National Library of Energy BETA

Sample records for dong yang semiconductor

  1. Hyper-BCube: A Scalable Data Center Network Dong Lin, Yang Liu, Mounir Hamdi and Jogesh Muppala

    E-Print Network [OSTI]

    Hamdi, Mounir

    Hyper-BCube: A Scalable Data Center Network Dong Lin, Yang Liu, Mounir Hamdi and Jogesh Muppala {ldcse, liuyangcse, hamdi, muppala}@cse.ust.hk Abstract--Mega data centers are being built around the world to provide various cloud computing services. As a result, data center networking has recently been

  2. Ados Co Ltd Dong Yang Semiconductor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy Resources JumpAdelan UK Ltd Jump

  3. Metal-Semiconductor Zn-ZnO Core-Shell Nanobelts and Nanotubes Xiang Yang Kong,, Yong Ding, and Zhong Lin Wang*,

    E-Print Network [OSTI]

    Wang, Zhong L.

    with silica,10 tape structured nanobelts of SnO2 and TiO2,11 core-shell structured Si-Ge nanowires,12 and ZnMetal-Semiconductor Zn-ZnO Core-Shell Nanobelts and Nanotubes Xiang Yang Kong,, Yong Ding-semiconductor Zn-ZnO core-shell nanobelts and nanotubes have been synthesized. The core is a belt-shaped Zn single

  4. Spontaneous emission factor for semiconductor superluminescent diodes Yongsheng Zhao, Weihua Han, Junfeng Song, Xuemei Li, Yang Liu, Dingsan Gao,

    E-Print Network [OSTI]

    Cao, Hui

    Spontaneous emission factor for semiconductor superluminescent diodes Yongsheng Zhao, Weihua Han emission factor is an important parameter for the characterization of semiconductor light emitting devices difference involved in each device. In this article, the spontaneous emission factor for superluminescent

  5. Robust Regression Dong Huang, Ricardo Cabral and Fernando De la Torre

    E-Print Network [OSTI]

    Robust Regression Dong Huang, Ricardo Cabral and Fernando De la Torre Robotics Institute, Carnegie represents the jth column of the matrix D. Non-bold letters #12;2 Dong Huang, Ricardo Cabral and Fernando De

  6. Compact Explanation of Data Fusion Decisions Xin Luna Dong 1

    E-Print Network [OSTI]

    Greenberg, Albert

    Compact Explanation of Data Fusion Decisions Xin Luna Dong 1 , Divesh Srivastava 2 AT&T Labs-- Data fusion aims at resolving conflicts between different sources when integrating their data. Recent fusion techniques find the truth by iterative MAP (Maximum A Pos- teriori) analysis that reasons about

  7. Nanotube Encoders L.X. Dong1, a

    E-Print Network [OSTI]

    Sun, Yu

    -150 nm nickel catalyst dots at precise locations on a silicon chip. Next, vertically aligned nanotubesNanotube Encoders L.X. Dong1, a , A. Subramanian 1,b , B.J. Nelson1,c, ¶ , and Y. Sun2,d 1 Swiss author Keywords: Carbon nanotube array, field emission, nano encoder, nanorobotic manipulator, scanning

  8. Spreading of energy in the Ding-Dong model

    SciTech Connect (OSTI)

    Roy, S.; Pikovsky, A.

    2012-06-15

    We study the properties of energy spreading in a lattice of elastically colliding harmonic oscillators (Ding-Dong model). We demonstrate that in the regular lattice the spreading from a localized initial state is mediated by compactons and chaotic breathers. In a disordered lattice, the compactons do not exist, and the spreading eventually stops, resulting in a finite configuration with a few chaotic spots.

  9. A controlled biochemical release device with embedded nanofluidic Haifeng Yang, Wei Hong, and Liang Dong

    E-Print Network [OSTI]

    Hong, Wei

    are made of liquid core-polymer shell nanofibers using co-electrospinning. The mechanism of controlled

  10. Wuhan Dongli Properties Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard Power PtyOhio:DoingMissouri: EnergyWuhan Dongli

  11. Joyce Yang | Department of Energy

    Energy Savers [EERE]

    Joyce Yang - Physical Scientist Dr. Joyce Yang is a Physical Scientist with the Office of Energy Efficiency and Renewable Energy's Biomass Program. Most Recent Disappearing Pens...

  12. CV Name: Jianjun Yang JIANJUN YANG

    E-Print Network [OSTI]

    Sparks, Donald L.

    in agricultural ecosystem, thus being of great importance for food security and carbon sequestration. Synchrotron of Natural Organic Matter in Changing Environment. Springlink Press. Hangzhou, pp. 404-407. 6. Yang J-ray induced photoreduction of organic Cu( ) compounds probed by X-ray near- edge (XANES) spectroscopy

  13. TEXT ANALYSIS FOR CONSTRUCTING DESIGN REPRESENTATIONS ANDY DONG, ALICE M AGOGINO

    E-Print Network [OSTI]

    Agogino, Alice M.

    designers, manufacturing engineers, process planning engineers, and sales and marketing professionals a considerable amount of effort in accessing and absorbing design information. One can characterize this scenario1 TEXT ANALYSIS FOR CONSTRUCTING DESIGN REPRESENTATIONS ANDY DONG, ALICE M AGOGINO University

  14. Semiconductor Nanowires for Energy Conversion Allon I. Hochbaum*,

    E-Print Network [OSTI]

    Wu, Zhigang

    production from renewable sources. There exist many potential renewable energy technologies in the form is predicted to come from renewable energy sources, such as hydroelectric, solar, wind, hydrothermalSemiconductor Nanowires for Energy Conversion Allon I. Hochbaum*, and Peidong Yang* Department

  15. Sandia Energy - Semiconductor Revolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semiconductor Revolution Home Energy Research EFRCs Solid-State Lighting Science EFRC Semiconductor Revolution Semiconductor RevolutionTara Camacho-Lopez2015-05-14T14:32:12+00:00...

  16. Students' difficulties with integration in electricity Dong-Hai Nguyen and N. Sanjay Rebello

    E-Print Network [OSTI]

    Zollman, Dean

    Students' difficulties with integration in electricity Dong-Hai Nguyen and N. Sanjay Rebello Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA (Received 30 January 2011 physics experience when solving problems involving integration in the context of electricity. We conducted

  17. Proton radioactivity within a generalized liquid drop model J. M. Dong,1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Proton radioactivity within a generalized liquid drop model J. M. Dong,1 H. F. Zhang,1 and G. Royer) The proton radioactivity half-lives of spherical proton emitters are investigated theoretically. The potential barriers preventing the emission of proton are determined in the quasimolecular shape path within

  18. The Cricket Location-Support Zhe Dong, Rufeng Meng, Zhexing Sun, Rajiv Mishra

    E-Print Network [OSTI]

    Karp, Brad

    The Cricket Location-Support System Zhe Dong, Rufeng Meng, Zhexing Sun, Rajiv Mishra 11/02/2009 #12 Ultrasound Travels in a slower speed comparing with RF (1.13 ft/ms at room temperature) #12;111111 How does Solution: Using randomization (Uniform Distribution) to avoid such collisions Using RF signal with longer

  19. An energy-efficient data transfer strategy with link rate control for Cloud , Dong Yuan1

    E-Print Network [OSTI]

    Yang, Yun

    1 An energy-efficient data transfer strategy with link rate control for Cloud Wenhao Li1 , Dong a novel energy-efficient data transfer strategy called LRCDT (Link Rate Controlled Data Transfer to existing data transfer strategies. Keywords-energy efficiency, data transfer, link rate control, Cloud

