National Library of Energy BETA

Sample records for door vent damper

  1. Doors | Open Energy Information

    Open Energy Info (EERE)

    Doors Jump to: navigation, search TODO: Add description List of Doors Incentives Retrieved from "http:en.openei.orgwindex.php?titleDoors&oldid267160...

  2. Doors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Windows, Doors, & Skylights » Doors Doors Although many people choose wood doors for their beauty, insulated steel and fiberglass doors are more energy-efficient. | Photo courtesy of ©iStockphoto/cstewart Although many people choose wood doors for their beauty, insulated steel and fiberglass doors are more energy-efficient. | Photo courtesy of ©iStockphoto/cstewart Your home's exterior doors can contribute significantly to air leakage, and can also waste energy through

  3. Doors | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Although many people choose wood doors for their beauty, insulated steel and fiberglass doors are more energy-efficient. | Photo courtesy of ©iStockphoto/cstewart Although many people choose wood doors for their beauty, insulated steel and fiberglass doors are more energy-efficient. | Photo courtesy of ©iStockphoto/cstewart Your home's exterior doors can contribute significantly to air leakage, and can also waste energy through conduction, especially if it's old, uninsulated, improperly

  4. Vented Capacitor

    DOE Patents [OSTI]

    Brubaker, Michael Allen; Hosking, Terry Alan

    2006-04-11

    A technique of increasing the corona inception voltage (CIV), and thereby increasing the operating voltage, of film/foil capacitors is described. Intentional venting of the capacitor encapsulation improves the corona inception voltage by allowing internal voids to equilibrate with the ambient environment.

  5. Egress door opening assister

    DOE Patents [OSTI]

    Allison, Thomas L.

    2015-10-06

    A door opening spring assistance apparatus is set forth that will automatically apply a door opening assistance force using a combination of rods and coil springs. The release of the rods by the coil springs reduces the force required to set the door in motion.

  6. Upgrading coal plant damper drives

    SciTech Connect (OSTI)

    Hood, N.R.; Simmons, K. [Alamaba Power (United States)

    2009-11-15

    The replacement of damper drives on two coal-fired units at the James H. Miller Jr. electric generating plant by Intelligent Contrac electric rotary actuators is discussed. 2 figs.

  7. High speed door assembly

    DOE Patents [OSTI]

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  8. Battic Door | Open Energy Information

    Open Energy Info (EERE)

    Battic Door Jump to: navigation, search Name: Battic Door Address: P.O. Box 15 Place: Mansfield, Massachusetts Zip: 02048 Region: Greater Boston Area Sector: Buildings Product:...

  9. Gas venting system

    DOE Patents [OSTI]

    Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

    2010-06-29

    A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

  10. Electronic door locking mechanism

    DOE Patents [OSTI]

    Williams, G.L.; Kirby, P.G.

    1997-10-21

    The invention is a motorized linkage for engaging a thumb piece in a door mechanism. The device has an exterior lock assembly with a small battery cell and combination lock. Proper entry by a user of a security code allows the battery to operate a small motor within the exterior lock assembly. The small motor manipulates a cam-plunger which moves an actuator pin into a thumb piece. The user applies a force on to the thumb piece. This force is transmitted by the thumb piece to a latch engagement mechanism by the actuator pin. The latch engagement mechanism operates the door latch. 6 figs.

  11. Electronic door locking mechanism

    DOE Patents [OSTI]

    Williams, Gary Lin; Kirby, Patrick Gerald

    1997-01-01

    The invention is a motorized linkage for engaging a thumb piece in a door mechanism. The device has an exterior lock assembly with a small battery cell and combination lock. Proper entry by a user of a security code allows the battery to operate a small motor within the exterior lock assembly. The small motor manipulates a cam-plunger which moves an actuator pin into a thumb piece. The user applies a force on to the thumb piece. This force is transmitted by the thumb piece to a latch engagement mechanism by the actuator pin. The latch engagement mechanism operates the door latch.

  12. Blower Door Tests | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blower Door Tests Blower Door Tests Blower door test during a home energy audit. Credit: Holtkamp Heating & AC, Inc. Blower door test during a home energy audit. Credit: Holtkamp...

  13. Battery venting system and method

    DOE Patents [OSTI]

    Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  14. Battery venting system and method

    DOE Patents [OSTI]

    Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

  15. Battery Vent Mechanism And Method

    DOE Patents [OSTI]

    Ching, Larry K. W. (Littleton, CO)

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  16. Blower Door Tests | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blower Door Tests Blower Door Tests Blower door test during a home energy audit. Credit: Holtkamp Heating & A/C, Inc. Blower door test during a home energy audit. Credit: Holtkamp Heating & A/C, Inc. Professional energy auditors use blower door tests to help determine a home's airtightness. Our Energy Saver 101 infographic explains the importance of a blower door test during a home energy audit. These are some reasons for establishing the proper building tightness: Reducing energy

  17. Coil spring venting arrangement

    DOE Patents [OSTI]

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  18. Door latching recognition apparatus and process

    DOE Patents [OSTI]

    Eakle, Jr., Robert F. (New Ellenton, SC)

    2012-05-15

    An acoustic door latch detector is provided in which a sound recognition sensor is integrated into a door or door lock mechanism. The programmable sound recognition sensor can be trained to recognize the acoustic signature of the door and door lock mechanism being properly engaged and secured. The acoustic sensor will signal a first indicator indicating that proper closure was detected or sound an alarm condition if the proper acoustic signature is not detected within a predetermined time interval.

  19. Experience with longitudinal and transverse instability dampers in Tevatron

    SciTech Connect (OSTI)

    Shiltsev, V.; Tan, C.Y.; /Fermilab

    2006-10-01

    We present a short summary of use of longitudinal and transverse dampers in the Tevatron Run II operation (2001-2006).

  20. BNL 56 MHz HOM Damper Prototype Fabrication at JLab

    SciTech Connect (OSTI)

    Huque, Naeem A.; Daly, Edward F.; Clemens, William A.; McIntyre, Gary T.; Wu, Qiong; Seberg, Scott; Bellavia, Steve

    2015-09-01

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider's (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  1. Another Door Opens: Marion Invests in Energy Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    new handicap, motorized door to make the entrance ADA compliant. City Services Director Jay Shoup said the new front doors will increase door space while reducing the city's...

  2. Jamison Door: Order (2013-CE-5348)

    Broader source: Energy.gov [DOE]

    DOE ordered Jamison Door Company to pay a $6,000 civil penalty after finding Jamison Door had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  3. Tunable damper for an acoustic wave guide

    DOE Patents [OSTI]

    Rogers, Samuel C. (Knoxville, TN)

    1984-01-01

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180.degree. intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  4. Driving Demand: Door-to-Door Outreach & Tracking Impacts (Text Version) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Driving Demand: Door-to-Door Outreach & Tracking Impacts (Text Version) Driving Demand: Door-to-Door Outreach & Tracking Impacts (Text Version) Marian Fuller: The topic of today is "Driving Demand, Door-To-Door Outreach and Tracking Impacts." We have a really wonderful set of panelists today. My name is Marian Fuller and I work with Lawrence Berkeley National Labs, and I'm one of the technical assistance providers for the Department of Energy. So I just

  5. Windows, Doors, and Skylights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, Doors, and Skylights Windows, Doors, and Skylights Choose energy efficient windows to reduce energy bills and improve the comfort of your home. | Photo courtesy of FSEC/IBACOS. Choose energy efficient windows to reduce energy bills and improve the comfort of your home. | Photo courtesy of FSEC/IBACOS. Windows, doors, and skylights-also known as fenestration-are significant components in a home's envelope. Ensuring they are as energy efficient as possible can save energy; reduce heating,

  6. Accelerate program opens doors for nontraditional students

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerate program opens doors for nontraditional students Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec....

  7. Commercial Refrigerator Door: Order (2013-CE-5351)

    Broader source: Energy.gov [DOE]

    DOE ordered Commercial Refrigerator Door Company, Inc. to pay a $8,000 civil penalty after finding Commercial Refrigerator Door had failed to certify that a variety of models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  8. Reactor pressure vessel vented head

    DOE Patents [OSTI]

    Sawabe, James K. (San Jose, CA)

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell.

  9. Jamison Door: Proposed Penalty (2013-CE-5348)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Jamison Door Company failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  10. Fermilab | Science Next Door | Subscription Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook row spacer Twitter row spacer YouTube row spacer Subscribe | Fermilab Home row spacer row spacer row spacer Subscribe to Science Next Door If you would like to receive...

  11. Retrofitting Doors on Open Refrigerated Cases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofitting Doors on Open Refrigerated Cases William Goetzler Navigant Consulting, Inc. wgoetzler@navigant.com (781) 270-8351 April 4, 2013 BBA Refrigeration Project Team Images courtesy of REMIS AMERICA, LLC. 2 | Building Technologies Office eere.energy.gov Technology Overview Image from Investigation of Energy- Efficient Supermarket Display Cases. 2004, Oak Ridge National Laboratory. Background and Motivation * Adding doors to open cases (retrofits) greatly reduces cold air loss - 50-80% load

  12. Reactor pressure vessel vented head

    DOE Patents [OSTI]

    Sawabe, J.K.

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell. 6 figures.

  13. Ballistic Missile Silo Door Monitoring Analysis

    SciTech Connect (OSTI)

    EDENBURN,MICHAEL W.; TROST,LAWRENCE C.

    2000-01-01

    This paper compares the cost and effectiveness of several potential options that may be used to monitor silo-based ballistic missiles. Silo door monitoring can be used to verify that warheads removed to deactivate or download silo-based ballistic missiles have not been replaced. A precedent for monitoring warhead replacement using reentry vehicle on site inspections (RV-OSIs) and using satellites has been established by START-I and START-II. However, other monitoring options have the potential to be less expensive and more effective. Three options are the most promising if high verification confidence is desired: random monitoring using door sensors; random monitoring using manned or unmanned aircraft; and continuous remote monitoring using unattended door sensors.

  14. Hanford Waste Treatment Plant Sets Massive Protective Shield door in

    Office of Environmental Management (EM)

    Pretreatment Facility | Department of Energy Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility Hanford Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility January 12, 2011 - 12:00pm Addthis The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December. The carbon steel doors come together to form an upside-down L-shape. The

  15. Tour Opens Doors to Solar Homes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doors to Solar Homes For more information contact: e:mail: Public Affairs Golden, Colo., Oct. 14, 1999 — The Tour of Solar Homes will open the doors of hundreds of passive and active solar homes across the nation Oct. 16. The Denver Metro tour will feature innovative houses in Denver, Golden, Littleton, Idaho Springs, Evergreen and Parker that tap energy from the sun. The self-guided tour starts at the Visitors Center of the U.S. Department of Energy's National Renewable Energy Laboratory

  16. Tour Opens Doors, Minds to Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doors, Minds to Solar Energy For more information contact: e:mail: Public Affairs Golden, Colo., Oct. 5, 1998 — The third annual Tour of Solar Homes will open the doors to hundreds of passive and active solar homes across the nation Oct. 17. The Denver-metro leg of the tour, organized by the Colorado Renewable Energy Society, will start at the Visitors Center of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). Houses and other buildings on the self-guided tour, which

  17. Windows, Doors, & Skylights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, Doors, & Skylights Windows, Doors, & Skylights Installing storm windows keep your home warm in the winter and cool in the summer while also lowering your energy bills by up to $350 a year. <a href="/node/797126" target="_blank">Start saving today by following a step-by-step guide in our new DIY Savings Project</a>. Installing storm windows keep your home warm in the winter and cool in the summer while also lowering your energy bills by up to $350

  18. Community Power Works' Success Opens Doors to its Future | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Works' Success Opens Doors to its Future Community Power Works' Success Opens Doors to its Future The logo for Community Power Works, with the words Seattle is providing community ...

  19. Operating Experience Level 3, Safety Concern: Roll-up Doors

    Broader source: Energy.gov [DOE]

    This Operating Experience Level 3 (OE-3) document provides information about a safety concern related to roll-up doors that fail unexpectedly, endangering workers. Under normal operation, roll-up doors operate smoothly, and users may not realize the hazard a failed door can present. Industrial doors may weigh more than half of a ton, and uncontrolled gravitational movement is hazardous to personnel and equipment.

  20. Energy Performance Ratings for Windows, Doors, and Skylights | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Energy Performance Ratings for Windows, Doors, and Skylights Energy Performance Ratings for Windows, Doors, and Skylights Before you shop for energy-efficient windows, doors, and skylights, learn about energy performance ratings. | Photo courtesy of iStockphoto.com/JamesBrey. Before you shop for energy-efficient windows, doors, and skylights, learn about energy performance ratings. | Photo courtesy of iStockphoto.com/JamesBrey. You can use the energy performance ratings of windows,

  1. Window, Door, and Skylight Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Use the following links to get product information and locate professional services for windows, doors, and skylights. Product Information Awnings in Residential Buildings: The Impact on Energy Use and Peak Demand University of Minnesota Center for Sustainable Building Research Independently Tested and Certified Energy Performance ENERGY STAR®

  2. Nuclear storage overpack door actuator and alignment apparatus

    DOE Patents [OSTI]

    Andreyko, Gregory M. (North Huntingdon, PA)

    2005-05-10

    The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage.

  3. Nuclear Storage Overpack Door Actuator and Alignment Apparatus

    DOE Patents [OSTI]

    Andreyko, Gregory M.

    2005-05-11

    The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage.

  4. Crystal growth furnace with trap doors

    DOE Patents [OSTI]

    Sachs, Emanual M. (Watertown, MA); Mackintosh, Brian H. (Lexington, MA)

    1982-06-15

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  5. Monitoring arrangement for vented nuclear fuel elements

    DOE Patents [OSTI]

    Campana, Robert J. (Solana Beach, CA)

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.

  6. Window, Door, and Skylight Products and Services | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Window, Door, and Skylight Products and Services Use the following links to get product information and locate professional services for windows, doors, and skylights. Product Information Awnings in Residential Buildings: The Impact on Energy Use and Peak Demand University of Minnesota Center for Sustainable Building Research Independently Tested and Certified Energy Performance ENERGY STAR® Information on ENERGY STAR performance ratings for windows, doors, and skylights. Product Ratings

  7. Energy Performance Ratings for Windows, Doors, and Skylights | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Before you shop for energy-efficient windows, doors, and skylights, learn about energy performance ratings. | Photo courtesy of iStockphoto.com/JamesBrey. Before you shop for energy-efficient windows, doors, and skylights, learn about energy performance ratings. | Photo courtesy of iStockphoto.com/JamesBrey. You can use the energy performance ratings of windows, doors, and skylights to tell you their potential for gaining and losing heat, as well as transmitting sunlight into your

  8. Covered Product Category: Residential Windows, Doors, and Skylights |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Windows, Doors, and Skylights Covered Product Category: Residential Windows, Doors, and Skylights The Federal Energy Management Program (FEMP) provides acquisition guidance for residential windows, doors, and skylights, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display

  9. Door County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Door County, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1113873, -87.0470884 Show Map Loading map... "minzoom":false,"mappin...

  10. Energy Performance Ratings for Windows, Doors, and Skylights...

    Office of Environmental Management (EM)

    The ability of glazing in a window, door, or skylight to transmit sunlight into a home can be measured and rated according to the following energy performance...

  11. Science DMZ Opens Doors to More Science, More Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opens Doors to More Science, More Collaboration News & Publications ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Media Jon...

  12. Simplified multizone blower door techniques for multifamily buildings. Final report

    SciTech Connect (OSTI)

    1995-09-01

    This research focused on the applicability of (a) two-blower-door and (b) single-blower-door multi-zone pressurization techniques for estimating the air leakage characteristics of New York State multi-family apartment buildings. The research also investigated the magnitude of external leakage area in multi-family buildings and used computer simulations to estimate the effect of decreasing external and internal leakage areas on air infiltration rates. This research investigates whether two blower doors can be used to determine the ELA of the exterior envelope and the ELA of partitions. Two multi-zone versions of the single-blower-door pressurization method are also examined.

  13. Shutting the Door on Cold Weather | Department of Energy

    Energy Savers [EERE]

    Shutting the Door on Cold Weather Shutting the Door on Cold Weather February 8, 2011 - 11:52am Addthis Andrea Spikes Former Communicator at DOE's National Renewable Energy Laboratory A few months ago, the front door of my condominium cracked. One too many careless slams cracked the wood right at the bolt, which made it difficult to close, let in cold air, and made it easy to break in. Not a good situation, especially since winter was about to begin! Fortunately, my storm door was working just

  14. ANALYSIS OF VENTING OF A RESIN SLURRY

    SciTech Connect (OSTI)

    Laurinat, J.; Hensel, S.

    2012-03-27

    A resin slurry venting analysis was conducted to address safety issues associated with overpressurization of ion exchange columns used in the Purex process at the Savannah River Site (SRS). If flow to these columns were inadvertently interrupted, an exothermic runaway reaction could occur between the ion exchange resin and the nitric acid used in the feed stream. The nitric acid-resin reaction generates significant quantities of noncondensable gases, which would pressurize the column. To prevent the column from rupturing during such events, rupture disks are installed on the column vent lines. The venting analysis models accelerating rate calorimeter (ARC) tests and data from tests that were performed in a vented test vessel with a rupture disk. The tests showed that the pressure inside the test vessel continued to increase after the rupture disk opened, though at a slower rate than prior to the rupture. Calculated maximum discharge rates for the resin venting tests exceeded the measured rates of gas generation, so the vent size was sufficient to relieve the pressure in the test vessel if the vent flow rate was constant. The increase in the vessel pressure is modeled as a transient phenomenon associated with expansion of the resin slurry/gas mixture upon rupture of the disk. It is postulated that the maximum pressure at the end of this expansion is limited by energy minimization to approximately 1.5 times the rupture disk burst pressure. The magnitude of this pressure increase is consistent with the measured pressure transients. The results of this analysis demonstrate the need to allow for a margin between the design pressure and the rupture disk burst pressure in similar applications.

  15. Retrofitting Doors on Open Refrigerated Cases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofitting Doors on Open Refrigerated Cases Retrofitting Doors on Open Refrigerated Cases Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review PDF icon commlbldgs18_goetzler_040413.pdf More Documents & Publications Better Buildings Alliance - 2013 BTO Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Better Buildings Alliance Equipment Performance Specifications - 2013 BTO Peer

  16. Vented Cavity Radiant Barrier Assembly And Method

    DOE Patents [OSTI]

    Dinwoodie, Thomas L. (Piedmont, CA); Jackaway, Adam D. (Berkeley, CA)

    2000-05-16

    A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.

  17. Electrochemical cell having improved pressure vent

    DOE Patents [OSTI]

    Dean, Kevin (Pontiac, MI); Holland, Arthur (Troy, MI); Fillmore, Donn (Waterford, MI)

    1993-01-01

    The electrochemical cell of the instant invention includes a case having a gas outlet, one or more positive electrodes positioned within the case, one or more negative electrodes positioned within the case electrode separators positioned between the positive and negative electrodes, electrolyte positioned within the case, and a pressure vent for releasing internal pressure occurring in the case to the surrounding atmosphere. The pressure vent is affixed to the case covering the gas outlet, the pressure vent includes a vent housing having a hollow interior area in gaseous communication with the surrounding atmosphere and the interior of the case via the gas outlet, a pressure release piston positioned within the hollow interior area, the pressure release piston sized to surround the gas outlet and having a seal groove configured to encapsulate all but one surface of a seal mounted within the seal groove, leaving the non-encapsulated surface of the seal exposed, and a compression spring positioned to urge the pressure release piston to compress the seal in the seal groove and block the gas outlet in the case.

  18. Commercial Refrigerator Door: Proposed Penalty (2013-CE-5351)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Commercial Refrigerator Door Company, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  19. Repairing Windows & Doors: How To's for the Handy Homeowner

    SciTech Connect (OSTI)

    2006-01-05

    This brochure contains tips for homeowners to repair windows and doors in their home that sustained hurricane damage. This publication is a part of the How To's for the Handy Homeowner Series.

  20. Updating the Doors and Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Windows Updating the Doors and Windows August 23, 2012 - 2:46pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Since I can't afford to replace...

  1. Energy Performance Ratings for Windows, Doors, and Skylights...

    Broader source: Energy.gov (indexed) [DOE]

    the rate of air movement around a window, door, or skylight in the presence of a specific pressure difference across it. It's expressed in units of cubic feet per minute per square...

