National Library of Energy BETA

Sample records for doping dual-gated bilayer

  1. Development of Dual-Gated Bilayer Graphene Device Structures...

    Office of Scientific and Technical Information (OSTI)

    Development of Dual-Gated Bilayer Graphene Device Structures. Citation Details In-Document Search Title: Development of Dual-Gated Bilayer Graphene Device Structures. Abstract not ...

  2. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electronic bandgap and the charge doping. The device was a dual-gated field-effect transistor (FET), a type of transistor that controls the flow of electrons from a source to a...

  3. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    metal atoms. But such chemical doping is uncontrolled and not compatible with device applications. Researchers then tried to tune the bilayer graphene bandgap by doping the...

  4. Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Yang; Miotkowski, Ireneusz; Chen, Yong P.

    2016-05-04

    Topological insulators are a novel class of quantum matter with a gapped insulating bulk, yet gapless spin-helical Dirac fermion conducting surface states. Here, we report local and non-local electrical and magneto transport measurements in dual-gated BiSbTeSe2 thin film topological insulator devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity close to twice the conductance quantum at the doublemore » Dirac point, a series of ambipolar two-component half-integer Dirac quantum Hall states and an electron-hole total filling factor zero state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction, respectively. As a result, such a system paves the way to explore rich physics, ranging from topological magnetoelectric effects to exciton condensation.« less

  5. A two-fold reduction in measurement time for neutron assay: Initial tests of a prototype dual-gated shift register

    SciTech Connect (OSTI)

    Stewart, J.E.; Bourret, S.C.; Krick, M.S.; Hansen, W.J.; Harker, W.C.

    1996-09-01

    Neutron coincidence counting (NCC) is used routinely around the world for nondestructive mass assay of uranium and plutonium in many forms, including waste. Compared with other methods, NCC is generally the most flexible, economic, and rapid. Many applications of NCC would benefit from a reduction in counting time required for a fixed random error. We have developed and tested the first prototype of a dual- gated, shift-register-based electronics unit that offers the potential of decreased measurement time for all passive and active NCC applications.

  6. Boron doped Si rich oxide/SiO{sub 2} and silicon rich nitride/SiN{sub x} bilayers on molybdenum-fused silica substrates for vertically structured Si quantum dot solar cells

    SciTech Connect (OSTI)

    Lin, Ziyun Wu, Lingfeng; Jia, Xuguang; Zhang, Tian; Puthen-Veettil, Binesh; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-07-28

    Vertically structured Si quantum dots (QDs) solar cells with molybdenum (Mo) interlayer on quartz substrates would overcome current crowding effects found in mesa-structured cells. This study investigates the compatibility between boron (B) doped Si QDs bilayers and Mo-fused silica substrate. Both Si/SiO{sub 2} and Si/SiN{sub x} based QDs bilayers were studied. The material compatibility under high temperature treatment was assessed by examining Si crystallinity, microstress, thin film adhesion, and Mo oxidation. It was observed that the presence of Mo interlayer enhanced the Si QDs size confinement, crystalline fraction, and QDs size uniformity. The use of B doping was preferred compared to phosphine (PH{sub 3}) doping studied previously in terms of better surface and interface properties by reducing oxidized spots on the film. Though crack formation due to thermal mismatch after annealing remained, methods to overcome this problem were proposed in this paper. Schematic diagram to fabricate full vertical structured Si QDs solar cells was also suggested.

  7. Charge noise analysis of metal oxide semiconductor dual-gate Si/SiGe quantum point contacts

    SciTech Connect (OSTI)

    Kamioka, J.; Oda, S.; Kodera, T.; Takeda, K.; Obata, T.; Tarucha, S.

    2014-05-28

    The frequency dependence of conductance noise through a gate-defined quantum point contact fabricated on a Si/SiGe modulation doped wafer is characterized. The 1/f{sup 2} noise, which is characteristic of random telegraph noise, is reduced by application of a negative bias on the global top gate to reduce the local gate voltage. Direct leakage from the large global gate voltage also causes random telegraph noise, and therefore, there is a suitable point to operate quantum dot measurement.

  8. Effect of top gate bias on photocurrent and negative bias illumination stress instability in dual gate amorphous indium-gallium-zinc oxide thin-film transistor

    SciTech Connect (OSTI)

    Lee, Eunji; Chowdhury, Md Delwar Hossain; Park, Min Sang; Jang, Jin

    2015-12-07

    We have studied the effect of top gate bias (V{sub TG}) on the generation of photocurrent and the decay of photocurrent for back channel etched inverted staggered dual gate structure amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Upon 5 min of exposure of 365 nm wavelength and 0.7 mW/cm{sup 2} intensity light with negative bottom gate bias, the maximum photocurrent increases from 3.29 to 322 pA with increasing the V{sub TG} from −15 to +15 V. By changing V{sub TG} from negative to positive, the Fermi level (E{sub F}) shifts toward conduction band edge (E{sub C}), which substantially controls the conversion of neutral vacancy to charged one (V{sub O} → V{sub O}{sup +}/V{sub O}{sup 2+} + e{sup −}/2e{sup −}), peroxide (O{sub 2}{sup 2−}) formation or conversion of ionized interstitial (O{sub i}{sup 2−}) to neutral interstitial (O{sub i}), thus electron concentration at conduction band. With increasing the exposure time, more carriers are generated, and thus, maximum photocurrent increases until being saturated. After negative bias illumination stress, the transfer curve shows −2.7 V shift at V{sub TG} = −15 V, which gradually decreases to −0.42 V shift at V{sub TG} = +15 V. It clearly reveals that the position of electron quasi-Fermi level controls the formation of donor defects (V{sub O}{sup +}/V{sub O}{sup 2+}/O{sub 2}{sup 2−}/O{sub i}) and/or hole trapping in the a-IGZO /interfaces.

  9. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on top of that was the top gate, made of platinum. Two-gated bilayer graphene. Left: Optical microscopy image of the bilayer device. Right: Illustration of a cross-sectional...

  10. Twist Solves Bilayer Graphene Mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twist Solves Bilayer Graphene Mystery Twist Solves Bilayer Graphene Mystery Print Wednesday, 26 March 2014 00:00 Researchers have discovered a unique new twist to the story of...

  11. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Bilayer Graphene Gets a Bandgap Print Wednesday, 26 August 2009 00:00 Graphene is the two-dimensional crystalline form of carbon whose extraordinary...

  12. Immobilized lipid-bilayer materials

    DOE Patents [OSTI]

    Sasaki, Darryl Y.; Loy, Douglas A.; Yamanaka, Stacey A.

    2000-01-01

    A method for preparing encapsulated lipid-bilayer materials in a silica matrix comprising preparing a silica sol, mixing a lipid-bilayer material in the silica sol and allowing the mixture to gel to form the encapsulated lipid-bilayer material. The mild processing conditions allow quantitative entrapment of pre-formed lipid-bilayer materials without modification to the material's spectral characteristics. The method allows for the immobilization of lipid membranes to surfaces. The encapsulated lipid-bilayer materials perform as sensitive optical sensors for the detection of analytes such as heavy metal ions and can be used as drug delivery systems and as separation devices.

  13. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Bilayer Graphene Gets a Bandgap Print Wednesday, 26 August 2009 00:00 Graphene is the two-dimensional crystalline form of carbon whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But without a bandgap, graphene's promise can't be realized. As with monolayer graphene, bilayer graphene also has a zero bandgap and thus behaves like a metal. But a bandgap can be introduced if an electric

  14. Twist Solves Bilayer Graphene Mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twist Solves Bilayer Graphene Mystery Twist Solves Bilayer Graphene Mystery Print Wednesday, 26 March 2014 00:00 Researchers have discovered a unique new twist to the story of graphene and, in the process, appear to have solved a mystery that has held back device development. Working at ALS Beamline 7.0.1, a research team applied angle-resolved photoelectron spectroscopy (ARPES) to bilayer graphene. Through direct band-structure measurements and calculations, they discovered that in the stacking

  15. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Print Graphene is the two-dimensional crystalline form of carbon whose extraordinary electron mobility and other unique features hold great promise...

  16. Passivating overcoat bilayer for multilayer reflective coatings...

    Office of Scientific and Technical Information (OSTI)

    The overcoat bilayer comprises a layer of silicon or beryllium underneath at least one top ... overcoat; bilayer; comprises; layer; silicon; beryllium; underneath; top; layer; ...

  17. Lipid bilayers on nano-templates

    DOE Patents [OSTI]

    Noy, Aleksandr; Artyukhin, Alexander B.; Bakajin, Olgica; Stoeve, Pieter

    2009-08-04

    A lipid bilayer on a nano-template comprising a nanotube or nanowire and a lipid bilayer around the nanotube or nanowire. One embodiment provides a method of fabricating a lipid bilayer on a nano-template comprising the steps of providing a nanotube or nanowire and forming a lipid bilayer around the polymer cushion. One embodiment provides a protein pore in the lipid bilayer. In one embodiment the protein pore is sensitive to specific agents

  18. Twist Solves Bilayer Graphene Mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twist Solves Bilayer Graphene Mystery Print Researchers have discovered a unique new twist to the story of graphene and, in the process, appear to have solved a mystery that has...

  19. Twist Solves Bilayer Graphene Mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    work, Kim et al. demonstrate that a slight twisting of the layers explains why. The Dirac spectrum of bilayer graphene when the two layers are exactly aligned (left) shifts...

  20. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Print Graphene is the two-dimensional crystalline form of carbon whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But without a bandgap, graphene's promise can't be realized. As with monolayer graphene, bilayer graphene also has a zero bandgap and thus behaves like a metal. But a bandgap can be introduced if an electric displacement field is applied to the two layers; the material then

  1. Twist Solves Bilayer Graphene Mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twist Solves Bilayer Graphene Mystery Print Researchers have discovered a unique new twist to the story of graphene and, in the process, appear to have solved a mystery that has held back device development. Working at ALS Beamline 7.0.1, a research team applied angle-resolved photoelectron spectroscopy (ARPES) to bilayer graphene. Through direct band-structure measurements and calculations, they discovered that in the stacking of graphene monolayers, subtle misalignments arise, creating an

  2. Twist Solves Bilayer Graphene Mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twist Solves Bilayer Graphene Mystery Print Researchers have discovered a unique new twist to the story of graphene and, in the process, appear to have solved a mystery that has held back device development. Working at ALS Beamline 7.0.1, a research team applied angle-resolved photoelectron spectroscopy (ARPES) to bilayer graphene. Through direct band-structure measurements and calculations, they discovered that in the stacking of graphene monolayers, subtle misalignments arise, creating an

  3. Twist Solves Bilayer Graphene Mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twist Solves Bilayer Graphene Mystery Print Researchers have discovered a unique new twist to the story of graphene and, in the process, appear to have solved a mystery that has held back device development. Working at ALS Beamline 7.0.1, a research team applied angle-resolved photoelectron spectroscopy (ARPES) to bilayer graphene. Through direct band-structure measurements and calculations, they discovered that in the stacking of graphene monolayers, subtle misalignments arise, creating an

  4. Twist Solves Bilayer Graphene Mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twist Solves Bilayer Graphene Mystery Print Researchers have discovered a unique new twist to the story of graphene and, in the process, appear to have solved a mystery that has held back device development. Working at ALS Beamline 7.0.1, a research team applied angle-resolved photoelectron spectroscopy (ARPES) to bilayer graphene. Through direct band-structure measurements and calculations, they discovered that in the stacking of graphene monolayers, subtle misalignments arise, creating an

  5. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Print Graphene is the two-dimensional crystalline form of carbon whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But without a bandgap, graphene's promise can't be realized. As with monolayer graphene, bilayer graphene also has a zero bandgap and thus behaves like a metal. But a bandgap can be introduced if an electric displacement field is applied to the two layers; the material then

  6. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Print Graphene is the two-dimensional crystalline form of carbon whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But without a bandgap, graphene's promise can't be realized. As with monolayer graphene, bilayer graphene also has a zero bandgap and thus behaves like a metal. But a bandgap can be introduced if an electric displacement field is applied to the two layers; the material then

  7. Atomistic mechanisms for bilayer growth of graphene on metal...

    Office of Scientific and Technical Information (OSTI)

    Atomistic mechanisms for bilayer growth of graphene on metal substrates Title: Atomistic mechanisms for bilayer growth of graphene on metal substrates Authors: Chen, Wei ; Cui, ...

  8. "Nanocrystal bilayer for tandem catalysis"

    SciTech Connect (OSTI)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  9. Effect of molecular electrical doping on polyfuran based photovoltaic cells

    SciTech Connect (OSTI)

    Yu, Shuwen; Opitz, Andreas; Salzmann, Ingo; Frisch, Johannes; Cohen, Erez; Bendikov, Michael; Koch, Norbert

    2015-05-18

    The electronic, optical, and morphological properties of molecularly p-doped polyfuran (PF) films were investigated over a wide range of doping ratio in order to explore the impact of doping in photovoltaic applications. We find evidence for integer-charge transfer between PF and the prototypical molecular p-dopant tetrafluoro-tetracyanoquinodimethane (F4TCNQ) and employed the doped polymer in bilayer organic solar cells using fullerene as acceptor. The conductivity increase in the PF films at dopant loadings ?2% significantly enhances the short-circuit current of photovoltaic devices. For higher doping ratios, however, F4TCNQ is found to precipitate at the heterojunction between the doped donor polymer and the fullerene acceptor. Ultraviolet photoelectron spectroscopy reveals that its presence acts beneficial to the energy-level alignment by doubling the open-circuit voltage of solar cells from 0.2?V to ca. 0.4?V, as compared to pristine PF.

  10. Adsorption on tunable bilayer graphene: A model approach

    SciTech Connect (OSTI)

    Alisultanov, Z. Z., E-mail: zaur0102@gmail.com [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2013-07-15

    The problem of the adsorption of atoms on the surface of tunable bilayer graphene is considered within the context of Anderson's model. Analytical expressions for the densities of states of bilayer graphene and an adatom are derived, and the charge exchange between adatoms and bilayer graphene is studied. The charge of adatoms of some elements is estimated. The change induced in the density of states of tunable bilayer graphene by the adsorption of atoms is explored.

  11. Bilayer graphene quantum dot defined by topgates

    SciTech Connect (OSTI)

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W.

    2014-06-21

    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  12. How Bilayer Graphene Got a Bandgap

    ScienceCinema (OSTI)

    Wang, Feng

    2013-05-29

    Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.

  13. How Bilayer Graphene Got a Bandgap

    ScienceCinema (OSTI)

    Feng Wang

    2010-01-08

    Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.

  14. Bilayer membrane interactions with nanofabricated scaffolds

    SciTech Connect (OSTI)

    Collier, C. Patrick

    2015-07-29

    Membrane function is facilitated by lateral organization within the lipid bilayer, including phase-separation of lipids into more ordered domains (lipid rafts) and anchoring of the membrane to a cytoskeleton. These features have proven difficult to reproduce in model membrane systems such as black lipid membranes, unilamellar vesicles and supported bilayers. However, advances in micro/nanofabrication have resulted in more realistic synthetic models of membrane-cytoskeleton interactions that can help uncover the design rules responsible for biological membrane formation and organization. This review will focus on describing micro-/nanostructured scaffolds that can emulate the connections of a cellular membrane to an underlying “cytoskeleton”. This includes molecular-based scaffolds anchored to a solid substrate through surface chemistry, solid-state supports modified by material deposition, lithography and etching, the creation of micro/nanoporous arrays, integration with microfluidics, and droplet-based bilayers at interfaces. Lastly, model systems such as these are increasing our understanding of structure and organization in cell membranes, and how they result in the emergence of functionality at the nanoscale.

  15. Bilayer membrane interactions with nanofabricated scaffolds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collier, C. Patrick

    2015-07-29

    Membrane function is facilitated by lateral organization within the lipid bilayer, including phase-separation of lipids into more ordered domains (lipid rafts) and anchoring of the membrane to a cytoskeleton. These features have proven difficult to reproduce in model membrane systems such as black lipid membranes, unilamellar vesicles and supported bilayers. However, advances in micro/nanofabrication have resulted in more realistic synthetic models of membrane-cytoskeleton interactions that can help uncover the design rules responsible for biological membrane formation and organization. This review will focus on describing micro-/nanostructured scaffolds that can emulate the connections of a cellular membrane to an underlying “cytoskeleton”. Thismore » includes molecular-based scaffolds anchored to a solid substrate through surface chemistry, solid-state supports modified by material deposition, lithography and etching, the creation of micro/nanoporous arrays, integration with microfluidics, and droplet-based bilayers at interfaces. Lastly, model systems such as these are increasing our understanding of structure and organization in cell membranes, and how they result in the emergence of functionality at the nanoscale.« less

  16. Self-folding graphene-polymer bilayers

    SciTech Connect (OSTI)

    Deng, Tao; Yoon, ChangKyu; Jin, Qianru; Li, Mingen; Liu, Zewen; Gracias, David H.

    2015-05-18

    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  17. Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers Print Wednesday, 30 August 2006 00:00 Cooling an antiferromagnetic-ferromagnetic bilayer in a magnetic field typically results in a remanent (zero-field) magnetization in the ferromagnet (FM) that is always in the direction of the field during cooling (positive Mrem). Strikingly, when FeF2 is the antiferromagnet (AF), cooling in a field can lead to a remanent

  18. Controlling the Polarization of Light with Bilayer Subwavelength...

    Office of Scientific and Technical Information (OSTI)

    Title: Controlling the Polarization of Light with Bilayer Subwavelength Metallic Apertures Authors: Chan, Ho Bun 1 ; Marset, zsolt 2 ; Carr, D. W. 3 ; Bower, J. E. 4 ; ...

  19. Functional One-Dimensional Lipid Bilayers on Carbon Nanotube Templates

    SciTech Connect (OSTI)

    Artyukhin, A; Shestakov, A; Harper, J; Bakajin, O; Stroeve, P; Noy, A

    2004-07-23

    We present one-dimensional (1-D) lipid bilayer structures that integrate carbon nanotubes with a key biological environment-phospholipid membrane. Our structures consist of lipid bilayers wrapped around carbon nanotubes modified with a hydrophilic polymer cushion layer. Despite high bilayer curvature, the lipid membrane maintains its fluidity and can sustain repeated damage-recovery cycles. We also present the first evidence of spontaneous insertion of pore-forming proteins into 1-D lipid bilayers. These structures could lead to the development of new classes of biosensors and bioelectronic devices.

  20. Quantum Oscillations from Nodal Bilayer Magnetic Breakdown in...

    Office of Scientific and Technical Information (OSTI)

    Title: Quantum Oscillations from Nodal Bilayer Magnetic Breakdown in the Underdoped High Temperature Superconductor YBa2Cu3O6+x Authors: Sebastian, Suchitra E. ; Harrison, N. ; ...

  1. Air-stable droplet interface bilayers on oil-infused surfaces...

    Office of Scientific and Technical Information (OSTI)

    Title: Air-stable droplet interface bilayers on oil-infused surfaces Droplet interface bilayers (DIBs) are versatile model membranes useful for synthetic biology and biosensing; ...

  2. Self-assembled lipid bilayer materials

    DOE Patents [OSTI]

    Sasaki, Darryl Y.; Waggoner, Tina A.; Last, Julie A.

    2005-11-08

    The present invention is a self-assembling material comprised of stacks of lipid bilayers formed in a columnar structure, where the assembly process is mediated and regulated by chemical recognition events. The material, through the chemical recognition interactions, has a self-regulating system that corrects the radial size of the assembly creating a uniform diameter throughout most of the structure. The materials form and are stable in aqueous solution. These materials are useful as structural elements for the architecture of materials and components in nanotechnology, efficient light harvesting systems for optical sensing, chemical processing centers, and drug delivery vehicles.

  3. Bilayer avalanche spin-diode logic

    SciTech Connect (OSTI)

    Friedman, Joseph S. Querlioz, Damien; Fadel, Eric R.; Wessels, Bruce W.; Sahakian, Alan V.

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  4. Performance of Anode-Supported Solid Oxide Fuel Cell with Thin Bi-Layer Electrolyte by Pulsed Laser Deposition

    SciTech Connect (OSTI)

    Lu, Zigui; Hardy, John S.; Templeton, Jared W.; Stevenson, Jeffry W.; Fisher, Daniel; Wu, Naijuan; Ignatiev, Alex

    2012-07-15

    Anode-supported yttria stabilized zirconia (YSZ)/samaria doped ceria (SDC) bi-layer electrolytes with uniform thickness and high density were fabricated by pulsed laser deposition at 1000 degrees C. Fuel cells with such bi-layer electrolytes were fabricated and tested, yielding open circuit voltages from 0.94 to 1.0 V at 600-700 degrees C. Power densities from 0.4 to 1.0 W cm{sup -2} at 0.7 V were achieved in air at temperatures of 600-700 degrees C. Cell performance was improved in flowing oxygen, with an estimated peak power density of over 2 W cm{sup -2} at 650 degrees C, assuming the same overall resistance over the entire range of current density. The high cell performance was attributed to the very low ohmic resistance of the fuel cell, owing to the small thickness of the electrolyte. Stable performance was also demonstrated in that the voltage of the fuel cell showed very little change at a constant current density of 1 A cm{sup -2} during more than 400 hours of operation at 650 degrees C in flowing oxygen. SEM analysis of the fuel cell after testing showed that the bi-layer electrolyte had retained its chemical and mechanical integrity.