  20. A Supply Chain Network Economy: Modeling and Qualitative Analysis Ding Zhang and June Dong

    E-Print Network [OSTI]

    Nagurney, Anna

    A Supply Chain Network Economy: Modeling and Qualitative Analysis Ding Zhang and June Dong School a general network model for a supply chain economy since it is now recognized that when it comes. This chapter is organized as follows. In Section 2, we introduce the concept of a supply chain economy

  1. From Data Fusion to Knowledge Fusion Xin Luna Dong, Evgeniy Gabrilovich, Geremy Heitz, Wiko Horn,

    E-Print Network [OSTI]

    Murphy, Kevin Patrick

    From Data Fusion to Knowledge Fusion Xin Luna Dong, Evgeniy Gabrilovich, Geremy Heitz, Wiko Horn|gabr|geremy|wilko|kpmurphy|sunsh|weizh}@google.com ABSTRACT The task of data fusion is to identify the true values of data items (e.g., the true date of birth (and unknown) reliabil- ity. A recent survey [20] has provided a detailed comparison of various fusion

  2. Wave-current interaction in strongly sheared mean flows Zhifei Dong and James T. Kirby

    E-Print Network [OSTI]

    Kirby, James T.

    Wave-current interaction in strongly sheared mean flows Zhifei Dong and James T. Kirby Center@udel.edu Abstract We describe a framework for wave-current interaction theory for small-amplitude surface gravity waves propagating on the strongly sheared mean flows. Using a multiple-scale perturbation method, we

  3. Chameleon: Color Transformation on OLED Displays Mian Dong, and Lin Zhong

    E-Print Network [OSTI]

    Zhong, Lin

    system energy consumers in mobile systems. Emerging organic light-emitting diode (OLED)-based displaysChameleon: Color Transformation on OLED Displays Mian Dong, and Lin Zhong Department of Electrical promise unprecedented flexibility in power savings because all pixels are light-emitting and the power

  4. Cloud tomography: Role of constraints and a new algorithm Dong Huang,1

    E-Print Network [OSTI]

    Cloud tomography: Role of constraints and a new algorithm Dong Huang,1 Yangang Liu,1 and Warren 2008. [1] Retrieving spatial distributions of cloud liquid water content from limited-angle emission data (passive microwave cloud tomography) is ill-posed, and a small inaccuracy in the data and

  5. Unitary lens semiconductor device

    DOE Patents [OSTI]

    Lear, Kevin L. (Albuquerque, NM)

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  6. Interconnected semiconductor devices

    DOE Patents [OSTI]

    Grimmer, Derrick P. (White Bear Lake, MN); Paulson, Kenneth R. (North St. Paul, MN); Gilbert, James R. (St. Paul, MN)

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  7. Semiconductor bridge (SCB) detonator

    DOE Patents [OSTI]

    Bickes, Jr., Robert W. (Albuquerque, NM); Grubelich, Mark C. (Albuquerque, NM)

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  8. Semiconductor bridge (SCB) detonator

    DOE Patents [OSTI]

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  9. Mismatched semiconductor nanowires: growth and characterization

    E-Print Network [OSTI]

    Yim, Joanne Wing Lan

    2011-01-01

    of Semiconductors: Physics and Materials Properties (system Material properties Zn-VI compound semiconductors (

  10. Advanced Electrical Characterization of Semiconductor Nanowires

    E-Print Network [OSTI]

    Khanal, Devesh Raj

    2010-01-01

    extracting materials properties from semiconductors is theimportant material properties of semiconductors are the free

  11. Dong, A. and A.M. Agogino, "Designing an Untethered Educational Digital Library" (with A. Dong), Proceedings of the IEEE International Workshop on Wireless and Mobile Technologies in Education (WMTE 2003).

    E-Print Network [OSTI]

    Agogino, Alice M.

    for "anytime, anywhere" access to resources from educational digital libraries, the reality is that learners an Untethered Educational Digital Library" (with A. Dong), Proceedings of the IEEE International Workshop on Wireless and Mobile Technologies in Education (WMTE 2003). Designing an Untethered Educational Digital

  12. Effect of furnace atmosphere on E-glass foaming Dong-Sang Kim a,*, Bryan C. Dutton b

    E-Print Network [OSTI]

    Pilon, Laurent

    Effect of furnace atmosphere on E-glass foaming Dong-Sang Kim a,*, Bryan C. Dutton b , Pavel R in revised form 21 August 2006 Abstract The effect of furnace atmosphere on E-glass foaming has been studied with the specific goal of understanding the impact of increased water content on foaming in oxy-fired furnaces. E

  13. Power Modeling of Graphical User Interfaces on OLED Mian Dong Yung-Seok Kevin Choi Lin Zhong

    E-Print Network [OSTI]

    Zhong, Lin

    Algorithms, Measurement, Human Factors Keywords OLED Display, Graphic User Interface, Low Power 1Power Modeling of Graphical User Interfaces on OLED Displays Mian Dong Yung-Seok Kevin Choi Lin external lighting; and consume drastically different power when displaying different colors, due

  14. A General Multitiered Supply Chain Network Model of Quality Competition with Suppliers Dong Li1 and Anna Nagurney2

    E-Print Network [OSTI]

    Nagurney, Anna

    A General Multitiered Supply Chain Network Model of Quality Competition with Suppliers Dong Li1 a general multitiered supply chain network equilibrium model consisting of competing suppliers and competing, along with sensi- tivity analysis in which the impacts of capacity disruptions and complete supplier

  15. Denial-of-Service Attacks on Battery-powered Mobile Computers Thomas Martin, Michael Hsiao, Dong Ha, Jayan Krishnaswami

    E-Print Network [OSTI]

    Ha, Dong S.

    Denial-of-Service Attacks on Battery-powered Mobile Computers Thomas Martin, Michael Hsiao, Dong Ha device inoperable by draining the battery more quickly than it would be drained under normal usage. We describe three main methods for an attacker to drain the battery: (1) Service request power attacks, where

  16. Joyce Yang | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | International Nuclear EnergyatJobsJointJoyce Yang About

  17. Electrostatic screening by semiconductors 

    E-Print Network [OSTI]

    Krcmar, Maja

    1998-01-01

    distributions. We determine the sluice screening length for the screening of a charged surface defect, and the interaction energy between two charged surface defects. We find the spatial scales over which dielectric and metallic properties of the semiconductors...

  18. Special Session Organizers Dr. Shengxiang Yang

    E-Print Network [OSTI]

    Yang, Shengxiang

    (Turkey) Annie S Wu (USA) Karsten Weicker (Germany) Juergen Branke (Germany) Shengxiang Yang (UK.yang@mcs.le.ac.uk Dr. Juergen Branke Institute AIFB, University of Karlsruhe 76128 Karlsruhe, Germany Tel: +49 (721 (Germany) Ernesto Costa (Portugal) Anna I Esparcia-Alcazar (Spain) Marco Farina (Italy) Michael Guntsch

  19. A Comparison of MERRA and NARR Reanalyses with the DOE ARM SGP Data AARON D. KENNEDY, XIQUAN DONG, AND BAIKE XI

    E-Print Network [OSTI]

    Dong, Xiquan

    A Comparison of MERRA and NARR Reanalyses with the DOE ARM SGP Data AARON D. KENNEDY, XIQUAN DONG and their underlying models are Corresponding author address: Mr. Aaron Kennedy, Depart- ment of Atmospheric Sciences

  20. Method of doping a semiconductor

    DOE Patents [OSTI]

    Yang, Chiang Y. (Miller Place, NY); Rapp, Robert A. (Columbus, OH)

