal Waves and Overturns Observed on a Slope: Results from HOME  

Science Conference Proceedings (OSTI)

Tidal mixing over a slope was explored using moored time series observations on Kaena Ridge extending northwest from Oahu, Hawaii, during the Survey component of the Hawaii Ocean Mixing Experiment (HOME). A mooring was instrumented to sample the ...

Murray D. Levine; Timothy J. Boyd

2006-06-01T23:59:59.000Z

211

Residual Sediment Fluxes in Weakly-to-Periodically Stratified Estuaries and Tidal Inlets  

Science Conference Proceedings (OSTI)

In this idealized numerical modeling study, the composition of residual sediment fluxes in energetic (e.g., weakly or periodically stratified) tidal estuaries is investigated by means of one-dimensional water column models, with some focus on the ...

Hans Burchard; Henk M. Schuttelaars; W. Rockwell Geyer

2013-09-01T23:59:59.000Z

212

A Numerical Study of Stratified Tidal Rectification over Finite-Amplitude Banks. Part II: Georges Bank  

Science Conference Proceedings (OSTI)

Tidal rectification over an idealized two-dimensional cross section of Georges Bank, which is a large, shallow, elongated submarine bank in the Gulf of Maine, is studied using a primitive equation coastal ocean circulation model. In the ...

Changsheng Chen; Robert C. Beardsley; Richard Limeburner

1995-09-01T23:59:59.000Z

213

Singular Spectrum Analysis of Nonstationary Tidal Currents Applied to ADCP Data from the Northeast Brazilian Shelf  

Science Conference Proceedings (OSTI)

The development of new tools for the analysis of nonstationary currents, including tidal currents, has been the subject of recent research. In this work a method for studies of nonstationary barotropic or baroclinic currents based on empirical ...

Marcio L. Vianna; Viviane V. Menezes

2006-01-01T23:59:59.000Z

214

Observed and Computed M2 Tidal Currents in the North Sea  

Science Conference Proceedings (OSTI)

M2 tidal elevations and currents have been computed using a three-dimensional hydrodynamic numerical model of the northwest European shelf. These have been compared with observational data from tide gages and current meter rigs moored in ...

A. M. Davies; G. K. Furnes

1980-02-01T23:59:59.000Z

215

The Harmonic Constant Datum Method: Options for Overcoming Datum Discontinuities at MixedDiurnal Tidal Transitions  

Science Conference Proceedings (OSTI)

The harmonic constant datum (HCD) method is a computationally efficient way of estimating tidal datums relative to mean sea level, without the need to compute long time series. However, datum discontinuities can occur between mixed and diurnal ...

Harold O. Mofjeld; Angie J. Venturato; Frank I. Gonzlez; Vasily V. Titov; Jean C. Newman

2004-01-01T23:59:59.000Z

216

Using a Broadband ADCP in a Tidal Channel. Part I: Mean Flow and Shear  

Science Conference Proceedings (OSTI)

This paper discusses the principles of measuring the mean velocity and its vertical shear in a turbulent flow using an acoustic Doppler current profiler (ADCP), and presents an analysis of data gathered in a tidal channel. The assumption of ...

Youyu Lu; Rolf G. Lueck

1999-11-01T23:59:59.000Z

217

Fog and Tidal Current Connection at Cape Cod CanalEarly Recognition and Recent Measurements  

Science Conference Proceedings (OSTI)

Notes by Gardner Emmons about the initiation of low advective fogs on Cape Cod are presented. Subsequent measurements made in these fogs confirm his suggestion that mixing and temperature changes associated with tidal currents account for the ...

Alfred H. Woodcock

1982-02-01T23:59:59.000Z

218

Analysis of Tidal Straining as Driver for Estuarine Circulation in Well-Mixed Estuaries  

Science Conference Proceedings (OSTI)

Tidal straining, which can mathematically be described as the covariance between eddy viscosity and vertical shear of the along-channel velocity component, has been acknowledged as one of the major drivers for estuarine circulation in channelized ...

Hans Burchard; Henk M. Schuttelaars

2012-02-01T23:59:59.000Z

219

The Interaction of Tides with the Sill of a Tidally Energetic Inlet  

Science Conference Proceedings (OSTI)

The interaction of the tides with the sill of a tidally energetic inlet, Observatory Inlet, British Columbia, is studied. Because of temporal variations in the stratification of the inlet, a substantial seasonal variation is observed in the power ...

Michael W. Stacey

1984-06-01T23:59:59.000Z

220

Aspects of the Tidal Variability Observed on the Southern California Continental Shelf  

Science Conference Proceedings (OSTI)

Observations of the current and temperature field from the southern California continental shelf are analyzed in a frequency band (0.66 cpd) dominated by tidal fluctuations. The seasonal variability of the temperature and horizontal velocity ...

A. Bratkovich

1985-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Topographic Rectification of Tidal Currents on the Sides of Georges Bank  

Science Conference Proceedings (OSTI)

The rectification of M2 tidal currents on the sloping sides of Georges Bank is predicted to make an important year-round contribution to its observed mean clockwise circulation. A rectification mechanism involving continuity and Coriolis effects, ...

John W. Loder

1980-09-01T23:59:59.000Z

222

A Study of Tidal Energy Dissipation and Bottom Stress in an Estuary  

Science Conference Proceedings (OSTI)

A Method for inferring an area-averaged bottom stress and energy dissipation rate in a tidal estuarine channel is presented. The one-dimensional continuity and momentum relations are developed using simplifying assumptions appropriate for a well-...

Wendell S. Brown; Richard P. Trask

1980-11-01T23:59:59.000Z

223

The Cycle of Turbulent Dissipation in the Presence of Tidal Straining  

Science Conference Proceedings (OSTI)

In regions of large horizontal density gradient, tidal straining acts to produce a periodic component of stratification that interacts with turbulent mixing to control water column structure and flow. A 25-h series of measurements of the rate of ...

Tom P. Rippeth; Neil R. Fisher; John H. Simpson

2001-08-01T23:59:59.000Z

224

Status of Wave and Tidal Power Technologies for the United States  

DOE Green Energy (OSTI)

This paper presents the status of marine applications for renewable energy as of 2008 from a U.S. perspective. Technologies examined include wave, tidal, and ocean current energy extraction devices.

Musial, W.

2008-08-01T23:59:59.000Z

225

The Signature of Inertial and Tidal Currents in Offshore Wave Records  

Science Conference Proceedings (OSTI)

The roughness of the sea surface can be affected by strong currents. Here, long records of surface wave heights from buoy observations in the northeastern Pacific Ocean are examined. The data show the influence of tidal currents, but the first ...

Johannes Gemmrich; Chris Garrett

2012-06-01T23:59:59.000Z

226

A Model of the Tidally Induced Residual Circulation in the Gulf of Maine and Georges Bank  

Science Conference Proceedings (OSTI)

A three-dimensional nonlinear numerical hydrodynamic model using Legendre polynomials to represent the vertical structure of the horizontal currents has been used to study the tidally induced residual flows in the Gulf of MaineGeorges Bank study ...

Tatsusaburo Isaji; Malcolm L. Spaulding

1984-06-01T23:59:59.000Z

227

General Spectral Computations of the Nonlinear Shallow Water Tidal Interactions within the Bight of Abaco  

Science Conference Proceedings (OSTI)

An iterative frequencytime domain finite element tidal circulation model is applied to the Bight of Abaco in the Bahamas to study the nonlinear interactions that occur between the various astronomical, overtide and compound-tide constituents. ...

J. J. Westerink; K. D. Stolzenbach; J. J. Connor

1989-09-01T23:59:59.000Z

228

Abyssal Penetration and Bottom Reflection of Internal Tidal Energy in the Bay of Biscay  

Science Conference Proceedings (OSTI)

This paper describes field observations in the Bay of Biscay, and presents convincing evidence for the existence of a broad beam of internal tidal energy propagating downward from a source region on the upper continental slopes, which, after ...

R. D. Pingree; A. L. New

1991-01-01T23:59:59.000Z

229

A Comparison of Georges Bank, Gulf of Maine and New England Shelf Tidal Dynamics  

Science Conference Proceedings (OSTI)

The semidiurnal tidal currents associated with the near-resonant response of the Gulf of Maine-Bay of Fundy system are amplified over the relatively shallow depths of Georges Bank, thus leading to enhanced energy dissipation, vertical mixing and ...

Wendell S. Brown

1984-01-01T23:59:59.000Z

230

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

231

EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

49: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA 49: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA SUMMARY This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. DOE is a cooperating agency. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 9, 2013 EA-1949: FERC Notice of Availability Errata Sheet

232

MHK Technologies/Sihwa tidal barrage power plant | Open Energy Information  

Open Energy Info (EERE)

Sihwa tidal barrage power plant Sihwa tidal barrage power plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sihwa tidal barrage power plant.jpg Technology Profile Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description Sihwa TBPP operates only on flood tide generation which produces electrical power during the flood tide the water is discharged back from basin to sea during ebb tide Technology Dimensions Technology Nameplate Capacity (MW) 254 Device Testing Date Submitted 59:41.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Sihwa_tidal_barrage_power_plant&oldid=681654

233

Residual Sediment Fluxes in Weakly-to-Periodically Stratified Estuaries and Tidal Inlets  

Science Conference Proceedings (OSTI)

In this idealized numerical modeling study, the composition of residual sediment fluxes in energetic (e.g., weakly stratified or periodically stratified) tidal estuaries is investigated by means of one-dimensional water column models, with some ...

Hans Burchard; Henk M. Schuttelaars; W. Rockwell Geyer

234

Assessment of Energy Production Potential from Tidal Streams in the United States  

DOE Green Energy (OSTI)

Tidal stream energy is one of the alternative energy sources that are renewable and clean. With the constantly increasing effort in promoting alternative energy, tidal streams have become one of the more promising energy sources due to their continuous, predictable and spatially-concentrated characteristics. However, the present lack of a full spatial-temporal assessment of tidal currents for the U.S. coastline down to the scale of individual devices is a barrier to the comprehensive development of tidal current energy technology. This project created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology. Tidal currents are numerically modeled with the Regional Ocean Modeling System and calibrated with the available measurements of tidal current speed and water level surface. The performance of the model in predicting the tidal currents and water levels is assessed with an independent validation. The geodatabase is published at a public domain via a spatial database engine and interactive tools to select, query and download the data are provided. Regions with the maximum of the average kinetic power density larger than 500 W/m2 (corresponding to a current speed of ~1 m/s), surface area larger than 0.5 km2 and depth larger than 5 m are defined as hotspots and list of hotspots along the USA coast is documented. The results of the regional assessment show that the state of Alaska (AK) contains the largest number of locations with considerably high kinetic power density, and is followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL). The average tidal stream power density at some of these locations can be larger than 8 kW/m2 with surface areas on the order of few hundred kilometers squared, and depths larger than 100 meters. The Cook Inlet in AK is found to have a substantially large tidal stream power density sustained over a very large area.

Haas, Kevin A.

2011-06-29T23:59:59.000Z

235

THE SHAPES OF MILKY WAY SATELLITES: LOOKING FOR SIGNATURES OF TIDAL STIRRING  

Science Conference Proceedings (OSTI)

We study the shapes of Milky Way satellites in the context of the tidal stirring scenario for the formation of dwarf spheroidal galaxies. The standard procedures used to measure shapes involve smoothing and binning of data and thus may not be sufficient to detect structural properties such as bars, which are usually subtle in low surface brightness systems. Taking advantage of the fact that in nearby dwarfs photometry of individual stars is available, we introduce discrete measures of shape based on the two-dimensional inertia tensor and the Fourier bar mode. We apply these measures of shape first to a variety of simulated dwarf galaxies formed via tidal stirring of disks embedded in dark matter halos and orbiting the Milky Way. In addition to strong mass loss and randomization of stellar orbits, the disks undergo morphological transformation that typically involves the formation of a triaxial bar after the first pericenter passage. These tidally induced bars persist for a few Gyr before being shortened toward a more spherical shape if the tidal force is strong enough. We test this prediction by measuring in a similar way the shape of nearby dwarf galaxies, satellites of the Milky Way. We detect inner bars in Ursa Minor, Sagittarius, Large Magellanic Cloud, and possibly Carina. In addition, 6 out of 11 dwarfs that we studied show elongated stellar distributions in the outer parts that may signify transition to tidal tails. We thus find the shapes of Milky Way satellites to be consistent with the predictions of the tidal stirring model.

Lokas, Ewa L. [Nicolaus Copernicus Astronomical Center, 00-716 Warsaw (Poland); Majewski, Steven R.; Nidever, David L. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Kazantzidis, Stelios [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Mayer, Lucio [Institute for Theoretical Physics, University of Zuerich, CH-8057 Zuerich (Switzerland); Carlin, Jeffrey L. [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 (United States); Moustakas, Leonidas A., E-mail: lokas@camk.edu.pl [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

2012-05-20T23:59:59.000Z

236

Effects of Localized Energy Extraction in an Idealized, Energetically Complete Numerical Model of an Ocean-Estuary Tidal System  

NLE Websites -- All DOE Office Websites (Extended Search)

localized energy extraction in an localized energy extraction in an idealized, energetically complete numerical model of an ocean-estuary tidal system MHK Instrumentation, Measurement & Computer Modeling Workshop, Broomfield CO, July 10 2012 Mitsuhiro Kawase and Marisa Gedney Northwest National Marine Renewable Energy Center / School of Oceanography University of Washington Seattle WA 98195 United States * Far-field (Estuary-wide) - Changes in the tidal range - Changes in tidal currents  Near-field (Vicinity of the Device)  Flow redirection  Interaction with marine life  Impact on bottom sediments and benthos Environmental Effects of Tidal Energy Extraction * Reduction in tidal range can permanently expose/submerge tidal flats, altering nearshore habitats * Reduction in kinetic energy of

237

Black-Hole Spin Dependence in the Light Curves of Tidal Disruption Events  

E-Print Network (OSTI)

A star orbiting a supermassive black hole can be tidally disrupted if the black hole's gravitational tidal field exceeds the star's self gravity at pericenter. Some of this stellar tidal debris can become gravitationally bound to the black hole, leading to a bright electromagnetic flare with bolometric luminosity proportional to the rate at which material falls back to pericenter. In the Newtonian limit, this flare will have a light curve that scales as t^-5/3 if the tidal debris has a flat distribution in binding energy. We investigate the time dependence of the black-hole mass accretion rate when tidal disruption occurs close enough the black hole that relativistic effects are significant. We find that for orbits with pericenters comparable to the radius of the marginally bound circular orbit, relativistic effects can double the peak accretion rate and halve the time it takes to reach this peak accretion rate. The accretion rate depends on both the magnitude of the black-hole spin and its orientation with respect to the stellar orbit; for orbits with a given pericenter radius in Boyer-Lindquist coordinates, a maximal black-hole spin anti-aligned with the orbital angular momentum leads to the largest peak accretion rate.

Michael Kesden

2012-07-26T23:59:59.000Z

238

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

All Eyes on Eastport: Tidal Energy Project Brings Change, All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community July 24, 2012 - 2:40pm Addthis Captain Gerald "Gerry" Morrison, Vice President of Perry Marine & Consctruction. | Photo Courtesy of Ocean Renewable Power Company. Captain Gerald "Gerry" Morrison, Vice President of Perry Marine & Consctruction. | Photo Courtesy of Ocean Renewable Power Company. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Today in Eastport, Maine, people are gathering to celebrate a project that will harness the power of the massive tides of Cobscook Bay to generate clean electricity. At a public dedication event this afternoon, Portland-based Ocean Renewable

239

Visualizing Spacetime Curvature via Frame-Drag Vortexes and Tidal Tendexes II. Stationary Black Holes  

E-Print Network (OSTI)

When one splits spacetime into space plus time, the Weyl curvature tensor (which equals the Riemann tensor in vacuum) splits into two spatial, symmetric, traceless tensors: the tidal field $E$, which produces tidal forces, and the frame-drag field $B$, which produces differential frame dragging. In recent papers, we and colleagues have introduced ways to visualize these two fields: tidal tendex lines (integral curves of the three eigenvector fields of $E$) and their tendicities (eigenvalues of these eigenvector fields); and the corresponding entities for the frame-drag field: frame-drag vortex lines and their vorticities. These entities fully characterize the vacuum Riemann tensor. In this paper, we compute and depict the tendex and vortex lines, and their tendicities and vorticities, outside the horizons of stationary (Schwarzschild and Kerr) black holes; and we introduce and depict the black holes' horizon tendicity and vorticity (the normal-normal components of $E$ and $B$ on the horizon). For Schwarzschil...

Zhang, Fan; Nichols, David A; Chen, Yanbei; Lovelace, Geoffrey; Matthews, Keith D; Owen, Robert; Thorne, Kip S

2012-01-01T23:59:59.000Z

240

Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA  

SciTech Connect

Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.

Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.

2012-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Area Earth Tidal Analysis At Raft River Geothermal Area (1984) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. In the present work, change in external stress is estimated from

242

THRESHING IN ACTION: THE TIDAL DISRUPTION OF A DWARF GALAXY BY THE HYDRA I CLUSTER  

Science Conference Proceedings (OSTI)

We report on the discovery of strong tidal features around a dwarf spheroidal galaxy in the Hydra I galaxy cluster, indicating its ongoing tidal disruption. This very low surface brightness object, HCC-087, was originally classified as an early-type dwarf in the Hydra Cluster Catalogue (HCC), but our re-analysis of the ESO-VLT/FORS images of the HCC unearthed a clear indication of an S-shaped morphology and a large spatial extent. Its shape, luminosity (M{sub V} = -11.6 mag), and physical size (at a half-light radius of 3.1 kpc and a full length of {approx}5.9 kpc) are comparable to the recently discovered NGC 4449B and the Sagittarius dwarf spheroidal, all of which are undergoing clear tidal disruption. Aided by N-body simulations we argue that HCC-087 is currently at its first apocenter, at 150 kpc, around the cluster center and that it is being tidally disrupted by the galaxy cluster's potential itself. An interaction with the nearby (50 kpc) S0 cluster galaxy HCC-005, at M{sub *} {approx} 3 Multiplication-Sign 10{sup 10} M{sub Sun} is rather unlikely, as this constellation requires a significant amount of dynamical friction and thus low relative velocities. The S-shaped morphology and large spatial extent of the satellite would, however, also appear if HCC-087 would orbit the cluster center. These features appear to be characteristic properties of satellites that are seen in the process of being tidally disrupted, independent of the environment of the destruction. An important finding of our simulations is an orientation of the tidal tails perpendicular to the orbit.

Koch, Andreas [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany); Burkert, Andreas [Universitaetssternwarte der Ludwig-Maximilians Universitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Rich, R. Michael; Black, Christine S. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA (United States); Collins, Michelle L. M. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Hilker, Michael [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Benson, Andrew J., E-mail: akoch@lsw.uni-heidelberg.de [Department of Astronomy, Caltech, Pasadena, CA (United States)

2012-08-10T23:59:59.000Z

243

Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report  

Science Conference Proceedings (OSTI)

Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energyâ??s Wind and Hydropower Technologies Programâ??s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

Craig W. Collar

2012-11-16T23:59:59.000Z

244

Production of tidal-charged black holes at the Large Hadron Collider  

E-Print Network (OSTI)

Tidal-charged black hole solutions localized on a three-brane in the five-dimensional gravity scenario of Randall and Sundrum have been known for some time. The solutions have been used to study the decay, and growth, of black holes with initial mass of about 10 TeV. These studies are interesting in that certain black holes, if produced at the Large Hadron Collider, could live long enough to leave the detectors. I examine the production of tidal-charged black holes at the Large Hadron Collider and show that it is very unlikely that they will be produced during the lifetime of the accelerator.

Douglas M. Gingrich

2010-01-05T23:59:59.000Z

245

Production of tidal-charged black holes at the Large Hadron Collider  

SciTech Connect

Tidal-charged black hole solutions localized on a three-brane in the five-dimensional gravity scenario of Randall and Sundrum have been known for some time. The solutions have been used to study the decay, and growth, of black holes with initial mass of about 10 TeV. These studies are interesting in that certain black holes, if produced at the Large Hadron Collider, could live long enough to leave the detectors. I examine the production of tidal-charged black holes at the Large Hadron Collider and show that it is very unlikely that they will be produced during the lifetime of the accelerator.

Gingrich, Douglas M. [Centre for Particle Physics, Department of Physics, University of Alberta, Edmonton, AB T6G 2G7 (Canada)

2010-03-01T23:59:59.000Z

246

Original article: Estimation of spatially varying open boundary conditions for a numerical internal tidal model with adjoint method  

Science Conference Proceedings (OSTI)

The adjoint data assimilation technique is applied to the estimation of the spatially varying open boundary conditions (OBCs) for a numerical internal tidal model. The spatial variation of the OBCs is realized by the so-called 'independent point scheme' ... Keywords: Adjoint method, Internal tidal model, Open boundary conditions, Parameter estimation, Spatial variation

Haibo Chen, Anzhou Cao, Jicai Zhang, Chunbao Miao, Xianqing Lv

2014-03-01T23:59:59.000Z

247

Dissipation Measurement with a Moored Instrument in a Swift Tidal Channel  

Science Conference Proceedings (OSTI)

A moored and autonomous instrument that measures velocity and temperature fluctuations in the inertial subrange using shear probes and FP07 thermistors has been deployed in a swift [O(1 m s?1)] tidal channel for eight days. The measured velocity ...