  5. Interfacial Widths of Conjugated Polymer Bilayers

    SciTech Connect (OSTI)

    NCSU; UC Berkeley; UCSB; Advanced Light Source; Garcia, Andres; Yan, Hongping; Sohn, Karen E.; Hexemer, Alexander; Nguyen, Thuc-Quyen; Bazan, Guillermo C.; Kramer, Edward J.; Ade, Harald

    2009-08-13

    The interfaces of conjugated polyelectrolyte (CPE)/poly[2-methoxy-5-(2{prime}-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) bilayers cast from differential solvents are shown by resonant soft X-ray reflectivity (RSoXR) to be very smooth and sharp. The chemical interdiffusion due to casting is limited to less than 0.6 nm, and the interface created is thus nearly 'molecularly' sharp. These results demonstrate for the first time and with high precision that the nonpolar MEH-PPV layer is not much disturbed by casting the CPE layer from a polar solvent. A baseline is established for understanding the role of interfacial structure in determining the performance of CPE-based polymer light-emitting diodes. More broadly, we anticipate further applications of RSoXR as an important tool in achieving a deeper understanding of other multilayer organic optoelectronic devices, including multilayer photovoltaic devices.

  6. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Taylor, Graham J.; Venkatesan, Guru A.; Collier, C. Patrick; Sarles, Stephen A.

    2015-08-05

    In this study, thickness and tension are important physical parameters of model cell membranes. However, traditional methods to measure these quantities require multiple experiments using separate equipment. This work introduces a new multi-step procedure for directly accessing in situ multiple physical properties of droplet interface bilayers (DIB), including specific capacitance (related to thickness), lipid monolayer tension in the Plateau-Gibbs border, and bilayer tension. The procedure employs a combination of mechanical manipulation of bilayer area followed by electrowetting of the capacitive interface to examine the sensitivities of bilayer capacitance to area and contact angle to voltage, respectively. These data allow formore » determining the specific capacitance of the membrane and surface tension of the lipid monolayer, which are then used to compute bilayer thickness and tension, respectively. The use of DIBs affords accurate optical imaging of the connected droplets in addition to electrical measurements of bilayer capacitance, and it allows for reversibly varying bilayer area. After validating the accuracy of the technique with diphytanoyl phosphatidylcholine (DPhPC) DIBs in hexadecane, the method is applied herein to quantify separately the effects on membrane thickness and tension caused by varying the solvent in which the DIB is formed and introducing cholesterol into the bilayer. Because the technique relies only on capacitance measurements and optical images to determine both thickness and tension, this approach is specifically well-suited for studying the effects of peptides, biomolecules, natural and synthetic nanoparticles, and other species that accumulate within membranes without altering bilayer conductance.« less

  7. Sub-wavelength antenna enhanced bilayer graphene tunable photodetector

    DOE Patents [OSTI]

    Beechem, III, Thomas Edwin; Howell, Stephen W.; Peters, David W.; Davids, Paul; Ohta, Taisuke

    2016-03-22

    The integration of bilayer graphene with an absorption enhancing sub-wavelength antenna provides an infrared photodetector capable of real-time spectral tuning without filters at nanosecond timescales.

  8. Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers Print Cooling an antiferromagnetic-ferromagnetic bilayer in a magnetic field typically results in a remanent (zero-field) magnetization in the ferromagnet (FM) that is always in the direction of the field during cooling (positive Mrem). Strikingly, when FeF2 is the antiferromagnet (AF), cooling in a field can lead to a remanent magnetization opposite to the field (negative Mrem). A collaboration led by researchers from the Stanford

  9. Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers Print Cooling an antiferromagnetic-ferromagnetic bilayer in a magnetic field typically results in a remanent (zero-field) magnetization in the ferromagnet (FM) that is always in the direction of the field during cooling (positive Mrem). Strikingly, when FeF2 is the antiferromagnet (AF), cooling in a field can lead to a remanent magnetization opposite to the field (negative Mrem). A collaboration led by researchers from the Stanford

  10. Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers Print Cooling an antiferromagnetic-ferromagnetic bilayer in a magnetic field typically results in a remanent (zero-field) magnetization in the ferromagnet (FM) that is always in the direction of the field during cooling (positive Mrem). Strikingly, when FeF2 is the antiferromagnet (AF), cooling in a field can lead to a remanent magnetization opposite to the field (negative Mrem). A collaboration led by researchers from the Stanford

  11. Predicting proton titration in cationic micelle and bilayer environments

    SciTech Connect (OSTI)

    Morrow, Brian H.; Shen, Jana K.; Eike, David M.; Murch, Bruce P.; Koenig, Peter H.

    2014-08-28

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pK{sub a}s in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pK{sub a} of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pK{sub a} of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs.

  12. Atomistic mechanisms for bilayer growth of graphene on metal substrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Wei; Cui, Ping; Zhu, Wenguang; Kaxiras, Efthimios; Gao, Yanfei; Zhang, Zhenyu

    2015-01-08

    Epitaxial growth on metal substrates has been shown to be the most powerful approach in producing large-scale high-quality monolayer graphene, yet it remains a major challenge to realize uniform bilayer graphene growth. Here we carry out a comparative study of the atomistic mechanisms for bilayer graphene growth on the (111) surfaces of Cu and Ni, using multiscale approaches combining first-principles calculations and rate-equation analysis. We first show that the relatively weak graphene-Cu interaction enhances the lateral diffusion and effective nucleation of C atoms underneath the graphene island, thereby making it more feasible to grow bilayer graphene on Cu. In contrast,more » the stronger graphene-Ni interaction suppresses the lateral mobility and dimerization of C atoms underneath the graphene, making it unlikely to achieve controlled growth of bilayer graphene on Ni. We then determine the critical graphene size beyond which nucleation of the second layer will take place. Intriguingly, the critical size exhibits an effective inverse "Ehrlich-Schwoebel barrier" effect, becoming smaller for faster C migration from the Cu surface to the graphene-Cu interface sites across the graphene edge. Lastly, these findings allow us to propose a novel alternating growth scheme to realize mass production of bilayer graphene.« less

  13. Atomistic mechanisms for bilayer growth of graphene on metal substrates

    SciTech Connect (OSTI)

    Chen, Wei; Cui, Ping; Zhu, Wenguang; Kaxiras, Efthimios; Gao, Yanfei; Zhang, Zhenyu

    2015-01-08

    Epitaxial growth on metal substrates has been shown to be the most powerful approach in producing large-scale high-quality monolayer graphene, yet it remains a major challenge to realize uniform bilayer graphene growth. Here we carry out a comparative study of the atomistic mechanisms for bilayer graphene growth on the (111) surfaces of Cu and Ni, using multiscale approaches combining first-principles calculations and rate-equation analysis. We first show that the relatively weak graphene-Cu interaction enhances the lateral diffusion and effective nucleation of C atoms underneath the graphene island, thereby making it more feasible to grow bilayer graphene on Cu. In contrast, the stronger graphene-Ni interaction suppresses the lateral mobility and dimerization of C atoms underneath the graphene, making it unlikely to achieve controlled growth of bilayer graphene on Ni. We then determine the critical graphene size beyond which nucleation of the second layer will take place. Intriguingly, the critical size exhibits an effective inverse "Ehrlich-Schwoebel barrier" effect, becoming smaller for faster C migration from the Cu surface to the graphene-Cu interface sites across the graphene edge. Lastly, these findings allow us to propose a novel alternating growth scheme to realize mass production of bilayer graphene.

  14. Quantum anomalous Hall effect in single-layer and bilayer graphene...

    Office of Scientific and Technical Information (OSTI)

    Quantum anomalous Hall effect in single-layer and bilayer graphene Citation Details In-Document Search Title: Quantum anomalous Hall effect in single-layer and bilayer graphene ...

  15. Electronic band structure of magnetic bilayer graphene superlattices

    SciTech Connect (OSTI)

    Pham, C. Huy; Nguyen, T. Thuong

    2014-09-28

    Electronic band structure of the bilayer graphene superlattices with ?-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.

  16. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    SciTech Connect (OSTI)

    Huang, G. Q.; Xing, Z. W.; Xing, D. Y.

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  17. Graphene Monolayer Rotation on Ni(111) Facilities Bilayer Graphene Growth

    SciTech Connect (OSTI)

    Batzill M.; Sutter P.; Dahal, A.; Addou, R.

    2012-06-11

    Synthesis of bilayer graphene by chemical vapor deposition is of importance for graphene-based field effect devices. Here, we demonstrate that bilayer graphene preferentially grows by carbon-segregation under graphene sheets that are rotated relative to a Ni(111) substrate. Rotated graphene monolayer films can be synthesized at growth temperatures above 650 C on a Ni(111) thin-film. The segregated second graphene layer is in registry with the Ni(111) substrate and this suppresses further C-segregation, effectively self-limiting graphene formation to two layers.

  18. Polarization induced doped transistor

    DOE Patents [OSTI]

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  19. Graphene/ferroelectrics/graphene hybrid structure: Asymmetric doping of graphene layers

    SciTech Connect (OSTI)

    Duong, Dinh Loc; Lee, Si Young; Kim, Seong Kyu; Lee, Young Hee

    2015-06-15

    We report graphene/ferroelectric/graphene hybrid structure to demonstrate an asymmetrical doping in two graphene layers, one side with electrons and another side with holes. Two ferroelectrics, a poly(vinylidenefluoride) (PVDF) and a hydrofluorinated graphene, were used to demonstrate the concept with density functional calculations, revealing the Fermi level shift of 0.35 and 0.75 eV, respectively. This concept was confirmed by Raman spectroscopy using graphene/poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE))/graphene hybrid, which can easily form β-phase close to our simulation model. G-band peak position was downshifted for electron doping and upshifted for hole doping. This hybrid structure opens an opportunity to study bilayer graphene system with a controllable thickness for a wide range of high carrier concentration.

  20. Super-Sensitive and Robust Biosensors from Supported Polymer Bilayers

    SciTech Connect (OSTI)

    Paxton, Walter F.

    2015-09-01

    Biological organisms are potentially the most sensitive and selective biological detection systems known, yet we are currently severely limited in our ability to exploit biological interactions in sensory devices, due in part to the limited stability of biological systems and derived materials. This proposal addresses an important aspect of integrating biological sensory materials in a solid state device. If successful, such technology could enable entirely new classes of robust biosensors that could be miniaturized and deployed in the field. The critical aims of the proposed work were 1) the calibration of a more versatile approach to measuring pH, 2) the use of this method to monitor pH changes caused by the light-induced pumping of protons across vesicles with bacteriorhodopsin integrated into the membranes (either polymer or lipid); 3) the preparation of bilayer assemblies on platinum surfaces; 4) the enhanced detection of lightinduced pH changes driven by bR-loaded supported bilayers. I have developed a methodology that may enable that at interfaces and developed a methodology to characterize the functionality of bilayer membranes with reconstituted membrane proteins. The integrity of the supported bilayer films however must be optimized prior to the full realization of the work originally envisioned in the original proposal. Nevertheless, the work performed on this project and the encouraging results it has produced has demonstrated that these goals are challenging yet within reach.

  1. Anderson localization in Nb/Al superconducting bilayers

    SciTech Connect (OSTI)

    Greco, M.; Lacquaniti, V.; Maggi, S.; Menichetti, E.; Rinaudo, G.

    2000-01-01

    The authors have measured the temperature dependence of resistivity in relatively thick Nb/Al bilayers fabricated at room temperature, observing the decrease of {rho} for increasing T typical of Anderson localization in disordered systems. The authors report the experimental conditions which determine this behavior and compare it to theoretical models for localization in 3D systems.

  2. Negative terahertz conductivity in disordered graphene bilayers with population inversion

    SciTech Connect (OSTI)

    Svintsov, D.; Otsuji, T.; Ryzhii, V.; Mitin, V.; Shur, M. S.

    2015-03-16

    The gapless energy band spectra make the structures based on graphene and graphene bilayer with the population inversion to be promising media for the interband terahertz (THz) lasing. However, a strong intraband absorption at THz frequencies still poses a challenge for efficient THz lasing. In this paper, we show that in the pumped graphene bilayer, the indirect interband radiative transitions accompanied by scattering of carriers by disorder can provide a substantial negative contribution to the THz conductivity (together with the direct interband transitions). In the graphene bilayer on high-? substrates with point charged defects, these transitions substantially compensate the losses due to the intraband (Drude) absorption. We also demonstrate that the indirect interband contribution to the THz conductivity in a graphene bilayer with the extended defects (such as the charged impurity clusters) can surpass by several times the fundamental limit associated with the direct interband transitions, and the Drude conductivity as well. These predictions can affect the strategy of the graphene-based THz laser implementation.

  3. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer

    SciTech Connect (OSTI)

    Taylor, Graham J.; Venkatesan, Guru A.; Collier, C. Patrick; Sarles, Stephen A.

    2015-08-05

    In this study, thickness and tension are important physical parameters of model cell membranes. However, traditional methods to measure these quantities require multiple experiments using separate equipment. This work introduces a new multi-step procedure for directly accessing in situ multiple physical properties of droplet interface bilayers (DIB), including specific capacitance (related to thickness), lipid monolayer tension in the Plateau-Gibbs border, and bilayer tension. The procedure employs a combination of mechanical manipulation of bilayer area followed by electrowetting of the capacitive interface to examine the sensitivities of bilayer capacitance to area and contact angle to voltage, respectively. These data allow for determining the specific capacitance of the membrane and surface tension of the lipid monolayer, which are then used to compute bilayer thickness and tension, respectively. The use of DIBs affords accurate optical imaging of the connected droplets in addition to electrical measurements of bilayer capacitance, and it allows for reversibly varying bilayer area. After validating the accuracy of the technique with diphytanoyl phosphatidylcholine (DPhPC) DIBs in hexadecane, the method is applied herein to quantify separately the effects on membrane thickness and tension caused by varying the solvent in which the DIB is formed and introducing cholesterol into the bilayer. Because the technique relies only on capacitance measurements and optical images to determine both thickness and tension, this approach is specifically well-suited for studying the effects of peptides, biomolecules, natural and synthetic nanoparticles, and other species that accumulate within membranes without altering bilayer conductance.

  4. Isoelectronic co-doping

    DOE Patents [OSTI]

    Mascarenhas, Angelo

    2004-11-09

    Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  5. Anomalous Hall effect in YIG|Pt bilayers

    SciTech Connect (OSTI)

    Meyer, Sibylle Schlitz, Richard; Geprägs, Stephan; Opel, Matthias; Huebl, Hans; Goennenwein, Sebastian T. B.; Gross, Rudolf

    2015-03-30

    We measure the ordinary and the anomalous Hall effect in a set of yttrium iron garnet|platinum (YIG|Pt) bilayers via magnetization orientation dependent magnetoresistance experiments. Our data show that the presence of the ferrimagnetic insulator YIG leads to an anomalous Hall effect like voltage in Pt, which is sensitive to both Pt thickness and temperature. Interpretation of the experimental findings in terms of the spin Hall anomalous Hall effect indicates that the imaginary part of the spin mixing conductance G{sub i} plays a crucial role in YIG|Pt bilayers. In particular, our data suggest a sign change in G{sub i} between 10 K and 300 K. Additionally, we report a higher order Hall effect contribution, which appears in thin Pt films on YIG at low temperatures.

  6. Electrical oscillation in Pt/VO{sub 2} bilayer strips

    SciTech Connect (OSTI)

    Wang, Ying; Qi, Long; Xu, Yanjun; Wu, Yihong; Chai, Jianwei; Wang, Shijie; Yang, Yumeng; Tanaka, Hidekazu

    2015-02-14

    We report on the observation of stable electrical oscillation in Pt/vanadium dioxide (VO{sub 2}) bilayer strips, in which the Pt overlayer serves the dual purposes of heating up the VO{sub 2} and weakening the electric field in the VO{sub 2} layer. Systematic measurements in an ultrahigh vacuum nanoprobe system show that the oscillation frequency increases with the bias current and/or with decreasing device dimension. In contrast to most VO{sub 2}-based oscillators reported to date, which are electrically triggered, current-induced Joule heating in the Pt overlayer is found to play a dominant role in the generation of oscillation in Pt/VO{sub 2} bilayers. A simple model involving thermally triggered transition of VO{sub 2} on a heat sink is able to account for the experimental observations. The results in this work provide an alternative view of the triggering mechanism in VO{sub 2}-based oscillators.

  7. Piezoelectric enhancement by surface effect in hydrofluorinated graphene bilayer

    SciTech Connect (OSTI)

    Kim, Hye Jung; Noor-A-Alam, Mohammad; Shin, Young-Han

    2015-04-14

    We investigated the piezoelectricity of dipolar hydrofluorinated graphene (C{sub 2}HF){sub n} multilayers with first-principles calculations. Our results reveal that the dipole moment decreases as the number of layers increases, because electron and hole carriers are induced at the top and bottom layers due to the depolarization field. These carriers make (C{sub 2}HF){sub n} multilayers more stable by decreasing the depolarization field in the material. Through the calculation of the average layer piezoelectric stress constant e{sub 31}/ℓ in ℓ-layer chair (C{sub 2}HF){sub n} multilayers, we confirmed that the piezoelectricity of the bilayer is about three times larger than that of the monolayer and bulk material. Moreover, we found that the electron and hole carriers on the top and bottom layers played a significant role in the piezoelectric enhancement of the bilayer.

  8. Electronic Bloch oscillation in bilayer graphene gradient superlattices

    SciTech Connect (OSTI)

    Cheng, Hemeng; Li, Changan; Song, Yun; Ma, Tianxing; Wang, Li-Gang; Lin, Hai-Qing

    2014-08-18

    We investigate the electronic Bloch oscillation in bilayer graphene gradient superlattices using transfer matrix method. By introducing two kinds of gradient potentials of square barriers along electrons propagation direction, we find that Bloch oscillations up to terahertz can occur. Wannier-Stark ladders, as the counterpart of Bloch oscillation, are obtained as a series of equidistant transmission peaks, and the localization of the electronic wave function is also signature of Bloch oscillation. Furthermore, the period of Bloch oscillation decreases linearly with increasing gradient of barrier potentials.

  9. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rai, Durgesh K.; Qian, Shuo; Heller, William T.

    2016-08-13

    We report that membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine andmore » phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L = 1/500, but membrane thinning results when P/L = 1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. Lastly, the results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes.« less

  10. Specific heat of twisted bilayer graphene: Engineering phonons by atomic plane rotations

    SciTech Connect (OSTI)

    Nika, Denis L. [E. Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Physics and Engineering, Moldova State University, Chisinau MD-2009, Republic of Moldova (Moldova, Republic of); Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of CaliforniaRiverside, Riverside, California, 92521 (United States); Cocemasov, Alexandr I. [E. Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Physics and Engineering, Moldova State University, Chisinau MD-2009, Republic of Moldova (Moldova, Republic of); Balandin, Alexander A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of CaliforniaRiverside, Riverside, California, 92521 (United States)

    2014-07-21

    We have studied the phonon specific heat in single-layer, bilayer, and twisted bilayer graphene. The calculations were performed using the Born-von Karman model of lattice dynamics for intralayer atomic interactions and spherically symmetric interatomic potential for interlayer interactions. We found that at temperature T?bilayer graphene, and n?=?1.3 for the twisted bilayer graphene. The phonon specific heat reveals an intriguing dependence on the twist angle in bilayer graphene, which is particularly pronounced at low temperature. The results suggest a possibility of phonon engineering of thermal properties of layered materials by twisting the atomic planes.

  11. Melittin-induced cholesterol reorganization in lipid bilayer membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qian, Shuo; Heller, William T.