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  1. CitySee: Urban CO2 Monitoring with Sensors Xufei Mao, Xin Miao, Yuan He, Tong Zhu, Jiliang Wang, Wei Dong, Xiang-Yang Li, and Yunhao Liu

    E-Print Network [OSTI]

    Liu, Yunhao

    CitySee: Urban CO2 Monitoring with Sensors Xufei Mao, Xin Miao, Yuan He, Tong Zhu, Jiliang Wang of precise carbon emission measurement and real-time surveillance for CO2 management in cities, we present CitySee, a real-time CO2-monitoring system using sensor networks for an urban area (around 100 square

  2. Characterization of Lee-Yang polynomials

    E-Print Network [OSTI]

    David Ruelle

    2008-11-09

    The Lee-Yang circle theorem describes complex polynomials of degree $n$ in $z$ with all their zeros on the unit circle $|z|=1$. These polynomials are obtained by taking $z_1=...=z_n=z$ in certain multiaffine polynomials $\\Psi(z_1,...,z_n)$ which we call Lee-Yang polynomials (they do not vanish when $|z_1|,...,|z_n|1$). We characterize the Lee-Yang polynomials $\\Psi$ in $n+1$ variables in terms of polynomials $\\Phi$ in $n$ variables (those such that $\\Phi(z_1,...,z_n)\

  3. Amorphous semiconductor solar cell

    DOE Patents [OSTI]

    Dalal, Vikram L. (Newark, DE)

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  4. Kansas Advanced Semiconductor Project

    SciTech Connect (OSTI)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  5. Yang-Mills theories and quadratic forms

    E-Print Network [OSTI]

    Sudarshan Ananth; Lars Brink; Mahendra Mali

    2015-07-04

    We show that the Hamiltonian of (N=1;d=10) super Yang-Mills can be expressed as a quadratic form in a very similar manner to that of the (N=4;d=4) theory. We find a similar quadratic form structure for pure Yang-Mills theory but this feature, in the non-supersymmetric case, seems to be unique to four dimensions. We discuss some consequences of this feature.

  6. Semiconductor radiation detector

    DOE Patents [OSTI]

    Patt, Bradley E. (Sherman Oaks, CA); Iwanczyk, Jan S. (Los Angeles, CA); Tull, Carolyn R. (Orinda, CA); Vilkelis, Gintas (Westlake Village, CA)

    2002-01-01

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  7. Finding and Understanding Bugs in C Compilers Xuejun Yang Yang Chen Eric Eide John Regehr

    E-Print Network [OSTI]

    Regehr, John

    Finding and Understanding Bugs in C Compilers Xuejun Yang Yang Chen Eric Eide John Regehr University of Utah, School of Computing { jxyang, chenyang, eeide, regehr }@cs.utah.edu Abstract Compilers should be correct. To improve the quality of C compilers, we created Csmith, a randomized test

  8. Chemical dynamics and bonding at gas/semiconductor and oxide/semiconductor interfaces

    E-Print Network [OSTI]

    Bishop, Sarah R.

    2010-01-01

    and physical properties of semiconductor materials. Onematerials considered, Ge and III-V semiconductors, have favorable intrinsic properties

  9. Method of passivating semiconductor surfaces

    DOE Patents [OSTI]

    Wanlass, M.W.

    1990-06-19

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  10. Highly Mismatched Semiconductor Alloys with Extreme Compositions

    E-Print Network [OSTI]

    Levander, Alejandro X.

    2012-01-01

    A. , Properties of Advanced Semiconductor Materials GaN,Semiconductor alloying is a common method for tailoring material propertiesSemiconductor alloying is a common method for tailoring material properties

  11. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  12. Direct Experimental Simulation of the Yang-Baxter Equation

    E-Print Network [OSTI]

    Chao Zheng; Jun-lin Li; Si-yu Song; Gui Lu Long

    2013-05-27

    Introduced in the field of many-body statistical mechanics, Yang-Baxter equation has become an important tool in a variety fields of physics. In this work, we report the first direct experimental simulation of the Yang-Baxter equation using linear quantum optics. The equality between the two sides of the Yang-Baxter equation in two dimension has been demonstrated directly, and the spectral parameter transformation in the Yang-Baxter equation is explicitly confirmed.

  13. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers A Spintronic Semiconductor with Selectable Charge Carriers Print Wednesday, 28 August 2013 00:00 Accentuating the...

  14. ELECTRON TRANSFER AT SENSITIZED SEMICONDUCTOR ELECTRODES

    E-Print Network [OSTI]

    Spitler, Mark T.

    2010-01-01

    Pleskov. , Y. , Electrochemistry of SemiconductorsjPlenum54 Semiconductor electrochemistry Experimental apparatus forSemiconductor electrochemistry is a complex intersec'tion of

  15. Thermal Conductivity of Polycrystalline Semiconductors and Ceramics

    E-Print Network [OSTI]

    Wang, Zhaojie

    2012-01-01

    F. , Properties of Advanced Semiconductor Materials GaN,materials In the semiconductor community, thermal conductivity is a very important property

  16. Scanned probe characterization of semiconductor nanostructures

    E-Print Network [OSTI]

    Law, James Jeremy MacDonald

    2009-01-01

    electronic properties on two semiconductor material systems.semiconductor materials system suffers from perturbations in local electronic structure due to crystallographic defects. Understanding the electronic properties

  17. Graphene Edge Lithography Guibai Xie, Zhiwen Shi, Rong Yang, Donghua Liu, Wei Yang, Meng Cheng, Duoming Wang, Dongxia Shi,

    E-Print Network [OSTI]

    Zhang, Guangyu

    Graphene Edge Lithography Guibai Xie, Zhiwen Shi, Rong Yang, Donghua Liu, Wei Yang, Meng Cheng: Fabrication of graphene nanostructures is of importance for both investigating their intrinsic physical approach for graphene nanostructures. Compared with conventional lithographic fabrication techniques

  18. HAPPY NEW YEAR! Semiconductor Spintronics

    E-Print Network [OSTI]

    Nikolic, Branislav K.

    HAPPY NEW YEAR! #12;Semiconductor Spintronics Niu Burkov Culcer Nunez Nomura Yao Sinova Sinitsyn Dietl Koenig Lin Timm Jungwirth Lee Fernandez-Rossier U. Texas at Austin 2005 Taiwan Spintronics Workshop #12;Spintronics Toolbag Ferromagnetic Semiconductors (Ga,Mn)As .... others Coupled Spin Charge

  19. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  20. Process for producing chalcogenide semiconductors

    DOE Patents [OSTI]

    Noufi, R.; Chen, Y.W.

    1985-04-30

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  1. Physics with isotopically controlled semiconductors

    SciTech Connect (OSTI)

    Haller, E. E., E-mail: eehaller@lbl.gov [University of California at Berkeley, Department of Materials Science and Engineering (United States)

    2010-07-15

    This paper is based on a tutorial presentation at the International Conference on Defects in Semiconductors (ICDS-25) held in Saint Petersburg, Russia in July 2009. The tutorial focused on a review of recent research involving isotopically controlled semiconductors. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, is the most prominent effect for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples.

  2. Observations of the trade wind wakes of Kauai and Oahu Yang Yang,1,2

    E-Print Network [OSTI]

    Xie, Shang-Ping

    of the island of Hawaii with lee vortices and a westerly return flow. [3] Kauai and Oahu are much smaller of Hawaii, Fr is 0.6 and 0.8 for Kauai and Oahu (1.6 and 1.2 km in maximum elevation), respectivelyObservations of the trade wind wakes of Kauai and Oahu Yang Yang,1,2 Jian Ma,3 and Shang-Ping Xie1

  3. Loop expansion in Yang-Mills thermodynamics

    E-Print Network [OSTI]

    Ralf Hofmann

    2009-11-05

    We argue that a selfconsistent spatial coarse-graining, which involves interacting (anti)calorons of unit topological charge modulus, implies that real-time loop expansions of thermodynamical quantities in the deconfining phase of SU(2) and SU(3) Yang-Mills thermodynamics are, modulo 1PI resummations, determined by a finite number of connected bubble diagrams.