Rolf Lueck; Daniel Huang

1999-11-01T23:59:59.000Z

248

Occultation of the T Tauri Star RW Aurigae A by its Tidally Disrupted Disk  

E-Print Network (OSTI)

RW Aur A is a classical T Tauri star, believed to have undergone a reconfiguration of its circumstellar environment as a consequence of a recent fly-by of its stellar companion, RW Aur B. This interaction stripped away part of the circumstellar disk of RW Aur A, leaving a tidally disrupted arm and a short truncated circumstellar disk. We present photometric observations of the RW Aur system from the Kilodegree Extremely Little Telescope (KELT) survey showing a long and deep dimming that occurred from September 2010 until March 2011. The dimming has a depth of ~2 magnitudes, a duration of ~180 days and was confirmed by archival observations from American Association of Variable Star Observers (AAVSO). We suggest that this event is the result of a portion of the tidally disrupted disk occulting RW Aur A, specifically a fragment of the tidally disrupted arm. The calculated transverse linear velocity of the occulter is in excellent agreement with the measured relative radial velocity of the tidally disrupted arm....

Rodriguez, Joseph E; Stassun, Keivan G; Siverd, Robert J; Cargile, Phillip; Beatty, Thomas G; Gaudi, B Scott

2013-01-01T23:59:59.000Z

249

The Tidally Averaged Momentum Balance in a Partially and Periodically Stratified Estuary  

Science Conference Proceedings (OSTI)

Observations of turbulent stresses and mean velocities over an entire springneap cycle are used to evaluate the dynamics of tidally averaged flows in a partially stratified estuarine channel. In a depth-averaged sense, the net flow in this ...

Mark T. Stacey; Matthew L. Brennan; Jon R. Burau; Stephen G. Monismith

2010-11-01T23:59:59.000Z

250

Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance, nonzero  

E-Print Network (OSTI)

Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance of spin-orbit resonance, nonzero eccentricity, despinning, and reorientation on Mercury's gravity and tectonic pattern. Large variations of the gravity and shape coefficients from the synchronous rotation

Nimmo, Francis

251

Vertical Variations of Tidal Currents in Shallow Land Fast Ice-Covered Regions  

Science Conference Proceedings (OSTI)

Arctic tidal currents with periods near the local inertial period are strongest and rotate clockwise at mid-depth, and decrease in amplitude towards the bottom and ice-cover, experiencing a change in direction of rotation of the current vector to ...

S. J. Prinsenberg; E. B. Bennett

1989-09-01T23:59:59.000Z

252

Tidal Exchange through a Strait: A Numerical Experiment Using a Simple Model Basin  

Science Conference Proceedings (OSTI)

In order to investigate the mechanism of tidal exchange through a strait, we numerically track the Lagrangian movement of water particles over a full cycle of the M2 tide. As a result, it is found that the spatially rapid changes of the amplitude ...

Toshiyuki Awaji; Norihisa Imasato; Hideaki Kunishi

1980-10-01T23:59:59.000Z

253

Observational Signature of Tidal Disruption of a Star by a Massive Black Hole  

E-Print Network (OSTI)

Abstract. We have modeled the time-variable profiles of the H? emission line from the nonaxisymmetric disk and debris tail created in the tidal disruption of a solar-type star by a 10 6 M? black hole. We find that the line profiles at these very early stages of the evolution of the postdisruption debris do not resemble the double peaked profiles expected from a rotating disk since the debris has not yet settled into such a stable structure. The predicted line profiles vary on fairly short time scales (of order hours to days). As a result of the uneven distribution of the debris and the existence of a tidal tail (the stream of returning debris), the line profiles depend sensitively on the orientation of the tail relative to the line of sight. Given the illuminating UV/X-ray light curve, we also model the H? light curve from the debris. Light Curves and Emission Line Profiles From the Tidal Debris Simulations of tidal disruption of a star were carried out using a three-dimensional, relativistic, smooth-particle hydrodynamics code (Laguna et al. 1993), to describe the early evolution of the debris during the first fifty to ninety days. We have used the photoionization code CLOUDY (Ferland 1996) to calculate the physical conditions and radiative processes in the debris. To obtain the observed profile from the relativistic

Tamara Bogdanovi?; Michael Eracleous; Suvrath Mahadevan; Steinn Sigurdsson; Pablo Laguna

2004-01-01T23:59:59.000Z

254

A Case Study of WaveCurrent Interaction in a Strong Tidal Current  

Science Conference Proceedings (OSTI)

During August 1991, a field program was carried out in the vicinity of Cape St. James, off the British Columbia coast, where a strong tidally driven flow interacts with an active wave climate. Surface current maps were obtained from a CODAR-type ...

Diane Masson

1996-03-01T23:59:59.000Z

255

Dissecting the Pressure Field in Tidal Flow past a Headland: When Is Form Drag Real?  

Science Conference Proceedings (OSTI)

In the few previous measurements of topographic form drag in the ocean, drag that is much larger than a typical bluff body drag estimate has been consistently found. In this work, theory combined with a numerical model of tidal flow around a ...

Sally J. Warner; Parker MacCready

2009-11-01T23:59:59.000Z

256

Tidal Mixing in the Southern Weddell Sea: Results from a Three-Dimensional Model  

Science Conference Proceedings (OSTI)

A three-dimensional primitive equation ocean model is used to study the magnitude and distribution of tidal mixing in the southern Weddell Sea. The contributions of (i) semidiurnal barotropic constituents M2 and S2, (ii) internal tides, and (iii) ...

Adriene F. Pereira; Aike Beckmann; Hartmut H. Hellmer

2002-07-01T23:59:59.000Z

257

Isolation of Four Diatom Strains from Tidal Mud toward Biofuel Production  

Science Conference Proceedings (OSTI)

Development and utilization of bio-energy is an important way to relieve the pressure of global energy shortage. Biodiesel can be a focus of the bio-energy, because it is a cleaner-burning and renewable fuel. Micro algae have been considered to be an ... Keywords: biodiesel, diatom, isolation, tidal mud

Yu Gao; Yang Yu; Junrong Liang; Yahui Gao; Qiaoqi Luo

2012-05-01T23:59:59.000Z

258

Tidally Forced Internal Wave Mixing in a k? Model Framework Applied to Fjord Basins  

Science Conference Proceedings (OSTI)

A simple method for including tidally forced internal wave mixing in a two-equation turbulence closure framework, the k? model, is presented. The purpose is to model the vertical mixing in the basin waters of stagnant sill fjords. An internal ...

Olof Liungman

2000-02-01T23:59:59.000Z

259

Relativistic effects in the tidal interaction between a white dwarf and a massive black hole in Fermi normal coordinates  

E-Print Network (OSTI)

We consider tidal encounters between a white dwarf and an intermediate mass black hole. Both weak encounters and those at the threshold of disruption are modeled. The numerical code combines mesh-based hydrodynamics, a spectral method solution of the self-gravity, and a general relativistic Fermi normal coordinate system that follows the star and debris. Fermi normal coordinates provide an expansion of the black hole tidal field that includes quadrupole and higher multipole moments and relativistic corrections. We compute the mass loss from the white dwarf that occurs in weak tidal encounters. Secondly, we compute carefully the energy deposition onto the star, examining the effects of nonradial and radial mode excitation, surface layer heating, mass loss, and relativistic orbital motion. We find evidence of a slight relativistic suppression in tidal energy transfer. Tidal energy deposition is compared to orbital energy loss due to gravitational bremsstrahlung and the combined losses are used to estimate tidal capture orbits. Heating and partial mass stripping will lead to an expansion of the white dwarf, making it easier for the star to be tidally disrupted on the next passage. Finally, we examine angular momentum deposition. By including the octupole tide, we are able for the first time to calculate deflection of the center of mass of the star and debris. With this observed deflection, and taking into account orbital relativistic effects, we compute directly the change in orbital angular momentum and show its balance with computed spin angular momentum deposition.

Roseanne M. Cheng; Charles R. Evans

2013-03-18T23:59:59.000Z

260

Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound  

SciTech Connect

Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has significantly advanced the District's goals of developing a demonstration-scale tidal energy proj

Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

2012-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Coupled Model for Laplace's Tidal Equations in a Fluid with One Horizontal Dimension and Variable Depth  

Science Conference Proceedings (OSTI)

Tidetopography interactions dominate the transfer of tidal energy from large to small scales. At present, it is poorly understood how low-mode internal tides reflect and scatter along the continental margins. Here, the coupling equations for ...

Samuel M. Kelly; Nicole L. Jones; Jonathan D. Nash

2013-08-01T23:59:59.000Z

262

Assessment of the Effects of Tidal Mixing in the Kuril Straits on the Formation of the North Pacific Intermediate Water  

Science Conference Proceedings (OSTI)

To assess accurately the effect of tidal mixing in the Kuril Straits on the formation of the North Pacific Intermediate Water (NPIW), the spatial distribution of diapycnal diffusivity recently obtained by the present authors is incorporated into ...

Yuki Tanaka; Toshiyuki Hibiya; Yoshihiro Niwa

2010-12-01T23:59:59.000Z

263

Drivers of Residual Estuarine Circulation in Tidally Energetic Estuaries: Straight and Irrotational Channels with Parabolic Cross Section  

Science Conference Proceedings (OSTI)

The generation of residual circulation in a tidally energetic estuary with constant longitudinal salinity gradient and parabolic cross section is examined by means of a two-dimensional cross-sectional numerical model, neglecting river runoff and ...

Hans Burchard; Robert D. Hetland; Elisabeth Schulz; Henk M. Schuttelaars

2011-03-01T23:59:59.000Z

264

The Spatial Structure of Tidal and Mean Circulation over the Inner Shelf South of Martha's Vineyard, Massachusetts  

Science Conference Proceedings (OSTI)

The spatial structure of the tidal and background circulation over the inner shelf south of Martha's Vineyard, Massachusetts, was investigated using observations from a high-resolution, high-frequency coastal radar system, paired with satellite ...

Anthony R. Kirincich; Steven J. Lentz; J. Thomas Farrar; Neil K. Ganju

2013-09-01T23:59:59.000Z

265

MHK Projects/Guemes Channel Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Guemes Channel Tidal Energy Project Guemes Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.5343,"lon":-123.017,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

266

MHK Projects/Icy Passage Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Icy Passage Tidal Energy Project Icy Passage Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.4133,"lon":-135.737,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

267

MHK Projects/Roosevelt Island Tidal Energy RITE | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Island Tidal Energy RITE Roosevelt Island Tidal Energy RITE < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7639,"lon":-73.9466,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

268

MHK Projects/Indian River Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Hydrokinetic Energy Project Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6853,"lon":-75.0694,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

269

MHK Projects/Tacoma Narrows Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Narrows Tidal Energy Project Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.2591,"lon":-122.445,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

270

MHK Projects/Cape Islands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Islands Tidal Energy Project Islands Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4833,"lon":-70.7578,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

271

MHK Projects/Central Cook Inlet Alaska Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Energy Project Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

272

MHK Projects/Portsmouth Area Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Portsmouth Area Tidal Energy Project Portsmouth Area Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1081,"lon":-70.7776,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

273

MHK Projects/San Juan Channel Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

San Juan Channel Tidal Energy Project San Juan Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.5896,"lon":-123.012,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

274

Earth Tidal Analysis At East Mesa Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At East Mesa Geothermal Area (1984) Exploration Activity Details Location East Mesa Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is

275

MHK Projects/Fishers Island Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Fishers Island Tidal Energy Project Fishers Island Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2379,"lon":-72.0599,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

276

MHK Projects/Spieden Channel Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Spieden Channel Tidal Energy Project Spieden Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.5341,"lon":-123.013,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

277

MHK Projects/Town of Wiscasset Tidal Resources | Open Energy Information  

Open Energy Info (EERE)

Town of Wiscasset Tidal Resources Town of Wiscasset Tidal Resources < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8028,"lon":-69.7833,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

278

MHK Projects/Kachemak Bay Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Kachemak Bay Tidal Energy Project Kachemak Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

279

MHK Projects/Edgar Town Nantucket Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Edgar Town Nantucket Tidal Energy Edgar Town Nantucket Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3638,"lon":-70.2766,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

280

MHK Projects/Homeowner Tidal Power Elec Gen | Open Energy Information  

Open Energy Info (EERE)

Homeowner Tidal Power Elec Gen Homeowner Tidal Power Elec Gen < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4468,"lon":-69.6933,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

MHK Projects/Hammerfest Strom UK Tidal Stream | Open Energy Information  

Open Energy Info (EERE)

Hammerfest Strom UK Tidal Stream Hammerfest Strom UK Tidal Stream < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.3781,"lon":-3.43597,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

282

MHK Projects/Ward s Island Tidal Power Project | Open Energy Information  

Open Energy Info (EERE)

Ward s Island Tidal Power Project Ward s Island Tidal Power Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7818,"lon":-73.9316,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

283

MHK Projects/San Francisco Bay Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Francisco Bay Tidal Energy Project Francisco Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.691,"lon":-122.311,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

284

MHK Projects/Cape Cod Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Cape Cod Tidal Energy Project Cape Cod Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7686,"lon":-70.5651,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

285

MHK Projects/Shelter Island Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Shelter Island Tidal Energy Project Shelter Island Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0453,"lon":-72.3748,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

286

Oscillations of rotating bodies: A self-adjoint formalism applied to dynamic tides and tidal capture  

E-Print Network (OSTI)

We consider the excitation of the inertial modes of a uniformly rotating fully convective body due to a close encounter with another object. This could lead to a tidal capture or orbital circularisation depending on whether the initial orbit is unbound or highly eccentric. We develop a general self-adjoint formalism for the response problem and thus solve it taking into account the inertial modes with $m=2$ for a full polytrope with $n=1.5.$ We are accordingly able to show in this case that the excitation of inertial modes dominates the response for large impact parameters and thus cannot be neglected in calculations of tidal energy and angular momentum exchange or orbital circularisation from large eccentricity.

J. C. B. Papaloizou; P. B. Ivanov

2005-09-20T23:59:59.000Z

287

DISCOVERY OF TIDAL TAILS AROUND THE DISTANT GLOBULAR CLUSTER PALOMAR 14  

SciTech Connect

We report the detection of a pair of degree-long tidal tails associated with the globular cluster Palomar 14, using images obtained at the Canada-France-Hawaii Telescope. We reveal a power-law departure from a King profile at large distances to the cluster center. The density map constructed with the optimal matched filter technique shows a nearly symmetrical and elongated distribution of stars on both sides of the cluster, forming an S-shape characteristic of mass loss. This evidence may be the telltale signature of tidal stripping in action. This, together with its large Galactocentric distance, imposes strong constraints on its orbit and/or origin: (1) it must follow an external orbit confined to the peripheral region of the Galactic halo and/or (2) it formed in a satellite galaxy later accreted by the Milky Way.

Sollima, A.; Martinez-Delgado, D. [Instituto de Astrofisica de Canarias, E-38205 San Cristobal de La Laguna (Spain); Valls-Gabaud, D. [GEPI, CNRS UMR 8111, Observatoire de Paris, 5 Place Jules Janssen, 92195 Meudon (France); Penarrubia, J. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

2011-01-01T23:59:59.000Z

288

CONSTRAINING TIDAL DISSIPATION IN STARS FROM THE DESTRUCTION RATES OF EXOPLANETS  

Science Conference Proceedings (OSTI)

We use the distribution of extrasolar planets in circular orbits around stars with surface convective zones detected by ground-based transit searches to constrain how efficiently tides raised by the planet are dissipated on the parent star. We parameterize this efficiency as a tidal quality factor (Q{sub *}). We conclude that the population of currently known planets is inconsistent with Q{sub *} < 10{sup 7} at the 99% level. Previous studies show that values of Q{sub *} between 10{sup 5} and 10{sup 7} are required in order to explain the orbital circularization of main-sequence low-mass binary stars in clusters, suggesting that different dissipation mechanisms might be acting in the two cases, most likely due to the very different tidal forcing frequencies relative to the stellar rotation frequency occurring for star-star versus planet-star systems.

Penev, Kaloyan [Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Jackson, Brian [Carnegie DTM, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Spada, Federico [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Thom, Nicole [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

2012-06-01T23:59:59.000Z

289

MHK Projects/Willapa Bay Tidal Power Project | Open Energy Information  

Open Energy Info (EERE)

Willapa Bay Tidal Power Project Willapa Bay Tidal Power Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.7161,"lon":-124.038,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

290

MHK Projects/Long Island Sound Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Long Island Sound Tidal Energy Project Long Island Sound Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1674,"lon":-72.218,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

291

MHK Projects/Half Moon Cove Tidal Project | Open Energy Information  

Open Energy Info (EERE)

Half Moon Cove Tidal Project Half Moon Cove Tidal Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9062,"lon":-66.99,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

292

TIDAL TAILS OF MINOR MERGERS: STAR FORMATION EFFICIENCY IN THE WESTERN TAIL OF NGC 2782  

SciTech Connect

While major mergers and their tidal debris are well studied, they are less common than minor mergers (mass ratios {approx}< 0.3). The peculiar spiral NGC 2782 is the result of a merger between two disk galaxies with a mass ratio of {approx}4: 1 occurring {approx}200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun to occur in that tidal tail. However, deep H{alpha} narrowband images show evidence of recent star formation in the western tail. Across the entire western tail, we find the global star formation rate per unit area ({Sigma}{sub SFR}) to be several orders of magnitude less than expected from the total gas density. Together with extended FUV+NUV emission from Galaxy Evolution Explorer along the tail, this indicates a low global star formation efficiency in the tidal tail producing lower mass star clusters. The H II region that we observed has a local (few-kiloparsec scale) {Sigma}{sub SFR} from H{alpha} that is less than that expected from the total gas density, which is consistent with other observations of tidal debris. The star formation efficiency of this H II region inferred from the total gas density is low, but normal when inferred from the molecular gas density. These results suggest the presence of a very small, locally dense region in the western tail of NGC 2782 or of a low-metallicity and/or low-pressure star-forming region.

Knierman, Karen; Scowen, Paul; Jansen, Rolf A. [School of Earth and Space Exploration, Arizona State University, 550 East Tyler Mall, Room PSF-686 (P.O. Box 871404), Tempe, AZ 85287-1404 (United States); Knezek, Patricia M. [WIYN Consortium, Inc., 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Wehner, Elizabeth, E-mail: karen.knierman@asu.edu, E-mail: paul.scowen@asu.edu, E-mail: rolf.jansen@asu.edu, E-mail: pknezek@noao.edu, E-mail: ewehner@haverford.edu [Department of Astronomy, Haverford College, Haverford, PA 19041 (United States)

2012-04-10T23:59:59.000Z

293

Broadband Acoustic Environment at a Tidal Energy Site in Puget Sound  

SciTech Connect

Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines. Several monitoring technologies are being considered to determine the presence of SRKW near the turbines. Broadband noise level measurements are critical for determining design and operational specifications of these technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array from three different cruises during high tidal period in February, May, and June 2011. The ambient noise level decreases approximately 25 dB re 1 ?Pa per octave from frequency ranges of 1 kHz to 70 kHz, and increases approximately 20 dB re 1 ?Pa per octave for the frequency from 70 kHz to 200 kHz. The difference of noise pressure levels in different months varies from 10 to 30 dB re 1 ?Pa for the frequency range below 70 kHz. Commercial shipping and ferry vessel traffic were found to be the most significant contributors to sound pressure levels for the frequency range from 100 Hz to 70 kHz, and the variation could be as high as 30 dB re 1 ?Pa. These noise level measurements provide the basic information for designing and evaluating both active and passive monitoring systems proposed for deploying and operating for tidal power generation alert system.

Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.

2012-04-04T23:59:59.000Z

294

Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade  

DOE Green Energy (OSTI)

This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

Bir, G. S.; Lawson, M. J.; Li, Y.

2011-10-01T23:59:59.000Z

295

Visualizing Spacetime Curvature via Frame-Drag Vortexes and Tidal Tendexes II. Stationary Black Holes  

E-Print Network (OSTI)

When one splits spacetime into space plus time, the Weyl curvature tensor (which equals the Riemann tensor in vacuum) splits into two spatial, symmetric, traceless tensors: the tidal field $E$, which produces tidal forces, and the frame-drag field $B$, which produces differential frame dragging. In recent papers, we and colleagues have introduced ways to visualize these two fields: tidal tendex lines (integral curves of the three eigenvector fields of $E$) and their tendicities (eigenvalues of these eigenvector fields); and the corresponding entities for the frame-drag field: frame-drag vortex lines and their vorticities. These entities fully characterize the vacuum Riemann tensor. In this paper, we compute and depict the tendex and vortex lines, and their tendicities and vorticities, outside the horizons of stationary (Schwarzschild and Kerr) black holes; and we introduce and depict the black holes' horizon tendicity and vorticity (the normal-normal components of $E$ and $B$ on the horizon). For Schwarzschild and Kerr black holes, the horizon tendicity is proportional to the horizon's intrinsic scalar curvature, and the horizon vorticity is proportional to an extrinsic scalar curvature. We show that, for horizon-penetrating time slices, all these entities ($E$, $B$, the tendex lines and vortex lines, the lines' tendicities and vorticities, and the horizon tendicities and vorticities) are affected only weakly by changes of slicing and changes of spatial coordinates, within those slicing and coordinate choices that are commonly used for black holes. [Abstract is abbreviated.