  2. NREL Opens New Doors to Renewable Energy Data - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Opens New Doors to Renewable Energy Data Developer.nrel.gov empowers Web developers to use renewable energy data for Web and mobile applications October 25, 2011 The U.S. ...

  3. Hydrogen Student Design Contest Inspires and Opens Doors | Department of

    Office of Environmental Management (EM)

    Energy Student Design Contest Inspires and Opens Doors Hydrogen Student Design Contest Inspires and Opens Doors September 28, 2011 - 3:22pm Addthis A hydrogen-powered Toyota Prius pulls up to Humboldt State University's student designed hydrogen fueling station. A hydrogen-powered Toyota Prius pulls up to Humboldt State University's student designed hydrogen fueling station. Sunita Satyapal Director, Fuel Cell Technologies Office Since 2004, the Hydrogen Student Design Contest has challenged

  4. National Labs Open Doors to Displaced Japanese Researchers | Department of

    Office of Environmental Management (EM)

    Energy Labs Open Doors to Displaced Japanese Researchers National Labs Open Doors to Displaced Japanese Researchers July 5, 2011 - 1:42pm Addthis Maiko Kofu, Atsushi Nagoe and Osamu Yamamuro examine their sample attached to the end of the cryostat stick after running an experiment at Oak Ridge National Laboratory’s Spallation Neutron Source. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain | Maiko Kofu, Atsushi Nagoe and Osamu Yamamuro examine

  5. Comparative Study of Vented vs. Unvented Crawlspaces

    SciTech Connect (OSTI)

    Biswas, Kaushik; Christian, Jeffrey E; Gehl, Anthony C

    2011-10-01

    There has been a significant amount of research in the area of building energy efficiency and durability. However, well-documented quantitative information on the impact of crawlspaces on the performance of residential structures is lacking. The objective of this study was to evaluate and compare the effects of two crawlspace strategies on the whole-house performance of a pair of houses in a mixed humid climate. These houses were built with advanced envelope systems to provide energy savings of 50% or more compared to traditional 2010 new construction. One crawlspace contains insulated walls and is sealed and semi-conditioned. The other is a traditional vented crawlspace with insulation in the crawlspace ceiling. The vented (traditional) crawlspace contains fiberglass batts installed in the floor chase cavities above the crawl, while the sealed and insulated crawlspace contains foil-faced polyisocyanurate foam insulation on the interior side of the masonry walls. Various sensors to measure temperatures, heat flux through crawlspace walls and ceiling, and relative humidity were installed in the two crawlspaces. Data from these sensors have been analyzed to compare the performance of the two crawlspace designs. The analysis results indicated that the sealed and insulated crawlspace design is better than the traditional vented crawlspace in the mixed humid climate.

  6. Environmental sustainability comparison of a hypothetical pneumatic waste collection system and a door-to-door system

    SciTech Connect (OSTI)

    Punkkinen, Henna; Merta, Elina; Teerioja, Nea; Moliis, Katja; Kuvaja, Eveliina

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We compare the environmental sustainability of two MSW collection systems. Black-Right-Pointing-Pointer We evaluate pneumatic and door-to-door collection systems. Black-Right-Pointing-Pointer The greenhouse gas emissions of pneumatic collection are around three times higher. Black-Right-Pointing-Pointer System components are decisive but assumptions on electricity use are also important. Black-Right-Pointing-Pointer Pneumatic collection could provide other benefits over door-to-door system. - Abstract: Waste collection is one of the life cycle phases that influence the environmental sustainability of waste management. Pneumatic waste collection systems represent a new way of arranging waste collection in densely populated urban areas. However, limited information is available on the environmental impacts of this system. In this study, we compare the environmental sustainability of conventional door-to-door waste collection with its hypothetical pneumatic alternative. Furthermore, we analyse whether the size of the hypothetical pneumatic system, or the number of waste fractions included, have an impact on the results. Environmental loads are calculated for a hypothetical pneumatic waste collection system modelled on an existing dense urban area in Helsinki, Finland, and the results are compared to those of the prevailing, container-based, door-to-door waste collection system. The evaluation method used is the life-cycle inventory (LCI). In this study, we report the atmospheric emissions of greenhouse gases (GHG), SO{sub 2} and NO{sub x}. The results indicate that replacing the prevailing system with stationary pneumatic waste collection in an existing urban infrastructure would increase total air emissions. Locally, in the waste collection area, emissions would nonetheless diminish, as collection traffic decreases. While the electricity consumption of the hypothetical pneumatic system and the origin of electricity have a significant bearing on the results, emissions due to manufacturing the system's components prove decisive.

  7. SRS Commemorates P & R Reactor Area Completions - SRS Closes the Door on

    Energy Savers [EERE]

    Past Cold War Operations and Opens the Door for Future Missions through Enterprise SRS | Department of Energy Commemorates P & R Reactor Area Completions - SRS Closes the Door on Past Cold War Operations and Opens the Door for Future Missions through Enterprise SRS SRS Commemorates P & R Reactor Area Completions - SRS Closes the Door on Past Cold War Operations and Opens the Door for Future Missions through Enterprise SRS September 29, 2011 - 12:00pm Addthis Media Contacts Jim

  8. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospiracrunogena

    Office of Scientific and Technical Information (OSTI)

    XCL-2 (Journal Article) | SciTech Connect Journal Article: The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospiracrunogena XCL-2 Citation Details In-Document Search Title: The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospiracrunogena XCL-2 Presented here is the complete genome sequence ofThiomicrospira crunogena XCL-2, representative of ubiquitouschemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-seahydrothermal vents. This gammaproteobacterium has a single

  9. Building America Case Study - Evaluation of Passive Vents in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The excessive rate results in higher fan energy and a higher heating load. * ... CARB created a Measure Guideline for the proper design and installation of passive vents. ...

  10. Dynamic Object Oriented Requirements System (DOORS) System Test Plan

    SciTech Connect (OSTI)

    JOHNSON, A.L.

    2000-04-01

    The U. S. Department of Energy, Office of River Protection (ORP) will use the Dynamic Object Oriented Requirements System (DOORS) as a tool to assist in identifying, capturing, and maintaining the necessary and sufficient set of requirements for accomplishing the ORP mission. By managing requirements as one integrated set, the ORP will be able to carry out its mission more efficiently and effectively. DOORS is a Commercial-Off-The-Shelf (COTS) requirements management tool. The tool has not been customized for the use of the PIO, at this time.

  11. Updating the Doors and Windows | Department of Energy

    Energy Savers [EERE]

    Updating the Doors and Windows Updating the Doors and Windows August 23, 2012 - 2:46pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Since I can't afford to replace my windows like Andrea did recently (I've got a lot more of them for one thing), the next best thing is to be sure the existing ones-- which are double-paned, so that's a help-are well sealed. One of my energy audit recommendations was to caulk the window frames inside and out. My handyman friend Rob and

  12. Staged venting of fuel cell system during rapid shutdown

    DOE Patents [OSTI]

    Clingerman, Bruce J. (Palmyra, NY); Doan, Tien M. (Columbia, MD); Keskula, Donald H. (Webster, NY)

    2002-01-01

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  13. Staged venting of fuel cell system during rapid shutdown

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-09-14

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  14. Assessment of Literature Related to Combustion Appliance Venting Systems

    SciTech Connect (OSTI)

    Rapp, V. H.; Less, B. D.; Singer, B. C.; Stratton, J. C.; Wray, C. P.

    2015-02-01

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents their technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.

  15. Covered Product Category: Residential Windows, Doors, and Skylights

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential windows, doors, and skylights, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  16. Give Me My Tax Credit! (Or, How I Almost Bought the Wrong Patio Door)

    Broader source: Energy.gov [DOE]

    Over the past few weeks, my husband and I have been shopping for a new patio door. We currently have a sliding glass door that we have always hated—full exposure to winds from the west and to open...

  17. ARM - Campaign Instrument - cm22-pmod-vent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pmod-vent Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Kipp & Zonen CM22-PMOD Vent (CM22-PMOD-VENT) Instrument Categories Radiometric Campaigns Diffuse Shortwave IOP [ Download Data ] Southern Great Plains, 2001.09.24 - 2001.10.22 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for the list of all available measurements,

  18. Metal Oxide Semiconductor Nanoparticles Open the Door to New Medical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovations | Argonne National Laboratory Metal Oxide Semiconductor Nanoparticles Open the Door to New Medical Innovations Technology available for licensing: novel nanometer-sized metal oxide semiconductors that allow targeting, initiating and control of in vitro and in vivo chemical reactions in biological molecules, such as DNA, proteins, and antibodies. Allows for targeting, initiation and control of in vitro and in vivo chemical reactions in biological molecules Commercial applications

  19. Building America Case Study: Design Guidance for Passive Vents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... with 100 CFM of continuous exhaust. At 0.20 CFM50ft 2 , three trickle vents would be needed to meet ASHRAE 62.2-2010. To access an interactive version of this tool visit here.

  20. Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure...

    Open Energy Info (EERE)

    Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Jump to: navigation,...

  1. Container lid gasket protective strip for double door transfer system

    DOE Patents [OSTI]

    Allen, Jr., Burgess M

    2013-02-19

    An apparatus and a process for forming a protective barrier seal along a "ring of concern" of a transfer container used with double door systems is provided. A protective substrate is supplied between a "ring of concern" and a safety cover in which an adhesive layer of the substrate engages the "ring of concern". A compressive foam strip along an opposite side of the substrate engages a safety cover such that a compressive force is maintained between the "ring of concern" and the adhesive layer of the substrate.

  2. Fundamental damper power calculation of the 56MHz SRF cavity for RHIC

    SciTech Connect (OSTI)

    Wu, Q.; Bellavia, S.; Ben-Zvi, I.; Grau, M.; Miglionico, G.; Pai, C.

    2011-03-28

    At each injection period during RHIC's operation, the beam's frequency sweeps across a wide range, and some of its harmonics will cross the frequency of the 56MHz SRF cavity. To avoid excitation of the cavity at these times, we designed a fundamental damper for the quarter-wave resonator to damp the cavity heavily. The power extracted by the fundamental damper should correspond to the power handling ability of the system at all stages. In this paper, we discuss the power output from the fundamental damper when it is fully extracted, inserted, and any intermediate point. A Fundamental Damper (FD) will greatly reduce the cavity's Q factor to {approx}300 during the acceleration phase of the beam. However, when the beam is at store and the FD is removed, the cavity is excited by both the yellow and the blue beams at 2 x 0.3A to attain the required 2MV voltage across its gap. The cavity then is operated to increase the luminosity of the RHIC experiments. Table 1 lists the parameters of the FD. Figure 1 shows the configuration of the FD fully inserted into the 56MHz SRF cavity; this complete insertion is defined as the start location (0cm) of FD simulation, an assumption we make throughout this paper. The power consumed by the cavity while maintaining the beam's energy and its orbit is compensated by the 28MHz accelerating cavities in the storage ring. The power dissipation of the external load is dynamic with respect to the position of the FD during its extraction. As a function of the external Q and the EM field in the cavity, the power should peak with the FD at a certain vertical location. Our calculation of the power extracted is detailed in the following sections. Figure 2 plots the frequency change in the cavity, and the external Q against the changes in position of the FD. The location of the FD is selected carefully such that the frequency will approach the designed working point from the lower side only. The loaded Q of the cavity is 223 when the FD is fully inserted. The simulation was carried out with Microwave Studio 2010.

  3. Other States Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Other States Natural Gas Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 408 1992 501 530 501 1993 501 522 515 533 536 531 583 546 1994 533 616 623 620 629 654 1995 667 594 663 634 643 626 643 663 603 553 567 578 1996 549 538 625 620 693 703 709 715 676 708 682 690 1997 133 124 135 142 147 142 149 177 160 150 159 161 1998 147 134 150 148 132 117 126 132 124 121 121 123 1999 754 406 686 588 693 611 708 340 590

  4. Use a Vent Condenser to Recover Flash Steam Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Vent Condenser to Recover Flash Steam Energy Use a Vent Condenser to Recover Flash Steam Energy This tip sheet on using vent condensers to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #13 PDF icon Use a Vent Condenser to Recover Flash Steam Energy (January 2012) More Documents & Publications Recover Heat from Boiler Blowdown Deaerators in Industrial Steam Systems Use Steam Jet

  5. Opening the Door: San Diego R&D Workshop Video | Department of Energy

    Energy Savers [EERE]

    Opening the Door: San Diego R&D Workshop Video Opening the Door: San Diego R&D Workshop Video View the video from Jim Brodrick's opening presentation at the February 2011 DOE SSL R&D Workshop in San Diego, California

  6. Request for approval, vented container annual release fraction

    SciTech Connect (OSTI)

    HILL, J.S.

    1999-10-12

    In accordance with the approval conditions for Modification to the Central Waste Complex (CWC) Radioactive Air Emissions Notice of Construction (NOC). dated August 24,1998, a new release fraction has been developed for submittal to the Washington State Department of Health (WDOH). The proposed annual release fraction of 2.50 E-14 is proposed for use in future NOCs involving the storage and handling operations associated with vented containers on the Hanford Site. The proposed annual release fraction was the largest release fraction calculated from alpha measurements of the NucFil filters from 10 vented containers consisting of nine 55-gallon drums and one burial box with dimensions of 9.3 x 5.7 x 6.4 feet. An annual release fraction of 2.0 E-09 was used in the modification to the CWC radioactive air emissions NOC. This study confirmed that the release fraction used in the CWC radioactive air emissions NOC was conservative.

  7. Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vented and Flared (Million Cubic Feet) Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 98 96 99 75 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  8. Tennessee Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vented and Flared (Million Cubic Feet) Tennessee Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 408 180 165 376 585 339 156 117 126 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  9. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vented and Flared (Million Cubic Feet) Kentucky Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6 15 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  10. Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vented and Flared (Million Cubic Feet) Virginia Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 27 0 0 297 258 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 NA NA NA 2010's NA NA 0 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  11. Ohio Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vented and Flared (Million Cubic Feet) Ohio Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 330 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  12. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vented and Flared (Million Cubic Feet) Oklahoma Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 126,629 129,408 130,766 1970's 129,629 39,799 38,797 36,411 34,199 31,802 30,197 29,186 27,489 26,605 1980's 25,555 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  13. Device and method for remotely venting a container

    DOE Patents [OSTI]

    Vodila, James M. (North Huntingdon, PA); Bergersen, Jeffrey A. (Idaho Falls, ID)

    1997-01-01

    A device for venting a container having a bung includes a saddle assembly curable to a container and having a support extending therefrom. A first arm is rotatably secured to the support, and the first arm extends in a first direction. A second arm has a first end portion drivingly engaged with the first arm, so that rotation of the first arm causes rotation of the second arm. A second end portion of the first arm is positionable proximate the bung of the container. A socket is operably associated and rotatable with the second end portion and is drivingly engageable with the bung, so that rotation of the socket causes corresponding rotation of the bung for thereby venting the container.

  14. Arizona Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Arizona Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 347 367 277 26 47 32 101 1980's 143 106 162 108 182 124 122 125 123 95 1990's 22 56 23 21 8 0 0 1 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  15. Florida Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Florida Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 355 284 837 607 1980's 677 428 435 198 34 13 54 30 166 450 1990's 286 482 245 205 220 28 - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  16. Ohio Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Ohio Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 330 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  17. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Oklahoma Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 126,629 129,408 130,766 1970's 129,629 39,799 38,797 36,411 34,199 31,802 30,197 29,186 27,489 26,605 1980's 25,555 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  18. Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 98 96 99 75 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  19. Tennessee Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Tennessee Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 408 180 165 376 585 339 156 117 126 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  20. Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Virginia Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 27 0 0 297 258 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 NA NA NA 2010's NA NA 0 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  1. Florida Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Florida Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 355 284 837 607 1980's 677 428 435 198 34 13 54 30 166 450 1990's 286 482 245 205 220 28 - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  2. Illinois Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Illinois Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 126 102 93 1970's 122 3,997 1,806 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  3. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Kentucky Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6 15 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  4. TRANSPORT OF WASTE SIMULANTS IN PJM VENT LINES

    SciTech Connect (OSTI)

    Qureshi, Z

    2007-02-21

    The experimental work was conducted to determine whether there is a potential for waste simulant to transport or 'creep' up the air link line and contaminate the pulse jet vent system, and possibly cause long term restriction of the air link line. Additionally, if simulant creep occurred, establish operating parameters for washing down the line. The amount of the addition of flush fluids and mixer downtime must be quantified.

  5. Viscous-Fluid-Spring Damper Retrofit of a Steel Moment Frame Structure

    SciTech Connect (OSTI)

    Hussain, Saif; Van Benschoten, Paul; Al Satari, Mohamed; Lin, Silian

    2008-07-08

    The subject building is a peculiar pre-Northridge steel moment resisting frame building. Upon investigating the existing lateral resisting system, numerous significant deficiencies were identified; inherent lack of redundancy, poor geometry and inadequate stiffness of the lateral resisting system. All of which resulted in an extremely soft 5-story structure with a primary torsional mode of vibration at T{sub 1} = 5.46 s. Significant structural modifications were deemed necessary to meet the 'life-safety' performance objective as outlined in rehabilitation standards such as ASCE 41. Both increased stiffness and damping were required to adequately retrofit the building. Furthermore, adjacent building separation as well as deformation compatibility issues needed to be addressed and resolved. A three-dimensional computer model of the building was created using ETABS mathematically simulating the building's dynamic characteristics in its current condition. Multiple seismic retrofit systems were investigated such as Buckling Restrained Braced Frames (BRBF's). However, based on the performance effectiveness and constructability of the retrofit schemes studied, the Viscous-Fluid-Spring Damper (VFSD) system was proposed as the 'optimum' solution for the building. The VFSD, was chosen because it combines the relatively compact size and minimally invasive constructability with the required properties (an elastomeric spring in parallel with a nonlinear velocity dependent viscous damper). A site-specific response spectrum was developed for the Design Basis Earthquake (DBE, 475 year return period) event, and three pairs of representative earthquake horizontal ground motion time-histories were scaled to match this DBE. The proposed scheme reduced the building maximum inter-story drift ratio from 5.4% to about 1%. Similarly, the maximum roof displacement was reduced by about 70% (23'' to 7'')

  6. Genome Data from DOOR: a Database for prOkaryotic OpeRons

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOOR provides an Organism View for browsing, a gene search tool, an operon search tool, and the operon prediction interface.[Text taken and edited from http://csbl1.bmb.uga.edu/OperonDB/tutorial.php

  7. Residents Learn to Open Their Doors to Energy Efficiency in Michigan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Neighborhood sweeps are intensive, house-by-house mini-campaigns designed to convince homeowners to complete a home energy upgrade. The program hoped that behind every door was a ...

  8. Residents Learn to Open Their Doors to Energy Efficiency in Michigan |

    Energy Savers [EERE]

    Department of Energy Residents Learn to Open Their Doors to Energy Efficiency in Michigan Residents Learn to Open Their Doors to Energy Efficiency in Michigan Logo of BetterBuildings for Michigan. BetterBuildings for Michigan conducts neighborhood "sweeps" that have already marketed the program's offerings to more than 11,000 homeowners in 27 targeted communities. Neighborhood sweeps are intensive, house-by-house mini-campaigns designed to convince homeowners to complete a home

  9. SWiFT Turbines Full Dynamic Characterization Opens Doors for Research in

    Energy Savers [EERE]

    the Dynamics of Coupled Systems | Department of Energy SWiFT Turbines Full Dynamic Characterization Opens Doors for Research in the Dynamics of Coupled Systems SWiFT Turbines Full Dynamic Characterization Opens Doors for Research in the Dynamics of Coupled Systems March 31, 2014 - 11:19am Addthis Research conducted at the Scaled Wind Farm Technology Facility (SWiFT) in Lubbock, Texas, drew a lot of interest from attendees at the International Modal Analysis Conference held in Orlando,

  10. New National Labs Pilot Opens Doors to Small Businesses | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy National Labs Pilot Opens Doors to Small Businesses New National Labs Pilot Opens Doors to Small Businesses July 8, 2015 - 1:31pm Addthis Through the new Small Business Vouchers Pilot, small businesses will be able to access tools like this large-scale 3D-printer at Oak Ridge National Laboratory's Manufacturing Demonstration Facility. | Photo courtesy of Oak Ridge National Laboratory. Through the new Small Business Vouchers Pilot, small businesses will be able to access tools like

  11. Remote-Handled Transuranic Waste Drum Venting - Operational Experience and Lessons Learned

    SciTech Connect (OSTI)

    Clements, Th.L.Jr.; Bhatt, R.N.; Troescher, P.D.; Lattin, W.J.