  4. Special Session Organizers Dr. Shengxiang Yang

    E-Print Network [OSTI]

    Yang, Shengxiang

    Rasheed (USA) Hendrik Richter (Germany) Renato Tinos (Brazil) Lutz Schoenemann (Germany) Sima Uyar (Turkey.yang@mcs.le.ac.uk Dr. Yaochu Jin Honda Research Institute Europe Carl-Legien-Str 30 63073 Offenbach am Main, GERMANY. Abbass (Australia) Dirk Arnold (Canada) Thomas Bartz-Beielstein (Germany) Hans-Georg Beyer (Austria) Tim

  5. Semiconductor radiation detector

    DOE Patents [OSTI]

    Bell, Zane W. (Oak Ridge, TN); Burger, Arnold (Knoxville, TN)

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  6. Inelastic scattering in a monolayer graphene sheet: A weak-localization study Dong-Keun Ki, Dongchan Jeong, Jae-Hyun Choi, and Hu-Jong Lee*

    E-Print Network [OSTI]

    Lee, Hu-Jong

    ,7 II. SAMPLE PREPARATION AND MEASUREMENTS A monolayer graphene sheet used in this study was meInelastic scattering in a monolayer graphene sheet: A weak-localization study Dong-Keun Ki in a graphene sheet, a single layer of graphite, exhibit distinct characteristics from those in other two

  7. Lyapunov instability of rigid diatomic molecules in three dimensions Young-Han Shin, Dong-Chul Ihm, and Eok-Kyun Lee

    E-Print Network [OSTI]

    Lee, EokKyun

    Lyapunov instability of rigid diatomic molecules in three dimensions Young-Han Shin, Dong-Chul Ihm June 2001; published 24 September 2001 We study the Lyapunov instability of a three-dimensional fluid and angular variables for the configura- tional space variables. The spectra of Lyapunov exponents

  8. Low Voltage High-SNR Pipeline Data Converters Charles Myers, Jipeng Li, Dong-Young Chang, and Un-Ku Moon

    E-Print Network [OSTI]

    Moon, Un-Ku

    Low Voltage High-SNR Pipeline Data Converters Charles Myers, Jipeng Li, Dong-Young Chang, and Un pipeline data converter. This is accomplished with the removal of the S/H input stage and the use of a rail limitations. In pipeline data converters, noise reduction options such as oversampling and noise shaping

  9. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    DOE Patents [OSTI]

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  10. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01

    semiconductor processing materials are closely held intellectual property. Chemical textbooks and handbooks

  11. Semiconductor Nanocrystals for Biological Imaging

    SciTech Connect (OSTI)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  12. Design and Synthesis of Novel Diluted Magnetic Semiconductors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design and Synthesis of Novel Diluted Magnetic Semiconductors Diluted magnetic semiconductors (DMSs) are semiconductors doped with small amounts of magnetic active transition...

  13. Growth and Characterization of Semiconductor Nanostructures for Nanoelectronics

    E-Print Network [OSTI]

    Zhong, Jiebin

    2011-01-01

    of semiconductors. Physics and materials properties.of semiconductors. Physics and materials properties, 1996.properties [19, 46-52], compared with bulk materials. In general, when semiconductor

  14. Impurity gettering in semiconductors

    DOE Patents [OSTI]

    Sopori, B.L.

    1995-06-20

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device is disclosed. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500 C to about 700 C for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal. 1 fig.

  15. Mass in Quantum Yang-Mills Theory

    E-Print Network [OSTI]

    L. D. Faddeev

    2009-11-05

    Among seven problems, proposed for XXI century by Clay Mathematical Institute, there are two stemming from physics. One of them is called "Yang-Mills Existence and Mass Gap". The detailed statement of the problem, written by A. Jaffe and E. Witten, gives both motivation and exposition of related mathematical results, known until now. Having some experience in the matter, I decided to completement their text by my own personal comments aimed mostly to mathematical audience.

  16. Refractive Indices of Semiconductors from Energy gaps

    E-Print Network [OSTI]

    Tripathy, S K

    2015-01-01

    An empirical relation based on energy gap and refractive index data has been proposed in the present study to calculate the refractive index of semiconductors. The proposed model is then applied to binary as well as ternary semiconductors for a wide range of energy gap. Using the relation, dielectric constants of some III-V group semiconductors are calculated. The calculated values for different group of binary semiconductors, alkali halides and ternary semiconductors fairly agree with other calculations and known values over a wide range of energy gap. The temperature variation of refractive index for some binary semiconductors have been calculated.

  17. Refractive Indices of Semiconductors from Energy gaps

    E-Print Network [OSTI]

    S. K. Tripathy

    2015-07-16

    An empirical relation based on energy gap and refractive index data has been proposed in the present study to calculate the refractive index of semiconductors. The proposed model is then applied to binary as well as ternary semiconductors for a wide range of energy gap. Using the relation, dielectric constants of some III-V group semiconductors are calculated. The calculated values for different group of binary semiconductors, alkali halides and ternary semiconductors fairly agree with other calculations and known values over a wide range of energy gap. The temperature variation of refractive index for some binary semiconductors have been calculated.

  18. Exterior Differential Systems for Yang-Mills Theories

    E-Print Network [OSTI]

    Frank B. Estabrook

    2008-12-05

    Exterior differential systems are given, and their Cartan characters calculated, for Maxwell and SU(2)-Yang-Mills equations in dimensions from three to six.

  19. Reply to Yang et al.'s comment

    E-Print Network [OSTI]

    Nguyen Ba An

    2006-11-20

    This is to reply to a recent comment by Yang, Yuan and Zhang on ``Teleportation of two-quNit entanglement: Exploiting local resorces''.

  20. Method of preparing nitrogen containing semiconductor material

    DOE Patents [OSTI]

    Barber, Greg D.; Kurtz, Sarah R.

    2004-09-07

    A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.

  1. Correlated exciton dynamics in semiconductor nanostructures

    E-Print Network [OSTI]

    Wen, Patrick, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    The absorption and dissipation of energy in semiconductor nanostructures are often determined by excited electron dynamics. In semiconductors, one fundamentally important electronic state is an exciton, an excited electron ...

  2. Wide band gap semiconductor templates

    DOE Patents [OSTI]

    Arendt, Paul N. (Los Alamos, NM); Stan, Liliana (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); DePaula, Raymond F. (Santa Fe, NM); Usov, Igor O. (Los Alamos, NM)

    2010-12-14

    The present invention relates to a thin film structure based on an epitaxial (111)-oriented rare earth-Group IVB oxide on the cubic (001) MgO terminated surface and the ion-beam-assisted deposition ("IBAD") techniques that are amendable to be over coated by semiconductors with hexagonal crystal structures. The IBAD magnesium oxide ("MgO") technology, in conjunction with certain template materials, is used to fabricate the desired thin film array. Similarly, IBAD MgO with appropriate template layers can be used for semiconductors with cubic type crystal structures.

  3. Semiconductor electrode with improved photostability characteristics

    DOE Patents [OSTI]

    Frank, A.J.

    1985-02-19

    An electrode is described for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode consists of a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.