Fan Zhang; Aaron Zimmerman; David A. Nichols; Yanbei Chen; Geoffrey Lovelace; Keith D. Matthews; Robert Owen; Kip S. Thorne

2012-08-15T23:59:59.000Z

296

THE INNER STRUCTURE AND KINEMATICS OF THE SAGITTARIUS DWARF GALAXY AS A PRODUCT OF TIDAL STIRRING  

Science Conference Proceedings (OSTI)

The tidal stirring model envisions the formation of dwarf spheroidal (dSph) galaxies in the Local Group and similar environments via the tidal interaction of disky dwarf systems with a larger host galaxy like the Milky Way. These progenitor disks are embedded in extended dark halos and during the evolution both components suffer strong mass loss. In addition, the disks undergo the morphological transformation into spheroids and the transition from ordered to random motion of their stars. Using collisionless N-body simulations, we construct a model for the nearby and highly elongated Sagittarius (Sgr) dSph galaxy within the framework of the tidal stirring scenario. Constrained by the present orbit of the dwarf, which is fairly well known, the model suggests that in order to produce the majority of tidal debris observed as the Sgr stream, but not yet transform the core of the dwarf into a spherical shape, Sgr must have just passed the second pericenter of its current orbit around the Milky Way. In the model, the stellar component of Sgr is still very elongated after the second pericenter and morphologically intermediate between the strong bar formed at the first pericenter and the almost spherical shape existing after the third pericenter. This is thus the first model of the evolution of the Sgr dwarf that accounts for its observed very elliptical shape. At the present time, there is very little intrinsic rotation left and the velocity gradient detected along the major axis is almost entirely of tidal origin. We model the recently measured velocity dispersion profile for Sgr assuming that mass traces light and estimate its current total mass within 5 kpc to be 5.2 x 10{sup 8} M{sub sun}. To have this mass at present, the model requires that the initial virial mass of Sgr must have been as high as 1.6 x 10{sup 10} M{sub sun}, comparable to that of the Large Magellanic Cloud, which may serve as a suitable analog for the pre-interaction, Sgr progenitor.

Lokas, Ewa L. [Nicolaus Copernicus Astronomical Center, 00-716 Warsaw (Poland); Kazantzidis, Stelios [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Law, David R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Mayer, Lucio [Institute for Theoretical Physics, University of Zuerich, CH-8057 Zuerich (Switzerland); Frinchaboy, Peter M., E-mail: lokas@camk.edu.p, E-mail: stelios@mps.ohio-state.ed, E-mail: srm4n@virginia.ed, E-mail: drlaw@astro.ucla.ed, E-mail: lucio@phys.ethz.c, E-mail: p.frinchaboy@tcu.ed [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States)

2010-12-20T23:59:59.000Z

297

Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project  

DOE Green Energy (OSTI)

The Islands of Martha?¢????s Vineyard and Nantucket are separated from the Massachusetts mainland by Vineyard and Nantucket Sounds; water between the two islands flows through Muskeget Channel. The towns of Edgartown (on Martha?¢????s Vineyard) and Nantucket recognize that they are vulnerable to power supply interruptions due to their position at the end of the power grid, and due to sea level rise and other consequences of climate change. The tidal energy flowing through Muskeget Channel has been identified by the Electric Power Research Institute as the strongest tidal resource in Massachusetts waters. The Town of Edgartown proposes to develop an initial 5 MW (nameplate) tidal energy project in Muskeget Channel. The project will consist of 14 tidal turbines with 13 providing electricity to Edgartown and one operated by the University of Massachusetts at Dartmouth for research and development. Each turbine will be 90 feet long and 50 feet high. The electricity will be brought to shore by a submarine cable buried 8 feet below the seabed surface which will landfall in Edgartown either on Chappaquiddack or at Katama. Muskeget Channel is located between Martha?¢????s Vineyard and Nantucket. Its depth ranges between 40 and 160 feet in the deepest portion. It has strong currents where water is transferred between Nantucket Sound and the Atlantic Ocean continental shelf to the south. This makes it a treacherous passage for navigation. Current users of the channel are commercial and recreational fishing, and cruising boats. The US Coast Guard has indicated that the largest vessel passing through the channel is a commercial scallop dragger with a draft of about 10 feet. The tidal resource in the channel has been measured by the University of Massachusetts-Dartmouth and the peak velocity flow is approximately 5 knots. The technology proposed is the helical Gorlov-type turbine positioned with a horizontal axis that is positively buoyant in the water column and held down by anchors. This is the same technology proposed by Ocean Renewable Power Company in the Western Passage and Cobscook Bay near Eastport Maine. The blades rotate in two directions capturing the tides energy both during flood and ebb tides. The turbines will be anchored to the bottom and suspended in the water column. Initial depth of the turbines is expected to be about 25 feet below the surface to avoid impacting navigation while also capturing the strongest currents. The Town of Edgartown was initially granted a Preliminary Permit by the Federal Energy Regulatory Commission (FERC) on March 1, 2008, and has recently received a second permit valid through August 2014. The Preliminary Permit gives Edgartown the exclusive right to apply for a power generation license for power generated from the hydrokinetic energy in the water flowing in this area. Edgartown filed a Draft Pilot License Application with FERC on February 1, 2010 and an Expanded Environmental Notification Form with the Massachusetts Environmental Policy Act (MEPA) Office at the same time. It expects to file a Final License Application in late 2013. Harris Miller Miller & Hanson (HMMH) of Burlington Massachusetts is acting as the Project Manager for the Town of Edgartown and collaborating with other partners of the project including the University of Massachusetts - Dartmouth's Marine Renewable Energy Center and the Massachusetts Clean Energy Center. HMMH was awarded a grant under the Department of Energy's Advanced Water Program to conduct marine science and hydrokinetic site-specific environmental studies for projects actively seeking a FERC License. HMMH, on behalf of the Town, is managing this comprehensive study of the marine environment in Muskeget Channel and potential impacts of the tidal project on indicator species and habitats. The University of Massachusetts School of Marine Science and Technology (SMAST) conducted oceanographic studies of tidal currents, tide level, benthic habit

Barrett, Stephen B.; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy; Roland, I.; and Terray, E, Ph.D.

2012-12-29T23:59:59.000Z

298

Lock-Free Garbage Collection for Multiprocessors Maurice P. Herlihy  

E-Print Network (OSTI)

). It is easy to examine our code sequences and determine the exact cache consistency re~uirements, so we omit

Massachusetts at Amherst, University of

299

STELLAR TIDAL STREAMS IN SPIRAL GALAXIES OF THE LOCAL VOLUME: A PILOT SURVEY WITH MODEST APERTURE TELESCOPES  

Science Conference Proceedings (OSTI)

Within the hierarchical framework for galaxy formation, minor merging and tidal interactions are expected to shape all large galaxies to the present day. As a consequence, most seemingly normal disk galaxies should be surrounded by spatially extended stellar 'tidal features' of low surface brightness. As part of a pilot survey for such interaction signatures, we have carried out ultra deep, wide field imaging of eight isolated spiral galaxies in the Local Volume, with data taken at small (D = 0.1-0.5 m) robotic telescopes that provide exquisite surface brightness sensitivity ({mu}{sub lim}(V) {approx} 28.5 mag arcsec{sup -2}). This initial observational effort has led to the discovery of six previously undetected extensive (to {approx}30 kpc) stellar structures in the halos surrounding these galaxies, likely debris from tidally disrupted satellites. In addition, we confirm and clarify several enormous stellar over-densities previously reported in the literature, but never before interpreted as tidal streams. Even this pilot sample of galaxies exhibits strikingly diverse morphological characteristics of these extended stellar features: great circle-like features that resemble the Sagittarius stream surrounding the Milky Way, remote shells and giant clouds of presumed tidal debris far beyond the main stellar body, as well as jet-like features emerging from galactic disks. Together with presumed remains of already disrupted companions, our observations also capture surviving satellites caught in the act of tidal disruption. A qualitative comparison with available simulations set in a {Lambda}Cold Dark Matter cosmology (that model the stellar halo as the result of satellite disruption evolution) shows that the extraordinary variety of stellar morphologies detected in this pilot survey matches that seen in those simulations. The common existence of these tidal features around 'normal' disk galaxies and the morphological match to the simulations constitutes new evidence that these theoretical models also apply to a large number of other Milky Way-mass disk galaxies in the Local Volume.

MartInez-Delgado, David; Zibetti, Stefano; Rix, Hans-Walter [Max Planck Institut fuer Astronomie, Heidelberg (Germany); Gabany, R. Jay [Black Bird Observatory, Mayhill, NM (United States); Crawford, Ken [Rancho del Sol Observatory, Modesto, CA (United States); Majewski, Steven R.; McDavid, David A. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Fliri, Juergen; Carballo-Bello, Julio A.; Bardalez-Gagliuffi, Daniella C.; Trujillo, Ignacio [Instituto de Astrofisica de Canarias, La Laguna (Spain); Penarrubia, Jorge [Institute of Astronomy, University of Cambridge (United Kingdom); Chonis, Taylor S. [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States); Madore, Barry [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Schirmer, Mischa [Argelander Institut fuer Astronomie, Universitaet Bonn (Germany)

2010-10-15T23:59:59.000Z

300

Star Clusters with Primordial Binaries: II. Dynamical Evolution of Models in a Tidal Field  

E-Print Network (OSTI)

[abridged] We extend our analysis of the dynamical evolution of simple star cluster models, in order to provide comparison standards that will aid in interpreting the results of more complex realistic simulations. We augment our previous primordial-binary simulations by introducing a tidal field, and starting with King models of different central concentrations. We present the results of N-body calculations of the evolution of equal-mass models, starting with primordial binary fractions of 0 - 100 %, and N values from 512 to 16384. We also attempt to extrapolate some of our results to the larger number of particles that are necessary to model globular clusters. We characterize the steady-state `deuterium main sequence' phase in which primordial binaries are depleted in the core in the process of `gravitationally burning'. In this phase we find that the ratio of the core to half-mass radius, r_c/r_h, is similar to that measured for isolated systems. In addition to the generation of energy due to hardening and depletion of the primordial binary population, the overall evolution of the star clusters is driven by a competing process: the tidal disruption of the system. We find that the depletion of primordial binaries before tidal dissolution of the system is possible only if the initial number is below 0.05 N, in the case of a King model with W_0=7 and N=4096 (which is one of our longest living models). We compare our findings, obtained by means of direct N-body simulations but scaled, where possible, to larger N, with similar studies carried out by means of Monte Carlo methods.

M. Trenti; D. C. Heggie; P. Hut

2006-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report  

DOE Green Energy (OSTI)

The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

Craig W. Collar

2012-11-16T23:59:59.000Z

302

Novel approach to the exploitation of tidal energy. Volume I. Summary and discussion, Final report  

Science Conference Proceedings (OSTI)

The objective of this program is the development of the hydropneumatic concept in the approach to harnessing low-head tidal hydropower. The approach is based on converting the energy of water flow into the energy of an air jet by means of a specialized air chamber which is placed on the ocean floor across a flowing watercourse. Water passes through the chamber where it works as a natural piston compressing air in the upper part of the closure. Then, compressed air is used as a new working plenum to drive air turbines. The kinetic energy of an air jet provided by the air chamber is sufficient for stable operation of industrial air turbines. Also, because of the absence of the power turbogenerators in the dam body and because of decreased water pressure (two-meter head, or even less) it becomes possible to use light plastic barriers instead of conventional rigid dams (the water sail concept). Figures presented confirmed that the proposed concept can result in a less expensive and more effective tidal power plant project than the conventional hydroturbine approach. The scale of the power installation actually does not affect the economic characteristics.

Gorlov, A.M.

1981-12-01T23:59:59.000Z

303

A STATISTICAL METHOD FOR MEASURING THE GALACTIC POTENTIAL AND TESTING GRAVITY WITH COLD TIDAL STREAMS  

SciTech Connect

We introduce the Minimum Entropy Method, a simple statistical technique for constraining the Milky Way gravitational potential and simultaneously testing different gravity theories directly from 6D phase-space surveys and without adopting dynamical models. We demonstrate that orbital energy distributions that are separable (i.e., independent of position) have an associated entropy that increases under wrong assumptions about the gravitational potential and/or gravity theory. Of known objects, 'cold' tidal streams from low-mass progenitors follow orbital distributions that most nearly satisfy the condition of separability. Although the orbits of tidally stripped stars are perturbed by the progenitor's self-gravity, systematic variations of the energy distribution can be quantified in terms of the cross-entropy of individual tails, giving further sensitivity to theoretical biases in the host potential. The feasibility of using the Minimum Entropy Method to test a wide range of gravity theories is illustrated by evolving restricted N-body models in a Newtonian potential and examining the changes in entropy introduced by Dirac, MONDian, and f(R) gravity modifications.

Penarrubia, Jorge [Instituto de Astrofisica de Andalucia-CSIC, Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Koposov, Sergey E. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Walker, Matthew G., E-mail: jorpega@iaa.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

2012-11-20T23:59:59.000Z

304

OBLIQUITIES OF HOT JUPITER HOST STARS: EVIDENCE FOR TIDAL INTERACTIONS AND PRIMORDIAL MISALIGNMENTS  

SciTech Connect

We provide evidence that the obliquities of stars with close-in giant planets were initially nearly random, and that the low obliquities that are often observed are a consequence of star-planet tidal interactions. The evidence is based on 14 new measurements of the Rossiter-McLaughlin effect (for the systems HAT-P-6, HAT-P-7, HAT-P-16, HAT-P-24, HAT-P-32, HAT-P-34, WASP-12, WASP-16, WASP-18, WASP-19, WASP-26, WASP-31, Gl 436, and Kepler-8), as well as a critical review of previous observations. The low-obliquity (well-aligned) systems are those for which the expected tidal timescale is short, and likewise the high-obliquity (misaligned and retrograde) systems are those for which the expected timescale is long. At face value, this finding indicates that the origin of hot Jupiters involves dynamical interactions like planet-planet interactions or the Kozai effect that tilt their orbits rather than inspiraling due to interaction with a protoplanetary disk. We discuss the status of this hypothesis and the observations that are needed for a more definitive conclusion.

Albrecht, Simon; Winn, Joshua N. [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Johnson, John A. [Department of Astrophysics, California Institute of Technology, MC249-17, Pasadena, CA 91125 (United States); Howard, Andrew W.; Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Butler, R. Paul [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Arriagada, Pamela [Department of Astronomy, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B. [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Hirano, Teruyuki [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Bakos, Gaspar; Hartman, Joel D. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States)

2012-09-20T23:59:59.000Z

305

Finite, Intense Accretion Bursts from Tidal Disruption of Stars on Bound Orbits  

E-Print Network (OSTI)

We study accretion processes for tidally disrupted stars approaching supermassive black holes on bound orbits, by performing three dimensional Smoothed Particle Hydrodynamics simulations with a pseudo-Newtonian potential. We find that there is a critical value of the orbital eccentricity below which all the stellar debris remains bound to the black hole. For high but sub-critical eccentricities, all the stellar mass is accreted onto the black hole in a finite time, causing a significant deviation from the canonical $t^{-5/3}$ mass fallback rate. When a star is on a moderately eccentric orbit and its pericenter distance is deeply inside the tidal disruption radius, there can be several orbit crossings of the debris streams due to relativistic precession. This dissipates orbital energy in shocks, allowing for rapid circularization of the debris streams and formation of an accretion disk. The resultant accretion rate greatly exceeds the Eddington rate and differs strongly from the canonical rate of $t^{-5/3}$. By contrast, there is little dissipation due to orbital crossings for the equivalent simulation with a purely Newtonian potential. This shows that general relativistic precession is crucial for accretion disk formation via circularization of stellar debris from stars on moderately eccentric orbits.

Kimitake Hayasaki; Nicholas Stone; Abraham Loeb

2012-10-04T23:59:59.000Z

306

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats of the Lower Columbia River, 20072010  

SciTech Connect

The TFM study was designed to investigate the ecology and early life history of juvenile salmonids within shallow (<5 m) tidal freshwater habitats of the LCRE. We started collecting field data in June 2007. Since then, monthly sampling has occurred in the vicinity of the Sandy River delta (rkm 192208) and at other sites and times in lower river reaches of tidal freshwater (rkm 110 to 141). This report provides a comprehensive synthesis of data covering the field period from June 2007 through April 2010.

Johnson, Gary E.; Storch, Adam; Skalski, J. R.; Bryson, Amanda J.; Mallette, Christine; Borde, Amy B.; Van Dyke, E.; Sobocinski, Kathryn L.; Sather, Nichole K.; Teel, David; Dawley, Earl M.; Ploskey, Gene R.; Jones, Tucker A.; Zimmerman, Shon A.; Kuligowski, D. R.

2011-03-01T23:59:59.000Z

307

Comparison of Two- and Three-Dimensional Model Simulation of the Effect of a Tidal Barrier on the Gulf of Maine Tides  

Science Conference Proceedings (OSTI)

Two-dimensional and three-dimensional tide models were used to simulate the M2 tide in the Gulf of Maine. Model estimates of changes to the tide caused by a tidal barrier in the upper Bay of Fundy were made and compared. Tidal amplitudes in the ...

Peter V. Sucsy; Bryan R. Pearce; Vijay G. Panchang

1993-06-01T23:59:59.000Z

308

NREL Uses Computing Power to Investigate Tidal Power (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Uses Computing Power to Uses Computing Power to Investigate Tidal Power Researchers at the National Renewable Energy Laboratory (NREL) have applied their knowledge of wind flow and turbulence to simulations of underwater tidal turbines. Inspired by similar simulations of wind turbine arrays, NREL researchers used their wind expertise, a supercomputer, and large-eddy simulation to study how the placement of turbines affects the power production of an underwater tidal turbine array. As tides ebb and flow, they create water currents that carry a significant amount of kinetic energy. To capture this energy, several companies are developing and deploying devices known as horizontal-axis tidal turbines, which resemble small wind turbines. These devices can be arranged in an array of multiple turbines to maximize the energy extracted in tidal

309

The Temporal Response of the Length of a Partially Stratified Estuary to Changes in River Flow and Tidal Amplitude  

Science Conference Proceedings (OSTI)

The temporal response of the length of a partially mixed estuary to changes in freshwater discharge Qf and tidal amplitude UT is studied using a 108-day time series collected along the length of the Hudson River estuary in the spring and summer ...

James A. Lerczak; W. Rockwell Geyer; David K. Ralston

2009-04-01T23:59:59.000Z

310

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats of the Lower Columbia River, 20072010  

Science Conference Proceedings (OSTI)

The TFM study was designed to investigate the ecology and early life history of juvenile salmonids within shallow (Sandy River delta (rkm 192208) and at other sites and times in lower river reaches of tidal freshwater (rkm 110 to 141). This report provides a comprehensive synthesis of data covering the field period from June 2007 through April 2010.

Johnson, Gary E.; Storch, Adam; Skalski, J. R.; Bryson, Amanda J.; Mallette, Christine; Borde, Amy B.; Van Dyke, E.; Sobocinski, Kathryn L.; Sather, Nichole K.; Teel, David; Dawley, Earl M.; Ploskey, Gene R.; Jones, Tucker A.; Zimmerman, Shon A.; Kuligowski, D. R.

2011-03-01T23:59:59.000Z

311

Solar Radiation and Tidal Exposure as Environmental Drivers of Enhalus acoroides Dominated Seagrass  

E-Print Network (OSTI)

There is strong evidence of a global long-term decline in seagrass meadows that is widely attributed to anthropogenic activity. Yet in many regions, attributing these changes to actual activities is difficult, as there exists limited understanding of the natural processes that can influence these valuable ecosystem service providers. Being able to separate natural from anthropogenic causes of seagrass change is important for developing strategies that effectively mitigate and manage anthropogenic impacts on seagrass, and promote coastal ecosystems resilient to future environmental change. The present study investigated the influence of environmental and climate related factors on seagrass biomass in a large solar radiation. This study documents how natural long-term tidal variability can influence long-term seagrass dynamics. Exposure to desiccation, high UV, and daytime temperature regimes are discussed as the likely mechanisms for the action of these factors in causing this decline. The results emphasise the importance of understanding and assessing natural environmentally-driven change when

Richard K. F. Unsworth; Michael A. Rasheed; Kathryn M. Chartr; Anthony J. Roelofs

2012-01-01T23:59:59.000Z

312

Stabilizing Cloud Feedback Dramatically Expands the Habitable Zone of Tidally Locked Planets  

E-Print Network (OSTI)

The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies. This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phen...

Yang, Jun; Abbot, Dorian S

2013-01-01T23:59:59.000Z

313

Three-Dimensional Simulations of Tidally Disrupted Solar-Type Stars  

E-Print Network (OSTI)

We describe a fully three-dimensional simulation of a 1 Msun solar-type star approaching a 10^6 Msun black hole on a parabolic orbit with a pericenter distance well within the tidal radius. While falling towards the black hole, the star is not only stretched along the orbital direction but even more severely compressed at right angles to the orbit. The overbearing degree of compression achieved shortly after pericenter leads to the production of strong shocks which largely isotropize the temperature profile of the star, resulting in surface temperatures comparable to the initial temperature of the star's core. This phenomenon, which precedes the fallback accretion phase, gives rise to a unique flaring signature. We estimate that EXIST, a proposed space-based X-ray observatory, should detect at least one of these events per year.