    2015-06-12

    The peptide melittin, a 26 amino acid, cationic peptide from honey bee (Apis mellifera) venom, disrupts lipid bilayer membranes in a concentration-dependent manner. Rather than interacting with a specific receptor, the peptide interacts directly with the lipid matrix of the membrane in a manner dependent on the lipid composition. Here, a small-angle neutron scattering study of the interaction of melittin with lipid bilayers made of mixtures of dimyristoylphosphatidylcholine (DMPC) and cholesterol (Chol) is presented. Through the use of deuterium-labeled DMPC, changes in the distribution of the lipid and cholesterol in unilamellar vesicles were observed for peptide concentrations below those thatmore » cause pores to form. In addition to disrupting the in-plane organization of Chol, melittin produces vesicles having inner and outer leaflet compositions that depend on the lipid–Chol molar ratio and on the peptide concentration. The changes seen at high cholesterol and low peptide concentration are similar to those produced by alamethicin (Qian, S. et al., J. Phys. Chem. B 2014, 118, 11200–11208), which points to an underlying physical mechanism driving the redistribution of Chol, but melittin displays an additional effect not seen with alamethicin. Furthermore, a model for how the peptide drives the redistribution of Chol is proposed. The results suggest that redistribution of the lipids in a target cell membrane by membrane active peptides takes places as a prelude to the lysis of the cell.« less

  12. Doped zinc oxide microspheres

    DOE Patents [OSTI]

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  13. Doped zinc oxide microspheres

    DOE Patents [OSTI]

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  14. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xufan; Basile Carrasco, Leonardo A.; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A.; Lee, Jaekwang; Idrobo Tapia, Juan Carlos; Chi, Miaofang; Rouleau, Christopher M.; Geohegan, David B.; et al

    2015-01-21

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0° or 60° interlayer rotations. The commensurate stacking configurations (AA' and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale andmore » the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. Here, the combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.« less

  15. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals

    SciTech Connect (OSTI)

    Li, Xufan; Basile Carrasco, Leonardo A.; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A.; Lee, Jaekwang; Idrobo Tapia, Juan Carlos; Chi, Miaofang; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai

    2015-01-21

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0° or 60° interlayer rotations. The commensurate stacking configurations (AA' and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale and the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. Here, the combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.

  16. Revealing the Preferred Interlayer Orientations and Stackings of Two-Dimensional Bilayer Gallium Selenide Crystals

    SciTech Connect (OSTI)

    Li, Xufan; Basile Carrasco, Leonardo A; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A; Lee, Jaekwang; Idrobo Tapia, Juan Carlos; Chi, Miaofang; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2015-01-01

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0 or 60 interlayer rotations. The commensurate stacking configurations (AA and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale and the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. The combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.

  17. The Molecular Structure of a Phosphatidylserine Bilayer Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect (OSTI)

    Pan, Jianjun [University of South Florida, Tampa (USF)] [University of South Florida, Tampa (USF); Cheng, Xiaolin [ORNL] [ORNL; Monticelli, Luca [Institut National de la Sant et de la Recherche Mdicale (INSERM) and INTS, France] [Institut National de la Sant et de la Recherche Mdicale (INSERM) and INTS, France; Heberle, Frederick A [ORNL] [ORNL; Kucerka, Norbert [Atomic Energy of Canada Limited (AECL), Canadian Neutron Beam Centre (CNBC) and Comenius University,] [Atomic Energy of Canada Limited (AECL), Canadian Neutron Beam Centre (CNBC) and Comenius University,; Tieleman, D. Peter [University of Calgary, ALberta, Canada] [University of Calgary, ALberta, Canada; Katsaras, John [ORNL] [ORNL

    2014-01-01

    Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.

  18. Corrugation of Phase-Separated Lipid Bilayers Supported by Nanoporous Silica Xerogel Surfaces

    SciTech Connect (OSTI)

    Goksu, E I; Nellis, B A; Lin, W; Satcher Jr., J H; Groves, J T; Risbud, S H; Longo, M L

    2008-10-30

    Lipid bilayers supported by substrates with nanometer-scale surface corrugations holds interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g. porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, diffusion, and lipid density in comparison to mica-supported lipid bilayers were characterized by AFM, FRAP, FCS, and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of lipids on xerogel ({approx}1.7 {micro}m{sup 2}/s) is predictably lower than on mica ({approx}4.1 {micro}m{sup 2}/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase bilayer that penetrates approximately midway into the first layer of {approx}50 nm xerogel beads.

  19. Passivating overcoat bilayer for multilayer reflective coatings for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Montcalm, Claude (Livermore, CA); Stearns, Daniel G. (Los Altos, CA); Vernon, Stephen P. (Pleasanton, CA)

    1999-01-01

    A passivating overcoat bilayer is used for multilayer reflective coatings for extreme ultraviolet (EUV) or soft x-ray applications to prevent oxidation and corrosion of the multilayer coating, thereby improving the EUV optical performance. The overcoat bilayer comprises a layer of silicon or beryllium underneath at least one top layer of an elemental or a compound material that resists oxidation and corrosion. Materials for the top layer include carbon, palladium, carbides, borides, nitrides, and oxides. The thicknesses of the two layers that make up the overcoat bilayer are optimized to produce the highest reflectance at the wavelength range of operation. Protective overcoat systems comprising three or more layers are also possible.

  20. Spectroscopic signatures of AA' and AB stacking of chemical vapor deposited bilayer MoS2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xia, Ming; Li, Bo; Yin, Kuibo; Capellini, Giovanni; Niu, Gang; Gong, Yongji; Zhou, Wu; Ajayan, Pulickel M.; Xie, Ya -Hong

    2015-11-04

    We discuss prominent resonance Raman and photoluminescence spectroscopic differences between AA'and AB stacked bilayer molybdenum disulfide (MoS2) grown by chemical vapor deposition are reported. Bilayer MoS2 islands consisting of the two stacking orders were obtained under identical growth conditions. Also, resonance Raman and photoluminescence spectra of AA' and AB stacked bilayer MoS2 were obtained on Au nanopyramid surfaces under strong plasmon resonance. Both resonance Raman and photoluminescence spectra show distinct features indicating clear differences in interlayer interaction between these two phases. The implication of these findings on device applications based on spin and valley degrees of freedom.

  1. Axially Tapered And Bilayer Microchannels For Evaporative Cooling Devices

    DOE Patents [OSTI]

    Nilson, Robert; Griffiths, Stewart

    2005-10-04

    The invention consists of an evaporative cooling device comprising one or more microchannels whose cross section is axially reduced to control the maximum capillary pressure differential between liquid and vapor phases. In one embodiment, the evaporation channels have a rectangular cross section that is reduced in width along a flow path. In another embodiment, channels of fixed width are patterned with an array of microfabricated post-like features such that the feature size and spacing are gradually reduced along the flow path. Other embodiments incorporate bilayer channels consisting of an upper cover plate having a pattern of slots or holes of axially decreasing size and a lower fluid flow layer having channel widths substantially greater than the characteristic microscale dimensions of the patterned cover plate. The small dimensions of the cover plate holes afford large capillary pressure differentials while the larger dimensions of the lower region reduce viscous flow resistance.

  2. Doped colorimetric assay liposomes

    DOE Patents [OSTI]

    Charych, Deborah; Stevens, Raymond C.

    2001-01-01

    The present invention provides compositions comprising colorimetric assay liposomes. The present invention also provides methods for producing colorimetric liposomes and calorimetric liposome assay systems. In preferred embodiments, these calorimetric liposome systems provide high levels of sensitivity through the use of dopant molecules. As these dopants allow the controlled destabilization of the liposome structure, upon exposure of the doped liposomes to analyte(s) of interest, the indicator color change is facilitated and more easily recognized.

  3. Enhanced sensitivity of a microfabricated resonator using a graphene-polystyrene bilayer membrane

    SciTech Connect (OSTI)

    Yun, Minhyuk; Lee, Eunho; Cho, Kilwon; Jeon, Sangmin

    2014-08-18

    A graphene layer was synthesized using chemical vapor deposition methods and a polystyrene solution was spin-cast onto the graphene film. The graphene-polystyrene bilayer membrane was attached between the two tines of a microfabricated quartz tuning fork (QTF). The modulus of the graphene-polystyrene bilayer was measured to be twice that of a pristine polystyrene membrane. Exposure of the membrane-coated QTF to ethanol vapor decreased the resonance frequency of the microresonator. The bilayer membrane-coated QTF produced a frequency change that was three times the change obtained using a polystyrene membrane-coated QTF, with a lower degree of degradation in the Q factor. The limit of detection of the bilayer membrane-coated QTF to ethanol vapor was determined to be 20 ppm.

  4. Correlation effects in (111) bilayers of perovskite transition-metal oxides

    SciTech Connect (OSTI)

    Okamoto, Satoshi; Zhu, Wenguang; Nomura, Yusuke; Arita, R.; Xiao, Di; Nagaosa, Naoto

    2014-01-01

    We investigate the correlation-induced Mott, magnetic, and topological phase transitions in artificial (111) bilayers of perovskite transition-metal oxides LaAuO3 and SrIrO3 for which the previous density-functional theory calculations predicted topological insulating states. Using the dynamical-mean-field theory with realistic band structures and Coulomb interactions, LaAuO3 bilayer is shown to be far away from a Mott insulating regime, and a topological-insulating state is robust. On the other hand, SrIrO3 bilayer is on the verge of an orbital-selective topological Mott transition and turns to a trivial insulator by an antiferromagnetic ordering. Oxide bilayers thus provide a novel class of topological materials for which the interplay between the spin-orbit coupling and electron-electron interactions is a fundamental ingredient.

  5. Direct transfer and Raman characterization of twisted graphene bilayer

    SciTech Connect (OSTI)

    Othmen, R.; Ajlani, H.; Oueslati, M.; Cavanna, A.; Madouri, A.

    2015-03-09

    Twisted bilayer graphene (tBLG) is constituted of a two-graphene layer with a mismatch angle θ between the two hexagonal structures. It has recently attracted much attention—thanks to its diverse electronic and optical properties. Here, we study the tBLG fabricated by the direct transfer of graphene monolayer prepared by chemical vapor deposition (CVD) onto another CVD graphene layer remaining attached to the copper foil. We show that high quality and homogeneous tBLG can be obtained by the direct transfer which prevents interface contamination. In this situation, the top graphene layer plays a supporting mechanical role to the bottom graphene layer as confirmed by optical microscopy, scanning electron microscopy, and Raman spectroscopy measurements. The effect of annealing tBLG was also investigated using micro-Raman spectroscopy. The Raman spectra exhibit a splitting of the G peak as well as a change in the 2D band shape indicating a possible decoupling of the two monolayers. We attribute these changes to the different interactions of the top and bottom layers with the substrate.

  6. Theoretical study on strain induced variations in electronic properties of 2H-MoS{sub 2} bilayer sheets

    SciTech Connect (OSTI)

    Dong, Liang; Dongare, Avinash M.; Namburu, Raju R.; O'Regan, Terrance P.; Dubey, Madan

    2014-02-03

    The strain dependence of the electronic properties of bilayer sheets of 2H-MoS{sub 2} is studied using ab initio simulations based on density functional theory. An indirect band gap for bilayer MoS{sub 2} is observed for all variations of strain along the basal plane. Several transitions for the indirect band gap are observed for various strains for the bilayer structure. The variation of the band gap and the carrier effective masses for the holes and the electrons for the bilayer MoS{sub 2} structure under conditions of uniaxial strain, biaxial strain, as well as uniaxial stress is investigated.

  7. Importance of phospholipid bilayer integrity in the analysis of proteinlipid interactions

    SciTech Connect (OSTI)

    Drcker, Patrick; Gerke, Volker; Galla, Hans-Joachim

    2014-10-10

    Highlights: We show long-term mechanical stabilization of solid supported bilayers. Bilayer integrity is essential for the investigation of proteinlipid interactions. Protein adsorption to a bilayer containing defects causes membrane destruction. - Abstract: The integrity of supported phospholipid bilayer membranes is of crucial importance for the investigation of lipidprotein interactions. Therefore we recorded the formation of supported membranes on SiO{sub 2} and mica by quartz crystal microbalance and controlled the integrity by atomic force microscopy. This study aims to analyze how membrane defects affect proteinlipid interactions. The experiments focused on a lipid mixture of POPC/DOPC/Chol/POPS/PI(4,5)P{sub 2} (37:20:20:20:3) and the binding of the peripheral membrane associated protein annexin A2. We found that formation of a continuous undisturbed bilayer is an indispensable precondition for a reliable determination and quantification of lipidprotein-interactions. If membrane defects were present, protein adsorption causes membrane disruption and lipid detachment on a support thus leading to false determination of binding constants. Our results obtained for PI(4,5)P{sub 2} and cholesterol containing supported membranes yield new knowledge to construct functional surfaces that may cover nanoporous substrates, form free standing membranes or may be used for lab-on-a-chip applications.

  8. Nanoporous microbead supported bilayers: stability, physical characterization, and incorporation of functional transmembrane proteins.

    SciTech Connect (OSTI)

    Davis, Ryan W. (University of New Mexico, Albuquerque, NM); Brozik, James A. (University of New Mexico, Albuquerque, NM); Brozik, Susan Marie; Cox, Jason M.; Lopez, Gabriel P.; Barrick, Todd A.; Flores, Adrean

    2007-03-01

    The introduction of functional transmembrane proteins into supported bilayer-based biomimetic systems presents a significant challenge for biophysics. Among the various methods for producing supported bilayers, liposomal fusion offers a versatile method for the introduction of membrane proteins into supported bilayers on a variety of substrates. In this study, the properties of protein containing unilamellar phosphocholine lipid bilayers on nanoporous silica microspheres are investigated. The effects of the silica substrate, pore structure, and the substrate curvature on the stability of the membrane and the functionality of the membrane protein are determined. Supported bilayers on porous silica microspheres show a significant increase in surface area on surfaces with structures in excess of 10 nm as well as an overall decrease in stability resulting from increasing pore size and curvature. Comparison of the liposomal and detergent-mediated introduction of purified bacteriorhodopsin (bR) and the human type 3 serotonin receptor (5HT3R) are investigated focusing on the resulting protein function, diffusion, orientation, and incorporation efficiency. In both cases, functional proteins are observed; however, the reconstitution efficiency and orientation selectivity are significantly enhanced through detergent-mediated protein reconstitution. The results of these experiments provide a basis for bulk ionic and fluorescent dye-based compartmentalization assays as well as single-molecule optical and single-channel electrochemical interrogation of transmembrane proteins in a biomimetic platform.

  9. Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harrison, N.; Ramshaw, B. J.; Shekhter, A.

    2015-06-03

    The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whosemore » primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y« less

  10. Nanocrystal doped matrixes

    DOE Patents [OSTI]

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  11. Transfer matrix theory of monolayer graphene/bilayer graphene heterostructure superlattice

    SciTech Connect (OSTI)

    Wang, Yu

    2014-10-28

    We have formulated a transfer matrix method to investigate electronic properties of graphene heterostructure consisting of monolayer graphene and bilayer counterpart. By evaluating transmission, conductance, and band dispersion, we show that, irrespective of the different carrier chiralities in monolayer graphene and bilayer graphene, superlattice consisting of biased bilayer graphene barrier and monolayer graphene well can mimic the electronic properties of conventional semiconductor superlattice, displaying the extended subbands in the quantum tunneling regime and producing anisotropic minigaps for the classically allowed transport. Due to the lateral confinement, the lowest mode has shifted away from the charge neutral point of monolayer graphene component, opening a sizeable gap in concerned structure. Following the gate-field and geometry modulation, all electronic states and gaps between them can be externally engineered in an electric-controllable strategy.

  12. Electronic structure, surface doping, and optical response in epitaxial WSe2 thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yi; Ugeda, Miguel M.; Jin, Chenhao; Shi, Su -Fei; Bradley, Aaron J.; Martin-Recio, Ana; Ryu, Hyejin; Kim, Jonghwan; Tang, Shujie; Kim, Yeongkwan; et al

    2016-03-14

    High quality WSe2 films have been grown on bilayer graphene (BLG) with layer-by-layer control of thickness using molecular beam epitaxy. The combination of angle-resolved photoemission, scanning tunneling microscopy/spectroscopy, and optical absorption measurements reveal the atomic and electronic structures evolution and optical response of WSe2/BLG. We observe that a bilayer of WSe2 is a direct bandgap semiconductor, when integrated in a BLG-based heterostructure, thus shifting the direct–indirect band gap crossover to trilayer WSe2. In the monolayer limit, WSe2 shows a spin-splitting of 475 meV in the valence band at the K point, the largest value observed among all the MX2 (Mmore » = Mo, W; X = S, Se) materials. The exciton binding energy of monolayer-WSe2/BLG is found to be 0.21 eV, a value that is orders of magnitude larger than that of conventional three-dimensional semiconductors, yet small as compared to other two-dimensional transition metal dichalcogennides (TMDCs) semiconductors. Lastly, our finding regarding the overall modification of the electronic structure by an alkali metal surface electron doping opens a route to further control the electronic properties of TMDCs.« less

  13. Manipulating effective spin orbit coupling based on proximity effect in magnetic bilayers

    SciTech Connect (OSTI)

    Zhang, Y. Q.; Sun, N. Y.; Che, W. R.; Zhang, J. W.; Shan, R.; Li, X. L.; Zhu, Z. G. Su, G.

    2015-08-24

    A proximity effect of spin orbit coupling (SOC) is proposed in nonmagnetic metal/ferromagnet (NM/FM) bilayers by extending the Crépieux-Bruno (CB) theory. We demonstrate that over 1000% enhancement of the SOC strength can be realized based on this effect (Pt/FM bilayers) and it brings greatly enhanced anomalous Hall effect and anomalous Nernst effect. This work could help maximize the performance of magnetic transport property for the spintronics device using NM/FM as the key structure.

  14. Proximity effect bilayer nano superconducting quantum interference devices for millikelvin magnetometry

    SciTech Connect (OSTI)

    Blois, A. Rozhko, S.; Romans, E. J.; Hao, L.; Gallop, J. C.

    2013-12-21

    Superconducting quantum interference devices (SQUIDs) incorporating thin film nanobridges as weak links have sensitivities approaching that required for single spin detection at 4.2 K. However, due to thermal hysteresis they are difficult to operate at much lower temperatures which hinder their application to many quantum measurements. To overcome this, we have developed nanoscale SQUIDs made from titanium-gold proximity bilayers. We show that their electrical properties are consistent with a theoretical model developed for heat flow in bilayers and demonstrate that they enable magnetic measurements to be made on a sample at system temperatures down to 60 mK.

  15. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect (OSTI)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  16. Atomic Force Microscopy Studies of Lipophosphoglycan (LPG) Molecules in Lipid Bilayers

    SciTech Connect (OSTI)

    LAST, JULIE A.; HUBER, TINA; SASAKI, DARRYL Y.; SALVATORE, BRIAN; TURCO, SALVATORE J.

    2003-03-01

    Lipophosphoglycan (LPG) is a lypopolysaccharide found on the surface of the parasite Leishmania donovani that is thought to play an essential role in the infection of humans with leishamniasis. LPG acts as an adhesion point for the parasite to the gut of the sand fly, whose bite is responsible for transmitting the disease. In addition, LPG acts to inhibit protein kinase C (PKC) in the human macrophage, possibly by structural changes in the membrane. The Ca{sup 2+} ion is believed to play a role in the infection cycle, acting both as a crosslinker between LPG molecules and by playing a part in modulating PKC activity. To gain insight into the structure of LPG within a supported lipid membrane and into the structural changes that occur due to Ca{sup 2+} ions, we have employed the atomic force microscope (AFM). We have observed that the LPG molecules inhibit bilayer fusion, resulting in bilayer islands on the mica surface. One experiment suggests that the LPG molecules are parallel to the mica surface and that the structure of the LPG changes upon addition of Ca{sup 2+}, with an increase in the height of the LPG molecules from the bilayer surface and an almost complete coverage of LPG on the bilayer island.

  17. Control of membrane permeability in air-stable droplet interface bilayers

    SciTech Connect (OSTI)

    Mruetusatorn, Prachya; Polizos, Georgios; Datskos, Panos G.; Taylor, Graham; Sarles, Stephen A.; Boreyko, Jonathan; Hayes, Douglas G.; Collier, Pat

    2015-03-19

    Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, air-DIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that lifetimes of air-DIBs can be extended by as much as an order of magnitude by maintaining them at a temperature just above the dew point. We find that raising the temperature from near the dew point (7 C at 38.5 % relative humidity) to room temperature results in loss of water molecules of hydration from the polar head groups of the lipid bilayer membrane due to evaporation in an irreversible process that increases the overall entropy of the system. This dehydration transition affects primarily the bilayer resistance, by increasing ion permeability through the increasingly disordered polar head group region of the bilayer. Temperature and/or relative humidity are conveniently tunable parameters for controlling the stability and composition of air-DIBs membranes, while still allowing for operation in ambient environments.