    2008-07-01

    Remote-handled transuranic (RH TRU) waste drums must be vented to meet transportation and disposal requirement before shipment to the Waste Isolation Pilot Plant. The capability to perform remote venting of drums was developed and implemented at the Idaho National Laboratory. Over 490 drums containing RH TRU waste were successfully vented. Later efforts developed and implemented a long-stem filter to breach inner waste bags, which reduced layers of confinement and mitigated restrictive transportation wattage limits. This paper will provide insight to the technical specifications for the drum venting system, development, and testing activities, startup, operations, and lessons learned. (authors)

  12. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena

    Office of Scientific and Technical Information (OSTI)

    XCL-2 (Journal Article) | SciTech Connect Thiomicrospira crunogena XCL-2 Citation Details In-Document Search Title: The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2 Authors: Scott, Kathleen M [1] ; Sievert, Stefan M [2] ; Abril, Fereniki N [1] ; Ball, Lois A [1] ; Barrett, Chantell J [1] ; Blake, Rodrigo A [1] ; Boller, Amanda J [1] ; Chain, Patrick S [3] ; Clark, Justin A [1] ; Davis, Carisa R [1] ; Detter, J C [4] ; Do, Kimberly F [1] ; Dobrinski, Kimberly P

  13. Technology Solutions Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings

    SciTech Connect (OSTI)

    S. Puttagunta, S. Maxwell, D. Berger, and M. Zuluaga

    2015-10-01

    The Consortium for Advanced Residential Buildings (CARB) conducted research to gain more insight into passive vents. Because passive vents are meant to operate in a general environment of negative apartment pressure, the research assessed whether these negative pressures prevail through a variety of environmental conditions.

  14. Self-testing security sensor for monitoring closure of vault doors and the like

    DOE Patents [OSTI]

    Cawthorne, Duane C. (Amarillo, TX)

    1997-05-27

    A self-testing device is provided for a monitoring system for monitoring whether a closure member such as a door or window is closed. The monitoring system includes a switch unit mounted on the frame of the closure member being monitored and including magnetically biased switches connected in one or more electrical monitoring circuits, and a door magnet unit mounted on the closure member being monitored. The door magnet includes one or more permanent magnets that produce a magnetic field which, when the closure member is closed, cause said switches to assume a first state. When the closure member is opened, the switches switch to a second, alarm state. The self-testing device is electrically controllable from a remote location and produces a canceling or diverting magnetic field which simulates the effect of movement of the closure member from the closed position thereof without any actual movement of the member.

  15. Self-testing security sensor for monitoring closure of vault doors and the like

    DOE Patents [OSTI]

    Cawthorne, D.C.

    1997-05-27

    A self-testing device is provided for a monitoring system for monitoring whether a closure member such as a door or window is closed. The monitoring system includes a switch unit mounted on the frame of the closure member being monitored and including magnetically biased switches connected in one or more electrical monitoring circuits, and a door magnet unit mounted on the closure member being monitored. The door magnet includes one or more permanent magnets that produce a magnetic field which, when the closure member is closed, cause said switches to assume a first state. When the closure member is opened, the switches switch to a second, alarm state. The self-testing device is electrically controllable from a remote location and produces a canceling or diverting magnetic field which simulates the effect of movement of the closure member from the closed position thereof without any actual movement of the member. 5 figs.

  16. Energy Efficiency Hits from the Doors (and Windows) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hits from the Doors (and Windows) Energy Efficiency Hits from the Doors (and Windows) December 5, 2011 - 5:31am Addthis Ernie Tucker Editor, National Renewable Energy Laboratory Our 1970's-vintage house always seemed a bit too welcoming when howling winter winds swept up Colorado's foothills. Each year, the annual road show staged by Jack Frost and his Chillers would take center stage in our home despite our best efforts to keep these rowdies at bay. There were plenty of reasons why this

  17. Effect of pressure vents on the fast cookoff of energetic materials.

    SciTech Connect (OSTI)

    Cooper, Marcia A.; Oliver, Michael S.; Erikson, William Wilding

    2013-10-01

    The effect of vents on the fast cookoff of energetic materials is studied through experimental modifications to the confinement vessel of the Radiant Heat Fast Cookoff Apparatus. Two venting schemes were investigated: 1) machined grooves at the EM-cover plate interface; 2) radial distribution of holes in PEEK confiner. EM materials of PBXN-109 and PBX 9502 were tested. Challenges with the experimental apparatus and EM materials were identified such that studying the effect of vents as an independent parameter was not realized. The experimental methods, data and post-test observations are presented and discussed.

  18. The effect of venting on cookoff of a melt-castable explosive (Comp-B)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hobbs, Michael L.; Kaneshige, Michael J.

    2015-03-01

    Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia’s Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complexmore » bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.« less

  19. The effect of venting on cookoff of a melt-castable explosive (Comp-B)

    SciTech Connect (OSTI)

    Hobbs, Michael L.; Kaneshige, Michael J.

    2015-03-01

    Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia’s Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complex bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.

  20. Improving the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs, and Side Vents

    Broader source: Energy.gov [DOE]

    This factsheet describes the benefits of a high-performance aluminum bronze alloy to basic oxygen furnace and electric arc furnace components such as hoods, roofs, and side vents.

  1. System design description for the SY-101 vent header flow element enclosure upgrades

    SciTech Connect (OSTI)

    Vargo, G.F.

    1995-11-01

    This document describes the design of the High and Low Range Vent Header Flow Element(s) Field Enclosure for the 241-SY-101 High Level Nuclear Waste Underground Storage Tank.

  2. Reactor pressure vessel head vents and methods of using the same

    DOE Patents [OSTI]

    Gels, John L; Keck, David J; Deaver, Gerald A

    2014-10-28

    Internal head vents are usable in nuclear reactors and include piping inside of the reactor pressure vessel with a vent in the reactor upper head. Piping extends downward from the upper head and passes outside of the reactor to permit the gas to escape or be forcibly vented outside of the reactor without external piping on the upper head. The piping may include upper and lowers section that removably mate where the upper head joins to the reactor pressure vessel. The removable mating may include a compressible bellows and corresponding funnel. The piping is fabricated of nuclear-reactor-safe materials, including carbon steel, stainless steel, and/or a Ni--Cr--Fe alloy. Methods install an internal head vent in a nuclear reactor by securing piping to an internal surface of an upper head of the nuclear reactor and/or securing piping to an internal surface of a reactor pressure vessel.

  3. Vented target elements for use in an isotope-production reactor. [LMFBR

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium gas in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins equipped with vents, and tritium gas is recovered from the coolant.

  4. InnoVent InfraVest GmbH | Open Energy Information

    Open Energy Info (EERE)

    InfraVest GmbH Jump to: navigation, search Name: InnoVentInfraVest GmbH Place: Varel, Germany Zip: 26316 Sector: Wind energy Product: Wind farm project developer based in Germany....

  5. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  6. Arizona Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0

  7. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  8. Florida Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0

  9. Illinois Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  10. Tennessee Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  11. Ohio Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  12. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0

  13. Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  14. Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  15. Development of a Thin-Wall Magnesium side door Inner Panel for Automobiles

    SciTech Connect (OSTI)

    Jekl, J.; Auld, J.; Sweet, C.; Carter, Jon; Resch, Steve; Klarner, A.; Brevick, J.; Luo, A.

    2015-05-17

    Cast magnesium side door inner panels can provide a good combination of weight, functional, manufacturing and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility and relatively low strength vs steel. A project has been initiated, supported by the US Department of Energy, to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, magnesium inner panel. This development project is the first of its kind within North America. Phase I of the project is now complete and the 2.0mm magnesium design, through casting process enablers, has met or exceeded all stiffness requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies.

  16. Containment venting as a mitigation technique for BWR Mark I plant ATWS

    SciTech Connect (OSTI)

    Harrington, R.M.

    1986-01-01

    Containment venting is studied as a mitigation strategy for preventing or delaying severe fuel damage following hypothetical BWR Anticipated Transient Without SCRAM (ATWS) accidents initiated by MSIV-closure, and compounded by failure of the Standby Liquid Control (SLC) system injection of sodium pentaborate solution and by the failure of manually initiated control rod insertion. The venting of primary containment after reaching 75 psia (0.52 MPa) is found to result in the release of the vented steam inside the reactor building, and to result in inadequate Net Positive Suction Head (NPSH) for any system pumping from the pressure suppression pool. CONTAIN code calculations show that personnel access to large portions of the reactor building would be lost soon after the initiation of venting and that the temperatures reached would be likely to result in independent equipment failures. It is concluded that containment venting would be more likely to cause or to hasten the onset of severe fuel damage than to prevent or to delay it.

  17. Biodegradation of jet fuel in vented columns of water-unsaturated sandy soil. Master's thesis

    SciTech Connect (OSTI)

    Coho, J.W.

    1990-01-01

    The effect of soil water content on the rate of jet fuel (JP-4) biodegradation in air-vented, water-unsaturated columns of sandy soil was investigated. The contaminated soil was obtained from a spill site located on Tyndall AFB, Fla. The initial soil loading was 4590 mg of JP-4/kg of dry soil. Three laboratory columns were packed with the contaminated soil, saturated and drained for periods of 81-89 days. Two columns were continuously vented with air, and the third, intended to provide an anaerobic control, was vented with nitrogen. The venting gas flows were maintained between 1 and 2.5 soil pore volume changeouts per day. The total JP-4 removal in the air-vented columns averaged 44% of the mass originally present. Biodegradation and volatilization accounted for 93% and 7% of the total removal, respectively. A maximum biodegradation rate of 14.3 mg of JP-4/kg of moist soil per day was observed at a soil water content of approximately 72% saturation. Soil drainage characteristics indicated that this water content may have corresponded to 100% of the in situ field capacity water content. Theses.

  18. Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings

    SciTech Connect (OSTI)

    Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu

    2009-07-15

    Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

  19. Potential Flammable Gas Explosion in the TRU Vent and Purge Machine

    SciTech Connect (OSTI)

    Vincent, A

    2006-04-05

    The objective of the analysis was to determine the failure of the Vent and Purge (V&P) Machine due to potential explosion in the Transuranic (TRU) drum during its venting and/or subsequent explosion in the V&P machine from the flammable gases (e.g., hydrogen and Volatile Organic Compounds [VOCs]) vented into the V&P machine from the TRU drum. The analysis considers: (a) increase in the pressure in the V&P cabinet from the original deflagration in the TRU drum including lid ejection, (b) pressure wave impact from TRU drum failure, and (c) secondary burns or deflagrations resulting from excess, unburned gases in the cabinet area. A variety of cases were considered that maximized the pressure produced in the V&P cabinet. Also, cases were analyzed that maximized the shock wave pressure in the cabinet from TRU drum failure. The calculations were performed for various initial drum pressures (e.g., 1.5 and 6 psig) for 55 gallon TRU drum. The calculated peak cabinet pressures ranged from 16 psig to 50 psig for various flammable gas compositions. The blast on top of cabinet and in outlet duct ranged from 50 psig to 63 psig and 12 psig to 16 psig, respectively, for various flammable gas compositions. The failure pressures of the cabinet and the ducts calculated by structural analysis were higher than the pressure calculated from potential flammable gas deflagrations, thus, assuring that V&P cabinet would not fail during this event. National Fire Protection Association (NFPA) 68 calculations showed that for a failure pressure of 20 psig, the available vent area in the V&P cabinet is 1.7 to 2.6 times the required vent area depending on whether hydrogen or VOCs burn in the V&P cabinet. This analysis methodology could be used to design the process equipment needed for venting TRU waste containers at other sites across the Department of Energy (DOE) Complex.

  20. Solar Home Tour and Exhibitor Showcase Open Doors to Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Solar Home Tour and Exhibitor Showcase Open Doors to Renewable Energy Information Golden, Colo., Oct. 4, 2001 - Since renovating his 2,700 square-foot 1950s style home to include such energy efficient features as passive cooling and an active solar collector that pumps warm air into the lower levels of the home, Steve Andrews has saved $1,000 each year in utility costs. To see how Andrews and 15 others are tapping into the energy of the sun, take the Denver Metro Tour of Solar

  1. Solar Power Ramp Events Detection Using an Optimized Swinging Door Algorithm: Preprint

    SciTech Connect (OSTI)

    Cui, Mingjian; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2015-08-07

    Solar power ramp events (SPREs) are those that significantly influence the integration of solar power on non-clear days and threaten the reliable and economic operation of power systems. Accurately extracting solar power ramps becomes more important with increasing levels of solar power penetrations in power systems. In this paper, we develop an optimized swinging door algorithm (OpSDA) to detection. First, the swinging door algorithm (SDA) is utilized to segregate measured solar power generation into consecutive segments in a piecewise linear fashion. Then we use a dynamic programming approach to combine adjacent segments into significant ramps when the decision thresholds are met. In addition, the expected SPREs occurring in clear-sky solar power conditions are removed. Measured solar power data from Tucson Electric Power is used to assess the performance of the proposed methodology. OpSDA is compared to two other ramp detection methods: the SDA and the L1-Ramp Detect with Sliding Window (L1-SW) method. The statistical results show the validity and effectiveness of the proposed method. OpSDA can significantly improve the performance of the SDA, and it can perform as well as or better than L1-SW with substantially less computation time.

  2. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOE Patents [OSTI]

    Siminovitch, Michael (El Sobrante, CA)

    1998-01-01

    A novel design for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment.

  3. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOE Patents [OSTI]

    Siminovitch, M.

    1998-02-10

    A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

  4. Development of a model for predicting transient hydrogen venting in 55-gallon drums

    SciTech Connect (OSTI)

    Apperson, Jason W; Clemmons, James S; Garcia, Michael D; Sur, John C; Zhang, Duan Z; Romero, Michael J

    2008-01-01

    Remote drum venting was performed on a population of unvented high activity drums (HAD) in the range of 63 to 435 plutonium equivalent Curies (PEC). These 55-gallon Transuranic (TRU) drums will eventually be shipped to the Waste Isolation Pilot Plant (WIPP). As a part of this process, the development of a calculational model was required to predict the transient hydrogen concentration response of the head space and polyethylene liner (if present) within the 55-gallon drum. The drum and liner were vented using a Remote Drum Venting System (RDVS) that provided a vent sampling path for measuring flammable hydrogen vapor concentrations and allow hydrogen to diffuse below lower flammability limit (LFL) concentrations. One key application of the model was to determine the transient behavior of hydrogen in the head space, within the liner, and the sensitivity to the number of holes made in the liner or number of filters. First-order differential mass transport equations were solved using Laplace transformations and numerically to verify the results. the Mathematica 6.0 computing tool was also used as a validation tool and for examining larger than two chamber systems. Results will be shown for a variety of configurations, including 85-gallon and 110-gallon overpack drums. The model was also validated against hydrogen vapor concentration assay measurements.

  5. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    SciTech Connect (OSTI)

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  6. Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Phelan, J.M.; Reavis, B.; Cheng, W.C.

    1995-05-01

    Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

  7. Income Tax Deduction for Solar-Powered Roof Vents or Fans

    Broader source: Energy.gov [DOE]

    The taxpayer must provide proof of the taxpayer’s costs for installation of a solar powered roof vent or fan and a list of the persons or corporations that supplied labor or materials for the solar...

  8. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    DOE Patents [OSTI]

    Brassell, Gilbert W. (13237 W. 8th Ave., Golden, CO 80401); Brugger, Ronald P. (Lafayette, CO)

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  9. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    SciTech Connect (OSTI)

    Klein, Andrew; Matthews, Topher; Lenhof, Renae; Deason, Wesley; Harter, Jackson

    2015-01-16

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  10. Stable "superoxide" opens the door to a new class of batteries | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory The lattice match between LiO<sub>2</sub> and Ir<sub>3</sub>Li may be responsible for the LiO<sub>2</sub> discharge product found for the Ir-rGO cathode material. The lattice match between LiO2 and Ir3Li may be responsible for the LiO2 discharge product found for the Ir-rGO cathode material. Stable "superoxide" opens the door to a new class of batteries By Jared Sagoff * January 12, 2016 Tweet EmailPrint While lithium-ion

  11. Optimized Swinging Door Algorithm for Wind Power Ramp Event Detection: Preprint

    SciTech Connect (OSTI)

    Cui, Mingjian; Zhang, Jie; Florita, Anthony R.; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2015-08-06

    Significant wind power ramp events (WPREs) are those that influence the integration of wind power, and they are a concern to the continued reliable operation of the power grid. As wind power penetration has increased in recent years, so has the importance of wind power ramps. In this paper, an optimized swinging door algorithm (SDA) is developed to improve ramp detection performance. Wind power time series data are segmented by the original SDA, and then all significant ramps are detected and merged through a dynamic programming algorithm. An application of the optimized SDA is provided to ascertain the optimal parameter of the original SDA. Measured wind power data from the Electric Reliability Council of Texas (ERCOT) are used to evaluate the proposed optimized SDA.

  12. Generalized Information Architecture for Managing Requirements in IBM?s Rational DOORS(r) Application.

    SciTech Connect (OSTI)

    Aragon, Kathryn M.; Eaton, Shelley M.; McCornack, Marjorie T.; Shannon, Sharon A.

    2014-12-01

    When a requirements engineering effort fails to meet expectations, often times the requirements management tool is blamed. Working with numerous project teams at Sandia National Laboratories over the last fifteen years has shown us that the tool is rarely the culprit; usually it is the lack of a viable information architecture with well- designed processes to support requirements engineering. This document illustrates design concepts with rationale, as well as a proven information architecture to structure and manage information in support of requirements engineering activities for any size or type of project. This generalized information architecture is specific to IBM's Rational DOORS (Dynamic Object Oriented Requirements System) software application, which is the requirements management tool in Sandia's CEE (Common Engineering Environment). This generalized information architecture can be used as presented or as a foundation for designing a tailored information architecture for project-specific needs. It may also be tailored for another software tool. Version 1.0 4 November 201

  13. A NOVEL APPROACH TO DRUM VENTING AND DRUM MONITORINGe/pj

    SciTech Connect (OSTI)

    Ohl, P.C.; Farwick, C.C.; Douglas, D.G.; Cruz, E.J.

    2003-02-27

    This paper describes the details and specifications associated with drum venting and drum monitoring technologies, and discusses the maturity of in-place systems and current applications. Each year, unventilated drums pressurize and develop bulges and/or breaches that can result in potentially hazardous explosions, posing undesirable hazards to workers and the environment. Drum venting is accomplished by the safe and simple installation of ventilated lids at the time of packaging, or by the inherently risky in-situ ventilation (depressurization) of ''bulged'' drums. Drum monitoring employs either a Magnetically Coupled Pressure Gauge (MCPG) Patent Pending and/or a Magnetically Coupled Corrosion Gauge (MCCG) Patent Pending. Through patented magnetic sensor coupling, these devices enable the noninvasive and remote monitoring of the potentially hazardous materials and/or spent nuclear fuel that is contained in 55-gal drums and associated steel overpack containers.

  14. Modeling Lithium Ion Battery Safety: Venting of Pouch Cells; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Santhanagopalan, Shriram.; Yang, Chuanbo.; Pesaran, Ahmad

    2013-07-01

    This report documents the successful completion of the NREL July milestone entitled Modeling Lithium-Ion Battery Safety - Complete Case-Studies on Pouch Cell Venting, as part of the 2013 Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy (DOE). This work aims to bridge the gap between materials modeling, usually carried out at the sub-continuum scale, and the

  15. Characterizing Microbial Community and Geochemical Dynamics at Hydrothermal Vents Using Osmotically Driven Continuous Fluid Samplers

    SciTech Connect (OSTI)

    Robidart, Julie C.; Callister, Stephen J.; Song, Peng F.; Nicora, Carrie D.; Wheat, Charles G.; Girguis, Peter R.