Guillochon, James; Rosswog, Stephan

2008-01-01T23:59:59.000Z

314

STAR CLUSTERS IN THE TIDAL TAILS OF INTERACTING GALAXIES: CLUSTER POPULATIONS ACROSS A VARIETY OF TAIL ENVIRONMENTS  

Science Conference Proceedings (OSTI)

We have searched for compact stellar structures within 17 tidal tails in 13 different interacting galaxies using F606W- and F814W-band images from the Wide Field Planetary Camera 2 on the Hubble Space Telescope. The sample of tidal tails includes a diverse population of optical properties, merging galaxy mass ratios, H I content, and ages. Combining our tail sample with Knierman et al., we find evidence of star clusters formed in situ with M{sub V} < -8.5 and V - I < 2.0 in 10 of 23 tidal tails; we are able to identify cluster candidates to M{sub V} = -6.5 in the closest tails. Three tails offer clear examples of 'beads on a string' star formation morphology in V - I color maps. Two tails present both tidal dwarf galaxy candidates and cluster candidates. Statistical diagnostics indicate that clusters in tidal tails may be drawn from the same power-law luminosity functions (with logarithmic slopes {approx}-2 to -2.5) found in quiescent spiral galaxies and interiors of interacting systems. We find that the tail regions with the largest number of observable clusters are relatively young ({approx}<250 Myr old) and bright (V {approx}< 24 mag arcsec{sup -2}), probably attributed to the strong bursts of star formation in interacting systems soon after periapse. Otherwise, we find no statistical difference between cluster-rich and cluster-poor tails in terms of many observable characteristics, though this analysis suffers from complex, unresolved gas dynamics and projection effects.

Mullan, B.; Konstantopoulos, I. S.; Lee, K. H.; Charlton, J. C.; Gronwall, C.; Hunsberger, S.; Palma, C. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16803 (United States); Kepley, A. A.; Johnson, K. E. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Knierman, K. [School of Earth and Space Exploration, Bateman Physical Sciences Center, Arizona State University, F-wing Room 686, Tempe, AZ 85287-1404 (United States); Bastian, N. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Chandar, R. [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Durrell, P. R. [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States); Elmegreen, D. [Department of Physics and Astronomy, Vassar College, Box 745, Poughkeepsie, NY 12604 (United States); English, J. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Gallagher, S. C. [Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7 (Canada); Hibbard, J. E. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Maybhate, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Trancho, G. [Gemini Observatory, Casilla 603, Colina el Pino S/N, La Serena (Chile); Vacca, W. D., E-mail: mullan@astro.psu.edu [Stratospheric Observatory for Infrared Astronomy/Universities Space Research Association, NASA Ames Research Center, MS 144-2, Moffett Field, CA 94035 (United States)

2011-04-20T23:59:59.000Z

315

On the tidal interaction of massive extra-solar planets on highly eccentric orbit  

E-Print Network (OSTI)

In this paper we develop a theory of disturbances induced by the stellar tidal field in a fully convective slowly rotating planet orbiting on a highly eccentric orbit around a central star. We show that there are two contributions to the mode energy and angular momentum gain due to impulsive tidal interaction: a) 'the quasi-static' contribution which requires dissipative processes operating in the planet; b) the dynamical contribution associated with excitation of modes of oscillation. These contributions are obtained self-consistently from a single set of the governing equations. We calculate a critical 'equilibrium' value of angular velocity of the planet \\Omega_{crit} determined by the condition that action of the dynamical tides does not alter the angular velocity at that rotation rate. We show that this can be much larger than the corresponding rate associated with quasi-static tides and that at this angular velocity, the rate of energy exchange is minimised. We also investigate the conditions for the stochastic increase in oscillation energy that may occur if many periastron passages are considered. We make some simple estimates of time scale of circularization of initially eccentric orbit due to tides, using a realistic model of the planet, for orbits withperiods after circularization typical of those observed for extra-solar planets P_{obs} > 3days. We find that dynamic tides could have produced a very large decrease of the semi-major axis of a planet with mass of the order of the Jupiter mass M_{J} and final periods P_{obs} < 4.5days on a time-scale < a few Gyrs. We also discuss several unresolved issues in the context of the scenario of the orbit circularization due to dynamic tides.

P. B. Ivanov; J. C. B. Papaloizou

2003-03-31T23:59:59.000Z

316

Including realistic tidal deformations in binary black-hole initial data  

E-Print Network (OSTI)

A shortcoming of current binary black-hole initial data is the generation of spurious gravitational radiation, so-called junk radiation, when they are evolved. This problem is a consequence of an oversimplified modeling of the binary's physics in the initial data. Since junk radiation is not astrophysically realistic, it contaminates the actual waveforms of interest and poses a numerical nuisance. The work here presents a further step towards mitigating and understanding the origin of this issue, by incorporating post-Newtonian results in the construction of constraint-satisfying binary black-hole initial data. Here we focus on including realistic tidal deformations of the black holes in the initial data, by building on the method of superposing suitably chosen black hole metrics to compute the conformal data. We describe the details of our initial data for an equal-mass and nonspinning binary, compute the subsequent relaxation of horizon quantities in evolutions, and quantify the amount of junk radiation that is generated. These results are contrasted with those obtained with the most common choice of conformally flat (CF) initial data, as well as superposed Kerr-Schild (SKS) initial data. We find that when realistic tidal deformations are included, the early transients in the horizon geometries are significantly reduced, along with smaller deviations in the relaxed black hole masses and spins from their starting values. Likewise, the junk radiation content in the $l=2$ modes is reduced by a factor of $\\sim$1.7 relative to CF initial data, but only by a factor of $\\sim$1.2 relative to SKS initial data. More prominently, the junk radiation content in the $3\\leq l\\leq8$ modes is reduced by a factor of $\\sim$5 relative to CF initial data, and by a factor of $\\sim$2.4 relative to SKS initial data.

Tony Chu

2013-10-29T23:59:59.000Z

317

Hierarchical Phase Space Structure of Dark Matter Haloes: Tidal debris, Caustics, and Dark Matter annihilation  

E-Print Network (OSTI)

Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy which is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and in particular dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ~ (\\Delta J)^{-1.6} in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing.

Niayesh Afshordi; Roya Mohayaee; Edmund Bertschinger

2008-11-10T23:59:59.000Z

318

Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy  

Science Conference Proceedings (OSTI)

Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

2011-09-30T23:59:59.000Z

319

Using depth-normalized coordinates to examine mass transport residual circulation in estuaries with large tidal amplitude relative to the mean depth  

Science Conference Proceedings (OSTI)

Residual (subtidal) circulation profiles in estuaries with a large tidal amplitude to depth ratio often are quite complex and do not resemble the traditional estuarine gravitational circulation profile. In this paper we show how a depth-normalized,...

Sarah N. Giddings; Stephen G. Monismith; Derek A. Fong; Dr. Mark T. Stacey

320

The Seasonal Variation of the Propagating Diurnal Tide in the Mesosphere and Lower Thermosphere. Part II: The Role of Tidal Heating and Zonal Mean Winds  

Science Conference Proceedings (OSTI)

A linear mechanistic tidal model is used to understand the mechanisms responsible for the seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere simulated in the Canadian Middle Atmosphere Model (CMAM). The ...

Charles McLandress

2002-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Area Solar energy production BACKGROUND -All renewable energies, except for geothermal and tidal, derive their energy from the sun. By harnessing the power of  

E-Print Network (OSTI)

Area Solar energy production ­ BACKGROUND - All renewable energies installations. Advantages: · A renewable form of energy - "Locks up" carbon, except for geothermal and tidal, derive their energy from the sun

Keinan, Alon

322

Anisotropic gaseous models of tidally limited star clusters -- comparison with other methods  

E-Print Network (OSTI)

We present new models of the evolution and dissolution of star clusters evolving under the combined influence of internal relaxation and external tidal fields, using the anisotropic gaseous model based on the Fokker-Planck approximation, and a new escaper loss cone model. This model borrows ideas from loss cones of stellar distributions near massive black holes, and describes physical processes related to escaping stars by a simple model based on two timescales and a diffusion process. We compare our results with those of direct $N$-body models and of direct numerical solutions of the orbit-averaged Fokker-Planck equation. For this comparative study we limit ourselves to idealized single point mass star clusters, in order to present a detailed study of the physical processes determining the rate of mass loss, core collapse and other features of the system's evolution. With the positive results of our study the path is now open in the future to use the computationally efficient gaseous models for future studies with more realism (mass spectrum, stellar evolution).

R. Spurzem; M. Giersz; K. Takahashi; A. Ernst

2004-12-30T23:59:59.000Z

323

A relativistic jetted outburst from a massive black hole fed by a tidally disrupted star  

E-Print Network (OSTI)

While gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, the vast majority of MBHs are considered dormant. Occasionally, a star passing too near a MBH is torn apart by gravitational forces, leading to a bright panchromatic tidal disruption flare (TDF). While the high-energy transient Swift J164449.3+573451 ("Sw 1644+57") initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that the observations (Levan et al. 2011) suggest a sudden accretion event onto a central MBH of mass ~10^6-10^7 solar masses. We find evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 with a smaller-scale blazar. The phenomenologically novel Sw 1644+57 thus connects the study of TDFs and active galaxies, opening a new vista on disk-jet interactions in BHs and magnetic field generation and t...

Bloom, Joshua S; Metzger, Brian D; Cenko, S Bradley; Perley, Daniel A; Butler, Nathaniel R; Tanvir, Nial R; Levan, Andrew J; Brien, Paul T O'; Strubbe, Linda E; De Colle, Fabio; Ramirez-Ruiz, Enrico; Lee, William H; Nayakshin, Sergei; Quataert, Eliot; King, Andrew R; Cucchiara, Antonino; Guillochon, James; Bower, Geoffrey C; Fruchter, Andrew S; Morgan, Adam N; van der Horst, Alexander J

2011-01-01T23:59:59.000Z

324

EVIDENCE FOR A TRIAXIAL MILKY WAY DARK MATTER HALO FROM THE SAGITTARIUS STELLAR TIDAL STREAM  

Science Conference Proceedings (OSTI)

Observations of the lengthy tidal streams produced by the destruction of the Sagittarius dwarf spheroidal (Sgr dSph) are capable of providing strong constraints on the shape of the Galactic gravitational potential. However, previous work, based on modeling different stream properties in axisymmetric Galactic models, has yielded conflicting results: while the angular precession of the Sgr leading arm is most consistent with a spherical or slightly oblate halo, the radial velocities of stars in this arm are reproduced only by prolate halo models. We demonstrate that this apparent paradox can be resolved by instead adopting a triaxial potential. Our new Galactic halo model, which simultaneously fits all well-established phase space constraints from the Sgr stream, provides the first conclusive evidence for, and tentative measurement of, triaxiality in an individual dark matter halo. The Milky Way halo within {approx}60 kpc is best characterized by a minor/major axis ratio of the isovelocity contours c/a {approx} 0.67, intermediate/major axis ratio b/a {approx} 0.83, and triaxiality parameter T {approx} 0.56. In this model, the minor axis of the dark halo is coincident with the Galactic X-axis connecting the Sun and the Galactic center to within {approx}15 deg., while the major axis also lies in the Galactic plane, approximately along the Galactic Y-axis.

Law, David R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-0818 (United States); Johnston, Kathryn V., E-mail: drlaw@astro.ucla.ed, E-mail: srm4n@virginia.ed, E-mail: kvj@astro.columbia.ed [Department of Astronomy, Columbia University, New York, NY 10027 (United States)

2009-09-20T23:59:59.000Z

325

Tidal Disruptions of White Dwarfs from Ultra-Close Encounters with Intermediate Mass Spinning Black Holes  

E-Print Network (OSTI)

We present numerical relativity results of tidal disruptions of white dwarfs from ultra-close encounters with a spinning, intermediate mass black hole. These encounters require a full general relativistic treatment of gravity. We show that the disruption process and prompt accretion of the debris strongly depend on the magnitude and orientation of the black hole spin. However, the late-time accretion onto the black hole follows the same decay, $\\dot{M}$ ~ t^{-5/3}, estimated from Newtonian gravity disruption studies. We compute the spectrum of the disk formed from the fallback material using a slim disk model. The disk spectrum peaks in the soft X-rays and sustains Eddington luminosity for 1-3 yrs after the disruption. For arbitrary black hole spin orientations, the disrupted material is scattered away from the orbital plane by relativistic frame dragging, which often leads to obscuration of the inner fallback disk by the outflowing debris. The disruption events also yield bursts of gravitational radiation with characteristic frequencies of ~3.2 Hz and strain amplitudes of ~10^{-18} for galactic intermediate mass black holes. The optimistic rate of considered ultra-close disruptions is consistent with no sources found in ROSAT all-sky survey. The future missions like Wide-Field X-ray Telescope (WFXT) could observe dozens of events.

Roland Haas; Roman V. Shcherbakov; Tanja Bode; Pablo Laguna

2012-01-20T23:59:59.000Z

326

Tidal disruptions in circumbinary discs (I): Star formation, dynamics, and binary evolution  

E-Print Network (OSTI)

In our current interpretation of the hierarchical structure of the universe it is well established that galaxies collide and merge with each other during their lifetime. If massive black holes (MBHs) reside in galactic centres, we expect them to form binaries in galactic nuclei surrounded by a circumbinary disc. If cooling is efficient enough, the gas in the disc will clump and trigger stellar formation in situ. In this first paper we address the evolution of the binary under the influence of the newly formed stars, which form individually and also clustered. We use SPH techniques to evolve the gas in the circumbinary disc and to study the phase of star formation. When the amount of gas in the disc is negligible, we further evolve the system with a high-accurate direct-summation $N-$body code to follow the evolution of the stars, the innermost binary and tidal disruption events (TDEs). For this, we modify the direct N-body code to (i) include treatment of TDEs and to (ii) include "gas cloud particles" that mimic the gas, so that the stellar clusters do not disolve when we follow their infall on to the MBHs. We find that the amount of stars disrupted by either infalling stellar clusters or individual stars is as large as 10^{-4}/yr per binary, higher than expected for typical galaxies.

Pau Amaro-Seoane; Patrick Brem; Jorge Cuadra

2012-12-11T23:59:59.000Z

327

Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual  

SciTech Connect

In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

Neary, Vincent S [ORNL; Gunawan, Budi [Oak Ridge National Laboratory (ORNL)

2011-09-01T23:59:59.000Z

328

Water gate array for current flow or tidal movement pneumatic harnessing system  

DOE Patents (OSTI)

The invention, which provides a system for harnessing power from current flow or tidal movement in a body of water, comprises first and second hydro-pneumatic chambers each having ingress and egress below the water surface near the river or ocean floor and water gates operative to open or seal the ports to the passage of water. In an exemplary embodiment, the gates are sychronized by shafts so that the ingress ports of each chamber are connected to the egress ports of each other chamber. Thus, one set of gates is closed, while the other is open, thereby allowing water to flow into one chamber and build air pressure therein and allowing water to flow out of the other chamber and create a partial vacuum therein. A pipe connects the chambers, and an air turbine harnesses the air movement within the pipe. When water levels are equilibrated, the open set of gates is closed by a counterweight, and the other set is allowed to open by natural force of the water differential. The water gates may be comprised of a plurality of louvers which are ganged for simultaneous opening and closing. The system is designed to operate with air turbines or other pneumatic devices. Its design minimizes construction cost and environmental impact, yet provides a clean renewable energy source.

Gorlov, Alexander M. (Brookline, MA)

1991-01-01T23:59:59.000Z

329

Molecular Gas in Tidal Dwarf Galaxies: On-going Galaxy Formation  

E-Print Network (OSTI)

We investigate the process of galaxy formation as can be observed in the only currently forming galaxies -- the so-called Tidal Dwarf Galaxies, hereafter TDGs -- through observations of the molecular gas detected via its CO (Carbon Monoxide) emission. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a {\\it bona fide} galaxy. We have now detected CO in 9 TDGs with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few $10^8 M_\\odot$. The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the transformation of HI into H$_2$. Although uncertainties are still large for individual objects as the geometry is unknown, we find that the "dynamical" masses of TDGs, estimated from the CO line widths, do not seem to be greater than the "visible" masses (HI + H$_2$ + a stellar component), i.e., TDGs require no dark matter. We provide evidence that TDGs are self-gravitating entities, implying that we are witnessing the ensemble of processes in galaxy formation: concentration of large amounts of gas in a bound object, condensation of the gas, which is atomic at this point, to form molecular gas and the subsequent star formation from the dense molecular component.

J. Braine; P. -A. Duc; U. Lisenfeld; E. Brinks; V. Charmandaris; S. Leon

2004-02-10T23:59:59.000Z

330

ON THE SURVIVABILITY AND METAMORPHISM OF TIDALLY DISRUPTED GIANT PLANETS: THE ROLE OF DENSE CORES  

Science Conference Proceedings (OSTI)

A large population of planetary candidates in short-period orbits have been found recently through transit searches, mostly with the Kepler mission. Radial velocity surveys have also revealed several Jupiter-mass planets with highly eccentric orbits. Measurements of the Rossiter-McLaughlin effect indicate that the orbital angular momentum vector of some planets is inclined relative to the spin axis of their host stars. This diversity could be induced by post-formation dynamical processes such as planet-planet scattering, the Kozai effect, or secular chaos which brings planets to the vicinity of their host stars. In this work, we propose a novel mechanism to form close-in super-Earths and Neptune-like planets through the tidal disruption of gas giant planets as a consequence of these dynamical processes. We model the core-envelope structure of gas giant planets with composite polytropes which characterize the distinct chemical composition of the core and envelope. Using three-dimensional hydrodynamical simulations of close encounters between Jupiter-like planets and their host stars, we find that the presence of a core with a mass more than 10 times that of the Earth can significantly increase the fraction of envelope which remains bound to it. After the encounter, planets with cores are more likely to be retained by their host stars in contrast with previous studies which suggested that coreless planets are often ejected. As a substantial fraction of their gaseous envelopes is preferentially lost while the dense incompressible cores retain most of their original mass, the resulting metallicity of the surviving planets is increased. Our results suggest that some gas giant planets can be effectively transformed into either super-Earths or Neptune-like planets after multiple close stellar passages. Finally, we analyze the orbits and structure of known planets and Kepler candidates and find that our model is capable of producing some of the shortest-period objects.

Liu, Shang-Fei; Lin, Douglas N. C. [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, Peking University, Beijing 100871 (China)] [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, Peking University, Beijing 100871 (China); Guillochon, James; Ramirez-Ruiz, Enrico, E-mail: liushangfei@pku.edu.cn [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)] [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

2013-01-01T23:59:59.000Z

331

Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint  

DOE Green Energy (OSTI)

This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.

Churchfield, M. J.; Li, Y.; Moriarty, P. J.

2012-07-01T23:59:59.000Z

332

Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint  

DOE Green Energy (OSTI)

This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used to determine the inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modeling, and the examination of more array configurations.

Churchfield, M. J.; Li, Y.; Moriarty, P. J.

2011-07-01T23:59:59.000Z

333

Performance Analysis of the SensorNet's Southeastern Transportation Corridor Pilot Viewer at the Dorchester West Bound Interstate Weigh Station  

Science Conference Proceedings (OSTI)

Since the 9-11 attacks, the United States has increased its focus on developing technologies designed to warn us in the event of another attack and to prevent these attacks from happening in the first place. The SensorNet research group at Oak Ridge National Laboratory's (ORNL) Computer Science and Engineering Division is participating in this effort by developing systems to give critical real-time information to federal, state, and local emergency response decision makers. SensorNet has approached this goal by putting together a system with several sensors and programs called the Southeastern Transportation Corridor Pilot project (SETCP). The SETCP utilizes interstate weigh stations not only to weigh the passing trucks but also to check for gamma and neutron radiation inside the truck without the aid of a human in close proximity. The system also collects additional data that help identify the truck (the truck's length, weight, license plate number, and photographs of the truck). The objective of this research work was to characterize and analyze the data collected from the South Carolina weigh station on I-26W and compare it with previous data analysis on the performance of the Tennessee weigh station on I-40E. The purpose was to find patterns in the trucks with radioactive alarms and, regional truck traffic, as well as to find patterns of inconsistency in the system (illogical length measurements of the truck, inaccurate readings and character recognition of the license plate). During a three-month period, radioactive alarms and traffic patterns were identified and characterized by grouping all of the data and making graphs and charts in Microsoft Excel to show the flow of traffic, the type of truck traffic, the number of alarms and other information. Inconsistence patterns were found by analyzing the data, looking for missing or illogical information, and determining how often it happens. The improvements of these inconsistencies were also analyzed after repairs were made to the system. Given the small number of radiation alarms detected, there were no clear patterns found. Further research has to be done in this area; also, the analysis period needs to be extended from three months to a year. For traffic flow patterns, it was found that the truck traffic was heaviest on Monday, Tuesday, and Wednesday. The inconsistencies found and fixed in the system were the illogical length measurements and the inaccurate reading and character recognition of the license plate. During the summer of 2007, a Florida International University (FIU) student supported this research work under the direct supervision of Mr. David Hill at ORNL's Computer Science and Engineering Division. The 10-week student internship was supported by the DOE/FIU Science and Technology Workforce Initiative, an innovative program developed by the US Department of Energy's Environmental Management (DOE-EM) and FIU's Applied Research Center (FIU-ARC) (authors)

Colon Mendoza, R.A.; Lagos, L.E. [Applied Research Center, Florida International Univ., Miami, FL (United States); Hill, D.E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

2008-07-01T23:59:59.000Z

334

Measurement of the Rates of Production and Dissipation of Turbulent Kinetic Energy in an Energetic Tidal Flow: Red Wharf Bay Revisited  

Science Conference Proceedings (OSTI)

Simultaneous measurements of the rates of turbulent kinetic energy (TKE) dissipation (?) and production (P) have been made over a period of 24 h at a tidally energetic site in the northern Irish Sea in water of 25-m depth. Some ? profiles from 5 ...