  18. Control of membrane permeability in air-stable droplet interface bilayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mruetusatorn, Prachya; Polizos, Georgios; Datskos, Panos G.; Taylor, Graham; Sarles, Stephen A.; Boreyko, Jonathan; Hayes, Douglas G.; Collier, Pat

    2015-03-19

    Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, air-DIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that lifetimes of air-DIBs can be extended by as much as an order of magnitude by maintaining them at a temperature just above the dew point. We find that raising the temperature from near the dew point (7 C at 38.5 % relative humidity) to room temperature results inmore » loss of water molecules of hydration from the polar head groups of the lipid bilayer membrane due to evaporation in an irreversible process that increases the overall entropy of the system. This dehydration transition affects primarily the bilayer resistance, by increasing ion permeability through the increasingly disordered polar head group region of the bilayer. Temperature and/or relative humidity are conveniently tunable parameters for controlling the stability and composition of air-DIBs membranes, while still allowing for operation in ambient environments.« less

  19. Fluid Phase Lipid Areas and Bilayer Thicknesses of Commonly Used Phosphatidylcholines as a Function of Temperature

    SciTech Connect (OSTI)

    Kucerka, Norbert; Nieh, Mu-Ping; Katsaras, John

    2011-01-01

    The structural parameters of fluid phase bilayers composed of phosphatidylcholines with fully saturated, mixed, and branched fatty acid chains, at several temperatures, have been determined by simultaneously analyzing small-angle neutron and X-ray scattering data. Bilayer parameters, such as area per lipid and overall bilayer thickness have been obtained in conjunction with intrabilayer structural parameters (e.g. hydrocarbon region thickness). The results have allowed us to assess the effect of temperature and hydrocarbon chain composition on bilayer structure. For example, we found that for all lipids there is, not surprisingly, an increase in fatty acid chain trans-gauche isomerization with increasing temperature. Moreover, this increase in trans-gauche isomerization scales with fatty acid chain length in mixed chain lipids. However, in the case of lipids with saturated fatty acid chains, trans-gauche isomerization is increasingly tempered by attractive chain-chain van der Waals interactions with increasing chain length. Finally, our results confirm a strong dependence of lipid chain dynamics as a function of double bond position along fatty acid chains.

  20. Growth of Single- and Bilayer ZnO on Au(111) and Interaction with Copper

    SciTech Connect (OSTI)

    Deng, Xingyi; Yao, Kun; Sun, Keju; Li, Wei-Xue; Lee, Junseok; Matranga, Christopher

    2013-05-30

    The stoichiometric single- and bi-layer ZnO(0001) have been prepared by reactive deposition of Zn on Au(111) and studied in detail with X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory calculations. Both single- and bi-layer ZnO(0001) adopt a planar, graphite-like structure similar to freestanding ZnO(0001) due to the weak van der Waals interactions dominating their adhesion with the Au(111) substrate. At higher temperature, the single-layer ZnO(0001) converts gradually to bi-layer ZnO(0001) due to the twice stronger interaction between two ZnO layers than the interfacial adhesion of ZnO with Au substrate. It is found that Cu atoms on the surface of bi-layer ZnO(0001) are mobile with a diffusion barrier of 0.31 eV, and likely to agglomerate and form nanosized particles at low coverages; while Cu atoms tend to penetrate a single layer of ZnO(0001) with a barrier of 0.10 eV, resulting in a Cu free surface.

  1. Boron doping a semiconductor particle

    DOE Patents [OSTI]

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  2. Boron doping a semiconductor particle

    DOE Patents [OSTI]

    Stevens, G.D.; Reynolds, J.S.; Brown, L.K.

    1998-06-09

    A method of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried, with the boron film then being driven into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out into piles and melted/fused with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements. 2 figs.

  3. Investigation of the effect of bilayer membrane structures and fluctuation amplitudes on SANS/SAXS profile for short membrane wavelength

    SciTech Connect (OSTI)

    Lee, Victor; Hawa, Takumi

    2013-09-28

    The effect of bilayer membrane structures and fluctuation amplitudes on small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) profile is investigated based on harmonic motions of the surfactant bilayers with bending as well as thickness fluctuation motions. In this study we consider the case in which the wavelength of the bilayer membrane is shorter than the thickness of the membrane. We find that the thickness of the surfactant bilayer membrane, d{sub m}, affects both q{sub dip} and q{sub peak} of I(q,0) profile, and that the fluctuation amplitude, a, of the membrane changes the peak of I(q,0). A simple formula is derived to estimate the thickness of the bilayer based on the q{sub dip} of the profile obtained from the simulation. The resulting estimates of the thickness of the bilayer with harmonic motion showed accuracy within 1%. Moreover, the bilayer thicknesses estimated from the proposed formula show an excellent agreement with the SANS and SAXS experimental results available in the literatures. We also propose a curve fit model, which describes the relationship between the fluctuation amplitude and the normalized q{sub peak} ratio. The present results show the feasibility of the simple formula to estimate the fluctuation amplitude based on the SANS and SAXS profiles.

  4. Method of doping a semiconductor

    DOE Patents [OSTI]

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  5. Metal-doped organic foam

    DOE Patents [OSTI]

    Rinde, James A.

    1982-01-01

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  6. Method of doping organic semiconductors

    DOE Patents [OSTI]

    Kloc, Christian Leo; Ramirez, Arthur Penn; So, Woo-Young

    2012-02-28

    A method includes the steps of forming a contiguous semiconducting region and heating the region. The semiconducting region includes polyaromatic molecules. The heating raises the semiconducting region to a temperature above room temperature. The heating is performed in the presence of a dopant gas and the absence of light to form a doped organic semiconducting region.

  7. Micro-patterning of ionic reservoirs within a double bilayer lipid membrane to fabricate a 2D array of ion-channel switch based electrochemical biosensors

    SciTech Connect (OSTI)

    Sansinena, J. M.; Yee, C. K.; Sapuri, A.; Swanson, Basil I.; Redondo, A.; Parikh, A. N.

    2004-01-01

    We present a simple approach for the design of ionic reservoir arrays within a double phospholipid bilayer to ultimately develop a 2D array of ion-channel switch based electrochemical biosensors. As a first step, a primary bilayer lipid membrane is deposited onto an array of electrodes patterned onto a substrate surface. Subsequently, an array of microvoids is created within the bilayer by a wet photolithographic patterning of phospholipid bilayers using a deep UV light source and a quartz/chrome photomask. To ensure registry, the photomask used to pattern bilayers is designed to match up the microvoids within the primary bilayer with the array of electrodes on the substrate surface. The deposition of a secondary bilayer lipid membrane onto the primary bilayer that spans across the patterned microvoids leads to the formation of the array of ionic reservoirs within the double phospholipid bilayer. This is accomplished using giant unilamellar vesicles and by exploiting membrane electrostatics. The use of ion-channels incorporated into the secondary bilayer that covers the individual ionic reservoirs allows the construction of a 2D array of ion-channel switch based electrochemical biosensors that are able to recognize different target-agents simultaneously.

  8. The effect of spin-orbit coupling in band structure and edge states of bilayer graphene

    SciTech Connect (OSTI)

    Sahdan, Muhammad Fauzi; Darma, Yudi

    2015-04-16

    Topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of bilayer grapheme and also its edge states by using this model with analytical approach. The results of our calculation show that the gap opening occurs at K and K’ point in bilayer graphene.In addition, a pair of gapless edge modes occurs both in the zigzag and arm-chair configurations are no longer exist. There are gap created at the edge even though thery are very small.

  9. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers

    SciTech Connect (OSTI)

    Gong, Zhirui; Liu, G. B.; Yu, Hongyi; Xiao, Di; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang

    2013-01-01

    In monolayer group-VI transition metal dichalcogenides, charge carriers have spin and valley degrees of freedom, both associated with magnetic moments. On the other hand, the layer degree of freedom in multilayers is associated with electrical polarization. Here we show that transition metal dichalcogenide bilayers offer an unprecedented platform to realize a strong coupling between the spin, valley and layer pseudospin of holes. Such coupling gives rise to the spin Hall effect and spin-dependent selection rule for optical transitions in inversion symmetric bilayer and leads to a variety of magnetoelectric effects permitting quantum manipulation of these electronic degrees of freedom. Oscillating electric and magnetic fields can both drive the hole spin resonance where the two fields have valley-dependent interference, making an interplay between the spin and valley as information carriers possible for potential valley-spintronic applications. We show how to realize quantum gates on the spin qubit controlled by the valley bit.

  10. Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes

    SciTech Connect (OSTI)

    Camley, Brian A.; Lerner, Michael G.; Pastor, Richard W.; Brown, Frank L. H.

    2015-12-28

    The Saffman-Delbrück hydrodynamic model for lipid-bilayer membranes is modified to account for the periodic boundary conditions commonly imposed in molecular simulations. Predicted lateral diffusion coefficients for membrane-embedded solid bodies are sensitive to box shape and converge slowly to the limit of infinite box size, raising serious doubts for the prospects of using detailed simulations to accurately predict membrane-protein diffusivities and related transport properties. Estimates for the relative error associated with periodic boundary artifacts are 50% and higher for fully atomistic models in currently feasible simulation boxes. MARTINI simulations of LacY membrane protein diffusion and LacY dimer diffusion in DPPC membranes and lipid diffusion in pure DPPC bilayers support the underlying hydrodynamic model.

  11. Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers

    SciTech Connect (OSTI)

    Yoo, Hyung Keun; Kang, Chul; Hwang, In-Wook; Yoon, Youngwoon; Lee, Kiejin; Kee, Chul-Sik; Lee, Joong Wook

    2014-07-07

    Using hybrid bilayer systems comprising a molecular organic semiconductor and silicon, we achieve optically controllable active terahertz (THz) modulators that exhibit extremely high modulation efficiencies. A modulation efficiency of 98% is achieved from thermally annealed C{sub 60}/silicon bilayers, due to the rapid photo-induced electron transfer from the excited states of the silicon onto the C{sub 60} layer. Furthermore, we demonstrate the broadband modulation of THz waves. The cut-off condition of the system that is determined by the formation of efficient charge separation by the photo-excitation is highly variable, changing the system from insulating to metallic. The phenomenon enables an extremely high modulation bandwidth and rates of electromagnetic waves of interest. The realization of near-perfect modulation efficiency in THz frequencies opens up the possibilities of utilizing active modulators for THz spectroscopy and communications.

  12. Raman spectroscopy measurement of bilayer graphene's twist angle to boron nitride

    SciTech Connect (OSTI)

    Cheng, Bin; Wang, Peng; Pan, Cheng; Miao, Tengfei; Wu, Yong; Lau, C. N.; Bockrath, M.; Taniguchi, T.; Watanabe, K.

    2015-07-20

    When graphene is placed on hexagonal boron nitride with a twist angle, new properties develop due to the resulting moiré superlattice. Here, we report a method using Raman spectroscopy to make rapid, non-destructive measurements of the twist angle between bilayer graphene and hexagonal boron nitride. The lattice orientation is determined by using flakes with both bilayer and monolayer regions, and using the known Raman signature for the monolayer to measure the twist angle of the entire flake. The widths of the second order Raman peaks are found to vary linearly in the superlattice period and are used to determine the twist angle. The results are confirmed by using transport measurements to infer the superlattice period by the charge density required to reach the secondary resistance peaks. Small twist angles are also found to produce a significant modification of the first order Raman G band peak.

  13. Theoretical study of electronic transport properties of a graphene-silicene bilayer

    SciTech Connect (OSTI)

    Berdiyorov, G. R.; Bahlouli, H.; Peeters, F. M.

    2015-06-14

    Electronic transport properties of a graphene-silicene bilayer system are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Depending on the energy of the electrons, the transmission can be larger in this system as compared to the sum of the transmissions of separated graphene and silicene monolayers. This effect is related to the increased electron density of states in the bilayer sample. At some energies, the electronic states become localized in one of the layers, resulting in the suppression of the electron transmission. The effect of an applied voltage on the transmission becomes more pronounced in the layered sample as compared to graphene due to the larger variation of the electrostatic potential profile. Our findings will be useful when creating hybrid nanoscale devices where enhanced transport properties will be desirable.

  14. Electron dynamics of the buffer layer and bilayer graphene on SiC

    SciTech Connect (OSTI)

    Shearer, Alex J.; Caplins, Benjamin W.; Suich, David E.; Harris, Charles B., E-mail: cbharris@berkeley.edu [Department of Chemistry, University of California at Berkeley, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Johns, James E. [Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455 (United States); Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-06-09

    Angle- and time-resolved two-photon photoemission (TPPE) was used to investigate electronic states in the buffer layer of 4H-SiC(0001). An image potential state (IPS) series was observed on this strongly surface-bound buffer layer, and dispersion measurements indicated free-electron-like behavior for all states in this series. These results were compared with TPPE taken on bilayer graphene, which also show the existence of a free-electron-like IPS series. Lifetimes for the n?=?2, and n?=?3 states were obtained from time-resolved TPPE; slightly increased lifetimes were observed in the bilayer graphene sample for the n?=?2 the n?=?3 states. Despite the large band gap of graphene at the center of the Brillouin zone, the lifetime results demonstrate that the graphene layers do not behave as a simple tunneling barrier, suggesting that the buffer layer and graphene overlayers play a direct role in the decay of IPS electrons.

  15. X-ray small-angle scattering from sputtered CeO{sub 2}/C bilayers

    SciTech Connect (OSTI)

    Haviar, S.; Dubau, M.; Khalakhan, I.; Vorokhta, M.; Matolinova, I.; Matolin, V.; Vales, V.; Endres, J.; Holy, V.; Buljan, M.; Bernstorff, S.

    2013-01-14

    Surface and interface morphology of cerium oxide/carbon bilayers used as thin-film catalysts is studied by grazing-incidence small-angle x-ray scattering, scanning electron microscopy, and atomic-force microscopy, and the dependence of the structural parameters on the thicknesses of the constituting layers is investigated. The applicability of x-ray scattering and its advantages over standard analytical methods are discussed.

  16. Microwave-induced spin currents in ferromagnetic-insulator|normal-metal bilayer system

    SciTech Connect (OSTI)

    Agrawal, Milan; Serga, Alexander A.; Lauer, Viktor; Papaioannou, Evangelos Th.; Hillebrands, Burkard; Vasyuchka, Vitaliy I.

    2014-09-01

    A microwave technique is employed to simultaneously examine the spin pumping and the spin Seebeck effect processes in a YIG|Pt bilayer system. The experimental results show that for these two processes, the spin current flows in opposite directions. The temporal dynamics of the longitudinal spin Seebeck effect exhibits that the effect depends on the diffusion of bulk thermal-magnons in the thermal gradient in the ferromagnetic-insulator|normal-metal system.

  17. Interplay between intrinsic and stacking-fault magnetic domains in bi-layered manganites

    SciTech Connect (OSTI)

    Hossain, M.A; Burkhardt, Mark H.; Sarkar, S.; Ohldag, H.; Chuang, Y.-D.; Scholl, A.; Young, A.T.; Doran, A.; Dessau, D.S.; Zheng, H.; Mitchell, J.F.; Durr, H.A.; Stohr, J.

    2012-09-11

    We present a low temperature X-ray photoemission electron microscopy study of the bi-layered manganite compound La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7} (BL-LSMO) to investigate the influence of stacking faults, which are structurally and magnetically different from the bi-layered host. In BL-LSMO small magnetic moment persists to T* = 300K, well above the Curie temperature of 120K (T{sub C}). Our magnetic images show that 3D stacking faults are responsible for the T* transition. Furthermore, close to the T{sub C}, stacking faults are well coupled to the bi-layered host with latter magnetic domains controlling the spin direction of the stacking faults. Contrary to recent reports, we find that stacking faults do not seed magnetic domains in the host via an exchange spring mechanism and the intrinsic T{sub C} of the BL-LSMO is not lower than 120K.

  18. Continuity of monolayer-bilayer junctions for localization of lipid raft microdomains in model membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryu, Yong -Sang; Wittenberg, Nathan J.; Suh, Jeng -Hun; Lee, Sang -Wook; Sohn, Youngjoo; Oh, Sang -Hyun; Parikh, Atul N.; Lee, Sin -Doo

    2016-05-27

    We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed betweenmore » the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Furthermore, our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates.« less

  19. Phase diagram of the CF{sub 4} monolayer and bilayer on graphite

    SciTech Connect (OSTI)

    Thomas, Petros; Hess, George B.

    2014-05-21

    We report an experimental study of physisorbed monolayers and bilayers of CF{sub 4} on graphite using infrared reflection absorption spectroscopy supplemented by ellipsometry. The symmetric CF stretch mode ?{sub 3} near 1283 cm{sup ?1} in the gas is strongly blue shifted in the film by dynamic dipole coupling. This blue shift provides a very sensitive measure of the inter-molecular spacing in the monolayer and, less directly, in the bilayer. We find that important corrections are necessary to the volumetric coverage scales used in previous heat capacity and x-ray diffraction studies of this system. This requires quantitative and some qualitative changes to the previously proposed phase diagram. We find evidence for a new phase transition in the middle of the hexagonal incommensurate region and construct new phase diagrams in both the variables coverage-temperature and chemical potential-temperature. We determine the compressibility and thermal expansion in the low-pressure hexagonal incommensurate phase and values for the entropy change in several phase transitions. Below about 55 K there is evidence of solution of up to 7% of an impurity, most likely CO, in our monolayer but not the bilayer film.

  20. Crystallization study of amorphous sputtered NiTi bi-layer thin film

    SciTech Connect (OSTI)

    Mohri, Maryam; Nili-Ahmadabadi, Mahmoud; Chakravadhanula, Venkata Sai Kiran

    2015-05-15

    The crystallization of Ni-rich/NiTiCu bi-layer thin film deposited by magnetron sputtering from two separate alloy targets was investigated. To achieve the shape memory effect, the NiTi thin films deposited at room temperature with amorphous structure were annealed at 773 K for 15, 30, and 60 min for crystallization. Characterization of the films was carried out by differential scanning calorimetry to indicate the crystallization temperature, grazing incidence X-ray diffraction to identify the phase structures, atomic force microscopy to evaluate surface morphology, scanning transmission electron microscopy to study the cross section of the thin films. The results show that the structure of the annealed thin films strongly depends on the temperature and time of the annealing. Crystalline grains nucleated first at the surface and then grew inward to form columnar grains. Furthermore, the crystallization behavior was markedly affected by composition variations. - Highlights: • A developed bi-layer Ni45TiCu5/Ni50.8Ti was deposited on Si substrate and crystallized. • During crystallization, The Ni{sub 45}TiCu{sub 5} layer is thermally less stable than the Ni-rich layer. • The activation energy is 302 and 464 kJ/mol for Cu-rich and Ni-rich layer in bi-layer, respectively.

  1. Neutron reflectivity study of substrate surface chemistry effects on supported phospholipid bilayer formation on (1120) sapphire.

    SciTech Connect (OSTI)

    Oleson, Timothy A.; Sahai, Nita; Wesolowski, David J; Dura, Joseph A; Majkrzak, Charles F; Giuffre, Anthony J.

    2012-01-01

    Oxide-supported phospholipid bilayers (SPBs) used as biomimetric membranes are significant for a broad range of applications including improvement of biomedical devices and biosensors, and in understanding biomineralization processes and the possible role of mineral surfaces in the evolution of pre-biotic membranes. Continuous-coverage and/or stacjed SPBs retain properties (e.,g. fluidity) more similar to native biological membranes, which is desirable for most applications. Using neutron reflectivity, we examined face coverage and potential stacking of dipalmitoylphosphatidylcholine (DPPC) bilayers on the (1120) face of sapphire (a-Al2O3). Nearly full bilayers were formed at low to neutral pH, when the sapphire surface is positively charged, and at low ionic strength (l=15 mM NaCl). Coverage decreased at higher pH, close to the isoelectric point of sapphire, and also at high I>210mM, or with addition of 2mM Ca2+. The latter two effects are additive, suggesting that Ca2+ mitigates the effect of higher I. These trends agree with previous results for phospholipid adsorption on a-Al2O3 particles determined by adsorption isotherms and on single-crystal (1010) sapphire by atomic force microscopy, suggesting consistency of oxide surface chemistry-dependent effects across experimental techniques.

  2. Phosphorous doping a semiconductor particle

    DOE Patents [OSTI]

    Stevens, Gary Don; Reynolds, Jeffrey Scott

    1999-07-20

    A method (10) of phosphorus doping a semiconductor particle using ammonium phosphate. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried (16, 18), with the phosphorus then being diffused (20) into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement.

  3. Degenerate doping of metallic anodes

    SciTech Connect (OSTI)

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  4. Phosphorus doping a semiconductor particle

    DOE Patents [OSTI]

    Stevens, G.D.; Reynolds, J.S.

    1999-07-20

    A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.

  5. ELECTROCHROMIC NICKEL OXIDE SIMULTANEOUSLY DOPED WITH LITHIUM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Events Return to Search ELECTROCHROMIC NICKEL OXIDE SIMULTANEOUSLY DOPED WITH LITHIUM AND A METAL DOPANT United States Patent Application *** PATENT GRANTED ***...

  6. Lanthanide doped strontium barium mixed halide scintillators

    DOE Patents [OSTI]

    Gundiah, Gautam; Bizarri, Gregory A.; Hanrahan, Stephen M.; Bourret-Courchesne, Edith D.; Derenzo, Stephen E.

    2016-03-15

    The present invention provides for a composition comprising an inorganic scintillator comprising a lanthanide-doped strontium barium mixed halide useful for detecting nuclear material.