    2013-05-07

    Microbes play a key role in mediating all aquatic biogeochemical cycles, and ongoing efforts are aimed at better understanding the relationships between microbial phylogenetic and physiological diversity, and habitat physical and chemical characteristics. Establishing such relationships is facilitated by sampling and studying microbiology and geochemistry at the appropriate spatial and temporal scales, to access information on the past and current environmental state that contributes to observed microbial abundances and activities. A modest number of sampling systems exist to date, few of which can be used in remote, harsh environments such as hydrothermal vents, where the ephemeral nature of venting underscores the necessity for higher resolution sampling. We have developed a robust, continuous fluid sampling system for co-registered microbial and biogeochemical analyses. The osmosis-powered bio-osmosampling system (BOSS) use no electricity, collects fluids with daily resolution or better, can be deployed in harsh, inaccessible environments and can sample fluids continuously for up to five years. Here we present a series of tests to examine DNA, RNA and protein stability over time, as well as material compatability, via lab experiments. We also conducted two field deployments at deep-sea hydrothermal vents to assess changes in microbial diversity and protein expression as a function of the physico-chemical environment. Our data reveal significant changes in microbial community composition co-occurring with relatively modest changes in the geochemistry. These data additionally provide new insights into the distribution of an enigmatic sulfur oxidizing symbiont in its free-living state. Data from the second deployment reveal differences in the representation of peptides over time, underscoring the utility of the BOSS in meta-proteomic studies. In concert, these data demonstrate the efficacy of this approach, and illustrate the value of using this method to study microbial and geochemical phenomena.

  16. A vent sizing program with particular reference to hybrid runaway reaction systems

    SciTech Connect (OSTI)

    Leung, J.C.; Noronha, J.A.; Torres, A.J.

    1995-12-31

    VSSPH (Vent Sizing Software Program for Hybrid System) is a software program designed to yield rapid evaluation of emergency requirements requirements for a general class of hybrid system runaway reaction - a system which generate both condensable vapor and noncondensable gases. The calculational method is based on transient numerical solutions as well as analytical solutions. This program only requires a few key input parameters as well as physical properties. The program also incorporates the latest two-phase pipe flow model based on the {omega} methodology. This paper describes the model construction and summarizes the results of sample runs. 5 refs., 5 figs.

  17. Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand

    SciTech Connect (OSTI)

    Jones, B.; Renaut, R.W.; Rosen, M.R.

    1997-01-01

    Before anthropogenic modifications, Ohaaki Pool (Broadlands-Ohaaki) and Dragon`s Mouth Geyser (Wairakei) emitted waters at temperatures of 93--98 C. The siliceous sinter that precipitated around their vents has the characteristics of geyserite, a dense laminated deposit of presumed abiogenic origin, that was precipitated from waters too hot (>73C) to support microbes other than thermophilic bacteria. Petrographic and SEM examinations of the sinters show that they incorporate columnar stromatolites and silicified, laminated stromatolitic mats that contain well-preserved filamentous microbes. At both localities the microbes lack evidence of desiccation or shrinkage, which implies that they were silicified rapidly at or shortly after their death. Although boiling and very hot (>90 C) waters were discharged, temperatures at many sites surrounding the vents remained sufficiently low and moist to support a microbial community that included thermophilic bacteria and cyanobacteria. In these cooler niches, the microbes and their biofilms served as highly favorable templates for the nucleation and growth of amorphous silica, and collectively provided a microbial framework for the laminated accretionary sinter. Some columnar, spicular, and stratiform geyserites are probably not abiotic precipitates, but are true silica stromatolites.

  18. Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Vented and Flared (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 1,994 1,804 1,837 1,504 1,798 1,541 1,890 1,954 1,742 2,018 1,823 1,711 2002 1,661 1,512 1,693 1,728 1,794 1,738 1,809 1,820 1,523 1,433 1,667 1,714 2003 1,728 1,590 1,801 1,753 1,774

  19. Gaseous fission product management for molten salt reactors and vented fuel systems

    SciTech Connect (OSTI)

    Messenger, S. J.; Forsberg, C.; Massie, M.

    2012-07-01

    Fission gas disposal is one of the unresolved difficulties for Molten Salt Reactors (MSRs) and advanced reactors with vented fuel systems. As these systems operate, they produce many radioactive isotopes of xenon and krypton (e.g. {sup 135}Xe t{sub 1/2} = 9.14 hours and {sup 85}Kr t{sub 1/2}= 10.73 years). Removing these gases proves vital to the success of such reactor designs for two reasons. First, the gases act as large neutron sinks which decrease reactivity and must be counterbalanced by increasing fuel loading. Second, for MSRs, inert fission product gases naturally separate quickly from high temperature salts, thus creating high vapor pressure which poses safety concerns. For advanced reactors with solid vented fuel, the gases are allowed to escape into an off-gas system and thus must be managed. Because of time delays in transport of fission product gases in vented fuel systems, some of the shorter-lived radionuclides will decay away thereby reducing the fission gas source term relative to an MSR. To calculate the fission gas source term of a typical molten salt reactor, we modeled a 1000 MWe graphite moderated thorium MSR similar to that detailed in Mathieu et al. [1]. The fuel salt used in these calculations was LiF (78 mole percent) - (HN)F 4 (22 mole percent) with a heavy nuclide composition of 3.86% {sup 233}U and 96.14% {sup 232}Th by mass. Before we can remove the fission product gases produced by this reactor configuration, we must first develop an appropriate storage mechanism. The gases could be stored in pressurized containers but then one must be concerned about bottle failure. Methods to trap noble gases in matrices are expensive and complex. Alternatively, there are direct storage/disposal options: direct injection into the Earth or injecting a grout-based product into the Earth. Advances in drilling technologies, hydro fracture technologies, and methods for the sequestration of carbon dioxide from fossil fuel plants are creating new options for disposal of fission gas wastes. In each option, lithostatic pressure, a kilometer or more underground, eliminates the pressure driving force for noble gas release and dissolves any untrapped gas in deep groundwater or into incorporated solid waste forms. The options, challenges, and potential for these methods to dispose of gaseous fission products are described. With this research, we hope to help both MSRs and other advanced reactors come one step closer to commercialization. (authors)

  20. Use a Vent Condenser to Recover Flash Steam Energy, Energy Tips: STEAM, Steam Tip Sheet #13 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Use a Vent Condenser to Recover Flash Steam Energy When the pressure of saturated condensate is reduced, a portion of the liquid "fashes" to low-pressure steam. Depending on the pressures involved, the fash steam contains approximately 10% to 40% of the energy content of the original condensate. In most cases, including condensate receivers and deaerators, the fashing steam is vented and its energy content lost. However, a heat exchanger can be placed in the vent to recover this

  1. Field-scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as an oxygen source with moisture and nutrient addition. Appendices. Doctoral thesis

    SciTech Connect (OSTI)

    Miller, R.N.

    1990-01-01

    This document contains appendices regarding a reprint on a field scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as a oxygen source with moisture and nutrient addition.

  2. NATURAL CO2 FLOW FROM THE LOIHI VENT: IMPACT ON MICROBIAL PRODUCTION AND FATE OF THE CO2

    SciTech Connect (OSTI)

    Richard B. Coffin; Thomas J. Boyd; David L. Knies; Kenneth S. Grabowski; John W. Pohlman; Clark S. Mitchell

    2004-02-27

    The program for International Collaboration on CO{sub 2} Ocean Sequestration was initiated December 1997. Preliminary steps involved surveying a suite of biogeochemical parameters off the coast of Kona on the Big Island of Hawaii. The preliminary survey was conducted twice, in 1999 and 2000, to obtain a thorough data set including measurements of pH, current profiles, CO{sub 2} concentrations, microbial activities, and water and sediment chemistries. These data were collected in order to interpret a planned CO{sub 2} injection experiment. After these preliminary surveys were completed, local environment regulation forced moving the project to the coast north east of Bergen, Norway. The preliminary survey along the Norwegian Coast was conducted during 2002. However, Norwegian government revoked a permit, approved by the Norwegian State Pollution Control Authority, for policy reasons regarding the CO{sub 2} injection experiment. As a result the research team decided to monitor the natural CO{sub 2} flow off the southern coast of the Big Island. From December 3rd-13th 2002 scientists from four countries representing the Technical Committee of the International Carbon Dioxide Sequestration Experiment examined the hydrothermal venting at Loihi Seamount (Hawaiian Islands, USA). Work focused on tracing the venting gases, the impacts of the vent fluids on marine organisms, and CO{sub 2} influence on biogeochemical cycles. The cruise on the R/V Ka'imikai-O-Kanaloa (KOK) included 8 dives by the PISCES V submarine, 6 at Loihi and 2 at a nearby site in the lee of the Big Island. Data for this final report is from the last 2 dives on Loihi.

  3. The doors were officially

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Covering your mouth and nose with a tissue when you sneeze or cough will go a long way to decreasing the amount of infected droplets spread to others. Also stay away from those who ...

  4. Black Hills Energy (Gas) - Commercial Energy Efficiency Program...

    Broader source: Energy.gov (indexed) [DOE]

    Colorado Program Type Rebate Program Rebate Amount New Construction: 0.60 - 1.90therm Design Team Incentive: Up to 13,000 Set Back Thermostats: 25-50 Vent Dampers (For...

  5. Laboratory determination of gas-side mass transfer coefficients applicable to soil-venting systems for removing petroleum hydrocarbons from vadose-zone soils. Master's thesis

    SciTech Connect (OSTI)

    Van Valkenburg, M.E.

    1991-01-01

    Contamination of the subsurface environment by organic solvents has become a national problem. The EPA's Superfund list (40 CFR Part 300, 1990) continues to grow, with continual discovery of new hazardous waste sites. Various techniques are employed to remediate these sites, including excavation and removal of the contaminated soil for proper disposal, pumping and treatment of contaminated ground water and an organic phase if present, containment by slurried soil-bentonite cut-off barriers, in situ biological treatment of the organic wastes, and vadose zone soil venting for gas absorption of volatiles. Each technique, or combination, may have merit at a given site. The soil venting process, an inexpensive but relatively successful technique for removal of contaminants from the vadose (unsaturated) zone, is the focus of the research.

  6. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam, Energy Tips: STEAM, Steam Tip Sheet #29 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam Large industrial plants often vent signifcant quantities of low-pressure steam to the atmosphere, wasting energy, water, and water-treatment chemicals. Recovery of the latent heat content of low-pressure steam reduces the boiler load, resulting in energy and fuel cost savings. Low-pressure steam's potential uses include driving evaporation and distillation processes, producing hot water, space heating,

  7. Nonradioactive Air Emissions Notice of Construction (NOC) Application for the Central Waste Complex (CSC) for Storage of Vented Waste Containers

    SciTech Connect (OSTI)

    KAMBERG, L.D.

    2000-04-01

    This Notice of Construction (NOC) application is submitted for the storage and management of waste containers at the Central Waste Complex (CWC) stationary source. The CWC stationary source consists of multiple sources of diffuse and fugitive emissions, as described herein. This NOC is submitted in accordance with the requirements of Washington Administrative Code (WAC) 173-400-110 (criteria pollutants) and 173-460-040 (toxic air pollutants), and pursuant to guidance provided by the Washington State Department of Ecology (Ecology). Transuranic (TRU) mixed waste containers at CWC are vented to preclude the build up of hydrogen produced as a result of radionuclide decay, not as safety pressure releases. The following activities are conducted within the CWC stationary source: Storage and inspection; Transfer and staging; Packaging; Treatment; and Sampling. This NOC application is intended to cover all existing storage structures within the current CWC treatment, storage, and/or disposal (TSD) boundary, as well as any storage structures, including waste storage pads and staging areas, that might be constructed in the future within the existing CWC boundary.

  8. Aluminum Bronze Alloys to Improve the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs and Side Vents.

    SciTech Connect (OSTI)

    Lawrence C. Boyd Jr.; Dr. Vinod K. Sikka

    2006-12-29

    Energy Industries of Ohio was the lead organization for a consortium that examined the current situation involving the service life of electric arc and basic oxygen furnace hoods, roofs and side vents. Republic Engineered Products (REP), one of the project partners, installed a full-scale Al-Bronze “skirt” in their BOF at their Lorain OH facility, believed to be the first such installation of this alloy in this service. In 24 months of operation, the Al-Bronze skirt has processed a total of 4,563 heats, requiring only 2 shutdowns for maintenance, both related to physical damage to the skirt from operational mishaps. Yearly energy savings related to the REP facility are projected to be ~ 10 billion Btu's with significant additional environmental and productivity benefits. In recognition of the excellent results, this project was selected as the winner of the Ohio’s 2006 Governor’s Award for Excellence in Energy, the state’s award for outstanding achievements in energy efficiency.

  9. Building America Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings, New York, New York

    SciTech Connect (OSTI)

    2015-10-15

    Exhaust ventilation and corresponding outdoor air strategies are being implemented in high-performance new construction multifamily buildings to meet program or code requirements for improved indoor air quality, but a lack of clear design guidance is resulting in poor performance of these systems despite the best intentions of the programs or standards. CARB's 2014 'Evaluation of Ventilation Strategies in New Construction Multifamily Buildings' consistently demonstrated that commonly used outdoor air strategies are not performing as expected. Of the four strategies evaluated in 2014, the exhaust ventilation system that relied on outdoor air from a pressurized corridor was ruled out as a potential best practice due to its conflict with meeting requirements within most fire codes. Outdoor air that is ducted directly to the apartments was a strategy determined to have the highest likelihood of success, but with higher first costs and operating costs. Outdoor air through space conditioning systems was also determined to have good performance potential, with proper design and execution. The fourth strategy, passive systems, was identified as the least expensive option for providing outdoor air directly to apartments, with respect to both first costs and operating costs. However, little is known about how they actually perform in real-world conditions or how to implement them effectively. Based on the lack of data available on the performance of these low-cost systems and their frequent use in the high-performance building programs that require a provision for outdoor air, this research project sought to further evaluate the performance of passive vents.

  10. Vented nuclear fuel element

    DOE Patents [OSTI]

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  11. wipp _vents.png

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  12. Driving Demand: Door-to-Door Outreach & Tracking Impacts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Effective Incentives to Drive Residential Retrofit Program Participation Effective O&M Policy in Public Buildings How to Design and Market Energy Efficiency Programs to ...

  13. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, R.J.

    1994-06-07

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

  14. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, Richard J. (Oak Ridge, TN)

    1994-01-01

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  15. SUBMERGED GRAVEL SCRUBBER DEMONSTRATION AS A PASSIVE AIR CLEANER FOR CONTAINMENT VENTING AND PURGING WITH SODIUM AEROSOLS -- CSTF TESTS AC7 - AC10

    SciTech Connect (OSTI)

    HILLIARD, R K.; MCCORMACK, J D.; POSTMA, A K.

    1981-11-01

    Four large-scale air cleaning tests (AC7 - AC10) were performed in the Containment Systems Test Facility (CS'lF) to demonstrate the performance of a Submerged Gravel Scrubber for cleaning the effluent gas from a vented and purged breeder reactor containment vessel. The test article, comprised of a Submerged Gravel Scrubber (SGS) followed by a high efficiency fiber demister, had a design gas flow rate of 0.47 m{sup 3}/s (1000 ft{sup 3}/min) at a pressure drop of 9.0 kPa (36 in. H{sub 2}O). The test aerosol was sodium oxide, sodium hydroxide, or sodium carbonate generated in the 850-m{sup 3} CSTF vessel by continuously spraying sodium into the air-filled vessel while adding steam or carbon dioxide. Approximately 4500 kg (10,000 lb) of sodium was sprayed over a total period of 100 h during the tests. The SGS/Demister system was shown to be highly efficient (removing ~99.98% of the entering sodium aerosol mass), had a high mass loading capacity, and operated in a passive manner, with no electrical requirement. Models for predicting aerosol capture, gas cooling, and pressure drop are developed and compared with experimental results.

  16. Natural Gas Vented and Flared

    Gasoline and Diesel Fuel Update (EIA)

    6-2015 Colorado NA NA NA NA NA NA 1996-2015 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2015 Kansas NA NA NA NA NA NA 1996-2015 Louisiana NA NA NA NA NA NA 1991-2015 Montana NA NA NA NA NA NA 1996-2015 New Mexico NA NA NA NA NA NA 1996-2015 North Dakota NA NA NA NA NA NA 1996-2015 Ohio NA NA NA NA NA NA 1991-2015 Oklahoma NA NA NA NA NA NA 1996-2015 Pennsylvania NA NA NA NA NA NA 1991-2015 Texas NA NA NA NA NA NA 1991-2015 Utah NA NA NA NA NA NA 1994-2015 West Virginia NA NA NA NA NA

  17. Natural Gas Vented and Flared

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1991-2015 Montana NA NA NA NA NA NA 1996-2015 New Mexico NA NA NA NA NA NA 1996-2015 North Dakota NA NA NA NA NA NA 1996-2015 Ohio NA NA NA NA NA NA 1991-2015 ...

  18. Natural Gas Vented and Flared

    U.S. Energy Information Administration (EIA) Indexed Site

    165,360 165,928 209,439 212,848 260,394 288,743 1936-2014 Alaska 6,481 10,173 10,966 11,769 7,219 6,554 1967-2014 Alaska Onshore 5,271 8,034 9,276 9,244 5,670 5,779 1992-2014 Alaska State Offshore 1,210 2,139 1,690 2,525 1,549 776 1992-2014 Arkansas 141 425 494 0 NA NA 1967-2014 California 2,501 2,790 2,424 0 NA NA 1967-2014 California Onshore 2,501 2,790 2,424 NA NA NA 1992-2014 California State Offshore 0 0 0 NA NA NA 2003-2014 Federal Offshore California NA NA 2003-2014 Colorado 1,411 1,242

  19. Natural Gas Vented and Flared

    U.S. Energy Information Administration (EIA) Indexed Site

    165,360 165,928 209,439 212,848 260,394 288,743 1936-2014 Alaska 6,481 10,173 10,966 11,769 7,219 6,554 1967-2014 Alaska Onshore 5,271 8,034 9,276 9,244 5,670 5,779 1992-2014 Alaska State Offshore 1,210 2,139 1,690 2,525 1,549 776 1992-2014 Arkansas 141 425 494 0 NA NA 1967-2014 California 2,501 2,790 2,424 0 NA NA 1967-2014 California Onshore 2,501 2,790 2,424 NA NA NA 1992-2014 California State Offshore 0 0 0 NA NA NA 2003-2014 Federal Offshore California NA NA 2003-2014 Colorado 1,411 1,242

  20. CX_Vent_System.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  1. Safety Concern: Roll-up Doors

    Broader source: Energy.gov (indexed) [DOE]

    program, and workers' continual situational awareness. 10 CFR 851 , Worker Safety and Health Program, incorporates OSHA Standards contained in 29 CFR 1910. 29 CFR 1910.219(f)(3)...

  2. List of Doors Incentives | Open Energy Information

    Open Energy Info (EERE)

    Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes AlabamaWISE Home Energy Program (Alabama)...

  3. Blower Door Tests | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in a doorway, a variable-speed fan, a pressure gauge to measure the pressure differences inside and outside the home, and an airflow manometer and hoses for measuring airflow....

  4. Fermilab | Science Next Door: Fermilab's Community Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2015 Facebook row spacer Twitter row spacer YouTube row spacer Subscribe | Fermilab Home row spacer row spacer row spacer row spacer row spacer Welcome to Science Next...

  5. Insulation Troubles: A Story of a House That Never Stayed Warm, Part 2 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 Insulation Troubles: A Story of a House That Never Stayed Warm, Part 2 November 10, 2015 - 4:37pm Addthis An insulated door was an easy upgrade from the steel cellar door that let cold air into our house. Photo by Elizabeth Spencer An insulated door was an easy upgrade from the steel cellar door that let cold air into our house. Photo by Elizabeth Spencer Our contractors layered radiant barriers with dense-pack insulation and sealed air vents. Photo by Elizabeth

  6. Controllable magneto-rheological fluid-based dampers for drilling

    DOE Patents [OSTI]

    Raymond, David W. (Edgewood, NM); Elsayed, Mostafa Ahmed (Youngsville, LA)

    2006-05-02

    A damping apparatus and method for a drillstring comprising a bit comprising providing to the drillstring a damping mechanism comprising magnetorheological fluid and generating an electromagnetic field affecting the magnetorheological fluid in response to changing ambient conditions encountered by the bit.

  7. Combined passive magnetic bearing element and vibration damper

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA)

    2001-01-01

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium and dampen transversely directed vibrations. Mechanical stabilizers are provided to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. In a improvement over U.S. Pat. No. 5,495,221, a magnetic bearing element is combined with a vibration damping element to provide a single upper stationary dual-function element. The magnetic forces exerted by such an element, enhances levitation of the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations, and suppresses the effects of unbalance or inhibits the onset of whirl-type rotor-dynamic instabilities. Concurrently, this equilibrium is made stable against displacement-dependent drag forces of the rotating object from its equilibrium position.