Tom P. Rippeth; John H. Simpson; Eirwen Williams; Mark E. Inall

2003-09-01T23:59:59.000Z

335

A TIDALLY DESTRUCTED MASSIVE PLANET AS THE PROGENITOR OF THE TWO LIGHT PLANETS AROUND THE sdB STAR KIC 05807616  

Science Conference Proceedings (OSTI)

We propose that the two newly detected Earth-size planets around the hot B subdwarf star KIC 05807616 are remnant of the tidally destructed metallic core of a massive planet. A single massive gas-giant planet was spiralling-in inside the envelope of the red giant branch star progenitor of the extreme horizontal branch (EHB) star KIC 05807616. The released gravitational energy unbound most of the stellar envelope, turning it into an EHB star. The massive planet reached the tidal-destruction radius of {approx}1 R{sub Sun} from the core, where the planet's gaseous envelope was tidally removed. In our scenario, the metallic core of the massive planet was tidally destructed into several Earth-like bodies immediately after the gaseous envelope of the planet was removed. Two, and possibly more, Earth-size fragments survived at orbital separations of {approx}> 1 R{sub Sun} within the gaseous disk. The bodies interact with the disk and among themselves, and migrated to reach orbits close to a 3:2 resonance. These observed planets can have a planetary magnetic field about 10 times as strong as that of Earth. This strong magnetic field can substantially reduce the evaporation rate from the planets and explain their survivability against the strong UV radiation of the EHB star.

Bear, Ealeal; Soker, Noam, E-mail: ealeal@physics.technion.ac.il, E-mail: soker@physics.technion.ac.il [Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

2012-04-10T23:59:59.000Z

336

Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Development and Verification of Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine M.J. Lawson and Y. Li. National Renewable Energy Laboratory D.C. Sale University of Washington Presented at the 30 th International Conference on Ocean, Offshore, and Arctic Engineering Rotterdam, The Netherlands June 19-24, 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Conference Paper NREL/CP-5000-50981 October 2011 Contract No. DE-AC36-08GO28308 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US

337

THE DYNAMICS, APPEARANCE, AND DEMOGRAPHICS OF RELATIVISTIC JETS TRIGGERED BY TIDAL DISRUPTION OF STARS IN QUIESCENT SUPERMASSIVE BLACK HOLES  

SciTech Connect

We examine the consequences of a model in which relativistic jets can be triggered in quiescent massive black holes when a geometrically thick and hot accretion disk forms as a result of the tidal disruption of a star. To estimate the power, thrust, and lifetime of the jet, we use the mass accretion history onto the black hole as calculated by detailed hydrodynamic simulations of the tidal disruption of stars. We go on to determine the states of the interstellar medium in various types of quiescent galactic nuclei, and describe how this external matter can affect jets propagating through it. We use this information, together with a two-dimensional hydrodynamic model of the structure of the relativistic flow, to study the dynamics of the jet, the propagation of which is regulated by the density stratification of the environment and by its injection history. The breaking of symmetry involved in transitioning from one to two dimensions is crucial and leads to qualitatively new phenomena. At early times, as the jet power increases, the high pressure of the cocoon collimates the jet, increasing its shock velocity as compared to that of spherical models. We show that small velocity gradients, induced near or at the source, steepen into internal shocks and provide a source of free energy for particle acceleration and radiation along the jet's channel. The jets terminate at a working surface where they interact strongly with the surrounding medium through a combination of shock waves and instabilities; a continuous flow of relativistic fluid emanating from the nucleus supplies this region with mass, momentum, and energy. Information about the t {sup -5/3} decrease in power supply propagates within the jet at the internal sound speed. As a result, the internal energy at the jet head continues to accumulate until long after the peak feeding rate is reached. An appreciable time delay is thus expected between peaks in the short-wavelength radiation emanating near the jet's origin and the long-wavelength emission produced at the head of the jet. Many of the observed properties of the Swift 1644+57/GRB 110328A event can be understood as resulting from accretion onto and jets driven by a 10{sup 6} M {sub Sun} central mass black hole following the disruption of a sun-like star. With the inclusion of a stochastic contribution to the luminosity due to variations in the feeding rate driven by instabilities near the tidal radius, we find that our model can explain the X-ray light curve without invoking a rarely occurring deep encounter. In conjunction with the number density of black holes in the local universe, we hypothesize that the conditions required to produce the Swift event are not anomalous, but are in fact representative of the jet-driven flare population arising from tidal disruptions.

De Colle, Fabio; Guillochon, James; Naiman, Jill; Ramirez-Ruiz, Enrico, E-mail: fabio@ucolick.org, E-mail: jfg@ucolick.org, E-mail: jnaiman@ucolick.org, E-mail: enrico@ucolick.org [TASC, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

2012-12-01T23:59:59.000Z

338

Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine  

DOE Green Energy (OSTI)

This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

Lawson, M. J.; Li, Y.; Sale, D. C.

2011-10-01T23:59:59.000Z

339

KINEMATICS AND CHEMISTRY OF STARS ALONG THE SAGITTARIUS TRAILING TIDAL TAIL AND CONSTRAINTS ON THE MILKY WAY MASS DISTRIBUTION  

Science Conference Proceedings (OSTI)

We present three-dimensional (3D) kinematics of Sagittarius (Sgr) trailing tidal debris in six fields located 70 Degree-Sign -130 Degree-Sign along the stream from the Sgr dwarf galaxy core. The data are from our proper-motion (PM) survey of Kapteyn's Selected Areas, in which we have measured accurate PMs to faint magnitudes in {approx}40' Multiplication-Sign 40' fields evenly spaced across the sky. The radial velocity (RV) signature of Sgr has been identified among our follow-up spectroscopic data in four of the six fields and combined with mean PMs of spectroscopically confirmed members to derive space motions of Sgr debris based on {approx}15-64 confirmed stream members per field. These kinematics are compared to predictions of the Law and Majewski model of Sgr disruption; we find reasonable agreement with model predictions in RVs and PMs along Galactic latitude. However, an upward adjustment of the local standard of rest velocity ({Theta}{sub LSR}) from its standard 220 km s{sup -1} to at least 232 {+-} 14 km s{sup -1} (and possibly as high as 264 {+-} 23 km s{sup -1}) is necessary to bring 3D model debris kinematics and our measurements into agreement. Satisfactory model fits that simultaneously reproduce known position, distance, and RV trends of the Sgr tidal streams, while significantly increasing {Theta}{sub LSR}, could only be achieved by increasing the Galactic bulge and disk mass while leaving the dark matter halo fixed to the best-fit values from Law and Majewski. We derive low-resolution spectroscopic abundances along this stretch of the Sgr stream and find a constant [Fe/H] {approx} -1.15 (with {approx}0.5 dex scatter in each field-typical for dwarf galaxy populations) among the four fields with reliable measurements. A constant metallicity suggests that debris along the {approx}60 Degree-Sign span of this study was all stripped from Sgr on the same orbital passage.

Carlin, Jeffrey L.; Majewski, Steven R.; Patterson, Richard J. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Casetti-Dinescu, Dana I.; Girard, Terrence M. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Law, David R., E-mail: jc4qn@mail.astro.virginia.edu, E-mail: carlij@rpi.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

2012-01-01T23:59:59.000Z

340

A PETAL OF THE SUNFLOWER: PHOTOMETRY OF THE STELLAR TIDAL STREAM IN THE HALO OF MESSIER 63 (NGC 5055)  

Science Conference Proceedings (OSTI)

We present deep surface photometry of a very faint, giant arc-loop feature in the halo of the nearby spiral galaxy NGC 5055 (M63) that is consistent with being a part of a stellar stream resulting from the disruption of a dwarf satellite galaxy. This faint feature was first detected in early photographic studies by van der Kruit; more recently, in the study of Martinez-Delgado and as presented in this work, from the loop has been realized to be the result of a recent minor merger through evidence obtained by wide-field, deep images taken with a telescope of only 0.16 m aperture. The stellar stream is clearly confirmed in additional deep images taken with the 0.5 m telescope of the BlackBird Remote Observatory and the 0.8 m telescope of the McDonald Observatory. This low surface brightness ({mu}{sub R} Almost-Equal-To 26 mag arcsec{sup -2}) arc-like structure around the disk of the galaxy extends 14.'0 ({approx}29 kpc projected) from its center, with a projected width of 1.'6 ({approx}3.3 kpc). The stream's morphology is consistent with that of the visible part of a giant, 'great-circle' type stellar stream originating from the recent accretion of a {approx}10{sup 8} M{sub Sun} dwarf satellite in the last few Gyr. The progenitor satellite's current position and final fate are not conclusive from our data. The color of the stream's stars is consistent with dwarfs in the Local Group and is similar to the outer faint regions of M63's disk and stellar halo. From our photometric study, we detect other low surface brightness 'plumes'; some of these may be extended spiral features related to the galaxy's complex spiral structure, and others may be tidal debris associated with the disruption of the galaxy's outer stellar disk as a result of the accretion event. We are able to differentiate between features related to the tidal stream and faint, blue extended features in the outskirts of the galaxy's disk previously detected by the Galaxy Evolution Explorer satellite. With its highly warped H I gaseous disk ({approx}20 Degree-Sign ), M63 represents one of the several examples of an isolated spiral galaxy with a warped disk showing recently discovered strong evidence of an ongoing minor merger.

Chonis, Taylor S. [Department of Astronomy, University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712 (United States); Martinez-Delgado, David [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Gabany, R. Jay [BlackBird Observatory, Mayhill, NM (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, 530 McCormick Rd., Charlottesville, VA 22904 (United States); Hill, Gary J. [McDonald Observatory, University of Texas at Austin, 1 University Station, C1402, Austin, TX 78712 (United States); Gralak, Ray [Sirius Imaging Observatory, Mayhill, NM (United States); Trujillo, Ignacio, E-mail: tschonis@astro.as.utexas.edu [Instituto de Astrofisica de Canarias, C/Via Lactea, s/n, E38205 - La Laguna (Tenerife) (Spain)

2011-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.  

DOE Green Energy (OSTI)

This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b) Determine fish community characteristics, including species composition, abundance, and temporal and spatial distributions. (1c) Estimate the stock of origin for the yearling and subyearling Chinook salmon captured at the sampling sites using genetic analysis. (1d) Statistically assess the relationship between salmonid abundance and habitat parameters, including ancillary variables such as temperature and river stage. (2) Acoustic Telemetry Monitoring-Assess feasibility of applying Juvenile Salmon Acoustic Telemetry System (JSATS) technology to determine migration characteristics from upriver of Bonneville Dam through the study area (vicinity of the Sandy River delta/Washougal River confluence). (2a) Determine species composition, release locations, and distributions of JSATS-tagged fish. (2b) Estimate run timing, residence times, and migration pathways for these fish. Additionally, both objectives serve the purpose of baseline research for a potential tidal rechannelization project on the Sandy River. The U.S. Forest Service, in partnership with the Bonneville Power Administration and the U.S. Army Corps of Engineers, is currently pursuing reconnection of the east (relict) Sandy River channel with the current channel to improve fish and wildlife habitat in the Sandy River delta. Our study design and the location of sampling sites in this reach provide baseline data to evaluate the potential restoration.

Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

2008-03-17T23:59:59.000Z

342

A Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-Eddy Simulation Study Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal- Current Turbines Preprint M.J. Churchfield, Y. Li, and P.J. Moriarty To be presented at the 9 th European Wave and Tidal Energy Conference 2011 Southhampton, England September 4 - 9, 2011 Conference Paper NREL/CP-5000-51765 July 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

343

Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007  

Science Conference Proceedings (OSTI)

This document is the first annual report for the study titled Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Councils Columbia Basin Fish and Wildlife Program.

Sobocinski, Kathryn L.; Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Jones, Tucker A.; Mallette, Christine; Dawley, Earl M.; Skalski, John R.; Teel, David; Moran, Paul

2008-03-18T23:59:59.000Z

344

KOI-54: The Kepler Discovery of Tidally-Excited Pulsations and Brightenings in a Highly Eccentric Binary  

E-Print Network (OSTI)

Kepler observations of the star HD 187091 (KID 8112039, hereafter KOI-54) revealed a remarkable light curve exhibiting sharp periodic brightening events every 41.8 days with a superimposed set of oscillations forming a beating pattern in phase with the brightenings. Spectroscopic observations revealed that this is a binary star with a highly eccentric orbit, e=0.83. We are able to match the Kepler light curve and radial velocities with a nearly face-on (i=5.5 degree) binary star model in which the brightening events are caused by tidal distortion and irradiation of nearly identical A stars during their close periastron passage. The two dominant oscillations in the light curve, responsible for the beating pattern, have frequencies that are the 91st and 90th harmonic of the orbital frequency. The power spectrum of the light curve, after removing the binary star brightening component, reveals a large number of pulsations, 30 of which have a signal-to-noise ratio > 7. Nearly all of these pulsations have frequenci...

Welsh, William F; Aerts, Conny; Brown, Timothy; Brugamyer, Erik; Cochran, William; Gilliland, Ronald L; Guzik, Joyce Ann; Kurtz, Donald W; Latham, David; Marcy, Geoffrey W; Quinn, Samuel N; Zima, Wolfgang; Allen, Christopher; Batalha, Natalie; Bryson, Steve; Buchhave, Lars; Caldwell, Douglas A; Gautier, Thomas N; Howell, Steven; Kinemuchi, K; Ibrahim, Khadeejah A; Isaacson, Howard; Jenkins, Jon; Prsa, Andrej; Still, Martin; Street, Rachel; Wohler, Bill; Koch, David G; Borucki, William J

2011-01-01T23:59:59.000Z

345

Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine  

SciTech Connect

This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines (HATTs). First, an HATT blade was designed using the blade element momentum method in conjunction with a genetic optimization algorithm. Several unstructured computational grids were generated using this blade geometry and steady CFD simulations were used to perform a grid resolution study. Transient simulations were then performed to determine the effect of time-dependent flow phenomena and the size of the computational timestep on the numerical solution. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

Lawson, Mi. J.; Li, Y.; Sale, D. C.

2011-01-01T23:59:59.000Z

346

Three-Dimensional Simulations of Tidally Disrupted Solar-Type Stars and the Observational Signatures of Shock Breakout  

E-Print Network (OSTI)

We describe a three-dimensional simulation of a $1 M_{\\odot}$ solar-type star approaching a $10^{6} M_{\\odot}$ black hole on a parabolic orbit with a pericenter distance well within the tidal radius. While falling towards the black hole, the star is not only stretched along the orbital direction but even more severely compressed at right angles to the orbit. The overbearing degree of compression achieved shortly after pericenter leads to the production of strong shocks which largely homogenize the temperature profile of the star, resulting in surface temperatures comparable to the initial temperature of the star's core. This phenomenon, which precedes the fallback accretion phase, gives rise to a unique double-peaked X-ray signature that, if detected, may be one of the few observable diagnostics of how stars behave under the influence of strong gravitational fields. If $\\sim 10^{6} M_{\\odot}$ black holes were prevalent in small or even dwarf galaxies, the nearest of such flares may be detectable by EXIST from no further away than the Virgo Cluster.

James Guillochon; Enrico Ramirez-Ruiz; Stephan Rosswog; Daniel Kasen

2008-11-10T23:59:59.000Z

347

Le jeu du je et du miroir dans la Dlie de Maurice Scve  

E-Print Network (OSTI)

apparatre un procd linguistique qui distingue Scve desrecherche de l'conomie linguistique absolue que l'on trouvedgagent de l'analyse linguistique de la premire personne

Tsan, Loli

2004-01-01T23:59:59.000Z

348

Connecting the Physical Properties of Galaxies with the Overdensity and Tidal Shear of the Large-Scale Environment  

E-Print Network (OSTI)

We have examined the correlations between the large-scale environment of galaxies and their physical properties, using a sample of 28,354 nearby galaxies drawn from the Sloan Digital Sky Survey, and the large-scale tidal field reconstructed in real space from the 2Mass Redshift Survey and smoothed over a radius of $\\sim 6 h^{-1}$Mpc. The large-scale environment is expressed in terms of the overdensity, the ellipticity of the shear and the type of the large-scale structure. The physical properties analyzed include $r$-band absolute magnitude $M_{^{0.1}r}$, stellar mass $M_\\ast$, $g-r$ colour, concentration parameter $R_{90}/R_{50}$ and surface stellar mass density $\\mu_\\ast$. Both luminosity and stellar mass are found to be statistically linked to the large-scale environment, regardless of how the environment is quantified. More luminous (massive) galaxies reside preferentially in the regions with higher densities, lower ellipticities and halo-like structures. At fixed luminosity, the large-scale overdensity depends strongly on parameters related to the recent star formation history, that is colour and D(4000), but is almost independent of the structural parameters $R_{90}/R_{50}$ and $\\mu_\\ast$. All the physical properties are statistically linked to the shear of the large-scale environment even when the large-scale density is constrained to a narrow range. This statistical link has been found to be most significant in the quasi-linear regions where the large-scale density approximates to an order of unity, but no longer significant in highly nonlinear regimes with $\\delta_{\\rm LS}\\gg 1$.

Jounghun Lee; Cheng Li

2008-03-12T23:59:59.000Z

349

EXPLORING HALO SUBSTRUCTURE WITH GIANT STARS: SUBSTRUCTURE IN THE LOCAL HALO AS SEEN IN THE GRID GIANT STAR SURVEY INCLUDING EXTENDED TIDAL DEBRIS FROM {omega}CENTAURI  

Science Conference Proceedings (OSTI)

We present the latitude-normalized radial velocity (v{sub b} ) distribution of 3318 subsolar metallicity, V {approx}< 13.5 stars from the Grid Giant Star Survey (GGSS) in southern hemisphere fields. The sample includes giants mostly within {approx}5 kpc from the Galactic disks and halo. The nearby halo is found to (1) exhibit significant kinematical substructure, and (2) be prominently represented by several velocity coherent structures, including a very retrograde 'cloud' of stars at l {approx} 285 Degree-Sign and extended, retrograde 'streams' visible as relatively tight l-v{sub b} sequences. One sequence in the fourth Galactic quadrant lies within the l-v{sub b} space expected to contain tidal debris from the 'star cluster' {omega}Centauri. Not only does {omega}Cen lie precisely in this l-v{sub b} sequence, but the positions and v{sub b} of member stars match those of N-body simulations of tidally disrupting dwarf galaxies on orbits ending with {omega}Cen's current position and space motion. But the ultimate proof that we have very likely found extended parts of the {omega}Cen tidal stream comes from echelle spectroscopy of a subsample of the stars that reveals a very particular chemical abundance signature known to occur only in {omega}Cen. The newly discovered {omega}Cen debris accounts for almost all fourth Galactic quadrant retrograde stars in the southern GGSS, which suggests {omega}Cen is a dominant contributor of retrograde giant stars in the inner Galaxy.

Majewski, Steven R.; Nidever, David L.; Damke, Guillermo J.; Patterson, Richard J.; Garcia Perez, Ana E. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Smith, Verne V. [National Optical Astronomy Observatories, P.O. Box 26732, Tucson, AZ 85726 (United States); Kunkel, William E. [Las Campanas Observatory, Casilla 601, La Serena (Chile); Bizyaev, Dmitry, E-mail: srm4n@virginia.edu, E-mail: dln5q@virginia.edu, E-mail: gjd3r@virginia.edu, E-mail: ricky@virginia.edu, E-mail: aeg4x@virginia.edu, E-mail: vsmith@noao.edu, E-mail: kunkel@jeito.lco.cl, E-mail: dmbiz@apo.nmsu.edu [Department of Astronomy, New Mexico State University/Apache Point Observatory, Sunspot NM 88349 (United States)

2012-03-10T23:59:59.000Z

350

Estuarine Habitats for Juvenile Salmon in the Tidally-Influenced Lower Columbia River and Estuary : Reporting Period September 15, 2008 through May 31, 2009.  