  4. Semiconductor nanocrystal-based phagokinetic tracking

    DOE Patents [OSTI]

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  5. Semiconductor assisted metal deposition for nanolithography applications

    DOE Patents [OSTI]

    Rajh, Tijana (Naperville, IL); Meshkov, Natalia (Downers Grove, IL); Nedelijkovic, Jovan M. (Belgrade, YU); Skubal, Laura R. (West Brooklyn, IL); Tiede, David M. (Elmhurst, IL); Thurnauer, Marion (Downers Grove, IL)

    2002-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  6. e! Science News Semiconductor manufacturing technique holds

    E-Print Network [OSTI]

    Rogers, John A.

    e! Science News Semiconductor manufacturing technique holds promise for solar energy PublishedSemiconductor manufacturing technique holds promise for solar energy | e! Science News 5/26/2010http semiconductor manufacturing method pioneered at the University of Illinois, the future of solar energy just got

  7. On Top-k Recommendation using Social Networks Xiwang Yang

    E-Print Network [OSTI]

    Liu, Yong

    On Top-k Recommendation using Social Networks Xiwang Yang , Harald Steck ,Yang Guo and Yong Liu). Social network based top-k recommendation, which recom- mends to a user a small number of items at a time, is not well studied. In this paper, we conduct a comprehensive study on improving the accuracy of top

  8. Eunkyung Yang | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy8) Wigner Home · ResourcesEunkyung Yang Eunkyung

  9. 2010 Defects in Semiconductors GRC

    SciTech Connect (OSTI)

    Shengbai Zhang

    2011-01-06

    Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, as well as an emphasis on the development of novel defect detection methods and first-principles defect theories. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference will deal with point and extended defects in a broad range of electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, oxides, sp{sup 2} carbon based-materials, and photovoltaic/solar cell materials, and in understanding important defect phenomena such as doping bottleneck in nanostructures and the diffusion of defects and impurities. The program consists of about twenty invited talks and a number of contributed poster sessions. The emphasis should be on work which has yet to be published. The large amount of discussion time provides an ideal forum for dealing with topics that are new and/or controversial.

  10. Mechanical scriber for semiconductor devices

    DOE Patents [OSTI]

    Lin, Peter T. (East Brunswick, NJ)

    1985-01-01

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer.

  11. Mechanical scriber for semiconductor devices

    DOE Patents [OSTI]

    Lin, P.T.

    1985-03-05

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer. 5 figs.

  12. Controlled growth of semiconductor crystals

    DOE Patents [OSTI]

    Bourret-Courchesne, E.D.

    1992-07-21

    A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.

  13. Controlled growth of semiconductor crystals

    DOE Patents [OSTI]

    Bourret-Courchesne, Edith D. (Richmond, CA)

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  14. The Thermal Wake of Kauai Island: Satellite Observations and Numerical Simulations* YANG YANG, SHANG-PING XIE, AND JAN HAFNER

    E-Print Network [OSTI]

    Xie, Shang-Ping

    The Thermal Wake of Kauai Island: Satellite Observations and Numerical Simulations* YANG YANG, SHANG-PING XIE, AND JAN HAFNER International Pacific Research Center, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii (Manuscript received 12 February 2007, in final form 12 December 2007) ABSTRACT

  15. Top-Down Visual Saliency via Joint CRF and Dictionary Learning Jimei Yang and Ming-Hsuan Yang

    E-Print Network [OSTI]

    Yang, Ming-Hsuan

    Top-Down Visual Saliency via Joint CRF and Dictionary Learning Jimei Yang and Ming-Hsuan Yang University of California at Merced {jyang44,mhyang}@ucmerced.edu Abstract Top-down visual saliency facilities for reducing the search space. In this paper, we propose a novel top-down saliency model that jointly learns

  16. ON THE INEQUIVALENCE OF NESS-HELLESETH APN FUNCTIONS XIANGYONG ZENG, LEI HU, YANG YANG, AND WENFENG JIANG

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    ON THE INEQUIVALENCE OF NESS-HELLESETH APN FUNCTIONS XIANGYONG ZENG, LEI HU, YANG YANG, AND WENFENG JIANG Abstract. In this paper, the Ness-Helleseth functions over Fpn defined by the form f(x) = ux pn-1 and they are CCZ-inequivalent with all other known APN functions when p 7. The original method of Ness

  17. Back-side readout semiconductor photomultiplier

    DOE Patents [OSTI]

    Choong, Woon-Seng; Holland, Stephen E

    2014-05-20

    This disclosure provides systems, methods, and apparatus related to semiconductor photomultipliers. In one aspect, a device includes a p-type semiconductor substrate, the p-type semiconductor substrate having a first side and a second side, the first side of the p-type semiconductor substrate defining a recess, and the second side of the p-type semiconductor substrate being doped with n-type ions. A conductive material is disposed in the recess. A p-type epitaxial layer is disposed on the second side of the p-type semiconductor substrate. The p-type epitaxial layer includes a first region proximate the p-type semiconductor substrate, the first region being implanted with p-type ions at a higher doping level than the p-type epitaxial layer, and a second region disposed on the first region, the second region being doped with p-type ions at a higher doping level than the first region.

  18. Conduction in Charged PbSe Nanocrystal Films Brian L. Wehrenberg, Dong Yu, Jiasen Ma, and Philippe Guyot-Sionnest*

    E-Print Network [OSTI]

    Yu, Dong

    system for incorporation into solar cells and photodetectors.7-9 The ability to successfully properties of arrays of semiconductor nano- crystals have been studied previously. Arrays of uncharged CdSe was seen to increase by several orders of magnitude.11 At low temperature, the conduction in these CdSe

  19. Compound semiconductor optical waveguide switch

    DOE Patents [OSTI]

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  20. Stretchable semiconductor elements and stretchable electrical circuits

    DOE Patents [OSTI]

    Rogers, John A. (Champaign, IL); Khang, Dahl-Young (Seoul, KR); Menard, Etienne (Durham, NC)

    2009-07-07

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  1. Optical devices featuring textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D. (Dover, MA); Cabalu, Jasper S. (Cary, NC)

    2011-10-11

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  2. Optical devices featuring textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D. (Dover, MA); Cabalu, Jasper S. (Cary, NC)

    2012-08-07

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  3. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  4. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as...

  5. Opportunities for Wide Bandgap Semiconductor Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications U.S. Department of Energy Fuel Cell Technologies Office Presenters: Jeff...

  6. Wafer-fused semiconductor radiation detector

    DOE Patents [OSTI]

    Lee, Edwin Y. (Livermore, CA); James, Ralph B. (Livermore, CA)

    2002-01-01

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  7. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using semiconductor materials like silicon and germanium that have the requisite properties to perform logical operations with both electrons (negative n-type charge carriers)...

  8. Reflection technique for thermal mapping of semiconductors

    DOE Patents [OSTI]

    Walter, Martin J. (Lee, NY)

    1989-06-20

    Semiconductors may be optically tested for their temperatures by illuminating them with tunable monochromatic electromagnetic radiation and observing the light reflected off of them. A transition point will occur when the wavelength of the light corresponds with the actual band gap energy of the semiconductor. At the transition point, the image of the semiconductor will appreciably darken as the light is transmitted through it, rather than being reflected off of it. The wavelength of the light at the transition point corresponds to the actual band gap energy and the actual temperature of the semiconductor.