  8. Generator stator core vent duct spacer posts

    DOE Patents [OSTI]

    Griffith, John Wesley (Schenectady, NY); Tong, Wei (Clifton Park, NY)

    2003-06-24

    Generator stator cores are constructed by stacking many layers of magnetic laminations. Ventilation ducts may be inserted between these layers by inserting spacers into the core stack. The ventilation ducts allow for the passage of cooling gas through the core during operation. The spacers or spacer posts are positioned between groups of the magnetic laminations to define the ventilation ducts. The spacer posts are secured with longitudinal axes thereof substantially parallel to the core axis. With this structure, core tightness can be assured while maximizing ventilation duct cross section for gas flow and minimizing magnetic loss in the spacers.

  9. Retrofitting Doors on Open Refrigerated Cases | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - 2013 BTO Peer Review Better Buildings Alliance Equipment Performance Specifications - 2013 BTO Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013...

  10. Ethylene Production Via Sunlight Opens Door to Future - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    strain. Ethylene already can be made without fossil fuels through the conversion of bioethanol, but that requires making bioethanol plus an additional step. Yu's research showed...

  11. Community Power Works' Success Opens Doors to its Future

    Broader source: Energy.gov [DOE]

    Community Power Works is preparing for the next phase of the program with support from the City of Seattle's Office of Sustainability and Environment (OSE) and Clean Energy Works, the Portland, Oregon-based nonprofit organization that received seed funding from the Better Buildings Neighborhood Program and previously operated as Clean Energy Works Oregon. The partners will help Community Power Works develop a business plan and explore funding opportunities.

  12. Strategic Planning Opens Doors for Isolated Alaskan Village

    Broader source: Energy.gov [DOE]

    Through the Office of Indian Energy’s 2012 Strategic Technical Assistance Response Team (START) Program, the Organized Village of Kake in Alaska received assistance with community-based energy planning, energy awareness and training programs, and identification and implementation of renewable energy and energy efficiency opportunities.

  13. EECBG Success Story: Another Door Opens: Marion Invests in Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batzel EECBG Success Story: Missouri Water Treatment Plant Upgraded An aerial shot of Oro Valley, Ariz.'s town hall campus shows proposed solar locations. | Photo courtesy of...

  14. Clean Air Act Title V: Knocking on your door

    SciTech Connect (OSTI)

    Hosford, R.B. )

    1993-01-15

    The Clean Air Act Amendments of 1990 made several significant changes in the clean air program. One of the key elements of the Amendments was the inclusion of an operating permit program in Title V. The purpose of the program is to establish a central point for tracking all applicable air quality requirements for every source required to obtain a permit. This article provides a brief description of the most significant provisions. In addition, the subject of permit modification is discussed in some detail.

  15. Energy Performance Ratings for Windows, Doors, and Skylights...

    Office of Environmental Management (EM)

    pressure difference across it. It's expressed in units of cubic feet per minute per square foot of frame area (cfmft2). A product with a low air leakage rating is tighter than...

  16. Metal Oxide Semiconductor Nanoparticles Open the Door to New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for targeting, initiation and control of in vitro and in vivo chemical reactions in biological molecules Commercial applications include synthetic DNARNA endonucleases, gene...

  17. Covered Product Category: Residential Windows, Doors, and Skylights...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for hot climate zones whereas high gain products (greater than 0.55) are designed for cold climate zones. Although tinting can reduce solar heat gain, it also reduces the...

  18. "Troops to Energy Jobs" Opens New Doors for Veterans

    Broader source: Energy.gov [DOE]

    As a Veteran, I’ve always been acutely aware of the role that energy plays in our ability to defend and uphold our national security. This awareness manifested itself in many ways during my time in the field, from the economic struggles of my relatives and friends back home who were susceptible to price swings at the gas pump, to the safety of my fellow troops who put their lives on the line every day to escort caravans of fuel across treacherous terrain, to the literal weight of the batteries we carried on our persons while in the theater. We understand, perhaps better than anyone, that our pursuit of energy security and national security are inextricably linked.

  19. SWiFT Turbines Full Dynamic Characterization Opens Doors for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    available for researchers to perform validation studies of various modal analysis and vibration techniques as well as investigate turbine-to-turbine interactions and advanced rotor...

  20. Vinyl Kraft Windows and Doors | Open Energy Information

    Open Energy Info (EERE)

    Business and legal services;Consulting;Energy auditsweatherization; Installation; Maintenance and repair;Manufacturing; Retail product sales and distribution Phone Number:...

  1. Sandia National Laboratories: Out the door: DOE aims to expand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    private sector to boost the economy and create jobs, says the head of the department's new Office of Technology Transitions. "Tech transfer is a mission of the DOE and all our...

  2. WENDI Opens the Door to Wind Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For example, its keyword-based search instantly gives access to thousands of recent IEEE wind energy-related research and technical publications. The site's visual capabilities ...

  3. Sandia Energy - Caterpillar, Sandia CRADA Opens Door to Multiple...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Capabilities Systems Analysis Modeling Modeling & Analysis Modeling Modeling & Analysis Materials Science Computational Modeling & Simulation Sensors & Optical Diagnostics...

  4. South Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 4 5 5 5 1980's 5 52 54 85 165 194 140 0 0 0 1990's 3,648 4,844 5,476 5,732 5,805 7,122 7,636 1,639 1,526 1,555 2000's 1,806 2,043 1,880 2,100 2,135 2,071 1,931 2,177 2,073 2,160 2010's 2,136 2,120 0

  5. Louisiana Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 161,849 166,439 158,852 1970's 154,089 103,564 63,667 102,091 31,572 25,459 31,467 33,251 29,807 26,061 1980's 22,851 23,042 19,781 25,651 25,008 25,013 24,173 25,290 22,835 21,898 1990's 20,660 20,415 20,538 19,580 19,689 18,729 21,705 21,928 19,543 21,509 2000's 20,266 11,750 10,957 9,283 5,015 5,228 6,665 6,496 4,021 4,336 2010's 4,578 6,302 0 3,912 4,143

  6. Maryland Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  7. Michigan Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,861 1,120 808 1970's 809 1,032 1,117 1,268 1,612 2,042 2,291 2,736 2,960 1980's 3,433 3,310 3,320 3,324 3,324 3,324 3,324 3,705 3,324 4,070 1990's 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 2000's 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 2010's 3,324 3,324 0

  8. Mississippi Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,098 5,910 8,097 1970's 7,233 5,090 3,672 10,767 10,787 11,862 13,599 13,514 36,273 38,417 1980's 16,627 12,188 10,799 8,694 9,862 4,097 4,845 4,112 5,512 4,201 1990's 3,628 2,799 3,076 2,222 1,928 2,234 2,677 2,742 2,798 2,745 2000's 2,477 2,961 3,267 3,501 3,812 3,944 4,575 5,909 7,504 7,875 2010's 8,685 9,593 0

  9. Missouri Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA 2010's NA NA NA 0 0

  10. Montana Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,022 12,551 26,458 1970's 5,203 4,917 4,222 3,691 3,901 3,202 2,070 1,095 1,408 1,689 1980's 1,705 1,896 1,667 1,549 1,285 1,460 1,468 1,181 1,146 1,099 1990's 886 772 763 758 551 417 596 1,120 1,274 317 2000's 488 404 349 403 1,071 629 1,173 3,721 6,863 7,001 2010's 5,722 4,878 0

  11. Utah Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,000 2,906 2,802 1970's 2,852 2,926 5,506 7,664 5,259 1,806 1,048 691 469 560 1980's 2,439 2,740 3,682 1,572 1,766 1,161 1990's 1,338 1,625 1,284 2,153 3,363 35,069 27,277 16,790 19,365 13,835 2000's 1,941 1,847 955 705 688 595 585 1,005 1,285 1,398 2010's 2,080 1,755 0

  12. Wyoming Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,498 13,038 17,632 1970's 18,419 3,860 8,376 6,618 6,102 3,223 1,916 699 559 1,830 1980's 1,117 983 2,149 5,233 3,271 1,330 2,413 25,107 45,342 47,793 1990's 63,216 82,854 89,736 126,362 126,722 148,721 145,452 140,147 8,711 9,002 2000's 9,945 7,462 12,356 16,685 16,848 31,161 31,661 47,783 42,346 42,530 2010's 42,101 57,711 45,429 34,622 29,641

  13. Nebraska Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 1,558 1,263 834 2,137 1,398 797 60 0 0 1980's 0 194 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 5 12 23 29 17 5 2 9 2010's 24 21 0

  14. Nevada Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0

  15. North Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 25,795 22,050 22,955 1970's 19,862 2,686 20,786 22,533 17,860 2,155 2,737 1,116 6,788 26,932 1980's 7,975 698 1 996 2,018 2,984 6,853 2,771 2,771 2,050 1990's 3,642 2,603 2,197 2,337 2,492 4,300 2,957 3,534 4,371 2,693 2000's 3,290 3,166 2,791 2,070 2,198 3,260 7,460 10,500 25,700 26,876 2010's 24,582 49,652 79,564 102,855 129,384

  16. Oregon Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  17. Assessment of Literature Related to Combustion Appliance Venting...

    Office of Scientific and Technical Information (OSTI)

    Publication: United States Language: English Subject: 29 ENERGY PLANNING, POLICY, AND ECONOMY Word Cloud More Like This Full Text preview image File size NAView Full Text View...

  18. Alabama Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 360 422 795 1970's 656 308 966 1,890 1,492 1,107 1,088 1,180 1,695 1,497 1980's 3,175 2,485 2,806 1,793 1,829 1,426 1,310 1,356 1,824 1,503 1990's 1,933 2,193 1,799 1,798 2,650 2,935 1,853 1,563 1,462 1,085 2000's 1,262 1,039 1,331 1,611 2,316 2,485 3,525 2,372 1,801 2,495 2010's 2,617 3,491 0

  19. Alaska Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,390 24,258 32,543 1970's 34,808 33,880 21,590 4,979 11,524 10,401 6,554 15,644 8,492 4,526 1980's 4,820 5,630 6,946 5,027 11,670 6,296 8,862 15,603 9,018 9,786 1990's 10,727 10,784 14,097 22,485 13,240 8,736 7,070 8,269 8,171 7,098 2000's 7,546 7,686 7,312 6,345 6,088 6,429 7,125 6,458 10,023 6,481 2010's 10,173 10,966 11,769 7,219 6,554

  20. Alaska Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 815 672 921 1,101 820 914 1,257 828 750 843 991 873 1992 1,627 880 1,087 827 1,093 902 1,323 1,401 1,859 1,015 1,082 1,001 1993 1,044 2,207 1,408 2,149 2,273 4,052 2,251 1,323 1,734 1,557 906 1,581 1994 615 1,300 829 1,266 1,338 2,386 1,325 779 1,021 917 534 931 1995 858 547 835 883 1,574 874 514 674 605 615 1996 682 532 552 569 588 618 691 545 634 560 528 570 1997 798 623 646 666 687 723 808 637 741 654 618 666 1998 788 615 639 658 679

  1. Arkansas Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 997 895 1,326 1970's 226 1,734 2,649 1,947 1,716 1,318 1,227 1,153 869 471 1980's 394 552 973 973 2,225 824 1,760 1,068 1,110 1,110 1990's 284 208 371 409 313 313 270 134 45 6,005 2000's 206 431 251 354 241 241 12 11 114 141 2010's 425 494 0

  2. Structure and Stratigraphy Beneath a Young Phreatic Vent: South...

    Open Energy Info (EERE)

    deformation. Authors John C. Eichelberger, Thomas A. Vogel, Leland W. Younker, C. Dan Miller, Grant H. Heiken and Kenneth H. Wohletz Published Journal Journal of Geophysical...

  3. MHK ISDB/Sensors/Vented Wave Sensor | Open Energy Information

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  4. MHK ISDB/Sensors/Vented Pressure Sensor | Open Energy Information

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  5. Convection venting lensed reflector-type compact fluorescent lamp system

    DOE Patents [OSTI]

    Pelton, B.A.; Siminovitch, M.

    1997-07-29

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures. 12 figs.

  6. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use Vapor Recompression to Recover Low-Pressure Waste Steam Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Consider Installing High-Pressure Boilers with ...

  7. New Mexico Natural Gas Vented and Flared (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,992 5,987 4,058 1970's 2,909 2,823 5,696 3,791 1,227 1,642 1,519 5,065 8,163 4,636 1980's...

  8. MHK ISDB/Sensors/Vented Tide Sensor | Open Energy Information

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  9. Alabama Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 194 200 140 132 106 82 205 152 157 192 159 134 1997 134 110 90 112 98 125 119 114 118 91 227 224 1998 125 101 87 104 91...

  10. California Natural Gas Vented and Flared (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    111 113 85 88 213 140 121 108 122 171 175 144 1998 235 192 246 157 166 129 173 167 152 132 127 76 1999 165 135 173 110 116 91 121 117 106 92 89 53 2000 266 218 279 178 188 146...

  11. Louisiana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,788 1,684 1,571 1,593 1,807 1,690 2,042 1,781 1,437 1,867 1,649 1,505 1992 1,707 1,639 1,564 1,775 1,752 2,153 1,623 1,737 1,907 1,568 1,595 1,518 1993 1,588 1,460 1,500 1,708 1,614 1,590 1,778 1,711 2,014 1,500 1,482 1,636 1994 1,597 1,468 1,509 1,717 1,623 1,599 1,788 1,720 2,025 1,509 1,490 1,645 1995 1,519 1,396 1,435 1,633 1,544 1,521 1,701 1,636 1,926 1,435 1,418 1,565 1996 1,545 1,443 1,514 1,471 1,528 1,939 2,042 2,033 1,985

  12. Maryland Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  13. Michigan Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 277 277 277 277 277 277 277 277 277 277 277 277 1997 277 277 277 277 277 277 277 277 277 277 277 277 1998 277 277 277 277 277 277 277 277 277 277 277 277 1999 277 277 277 277 277 277 277 277 277 277 277 277 2000 277 277 277 277 277 277 277 277 277 277 277 277 2001 277 277 277 277 277 277 277 277 277 277 277 277 2002 277 277 277 277 277 277 277 277 277 277 277 277 2003 277 277 277 277 277 277 277 277 277 277 277 277 2004 277 277 277 277

  14. Mississippi Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 217 199 223 219 237 234 239 235 213 224 218 220 1997 214 202 214 209 221 223 218 242 235 258 250 256 1998 250 222 245 225 233 220 238 232 235 234 227 236 1999 230 217 247 232 239 233 234 231 226 223 214 219 2000 205 161 204 193 213 198 210 214 205 223 216 235 2001 236 216 234 241 248 236 265 266 242 260 251 267 2002 259 299 266 255 266 262 267 274 276 280 267 298 2003 293 261 282 277 284 285 244 304 306 323 305 337 2004 319 321 331 325

  15. Missouri Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0

  16. Montana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 32 38 34 40 43 27 63 59 60 71 67 62 1997 67 60 71 62 66 83 72 92 47 118 186 195 1998 189 147 159 177 107 76 155 129 136 0 0 0 1999 47 54 50 52 56 58 0 0 0 0 0 0 2000 43 39 41 44 49 44 44 36 36 39 43 28 2001 36 32 40 35 36 36 35 33 34 32 28 27 2002 30 25 27 31 31 30 28 32 30 29 28 27 2003 34 28 30 33 34 36 32 32 29 30 43 43 2004 49 41 37 81 85 91 97 125 135 150 125 55 2005 42 36 52 46 57 57 60 55 52 56 51 66 2006 74 75 73 86 111 99 94 87

  17. Nebraska Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 1 0 0 2003 1 1 1 1 1 1 1 1 1 1 1 1 2004 2 1 1 2 2 1 3 2 2 2 2 2 2005 4 3 2 2 2 1 2 3 2 3 3 3 2006 5 2 2 1

  18. Nevada Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  19. California Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,565 2,780 3,074 1970's 2,499 575 1,999 1,560 1,537 1,288 1,038 960 1,253 1980's 1,386 1,907 1,907 1,135 2,116 2,200 2,750 2,734 2,733 2,731 1990's 1,244 1,429 751 580 830 1,250 1,268 1,590 1,952 1,367 2000's 2,210 1,717 2,690 3,940 3,215 2,120 1,562 1,879 2,127 2,501 2010's 2,790 2,424 0

  20. Colorado Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,656 1,514 1,326 1970's 7,126 2,843 4,758 3,008 2,957 2,516 1,836 1,528 1,108 1,199 1980's 796 1,195 1,223 1,360 1,000 1,821 1,577 2,360 4,593 3,961 1990's 4,719 2,890 1,868 2,024 2,476 1,510 1,230 2,178 1,244 802 2000's 805 908 935 1,123 1,158 1,215 1,291 1,333 1,501 1,411 2010's 1,242 1,291 0

  1. Colorado Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 112 77 78 91 100 89 100 106 97 121 155 102 1997 173 188 180 168 228 187 188 102 189 192 185 199 1998 92 166 98 92 98 115 222 83 82 92 95 10 1999 70 71 70 65 68 66 66 66 63 67 65 64 2000 67 64 68 65 68 66 67 68 65 69 69 70 2001 77 69 75 71 73 74 73 78 76 79 78 83 2002 83 75 84 79 79 77 79 80 72 80 72 75 2003 96 86 95 92 95 92 94 96 94 98 95 90 2004 99 89 98 94 98 95 97 99 97 101 98 93 2005 103 94 103 99 103 99 102 104 102 106 102 98 2006

  2. Indiana Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0

  3. Indiana Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  4. Kansas Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,630 2,529 2,666 1970's 2,713 2,669 2,681 2,377 889 846 831 783 861 801 1980's 737 641 431 436 467 514 450 458 578 509 1990's 557 628 642 670 715 723 716 680 605 555 2000's 527 481 456 420 398 378 365 363 373 353 2010's 323 307 0

  5. Kansas Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 63 63 63 61 62 57 57 55 56 58 59 61 1997 60 55 60 59 62 60 58 54 50 54 54 54 1998 55 50 54 52 52 52 45 48 48 51 49 50 1999 52 44 47 46 46 47 46 46 44 45 44 46 2000 47 43 45 50 45 44 45 45 42 42 41 41 2001 42 37 41 40 41 39 41 41 39 40 39 40 2002 40 36 40 38 40 39 39 39 36 37 36 37 2003 36 32 36 35 36 34 36 36 35 35 34 34 2004 34 32 34 33 34 33 35 34 33 33 32 32 2005 32 30 32 32 32 30 32 33 31 32 31 31 2006 30 27 30 30 30 30 31 32 31 30 31

  6. Maryland Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  7. Michigan Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,861 1,120 808 1970's 809 1,032 1,117 1,268 1,612 2,042 2,291 2,736 2,960 1980's 3,433 3,310 3,320 3,324 3,324 3,324 3,324 3,705 3,324 4,070 1990's 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 2000's 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 2010's 3,324 3,324 0

  8. Mississippi Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,098 5,910 8,097 1970's 7,233 5,090 3,672 10,767 10,787 11,862 13,599 13,514 36,273 38,417 1980's 16,627 12,188 10,799 8,694 9,862 4,097 4,845 4,112 5,512 4,201 1990's 3,628 2,799 3,076 2,222 1,928 2,234 2,677 2,742 2,798 2,745 2000's 2,477 2,961 3,267 3,501 3,812 3,944 4,575 5,909 7,504 7,875 2010's 8,685 9,593 0

  9. Missouri Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA 2010's NA NA NA 0 0

  10. Montana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,022 12,551 26,458 1970's 5,203 4,917 4,222 3,691 3,901 3,202 2,070 1,095 1,408 1,689 1980's 1,705 1,896 1,667 1,549 1,285 1,460 1,468 1,181 1,146 1,099 1990's 886 772 763 758 551 417 596 1,120 1,274 317 2000's 488 404 349 403 1,071 629 1,173 3,721 6,863 7,001 2010's 5,722 4,878 0

  11. Nebraska Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 1,558 1,263 834 2,137 1,398 797 60 0 0 1980's 0 194 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 5 12 23 29 17 5 2 9 2010's 24 21 0

  12. Nevada Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0

  13. New Mexico Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,992 5,987 4,058 1970's 2,909 2,823 5,696 3,791 1,227 1,642 1,519 5,065 8,163 4,636 1980's 5,211 6,877 4,767 6,236 6,335 5,869 4,080 3,811 3,582 4,419 1990's 1,679 1,365 1,626 1,581 1,963 2,144 2,700 2,786 2,673 2,715 2000's 3,130 3,256 2,849 2,347 3,525 3,533 2,869 929 803 481 2010's 1,586 4,360 12,259 21,053 22,143

  14. New York Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 7 2,926 2,883 3,744 2,400 3,773 3,720 2,802 4,012 5,036 1990's 375 1 13 14 11 0 3 5 5 5 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  15. North Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 25,795 22,050 22,955 1970's 19,862 2,686 20,786 22,533 17,860 2,155 2,737 1,116 6,788 26,932 1980's 7,975 698 1 996 2,018 2,984 6,853 2,771 2,771 2,050 1990's 3,642 2,603 2,197 2,337 2,492 4,300 2,957 3,534 4,371 2,693 2000's 3,290 3,166 2,791 2,070 2,198 3,260 7,460 10,500 25,700 26,876 2010's 24,582 49,652 79,564 102,855 129,384

  16. Oregon Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  17. West Virginia Natural Gas Vented and Flared (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0...