  7. Lanthanide doped barium phosphorous oxide scintillators

    DOE Patents [OSTI]

    Borade, Ramesh B; Bourret-Courchesne, Edith; Denzo, Stephen E

    2013-02-26

    The present invention provides for a composition comprising an inorganic scintillator comprising a lanthanide-doped barium phosphorous oxide useful for detecting nuclear material.

  8. Lanthanide doped strontium barium mixed halide scintillators

    DOE Patents [OSTI]

    Gundiah, Gautam; Bizarri, Gregory; Hanrahan, Stephen M; Bourret-Courchesne, Edith; Derenzo, Stephen E

    2013-07-16

    The present invention provides for a composition comprising an inorganic scintillator comprising a lanthanide-doped strontium barium mixed halide useful for detecting nuclear material.

  9. Performance and mix measurements of indirect drive Cu doped Be...

    Office of Scientific and Technical Information (OSTI)

    Performance and mix measurements of indirect drive Cu doped Be implosions Citation Details In-Document Search Title: Performance and mix measurements of indirect drive Cu doped Be ...

  10. Time-reversal-invariant topological superconductivity in n -doped...

    Office of Scientific and Technical Information (OSTI)

    Time-reversal-invariant topological superconductivity in n -doped BiH Citation Details In-Document Search Title: Time-reversal-invariant topological superconductivity in n -doped ...

  11. Intrinsic charge and spin conductivities of doped graphene in...

    Office of Scientific and Technical Information (OSTI)

    Intrinsic charge and spin conductivities of doped graphene in the Fermi-liquid regime Prev Next Title: Intrinsic charge and spin conductivities of doped graphene in the ...

  12. Ultratough single crystal boron-doped diamond

    DOE Patents [OSTI]

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  13. Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Shengxi; Liang, Liangbo; Ling, Xi; Puretzky, Alexander A.; Geohegan, David B.; Sumpter, Bobby G.; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S.

    2016-02-21

    A variety of van der Waals homo- and hetero- structures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. Twisted bilayer transition metal dichalcogenides offer a great platform for developing a precise understanding of the structure/property relationship. Here, we study the low-frequency interlayer shear and breathing Raman modes (<50 cm-1) in twisted bilayer MoS2 by Raman spectroscopy and first-principles modeling. Twisting introduces both rotational and translational shifts and significantly alters the interlayer stacking and coupling, leading to notable frequency and intensitymore » changes of low-frequency modes. The frequency variation can be up to 8 cm-1 and the intensity can vary by a factor of ~5 for twisting near 0 and 60 , where the stacking is a mixture of multiple high-symmetry stacking patterns and is thus especially sensitive to twisting. Moreover, for twisting angles between 20 and 40 , the interlayer coupling is nearly constant since the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Interestingly, unlike the breathing mode, the shear mode is extremely sensitive to twisting: it disappears between 20 and 40 as its frequency drops to almost zero due to the stacking-induced mismatch. Note that for some samples, multiple breathing mode peaks appear, indicating non-uniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling, showing negligible changes upon twisting. Our research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2, and potentially other two-dimensional materials and

  14. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers

    SciTech Connect (OSTI)

    Moskovitz, Yevgeny; Yang, Hui

    2015-01-08

    Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns-long) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules at a pressure range of 1 - 1000 bar and temperature of 310 Kelvin. Xenon and argon have been tested as model gases for general anesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremor at hyperbaric conditions. The analysis of stacked radial pair distribution functions of DOPC headgroup atoms revealed the explicit solvation potential of gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor; while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar patterns of the order parameter for both DOPC acyl chains, which is opposite to the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the ‘critical volume’ hypothesis of anesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1 - 100 bar could be associated with the possible manifestation of neurological tremor at the atomic scale. The non-immobilizer neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing monolayers undulations rate, which indicates enhanced diffusivity, rather than atom size, as the key factor.

  15. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moskovitz, Yevgeny; Yang, Hui

    2015-01-08

    Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns-long) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules at a pressure range of 1 - 1000 bar and temperature of 310 Kelvin. Xenon and argon have been tested as model gases for general anesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremor at hyperbaric conditions. The analysis of stacked radial pair distributionmore » functions of DOPC headgroup atoms revealed the explicit solvation potential of gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor; while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar patterns of the order parameter for both DOPC acyl chains, which is opposite to the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the ‘critical volume’ hypothesis of anesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1 - 100 bar could be associated with the possible manifestation of neurological tremor at the atomic scale. The non-immobilizer neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing monolayers undulations rate, which indicates enhanced diffusivity, rather than atom size, as the key factor.« less

  16. Magnetic coupling in ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers

    SciTech Connect (OSTI)

    Wang, M.; Wadley, P.; Campion, R. P.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Charlton, T. R.; Kinane, C. J.; Langridge, S.

    2015-08-07

    We report on a study of ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers using magnetometry and polarized neutron reflectivity (PNR). From depth-resolved characterization of the magnetic structure obtained by PNR, we concluded that the (Ga,Mn)As and (Al,Ga,Mn)As layers have in-plane and perpendicular-to-plane magnetic easy axes, respectively, with weak interlayer coupling. Therefore, the layer magnetizations align perpendicular to each other under low magnetic fields and parallel at high fields.

  17. Valley filter from magneto-tunneling between single and bi-layer graphene

    SciTech Connect (OSTI)

    Pratley, L.; Zülicke, U.

    2014-02-24

    We consider tunneling transport between two parallel graphene sheets; where one is a single-layer sample and the other one a bi-layer. In the presence of an in-plane magnetic field, the interplay between combined energy and momentum conservation in a tunneling event and the distinctive chiral nature of charge carriers in the two systems turns out to favor tunneling of electrons from one of the two valleys in the graphene Brillouin zone. Adjusting the field strength enables manipulation of the valley polarization of the current, which reaches its maximum value of 100% concomitantly with a maximum of the tunneling conductance.

  18. Electronic properties of bilayer graphenes strongly coupled to interlayer stacking and an external field

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, Changwon; Ryou, Junga; Hong, Suklyun; Sumpter, Bobby G.; Kim, Gunn; Yoon, Mina

    2015-07-02

    Bilayer graphene (BLG) with a tunable band gap appears interesting as an alternative to graphene for practical applications; thus, its transport properties are being actively pursued. Using density functional theory and perturbation analysis, we investigated, under an external electric field, the electronic properties of BLG in various stackings relevant to recently observed complex structures. We established the first phase diagram summarizing the stacking-dependent gap openings of BLG for a given field. Lastly, we further identified high-density midgap states, localized on grain boundaries, even under a strong field, which can considerably reduce the overall transport gap.

  19. Spin-wave excitation and propagation in microstructured waveguides of yttrium iron garnet/Pt bilayers

    SciTech Connect (OSTI)

    Pirro, P.; Chumak, A. V.; Lägel, B.; Leven, B.; Hillebrands, B.; Brächer, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern ; Dubs, C.; Surzhenko, O.; Görnert, P.

    2014-01-06

    We present an experimental study of spin-wave excitation and propagation in microstructured waveguides consisting of a 100 nm thick yttrium iron garnet/platinum (Pt) bilayer. The life time of the spin waves is found to be more than an order of magnitude higher than in comparably sized metallic structures, despite the fact that the Pt capping enhances the Gilbert damping. Utilizing microfocus Brillouin light scattering spectroscopy, we reveal the spin-wave mode structure for different excitation frequencies. An exponential spin-wave amplitude decay length of 31 μm is observed which is a significant step towards low damping, insulator based micro-magnonics.

  20. High transition temperature superconductor/insulator bilayers for the development of ultra-fast electronics

    SciTech Connect (OSTI)

    Sirena, M.; Flix, L. Avils; Instituto Balseiro, Universidad Nacional de Cuyo and CNEA, 8400 Bariloche ; Haberkorn, N.

    2013-07-29

    High transition temperature superconductor (HTc)/SrTiO{sub 3} (STO) bilayers were fabricated by sputtering deposition on (100) STO substrates. Their transport and morphological properties were characterized using conductive atomic force microscopy. The STO barriers present good insulating properties, with long attenuation lengths (? ? 1 nm) which reduce the junction resistance and increase the operating critical current. The samples present roughness values smaller than 1 nm, with an extremely low density of surface defects (?5 10{sup ?5} defects/?m{sup 2}). The high control of the barrier quality over large defect free surfaces is encouraging for the development of microelectronics devices based in HTc Josephson junctions.

  1. Does water dope carbon nanotubes?

    SciTech Connect (OSTI)

    Bell, Robert A.; Payne, Michael C.; Mostofi, Arash A.

    2014-10-28

    We calculate the long-range perturbation to the electronic charge density of carbon nanotubes (CNTs) as a result of the physisorption of a water molecule. We find that the dominant effect is a charge redistribution in the CNT due to polarisation caused by the dipole moment of the water molecule. The charge redistribution is found to occur over a length-scale greater than 30 , highlighting the need for large-scale simulations. By comparing our fully first-principles calculations to ones in which the perturbation due to a water molecule is treated using a classical electrostatic model, we estimate that the charge transfer between CNT and water is negligible (no more than 10{sup ?4}?e per water molecule). We therefore conclude that water does not significantly dope CNTs, a conclusion that is consistent with the poor alignment of the relevant energy levels of the water molecule and CNT. Previous calculations that suggest water n-dopes CNTs are likely due to the misinterpretation of Mulliken charge partitioning in small supercells.

  2. Preparation and electrical transport properties of quasi free standing bilayer graphene on SiC (0001) substrate by H intercalation

    SciTech Connect (OSTI)

    Yu, Cui; Liu, Qingbin; Li, Jia; Lu, Weili; He, Zezhao; Cai, Shujun; Feng, Zhihong

    2014-11-03

    We investigate the temperature dependent electrical transport properties of quasi-free standing bilayer graphene on 4H-SiC (0001) substrate. Three groups of monolayer epitaxial graphene and corresponding quasi-free standing bilayer graphene with different crystal quality and layer number homogeneity are prepared. Raman spectroscopy and atomic-force microscopy are used to obtain their morphologies and layer number, and verify the complete translation of buffer layer into graphene. The highest room temperature mobility reaches 3700 cm{sup 2}/V·s for the quasi-free standing graphene. The scattering mechanism analysis shows that poor crystal quality and layer number inhomogeneity introduce stronger interacting of SiC substrate to the graphene layer and more impurities, which limit the carrier mobility of the quasi-free standing bilayer graphene samples.

  3. Spectroscopic signatures of AA' and AB stacking of chemical vapor deposited bilayer MoS2

    SciTech Connect (OSTI)

    Xia, Ming; Li, Bo; Yin, Kuibo; Capellini, Giovanni; Niu, Gang; Gong, Yongji; Zhou, Wu; Ajayan, Pulickel M.; Xie, Ya -Hong

    2015-11-04

    We discuss prominent resonance Raman and photoluminescence spectroscopic differences between AA'and AB stacked bilayer molybdenum disulfide (MoS2) grown by chemical vapor deposition are reported. Bilayer MoS2 islands consisting of the two stacking orders were obtained under identical growth conditions. Also, resonance Raman and photoluminescence spectra of AA' and AB stacked bilayer MoS2 were obtained on Au nanopyramid surfaces under strong plasmon resonance. Both resonance Raman and photoluminescence spectra show distinct features indicating clear differences in interlayer interaction between these two phases. The implication of these findings on device applications based on spin and valley degrees of freedom.

  4. Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Jeremy C.; Cheng, Xiaolin; Nickels, Jonathan D.

    2015-07-29

    Understanding of cell membrane organization has evolved significantly from the classic fluid mosaic model. It is now recognized that biological membranes are highly organized structures, with differences in lipid compositions between inner and outer leaflets and in lateral structures within the bilayer plane, known as lipid rafts. These organizing principles are important for protein localization and function as well as cellular signaling. However, the mechanisms and biophysical basis of lipid raft formation, structure, dynamics and function are not clearly understood. One key question, which we focus on in this review, is how lateral organization and leaflet compositional asymmetry are coupled.more » Detailed information elucidating this question has been sparse because of the small size and transient nature of rafts and the experimental challenges in constructing asymmetric bilayers. Resolving this mystery will require advances in both experimentation and modeling. We discuss here the preparation of model systems along with experimental and computational approaches that have been applied in efforts to address this key question in membrane biology. Furthermore, we seek to place recent and future advances in experimental and computational techniques in context, providing insight into in-plane and transverse organization of biological membranes.« less

  5. Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes

    SciTech Connect (OSTI)

    Smith, Jeremy C.; Cheng, Xiaolin; Nickels, Jonathan D.

    2015-07-29

    Understanding of cell membrane organization has evolved significantly from the classic fluid mosaic model. It is now recognized that biological membranes are highly organized structures, with differences in lipid compositions between inner and outer leaflets and in lateral structures within the bilayer plane, known as lipid rafts. These organizing principles are important for protein localization and function as well as cellular signaling. However, the mechanisms and biophysical basis of lipid raft formation, structure, dynamics and function are not clearly understood. One key question, which we focus on in this review, is how lateral organization and leaflet compositional asymmetry are coupled. Detailed information elucidating this question has been sparse because of the small size and transient nature of rafts and the experimental challenges in constructing asymmetric bilayers. Resolving this mystery will require advances in both experimentation and modeling. We discuss here the preparation of model systems along with experimental and computational approaches that have been applied in efforts to address this key question in membrane biology. Furthermore, we seek to place recent and future advances in experimental and computational techniques in context, providing insight into in-plane and transverse organization of biological membranes.

  6. Vertical GaN power diodes with a bilayer edge termination

    SciTech Connect (OSTI)

    Dickerson, Jeramy R.; Allerman, Andrew A.; Bryant, Benjamin N.; Fischer, Arthur J.; King, Michael P.; Moseley, Michael W.; Armstrong, Andrew M.; Kaplar, Robert J.; Kizilyalli, Isik C.; Aktas, Ozgur; Wierer, Jr., Jonathan J.

    2015-12-07

    Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (104 - 105 cm-2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 1015 cm-3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p) layer near the n-type drift region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. In addition simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.

  7. Vertical GaN power diodes with a bilayer edge termination

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dickerson, Jeramy R.; Allerman, Andrew A.; Bryant, Benjamin N.; Fischer, Arthur J.; King, Michael P.; Moseley, Michael W.; Armstrong, Andrew M.; Kaplar, Robert J.; Kizilyalli, Isik C.; Aktas, Ozgur; et al

    2015-12-07

    Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (104 - 105 cm-2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 1015 cm-3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p) layer near the n-type driftmore » region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. In addition simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.« less

  8. Electrochromic nickel oxide simultaneously doped with lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Like This Return to Search Electrochromic nickel oxide simultaneously doped with lithium and a metal dopant United States Patent Patent Number: 8,687,261 Issued: April 1,...

  9. Preparation of nitrogen-doped carbon tubes

    DOE Patents [OSTI]

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  10. Eribium Doped Y2O3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effect of Local Coordination on the Photoluminescence Properties of Er-doped Y2O3 Thin Films Miniaturizing the erbium-doped optical fiber amplifier (~20 m in length) into a small, compact amplifier that can be integrated with other optical and electronic devices on a single chip (optoelectronics) offers great promise in optical communication as an alternative to the electronic technology.1,2, The gain of these miniaturized devices is limited by the solubility, concentration, and distribution of

  11. On the application of the MARTINI coarse-grained model to immersion of a protein in a phospholipid bilayer

    SciTech Connect (OSTI)

    Mustafa, Ghulam E-mail: rebecca.wade@h-its.org; Nandekar, Prajwal P.; Yu, Xiaofeng; Wade, Rebecca C. E-mail: rebecca.wade@h-its.org

    2015-12-28

    An important step in the simulation of a membrane protein in a phospholipid bilayer is the correct immersion of the protein in the bilayer. Crystal structures are determined without the bilayer. Particularly for proteins with monotopic domains, it can be unclear how deeply and in which orientation the protein is being inserted in the membrane. We have previously developed a procedure combining coarse-grain (CG) with all-atom (AA) molecular dynamics (MD) simulations to insert and simulate a cytochrome P450 (CYP) possessing an N-terminal transmembrane helix connected by a flexible linker region to a globular domain that dips into the membrane. The CG simulations provide a computationally efficient means to explore different orientations and conformations of the CYP in the membrane. Converged configurations obtained in the CG simulations are then refined in AA simulations. Here, we tested different variants of the MARTINI CG model, differing in the water model, the treatment of long-range non-bonded interactions, and the implementation (GROMACS 4.5.5 vs 5.0.4), for this purpose. We examined the behavior of the models for simulating a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer in water and for the immersion of CYP3A4 in a POPC bilayer, and compared the CG-MD results with the previously reported experimental and simulation results. We also tested the methodology on a set of four other CYPs. Finally, we propose an optimized protocol for modeling such protein-membrane systems that provides the most plausible configurations and is computationally efficient; this incorporates the standard non-polar water model and the GROMACS 5.0.4 implementation with a reaction field treatment of long-range interactions.

  12. Method of making molecularly doped composite polymer material

    DOE Patents [OSTI]

    Affinito, John D. [Tucson, AZ; Martin, Peter M. [Kennewick, WA; Graff, Gordon L. [West Richland, WA; Burrows, Paul E. [Kennewick, WA; Gross, Mark E. , Sapochak, Linda S.

    2005-06-21

    A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.

  13. Magnetization reversal in CoPt(111) hard/soft bilayers

    SciTech Connect (OSTI)

    Alexandrakis, V.; Niarchos, D.; Wolff, M.

    2009-03-15

    The magnetization reversal in magnetron sputtered CoPt(111) hard/soft bilayers has been studied by polarized neutron reflectometry and magnetization measurements. The stability of the hard layer is tuned by the heat-treatment conditions which are used to crystallize the chemically ordered, high anisotropy, L{sub 1}0 phase. All the samples show the same features in their first order reversal curves but the lateral domain size during the magnetization reversal of the soft layer differs. In samples with strong intergrain coupling it exceeds the coherence length of the neutron beam, resulting in spin-flip scattering. In contrast, the hard layer reversal occurs through the reorientation in small domains.

  14. Spin valve effect of the interfacial spin accumulation in yttrium iron garnet/platinum bilayers

    SciTech Connect (OSTI)

    Jin, Lichuan; Zhang, Dainan; Zhang, Huaiwu Tang, Xiaoli; Bai, Feiming; Zhong, Zhiyong; Fan, Xin; Xiao, John Q.

    2014-09-29

    We report the spin valve effect in yttrium iron garnet/platinum (YIG/Pt) bilayers. The spin Hall effect (SHE) generates spin accumulation at the YIG/Pt interface and can be opened/closed by magnetization switching in the electrical insulator YIG. The interfacial spin accumulation was measured in both YIG/Pt and YIG/Cu/Pt structures using a planar Hall configuration. The spin valve effect remained, even after a 2 nm thick Cu layer was inserted between the YIG and Pt layers, which aimed to exclude the induced magnetization at the YIG/Pt interface. The transverse Hall voltage and switching field were dependent on the applied charge current density. The origin of this behavior can be explained by the SHE induced torque exerted on the domain wall, caused by the transfer of the spin angular momentum from the spin-polarized current to the YIG magnetic moment.

  15. Effect of Ru thickness on spin pumping in Ru/Py bilayer

    SciTech Connect (OSTI)

    Behera, Nilamani; Singh, M. Sanjoy; Chaudhary, Sujeet; Pandya, Dinesh K. Muduli, P. K.

    2015-05-07

    We report the effect of Ru thickness (t{sub Ru}) on ferromagnetic resonance (FMR) line-width of Ru(t{sub Ru})/Py(23?nm) bilayer samples grown on Si(100)/SiO{sub 2} substrates at room temperature by magnetron sputtering. The FMR line-width is found to vary linearly with frequency for all thicknesses of Ru, indicating intrinsic origin of damping. For Ru thicknesses below 15?nm, Gilbert-damping parameter, ? is almost constant. We ascribe this behavior to spin back flow that is operative for Ru thicknesses lower than the spin diffusion length in Ru, ?{sub sd}. For thicknesses >15?nm (>?{sub sd}), the damping constant increases with Ru thickness, indicating spin pumping from Py into Ru.

  16. Metal-doped organic gels and method thereof

    DOE Patents [OSTI]

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2007-10-23

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  17. Metal-doped organic gels and method thereof

    DOE Patents [OSTI]

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2003-09-02

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  18. Direct observation of electron transfer across a lipid bilayer: laser photolysis of an asymmetric vesicle system containing chlorophyll, methyl viologen, and EDTA

    SciTech Connect (OSTI)

    Ford, W.E.; Tollin, G.