  9. Characterization of Novel Semiconductor Alloys for Band Gap Engineering

    E-Print Network [OSTI]

    Broesler, Robert Joseph

    2010-01-01

    of Semiconductors: Physics and Materials Properties. 1999,in Properties of Advanced Semiconductor Materials GaN, AlN,Semiconductor Alloys: InAlN, ZnSeO and GaNAs 2 Materials Properties

  10. Optic probe for semiconductor characterization

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO); Hambarian, Artak (Yerevan, AM)

    2008-09-02

    Described herein is an optical probe (120) for use in characterizing surface defects in wafers, such as semiconductor wafers. The optical probe (120) detects laser light reflected from the surface (124) of the wafer (106) within various ranges of angles. Characteristics of defects in the surface (124) of the wafer (106) are determined based on the amount of reflected laser light detected in each of the ranges of angles. Additionally, a wafer characterization system (100) is described that includes the described optical probe (120).

  11. Yunnan Semiconductor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to:SanmingYunlongGreenenergy CoEnergySemiconductor

  12. Kyungdong Photovoltaic Energy Corp KPE formerly Photon Semiconductor...

    Open Energy Info (EERE)

    Photovoltaic Energy Corp KPE formerly Photon Semiconductor Energy Jump to: navigation, search Name: Kyungdong Photovoltaic Energy Corp (KPE) (formerly Photon Semiconductor &...

  13. PROTECTIVE SURFACE COATINGS ON SEMICONDUCTOR NUCLEAR RADIATION DETECTORS

    E-Print Network [OSTI]

    Hansen, W.L.

    2010-01-01

    Science PROTECTIVE SURFACE COATINGS ON SEMICONDUCTOR NUCLEARF PROTECTIVE SURFACE COATINGS ON SEMICONDUCTOR NUCLEARchannel for one particular coating is unrelated to the

  14. Engineering Density of States of Earth Abundant Semiconductors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of States of Earth Abundant Semiconductors for Enhanced Thermoelectric Power Factor Engineering Density of States of Earth Abundant Semiconductors for Enhanced Thermoelectric...

  15. PROTECTIVE SURFACE COATINGS ON SEMICONDUCTOR NUCLEAR RADIATION DETECTORS

    E-Print Network [OSTI]

    Hansen, W.L.

    2010-01-01

    SEMICONDUCTOR NUCLEAR RADIATION DETECTORS W. L. Hansen, E.SEMICONDUCTOR NUCLEAR RADIATION DETECTORS* W. L. Hansen, E.suita­ bility for radiation detectors. Collimated gamma-ray

  16. New ALS Technique Guides IBM in Next-Generation Semiconductor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Guides IBM in Next-Generation Semiconductor Development New ALS Technique Guides IBM in Next-Generation Semiconductor Development Print Wednesday, 21 January 2015...

  17. Metal Oxide Semiconductor Nanoparticles Open the Door to New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Oxide Semiconductor Nanoparticles Open the Door to New Medical Innovations Technology available for licensing: novel nanometer-sized metal oxide semiconductors that allow...

  18. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01

    maps in semiconductor manufacturing. ” Pattern Recognit.Third ISMI Symposium on Manufacturing Effectiveness. Austin,thickness in semiconductor manufacturing. In Proceedings of

  19. Semiconductor-nanocrystal/conjugated polymer thin films (Patent...

    Office of Scientific and Technical Information (OSTI)

    Semiconductor-nanocrystalconjugated polymer thin films Citation Details In-Document Search Title: Semiconductor-nanocrystalconjugated polymer thin films You are accessing a...

  20. ENERGY TRANSPORT IN SEMICONDUCTOR DEVICES ANSGAR JUNGEL

    E-Print Network [OSTI]

    Jüngel, Ansgar

    ENERGY TRANSPORT IN SEMICONDUCTOR DEVICES ANSGAR J¨UNGEL Abstract. The modeling, analysis, and numerical approximation of energy-transport models for semiconductor devices is reviewed. The derivation-dependent energy-transport equations with physical transport coefficients. The discretization of the stationary

  1. Semiclassical Transport Models for Semiconductor Spintronics

    E-Print Network [OSTI]

    Saikin, Semion

    Semiclassical Transport Models for Semiconductor Spintronics Yuriy V. Pershin,1,2 Semion Saikin1 spintronic device modeling. These include drift-diffusion models, kinetic transport equations and Monte Carlo in semiconductor structures have moved the state of the art closer to the realiza- tion of novel spintronic devices

  2. Semiclassical Transport Models for Semiconductor Spintronics

    E-Print Network [OSTI]

    Privman, Vladimir

    Semiclassical Transport Models for Semiconductor Spintronics Yuriy V. Pershin,1,2 Semion Saikin1 spintronic device modeling. These include drift-diffusion models, kinetic transport equations and Monte Carlo in semiconductor structures have moved the state of the art closer to the realization of novel spintronic devices

  3. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.

    1998-01-27

    A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  4. COLLOIDAL SEMICONDUCTOR NANOCRYSTALS BASED SOLAR CELLS

    E-Print Network [OSTI]

    Tessler, Nir

    COLLOIDAL SEMICONDUCTOR NANOCRYSTALS BASED SOLAR CELLS Nir Yaacobi-Gross #12;COLLOIDAL SEMICONDUCTOR NANOCRYSTALS BASED SOLAR CELLS Research Thesis Submitted in Partial Fulfilment of the Requirements type II bulk homojunctions in near IR active all nanocrystals solar cells. Submitted to Adv Mater. 2011

  5. Semiconductor Nanowire Optical Antenna Solar Absorbers

    E-Print Network [OSTI]

    Fan, Shanhui

    cost reductions in the manufacturing of solar mod- ules.1 Moreover, it is essential to identify newSemiconductor Nanowire Optical Antenna Solar Absorbers Linyou Cao, Pengyu Fan, Alok P. Vasudev the absorption for solar radiation by 25% while utilizing less than half of the semiconductor material (250

  6. Hybrid anode for semiconductor radiation detectors

    DOE Patents [OSTI]

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  7. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, Martin (TuBingen, DE); Schulz, Douglas L. (Denver, CO); Curtis, Calvin J. (Lakewood, CO); Ginley, David S. (Evergreen, CO)

    1998-01-01

    A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  8. EXCITONIC EIGENSTATES OF DISORDERED SEMICONDUCTOR QUANTUM WIRES

    E-Print Network [OSTI]

    to be symmetric, continuous, and coercive. The disorder of the wire is modelled by adding a potential in the Hamil.meier@uni-paderborn.de http://www.global-sci.com/ Global Science Preprint #12;2 1 Introduction Semiconductors of semiconductors are exploited in solar cells, light emitting diodes, and lasers, and, furthermore, future

  9. Semiconductor switch geometry with electric field shaping

    DOE Patents [OSTI]

    Booth, R.; Pocha, M.D.

    1994-08-23

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium. 10 figs.

  10. Semiconductor switch geometry with electric field shaping

    DOE Patents [OSTI]

    Booth, Rex (Livermore, CA); Pocha, Michael D. (Livermore, CA)

    1994-01-01

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium.

  11. Dong, A., E. Fixler and A.M. Agogino, "A Case Study of Policy Decisions for Federated Search Across Digital Libraries," Proceedings of ICDL 2004 (International Conference on Digital Libraries), The

    E-Print Network [OSTI]

    Agogino, Alice M.

    Case Study of Policy Decisions for Federated Search Across Digital Libraries," Proceedings of ICDL 2004 (International Conference on Digital Libraries), The Energy and Resources Institute, Vol. 2, 892- 898, 2004. A Case Study of Policy Decisions for Federated Search Across Digital Libraries Andy Dong University

  12. Phosphorous doping a semiconductor particle

    DOE Patents [OSTI]

    Stevens, Gary Don (18912 Ravenglen Ct, Dallas, TX 75287); Reynolds, Jeffrey Scott (703 Horizon, Murphy, TX 75094)

    1999-07-20

    A method (10) of phosphorus doping a semiconductor particle using ammonium phosphate. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried (16, 18), with the phosphorus then being diffused (20) into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement.