  18. South Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 4 5 5 5 1980's 5 52 54 85 165 194 140 0 0 0 1990's 3,648 4,844 5,476 5,732 5,805 7,122 7,636 1,639 1,526 1,555 2000's 1,806 2,043 1,880 2,100 2,135 2,071 1,931 2,177 2,073 2,160 2010's 2,136 2,120 0

  19. Texas Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 129,403 124,584 111,499 1970's 100,305 70,222 59,821 36,133 34,431 31,295 30,402 27,340 25,556 27,350 1980's 28,837 32,907 33,061 28,420 32,256 30,776 26,050 29,325 31,832 29,770 1990's 28,247 30,638 19,689 34,486 42,037 46,183 45,382 47,922 25,949 35,675 2000's 32,010 26,823 27,379 23,781 26,947 38,654 43,169 36,682 42,541 41,234 2010's 39,569 35,248 47,530 76,113 81,755

  20. Utah Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,000 2,906 2,802 1970's 2,852 2,926 5,506 7,664 5,259 1,806 1,048 691 469 560 1980's 2,439 2,740 3,682 1,572 1,766 1,161 1990's 1,338 1,625 1,284 2,153 3,363 35,069 27,277 16,790 19,365 13,835 2000's 1,941 1,847 955 705 688 595 585 1,005 1,285 1,398 2010's 2,080 1,755 0

  1. Texas Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,478 2,147 2,113 2,353 3,203 2,833 3,175 2,684 2,296 2,457 2,750 2,150 1992 1,337 1,107 1,379 1,254 1,439 1,833 2,083 1,970 2,009 1,630 1,835 1,812 1993 3,276 3,172 2,618 2,863 2,492 2,286 2,563 2,471 2,865 3,708 2,934 3,238 1994 3,225 3,330 3,515 3,403 3,959 4,686 3,429 2,766 3,188 3,543 3,122 3,871 1995 3,543 3,658 3,862 3,738 4,350 5,148 3,768 3,039 3,503 3,893 3,430 4,252 1996 3,461 3,537 3,340 3,922 3,459 4,520 4,339 3,794 3,556

  2. New Mexico Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 236 220 240 230 241 229 217 221 212 215 216 223 1997 241 220 245 236 243 225 235 239 231 240 217 213 1998 231 211 235 227 233 215 226 229 221 230 209 205 1999 232 210 231 226 225 229 230 235 224 235 229 212 2000 289 245 293 242 287 251 285 246 240 278 233 242 2001 249 226 245 237 213 175 179 384 317 237 505 288 2002 304 207 214 254 269 249 266 263 247 216 202 159 2003 179 154 198 210 234 226 221 285 199 193 127 121 2004 124 128 292 275

  3. North Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 232 193 232 176 230 258 269 324 298 334 213 199 1997 229 264 293 280 303 313 258 301 327 330 321 315 1998 308 301 334 380 418 459 435 425 310 328 345 330 1999 231 194 245 204 202 206 231 307 232 227 202 212 2000 225 218 226 237 257 271 292 327 293 333 311 300 2001 269 246 276 255 245 263 289 283 250 260 281 249 2002 231 221 210 235 250 238 258 245 257 222 210 214 2003 196 167 193 174 167 161 158 171 164 181 168 170 2004 197 157 166 150

  4. Oregon Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0

  5. South Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 384 350 382 380 382 376 405 418 397 439 445 486 1992 455 445 448 468 497 447 465 459 438 450 440 465 1993 463 417 484 453 478 459 497 500 495 545 507 435 1994 385 324 383 373 409 424 506 590 595 591 601 625 1995 640 570 637 609 617 602 617 637 578 526 540 549 1996 533 516 618 620 662 658 680 685 650 689 657 669 1997 128 123 129 135 139 134 135 145 143 146 140 143 1998 145 134 148 145 129 114 122 121 118 119 114 117 1999 147 136 151 148

  6. Wyoming Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,712 5,109 6,529 6,408 6,948 6,430 7,035 7,792 7,475 7,837 7,649 7,930 1992 7,430 7,009 7,475 7,039 5,797 7,809 8,770 8,218 7,442 7,505 7,662 7,580 1993 10,674 10,789 10,568 10,480 11,572 12,350 10,996 8,163 9,912 10,526 9,870 10,463 1994 11,590 11,569 11,181 10,129 9,324 10,365 10,174 10,394 10,578 10,635 10,629 10,155 1995 13,046 11,867 11,628 12,102 14,419 12,911 12,917 10,472 12,302 12,592 11,896 12,569 1996 13,000 12,042 12,951

  7. California Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,565 2,780 3,074 1970's 2,499 575 1,999 1,560 1,537 1,288 1,038 960 1,253 1980's 1,386 1,907 1,907 1,135 2,116 2,200 2,750 2,734 2,733 2,731 1990's 1,244 1,429 751 580 830 1,250 1,268 1,590 1,952 1,367 2000's 2,210 1,717 2,690 3,940 3,215 2,120 1,562 1,879 2,127 2,501 2010's 2,790 2,424 0

  8. Colorado Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,656 1,514 1,326 1970's 7,126 2,843 4,758 3,008 2,957 2,516 1,836 1,528 1,108 1,199 1980's 796 1,195 1,223 1,360 1,000 1,821 1,577 2,360 4,593 3,961 1990's 4,719 2,890 1,868 2,024 2,476 1,510 1,230 2,178 1,244 802 2000's 805 908 935 1,123 1,158 1,215 1,291 1,333 1,501 1,411 2010's 1,242 1,291 0

  9. Indiana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0

  10. Kansas Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,630 2,529 2,666 1970's 2,713 2,669 2,681 2,377 889 846 831 783 861 801 1980's 737 641 431 436 467 514 450 458 578 509 1990's 557 628 642 670 715 723 716 680 605 555 2000's 527 481 456 420 398 378 365 363 373 353 2010's 323 307 0

  11. Louisiana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 161,849 166,439 158,852 1970's 154,089 103,564 63,667 102,091 31,572 25,459 31,467 33,251 29,807 26,061 1980's 22,851 23,042 19,781 25,651 25,008 25,013 24,173 25,290 22,835 21,898 1990's 20,660 20,415 20,538 19,580 19,689 18,729 21,705 21,928 19,543 21,509 2000's 20,266 11,750 10,957 9,283 5,015 5,228 6,665 6,496 4,021 4,336 2010's 4,578 6,302 0 3,912 4,143

  12. Utah Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 646 1995 696 4,590 4,767 4,382 4,389 4,603 4,932 5,137 1996 5,088 4,788 2,269 2,009 2,564 1,687 1,695 1,724 1,229 1,255 1,547 1,422 1997 2,411 2,381 1,594 942 490 1,391 1,344 1,185 1,114 1,130 1,058 1,750 1998 909 697 700 689 1,194 1,161 2,299 2,625 2,235 2,226 2,258 2,373 1999 1,462 1,480 993 1,254 1,131 1,316 904 776 1,291 1,249 894 1,084 2000 158 65 69 100 91 626 87 119 185 220 123 99 2001 129 98 83 55 49 47 79 274 242 254 469 68 2002

  13. West Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  14. Convection venting lensed reflector-type compact fluorescent lamp system

    DOE Patents [OSTI]

    Pelton, Bruce A. (825 Manor Rd., El Sobrante, CA 94803); Siminovitch, Michael (829 Manor Rd., El Sobrante, CA 94803)

    1997-01-01

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures.

  15. Arkansas Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 23 13 12 7 13 28 28 30 36 9 5 5 1992 33 29 32 31 30 29 30 30 30 32 32 33 1993 36 32 35 33 34 32 33 33 33 35 35 37 1994 27...

  16. Assessment of Literature Related to Combustion Appliance Venting...

    Office of Scientific and Technical Information (OSTI)

    Number: DE-AC02-05CH11231 Resource Type: Technical Report Research Org: Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US) Sponsoring Org: USDOE Office...

  17. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospiracrunogen...

    Office of Scientific and Technical Information (OSTI)

    ... A. ; Massey, Steven E. ; Martin, Darlene D. ; McCuddin, Zoe ; Meyer, Folker ; Moore, Jessica L. ; Ocampo, Luis H. ; Paul,John H. ; Paulsen, Ian T. ; Reep, Douglas K. ; ...

  18. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira...

    Office of Scientific and Technical Information (OSTI)

    Steven E 1 ; Martin, Darlene D 1 ; McCuddin, Zoe 10 ; Meyer, Folker 11 ; Moore, Jessica L 1 ; Ocampo Jr., Luis H 1 ; Paul, John H 12 ; Paulsen, Ian T 13 ; ...

  19. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospiracrunogen...

    Office of Scientific and Technical Information (OSTI)

    A. ; Massey, Steven E. ; Martin, Darlene D. ; McCuddin, Zoe ; Meyer, Folker ; Moore, Jessica L. ; Ocampo, Luis H. ; Paul,John H. ; Paulsen, Ian T. ; Reep, Douglas K. ; ...

  20. West Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  1. Wyoming Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,498 13,038 17,632 1970's 18,419 3,860 8,376 6,618 6,102 3,223 1,916 699 559 1,830 1980's 1,117 983 2,149 5,233 3,271 1,330 2,413 25,107 45,342 47,793 1990's 63,216 82,854 89,736 126,362 126,722 148,721 145,452 140,147 8,711 9,002 2000's 9,945 7,462 12,356 16,685 16,848 31,161 31,661 47,783 42,346 42,530 2010's 42,101 57,711 45,429 34,622 29,641

  2. New York Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 7 2,926 2,883 3,744 2,400 3,773 3,720 2,802 4,012 5,036...

  3. New York Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 1 0 0 0 0 0 0 0 0 0 1992 1 1 1 1 1 1 1 1 1 1 1 1 1993 1 1 1 1 1 1 1 1 1 1 1 1 1994 1 1 1 1 1 1 1 1 1 1 1 1 1995 0 0 0...

  4. Texas Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 129,403 124,584 111,499 1970's 100,305 70,222 59,821 36,133 34,431 31,295 30,402 27,340 25,556...

  5. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Door "B"

  6. System and method for damping vibration in a drill string using a magnetorheological damper

    DOE Patents [OSTI]

    Wassell, Mark Ellsworth (Houston, TX); Burgess, Daniel E. (Portland, CT); Barbely, Jason R. (East Islip, NY)

    2012-01-03

    A system for damping vibration in a drill string can include a magnetorheological fluid valve assembly having a supply of a magnetorheological fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil for inducing a magnetic field that alters the resistance of the magnetorheological fluid to flow between the first and second chambers, thereby increasing the damping provided by the valve. A remnant magnetic field is induced in one or more components of the magnetorheological fluid valve during operation that can be used to provide the magnetic field for operating the valve so as to eliminate the need to energize the coils during operation except temporarily when changing the amount of damping required, thereby eliminating the need for a turbine alternator power the magnetorheological fluid valve. A demagnetization cycle can be used to reduce the remnant magnetic field when necessary.

  7. EECBG Success Story: Another Door Opens: Marion Invests in Energy Efficiency

    Broader source: Energy.gov [DOE]

    City Hall in Marion, Ohio is getting a much needed renovation with energy efficiency upgrades, thanks to an Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

  8. New optics technology opens door to high-resolution atomic-level...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arising from the wedging constitutes proof of principle that wedging is a viable technology, thereby constituting a significant advancement toward a new frontier in X-ray...

  9. AHEM Lab Opens Doors to New Technology Test Bed at NREL (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    NREL studies smart sensors and dynamic control systems to help homeowners conserve energy, save money, and live comfortably.

  10. Opening Doors of Opportunity to Develop the Future Nuclear Workforce - 13325

    SciTech Connect (OSTI)

    Mets, Mindy

    2013-07-01

    The United States' long-term demand for highly skilled nuclear industry workers is well-documented by the Nuclear Energy Institute. In addition, a study commissioned by the SRS Community Reuse Organization concludes that 10,000 new nuclear workers are needed in the two-state region of Georgia and South Carolina alone. Young adults interested in preparing for these nuclear careers must develop specialized skills and knowledge, including a clear understanding of the nuclear workforce culture. Successful students are able to enter well-paying career fields. However, the national focus on nuclear career opportunities and associated training and education programs has been minimal in recent decades. Developing the future nuclear workforce is a challenge, particularly in the midst of competition for similar workers from various industries. In response to regional nuclear workforce development needs, the SRS Community Reuse Organization established the Nuclear Workforce Initiative (NWI{sup R}) to promote and expand nuclear workforce development capabilities by facilitating integrated partnerships. NWI{sup R} achievements include a unique program concept called NWI{sup R} Academies developed to link students with nuclear career options through firsthand experiences. The academies are developed and conducted at Aiken Technical College and Augusta Technical College with support from workforce development organizations and nuclear employers. Programs successfully engage citizens in nuclear workforce development and can be adapted to other communities focused on building the future nuclear workforce. (authors)

  11. Keys to Access: Argonne-INCREASE partnership opens doors to collaborat...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lacking access to world-class research tools limits the types of questions a cancer researcher or aerospace engineer can ask. This lack of access also limits their ability to...

  12. Keys to Access: Argonne-INCREASE partnership opens doors to collaboration |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory The INCREASE workshop gave visitors one-on-one access to Argonne staff to learn how to apply the lab's user facilities to their research. Researchers and staff at historically black college and universities and other minority-serving institutions don't typically have access to the networks that connect to these facilities. (Click image to enlarge.) The INCREASE workshop gave visitors one-on-one access to Argonne staff to learn how to apply the lab's user

  13. Wind and Water Power Program - Wind Power Opens Door To Diverse Opportunities (Green Jobs)

    SciTech Connect (OSTI)

    None

    2010-04-01

    The strong projected growth of wind power will require a stream of trained and qualified workers to manufacture, construct, operate, and maintain the wind energy facilities.

  14. Project Title: New Non SNM Door (4503) Program or Program Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  15. Detecting terrorist nuclear weapons at sea: The 10th door problem

    SciTech Connect (OSTI)

    Slaughter, D R

    2008-09-15

    While screening commercial cargo containers for the possible presence of WMD is important and necessary smugglers have successfully exploited the many other vehicles transporting cargo into the US including medium and small vessels at sea. These vessels provide a venue that is currently not screened and widely used. Physics limits that make screening of large vessels prohibitive impractical do not prohibit effective screening of the smaller vessels. While passive radiation detection is probably ineffective at sea active interrogation may provide a successful approach. The physics limits of active interrogation of ships at sea from standoff platforms are discussed. Autonomous platforms that could carry interrogation systems at sea, both airborne and submersible, are summarized and their utilization discussed. An R&D program to investigate the limits of this approach to screening ships at sea is indicated and limitations estimated.

  16. AHEM Lab Opens Doors to New Technology Test Bed at NREL (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's AHEM Laboratory is configured as a home of the future-complete with demand-response- enabled appliances, an entertainment center, lighting controls, a home office, and a ...

  17. EVALUATION OF THE TEMPORARY TENT COVER TRUSS SYSTEM AP PRIMARY VENT SYSTEM

    SciTech Connect (OSTI)

    HAQ MA

    2009-12-31

    The purpose of this calculation is to evaluate a temporary ten cover truss system. This system will be used to provide weather protection to the workers during replacement of the filter for the Primary Ventilation System in AP Tank Farm. The truss system has been fabricated utilizing tubes and couplers, which are normally used for scaffoldings.

  18. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam

    Broader source: Energy.gov [DOE]

    This tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  19. U.S. Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA NA 1974 NA NA NA NA NA NA NA NA NA NA NA NA 1975 NA NA NA NA NA NA NA NA NA NA NA NA 1976 NA NA NA NA NA NA NA NA NA NA NA NA 1977 NA NA NA NA NA NA NA NA NA NA NA NA 1978 NA NA NA NA NA NA NA NA NA NA NA NA 1979 NA NA NA NA NA NA NA NA NA NA NA NA 1980 12,000 10,000 10,000 10,000 11,000 9,000 9,000 10,000 12,000 10,000 10,000 11,000 1981 10,000 10,000 9,000 8,000 7,000 8,000 9,000 10,000 7,000 7,000 6,000

  20. Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge

    SciTech Connect (OSTI)

    Toner, Brandy M.; Santelli, Cara M.; Marcus, Matthew A.; Wirth, Richard; Chan, Clara S.; McCollom, Thomas; Bach, Wolfgang; Edwards, Katrina J.

    2008-05-22

    Here we examine Fe speciation within Fe-encrusted biofilms formed during 2-month seafloor incubations of sulfide mineral assemblages at the Main Endeavor Segment of the Juan de Fuca Ridge. The biofilms were distributed heterogeneously across the surface of the incubated sulfide and composed primarily of particles with a twisted stalk morphology resembling those produced by some aerobic Fe-oxidizing microorganisms. Our objectives were to determine the form of biofilm-associated Fe, and identify the sulfide minerals associated with microbial growth. We used micro-focused synchrotron-radiation X-ray fluorescence mapping (mu XRF), X-ray absorption spectroscopy (mu EXAFS), and X-ray diffraction (mu XRD) in conjunction with focused ion beam (FIB) sectioning, and highresolution transmission electron microscopy (HRTEM). The chemical and mineralogical composition of an Fe-encrusted biofilm was queried at different spatial scales, and the spatial relationship between primary sulfide and secondary oxyhydroxide minerals was resolved. The Fe-encrusted biofilms formed preferentially at pyrrhotite-rich (Fe1-xS, 0<_ x<_ 0.2) regions of the incubated chimney sulfide. At the nanometer spatial scale, particles within the biofilm exhibiting lattice fringing and diffraction patterns consistent with 2-line ferrihydrite were identified infrequently. At the micron spatial scale, Fe mu EXAFS spectroscopy and mu XRD measurements indicate that the dominant form of biofilm Fe is a short-range ordered Fe oxyhydroxide characterized by pervasive edge-sharing Fe-O6 octahedral linkages. Double corner-sharing Fe-O6 linkages, which are common to Fe oxyhydroxide mineral structures of 2-line ferrihydrite, 6-line ferrihydrite, and goethite, were not detected in the biogenic iron oxyhydroxide (BIO). The suspended development of the BIO mineral structure is consistent with Fe(III) hydrolysis and polymerization in the presence of high concentrations of Fe-complexing ligands. We hypothesize that microbiologically produced Fe-complexing ligands may play critical roles in both the delivery of Fe(II) to oxidases, and the limited Fe(III) oxyhydroxide crystallinity observed within the biofilm. Our research provides insight into the structure and formation of naturally occurring, microbiologically produced Fe oxyhydroxide minerals in the deep-sea. We describe the initiation of microbial seafloor weathering, and the morphological and mineralogical signals that result from that process. Our observations provide a starting point from which progressively older and more extensively weathered seafloor sulfide minerals may be examined, with the ultimate goal of improved interpretation of ancient microbial processes and associated biological signatures.

  1. U.S. Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1930's 392,528 526,159 649,106 677,311 1940's 655,967 630,212 626,782 684,115 1,010,285 896,208 1,102,033 1,067,938 810,178 853,884 1950's 801,044 793,186 848,608 810,276 723,567 773,639 864,334 809,148 633,412 571,048 1960's 562,877 523,533 425,629 383,408 341,853 319,143 375,695 489,877 516,508 525,750 1970's 489,460 284,561 248,119 248,292 169,381 133,913 131,930 136,807 153,350 167,019 1980's 125,451 98,017 93,365

  2. CAB Investment Review Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustain Steel Program Defective Damper Replacements The bulk of the 500 kV main grid (4,870 miles) is composed of conductor bundles in each phase or pole position. Spacer dampers...

  3. Approved for Public Release; Further Dissemination Unlimited

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... competitive procurement process, and lower groundwater ... Orders and Advanced Technologies and Laboratories ... PUREX exhaust fan vortex damper repair. o Continued ...