    1980-01-01

    Electron transfer across lipid bilayer vesicle walls was examined by laser flash photolysis to determine the mechanisms of charge transport across the membrane. The discussion is restricted to vesicles whose walls contain phosphatidylcholine, chlorophyll a, and valinomycin. (ACR)

  19. Doping against the native propensity of MoS₂: Degenerate hole doping by cation substitution

    SciTech Connect (OSTI)

    Suh, Joonki; Park, Tae-Eon; Lin, Der-Yuh; Fu, Deyi; Park, Joonsuk; Jung, Hee Joon; Chen, Yabin; Ko, Changhyun; Jang, Chaun; Sun, Yinghui; Sinclair, Robert; Chang, Joonyeon; Tongay, Sefaattin; Wu, Junqiao

    2014-12-10

    Layered transition metal dichalcogenides (TMDs) draw much attention as the key semiconducting material for two-dimensional electrical, optoelectronic, and spintronic devices. For most of these applications, both n- and p-type materials are needed to form junctions and support bipolar carrier conduction. However, typically only one type of doping is stable for a particular TMD. For example, molybdenum disulfide (MoS₂) is natively an n-type presumably due to omnipresent electron-donating sulfur vacancies, and stable/controllable p-type doping has not been achieved. The lack of p-type doping hampers the development of charge-splitting p–n junctions of MoS₂, as well as limits carrier conduction to spin-degenerate conduction bands instead of the more interesting, spin-polarized valence bands. Traditionally, extrinsic p-type doping in TMDs has been approached with surface adsorption or intercalation of electron-accepting molecules. However, practically stable doping requires substitution of host atoms with dopants where the doping is secured by covalent bonding. In this work, we demonstrate stable p-type conduction in MoS₂ by substitutional niobium (Nb) doping, leading to a degenerate hole density of ~3 × 10¹⁹ cm⁻³. Structural and X-ray techniques reveal that the Nb atoms are indeed substitutionally incorporated into MoS₂ by replacing the Mo cations in the host lattice. van der Waals p–n homojunctions based on vertically stacked MoS₂ layers are fabricated, which enable gate-tunable current rectification. A wide range of microelectronic, optoelectronic, and spintronic devices can be envisioned from the demonstrated substitutional bipolar doping of MoS₂. From the miscibility of dopants with the host, it is also expected that the synthesis technique demonstrated here can be generally extended to other TMDs for doping against their native unipolar propensity.

  20. Doped luminescent materials and particle discrimination using same

    DOE Patents [OSTI]

    Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

    2014-10-07

    Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

  1. Nitrogen doping study in ingot niobium cavities

    SciTech Connect (OSTI)

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter; Myneni, Ganapati Rao; Makita, Junki

    2015-09-01

    Thermal diffusion of nitrogen in niobium superconducting radio frequency cavities at temperature ~800 °C has resulted in the increase in quality factor with a low-field Q-rise extending to Bp > 90 mT. However, the maximum accelerating gradient of these doped cavities often deteriorates below the values achieved by standard treatments prior to doping. Here, we present the results of the measurements on ingot niobium cavities doped with nitrogen at 800 °C. The rf measurements were carried out after the successive electropolishing to remove small amount of material from the inner surface layer. The result showed higher breakdown field with lower quality factor as material removal increases.

  2. Lanthanide and actinide doped glasses as reference standards for dye doped systems

    SciTech Connect (OSTI)

    Pope, E.J.A.; Hentschel, A.

    1996-12-31

    Organic dye molecules are well known to be subject to chemical and optical bleaching damage, temperature instability, and other forms of optical degradation. Currently recognized methods of referencing rely upon fluorescent salt solutions, such as quinine sulfate. In this paper, optically-active lanthanide and actinide doped gel-glasses are compared as reference standards for dye doped polymers. Samples are subjected to continuous illumination by 254 nm UV radiation. While dye-doped polymers exhibited approximately 65 percent decline in fluorescence intensity after 96 hours of irradiation, glass samples and glass powder in resin showed no decline in fluorescence intensities.

  3. Does fluoride disrupt hydrogen bond network in cationic lipid bilayer? Time-dependent fluorescence shift of Laurdan and molecular dynamics simulations

    SciTech Connect (OSTI)

    Pokorna, Sarka; Jurkiewicz, Piotr; Hof, Martin; Vazdar, Mario; Cwiklik, Lukasz; Jungwirth, Pavel

    2014-12-14

    Time-dependent fluorescence shift (TDFS) of Laurdan embedded in phospholipid bilayers reports on hydration and mobility of the phospholipid acylgroups. Exchange of H{sub 2}O with D{sub 2}O prolongs the lifetime of lipid-water and lipid-water-lipid interactions, which is reflected in a significantly slower TDFS kinetics. Combining TDFS measurements in H{sub 2}O and D{sub 2}O hydrated bilayers with atomistic molecular dynamics (MD) simulations provides a unique tool for characterization of the hydrogen bonding at the acylgroup level of lipid bilayers. In this work, we use this approach to study the influence of fluoride anions on the properties of cationic bilayers composed of trimethylammonium-propane (DOTAP). The results obtained for DOTAP are confronted with those for neutral phosphatidylcholine (DOPC) bilayers. Both in DOTAP and DOPC H{sub 2}O/D{sub 2}O exchange prolongs hydrogen-bonding lifetime and does not disturb bilayer structure. These results are confirmed by MD simulations. TDFS experiments show, however, that for DOTAP this effect is cancelled in the presence of fluoride ions. We interpret these results as evidence that strongly hydrated fluoride is able to steal water molecules that bridge lipid carbonyls. Consequently, when attracted to DOTAP bilayer, fluoride disrupts the local hydrogen-bonding network, and the differences in TDFS kinetics between H{sub 2}O and D{sub 2}O hydrated bilayers are no longer observed. A distinct behavior of fluoride is also evidenced by MD simulations, which show different lipid-ion binding for Cl{sup −} and F{sup −}.

  4. High resolution three-dimensional doping profiler

    DOE Patents [OSTI]

    Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN)

    1999-01-01

    A semiconductor doping profiler provides a Schottky contact at one surface and an ohmic contact at the other. While the two contacts are coupled to a power source, thereby establishing an electrical bias in the semiconductor, a localized light source illuminates the semiconductor to induce a photocurrent. The photocurrent changes in accordance with the doping characteristics of the semiconductor in the illuminated region. By changing the voltage of the power source the depth of the depletion layer can be varied to provide a three dimensional view of the local properties of the semiconductor.

  5. Crowding-induced mixing behavior of lipid bilayers: Examination of mixing energy, phase, packing geometry, and reversibility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zeno, Wade F.; Rystov, Alice; Sasaki, Darryl Y.; Risbud, Subhash H.; Longo, Marjorie L.

    2016-04-20

    In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu2+, chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domains ofmore » bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10–22 to 1.5 × 10–20 J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. Furthermore, the mixing process was reversible, with

  6. Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Puretzky, Alexander A.; Liang, Liangbo; Li, Xufan; Xiao, Kai; Sumpter, Bobby G.; Meunier, Vincent; Geohegan, David B.

    2016-01-14

    Unique twisted bilayers of MoSe2 with multiple stacking orientations and interlayer couplings in the narrow range of twist angles, 60 ± 3°, are revealed by low-frequency Raman spectroscopy and theoretical analysis. The slight deviation from 60 allows the concomitant presence of patches featuring all three high-symmetry stacking configurations (2H or AA', AB', A'B) in one unique bilayer system. In this case, the periodic arrangement of the patches and their size strongly depend on the twist angle. Ab initio modeling predicts significant changes in frequencies and intensities of low-frequency modes versus stacking and twist angle. Experimentally, the variable stacking and couplingmore » across the interface is revealed by the appearance of two breathing modes corresponding to the mixture of the high-symmetry stacking configurations and unaligned regions of monolayers. Only one breathing mode is observed outside the narrow range of twist angles. This indicates a stacking transition to unaligned monolayers with mismatched atom registry without the in-plane restoring force required to generate a shear mode. As a result, the variable interlayer coupling and spacing in transition metal dichalcogenide bilayers revealed in this study may provide a new platform for optoelectronic applications of these materials.« less

  7. Importance of Doping and Frustration in Itinerant Fe-doped Cr2Al

    SciTech Connect (OSTI)

    Susner, Michael A; Parker, David S; Safa-Sefat, Athena

    2015-01-01

    We have performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x 0.125 after which point increasing paramagnetic behavior is exhibited. This is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explain that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.

  8. Importance of Doping and Frustration in Itinerant Fe-doped Cr2Al

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Susner, Michael A; Parker, David S; Safa-Sefat, Athena

    2015-01-01

    We have performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x 0.125 after which point increasing paramagnetic behavior is exhibited. This is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculationsmore » explain that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  9. High ZT bismuth-doped perovskite thermoelectrics

    DOE Patents [OSTI]

    Brown-Shaklee, Harlan James

    2016-02-23

    A bismuth-doped perovskite thermoelectric, comprising (Bi.sub.x, La.sub.0.1-x)SrTiO.sub.3, wherein x is between 0.01 and 0.1, can have a high figure-of-merit, ZT.

  10. Strong exciton-photon coupling with colloidal quantum dots in a high-Q bilayer microcavity

    SciTech Connect (OSTI)

    Giebink, Noel C; Wiederrecht, Gary P.; Wasielewski, Michael R

    2011-01-01

    We demonstrate evanescently coupled bilayer microcavities with Q -factors exceeding 250 fabricated by a simple spin-coating process. The cavity architecture consists of a slab waveguide lying upon a low refractive index spacer layer supported by a glass substrate. For a lossless guide layer, the cavity Q depends only on the thickness of the low index spacer and in principle can reach arbitrarily high values. We demonstrate the versatility of this approach by constructing cavities with a guide layer incorporating CdSe/ZnS core/shell quantum dots, where we observe strong coupling and hybridization between the 1S(e)-1S{sub 3/2} (h) and 1S(e)-2S{sub 3/2} (h) exciton states mediated by the cavity photon. This technique greatly simplifies the fabrication of high-Q planar microcavities for organic and inorganic quantum dot thin films and opens up new opportunities for the study of nonlinear optical phenomena in these materials.

  11. Sandwich beam model for free vibration analysis of bilayer graphene nanoribbons with interlayer shear effect

    SciTech Connect (OSTI)

    Nazemnezhad, Reza E-mail: rnazemnezhad@du.ac.ir; Shokrollahi, Hassan; Hosseini-Hashemi, Shahrokh

    2014-05-07

    In this study, sandwich beam model (SM) is proposed for free vibration analysis of bilayer graphene nanoribbons (BLGNRs) with interlayer shear effect. This model also takes into account the intralayer (in-plane) stretch of graphene nanoribbons. The molecular dynamics (MD) simulations using the software LAMMPS and Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential are done to validate the accuracy of the sandwich model results. The MD simulation results include the two first frequencies of cantilever BLGNRs with different lengths and two interlayer shear moduli, i.e., 0.25 and 4.6 GPa. These two interlayer shear moduli, 0.25 and 4.6 GPa, can be obtained by sliding a small flake of graphene on a large graphene substrate when the parameter of E-LJ term in AIREBO potential, epsilon-CC, is set to be 2.84 and 45.44 meV, respectively. The SM results for a wide range of bending rigidity values show that the proposed model, i.e., the SM, predicts much better than the previous beam model in which the intralayer stretch is ignored. In addition, it is observed that the model can properly predict the natural frequencies of BLGNRs for various values of the bending rigidity and the interlayer shear modulus.

  12. Neutron scattering from myelin revisited: bilayer asymmetry and water-exchange kinetics

    SciTech Connect (OSTI)

    Denninger, Andrew R. [Boston College, Chestnut Hill, MA 02467 (United States); Dem, Bruno; Cristiglio, Viviana [Institut LaueLangevin (ILL), CS 20156, F-38042 Grenoble CEDEX 9 (France); LeDuc, Graldine [European Synchrotron Radiation Facility (ESRF), CS 40220, F-38043 Grenoble CEDEX 9 (France); Feller, W. Bruce [NOVA Scientific Inc., Sturbridge, MA 01566 (United States); Kirschner, Daniel A., E-mail: kirschnd@bc.edu [Boston College, Chestnut Hill, MA 02467 (United States)

    2014-12-01

    The structure of internodal myelin in the rodent central and peripheral nervous systems has been determined using neutron diffraction. The kinetics of water exchange in these tissues is also described. Rapid nerve conduction in the central and peripheral nervous systems (CNS and PNS, respectively) of higher vertebrates is brought about by the ensheathment of axons with myelin, a lipid-rich, multilamellar assembly of membranes. The ability of myelin to electrically insulate depends on the regular stacking of these plasma membranes and on the presence of a number of specialized membrane-protein assemblies in the sheath, including the radial component, SchmidtLanterman incisures and the axoglial junctions of the paranodal loops. The disruption of this fine-structure is the basis for many demyelinating neuropathies in the CNS and PNS. Understanding the processes that govern myelin biogenesis, maintenance and destabilization requires knowledge of myelin structure; however, the tight packing of internodal myelin and the complexity of its junctional specializations make myelin a challenging target for comprehensive structural analysis. This paper describes an examination of myelin from the CNS and PNS using neutron diffraction. This investigation revealed the dimensions of the bilayers and aqueous spaces of myelin, asymmetry between the cytoplasmic and extracellular leaflets of the membrane, and the distribution of water and exchangeable hydrogen in internodal multilamellar myelin. It also uncovered differences between CNS and PNS myelin in their water-exchange kinetics.

  13. Asymmetric Electron Transport at Monolayer-Bilayer Heterojunctions of Epitaxial Graphene

    SciTech Connect (OSTI)

    Li, An-Ping [ORNL] [ORNL; Clark, Kendal W [ORNL] [ORNL; Zhang, Xiaoguang [ORNL] [ORNL; Gu, Gong [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); He, Guowei [Carnegie Mellon University (CMU)] [Carnegie Mellon University (CMU); Feenstra, Randall [Carnegie Mellon University (CMU)] [Carnegie Mellon University (CMU)

    2014-01-01

    The symmetry of the graphene honeycomb lattice is a key element determining many of graphene s unique electronic properties, such as the linear energy-momentum dispersion and the suppressed backscattering 1,2. However, line defects in large-scale epitaxial graphene films, such as grain boundaries, edges, surface steps, and changes in layer thickness, often break the sublatttice symmetry and can impact transport properties of graphene profoundly 3-6. Here we report asymmetric electron transport upon polarity reversal at individual monolayer-bilayer (ML-BL) boundaries in epitaxial graphene on SiC (0001), revealed by scanning tunneling potentiometry. A greater voltage drop is observed when the current flows from BL to ML graphene than in the reverse direction, and the difference remains nearly unchanged with increasing current. This is not a typical nonlinear conductance due to electron transmission through an asymmetric potential. Rather, it indicates the opening of a dynamic energy gap at the Fermi energy due to the Coulomb interaction between the injected nonequilibrium electron density and the pseudospin polarized Friedel oscillation charge density at the boundary. This intriguing heterojunction transport behavior opens a new avenue towards novel quantum functions such as quantum switching.

  14. Adsorption kinetics dictate monolayer self-assembly for both lipid-in and lipid-out approaches to droplet interface bilayer formation

    SciTech Connect (OSTI)

    Venkatesan, Guru A.; Lee, Joonho; Farimani, Amir Barati; Heiranian, Mohammad; Collier, C. Patrick; Narayana, Aluru; Sarles, Stephen A.

    2015-11-10

    The droplet interface bilayer (DIB) is a method to assemble planar lipid bilayer membranes between lipid-coated aqueous droplets and has gained popularity among researchers in many fields. Well-packed lipid monolayer on aqueous dropletoil interfaces is a prerequisite for successfully assembling DIBs. Such monolayers can be achieved by two different techniques: lipid-in, in which phospholipids in the form of liposomes are placed in water, and lipid-out, in which phospholipids are placed in oil as inverse micelles. While both approaches are capable of monolayer assembly needed for bilayer formation, droplet pairs assembled with these two techniques require significantly different incubation periods and exhibit different success rates for bilayer formation. In our study, we combine experimental interfacial tension measurements with molecular dynamics simulations of phospholipids (DPhPC and DOPC) assembled from water and oil origins to understand the differences in kinetics of monolayer formation. With the results from simulations and by using a simplified model to analyze dynamic interfacial tensions, we conclude that, at high lipid concentrations common to DIBs, monolayer formation is simple adsorption controlled for lipid-in technique, whereas it is predominantly adsorption-barrier controlled for the lipid-out technique due to the interaction of interface-bound lipids with lipid structures in the subsurface. The adsorption barrier established in lipid-out technique leads to a prolonged incubation time and lower bilayer formation success rate, proving a good correlation between interfacial tension measurements and bilayer formation. Also, we clarify that advective flow expedites monolayer formation and improves bilayer formation success rate by disrupting lipid structures, rather than enhancing diffusion, in the subsurface and at the interface for lipid-out technique. Additionally, electrical properties of DIBs formed with varying lipid placement and type are

  15. Adsorption kinetics dictate monolayer self-assembly for both lipid-in and lipid-out approaches to droplet interface bilayer formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Venkatesan, Guru A.; Lee, Joonho; Farimani, Amir Barati; Heiranian, Mohammad; Collier, C. Patrick; Narayana, Aluru; Sarles, Stephen A.

    2015-11-10

    The droplet interface bilayer (DIB) is a method to assemble planar lipid bilayer membranes between lipid-coated aqueous droplets and has gained popularity among researchers in many fields. Well-packed lipid monolayer on aqueous droplet–oil interfaces is a prerequisite for successfully assembling DIBs. Such monolayers can be achieved by two different techniques: “lipid-in”, in which phospholipids in the form of liposomes are placed in water, and “lipid-out”, in which phospholipids are placed in oil as inverse micelles. While both approaches are capable of monolayer assembly needed for bilayer formation, droplet pairs assembled with these two techniques require significantly different incubation periods andmore » exhibit different success rates for bilayer formation. In our study, we combine experimental interfacial tension measurements with molecular dynamics simulations of phospholipids (DPhPC and DOPC) assembled from water and oil origins to understand the differences in kinetics of monolayer formation. With the results from simulations and by using a simplified model to analyze dynamic interfacial tensions, we conclude that, at high lipid concentrations common to DIBs, monolayer formation is simple adsorption controlled for lipid-in technique, whereas it is predominantly adsorption-barrier controlled for the lipid-out technique due to the interaction of interface-bound lipids with lipid structures in the subsurface. The adsorption barrier established in lipid-out technique leads to a prolonged incubation time and lower bilayer formation success rate, proving a good correlation between interfacial tension measurements and bilayer formation. Also, we clarify that advective flow expedites monolayer formation and improves bilayer formation success rate by disrupting lipid structures, rather than enhancing diffusion, in the subsurface and at the interface for lipid-out technique. Additionally, electrical properties of DIBs formed with varying lipid

  16. Nitrogen-doped zirconia: A comparison with cation stabilized zirconia

    SciTech Connect (OSTI)

    Lee, Jong-Sook . E-mail: jong-sook.lee@fkf.mpg.de; Lerch, Martin; Maier, Joachim

    2006-01-15

    The conductivity behavior of nitrogen-doped zirconia is compared with that of zirconia doped with lower-valent cations and discussed in the framework of defect-defect interactions. While nominally introducing the same number of vacancies as yttrium, nitrogen dopants introduced in the anion sublattice of zirconia lead to substantially different defect kinetics and energetics. Compared to the equivalent yttrium doping nitrogen doping in the Y-Zr-O-N system substantially increases the activation energy and correspondingly decreases the conductivity at temperatures below 500{sup -}bar C in the vacancy range below 4mol%. The comparison of N-doped zirconia and zirconia systems doped with size-matched cation stabilizers, such as Sc, Yb and Y, shows that elastically driven vacancy-vacancy ordering interactions can phenomenologically account for the temperature- and composition-dependence. It is striking that materials with superior high-temperature conductivities due to weak dopant-vacancy interactions undergo severe deterioration at low temperature due to the strong vacancy-ordering. The analysis also explains qualitatively similar effects of Y co-doping in Yb-, Sc-, and N-doped zirconia. Small amount of Y in N-doped zirconia as well as in Sc-doped zirconia appears to hinder the formation of the long-range ordered phase and thus enhance the conductivity substantially.

  17. Highly Emissive Transition Metal Ion Doped Semiconducting Nanocrystals

    SciTech Connect (OSTI)

    Jana, Santanu; Srivastava, Bhupendra B.; Pradhan, Narayan; Sarma, D. D.

    2011-07-15

    Doped semiconductor nanocrystals (d-dots), specifically ones not containing heavy metal ions, have the potential to become a class of mainstream emissive materials. Mn- and Cu-doped ZnSe or ZnS d-dots can cover an emission window similar to that of the current workhorse of intrinsic quantum dot (q-dots) emitters, CdSe nanocrystals. We synthesized high quality stable Cu doped ZnSe in nonpolar as well as polar solvent. The emission intensity of these doped nanocrystals is found stable for months under UV irradiation, after different multifunctional ligand which is important for any biological detection. We have also synthesized the stable Mn doped ZnS in nonpolar solvent more than 50% QY.. The doped nanocrystals are characterized by TEM, XRD, EPR and ICP analysis.