DOE Green Energy (OSTI)

This work focuses on the numerical modeling of Columbia River estuarine circulation and associated modeling-supported analyses conducted as an integral part of a multi-disciplinary and multi-institutional effort led by NOAA's Northwest Fisheries Science Center. The overall effort is aimed at: (1) retrospective analyses to reconstruct historic bathymetric features and assess effects of climate and river flow on the extent and distribution of shallow water, wetland and tidal-floodplain habitats; (2) computer simulations using a 3-dimensional numerical model to evaluate the sensitivity of salmon rearing opportunities to various historical modifications affecting the estuary (including channel changes, flow regulation, and diking of tidal wetlands and floodplains); (3) observational studies of present and historic food web sources supporting selected life histories of juvenile salmon as determined by stable isotope, microchemistry, and parasitology techniques; and (4) experimental studies in Grays River in collaboration with Columbia River Estuary Study Taskforce (CREST) and the Columbia Land Trust (CLT) to assess effects of multiple tidal wetland restoration projects on various life histories of juvenile salmon and to compare responses to observed habitat-use patterns in the mainstem estuary. From the above observations, experiments, and additional modeling simulations, the effort will also (5) examine effects of alternative flow-management and habitat-restoration scenarios on habitat opportunity and the estuary's productive capacity for juvenile salmon. The underlying modeling system is part of the SATURN1coastal-margin observatory [1]. SATURN relies on 3D numerical models [2, 3] to systematically simulate and understand baroclinic circulation in the Columbia River estuary-plume-shelf system [4-7] (Fig. 1). Multi-year simulation databases of circulation are produced as an integral part of SATURN, and have multiple applications in understanding estuary/plume variability, the role of the estuary and plume on salmon survival, and functional changes in the estuary-plume system in response to climate and human activities.

Baptista, Antnio M. [Oregon Health & Science University, Science and Technology Center for Coastal Margin Observation and Prediction

2009-08-02T23:59:59.000Z

351

Tilted Baroclinic Tidal Vortices  

Science Conference Proceedings (OSTI)

The structure of baroclinic vortices generated by horizontal flow separation past a sloping headland in deep, stably stratified waters is investigated. The most distinctive feature of these eddies is that their cores are strongly tilted with ...

Miguel Canals; Geno Pawlak; Parker MacCready

2009-02-01T23:59:59.000Z

352

Tidal Flow Turbulence Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

n still result in some spreading of the corrected , eve case of a unique mean 32. This definition assumes Northwest)Na+onal)Marine) Renewable)Energy)Center)...

353

Consolidation of geologic studies of geopressured-geothermal resources in Texas: Barrier-bar tidal-channel reservoir facies architecture, Jackson Group, Prado field, South Texas; Final report  

DOE Green Energy (OSTI)

Sandstone reservoirs in the Jackson barrier/strandplain play are characterized by low recovery efficiencies and thus contain a large hydrocarbon resource target potentially amenable to advanced recovery techniques. Prado field, Jim Hogg County, South Texas, has produced over 23 million bbl of oil and over 32 million mcf gas from combination structural-stratigraphic traps in the Eocene lower Jackson Group. Hydrocarbon entrapment at Prado field is a result of anticlinal nosing by differential compaction and updip pinch-out of barrier bar sandstone. Relative base-level lowering resulted in forced regression that established lower Jackson shoreline sandstones in a relatively distal location in central Jim Hogg County. Reservoir sand bodies at Prado field comprise complex assemblages of barrier-bar, tidal-inlet fill, back-barrier bar, and shoreface environments. Subsequent progradation built the barrier-bar system seaward 1 to 2 mi. Within the barrier-bar system, favorable targets for hydrocarbon reexploration are concentrated in tidal-inlet facies because they possess the greatest degree of depositional heterogeneity. The purpose of this report is (1) to describe and analyze the sand-body architecture, depositional facies variations, and structure of Prado field, (2) to determine controls on distribution of hydrocarbons pertinent to reexploration for bypassed hydrocarbons, (3) to describe reservoir models at Prado field, and (4) to develop new data affecting the suitability of Jackson oil fields as possible candidates for thermally enhanced recovery of medium to heavy oil.

Seni, S.J.; Choh, S.J.

1994-01-01T23:59:59.000Z

354

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.  

DOE Green Energy (OSTI)

The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy River delta. (2) Characterize the fish community and juvenile salmon migration, including species composition, length-frequency distribution, density (number/m{sup 2}), and temporal and spatial distributions in the vicinity of the Sandy River delta in the lower Columbia River and estuary (LCRE). (3) Determine the stock of origin for juvenile Chinook salmon (Oncorhynchus tshawytscha) captured at sampling sites through genetic identification. (4) Characterize the diets of juvenile Chinook and coho (O. kisutch) salmon captured within the study area. (5) Estimate run timing, residence times, and migration pathways for acoustic-tagged fish in the study area. (6) Conduct a baseline evaluation of the potential restoration to reconnect the old Sandy River channel with the delta. (7) Apply fish density data to initiate a design for a juvenile salmon monitoring program for beach habitats within the tidal freshwater segment of the LCRE (river kilometer 56-234).

Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

2009-07-06T23:59:59.000Z

355

Estuarine and Tidal Freshwater Habitat Cover Types Along the Lower Columbia River Estuary Determined from Landsat 7 Enhanced Thematic Mapper (ETM+) Imagery, Technical Report 2003.  

DOE Green Energy (OSTI)

Developing an understanding of the distribution and changes in estuarine and tidal floodplain ecosystems is critical to the management of biological resources in the lower Columbia River. Columbia River plants, fish, and wildlife require specific physicochemical and ecological conditions to sustain their populations. As habitats are degraded or lost, this capability is altered, often irretrievably; those species that cannot adapt are lost from the ecosystem. The Lower Columbia River Estuary Partnership (Estuary Partnership) completed a comprehensive ecosystem protection and enhancement plan for the lower Columbia River and estuary in 1999 (Jerrick, 1999). The plan identified habitat loss and modification as a critical threat to the integrity of the lower Columbia River ecosystem and called for a habitat inventory as a key first step in its long term restoration efforts. In 2000, the Estuary Partnership initiated a multiphase project to produce a spatial data set describing the current location and distribution of estuarine and tidal freshwater habitat cover types along the lower Columbia River from the river mouth to the Bonneville Dam using a consistent methodology and data sources (Fig. 1). The first phase of the project was the development of a broadbrush description of the estuarine and tidal freshwater habitat cover classes for the entire study area ({approx}146 river miles) using Landsat 7 ETM+ satellite imagery. Phase II of the project entailed analysis of the classified satellite imagery from Phase I. Analysis of change in landcover and a summary of the spatial relationships between cover types are part of Phase II. Phase III of the project included the classification of the high resolution hyperspectral imagery collected in 2000 and 2001 for key focal areas within the larger study area. Finally, Phase IV consists of this final report that presents results from refining the Landsat ETM+ classification and provides recommendations for future actions. Previous studies (Thomas, 1980; Thomas, 1983; Graves et al., 1995; NOAA, 1997; Allen, 1999) produced similar landcover data sets; however, most of these studies used multiple and varied data sources and differed from one another in methodologies. Currently, no single data set has been produced using a consistent methodology and uniform scale data, which describes current estuarine and tidal freshwater floodplain cover types from the Columbia's mouth to the Bonneville Dam (Fig. 1). Results from this study will be used by the Estuary Partnership and its cooperators to: (1) develop indicators of 'habitat health' for target species and populations, and biological integrity at the community and ecosystem scales; (2) develop definitions of 'important salmonid habitat'; (3) identify and evaluate potential wetland conservation and restoration sites; (4) track non-indigenous and invasive species; and (5) develop an understanding of how estuarine and floodplain habitats have changed over the past 200 years. This study focused on estuarine and tidal freshwater floodplain habitat cover types, which are important to native species, particularly juvenile salmonids. Results from this study are meant to provide support for the multiple efforts currently underway to recover 12 species of Columbia River salmonids identified as endangered or threatened under the Endangered Species Act. Spatial scale was an important consideration in this study. Our goal was to create a geographic information system (GIS) coverage depicting habitat cover types for the entire 146 river miles of the study area and the associated floodplain, at a spatial resolution sufficient to resolve important estuarine and floodplain features, wherever possible. Thus, in addition to the small scale (30 m pixel size) satellite imagery covering the study area described in this report, we also acquired high spatial resolution imagery ({approx}1.5 m pixel size) for key portions of the study area using a Compact Airborne Spectrographic Imager (CASI). Compared to the rather coarse, low spectral resolution of the satellite ima

Garono, Ralph; Robinson, Rob

2003-10-01T23:59:59.000Z

356

Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

Science Conference Proceedings (OSTI)

Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

2011-09-30T23:59:59.000Z

357

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008  

SciTech Connect

The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Councils Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington.

Sather, Nichole K.; Johnson, Gary E.; Storch, Adam; Teel, David; Skalski, John R.; Jones, Tucker A.; Dawley, Earl M.; Zimmerman, Shon A.; Borde, Amy B.; Mallette, Christine; Farr, R.

2009-05-29T23:59:59.000Z

358

An Evidence-Based Evaluation of the Cumulative Effects of Tidal Freshwater and Estuarine Ecosystem Restoration on Endangered Juvenile Salmon in the Columbia River: Final Report  

SciTech Connect

The listing of 13 salmon and steelhead stocks in the Columbia River basin (hereafter collectively referred to as salmon) under the Endangered Species Act of 1973, as amended, has stimulated tidal wetland restoration in the lower 235 kilometers of the Columbia River and estuary for juvenile salmon habitat functions. The purpose of the research reported herein was to evaluate the effect on listed salmon of the restoration effort currently being conducted under the auspices of the federal Columbia Estuary Ecosystem Restoration Program (CEERP). Linking changes in the quality and landscape pattern of tidal wetlands in the lower Columbia River and estuary (LCRE) to salmon recovery is a complex problem because of the characteristics of the ecosystem, the salmon, the restoration actions, and available sampling technologies. Therefore, we designed an evidence-based approach to develop, synthesize, and evaluate information to determine early-stage (~10 years) outcomes of the CEERP. We developed an ecosystem conceptual model and from that, a primary hypothesis that habitat restoration activities in the LCRE have a cumulative beneficial effect on juvenile salmon. There are two necessary conditions of the hypothesis: habitat-based indicators of ecosystem controlling factors, processes, and structures show positive effects from restoration actions, and fish-based indicators of ecosystem processes and functions show positive effects from restoration actions and habitats undergoing restoration. Our evidence-based approach to evaluate the primary hypothesis incorporated seven lines of evidence, most of which are drawn from the LCRE. The lines of evidence are spatial and temporal synergies, cumulative net ecosystem improvement, estuary-wide meta-analysis, offsite benefits to juvenile salmon, landscape condition evaluation, and evidence-based scoring of global literature. The general methods we used to develop information for the lines of evidence included field measurements, data analyses, modeling, meta-analysis, and reanalysis of previously collected data sets. We identified a set of 12 ancillary hypotheses regarding habitat and salmon response. Each ancillary hypothesis states that the response metric will trend toward conditions at relatively undisturbed reference sites. We synthesized the evidence for and against the two necessary conditions by using eleven causal criteria: strength, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, analogy, complete exposure pathway, and predictive performance. Our final evaluation included cumulative effects assessment because restoration is occurring at multiple sites and the collective effect is important to salmon recovery. We concluded that all five lines of evidence from the LCRE indicated positive habitat-based and fish-based responses to the restoration performed under the CEERP, although tide gate replacements on small sloughs were an exception. Our analyses suggested that hydrologic reconnections restore access for fish to move into a site to find prey produced there. Reconnections also restore the potential for the flux of prey from the site to the main stem river, where our data show that they are consumed by salmon. We infer that LCRE ecosystem restoration supports increased juvenile salmon growth and enhanced fitness (condition), thereby potentially improving survival rates during the early ocean stage.

Diefenderfer, Heida L.; Johnson, Gary E.; Thom, Ronald M.; Borde, Amy B.; Woodley, Christa M.; Weitkamp, Laurie A.; Buenau, Kate E.; Kropp, Roy K.

2013-12-01T23:59:59.000Z

359

SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). II. COOL EVOLVED STARS  

SciTech Connect

We investigate the infrared (IR) properties of cool, evolved stars in the Small Magellanic Cloud (SMC), including the red giant branch (RGB) stars and the dust-producing red supergiant (RSG) and asymptotic giant branch (AGB) stars using observations from the Spitzer Space Telescope Legacy program entitled 'Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity SMC', or SAGE-SMC. The survey includes, for the first time, full spatial coverage of the SMC bar, wing, and tail regions at IR wavelengths (3.6-160 {mu}m). We identify evolved stars using a combination of near-IR and mid-IR photometry and point out a new feature in the mid-IR color-magnitude diagram that may be due to particularly dusty O-rich AGB stars. We find that the RSG and AGB stars each contribute {approx}20% of the global SMC flux (extended + point-source) at 3.6 {mu}m, which emphasizes the importance of both stellar types to the integrated flux of distant metal-poor galaxies. The equivalent SAGE survey of the higher-metallicity Large Magellanic Cloud (SAGE-LMC) allows us to explore the influence of metallicity on dust production. We find that the SMC RSG stars are less likely to produce a large amount of dust (as indicated by the [3.6] - [8] color). There is a higher fraction of carbon-rich stars in the SMC, and these stars appear to reach colors as red as their LMC counterparts, indicating that C-rich dust forms efficiently in both galaxies. A preliminary estimate of the dust production in AGB and RSG stars reveals that the extreme C-rich AGB stars dominate the dust input in both galaxies, and that the O-rich stars may play a larger role in the LMC than in the SMC.

Boyer, Martha L.; Meixner, Margaret; Gordon, Karl D.; Shiao, Bernie [STScI, Baltimore, MD 21218 (United States); Srinivasan, Sundar [Institut d'Astrophysique de Paris, CNRS UPR 341, Paris F-75014 (France); Van Loon, Jacco Th. [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); McDonald, Iain; Kemper, F. [Jodrell Bank Centre for Astrophysics, University of Manchester, M13 9PL (United Kingdom); Zaritsky, Dennis; Block, Miwa; Engelbracht, Charles W.; Misselt, Karl [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Babler, Brian; Bracker, Steve; Meade, Marilyn; Whitney, Barbara [Department of Astronomy, University of Wisconsin, Madison, Madison, WI 53706-1582 (United States); Hora, Joe; Robitaille, Thomas [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138-1516 (United States); Indebetouw, Remy [Department of Astronomy, University of Virginia, Charlottesville, VA 22903-0818 (United States); Sewilo, Marta, E-mail: mboyer@stsci.edu [Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States)

2011-10-15T23:59:59.000Z

360

Swift J1644+57 gone MAD: the case for dynamically-important magnetic flux threading the black hole in a jetted tidal disruption event  

E-Print Network (OSTI)

The unusual transient Swift J1644+57 likely resulted from a collimated relativistic jet powered by accretion onto a massive black hole (BH) following the tidal disruption (TD) of a star. Several mysteries cloud the interpretation of this event: (1) extreme flaring and `plateau' shape of the X-ray/gamma-ray light curve during the first 10 days after the gamma-ray trigger; (2) unexpected rebrightening of the forward shock radio emission months after trigger; (3) no obvious evidence for jet precession, despite misalignment typically expected between the angular momentum of the accretion disk and BH; (4) recent abrupt shut-off in jet X-ray emission after 1.5 years. Here we show that all of these seemingly disparate mysteries are naturally resolved by one assumption: the presence of strong magnetic flux Phi threading the BH. Initially, Phi is weak relative to high fall-back mass accretion rate, Mdot, and the disk and jets precess about the BH axis = our line of sight. As Mdot drops, Phi becomes dynamically important and leads to a magnetically-arrested disk (MAD). MAD naturally aligns disk and jet axis along the BH spin axis, but only after a violent rearrangement phase (jet wobbling). This explains the erratic light curve at early times and the lack of precession at later times. We use our model for Swift J1644+57 to constrain BH and disrupted star properties, finding that a solar-mass main sequence star disrupted by a relatively low mass, M~10^5-10^6 Msun, BH is consistent with the data, while a WD disruption (though still possible) is disfavored. The magnetic flux required to power Swift J1644+57 is too large to be supplied by the star itself, but it could be collected from a quiescent `fossil' accretion disk present in the galactic nucleus prior to the TD. The presence (lack of) of such a fossil disk could be a deciding factor in what TD events are accompanied by powerful jets.[abridged

Alexander Tchekhovskoy; Brian D. Metzger; Dimitrios Giannios; Luke Zoltan Kelley

2013-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Tidal Conversion by Supercritical Topography  

E-Print Network (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of ...

Balmforth, Neil J.

362

Tidal Conversion by Subcritical Topography  

Science Conference Proceedings (OSTI)

Analytical estimates of the rate at which energy is extracted from the barotropic tide at topography and converted into internal gravity waves are given. The ocean is idealized as an inviscid, vertically unbounded fluid on the f plane. The ...

N. J. Balmforth; G. R. Ierley; W. R. Young

2002-10-01T23:59:59.000Z

363

Tidal Conversion by Supercritical Topography  

Science Conference Proceedings (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of periodic obstructions; a ...

Neil J. Balmforth; Thomas Peacock

2009-08-01T23:59:59.000Z

364

Tides turn for tidal power  

Science Conference Proceedings (OSTI)

Capricious air currents and passing clouds may thwart wind and solar power, but the tides, governed by the gravitational pull of the moon and the sun, might prove a more dependable energy source. In certain spots, the tides have already proved a good ...

J. Calamia

2011-03-01T23:59:59.000Z

365

Property:Project Nearest Body of Water | Open Energy Information  

Open Energy Info (EERE)

Nearest Body of Water Nearest Body of Water Jump to: navigation, search Property Name Project Nearest Body of Water Property Type String Pages using the property "Project Nearest Body of Water" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + North Atlantic Ocean + MHK Projects/ADM 3 + Galway Bay site close to Spiddal + MHK Projects/ADM 5 + government Pilot Zone + MHK Projects/Algiers Light Project + Mississippi River + MHK Projects/Anconia Point Project + Mississippi River + MHK Projects/Ashley Point Project + Mississippi River + MHK Projects/Astoria Tidal Energy + East River + MHK Projects/Avalon Tidal + Ingram Thorofare + MHK Projects/Avondale Bend Project + Mississippi River + MHK Projects/BW2 Tidal + Maurice River +

366

RADIO MONITORING OF THE TIDAL DISRUPTION EVENT SWIFT J164449.3+573451. I. JET ENERGETICS AND THE PRISTINE PARSEC-SCALE ENVIRONMENT OF A SUPERMASSIVE BLACK HOLE  

SciTech Connect

We present continued radio observations of the tidal disruption event Swift J164449.3+573451 extending to {delta}t Almost-Equal-To 216 days after discovery. The data were obtained with the EVLA, AMI Large Array, CARMA, the SMA, and the VLBA+Effelsberg as part of a long-term program to monitor the expansion and energy scale of the relativistic outflow, and to trace the parsec-scale environment around a previously dormant supermassive black hole (SMBH). The new observations reveal a significant change in the radio evolution starting at {delta}t Almost-Equal-To 1 month, with a brightening at all frequencies that requires an increase in the energy by about an order of magnitude, and an overall density profile around the SMBH of {rho}{proportional_to}r{sup -3/2} (0.1-1.2 pc) with a significant flattening at r Almost-Equal-To 0.4-0.6 pc. The increase in energy cannot be explained with continuous injection from an L{proportional_to}t{sup -5/3} tail, which is observed in the X-rays. Instead, we conclude that the relativistic jet was launched with a wide range of Lorentz factors, obeying E(> {Gamma}{sub j}){proportional_to}{Gamma}{sup -2.5}{sub j}. The similar ratios of duration to dynamical timescale for Sw 1644+57 and gamma-ray bursts (GRBs) suggest that this result may be applicable to GRB jets as well. The radial density profile may be indicative of Bondi accretion, with the inferred flattening at r {approx} 0.5 pc in good agreement with the Bondi radius for a {approx}few Multiplication-Sign 10{sup 6} M{sub Sun} black hole. The density at {approx}0.5 pc is about a factor of 30 times lower than inferred for the Milky Way Galactic Center, potentially due to a smaller number of mass-shedding massive stars. From our latest observations ({delta}t Almost-Equal-To 216 days) we find that the jet energy is E{sub j,iso} Almost-Equal-To 5 Multiplication-Sign 10{sup 53} erg (E{sub j} Almost-Equal-To 2.4 Multiplication-Sign 10{sup 51} erg for {theta}{sub j} = 0.1), the radius is r Almost-Equal-To 1.2 pc, the Lorentz factor is {Gamma}{sub j} Almost-Equal-To 2.2, the ambient density is n Almost-Equal-To 0.2 cm{sup -3}, and the projected angular size is r{sub proj} Almost-Equal-To 25 {mu}as, below the resolution of the VLBA+Effelsberg. Assuming no future changes in the observed evolution and a final integrated total energy of E{sub j} Almost-Equal-To 10{sup 52} erg, we predict that the radio emission from Sw 1644+57 should be detectable with the EVLA for several decades and will be resolvable with very long baseline interferometry in a few years.