  4. Use Steam Jet Ejectors or Thermoscompressors to Reduce Venting of Low-Pressure Steam - Steam Tip Sheet #29

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  5. Nuclear reactor vessel fuel thermal insulating barrier

    DOE Patents [OSTI]

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  6. You won`t find these leaks with a blower door: The latest in {open_quotes}leaking electricity{close_quotes} in homes

    SciTech Connect (OSTI)

    Rainer, L.; Greenberg, S.; Meier, A.

    1996-08-01

    Leaking electricity is the energy consumed by appliances when they are switched off or not performing their principal functions. Field measurements in Florida, California, and Japan show that leaking electricity represents 50 to 100 Watts in typical homes, corresponding to about 5 GW of total electricity demand in the United States. There are three strategies to reduce leaking electricity: eliminate leakage entirely, eliminate constant leakage and replace with intermittent charge plus storage, and improve efficiency of conversion. These options are constrained by the low value of energy savings-less than $5 per saved Watt. Some technical and lifestyle solutions are proposed. 13 refs., 1 fig., 2 tabs.

  7. Microsoft Word - NONPHMC_CoC.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CERTIFICATE OF CONFORMANCE Container Identification Number:_________________________________________________ Section 1. Vent The vent that has been installed on this waste container and the waste packaging meet the requirements of HNF-EP-0063, Section 2.11.4. The vent is an approved vent listed in Appendix H of HNF-EP-0063 or has been approved for use. ~ N/A - Vent Not Required Per HNF-EP-0063 ~ Yes - Vent Model Number: Vent Serial Number: Section 2. Certification Signature of this Certificate

  8. Energy Savings Potential and R&D Opportunities for Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... to within 1 inch of full closure, except for doors wider than 3 feet 9 inches or taller than 7 feet. Strip doors, spring hinged doors, or other method of minimizing ...

  9. I-5 Corridor Reinforcement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Damper Replacement Program Wind Projects I-5 Corridor Reinforcement Current project schedule and activities BPA now expects to release our final EIS early in 2016, followed...

  10. Microsoft PowerPoint - Town Hall Slides 7-10-14 rev 0

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Phase II - July 1 * Phase I Recovery - Mitigation * Establishment of radiological buffer areas * Installation of CAM at Station B * Sealing of bypass dampers * Collection...

  11. Independent Oversight Review, Nevada National Security Site,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site, December 2013 Independent Oversight Review, Nevada National Security Site, December 2013 December 2013 Targeted Review of the Safety Significant Blast Door and Special Door ...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Wisconsin Wyoming Apply Current search Tankless Water Heater Remove Tankless Water Heater filter Doors Remove Doors filter Filter by eligibility: Residential (7) Apply...

  13. Microsoft Word - PHMC_CoC.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CERTIFICATE OF CONFORMANCE (CHPRC) Container Identification Number:_________________________________________________ Section 1. Vent The vent has been installed on this waste container and the waste packaging meets the requirements of HNF-EP-0063, Section 2.11.4. The vent is an approved vent listed in Appendix H of HNF-EP-0063 or has been approved for use. The vent on this container has been procured as a safety significant item. ~ N/A - Vent Not Required Per HNF-EP-0063 ~ N/A - Vent Procured

  14. Building America Technology Solutions Case Study: Evaluation of Passive

    Energy Savers [EERE]

    Vents in New-Construction Multifamily Buildings | Department of Energy Evaluation of Passive Vents in New-Construction Multifamily Buildings Building America Technology Solutions Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings The Consortium for Advanced Residential Buildings (CARB) conducted research to gain more insight into passive vents. Because passive vents are meant to operate in a general environment of negative apartment pressure, the research

  15. Alarm sensor apparatus for closures

    DOE Patents [OSTI]

    Carlson, J.A.; Stoddard, L.M.

    1984-01-31

    An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or framework and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

  16. Alarm sensor apparatus for closures

    DOE Patents [OSTI]

    Carlson, James A. (Thornton, CO); Stoddard, Lawrence M. (Arvada, CO)

    1986-01-01

    An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or frame work and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

  17. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance - United States Pacific Command (PACOM) Guam, Task 3.3: Building Retuning Training

    SciTech Connect (OSTI)

    Hatley, Darrel D.; Underhill, Ronald M.

    2010-09-30

    Document describes an onsite workshop and building retuning training conducted in Guam in August 2010. Document reports on issues identified during an audit of several buildings and recommendations to save energy throughout the site. During the workshop, it became apparent that as site personnel maintain the facilities at Guam, the following retuning efforts and strategies should be prioritized: (1) Controlling the mechanical systems operational hours and zone temperature set points appeared to present the best opportunities for savings; (2) Zone temperature set points in some buildings are excessively low, especially at night, when the zone temperatures are so cold that they approached the dewpoint; and (3) Manually-set outside air dampers are providing excessive outside air, especially for spaces that are unoccupied. Two of the larger schools, one on the Naval Base and one on Anderson AFB, are in need of a significant recommissioning effort. These facilities are relatively new, with direct digital controls (DDC) but are significantly out of balance. The pressure in one school is extremely negative, which is pulling humid air through the facility each time a door is opened. The draft can be felt several feet down the halls. The pressure in the other school is extremely positive relative to the outside, and you can stand 20-feet outside and still feel cool drafts of air exiting the building. It is recommended that humidity sensors be installed in all new projects and retrofitted into exist facilities. In this humid climate, control of humidity is very important. There are significant periods of time when the mechanical systems in many buildings can be unloaded and dehumidification is not required. The use of CO{sub 2} sensors should also be considered in representative areas. CO{sub 2} sensors determine whether spaces are occupied so that fresh air is only brought into the space when needed. By reducing the amount of outside air brought into the space, the humidity load is also substantially reduced. CO{sub 2} and humidity sensors, combined with outside air sensors, can be used to predict whether conditions are amenable to mold growth and to automatically adjust systems to help prevent mold without using extra energy. The goal of this training is to give the building operators the knowledge needed to make positive changes in the operation of building systems. As class participants apply this knowledge, building systems will run more efficiently, occupant comfort should improve, while saving energy and reducing greenhouse gas emissions.

  18. CX-004258: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Spacer Dampers Along the Ostrander-McLaughlin Number 1 500-Kilovolt Transmission LineCX(s) Applied: B1.3Date: 09/29/2010Location(s): Clackamas County, OregonOffice(s): Bonneville Power Administration

  19. CX-002532: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Spacer Damper Replacements on the McNary-Coyote Springs Number-1 Transmission LineCX(s) Applied: B1.3Date: 05/26/2010Location(s): MorrowCounty, OregonOffice(s): Bonneville Power Administration

  20. CX-004256: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Spacer Dampers Along the Dworshak PH-Dworshak Number 1 500-Kilovolt Transmission LineCX(s) Applied: B1.3Date: 10/05/2010Location(s): Clearwater County, IdahoOffice(s): Bonneville Power Administration

  1. CX-001414: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coyote Springs-Slatt #1: Spacer Damper ReplacementsCX(s) Applied: B1.3Date: 04/12/2010Location(s): Gilliam County, Oregon Office(s): Bonneville Power Administration

  2. CX-004257: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Spacer Dampers Along the Slatt-John Day Number 1 500-Kilovolt Transmission LineCX(s) Applied: B1.3Date: 10/04/2010Location(s): Sherman County, OregonOffice(s): Bonneville Power Administration

  3. CX-002429: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Echo Lake-Monroe Spacer-Damper ReplacementsCX(s) Applied: B1.3Date: 05/17/2010Location(s): King County, WashingtonOffice(s): Bonneville Power Administration

  4. CX-001944: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Spacer Dampers Along the Grizzly - Captain Jack No. 1 500 Kilovolt Transmission LineCX(s) Applied: B1.3Date: 04/21/2010Location(s): Crook County, OregonOffice(s): Bonneville Power Administration

  5. CX-005131: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Spacer-Damper Replacements on the Captain Jack-Malin 500-kilovolt Transmission LineCX(s) Applied: B1.3Date: 01/24/2011Location(s): Klamath County, OregonOffice(s): Bonneville Power Administration

  6. CX-012562: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Weld Actuator Crankarm to Input Shaft for RREX Fan Discharge Dampers CX(s) Applied: B1.3Date: 41871 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  7. Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    salute to the Department of Defense for their heroic efforts when it comes to saving electrons. November 10, 2015 An insulated door was an easy upgrade from the steel cellar door...

  8. Green version of the EERE PowerPoint template, for use with PowerPoint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Doors Impact Rating Applies to Glazed Doors ONLY Note Metal Strap 8 foot 2x4 on TOP of bottom chords FORTIFIED - Gable end bracing FORTIFIED - Attached structures FORTIFIED ...

  9. Weatherizing Wilkes-Barre

    ScienceCinema (OSTI)

    Calore, Joe

    2013-05-29

    Ride along with some weatherizers in Wilkes-Barre, PA, as they blower door test, manage z-doors, and dense pack their way to an energy efficient future one house at a time.

  10. Weatherizing Wilkes-Barre

    Broader source: Energy.gov [DOE]

    Ride along with some weatherizers in Wilkes-Barre, PA, as they blower door test, manage z-doors, and dense pack their way to an energy efficient future one house at a time.

  11. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    secured door. Smart Latch (tm) is a compelling product for households with children, elderly, or high traffic areas such as an office where a properly closed and latched door is...

  12. SAND2009-7836

    Office of Scientific and Technical Information (OSTI)

    part of the project proposal submitted to the Front Door for approval and funding. Review Phase II Conduct Future State Event Submit Proposal to Front Door Launch Configuration and...

  13. M38 | Open Energy Information

    Open Energy Info (EERE)

    Projects1 M38 is a company based in Ghana. "M38 sells liquefied petroleum gas (LPG) in Accra, Ghana. A woman-owned business that began as an informal door-to-door supply...

  14. NREL: Learning - Fuel Cell Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    showing a silver four-door sedan being driven on a roadway and containing the words "hydrogen fuel cell electric" across the front and rear doors. This prototype hydrogen fuel...

  15. Equipment-Resources-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the facility doors remain closed. Do not let unauthorized personnel inside. Do not prop the door open. Do not leave messes in the lab area or in the lab waste baskets. The PV...

  16. US Department of Transportation (DOT) Spec 7A Type A evaluation document: Spec 17C 55-gal steel drum with RWMC/SWEPP drum venting system carbon filter assembly

    SciTech Connect (OSTI)

    Edling, D.A.

    1986-09-15

    As part of MRC-Mound's responsibility to coordinate DOE Spec 7A Type A Packaging testing, evaluation, and utilization, this document evaluates per 49CFR 173.415(a) the SWEPP packaging system: DOT Spec 17C steel drums - 30, 55 and 83-gal; High Density Polyethylene (HDPE) liners; and SWEPP DVS Filter Assemblies (two configurations) as a US DOT Spec 7A Type A packaging. A variety of Type A performance testing was done on: DOT Spec 17C 55-gal steel drums; DOT Spec 17C 55-gal steel drums with HDPE liners; and DOT Spec 17C 55-gal steel drums with ''Nucfil'' filters as part of MRC-Mound's Type A Packaging Evaluation Program funded by DOE/HQ, DP-4, Security Evaluations. The subject SWEPP packaging incorporates modifications to the ''Nucfil'' filter and installation assembly previously tested in conjunction with the Spec 17C 55-gal drums. Thus, additional testing was required on the new filter installation in order to evaluate the entire packaging system. This document presents the test data to demonstrate the SWEPP packaging system's performance against the DOT 7A Type A requirements.

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Income Residential Savings Category: Clothes Washers, RefrigeratorsFreezers, Water Heaters, Heat Pumps, Building Insulation, Windows, Doors, Comprehensive Measures...

  18. List of Programmable Thermostats Incentives | Open Energy Information

    Open Energy Info (EERE)

    Windows Doors Siding Roofs Agricultural Equipment CHPCogeneration Solar Thermal Electric Photovoltaics Landfill Gas Wind Biomass Hydroelectric energy Geothermal Electric Anaerobic...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Insulation, Windows, Doors, Siding, Roofs Entergy Mississippi- Commercial Energy Efficiency Program Entergy Solutions for Business Program provides technical...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Windows, Doors, Motor VFDs, Agricultural Equipment, Comprehensive MeasuresWhole Building Business Energy Conservation Loan Program The Vermont Business Energy...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Insulation, Windows, Doors, Roofs, CustomOthers pending approval, Geothermal Direct-Use, Other Distributed Generation Technologies California Enterprise...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Air sealing, Building Insulation, Windows, Doors, Siding, Roofs, Processing and Manufacturing Equipment, Agricultural Equipment, Comprehensive MeasuresWhole Building, Custom...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Air sealing, Building Insulation, Windows, Doors, Siding, Roofs, Processing and Manufacturing Equipment, Agricultural Equipment, Comprehensive MeasuresWhole Building, Other...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Controls, Building Insulation, Windows, Doors, Other EE, Hydroelectric (Small), Fuel Cells using Renewable Fuels, LED Lighting, Commercial Refrigeration Equipment...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    are available for customers who... Eligibility: Residential Savings Category: Geothermal Heat Pumps, Heat Pumps, Building Insulation, Windows, Doors, Comprehensive Measures...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thermostats, CaulkingWeather-stripping, Building Insulation, Windows, Doors Montgomery County- Residential Energy Conservation Property Tax Credit Note: As originally...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thermostats, CaulkingWeather-stripping, Building Insulation, Windows, Doors Adams Electric Cooperative- Energy Efficiency Loan Program Supplemental loan money is...

  8. Device for reducing vehicle aerodynamic resistance

    DOE Patents [OSTI]

    Graham, Sean C.

    2005-02-15

    A device for a vehicle with a pair of swinging rear doors, which converts flat sheets of pliable material hinged to the sides of the vehicle adjacent the rear thereof into effective curved airfoils that reduce the aerodynamic resistance of the vehicle, when the doors are closed by hand, utilizing a plurality of stiffeners disposed generally parallel to the doors and affixed to the sheets and a plurality of collapsible tension bearings struts attached to each stiffener and the adjacent door.

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Insulation, Windows, Doors, Insulation, LED Lighting, Tankless Water Heater Jackson Energy Cooperative- Residential Energy Efficiency Rebate Programs Established in...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CaulkingWeather-stripping, Building Insulation, Windows, Doors, Other EE Jackson Energy Cooperative- Residential Energy Efficiency Rebate Programs Established in...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thermostats, DuctAir sealing, Building Insulation, Windows, Doors Energy Optimization (Electric)- Commercial Efficiency Program Energy Optimization Eligibility:...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, Building Insulation, Windows, Doors, Processing and Manufacturing Equipment, Other EE, Wind (Small), Hydroelectric (Small), LED Lighting...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Building Insulation, Windows, Doors Midstate Electric Cooperative- Residential Conservation Rebates Midstate Electric Cooperative offers its...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Windows, Doors, Roofs, Comprehensive MeasuresWhole Building Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric...

  15. Independent Oversight Review, Nevada National Security Site, December 2013

    Office of Environmental Management (EM)

    | Department of Energy Site, December 2013 Independent Oversight Review, Nevada National Security Site, December 2013 December 2013 Targeted Review of the Safety Significant Blast Door and Special Door Interlock Systems and Review of Federal Assurance Capability at the Nevada National Security Site This report documents the results of an independent oversight review of safety significant Blast Door Interlock and Special Door Interlock systems at the Nevada National Security Site (NNSS)

  16. Independent Oversight Review, Pantex Plant, December 2013 | Department of

    Office of Environmental Management (EM)

    Energy Pantex Plant, December 2013 Independent Oversight Review, Pantex Plant, December 2013 December 2013 Targeted Review of the Safety Significant Blast Door and Personnel Door Interlock Systems and Review of Federal Assurance Capability at the Pantex Plant This report documents the results of an independent oversight review of safety significant Blast Door Interlock and personnel Door Interlock Systems at the Pantex Plant. The Pantex Plant is operated by Babcock & Wilcox Technical

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Programmable Thermostats, DuctAir sealing, Building Insulation, Windows, Doors Energy Optimization (Electric)- Commercial Efficiency Program Energy Optimization...

  18. HOM absorbers for ERL cryomodules at BNL

    SciTech Connect (OSTI)

    Hahn,H.; Ben-Zvi, I.; Hammons, L.; Xu, W.

    2009-09-20

    The physics needs and technical requirements for several future accelerator projects at the Relativistic Heavy Ion Collider (RHIC) all involve electron Energy Recovery Linacs (ERL). The required high-current, high-charge operating parameters make effective higher-order-mode (HOM) damping mandatory and the development of HOM dampers for a prototypical five-cell cavity is actively pursued. An experimental five-cell niobium cavity with ferrite dampers has been constructed, and effective HOM damping has been demonstrated at room and superconducting (SC) temperatures. A novel type of ferrite damper around a ceramic break has been developed for the ERL electron gun and prototype tests are also reported. Contemplated future projects are based on assembling a chain of superconducting cavities in a common cryomodule with the dampers placed in the cold space between the cavities, imposing severe longitudinal space constraints. Various damper configurations have been studied by placing them between two five-cell copper cavities. Measured and simulated copper cavity results, external Q-values of possible dampers and fundamental mode losses are presented.

  19. CX-010023: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Installing Vent/Drain on Inlet Headers of 292-H Recycle Vessel Vent Fans CX(s) Applied: B2.5 Date: 01/28/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  20. New Whole-House Solutions Case Study: Grupe, Rocklin, California

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This builder worked with Consortium for Advanced Residential Builldings to design HERS-54 homes that included PV roof tiles, SmartVent night ventilation cooling; and FreshVent continuous ventilation

  1. Building America Technology Solutions Case Study: Design Guidance for

    Energy Savers [EERE]

    Passive Vents in New Construction, Multifamily Buildings | Department of Energy Design Guidance for Passive Vents in New Construction, Multifamily Buildings Building America Technology Solutions Case Study: Design Guidance for Passive Vents in New Construction, Multifamily Buildings In an effort to improve indoor air quality in high-performance, new construction, multifamily buildings, dedicated sources of outdoor air are being implemented. Passive vents are being selected by some design

  2. R&D ERL: HOM Absorbers

    SciTech Connect (OSTI)

    Hahn, H.; Ben-Zvi, I.; Calaga, R.; Hammons, L.; Litvinenko, V.N.; Xu, W.

    2010-01-01

    Several future accelerator projects at the Relativistic Heavy Ion Collider (RHIC) are based on Energy Recovery Linacs (ERL) with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM) damping. The development of HOM dampers for these projects is pursued actively at this laboratory. A strong HOM damping was experimentally demonstrated both at room- and at superconducting- (SC) temperatures in a prototype R&D five-cell niobium SRF cavity with ferrite dampers. A novel type of ferrite damper over a ceramic break for a R&D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprising of multiple superconducting cavities with reasonably short transitions between them are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations. This paper presents results of simulations and measurements for several configurations.

  3. Transverse Beam Stability Measurement and Analysis for the SNS Accumulator Ring

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xie, Zaipeng; Schulte, Mike; Hu, Yu Hen; Deibele, Craig E

    2015-01-01

    A Field-programmable gate array (FPGA) based transverse feedback damper system was implemented in the Spallation Neutron Source (SNS) accumulator ring with the intention to stabilize the electron-proton (e-p) instability in a frequency range from 1 MHz to 300 MHz. The transverse damper could also be used as a diagnostic tool by measuring the beam transfer function (BTF). An analysis of the BTF measurement provides the stability diagram for the production beam at SNS. This paper describes the feedback damper system and its set-up as the BTF diagnostic tool. Experimental BTF results are presented and beam stability analysis is performed basedmore » on the BTF measurements for the SNS accumulator ring.« less

  4. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2011 January 20, 2011 New Groundwater Facility Begins Operations The Department of Energy is boosting its capacity for treating groundwater to remove chromium near the Columbia River by 40 percent with the recent completion of a new treatment facility. January 13, 2011 Hanford Waste Treatment Plant sets massive protective shield door in Pretreatment Facility Earlier this week, a 102-ton protective shield door was set in the Pretreatment Facility at the Waste Treatment Plant. The door was

  5. Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption

    DOE Patents [OSTI]

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, synchronizes alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature.