  18. Tungsten-doped thin film materials

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  19. Electric field-controlled magnetization in bilayered magnetic films for magnetoelectric memory

    SciTech Connect (OSTI)

    Yang, Wei-Gang; Morley, Nicola A.; Rainforth, W. Mark

    2015-07-21

    Bilayered magnetic films (Co{sub 50}Fe{sub 50} (CoFe)/Metglas) were RF sputtered on both (001)-oriented and (011)-oriented PMN-PT (lead magnesium niobate-lead titanate) substrates. Electric field-controlled magnetization changes were observed in all these samples: 65 nm CoFe/24 nm Metglas/(001) PMN-PT, 65 nm CoFe/24 nm Metglas/(011) PMN-PT, and 30 nm CoFe/12 nm Metglas/(011) PMN-PT. The maximum magnetic remanence ratio change (ΔM{sub r}/M{sub s}) was 46% for CoFe/Metglas/(001) PMN-PT. In this heterostructure, the electric-field created two new non-volatile switchable remanence states and the as-grown remanence state was altered permanently. High-resolution transmission electron microscopy images show a sharp and smooth interface between Metglas and substrate and conversely a rougher interface was observed between Metglas and CoFe films. In the 30 nm CoFe/12 nm Metglas/(011) PMN-PT sample, a large ΔM{sub r}/M{sub s} of 80% along the [100] direction was measured, while the ΔM{sub r}/M{sub s} along the [01-1] direction was 60% at the applied electric field of 5 kV/cm, corresponding to a giant magnetoelectric coupling constant α = μ{sub o}ΔM{sub r}/E = 2.9 × 10{sup −6} s/m.

  20. Aluminum doped zinc oxide for organic photovoltaics

    SciTech Connect (OSTI)

    Murdoch, G. B.; Hinds, S.; Sargent, E. H.; Tsang, S. W.; Mordoukhovski, L.; Lu, Z. H.

    2009-05-25

    Aluminum doped zinc oxide (AZO) was grown via magnetron sputtering as a low-cost alternative to indium tin oxide (ITO) for organic photovoltaics (OPVs). Postdeposition ozone treatment resulted in devices with lower series resistance, increased open-circuit voltage, and power conversion efficiency double that of devices fabricated on untreated AZO. Furthermore, cells fabricated using ozone treated AZO and standard ITO displayed comparable performance.

  1. Aluminum-doped Zinc Oxide Nanoink

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2014-08-15

    Scientists at Berkeley Lab have developed a method for fabricating conductive aluminum-doped zinc oxide (AZO) nanocrystals that provide a lower cost, less toxic, earth-abundant alternative to the widely used transparent conductive oxide (TCO) indium tin oxide while offering comparable optical and electronic properties. TCOs are used in devices such as flat screen displays, photovoltaic cells, photochromic windows, chemical sensors, and biosensors....

  2. Substrate and method for the formation of continuous magnesium diboride and doped magnesium diboride wire

    DOE Patents [OSTI]

    Suplinskas, Raymond J.; Finnemore, Douglas; Bud'ko, Serquei; Canfield, Paul

    2007-11-13

    A chemically doped boron coating is applied by chemical vapor deposition to a silicon carbide fiber and the coated fiber then is exposed to magnesium vapor to convert the doped boron to doped magnesium diboride and a resultant superconductor.

  3. Acid Doped Membranes for High Temperature PEMFC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acid Doped Membranes for High Temperature PEMFC Acid Doped Membranes for High Temperature PEMFC Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA. pemfc_danish.pdf (641.12 KB) More Documents & Publications Membrane Development for Medium and High Temperature PEMFC in Europe (Presentation) PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update CARISMA: A Networking Project for High

  4. Development of photocatalyst by combined nitrogen and yttrium doping

    SciTech Connect (OSTI)

    Khan, Matiullah; Cao, Wenbin

    2014-01-01

    Graphical abstract: The simulated compensated YN{sub SUB} co-doped TiO{sub 2} model can reasonably explain the experimental observations. Calculation results show that substitutional Y at Ti sites and substitutional N at O sites with an oxygen vacancy give stable configuration, reduced band gap, better visible light absorption and enhance separations of photoexcited charge carriers. The experimental observations confirmed the theoretical findings. - Highlights: (Y, N) codoped TiO{sub 2} was synthesized by mild one pot hydrothermal method. The Y doping concentration was varied from 0.01 to 1.38 at%. 0.05% (Y, N) codoped TiO{sub 2} shows enhanced visible light photocatalytic activity. Compensated and noncompensated ab-initio calculations were performed. Calculation results reasonably explained the experimental findings. - Abstract: Titanium dioxide co-doped with yttrium and nitrogen with different yttrium doping concentration has been synthesized by mild one pot hydrothermal method without any post calcination for crystallization. Irrespective of the yttrium doping concentration, all the synthesized samples were composed of pure anatase phase with good crystallinity. And the synthesized co-doped samples have spherical morphology with uniform particle size distribution. The absorption edge of the co-doped TiO{sub 2} was shifted toward visible light region depicting that the intrinsic band gap of TiO{sub 2} was affected by the co-doping. Among the different samples, the co-doped sample with 0.05% yttrium doping concentration exhibits enhanced visible light photocatalytic activity by degradation of methylene blue in aqueous solution. Compensated and non-compensated yttriumnitrogen co-doped TiO{sub 2} models were simulated using density functional theory to explain the experimental findings. The calculation results show that the compensated yttriumnitrogen co-doped TiO{sub 2} model may reasonably explain the experimental observations due to its stable

  5. Lanthanide doped strontium-barium cesium halide scintillators

    DOE Patents [OSTI]

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  6. Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption...

    Office of Scientific and Technical Information (OSTI)

    of High-Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries Citation Details In-Document Search Title: Nitrogen-Doped Mesoporous Carbon ...

  7. Theoretical analysis of uranium-doped thorium dioxide: Introduction...

    Office of Scientific and Technical Information (OSTI)

    polarization Citation Details In-Document Search Title: Theoretical analysis of uranium-doped thorium dioxide: Introduction of a thoria force field with explicit polarization ...

  8. Controlling octahedral rotations in a perovskite via strain doping...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Controlling octahedral rotations in a perovskite via strain doping Citation Details In-Document Search ... Type: Accepted Manuscript Journal Name: Scientific Reports ...

  9. Moderate Doping Leads to High Performance of Semiconductor/Insulator...

    Office of Scientific and Technical Information (OSTI)

    Title: Moderate Doping Leads to High Performance of SemiconductorInsulator Polymer Blend Transistors Authors: Lu, Guanghao ; Blakesley, James ; Himmelberger, Scott ; Pingel, ...

  10. Chemical Doping Enhances Electronic Transport in Networks of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 12, 2015, Research Highlights Chemical Doping Enhances Electronic Transport in ... Here, it is shown that upon chemical oxidation, hexabenzocoronenes (HBCs) enhance charge ...

  11. Lithium Salt-doped, Gelled Polymer Electrolyte with a Nanoporous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Lithium Salt-doped, Gelled Polymer Electrolyte with a ... electrolyte material for use in lithium ion batteries that exhibits better ion ...

  12. Lithium/Sulfur Batteries Based on Doped Mesoporous Carbon - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of doped mesoporous carbon and elemental sulfur at a temperature inside a stainless steel vessel, which was used in lithiumsulfur batteries that were tested in ...

  13. Glued Langmuir-Blodgett bilayers from calix[n]arenes: Influence of calix[n]arene size on ionic cross-linking, film thickness, and permeation selectivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Minghui; Janout, Vaclav; Regen, Steven L.

    2010-07-12

    A homologous series of calix[4]arene-, calix[5]arene- and calix[6]arene-based surfactants, containing pendant trimethylammonium and n-hexadecyl groups, have been compared with respect to their ability (i) to undergo ionic crosslinking at the air/water interface, (ii) to incorporate poly(4-styrenesulfonate) (PSS) in Langmuir-Blodgett (LB) bilayers, and (iii) to act as barriers towards He, N2 and CO2 when assembled into crosslinked LB bilayers. As these calix[n]arenes increase in size, their ability to undergo ionic crosslinking has been found to increase, the thickness of corresponding glued LB bilayers has been found to decrease, and their barrier properties and permeation selectivities have been found to increase. Inmore » conclusion, the likely origin for these effects and the probable mechanism by which He, N2 and CO2 cross these ultrathin films are discussed.« less

  14. Doping of ZnO nanowires using phosphorus diffusion from a spin-on doped glass source

    SciTech Connect (OSTI)

    Bocheux, A.; Robin, I. C.; Bonaimé, J.; Hyot, B.; Feuillet, G.; Kolobov, A. V.; Fons, P.; Mitrofanov, K. V.; Tominaga, J.; Tamenori, Y.

    2014-05-21

    In this article, we report on ZnO nanowires that were phosphorus doped using a spin on dopant glass deposition and diffusion method. Photoluminescence measurements suggest that this process yields p-doped ZnO. The spatial location of P atoms was studied using x-ray near-edge absorption structure spectroscopy and it is concluded that the doping is amphoteric with P atoms located on both Zn and O sites.

  15. Doping evolution of the electronic structure in the single-layer...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Doping evolution of the electronic structure in the single-layer cuprates ... Citation Details In-Document Search Title: Doping evolution of the electronic structure in ...

  16. Step-edge-induced resistance anisotropy in quasi-free-standing bilayer chemical vapor deposition graphene on SiC

    SciTech Connect (OSTI)

    Ciuk, Tymoteusz [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Cakmakyapan, Semih; Ozbay, Ekmel [Department of Electrical and Electronics Engineering, Department of Physics, Nanotechnology Research Center, Bilkent University, 06800 Bilkent, Ankara (Turkey); Caban, Piotr; Grodecki, Kacper; Pasternak, Iwona; Strupinski, Wlodek, E-mail: wlodek.strupinski@itme.edu.pl [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Krajewska, Aleksandra [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Institute of Optoelectronics, Military University of Technology, Gen. S. Kaliskiego 2, 00-908 Warsaw (Poland); Szmidt, Jan [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland)

    2014-09-28

    The transport properties of quasi-free-standing (QFS) bilayer graphene on SiC depend on a range of scattering mechanisms. Most of them are isotropic in nature. However, the SiC substrate morphology marked by a distinctive pattern of the terraces gives rise to an anisotropy in graphene's sheet resistance, which may be considered an additional scattering mechanism. At a technological level, the growth-preceding in situ etching of the SiC surface promotes step bunching which results in macro steps ~10 nm in height. In this report, we study the qualitative and quantitative effects of SiC steps edges on the resistance of epitaxial graphene grown by chemical vapor deposition. We experimentally determine the value of step edge resistivity in hydrogen-intercalated QFS-bilayer graphene to be ~190 ??m for step height hS = 10 nm and provide proof that it cannot originate from mechanical deformation of graphene but is likely to arise from lowered carrier concentration in the step area. Our results are confronted with the previously reported values of the step edge resistivity in monolayer graphene over SiC atomic steps. In our analysis, we focus on large-scale, statistical properties to foster the scalable technology of industrial graphene for electronics and sensor applications.

  17. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOE Patents [OSTI]

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  18. Nitrogen-Doped Graphene and its Application in Electrochemical Biosensing

    SciTech Connect (OSTI)

    Wang, Ying; Shao, Yuyan; Matson, Dean W.; Li, Jinghong; Lin, Yuehe

    2010-05-05

    Chemical doping with foreign atoms is an effective method to intrinsically modify the properties of host materials. Among them, nitrogen (N) doping plays a critical role in regulating the electronic properties of carbon materials. Recently, graphene as a true 2-dimensional carbon material has shown fascinating applications in bioelectronics and biosensors. In this paper, we report a facile strategy to prepare N-doped graphene by using plasma treatment of pristine graphene synthesized via chemical method. Meanwhile, a possible schematic diagram has been proposed to detail the structure of N-doped graphene. By controlling the exposure time, N percentage in host grapheme can be regulated ranging from 0.11% to 1.35%. Moreover, the as prepared N-doped graphene has displayed high electrocatalytic activity to hydrogen peroxide and further been used for glucose biosensing with concentration as low as 0.01 mM in the presence of interferences.

  19. Fluorescence properties of dye doped mesoporous silica

    SciTech Connect (OSTI)

    Carbonaro, Carlo M. Corpino, Riccardo Ricci, Pier Carlo Chiriu, Daniele; Cannas, Carla

    2014-10-21

    In this paper we present a review of the main results we obtained studying the emission properties of organic-inorganic hybrids obtained combining mesoporous silica and Xantene dyes, in particular the standard reference Rhodamine 6G. The purpose of the review is to show the possibility to efficiently 'dope' the transparent inorganic porous matrix to obtain promising systems for photonic and biomedical applications. The strategies to solve the concentration effect and the leaching phenomenon are discussed within the framework of the single exciton theory.

  20. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adams, Peter G.; Swingle, Kirstie L.; Paxton, Walter F.; Nogan, John J.; Stromberg, Loreen R.; Firestone, Millicent A.; Mukundan, Harshini; Montaño, Gabriel A.

    2015-05-27

    Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when usedmore » in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.« less

  1. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

    SciTech Connect (OSTI)

    Adams, Peter G.; Swingle, Kirstie L.; Paxton, Walter F.; Nogan, John J.; Stromberg, Loreen R.; Firestone, Millicent A.; Mukundan, Harshini; Montaño, Gabriel A.

    2015-05-27

    Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.

  2. In-situ high resolution transmission electron microscopy observation of silicon nanocrystal nucleation in a SiO{sub 2} bilayered matrix

    SciTech Connect (OSTI)

    Yang, T. C.-J. Wu, L.; Lin, Z.; Jia, X.; Puthen-Veettil, B.; Zhang, T.; Conibeer, G.; Perez-Wurfl, I.; Kauffmann, Y.; Rothschild, A.

    2014-08-04

    Solid-state nucleation of Si nanocrystals in a SiO{sub 2} bilayered matrix was observed at temperatures as low as 450?C. This was achieved by aberration corrected high-resolution transmission electron microscopy (HRTEM) with real-time in-situ heating up to 600?C. This technique is a valuable characterization tool especially with the recent interest in Si nanostructures for light emitting devices, non-volatile memories, and third-generation photovoltaics which all typically require a heating step in their fabrication. The control of size, shape, and distribution of the Si nanocrystals are critical for these applications. This experimental study involves in-situ observation of the nucleation of Si nanocrystals in a SiO{sub 2} bilayered matrix fabricated through radio frequency co-sputtering. The results show that the shapes of Si nanocrystals in amorphous SiO{sub 2} bilayered matrices are irregular and not spherical, in contrast to many claims in the literature. Furthermore, the Si nanocrystals are well confined within their layers by the amorphous SiO{sub 2}. This study demonstrates the potential of in-situ HRTEM as a tool to observe the real time nucleation of Si nanocrystals in a SiO{sub 2} bilayered matrix. Furthermore, ideas for improvements on this in-situ heating HRTEM technique are discussed.

  3. N-doping of organic semiconductors by bis-metallosandwich compounds

    DOE Patents [OSTI]

    Barlow, Stephen; Qi, Yabing; Kahn, Antoine; Marder, Seth; Kim, Sang Bok; Mohapatra, Swagat K.; Guo, Song

    2016-01-05

    The various inventions disclosed, described, and/or claimed herein relate to the field of methods for n-doping organic semiconductors with certain bis-metallosandwich compounds, the doped compositions produced, and the uses of the doped compositions in organic electronic devices. Metals can be manganese, rhenium, iron, ruthenium, osmium, rhodium, or iridium. Stable and efficient doping can be achieved.

  4. Color stable manganese-doped phosphors

    DOE Patents [OSTI]

    Lyons, Robert Joseph; Setlur, Anant Achyut; Deshpande, Anirudha Rajendra; Grigorov, Ljudmil Slavchev

    2012-08-28

    A process for preparing color stable Mn.sup.+4 doped phosphors includes providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof. A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor composition radiationally coupled to the light source, and which includes a color stable Mn.sup.+4 doped phosphor.

  5. Atomic Resolution in Situ Imaging of a Double-Bilayer Multistep Growth Mode in Gallium Nitride Nanowires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gamalski, A. D.; Tersoff, J.; Stach, E. A.

    2016-04-13

    We study the growth of GaN nanowires from liquid Au–Ga catalysts using environmental transmission electron microscopy. GaN wires grow in either (11¯20) or (11¯00) directions, by the addition of {11¯00} double bilayers via step flow with multiple steps. Step-train growth is not typically seen with liquid catalysts, and we suggest that it results from low step mobility related to the unusual double-height step structure. Finally, the results here illustrate the surprising dynamics of catalytic GaN wire growth at the nanoscale and highlight striking differences between the growth of GaN and other III–V semiconductor nanowires.

  6. Enhanced Photocatalytic Property of Cu Doped Sodium Niobate

    SciTech Connect (OSTI)

    Xu, Jianbin; Zhang, Feng; Sun, Bingyang; Du, Yingge; Li, Guoqiang; Zhang, Weifeng

    2015-09-29

    We investigate the photocatalytic activity of Cu doped NaNbO3 powder sample prepared by the modified polymer complex method. The photocatalytic activity of hydrogen evolution from methanol aqueous solution was improved by Cu 2.6 at% doping. The photocatalytic degradation of rhodamine B under visible light irradiation was enhanced in comparison with pure NaNbO3. Cu inctroduction improved the adsorption property of NaNbO3, judging from the Fourier transform infrared spectra. Moreover, the ultraviolet light excitation in Cu doped sample was found to accelerate the mineralized process.

  7. Self-doped molecular composite battery electrolytes

    DOE Patents [OSTI]

    Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.

    2003-04-08

    This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.

  8. Engineering shallow spins in diamond with nitrogen delta-doping...

    Office of Scientific and Technical Information (OSTI)

    Title: Engineering shallow spins in diamond with nitrogen delta-doping We demonstrate nanometer-precision depth control of nitrogen-vacancy (NV) center creation near the surface of ...

  9. Fluorine compounds for doping conductive oxide thin films

    DOE Patents [OSTI]

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  10. Evidence for charge Kondo effect in superconducting Tl-doped...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Evidence for charge Kondo effect in superconducting Tl-doped PbTe We report ... Report Number(s): SLAC-PUB-13857 Journal ID: ISSN 0031-9007; ...

  11. Method of enhanced lithiation of doped silicon carbide via high...

    Office of Scientific and Technical Information (OSTI)

    A method for enhancing the lithium-ion capacity of a doped silicon carbide is disclosed. The method utilizes heat treating the silicon carbide in an inert atmosphere. Also ...

  12. Flat Ge-doped optical fibres for food irradiation dosimetry

    SciTech Connect (OSTI)

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.

    2015-04-24

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.

  13. Doped carbon nanostructure field emitter arrays for infrared imaging

    DOE Patents [OSTI]

    Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  14. Aluminum-doped Zinc Oxide Nanoink - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Aluminum-doped Zinc Oxide Nanoink Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Scientists at Berkeley Lab have developed a method for fabricating conductive aluminum-doped zinc oxide (AZO) nanocrystals that provide a lower cost, less toxic, earth-abundant alternative

  15. Trench process and structure for backside contact solar cells with polysilicon doped regions

    DOE Patents [OSTI]

    De Ceuster, Denis; Cousins, Peter John; Smith, David D

    2013-05-28

    A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.

  16. Trench process and structure for backside contact solar cells with polysilicon doped regions

    DOE Patents [OSTI]

    De Ceuster, Denis; Cousins, Peter John; Smith, David D

    2014-03-18

    A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.

  17. Trench process and structure for backside contact solar cells with polysilicon doped regions

    DOE Patents [OSTI]

    De Ceuster, Denis; Cousins, Peter John; Smith, David D.

    2010-12-14

    A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.

  18. Magnetism and electronic structure of (001)- and (111)-oriented LaTiO{sub 3} bilayers sandwiched in LaScO{sub 3} barriers

    SciTech Connect (OSTI)

    Weng, Yakui; Dong, Shuai

    2015-05-07

    In this study, the magnetism and electronic structure of LaTiO{sub 3} bilayers along both the (001) and (111) orientations are calculated using the density functional theory. The band insulator LaScO{sub 3} is chosen as the barrier layer and substrate to obtain the isolating LaTiO{sub 3} bilayer. For both the (001)- and (111)-oriented cases, LaTiO{sub 3} demonstrates the G-type antiferromagnetism as the ground state, similar to the bulk material. However, the electronic structure is significantly changed. The occupied bands of Ti are much narrower in the (111) case, giving a nearly flat band. As a result, the exchange coupling between nearest-neighbor Ti ions is reformed in these superlattices, which will affect the Néel temperature significantly.