Berger, E.; Zauderer, A.; Soderberg, A. M.; Sari, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pooley, G. G. [Mullard Radio Observatory, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Brunthaler, A. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Bietenholz, M. F. [Department of Physics and Astronomy, York University, Toronto, Ontario (Canada)

2012-03-20T23:59:59.000Z

367

Preseismic oscillating electric field "strange attractor like" precursor, of T = 6 months, triggered by Ssa tidal wave. Application on large (Ms > 6.0R) EQs in Greece (October 1st, 2006 - December 2nd, 2008)  

E-Print Network (OSTI)

In this work the preseismic "strange attractor like" precursor is studied, in the domain of the Earth's oscillating electric field for T = 6 months. It is assumed that the specific oscillating electric field is generated by the corresponding lithospheric oscillation, triggered by the Ssa tidal wave of the same wave length (6 months) under excess strain load conditions met in the focal area of a future large earthquake. The analysis of the recorded Earth's oscillating electric field by the two distant monitoring sites of PYR and HIO and for a period of time of 26 months (October 1st, 2006 - December 2nd, 2008) suggests that the specific precursor can successfully resolve the predictive time window in terms of months and for a "swarm" of large EQs (Ms > 6.0R), in contrast to the resolution obtained by the use of electric fields of shorter (T = 1, 14 days, single EQ identification) wave length. More over, the fractal character of the "strange attractor like" precursor in the frequency domain is pointed out. Fina...

Thanassoulas, C; Verveniotis, G; Zymaris, N

2009-01-01T23:59:59.000Z

368

Hawai`i Community College Dean's List ~ Spring 2012 Hawai`i Community College proudly releases the names of the following students who  

E-Print Network (OSTI)

Ericka Guillen H Maurice Hackett Ivana Hall Glenda Hamilton Jaime Hara Doreen Harwin Jessica Hasegawa

369

Understanding dark matter halos with tidal caustics  

E-Print Network (OSTI)

The products of interactions between galaxies with a high mass ratio and low orbital angular momentum are studied. The interactions scatter the material from the smaller galaxy into structures with distinctive dynamics and ...

Sanderson, Robyn Ellyn

2011-01-01T23:59:59.000Z

370

Seismic geomorphology and sedimentology of a tidally  

E-Print Network (OSTI)

of Reclamation/ Mendell Energy, Inc. o Field Performance Evaluation of Engineered Pretreatment Units. Korea. Ingels, T., Drewes, J. E., Yates, G., McEncroe, J., Crittenden, R. & Jordan, R. (2005

371

Definition: Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View...

372

Stratified Tidal Flow over a Bump  

Science Conference Proceedings (OSTI)

The interaction of a stratified flow with an isolated topographic feature can introduce numerous disturbances into the flow, including turbulent wakes, internal waves, and eddies. Measurements made near a bump east of Race Rocks, Vancouver ...

Richard Dewey; David Richmond; Chris Garrett

2005-10-01T23:59:59.000Z

373

Massachusetts Wind Working Group Meeting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Wind Working Group Meeting Massachusetts Wind Working Group Meeting October 30, 2013 2:00PM to 4:00PM EDT 256 Freeport St., Dorchester, MA The meeting will feature a...

374

Linearized Biogeography-Based Optimization with Re-initialization and Local Search  

E-Print Network (OSTI)

, Mahamed G. H. Omran2 , and Maurice Clerc3 March 12, 2013 Abstract Biogeography-based optimization (BBO

Simon, Dan

375

NREL: Technology Transfer - 22nd Industry Growth Forum ...  

In turn, the panels provided them with intensive feedback on their presentations. Amprius, Inc. ... Presenter: Maurice Gunderson, CMEA Capital .

376

Experimental Test Plan DOE Tidal and River Reference Turbines  

Science Conference Proceedings (OSTI)

Our aim is to provide details of the experimental test plan for scaled model studies in St. Anthony Falls Laboratory (SAFL) Main Channel at the University of Minnesota, including a review of study objectives, descriptions of the turbine models, the experimental set-up, instrumentation details, instrument measurement uncertainty, anticipated experimental test cases, post-processing methods, and data archiving for model developers.

Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Gunawan, Budi [ORNL

2012-09-01T23:59:59.000Z

377

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

This enables the oil to persist on the surface of the coating without significantly reducing the coated surfaces coefficient of friction. Oak Ridge National ...

378

MHK Projects/Tidal Generation Ltd EMEC | Open Energy Information  

Open Energy Info (EERE)

Generation Ltd EMEC Generation Ltd EMEC < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.1302,"lon":-2.77188,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

379

High volume tidal or current flow harnessing system  

Science Conference Proceedings (OSTI)

Apparatus permitting the utilization of large volumes of water in the harnessing and extracting of a portion of the power generated by the rise and fall of ocean tides, ocean currents, or flowing rivers includes the provision of a dam, and a specialized single cavity chamber of limited size as compared with the water head enclosed by the dam, and an extremely high volume gating system in which all or nearly all of the water between the high and low levels on either side of the dam is cyclically gated through the single chamber from one side of the dam to the other so as to alternately provide positive air pressure and a partial vacuum within the single chamber. In one embodiment, the specialized chamber has a barrier at the bottom which divides the bottom of the chamber in half, large ports at the bottom of the chamber to permit inflow and outflow of high volumes of water, and ganged structures having a higher total area than that of corresponding ports, in which the structures form sluice gates to selectively seal off and open different sets of ports. In another embodiment, a single chamber is used without a barrier. In this embodiment, vertical sluice gates are used which may be activated automatically by pressures acting on the sluice gates as a result of ingested and expelled water.

Gorlov, A.M.

1984-08-07T23:59:59.000Z

380

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

The pinning action keeps the oil from leeching out of the coating, ... field weakening, and power factor improvement and novel locks for higher peak s ...

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A frequency domain finite element model for tidal circulation  

E-Print Network (OSTI)

A highly efficient finite element model has been developed for the numerical prediction of depth average circulation within small scale embayments which are often characterized by irregular boundaries and bottom topography.

Westerink, Joannes J.

1985-01-01T23:59:59.000Z

382

Common benthic algae and cyanobacteria in southern California tidal wetlands  

E-Print Network (OSTI)

Janousek Janousek 2011: Algae and cyanobacteria of southernto the Marine Bluegreen Algae. John Wiley and Sons, NewDistribution of bluegreen algae in a Mississippi gulf coast

Janousek, Christopher N

2011-01-01T23:59:59.000Z

383

Laboratory Simulation of Tidal Rectification over Seamounts: Homogeneous Model  

Science Conference Proceedings (OSTI)

The problem of the oscillatory motion of a homogeneous, rotating fluid in the vicinity of an isolated topographic feature is investigated in the laboratory and numerically. The laboratory experiments are conducted by fixing a cosine-squared body ...

Don L. Boyer; Gabriel Chabert d'Hieres; Henri Didelle; Jacques Verron; Rui-Rong Chen; Lijun Tao

1991-10-01T23:59:59.000Z

384

Observations of Tidal Internal Wave Beams at Kauai Channel, Hawaii  

Science Conference Proceedings (OSTI)

To observe the across-ridge structure of internal tides, density and velocity were measured using SeaSoar and a Doppler sonar over the upper 400600 m of the ocean extending 152 km on each side of the Hawaiian Ridge at Kauai Channel. Eighteen ...

S. T. Cole; D. L. Rudnick; B. A. Hodges; J. P. Martin

2009-02-01T23:59:59.000Z

385

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...  

Office of Science (SC) Website

Image courtesy of Ocean Renewable Power Company ORPC's TidGen(tm) turbine generator unit. R&D Opportunity Advanced water power technologies include devices capable of extracting...

386

Climate Change and San Francisco Bay-Delta Tidal Wetlands  

E-Print Network (OSTI)

Energy, National Institute for Climate Change Research, Coastal Center. DECEMBER 2011 REFERENCES Charles H, Dukes

Parker, V. Thomas; Callaway, John C.; Schile, Lisa M.; Vasey, Michael C.; Herbert, Ellen R.

2011-01-01T23:59:59.000Z

387

Verdant-Roosevelt Island Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

www.theriteproject.comDocuments.html *NYSERDA RITE Environmental Assessment Project - Final Report (March 2011) http:www.theriteproject.comDocuments.html Main Overseeing...

388

Distribution of Macroinvertebrates Across a Tidal Gradient, Marin County, California  

E-Print Network (OSTI)

Biological Invasions Grenier J. 2004. Ecology, behavior, andService. 246 p + appendices. Grenier JL, Greenberg R. 2005.Lindsey 3 , and Letitia Grenier 1 ABSTRACT INTRODUCTION The

Robinson, April H.; Cohen, Andrew N.; Lindsey, Brie; Grenier, Letitia

2011-01-01T23:59:59.000Z

389

TIDAL FRESHWATER WETLANDS OF THE MID-ATLANTIC AND  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.3-6.4. Graphs showing: 6.3. Graph showing proportion of ragweed (Ambrosia) pollen in core MD99

Hartley, Troy W.

390

NREL Uses Computing Power to Investigate Tidal Power (Fact Sheet)  

DOE Green Energy (OSTI)

Until now, wind turbine controls that reduce the impacts of wind gusts and turbulence were always reactive - responding to the wind rather than anticipating it. But with today's laser-based sensors that measure wind speed ahead of the turbine, researchers at the National Renewable Energy Laboratory (NREL) and their industry partners are developing more intelligent controls. The world's first field tests of these controls are currently underway at the National Wind Technology Center (NWTC) at NREL, with plans for future commercialization.

Not Available

2012-10-01T23:59:59.000Z

391

Structural Design of a Horizontal-Axis Tidal Current Turbine...  

NLE Websites -- All DOE Office Websites (Extended Search)

M.J. Lawson, and Y. Li Presented at the ASME 30 th International Conference on Ocean, Offshore, and Arctic Engineering Rotterdam, The Netherlands June 19-24, 2011 Conference Paper...

392

Generation of Bulk Shear Spikes in Shallow Stratified Tidal Seas  

Science Conference Proceedings (OSTI)

Recent finescale observations of shear and stratification in temperate shelf sea thermoclines show that they are of marginal stability, suggesting that episodes of enhanced shear could potentially lead to shear instability and diapcynal mixing. ...

Hans Burchard; Tom P. Rippeth

2009-04-01T23:59:59.000Z

393

Measurement of Tidal Form Drag Using Seafloor Pressure Sensors  

Science Conference Proceedings (OSTI)

As currents flow over rough topography, the pressure difference between the up- and downstream sides results in form draga force that opposes the flow. Measuring form drag is valuable because it can be used to estimate the loss of energy from ...

Sally J. Warner; Parker MacCready; James N. Moum; Jonathan D. Nash

2013-06-01T23:59:59.000Z

394

Open Ocean Modeling as an Inverse Problem: Tidal Theory  

Science Conference Proceedings (OSTI)

Classical models of tides in open coastal regions employ ad hoc conditions on the open boundaries instead of reliable sea level data on the coastline in order to achieve a well-posed problem. A weighted variational formulation is described here, ...

A. F. Bennett; P. C. McIntosh

1982-10-01T23:59:59.000Z

395

Millennial Climate Variability: Is There a Tidal Connection?  

Science Conference Proceedings (OSTI)

Orbital forcing has long been the subject of two quite separate communities: the tide community is concerned with the relatively rapid gravitational forces (periods up to 18.6 yr) and the climate community with the long-period Milankovitch ...

Walter Munk; Matthew Dzieciuch; Steven Jayne

2002-02-01T23:59:59.000Z

396

Interior structure models and tidal Love numbers of Titan  

E-Print Network (OSTI)

of a differentiated Titan with an internal ammonia-water ocean and chondritic radiogenic heat production: Solid Surface Planets: Physical properties of materials; 6280 Planetology: Solar System Objects

Lorenz, Ralph D.

397

MHK Projects/Pennamaquan Tidal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0051,"lon":-67.2259,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

398

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 990 of 28,560 results. 81 - 990 of 28,560 results. Download EA-0971: Final Environmental Assessment Device Assembly Facility Operations http://energy.gov/nepa/downloads/ea-0971-final-environmental-assessment Rebate Caroline County- Wind Ordinance This ordinance amends Chapter 175 of the Code of Public Local Laws of Caroline County, Maryland to provide for the erection, maintenance, and operation of small wind energy systems, as well as... http://energy.gov/savings/caroline-county-wind-ordinance Rebate Dorchester County- Wind Ordinance This ordinance amends Chapter 155 of the Dorchester County Zoning Ordinance in order to add small wind energy systems as an accessory use in all zoning districts. http://energy.gov/savings/dorchester-county-wind-ordinance Article Department of Energy Completes Five Recovery Act Projects- Moves

399

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 15870 of 28,905 results. 61 - 15870 of 28,905 results. Rebate Caroline County- Wind Ordinance This ordinance amends Chapter 175 of the Code of Public Local Laws of Caroline County, Maryland to provide for the erection, maintenance, and operation of small wind energy systems, as well as... http://energy.gov/savings/caroline-county-wind-ordinance Rebate Carroll County- Wind Ordinance This ordinance sets forth regulations for the zoning, erection, and operation of small wind energy systems in Carroll County, Maryland. http://energy.gov/savings/carroll-county-wind-ordinance Rebate Dorchester County- Renewable Zoning Dorchester County zoning codes specifically permit solar arrays and small wind turbines in many zoning districts. http://energy.gov/savings/dorchester-county-renewable-zoning

400

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

801 - 6810 of 28,560 results. 801 - 6810 of 28,560 results. Rebate Dorchester County- Renewable Zoning Dorchester County zoning codes specifically permit solar arrays and small wind turbines in many zoning districts. http://energy.gov/savings/dorchester-county-renewable-zoning Rebate Harford County- Wind Ordinance This ordinance creates regulations and standards for the erection and operation of small wind energy systems in Harford County, Maryland. http://energy.gov/savings/harford-county-wind-ordinance Rebate Howard County- Wind Ordinance This ordinance sets up provisions for allowing small wind energy systems in various zoning districts. http://energy.gov/savings/howard-county-wind-ordinance Rebate Kent County- Wind Ordinance This ordinance establishes provisions and standards for small wind energy

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SPRAY FORMING--EXPERIMENT, ANALYSIS, AND ... - TMS  

Science Conference Proceedings (OSTI)

... Jt. EPD/MDMD Synthesis Control & Analysis in Materials Processing .... IN THE SPRAY-FORMED ALUMINUM ALLOY PREFORMS: Ram B. Bhagat, Maurice...

402

Print - TMS  

Science Conference Proceedings (OSTI)

Presenters, Michael Moats, Bill Davenport, Maurice Solar, Tim Robinson, Bruce ... the course will examine the fundamentals and current trends of the processing ...

403

BNL | Awards and Recognitions  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Awards Joanna Fowler, 2008 National Medal of Science winner Nicholas Samios, E.0. Lawrence Memorial Award, 1980 Maurice Goldhaber, National Medal of Science Winner, 1983...

404

3-D, Siripunvaraporn Algorithm: Siripunvaraporn, Egbert, Lenbury & Uyeshima,  

E-Print Network (OSTI)

- and three-dimensional modelling of audiomagnetotelluric data collected at the world's richest uranium mineArthur River mine in Saskatchewan, Canada. ? ? VRVR P2P2 ReindeerLake Lake Wollaston Cree Lake Athabasca LakeLaRocque Lake Maurice Bay Maurice Bay Maybelle R.Maybelle R. Shea Ck.Shea Ck. Dawn Lake Current/Past Mine / Mill

Farquharson, Colin G.

405

MHK Projects/Central Cook Inlet Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Project Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.9669,"lon":-152.226,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

406

Tidal and Low-Frequency Currents Near the Shelf-Break: Northeastern Coast of Brazil  

Science Conference Proceedings (OSTI)

Time series of a 40-day (13 March-23 April 1979) wind and current observational experiment are analyzed. The wind data originated from the Fortaleza Airport Weather Station (Cear, Brazil), and the current meter data originated concurrently from ...

Srgio R. Signorini; Luiz B. De Miranda

1983-11-01T23:59:59.000Z

407

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

and Location in the Aleutian Trench on Tsunami Amplitudeearthquakes along the Aleutian Trench on resulting tsunamiCalifornia waves from: Aleutian Island storms, west waves,

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

408

MHK Projects/Tidal Energy Device Evaluation Center TIDEC | Open Energy  

Open Energy Info (EERE)

Device Evaluation Center TIDEC Device Evaluation Center TIDEC < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3879,"lon":-68.7998,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

409

Novel approach to the exploitation of tidal energy. Final report. Volume 2. Appendices  

SciTech Connect

Six appendices are included. Separate abstracts were prepared for five. One appendix, Analysis of the Filling-Emptying Cycle of an Air Chamber Operation, consisted entirely of equations and calculations. (MHR)

Gorlov, A.M.

1981-12-01T23:59:59.000Z

410

Snacktime for Hungry Black Holes: Theoretical Studies of the Tidal Disruption of Stars  

E-Print Network (OSTI)

to be Type Ia supernovae, gamma-ray bursts, or AGN. Type IIof short-duration gamma-ray bursts). Section 2.2. Thea long-duration gamma-ray burst (which decays in minutes),

Strubbe, Linda Elisabeth

2011-01-01T23:59:59.000Z

411

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

dispersion models, pulp and paper industrial wastes, trace metals, radiochemistry, pesticides and chlorine,

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

412

Tidal Wetland Vegetation in the San Francisco Bay-Delta Estuary  

E-Print Network (OSTI)

Benefits and Costs of Balanced, Random Sampling quently encountered at local scales, but that Sand Mound

Vasey, Michael C.; Parker, V. Thomas; Callaway, John C.; Herbert, Ellen R.; Schile, Lisa M.

2012-01-01T23:59:59.000Z

413

ENVIRONMENTAL THREATS TO TIDAL-MARSH VERTEBRATES OF THE SAN FRANCISCO BAY ESTUARY  

E-Print Network (OSTI)

PROGRAM WORK ELEMENT Foraminifera Taxonomy Biomass of Microorganisms (ATP) Water Column Trace Metals

414

Wind and tidal response of a semi-enclosed bay, Baha Concepcin, Baja California  

E-Print Network (OSTI)

Observed response to diurnal winds . . . . . 4.1Thermal wind balance . . . . . . . . . . . . . . . . . . . .level response to wind . . . . . . . . . . . . 4.3 Current

Ponte, Aurlien L. S.

2009-01-01T23:59:59.000Z

415

Physiological ecology and behaviour of bonefish (Albula vulpes) in tropical tidal flats Karen Jennifer Murchie  

E-Print Network (OSTI)

when compared to temperate systems. The goal of this thesis was to use bonefish (Albula vulpes% protein, 4% ash, and 3% lipid, which is consistent with the wet weight values of the majority of fishes. Collectively, this body of work revealed that bonefish use strategies that make them capable of handling

Cooke, Steven J.

416

Thermal properties of an upper tidal flat sediment on the Texas Gulf Coast  

E-Print Network (OSTI)

Increased land use change near fragile ecosystems can affect the ecosystem energy balance leading to increased global warming. One component of surface energy balance is soil storage heat flux. In past work, a complex thermal behavior was noticed in the shrink-swell sediment of the upper Nueces Delta (upper Rincon) during summer months as it dried. Soil storage heat flux was found to first increase, then decrease, as the soil dried. It was suggested that the complex behavior was due to the relationship between thermal diffusivity and soil moisture, where thermal diffusivity increases to a local maximum before decreasing with respect to decreasing soil moisture. This study explores the observed phenomenon in a controlled laboratory environment by relating the sediment shrinkage curve to changing heat transfer properties. Due to the complicated nature of the drying-shrinking sediment, it was necessary to measure the sediment shrinkage curve and heat transfer properties in separate experiments. The shrinkage curve was found by correlating measured sample volume with gravimetric moisture content. Heat transfer properties were found using a single needle heat pulse probe. A normalized gravimetric moisture content was used as a common variable to relate the shrinkage curve and heat transfer data. Data suggests that the shrink-swell Rincon sediment portrays different behavior in drying than that which occurs for a non-shrink-swell soil. For the shrink-swell Rincon sediment, thermal conductivity is seen to increase with decreasing moisture, the suggested mechanism being increased surface area contact between particles as the shrinking sediment dries.

Cramer, Nicholas C.

2006-12-01T23:59:59.000Z

417

Boundary Mixing Associated with Tidal and Near-Inertial Internal Waves  

Science Conference Proceedings (OSTI)

Moorings deployed on the south (AugustNovember 2002) and north (November 2002June 2003) flanks of the Kaena Ridge, Hawaii, are used to document the flow variability associated with mixing within 200 m from the boundary, deep along the ridge, as ...

Jerome Aucan; Mark Merrifield

2008-06-01T23:59:59.000Z

418

Energetics of M2 Barotropic-to-Baroclinic Tidal Conversion at the Hawaiian Islands  

Science Conference Proceedings (OSTI)

A high-resolution primitive equation model simulation is used to form an energy budget for the principal semidiurnal tide (M2) over a region of the Hawaiian Ridge from Niihau to Maui. This region includes the Kaena Ridge, one of the three main ...

G. S. Carter; M. A. Merrifield; J. M. Becker; K. Katsumata; M. C. Gregg; D. S. Luther; M. D. Levine; T. J. Boyd; Y. L. Firing

2008-10-01T23:59:59.000Z

419

TEA - a linear frequency domain finite element model for tidal embayment analysis  

E-Print Network (OSTI)

A frequency domain (harmonic) finite element model is developed for the numerical prediction of depth average circulation within small embayments. Such embayments are often characterized by irregular boundaries and bottom ...

Westerink, Joannes J.