  13. Phosphorus doping a semiconductor particle

    DOE Patents [OSTI]

    Stevens, G.D.; Reynolds, J.S.

    1999-07-20

    A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.

  14. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, Steven R. (Berkeley, CA)

    1999-01-01

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  15. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, S.R.

    1999-07-27

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  16. Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems

    SciTech Connect (OSTI)

    Alvarado, Samuel R. [Ames Laboratory; Guo, Yijun [Ames Laboratory; Ruberu, T. Purnima A. [Ames Laboratory; Tavasoli, Elham [Ames Laboratory; Vela, Javier [Ames Laboratory

    2014-03-15

    The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describe our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).

  17. Suchuan Dong's Home Page

    E-Print Network [OSTI]

    Bio-fluids and bio-structural simulations. Flow-structure interaction. Turbulence at high Reynolds numbers in complex geometries. High performance computing.

  18. Suchuan Dong: Home

    E-Print Network [OSTI]

    Research interest: high-order numerical methods, algorithms for dynamic simulations, high performance computing, fundamental fluids- and solids-related

  19. dong-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulationdetonation detection |InnovationPhysica D71

  20. dong-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulationdetonation detection |InnovationPhysica D7125-Month

  1. Nitride semiconductor Surface and interface characterization and device design

    E-Print Network [OSTI]

    Zhang, Hongtao

    2006-01-01

    piezoelectric polarization effects in nitride heterostructures," in III-V Nitride Semiconductors: Applications

  2. Transport Equations for Semiconductors Prof. Dr. Ansgar Jungel

    E-Print Network [OSTI]

    Jüngel, Ansgar

    - cations have been invented; for instance, semiconductor lasers, solar cells, light-emitting diodes (LED

  3. Electronegativity estimation of electronic polarizabilities of semiconductors

    SciTech Connect (OSTI)

    Li, Keyan [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)] [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China); Xue, Dongfeng, E-mail: dfxue@chem.dlut.edu.cn [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)] [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)

    2010-03-15

    On the basis of the viewpoint of structure-property relationship in solid state matters, we proposed some useful relations to quantitatively calculate the electronic polarizabilities of binary and ternary chalcopyrite semiconductors, by using electronegativity and principal quantum number. The calculated electronic polarizabilities are in good agreement with reported values in the literature. Both electronegativity and principal quantum number can effectively reflect the detailed chemical bonding behaviors of constituent atoms in these semiconductors, which determines the magnitude of their electronic polarizabilities. The present work provides a useful guide to compositionally design novel semiconductor materials, and further explore advanced electro-optic devices.

  4. Diluted magnetic semiconductor nanowires exhibiting magnetoresistance

    DOE Patents [OSTI]

    Yang, Peidong (El Cerrito, CA); Choi, Heonjin (Seoul, KR); Lee, Sangkwon (Daejeon, KR); He, Rongrui (Albany, CA); Zhang, Yanfeng (El Cerrito, CA); Kuykendal, Tevye (Berkeley, CA); Pauzauskie, Peter (Berkeley, CA)

    2011-08-23

    A method for is disclosed for fabricating diluted magnetic semiconductor (DMS) nanowires by providing a catalyst-coated substrate and subjecting at least a portion of the substrate to a semiconductor, and dopant via chloride-based vapor transport to synthesize the nanowires. Using this novel chloride-based chemical vapor transport process, single crystalline diluted magnetic semiconductor nanowires Ga.sub.1-xMn.sub.xN (x=0.07) were synthesized. The nanowires, which have diameters of .about.10 nm to 100 nm and lengths of up to tens of micrometers, show ferromagnetism with Curie temperature above room temperature, and magnetoresistance up to 250 Kelvin.

  5. New elliptic solutions of the Yang-Baxter equation

    E-Print Network [OSTI]

    D. Chicherin; S. E. Derkachov; V. P. Spiridonov

    2015-05-13

    We consider finite-dimensional reductions of the most general known solution of the Yang-Baxter equation with a rank 1 symmetry algebra, which is described by an integral operator with an elliptic hypergeometric kernel. The reduced R-operators reproduce at their bottom the standard Baxter's R-matrix for the 8-vertex model and Sklyanin's L-operator. The general formula has a remarkably compact form and yields new elliptic solutions of the Yang-Baxter equation based on the finite-dimensional representations of the elliptic modular double. The same result is reproduced using the fusion formalism.

  6. Non-Perturbative Yang-Mills Condensate as Dark Energy

    E-Print Network [OSTI]

    Donà, Pietro; Zhang, Yang; Antolini, Claudia

    2015-01-01

    Models based on Yang-Mills condensate (YMC) have been advocated in the literature and claimed to be successful candidates to explain dark energy. Several instantiations of this simple idea have been considered, the most promising of which are reviewed here. Nevertheless, results previously attained heavily relied on the perturbative approach to the analysis of the effective Yang-Mills action, which is only adequate in the asymptotically-free limit, and were extended into a regime, the infrared limit, in which confinement is expected. We show that if a minimum of the effective Lagrangian in $\\theta \\!=\\! - F_{\\, \\, \\mu \

  7. Non-Perturbative Yang-Mills Condensate as Dark Energy

    E-Print Network [OSTI]

    Pietro Donà; Antonino Marcianò; Yang Zhang; Claudia Antolini

    2015-09-19

    Models based on Yang-Mills condensate (YMC) have been advocated in the literature and claimed to be successful candidates to explain dark energy. Several instantiations of this simple idea have been considered, the most promising of which are reviewed here. Nevertheless, results previously attained heavily relied on the perturbative approach to the analysis of the effective Yang-Mills action, which is only adequate in the asymptotically-free limit, and were extended into a regime, the infrared limit, in which confinement is expected. We show that if a minimum of the effective Lagrangian in $\\theta \\!=\\! - F_{\\, \\, \\mu \

  8. 5D Yang-Mills instantons from ABJM Monopoles

    E-Print Network [OSTI]

    N. Lambert; H. Nastase; C. Papageorgakis

    2012-02-08

    In the presence of a background supergravity flux, N M2-branes will expand via the Myers effect into M5-branes wrapped on a fuzzy three-sphere. In previous work the fluctuations of the M2-branes were shown to be described by the five-dimensional Yang-Mills gauge theory associated to D4-branes. We show that the ABJM prescription for eleven-dimensional momentum in terms of magnetic flux lifts to an instanton flux of the effective five-dimensional Yang-Mills theory on the sphere, giving an M-theory interpretation for these instantons.

  9. Thermovoltaic semiconductor device including a plasma filter

    DOE Patents [OSTI]

    Baldasaro, Paul F. (Clifton Park, NY)

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  10. Surface phonons of III-V semiconductors 

    E-Print Network [OSTI]

    Das, Pradip Kumar

    1994-01-01

    are the simplest of all semiconductor surfaces. Their atomic relaxations and electronic surface states are rather well understood. There have, however, been surprisingly few experimental studies of their vibrational properties, and ours in the first detailed...

  11. Electrical Usage Characterization of Semiconductor Processing Tools 

    E-Print Network [OSTI]

    Hinson, S. R.

    2000-01-01

    This paper presents the basic concepts in performing an energy and power audit of a semiconductor process tool. A protocol exists that fully describes these measurements and their use and applicability and it will be described. This protocol...

  12. Spin injection and manipulation in organic semiconductors

    E-Print Network [OSTI]

    Venkataraman, Karthik (Karthik Raman)

    2011-01-01

    The use of organic semiconductors to enable organic spintronic devices requires the understanding of transport and control of the spin state of the carriers. This thesis deals with the above issue, focusing on the interface ...