  19. Study of structure of the TiO{sub 2}–MoO{sub 3} bilayer films by Raman spectroscopy

    SciTech Connect (OSTI)

    Santos, Elias de Barros; Sigoli, Fernando Aparecido; Mazali, Italo Odone

    2014-12-15

    Highlights: • TiO{sub 2}–MoO{sub 3} bilayer thin films were easily prepared by dip-coating technique. • Ti and Mo metallo-organic compounds were used as source of its respective oxide. • TiO{sub 2} in anatase phase and orthorhombic phase of α-MoO{sub 3} were identified. • The bilayer structure was investigated by Raman spectroscopy. - Abstract: In this work, TiO{sub 2}–MoO{sub 3} films were easily prepared by dip-coating technique and metallo-organic decomposition process (MOD). Raman analyses indicate the formation of TiO{sub 2} in anatase phase and orthorhombic phase of α-MoO{sub 3}. It was observed that the Raman bands intensities attributed to TiO{sub 2} and MoO{sub 3} oxides were dependent on the number of decomposition–deposition cycles (DDC). The different number of DDC generates films with different thicknesses and the Raman signal was sensitive to this variation. Raman analyses provided qualitative information about the bilayer structure of the bi-component TiO{sub 2}–MoO{sub 3} films, which was confirmed by scanning electron microscopy. In this direction, the dip-coating technique and MOD process can be an efficient strategy to facile preparation of many samples to be used in applications.

  20. Color stable manganese-doped phosphors

    DOE Patents [OSTI]

    Lyons, Robert Joseph; Setlur, Anant Achyut; Deshpande, Anirundha Rajendra; Grigorov, Ljudmil Slavchev

    2014-04-29

    A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor material radiationally coupled to the light source. The phosphor material includes a color-stable Mn.sup.+4 doped phosphor prepared by a process including providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof.

  1. Local structures of copper-doped ZnO films (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Local structures of copper-doped ZnO films Citation Details In-Document Search Title: Local structures of copper-doped ZnO films Authors: Ma, Q. ; Buchholz, D.B. ; Chang, R.P.H. ...

  2. Pulsed laser deposition of Mn doped CdSe quantum dots for improved...

    Office of Scientific and Technical Information (OSTI)

    Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance Citation Details In-Document Search Title: Pulsed laser deposition of Mn doped CdSe ...

  3. Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz...

    Office of Scientific and Technical Information (OSTI)

    Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz mixed metal oxides Citation Details In-Document Search Title: Conversion of ethanol to 1,3-butadiene over Na doped ...

  4. Ge doped GaN with controllable high carrier concentration for...

    Office of Scientific and Technical Information (OSTI)

    Ge doped GaN with controllable high carrier concentration for plasmonic applications Citation Details In-Document Search Title: Ge doped GaN with controllable high carrier...

  5. Visible Light Absorption of N-Doped TiO2 Rutile Using (LR/RT...

    Office of Scientific and Technical Information (OSTI)

    N-Doped TiO2 Rutile Using (LRRT)-TDDFT and Active Space EOMCCSD Calculations Citation Details In-Document Search Title: Visible Light Absorption of N-Doped TiO2 Rutile Using ...

  6. Ammonia Sensors Based on Doped-Sol-Gel-Tipped Optical Fibers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors Based on Doped-Sol-Gel-Tipped Optical Fibers for Catalyst System Diagnostics Ammonia Sensors Based on Doped-Sol-Gel-Tipped Optical Fibers for Catalyst System Diagnostics ...

  7. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    SciTech Connect (OSTI)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S.

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  8. Energy levels scheme simulation of divalent cobalt doped bismuth germanate

    SciTech Connect (OSTI)

    Andreici, Emiliana-Laura; Petkova, Petya; Avram, Nicolae M.

    2015-12-07

    The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of doped BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.

  9. Electron-doping of graphene-based devices by hydrazine

    SciTech Connect (OSTI)

    Feng, Tingting; Xie, Dan; Wang, Dongxia; Wen, Lang; Wu, Mengqiang

    2014-12-14

    A facile and effective technique to tune the electronic properties of graphene is essential to facilitate the flexibility of graphene-based device performances. Here, the use of hydrazine as a solution-processable and effective n-type dopant for graphene is described. By dropping hydrazine solutions at different concentrations on a graphene surface, the Dirac point of graphene can be remarkably tuned. The transport behavior of graphene can be changed from p-type to n-type accordingly, demonstrating the controllable and adjustable doping effect of the hydrazine solutions. Accompanying the Dirac point shift is an enhanced hysteretic behavior of the graphene conductance, indicating an increasing trap state density induced by the hydrazine adsorbates. The electron-doping of graphene by the hydrazine solutions can be additionally confirmed with graphene/p-type silicon heterojunctions. The decrease of the junction current after the hydrazine treatment demonstrates an increase of the junction barrier between graphene and silicon, which is essentially due to the electron-doping of graphene and the resultant upshift of the Fermi level. Finally, partially doped graphene is realized and its electrical property is studied to demonstrate the potential of the hydrazine solutions to selectively electron-doping graphene for future electronic applications.

  10. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    SciTech Connect (OSTI)

    Jakobtorweihen, S. Ingram, T.; Gerlach, T.; Smirnova, I.; Zuniga, A. Chaides; Keil, F. J.

    2014-07-28

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realistic solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.

  11. Magneto-transport of an electron bilayer system in an undoped Si/SiGe double-quantum-well heterostructure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Laroche, Dominique; Huang, ShiHsien; Nielsen, Erik; Liu, Chee Wee; Li, Jiun -Yun; Lu, Tzu -Ming

    2015-04-08

    We report the design, the fabrication, and the magneto-transport study of an electron bilayer system embedded in an undoped Si/SiGe double-quantum-well heterostructure. Additionally, the combined Hall densities (n Hall ) ranging from 2.6 × 1010 cm-2 to 2.7 × 1011 cm-2 were achieved, yielding a maximal combined Hall mobility (μHall ) of 7.7 × 105 cm2/(V • s) at the highest density. Simultaneous electron population of both quantum wells is clearly observed through a Hall mobility drop as the Hall density is increased to nHall > 3.3 × 1010 cm-2, consistent with Schrödinger-Poisson simulations. Furthermore, the integer and fractional quantummore » Hall effects are observed in the device, and single-layer behavior is observed when both layers have comparable densities, either due to spontaneous interlayer coherence or to the symmetric-antisymmetric gap.« less

  12. Temperature dependent exchange bias training effect in single-crystalline BiFeO{sub 3}/Co bilayers

    SciTech Connect (OSTI)

    He, M. C.; You, B.; Tu, H. Q.; Rui, W. B.; Gao, Y.; Zhang, Y. Q.; Sheng, Y.; Xu, Q. Y. E-mail: jdu@nju.edu.cn; Xu, Y. B.; Du, J. E-mail: jdu@nju.edu.cn

    2015-05-07

    Single-crystalline BiFeO{sub 3} (BFO)/Co bilayers were prepared by combined pulsed laser deposition and magnetron sputtering on (001) SrTiO{sub 3} substrates. Exchange bias (EB) and accompanying training effect have been studied as a function of temperature (T) between 5 K and 300 K. A non-monotonic exchange field variation with sharp increase below 100 K has been observed. In the meanwhile, strong training effect was recorded when T < 100 K and it weakens monotonically with increasing T up to 300 K. These temperature dependent EB and training effect may be caused by the uncompensated spins in both the interfacial spin-glass (SG) phase at low temperature and the antiferromagnetic BFO layer at higher temperature. The low temperature EB training results can be well fitted by a modified Binek's model considering asymmetric changes of the pinning SG spins at the descending and the ascending branches.

  13. Two dimensional electron transport in modulation-doped In{sub...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; ALUMINIUM ARSENIDES; ANTIMONIDES; COMPARATIVE EVALUATIONS; DOPED MATERIALS;...

  14. The Synthesis of Ag-Doped Mesoporous TiO2

    SciTech Connect (OSTI)

    Li, Xiaohong S.; Fryxell, Glen E.; Wang, Chong M.; Engelhard, Mark H.

    2008-04-15

    Ag-doped mesoporous titanium oxide was prepared using non-ionic surfactants and easily handled titanium precursors, under mild reaction conditions. In contrast to the stabilizing effect of Cd-doping on mesoporous TiO2, Ag-doping was found to significantly destabilize the mesoporous structure.

  15. Effect of Doping on Surface Reactivity and Conduction Mechanism in Sm-doped CeO2 Thin Films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Nan; Belianinov, Alex; Strelcov, Evgheni; Tebano, Antonello; Daniele, Di Castro; Schlueter, Christoph; Lee, Tien-Lin; Baddorf, Arthur P.; Wisinger, Nina; Jesse, Stephen; et al

    2014-11-21

    Scanning probe microscopy measurements show irreversible surface electrochemistry in Sm-doped CeO2 thin films, which depends on humidity, temperature and doping concentration. A systematic study by electrochemical strain microscopy (ESM) in samples with two different Sm content and in several working conditions allows disclosing the microscopic mechanism underlying the difference in water adsorption and splitting with subsequent proton liberation. We measure the behavior of the hysteresis loops by changing temperature and humidity, both in standard ESM configuration and using the first order reversal curve (FORC) method. Complementing our study with spectroscopic measurements by hard x-ray photoemission spectroscopy we find that watermore » incorporation is favored until the doping with Sm is too high to allow the presence of Ce3+. The influence of doping on the surface reactivity and conduction mechanism clearly emerges from all of our experimental results. We find that at lower Sm concentration proton conduction is prevalent, featured by lower activation energy and higher mobility. Defect concentrations determine the type of the prevalent charge carrier in a doping dependent manner.« less

  16. Stable doping of carbon nanotubes via molecular self assembly

    SciTech Connect (OSTI)

    Lee, B.; Chen, Y.; Podzorov, V.; Cook, A.; Zakhidov, A.

    2014-10-14

    We report a novel method for stable doping of carbon nanotubes (CNT) based on methods of molecular self assembly. A conformal growth of a self-assembled monolayer of fluoroalkyl trichloro-silane (FTS) at CNT surfaces results in a strong increase of the sheet conductivity of CNT electrodes by 60–300%, depending on the CNT chirality and composition. The charge carrier mobility of undoped partially aligned CNT films was independently estimated in a field-effect transistor geometry (~100 cm²V⁻¹s⁻¹). The hole density induced by the FTS monolayer in CNT sheets is estimated to be ~1.8 ×10¹⁴cm⁻². We also show that FTS doping of CNT anodes greatly improves the performance of organic solar cells. This large and stable doping effect, easily achieved in large-area samples, makes this approach very attractive for applications of CNTs in transparent and flexible electronics.

  17. Self-limited kinetics of electron doping in correlated oxides

    SciTech Connect (OSTI)

    Chen, Jikun Zhou, You; Jiang, Jun; Shi, Jian; Ramanathan, Shriram; Middey, Srimanta; Chakhalian, Jak; Chen, Nuofu; Chen, Lidong; Shi, Xun; Döbeli, Max

    2015-07-20

    Electron doping by hydrogenation can reversibly modify the electrical properties of complex oxides. We show that in order to realize large, fast, and reversible response to hydrogen, it is important to consider both the electron configuration on the transition metal 3d orbitals, as well as the thermodynamic stability in nickelates. Specifically, large doping-induced resistivity modulations ranging several orders of magnitude change are only observed for rare earth nickelates with small ionic radii on the A-site, in which case both electron correlation effects and the meta-stability of Ni{sup 3+} are important considerations. Charge doping via metastable incorporation of ionic dopants is of relevance to correlated oxide-based devices where advancing approaches to modify the ground state electronic properties is an important problem.

  18. Doping-assisted defect control in compound semiconductors

    DOE Patents [OSTI]

    Specht, Petra; Weber, Eicke R.; Weatherford, Todd Russell

    2006-07-11

    The present invention relates to the production of thin film epilayers of IIIV and other compounds with acceptor doping wherein the acceptor thermally stabilizes the epilayer, stabilize the naturally incorporated native defect population and therewith maintain the epilayer's beneficial properties upon annealing among other advantageous effects. In particular, balanced doping in which the acceptor concentration is similar to (but does not exceed) the antisite defects in the as-grown material is shown to be particularly advantageous in providing thermal stability, high resistivity and ultrashort trapping times. In particular, MBE growth of LT-GaAs epilayers with balanced Be doping is described in detail. The growth conditions greatly enhance the materials reproducibility (that is, the yield in processed devices). Such growth techniques can be transferred to other IIIV materials if the growth conditions are accurately reproduced. Materials produced herein also demonstrate advantages in reproducibility, reliability and radiation hardening.

  19. Doping-assisted defect control in compound semiconductors

    DOE Patents [OSTI]

    Specht, Petra; Weber, Eicke R.; Weatherford, Todd Russell

    2006-07-11

    The present invention relates to the production of thin film epilayers of III–V and other compounds with acceptor doping wherein the acceptor thermally stabilizes the epilayer, stabilize the naturally incorporated native defect population and therewith maintain the epilayer's beneficial properties upon annealing among other advantageous effects. In particular, balanced doping in which the acceptor concentration is similar to (but does not exceed) the antisite defects in the as-grown material is shown to be particularly advantageous in providing thermal stability, high resistivity and ultrashort trapping times. In particular, MBE growth of LT-GaAs epilayers with balanced Be doping is described in detail. The growth conditions greatly enhance the materials reproducibility (that is, the yield in processed devices). Such growth techniques can be transferred to other III–V materials if the growth conditions are accurately reproduced. Materials produced herein also demonstrate advantages in reproducibility, reliability and radiation hardening.

  20. Doping of carbon foams for use in energy storage devices

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

    1994-10-25

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

  1. Doping of carbon foams for use in energy storage devices

    DOE Patents [OSTI]

    Mayer, Steven T.; Pekala, Richard W.; Morrison, Robert L.; Kaschmitter, James L.

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  2. Engineering shallow spins in diamond with nitrogen delta-doping

    SciTech Connect (OSTI)

    Ohno, Kenichi; Joseph Heremans, F.; Bassett, Lee C.; Myers, Bryan A.; Toyli, David M.; Bleszynski Jayich, Ania C.; Palmstrom, Christopher J.; Awschalom, David D.

    2012-08-20

    We demonstrate nanometer-precision depth control of nitrogen-vacancy (NV) center creation near the surface of synthetic diamond using an in situ nitrogen delta-doping technique during plasma-enhanced chemical vapor deposition. Despite their proximity to the surface, doped NV centers with depths (d) ranging from 5 to 100 nm display long spin coherence times, T{sub 2} > 100 {mu}s at d = 5 nm and T{sub 2} > 600 {mu}s at d {>=} 50 nm. The consistently long spin coherence observed in such shallow NV centers enables applications such as atomic-scale external spin sensing and hybrid quantum architectures.

  3. Single-poly EEPROM cell with lightly doped MOS capacitors

    DOE Patents [OSTI]

    Riekels, James E.; Lucking, Thomas B.; Larsen, Bradley J.; Gardner, Gary R.

    2008-05-27

    An Electrically Erasable Programmable Read Only Memory (EEPROM) memory cell and a method of operation are disclosed for creating an EEPROM memory cell in a standard CMOS process. A single polysilicon layer is used in combination with lightly doped MOS capacitors. The lightly doped capacitors employed in the EEPROM memory cell can be asymmetrical in design. Asymmetrical capacitors reduce area. Further capacitance variation caused by inversion can also be reduced by using multiple control capacitors. In addition, the use of multiple tunneling capacitors provides the benefit of customized tunneling paths.

  4. High gain, low noise, fully complementary logic inverter based on bi-layer WSe{sub 2} field effect transistors

    SciTech Connect (OSTI)

    Das, Saptarshi; Roelofs, Andreas; Dubey, Madan

    2014-08-25

    In this article, first, we show that by contact work function engineering, electrostatic doping and proper scaling of both the oxide thickness and the flake thickness, high performance p- and n-type WSe{sub 2} field effect transistors (FETs) can be realized. We report record high drive current of 98??A/?m for the electron conduction and 110 ?A/?m for the hole conduction in Schottky barrier WSe{sub 2} FETs. Then, we combine high performance WSe{sub 2} PFET with WSe{sub 2} NFET in double gated transistor geometry to demonstrate a fully complementary logic inverter. We also show that by adjusting the threshold voltages for the NFET and the PFET, the gain and the noise margin of the inverter can be significantly enhanced. The maximum gain of our chemical doping free WSe{sub 2} inverter was found to be ?25 and the noise margin was close to its ideal value of ?2.5?V for a supply voltage of V{sub DD}?=?5.0?V.

  5. Boron-doped back-surface fields using an aluminum-alloy process

    SciTech Connect (OSTI)

    Gee, J.M.; Bode, M.D.; Silva, B.L.

    1997-10-01

    Boron-doped back-surface fields (BSF`s) have potentially superior performance compared to aluminum-doped BSF`s due to the higher solid solubility of boron compared to aluminum. However, conventional boron diffusions require a long, high temperature step that is both costly and incompatible with many photovoltaic-grade crystalline-silicon materials. We examined a process that uses a relatively low-temperature aluminum-alloy process to obtain a boron-doped BSF by doping the aluminum with boron. In agreement with theoretical expectations, we found that thicker aluminum layers and higher boron doping levels improved the performance of aluminum-alloyed BSF`s.

  6. Effect of indium and antimony doping in SnS single crystals

    SciTech Connect (OSTI)

    Chaki, Sunil H. Chaudhary, Mahesh D.; Deshpande, M.P.

    2015-03-15

    Highlights: • Single crystals growth of pure SnS, indium doped SnS and antimony doped SnS by direct vapour transport (DVT) technique. • Doping of In and Sb occurred in SnS single crystals by cation replacement. • The replacement mechanism ascertained by EDAX, XRD and substantiated by Raman spectra analysis. • Dopants concentration affects the optical energy bandgap. • Doping influences electrical transport properties. - Abstract: Single crystals of pure SnS, indium (In) doped SnS and antimony (Sb) doped SnS were grown by direct vapour transport (DVT) technique. Two doping concentrations of 5% and 15% each were employed for both In and Sb dopants. Thus in total five samples were studied viz., pure SnS (S1), 5% In doped SnS (S2), 15% In doped SnS (S3), 5% Sb doped SnS (S4) and 15% Sb doped SnS (S5). The grown single crystal samples were characterized by evaluating their surface microstructure, stoichiometric composition, crystal structure, Raman spectroscopy, optical and electrical transport properties using appropriate techniques. The d.c. electrical resistivity and thermoelectric power variations with temperature showed semiconducting and p-type nature of the as-grown single crystal samples. The room temperature Hall Effect measurements further substantiated the semiconducting and p-type nature of the as-grown single crystal samples. The obtained results are deliberated in detail.

  7. Tuning nucleation density of metal island with charge doping of graphene substrate

    SciTech Connect (OSTI)

    Ming, Wenmei; Liu, Feng

    2014-08-18

    We have demonstrated that the island nucleation in the initial stage of epitaxial thin film growth can be tuned by substrate surface charge doping. This charge effect was investigated using spin density functional theory calculation in Fe-deposition on graphene substrate as an example. It was found that hole-doping can noticeably increase both Fe-adatom diffusion barrier and Fe inter-adatom repulsion energy occurring at intermediate separation, whereas electron-doping can decrease Fe-adatom diffusion barrier but only slightly modify inter-adatom repulsion energy. Further kinetic Monte Carlo simulation showed that the nucleation island number density can be increased up to six times larger under hole-doping and can be decreased down to ten times smaller under electron doping than that without doping. Our findings indicate a route to tailor the growth morphology of magnetic metal nanostructure for spintronics and plasmonic applications via surface charge doping.

  8. Method of making metal-doped organic foam products

    DOE Patents [OSTI]

    Rinde, James A.

    1981-01-01

    Organic foams having a low density and very small cell size and method for roducing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  9. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    DOE Patents [OSTI]

    Ren, Zhifeng; Chen, Gang; Poudel, Bed; Kumar, Shankar; Wang, Wenzhong; Dresselhaus, Mildred

    2009-09-08

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  10. Spin-phonon coupling in scandium doped gallium ferrite

    SciTech Connect (OSTI)

    Chakraborty, Keka R. E-mail: smyusuf@barc.gov.in; Mukadam, M. D.; Basu, S.; Yusuf, S. M. E-mail: smyusuf@barc.gov.in; Paul, Barnita; Roy, Anushree; Grover, Vinita; Tyagi, A. K.

    2015-03-28

    We embarked on a study of Scandium (Sc) doped (onto Ga site) gallium ferrite (GaFeO{sub 3}) and found remarkable magnetic properties. In both doped as well as parent compounds, there were three types of Fe{sup 3+} ions (depending on the symmetry) with the structure conforming to space group Pna2{sub 1} (Sp. Grp. No. 33) below room temperature down to 5?K. We also found that all Fe{sup 3+} ions occupy octahedral sites, and carry high spin moment. For the higher Sc substituted sample (Ga{sub 1?x}Sc{sub x}FeO{sub 3}: x?=?0.3), a canted magnetic ordered state is found. Spin-phonon coupling below Nel temperature was observed in doped compounds. Our results indicated that Sc doping in octahedral site modifies spin-phonon interactions of the parent compound. The spin-phonon coupling strength was estimated for the first time in these Sc substituted compounds.