  6. Black Hills Energy (Gas) - Commercial Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    sq ft. Infiltration Control: 70% of installed cost Doors: 25 or 50 Pool Cover: 250 Spa Cover: 50 Summary Black Hills Energy offers commercial and industrial customers...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, Building Insulation, Windows, Doors, Processing and Manufacturing Equipment, Other EE, Wind (Small), Hydroelectric (Small), LED Lighting NY...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Insulation, Windows, Doors, Insulation Community Conservation Challenge The Indiana Office of Energy Development (OED) is offering grants under the CCC program. Non-residential...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    HVAC equipment, anti-sweat heater controls for coolerfreezer doors, heat pumps (air and ground source), food service equipment, motors and variable speed drives. Rebates on...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Insulation, Windows, Doors, CustomOthers pending approval, Other EE Jane E. Lawton Conservation Loan Program Lawton Loans can be made to eligible nonprofits,...

  11. Chelan County PUD- Residential Weatherization Rebate Program

    Broader source: Energy.gov [DOE]

    Chelan County PUD offers cash rebates to residential customers who make energy efficient weatherization improvements to eligible homes. Eligible measures include efficient windows doors as well as...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Income Residential Savings Category: Clothes Washers, RefrigeratorsFreezers, Water Heaters, Heat Pumps, DuctAir sealing, Building Insulation, Windows, Doors,...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Windows, Doors, Comprehensive MeasuresWhole Building State Building Energy Standards In May 2013 the Sustainable Coonstruction Advisory Committee responsible for...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Building Insulation, Windows, Doors State Building Energy Standards In May 2013 the Sustainable Coonstruction Advisory Committee responsible for...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weather-stripping, Building Insulation, Doors, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater Enterprise Energy Fund Loans The New...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Programmable Thermostats, CaulkingWeather-stripping, Building Insulation, Windows, Doors National Grid (Gas)- Residential Gas Heating Rebate Programs National Grid offers...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Programmable Thermostats, CaulkingWeather-stripping, Building Insulation, Windows, Doors National Grid (Gas)- Commercial Energy Efficiency Rebate Programs (Upstate New York)...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Doors, CustomOthers pending approval, Other EE, Wind (Small), Fuel Cells using Renewable Fuels Renewable Energy and Energy Efficiency Project Financing For the purposes of this...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential, Agricultural Savings Category: Solar Water Heat, Solar Space Heat, Solar Photovoltaics, Air conditioners, Windows, Doors, Other EE Energy Efficiency in State...

  20. TVA - Solar Solutions Initiative (Georgia) | Open Energy Information

    Open Energy Info (EERE)

    Weather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Siding, Roofs, Photovoltaics Active Incentive Yes Implementing Sector Utility Energy Category Renewable...

  1. Set the PACE St. Louis (Missouri) | Open Energy Information

    Open Energy Info (EERE)

    Insulation, Windows, Doors, Comprehensive MeasuresWhole Building, Solar Water Heat, Photovoltaics, Pool Pumps, Tankless Water Heaters Active Incentive Yes Implementing Sector...

  2. TVA - Solar Solutions Initiative (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    Weather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Siding, Roofs, Photovoltaics Active Incentive Yes Implementing Sector Utility Energy Category Renewable...

  3. FHA PowerSaver Loan Program (Federal) | Open Energy Information

    Open Energy Info (EERE)

    Insulation, Windows, Doors, Comprehensive MeasuresWhole Building, Solar Water Heat, Photovoltaics, Wind, Geothermal Heat Pumps Active Incentive Yes Implementing Sector...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Doors, Comprehensive MeasuresWhole Building, Other EE Energy Conservation for Ohioans (ECO-Link) Program Qualifying Technology A wide range of energy-efficiency upgrades and...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    freezer doors, motors, variable speed drives, heat pumps (air-source and geothermal), food service equipment, and finally custom and electric measures. Rebates on ENERGY STAR...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Doors Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings MDA- Energy Efficiency Revolving Loan Program Mississippi offers low-interest loans for energy efficiency...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Building Insulation, Windows, Doors, Siding, Roofs Xcel Energy- Agriculture, Schools and Government Incentive Program Xcel Energy offers financial...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Insulation, Doors, CustomOthers pending approval, Other EE, LED Lighting Alameda Municipal Power- Residential Energy Efficiency Grant Program Alameda Municipal Power...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuctAir sealing, Building Insulation, Windows, Doors, Wind (Small) Alameda Municipal Power- Commercial New Construction Rebate Program Alameda Municipal Power...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    equipment, anti-sweat heater controls for coolerfreezer doors, motors, variable speed drives, heat pumps (air-source and geothermal), food service equipment, and finally custom...

  11. Los Alamos scientists see new mechanism for superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    superconductivity Researchers have posited an explanation for superconductivity that may open the door to the discovery of new, unconventional forms of superconductivity. November...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Windows, Doors, Roofs, CustomOthers pending approval Community Energy Education Management Program Generally, the loans will not be more than 150,000, and the average loan...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    HVAC equipment, anti-sweat heater controls for coolerfreezer doors, motors, variable speed drives, heat pumps (air-source and geothermal), food service equipment, and finally...

  14. Category:Articles with outstanding TODO tasks | Open Energy Informatio...

    Open Energy Info (EERE)

    D Data Center Equipment Daylighting Dehumidifiers Dishwasher DOE Doors DuctAir sealing E Efficiency Electric Power Board of Chattanooga Electric vehicles Emerging Energy...

  15. Better Buildings Residential Network Multi-Family & Low-Income...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Windows Exterior Doors Appliances DSM free * * * * * * * incentive from local utility w be 1,600 incentive from program w be 1,500 Initial Program * Program - Tiered ...

  16. Ohio's 2nd congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    LLC The Utilities Group Inc Ultimate Best Buy LLC Vinyl Kraft Windows and Doors Vision Energy Energy Generation Facilities in Ohio's 2nd congressional district Melink Solar...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Windows, Doors, Siding, Roofs, Comprehensive MeasuresWhole Building, Other EE OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Doors, Siding, Roofs, Comprehensive MeasuresWhole Building, Other EE, Reflective Roofs OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    sealing, Building Insulation, Windows, Doors, Roofs, CustomOthers pending approval OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Furnaces, Air conditioners, CaulkingWeather-stripping, Building Insulation, Doors OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Windows, Doors, Siding, Roofs, CustomOthers pending approval, Wind (Small) OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, Doors, Comprehensive MeasuresWhole Building, Insulation, LED Lighting OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air sealing, Building Insulation, Windows, Doors, Roofs, Other EE, Reflective Roofs OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heaters, Heat Pumps, CaulkingWeather-stripping, Building Insulation, Windows, Doors OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sealing, Building Insulation, Windows, Doors, Comprehensive MeasuresWhole Building OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Windows, Doors, Comprehensive MeasuresWhole Building, Other EE, LED Lighting OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    sealing, Building Insulation, Windows, Doors, Motors, CustomOthers pending approval OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  9. Sheltering in Place | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    everyone inside (including pets). Close all doors and windows. Turn off and close all ventilation systems, including: Air conditioning Attic & exhaust fans Furnaces Fireplace...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuctAir sealing, Building Insulation, Windows, Doors, LED Lighting Port Angeles Public Works & Utilities- Residential Energy Efficiency Rebate Program Port Angeles...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, Doors, Comprehensive MeasuresWhole Building, Other EE, LED Lighting Port Angeles Public Works & Utilities- Residential Energy Efficiency Rebate Program Port Angeles...

  12. IBL.pdf

    Energy Savers [EERE]

    water, facility controls, irrigation, automatic door opening, non-potable water, snow melting, and safety interlocks and controls. k) Laboratory support areas and workspace...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    recovery, Programmable Thermostats, Energy Mgmt. SystemsBuilding Controls, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Roofs, Custom...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Motors, Motor VFDs,...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors Enterprise Energy Fund Loans The New Hampshire Community Loan Fund and the New Hampshire...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Mgmt. SystemsBuilding Controls, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Wind (Small) Energy Conservation Standards for State...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    sealing, Building Insulation, Windows, Doors, Siding, Roofs, Comprehensive MeasuresWhole Building, Other EE, Reflective Roofs Business Energy Conservation Loan Program The Vermont...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Windows, Doors, Siding, Roofs, Motors, Motor VFDs, Comprehensive MeasuresWhole Building, CustomOthers pending approval Energy Conservation Tax Credits-...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuctAir sealing, Building Insulation, Windows, Doors, Comprehensive MeasuresWhole Building, Other EE Energy Conservation for Ohioans (ECO-Link) Program Qualifying...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Controls, Windows, Doors, Motors, Motor VFDs, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Other EE, Personal Computing Equipment, LED...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuctAir sealing, Building Insulation, Windows, Doors, Comprehensive MeasuresWhole Building Okanogan PUD- Conservation Loan Program Okanogan PUD provides financial...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Furnaces, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Doors, Other EE, Insulation Energy Conservation Tax Credits-...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weather-stripping, Building Insulation, Windows, Doors, Comprehensive MeasuresWhole Building Energy Conservation Loan Loans for large residential properties are available...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    sealing, Building Insulation, Windows, Doors, Roofs, CustomOthers pending approval Baltimore Gas & Electric Company (Electric)- Commercial Energy Efficiency Program Baltimore...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuctAir sealing, Building Insulation, Windows, Doors, Siding, Roofs, Processing and Manufacturing Equipment, Agricultural Equipment, Comprehensive MeasuresWhole Building,...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Doors, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater Property Assessed Clean Energy Financing The District of Columbia offers a...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Space Heat, Solar Photovoltaics, Air conditioners, Windows, Doors, Other EE McMinnville Water & Light- Conservation Service Loan Program McMinnville Water & Light offers...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Doors, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater Business Energy Conservation Loan Program The Vermont Business Energy...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    with electric heat or electric hot water heating, thermal improvements, duct sealing and infiltration control insulation, storm doors, and Energy Star windows. Interest rates can...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Doors Texas Gas Service- Commercial Energy Efficiency Rebate Program Texas Gas Service (TGS) offers a range of financial incentives to commercail customers who purchase and...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    beverage machines and door heaters on refrigerated cases, and well water pre-cooler and waste heat exchangers for dairy equipment. Interested customers should contact one of the...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heater controls for coolerfreezer doors, heat pumps (air and ground source), food service equipment, motors and variable speed drives. Rebates on Energy Star appliances...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Insulation, Windows, Doors, Other EE Coast Electric Power Association- Comfort Advantage Home Program Coast Electric Power Association (CEPA) provides rebates on...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Insulation, Windows, Doors, Other EE, LED Lighting Small Business Pollution Prevention Assistance Account Loan Program The program is administered by the PA Department of...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Doors Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Local Option- Property Assessed Clean Energy Property-Assessed Clean Energy (PACE) financing effectively...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, Doors, CustomOthers pending approval, Other EE Energy Conservation Improvements Property Tax Exemption Qualifying energy-conservation improvements to homes are exempt...

  17. Category:Lists for Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentives List of Doors Incentives List of DuctAir sealing Incentives List of Energy Mgmt. SystemsBuilding Controls Incentives List of Equipment Insulation Incentives...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Doors, Siding, Roofs, CustomOthers pending approval, Wind (Small) Columbia Water & Light- Home Performance with ENERGY STAR Loan The Columbia Water & Light (CWL) Home...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumps, Air conditioners, Energy Mgmt. SystemsBuilding Controls, Windows, Doors, Motors, Motor VFDs, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Other...

  20. South Alabama Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Residential Savings Category Geothermal Heat Pumps Heat Pumps Building Insulation Windows Doors Program Info Sector Name Utility Administrator South Alabama...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Mgmt. SystemsBuilding Controls, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Wind (Small) Redding Electric- Residential and...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Doors, Siding, Roofs, Comprehensive MeasuresWhole Building, Other EE, Reflective Roofs Industrial and Agricultural Production Efficiency Program Energy Trust of Oregon offers...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumps, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors Industrial and Agricultural Production Efficiency Program Energy Trust of Oregon offers...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, Doors, Siding, Roofs, Comprehensive MeasuresWhole Building, Other EE Industrial and Agricultural Production Efficiency Program Energy Trust of Oregon offers...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, Building Insulation, Windows, Doors, Processing and Manufacturing Equipment, Other EE, Wind (Small), Hydroelectric (Small), LED Lighting Lean and...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, Building Insulation, Windows, Doors, Processing and Manufacturing Equipment, Other EE, Wind (Small), Hydroelectric (Small), LED Lighting Entergy...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, Building Insulation, Windows, Doors, Processing and Manufacturing Equipment, Other EE, Wind (Small), Hydroelectric (Small), LED Lighting Alternative...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, Building Insulation, Windows, Doors, Processing and Manufacturing Equipment, Other EE, Wind (Small), Hydroelectric (Small), LED Lighting Small...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, Building Insulation, Windows, Doors, Processing and Manufacturing Equipment, Other EE, Wind (Small), Hydroelectric (Small), LED Lighting Green...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Windows, Doors, Roofs, Other EE Revolving Loan Fund for Energy Efficiency Projects in School Districts and Political Subdivisions HB 351, signed in 2007, created a 5 million...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weather-stripping, Building Insulation, Windows, Doors, Tankless Water Heater City of Detroit- SmartBuildings Detroit Green Fund Loan The Economic Development Corporation (EDC)...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    doors, water heater replacement, ENERGY STAR set back thermostats, commercial cooking equipment and more. Custom rebates are available for commercial, industrial, and...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, Doors, Motors, Motor VFDs, Comprehensive MeasuresWhole Building, Other EE, Wind (Small), Hydroelectric (Small) previous 1 2 next Refine your results Keyword(s) State...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Other EE, LED Lighting Community Energy Education Management Program Generally, the loans will not be...

  15. Improving Building Envelope and Duct Airtightness of US Dwellings...

    Office of Scientific and Technical Information (OSTI)

    of Science (SC) Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION Blower door, duct blaster, fan...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Insulation, Windows, Doors, Roofs, Other EE Idaho Falls Power- Commercial Energy Conservation Loan Program Idaho Falls Power is offering a zero interest loan...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pumps, Air conditioners, Heat recovery, Energy Mgmt. SystemsBuilding Controls, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Siding, Roofs,...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, Doors, Insulation, LED Lighting, Tankless Water Heater Cedarburg Light & Water Utility- Residential Energy Efficiency Rebate Program Cedarburg Light & Water (CL&W)...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuctAir sealing, Building Insulation, Windows, Doors, Other EE Cedarburg Light & Water Utility- Residential Energy Efficiency Rebate Program Cedarburg Light & Water (CL&W)...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, DuctAir sealing, Building Insulation, Windows, Doors Montgomery County- Residential Energy Conservation Property Tax Credit Note: As originally...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Insulation, Windows, Doors, CustomOthers pending approval, Other EE Montgomery County- Residential Energy Conservation Property Tax Credit Note: As originally...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Building Insulation, Windows, Doors, Wind (Small) Montgomery County- Residential Energy Conservation Property Tax Credit Note: As originally...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Insulation, Doors, CustomOthers pending approval, Other EE, LED Lighting Montgomery County- Residential Energy Conservation Property Tax Credit Note: As originally...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Space Heat, Solar Photovoltaics, Air conditioners, Windows, Doors, Other EE Montgomery County- Residential Energy Conservation Property Tax Credit Note: As originally...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    qualify for special incentive rebates by meeting specific energy standards on new home construction. These standards cover thermal integrity (insulation, windows and doors,...

  6. ALSNews Vol. 368

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bent-core molecules. The work opens the door to understanding the interplay between structure and property in important organic materials, including liquid crystals, lipid...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Windows, Doors, Siding, Roofs, Comprehensive MeasuresWhole Building, Other EE Blue Ridge Mountain Electric Membership Corporation- Energy Efficiency Rebate Program Blue...

  8. Adams Electric Cooperative - Energy Efficiency Loan Program ...

    Broader source: Energy.gov (indexed) [DOE]

    Insulation Windows Doors Other EE Program Info Sector Name Utility Administrator Adams Electric Cooperative Website http:www.adamsec.comcontentlow-cost-financing State...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Other EE, LED Lighting Wakefield Municipal Gas & Light Department- Residential Conservation Services...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Other EE, LED Lighting Progress Energy Florida- Commercial Energy Efficiency Rebate Program Progress...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Other EE, LED Lighting Efficiency Maine Business Program Incentives are available to all...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Other EE, LED Lighting Assisted Home Performance with ENERGY STAR Single-family homeowners that meet...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Other EE, LED Lighting Efficient Housing Construction Grant Projects must be targeted at households...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Insulation, Windows, Doors, CustomOthers pending approval, Other EE, Wind (Small), Fuel Cells using Renewable Fuels Renewable Energy and Energy Efficiency Project Financing...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuctAir sealing, Building Insulation, Windows, Doors, Other EE Arlington County- Green Building Incentive Program The Green Building Density Incentive program allows the...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Doors, CustomOthers pending approval, Other EE, LED Lighting Anaheim Public Utilities- Green Building Rebate Program Anaheim Public Utilities (APU) offers commercial,...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, Doors, CustomOthers pending approval, Other EE Anaheim Public Utilities- Green Building Rebate Program Anaheim Public Utilities (APU) offers commercial,...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air sealing, Building Insulation, Windows, Doors, Wind (Small) Burbank Water & Power- Green Building Incentive Program Incentives are on a first come first serve basis. More...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Controls, Building Insulation, Windows, Doors, Other EE, Hydroelectric (Small), Fuel Cells using Renewable Fuels, LED Lighting, Commercial Refrigeration Equipment Local...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Controls, Building Insulation, Windows, Doors, Other EE, Hydroelectric (Small), Fuel Cells using Renewable Fuels, LED Lighting, Commercial Refrigeration Equipment Energy...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Windows, Doors, Roofs, Other EE, Reflective Roofs City of Chicago- Small Business Improvement Fund SomerCor 504 Inc. administers the Small Business Improvement Fund...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, Doors, Wind (Small), Hydroelectric (Small) Energy Conservation for Ohioans (ECO-Link) Program Qualifying Technology A wide range of energy-efficiency upgrades and...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Air conditioners, CaulkingWeather-stripping, Building Insulation, Doors Texas-New Mexico Power Company- Residential, Hard-to-Reach, and High-Performance New Homes Programs...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    lighting equipment, HVAC equipment, anti-sweat heater controls for coolerfreezer doors, heat pumps (air and ground source), food service equipment, motors and variable speed...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors Butler Rural Electric Cooperative- Energy Efficiency Improvement Loan Program Butler Rural...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Windows, Doors, Siding, Roofs, Comprehensive MeasuresWhole Building, Other EE Jackson Energy Cooperative- Residential Energy Efficiency Rebate Programs Established in...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Air sealing, Building Insulation, Windows, Doors, Roofs, CustomOthers pending approval Local Option- Clean Energy Development Boards PACE Overview Eligibility: Commercial,...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat, Solar Space Heat, Solar Photovoltaics, Air conditioners, Windows, Doors, Other EE Local Option- Clean Energy Development Boards PACE Overview Eligibility: Commercial,...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Building Insulation, Windows, Doors, Other EE, LED Lighting Local Option- Clean Energy Development Boards PACE Overview Eligibility: Commercial,...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weather-stripping, Building Insulation, Windows, Doors, CustomOthers pending approval Local Option- Clean Energy Development Boards PACE Overview Eligibility: Commercial,...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thermostats, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Comprehensive MeasuresWhole Building, Other EE, Wind (Small), Pool Pumps,...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Motors, Motor VFDs, Comprehensive MeasuresWhole Building, CustomOthers...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Siding, Roofs Saint Paul Port Authority PACE Program Note: In 2010, the...

  14. TVA - Solar Solutions Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pumps Air conditioners CaulkingWeather-stripping DuctAir sealing Building Insulation Windows Doors Siding Roofs Program Info Sector Name Utility Website http:www.tva.com...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thermostats, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Siding, Roofs, Reflective Roofs, LED Lighting TVA- Solar Solutions...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Mgmt. SystemsBuilding Controls, CaulkingWeather-stripping, Building Insulation, Windows, Doors, Other EE, Wind (Small), Hydroelectric (Small), Geothermal Direct-Use, LED...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Furnaces, Boilers, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, CustomOthers pending approval, Wind (Small), Fuel Cells using Renewable...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    InstallersContractors Savings Category: DuctAir sealing, Building Insulation, Windows, Doors Energy Efficiency Tax Credits (Personal) The tax credit may not exceed 100...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Building Insulation, Windows, Doors, Roofs, Other EE, Reflective Roofs City of Plano- Smart Energy Loan Program Eligible properties must be owner-occupied...

  20. Energy Saver | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Homes Windows, Doors, & Skylights Save Electricity & Fuel Image of people installing a solar panel on a roof. Appliances & Electronics Buying & Making Electricity Lighting...