1984-01-01T23:59:59.000Z

420

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

April l978; tides, offshore winds, high storm waves, andand oceanography; offshore wind and fog climatology; onshoretransport, offshore/onshore transport, wind transport

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

S. Monterey Bay Cell Factors Affecting Gully Formation andFormation and Development of Beach Cusps on Del Monte Beach, Monterey,Monterey, CA, Master's Thesis, pages DATE: 12/01/68 ABSTRACT: Carmel Submarine Canyon is cut into the Santa Lucia granodiorite formation

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

422

Methylmercury Production in Tidal Salt Marsh Sediments and Potential Control Using Iron Amendments  

E-Print Network (OSTI)

for 7-days in sealed jars under the following conditions:into acid-cleaned glass jars with Teflon- lined lids, anda pre-cleaned 20-mL glass jar with a Teflon-lined lid. The

Ulrich, Patrick D.

2011-01-01T23:59:59.000Z

423

Modeling Tidal Current Profiles and Vertical Mixing beneath FilchnerRonne Ice Shelf, Antarctica  

Science Conference Proceedings (OSTI)

One of the warmest water masses beneath FilchnerRonne Ice Shelf (FRIS) is dense, high salinity shelf water (HSSW) that flows into the sub-ice-shelf cavity from the ice front and occupies the lower portion of the water column. A one-dimensional ...

Keith Makinson

2002-01-01T23:59:59.000Z

424

Tidal Wetland Restoration in San Francisco Bay: History and Current Issues  

E-Print Network (OSTI)

p. Mount JF, Twiss R. 2005. Subsidence, sea level rise, andR, Wheeler G. 2008. Subsidence reversal in a re-establishedIreland RL. 1988. Land subsidence in the Santa Clara Valley,

Callaway, John C.; Parker, V. Thomas; Vasey, Michael C.; Schile, Lisa M.; Herbert, Ellen R.

2011-01-01T23:59:59.000Z

425

ORIGINAL PAPER GPS Height and Gravity Variations Due to Ocean Tidal  

E-Print Network (OSTI)

-Kang Yeh ? Cheinway Huang ? Guochang Xu Received: 29 November 2007 / Accepted: 20 August 2008 / Published and T.-K. Yeh (&) Institute of Geomatics and Disaster Prevention Technology, Ching Yun University, No of the Sun and the Moon, part of the ocean water will rise. Such rising water will have to move faster so

Hwang, Cheinway

426

ESTUARINE INFLUENCE ON TIDALLY DRIVEN CIRCULATION IN THE SOUTH ATLANTIC BIGHT  

E-Print Network (OSTI)

Bacopoulos #12;iii ABSTRACT A high-resolution, finite element-based, shallow water equation model. Where water surface elevations are shown to be unaffected by the estuarine features of the South thank the other committee members: Lakshmi Reddi, George Yeh, Manoj Chopra, and Alain Kassab. I have had

Central Florida, University of

427

Gravity Wave and Tidal Structures between 60 and 140 km Inferred from Space Shuttle Reentry Data  

Science Conference Proceedings (OSTI)

This study presents an analysis of density measurements made using high-resolution accelerometers aboard several space shuttles at altitudes from 60 to 140 km during reentry into the earth's atmosphere. The observed density fluctuations are ...

David C. Fritts; Ding-Yi Wang; Robert C. Blanchard

1993-03-01T23:59:59.000Z

428

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

construction of an offshore tanker platform at Humboldt Bay.offshore presented a particular challenge. A shallow-water work platform,

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

429

Interpolation of Tidal Levels in the Coastal Zone for the Creation of a Hydrographic Datum  

Science Conference Proceedings (OSTI)

As part of the U.K. Hydrographic Office (UKHO)-sponsored Vertical Offshore Reference Frames (VORF) project, a high-resolution model of lowest astronomical tide (LAT) with respect to mean sea level has been developed for U.K.Irish waters. In ...

J. F. Turner; J. C. Iliffe; M. K. Ziebart; C. Wilson; K. J. Horsburgh

2010-03-01T23:59:59.000Z

430

A variational formalism for tidal excitation: non-rotating, homentropic stars  

E-Print Network (OSTI)

We present a variational formalism for describing the dynamical evolution of an oscillating star with a point-mass companion in the linear, non-relativistic regime. This includes both the excitation of normal modes and the back-reaction of the modes on the orbit. The general formalism for arbitrary fluid configurations is presented, and then specialized to a homentropic potential flow. Our formalism explicitly identifies and conserves both energy and angular momentum. We also consider corrections to the orbit up to 7/2 post-Newtonian order.

Yasser Rathore; Avery E. Broderick; Roger Blandford

2002-08-30T23:59:59.000Z

431

The Hybrid KelvinEdge Wave and Its Role in Tidal Dynamics  

Science Conference Proceedings (OSTI)

A full set of long waves trapped in the coastal ocean over a variable topography includes a zero (fundamental) mode propagating with the coast on its right (left) in the Northern (Southern) Hemisphere. This zero mode resembles a Kelvin wave at ...

Ziming Ke; Alexander E. Yankovsky

2010-12-01T23:59:59.000Z

432

Three-Dimensional Residual Tidal Circulation in an Elongated, Rotating Basin  

Science Conference Proceedings (OSTI)

The three-dimensional residual circulation driven by tides in an elongated basin of arbitrary depth is described with a small amplitude, constant density model on the f plane. The inclusion of rotation fundamentally alters the residual flow. With ...

Clinton D. Winant

2008-06-01T23:59:59.000Z

433

Ballooning of River-Plume Bulge and Its Stabilization by Tidal Currents  

Science Conference Proceedings (OSTI)

When freshwater debouches into an adjacent ocean, an anticyclonic eddy (bulge) is formed in front of the river mouth. It is well known that a bulge growing offshore (ballooning) hardly reaches a steady state in the absence of either ambient ...

Atsuhiko Isobe

2005-12-01T23:59:59.000Z

434

Tidal Effects on Intermediate Waters: A Case Study in the East/Japan Sea  

Science Conference Proceedings (OSTI)

Although tides are believed to be the most important source for diapycnal mixing in the ocean, few studies have directly simulated open-ocean circulation including tides. Because the East/Japan Sea (EJS) has been considered to be a miniature ...

Ho Jin Lee; Jae-Hun Park; Mark Wimbush; Kyung Tae Jung; Chan Joo Jang; Yang-Ki Cho; Young-Kyo Seo; Jong Ho Nam

2011-01-01T23:59:59.000Z

435

An Analysis of the Tidal Signal in the WOCE Sea Level Dataset  

Science Conference Proceedings (OSTI)

A new sea level observation network initiated by the World Ocean Circulation Experiment (WOCE) program is delivering hourly data from about 150 ocean stations worldwide. A complete analysis of these data was performed using a least squares method ...

F. Ponchaut; F. Lyard; C. Le Provost

2001-01-01T23:59:59.000Z

436

Resistance to Barotropic Tidal Flow in Straits by Baroclinic Wave Drag  

Science Conference Proceedings (OSTI)

Energy transfer from barotropic tides to baroclinic motions may take place at the ends of straits connecting stratified basins, implying generation of internal waves propagating into the basins. Different aspects of this have been described in ...

Anders Stigebrandt

1999-02-01T23:59:59.000Z

437

An Estimate of Tidal Energy Lost to Turbulence at the Hawaiian Ridge  

Science Conference Proceedings (OSTI)

An integrated analysis of turbulence observations from four unique instrument platforms obtained over the Hawaiian Ridge leads to an assessment of the vertical, cross-ridge, and along-ridge structure of turbulence dissipation rate and ...

Jody M. Klymak; James N. Moum; Jonathan D. Nash; Eric Kunze; James B. Girton; Glenn S. Carter; Craig M. Lee; Thomas B. Sanford; Michael C. Gregg

2006-06-01T23:59:59.000Z

438

Improving tide-gauge data processing: A method involving tidal frequencies and inverted barometer effect  

Science Conference Proceedings (OSTI)

Sea level measured at tide-gauge stations is affected by undesired events such as spikes, gaps, steps and time shifts. The presence of these instrumental failures seriously decreases the quality of each analysis done using the record. Furthermore, they ... Keywords: Data processing, Inverted barometer effect, Ocean tides, Sea-level changes, Tide-gauge observations

E. Gil; C. de Toro

2005-10-01T23:59:59.000Z

439

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

Mendocino Thermal Power Plant on the Marine Environmentmarine environmental problems connected with the construction and operation of nuclear powerpower of sea and swell, calculated from hindcast wave data as compiled by National Marine

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

440

Climate instability on tidally locked exoplanets1 Edwin S. Kite2  

E-Print Network (OSTI)

equilibrium between the temperature-dependent rate of greenhouse-gas consumption by weathering, and greenhouse-gas greenhouse-gas radiative efficiency, and have a principal greenhouse gas that is also the main constituent

Kite, Edwin

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

Specialty Conference, Oct. ASCE, N. Y. , Chapter 33 DATE:Coastal Zone '78, Vol. II, ASCE, N.Y. , pp. 943-964 DATE:California, March 1978; ASCE, N. Y. , Vol. I, pp. 402-412

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

442

On Factors Controlling AirWater Gas Exchange in a Large Tidal River  

E-Print Network (OSTI)

and Estuarine Research Federation 2011 Abstract Air­water gas exchange is an important process in aquatic Introduction In rivers and estuaries, knowledge of air­water gas exchange is important for evaluating how floating domes. The opportunistic gas method relies on gases in the water that either occurred naturally (e

Ho, David

443

Spectral Estimates of Bed Shear Stress at Subcritical Reynolds Numbers in a Tidal Boundary Layer  

Science Conference Proceedings (OSTI)

Velocity measurements from five levels in the constant-stress region of a neutrally stratified turbulent boundary layer are used to show that below a critical height the spectral energy density in the inertial subrange remains constant at a ...

Malcolm O. Green

1992-08-01T23:59:59.000Z

444

Numerical and Analytical Estimates of M2 Tidal Conversion at Steep Oceanic Ridges  

Science Conference Proceedings (OSTI)

Numerical calculations of the rate at which energy is converted from the external to internal tides at steep oceanic ridges are compared with estimates from analytic theories. The numerical calculations are performed using a hydrostatic primitive ...

Emanuele Di Lorenzo; William R. Young; Stefan Llewellyn Smith

2006-06-01T23:59:59.000Z

445

The Energetics and Tidally Induced Reverse Renewal in a Two-Silled Fjord  

Science Conference Proceedings (OSTI)

A laterally integrated, two-dimensional numerical model is used to examine the influence of the M2 tide on the circulation in the Saguenay Fjord, a two-silled fjord (with a large inner and a small outer basin) located on the north shore of ...

Michael W. Stacey; Yves Gratton

2001-06-01T23:59:59.000Z

446

Broadly Distributed and Locally Enhanced Turbulent Mixing in a Tidal Estuary  

Science Conference Proceedings (OSTI)

Spatial variations of vertical turbulent mixing along a stretch of the Hudson River estuary are examined with focus on the vicinity of a hydraulic control point at the George Washington Bridge at which the cross section narrows and the thalweg ...

Hartmut Peters

2003-09-01T23:59:59.000Z

447

Lunar Tidal Winds Measured in the Upper Atmosphere (78105 km) at Saskatoon, Canada  

Science Conference Proceedings (OSTI)

Six years of winds data measured by the partial reflection drifts technique have been analyzed for lunar tides. Data are available at 3 km intervals of height and are separately analyzed in two year datasets to cheek consistency. A month-by-month ...

R. J. Stening; C. E. Meek; A. H. Manson

1987-04-01T23:59:59.000Z

448

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

Describes damages to California coast from series of stormswave climate, precipitation California, South Coast Region,Analysis of the Southern California Santa Ana of January 15-

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

449

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

Pollution Control Board, Sacramento, CA, Annual Report, 110of Mines and Geology, Sacramento, CA, May 1973, Volume 26,Mines and Geology, Sacramento, CA, Volume 32, No. 4, Pages

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

450

Processos Ecossistmicos em Plancies Alagveis John M. Melack...  

NLE Websites -- All DOE Office Websites (Extended Search)

25 a 541. 1 Processos Ecossistmicos em Plancies Alagveis John M. Melack, 1 Evelyn M. L. M. Novo, 2 Bruce R. Forsberg, 3 Maria T. F. Piedade, 3 e Laurence Maurice, 4 As...

451

National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Walsh, Office of the Under Secretary, S-3 Maurice Daugherty, EM 3.1 Steve Taylor, Kansas City Site Office Camille Yuan-Soo Hoo, Livermore Site Office Ed Wilmot, Los Alamos Site...

452

Effects of hydrodynamic film boundary conditions on bubble-wall impact  

E-Print Network (OSTI)

: Manica, Rogerio; Institute of High Performance Computing, Fluid Dynamics Hendrix, Maurice; University of Twente, Gupta, Raghvendra; Institute of High Performance Computing, Fluid Dynamics Klaseboer, Evert; Institute of High Performance Computing, Fluid Dynamics Ohl, Claus-Dieter; Nanyang Technological University

Chan, Derek Y C

453

Water Power Program: Marine and Hydrokinetic Resource Assessment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Tidal Streams Resource Map. Tidal Streams Resource Assessment The Assessment of the Energy Production from Tidal Streams in the United States report, created by Georgia Tech,...

454

Distribution of Energy Spectra, Reynolds Stresses, Turbulence Production, and Dissipation in a Tidally Driven Bottom Boundary Layer  

Science Conference Proceedings (OSTI)

Seven sets of 2D particle image velocimetry data obtained in the bottom boundary layer of the coastal ocean along the South Carolina and Georgia coast [at the South Atlantic Bight Synoptic Offshore Observational Network (SABSOON) site] are ...

L. Luznik; W. Zhu; R. Gurka; J. Katz; W. A. M. Nimmo Smith; T. R. Osborn

2007-06-01T23:59:59.000Z

455

DWARFS GOBBLING DWARFS: A STELLAR TIDAL STREAM AROUND NGC 4449 AND HIERARCHICAL GALAXY FORMATION ON SMALL SCALES  

Science Conference Proceedings (OSTI)

A candidate diffuse stellar substructure was previously reported in the halo of the nearby dwarf starburst galaxy NGC 4449 by Karachentsev et al. We map and analyze this feature using a unique combination of deep integrated-light images from the BlackBird 0.5 m telescope, and high-resolution wide-field images from the 8 m Subaru Telescope, which resolve the nebulosity into a stream of red giant branch stars, and confirm its physical association with NGC 4449. The properties of the stream imply a massive dwarf spheroidal progenitor, which after complete disruption will deposit an amount of stellar mass that is comparable to the existing stellar halo of the main galaxy. The stellar mass ratio between the two galaxies is {approx}1:50, while the indirectly measured dynamical mass ratio, when including dark matter, may be {approx}1:10-1:5. This system may thus represent a 'stealth' merger, where an infalling satellite galaxy is nearly undetectable by conventional means, yet has a substantial dynamical influence on its host galaxy. This singular discovery also suggests that satellite accretion can play a significant role in building up the stellar halos of low-mass galaxies, and possibly in triggering their starbursts.

Martinez-Delgado, David; Rix, Hans-Walter; Maccio, Andrea V. [Max-Planck-Institut fuer Astronomy, Heidelberg (Germany); Romanowsky, Aaron J.; Arnold, Jacob A.; Brodie, Jean P. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Jay Gabany, R. [Black Bird Observatory, Mayhill, New Mexico (United States); Annibali, Francesca [Osservatorio Astronomico di Bologna, INAF, Via Ranzani 1, I-40127 Bologna (Italy); Fliri, Juergen [LERMA, CNRS UMR 8112, Observatoire de Paris, 61 Avenue de l'Observatoire, F-75014 Paris (France); Zibetti, Stefano [Dark Cosmology Centre, Niels Bohr Institute-University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Van der Marel, Roeland P.; Aloisi, Alessandra [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Chonis, Taylor S. [Department of Astronomy, University of Texas at Austin, Texas (United States); Carballo-Bello, Julio A. [Instituto de Astrofisica de Canarias, Tenerife (Spain); Gallego-Laborda, J. [Fosca Nit Observatory, Montsec Astronomical Park, Ager (Spain); Merrifield, Michael R. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

2012-04-01T23:59:59.000Z

456

This chapter reviews tidal wetlands that occur along the Atlantic coast of the United States from the northern border  

E-Print Network (OSTI)

borrow it from our children. Native American proverb E " " 16 #12;In recent testimony before the U at the Savannah River National Lab. We hope to gain insight into the fundamentals underlying the way the materials

Pennings, Steven C.

457

Fishing in Tidal Streams: New Radial Velocity and Proper Motion Constraints on the Orbit of the Anticenter Stream  

E-Print Network (OSTI)

We have obtained radial velocity measurements for stars in two, widely-separated fields in the Anticenter Stream. Combined with SDSS/USNO-B proper motions, the new measurements allow us to establish that the stream is on a nearly circular, somewhat inclined, prograde orbit around the Galaxy. While the orbital eccentricity is similar to that previously determined for the Monoceros stream, the sizes, inclinations, and positions of the orbits for the two systems differ significantly. Integrating our best fitting Anticenter Stream orbit forward, we find that it is closely aligned along and lies almost on top of a stream-like feature previously designated the "Eastern Banded Structure". The position of this feature coincides with the apogalacticon of the orbit. We tentatively conclude that this feature is the next wrap of the Anticenter Stream.

Carl J. Grillmair; Jeffrey L. Carlin; Steven R. Majewski

2008-11-12T23:59:59.000Z

458

Low-Order Modelling of Blade-Induced Turbulence for RANS Actuator Disk Computations of Wind and Tidal Turbines  

E-Print Network (OSTI)

Modelling of turbine blade-induced turbulence (BIT) is discussed within the framework of three-dimensional Reynolds-averaged Navier-Stokes (RANS) actuator disk computations. We first propose a generic (baseline) BIT model, which is applied only to the actuator disk surface, does not include any model coefficients (other than those used in the original RANS turbulence model) and is expected to be valid in the limiting case where BIT is fully isotropic and in energy equilibrium. The baseline model is then combined with correction functions applied to the region behind the disk to account for the effect of rotor tip vortices causing a mismatch of Reynolds shear stress between short- and long-time averaged flow fields. Results are compared with wake measurements of a two-bladed wind turbine model of Medici and Alfredsson [Wind Energy, Vol. 9, 2006, pp. 219-236] to demonstrate the capability of the new model.

Nishino, Takafumi

2012-01-01T23:59:59.000Z

459

Application of Turbulence Energy Models to the Computation of Tidal Currents and Mixing Intensities in Shelf Edge Regions  

Science Conference Proceedings (OSTI)

The major steps in the formulation of a three-dimensional shelf edge model using a sigma coordinate system in the vertical are briefly described. Vertical diffusion of momentum is parameterized using a range of turbulence closure models, and ...

Jiuxing Xing; Alan M. Davies

1996-04-01T23:59:59.000Z

460

Modeling of Bathymetry-Locked Residual Eddies in Well-Mixed Tidal Channels with Arbitrary Depth Variations  

Science Conference Proceedings (OSTI)

The concept of the inout-type exchange flow in estuaries only applies to situations with significant freshwater discharge and/or elongated channels with relatively simple variations in depth and coastline along the channel. In waterways with ...

Chunyan Li

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "dorchester maurice tidal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics  

SciTech Connect

In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

Yang, Zhaoqing; Wang, Taiping

2011-09-01T23:59:59.000Z

462

Circulation on the Continental Shelf of the Southeastern United States. Part II: Model Development and Application to Tidal Flow  

Science Conference Proceedings (OSTI)

An extensive amount of work has been carried out to characterize the flow on the shelf between Cape Canaveral and Cape Hatteras. Data show that the winter flow in this region is driven mainly by tides and wind, while significant Gulf Stream ...

John D. Wang; Vassiliki Kourafalou; Thomas N. Lee

1984-06-01T23:59:59.000Z

463

GEOPHYSICAL RESEARCH LETTERS, VOL. 28, NO. 5, PAGES 811-814, MARCH 1, 2001 Parameterizing Tidal Dissipation over Rough  

E-Print Network (OSTI)

ocean, the energy flux carried by internal waves generated over rough topog- raphy dominates the energy that the inclusion of this dissipation mechanism improves hydro- dynamical models of the ocean tide. It also issues. The first is whether including a parameterization for internal wave energy-flux in a model

Jayne, Steven

464

A Chronology of the Nashville, Tennessee Incinerator with Heat Recovery and the  

E-Print Network (OSTI)

densers and rejects the surplus heat to the chilling plant cooling tower system. Surplus steam may also disposal hopper. Bleed from the cooling towers is used for makeup to the scrubber recirculation system Heating and Cooling Facility MAURICE J. WILSON I. C. Thomasson & Associates, 1 nco Nashville, Tennessee

Columbia University

465

OBSERVATIONS ON DISTRIBUTION AND LIFE HISTORY OF SKIPJACK TUNA, KATSUWONUS PELAMIS, IN  

E-Print Network (OSTI)

OBSERVATIONS ON DISTRIBUTION AND LIFE HISTORY OF SKIPJACK TUNA, KATSUWONUS PELAMIS, IN AUSTRALIAN WATERS MAURICE BLACKBURN1 AND D. L. SERVENTy2 ABSTRACT Skipjack tuna occur in many areas around Australia in coastal waters is probably highest in the southeast. The southern limit of skipjack tuna range varies