  13. Narrow band gap amorphous silicon semiconductors

    DOE Patents [OSTI]

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  14. Nanopatterned Electrically Conductive Films of Semiconductor Nanocrystals

    E-Print Network [OSTI]

    Mentzel, Tamar

    We present the first semiconductor nanocrystal films of nanoscale dimensions that are electrically conductive and crack-free. These films make it possible to study the electrical properties intrinsic to the nanocrystals ...

  15. NANOSTRUCTURES, MAGNETIC SEMICONDUCTORS AND SPINELECTRONICS Paata Kervalishvili

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to data storage, switching, lighting and other devices, can lead to substantially new hardwareNANOSTRUCTURES, MAGNETIC SEMICONDUCTORS AND SPINELECTRONICS Paata Kervalishvili Georgian Technical and manipulation on a nanometre scale, which allows the fabrication of nanostructures with the properties mainly

  16. Science and applications of infrared semiconductor nanocrystals

    E-Print Network [OSTI]

    Geyer, Scott Mitchell

    2010-01-01

    In this work we study several applications of semiconductor nanocrystals (NCs) with infrared band gaps. In the first half, we explore the physics of two systems with applications in NC based photovoltaics. The physics of ...

  17. A Markovian analysis of semiconductor manufacturing processes 

    E-Print Network [OSTI]

    Schultz, Kent Eugene

    1991-01-01

    CHAPTER I INTRODUCTION Manufacturing process control is necessary to achieve and maintain high quality man- ufactured product. Semiconductor fabrication process control has generally taken the form of mean value based methods. This research analyzes...

  18. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  19. Wide-Bandgap Compound Semiconductors to Enable Novel Semiconductor Devices

    SciTech Connect (OSTI)

    Crawford, M.H.; Chow, W.W.; Wright, A.F.; Lee, S.R.; Jones, E.D.; Han, J.; Shul, R.J.

    1999-04-01

    This report represents the completion of a three-year Laboratory-Directed Research and Development (LDRD) program that focused on research and development of GaN-based wide bandgap semiconductor materials (referred to as III-N materials). Our theoretical investigations include the determination of fundamental materials parameters from first-principles calculations, the study of gain properties of III-N heterostructures using a microscopic laser theory and density-functional-theory, charge-state calculations to determine the core structure and energy levels of dislocations in III-N materials. Our experimental investigations include time-resolved photoluminescence and magneto-luminescence studies of GaN epilayers and multiquantum well samples as well as x-ray diffraction studies of AlGaN ternary alloys. In addition, we performed a number of experiments to determine how various materials processing steps affect both the optical and electrical properties of GaN-based materials. These studies include photoluminescence studies of GaN epilayers after post-growth rapid thermal annealing, ion implantation to produce n- and p-type material and electrical and optical studies of plasma-etched structures.

  20. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1998-06-30

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.

  1. Optical devices featuring nonpolar textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

    2013-11-26

    A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

  2. Optical temperature indicator using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-01-01

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  3. Electron gas grid semiconductor radiation detectors

    DOE Patents [OSTI]

    Lee, Edwin Y. (Livermore, CA); James, Ralph B. (Livermore, CA)

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  4. Double-nonlinear metamaterials Rongcao Yang1,2,a

    E-Print Network [OSTI]

    Double-nonlinear metamaterials Rongcao Yang1,2,a and Ilya V. Shadrivov1 1 Nonlinear Physics Centre 10 December 2010 We study a double-nonlinear metamaterial composed of a mixture of both nonlinear electric and nonlinear magnetic resonators. We predict multistable behavior in such metamaterial

  5. SHORT PAPER Zifeng Yang Partha Sarkar Hui Hu

    E-Print Network [OSTI]

    Hu, Hui

    with turbine power generation and fatigue loads acting on the wind turbines. Keywords Tip vortex Á Turbine wake required for the optimal mechanical design to improve the performance and fatigue lifetime of wind turbinesSHORT PAPER Zifeng Yang · Partha Sarkar · Hui Hu Visualization of the tip vortices in a wind

  6. Coordinated Dynamic Control of Marketing and Production Jian Yang,1

    E-Print Network [OSTI]

    Yang, Jian

    Coordinated Dynamic Control of Marketing and Production Jian Yang,1 Xiaolong Zhang2 1 Department profit maximization problem for a firm exercising control on both marketing and production. The firm's marketing effort impacts the current-period demand, which in turn affects future demand in a dissipating

  7. Quantum Chaos in a Yang-Mills-Higgs System

    E-Print Network [OSTI]

    Luca Salasnich

    1997-06-12

    We study the energy fluctuations of a spatially homogeneous SU(2) Yang-Mills-Higgs system. In particular, we analyze the nearest-neighbour spacing distribution which shows a Wigner-Poisson transition by increasing the value of the Higgs field in the vacuum. This transition is a clear quantum signature of the classical chaos-order transition of the system.

  8. Matrix Completion with Noisy Side Information Kai-Yang Chiang

    E-Print Network [OSTI]

    California at Davis, University of

    Matrix Completion with Noisy Side Information Kai-Yang Chiang Cho-Jui Hsieh Inderjit S. Dhillon@ucdavis.edu Abstract We study the matrix completion problem with side information. Side information has been considered in several matrix completion applications, and has been em- pirically shown to be useful in many cases

  9. Optimization Models for Shale Gas Water Management Linlin Yang

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimization Models for Shale Gas Water Management Linlin Yang , Jeremy Manno and Ignacio E With the advancement in directional drilling and hydraulic fracturing, shale gas is predicted to provide 46% of the United States natural gas supply by 20351 . The number of wells drilled in the Marcellus shale play has

  10. Einstein-Yang-Mills theory : I. Asymptotic symmetries

    E-Print Network [OSTI]

    Glenn Barnich; Pierre-Henry Lambert

    2013-10-10

    Asymptotic symmetries of the Einstein-Yang-Mills system with or without cosmological constant are explicitly worked out in a unified manner. In agreement with a recent conjecture, one finds a Virasoro-Kac-Moody type algebra not only in three dimensions but also in the four dimensional asymptotically flat case.

  11. Anomalous Transformation in Supersymmetric Yang-Mills Theory

    E-Print Network [OSTI]

    H. Itoyama; B. Razzaghe-Ashrafi

    1992-04-03

    An ``anomalous'' supersymmetry transformation of the gaugino axial current is given in supersymmetric Yang-Mills theory. The contact term is computed to one-loop order by a gauge-invariant point-splitting procedure. We reexamine the supercurrent anomaly in this method.

  12. Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1

    E-Print Network [OSTI]

    Chen, Gang

    Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1 conductivity led to a large increase in the thermoelectric figure of merit in several superlattice systems. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices

  13. Spin Transport in Semiconductor heterostructures

    SciTech Connect (OSTI)

    Domnita Catalina Marinescu

    2011-02-22

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  14. Photoelectrochemistry of Semiconductor Nanowire Arrays

    SciTech Connect (OSTI)

    Mallouk, Thomas E; Redwing, Joan M

    2009-11-10

    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  15. SUBMITTED TO THE SPECIAL ISSUE OF IEEE TRANS. ON SEMICONDUCTOR MANUFACTURING 1 Simulation of Semiconductor Manufacturing

    E-Print Network [OSTI]

    SUBMITTED TO THE SPECIAL ISSUE OF IEEE TRANS. ON SEMICONDUCTOR MANUFACTURING 1 Simulation of Semiconductor Manufacturing Supply-Chain Systems with DEVS, MPC, and KIB Dongping Huang, Hessam Sarjoughian1 manufacturing supply-chain systems can be described using a combination of Discrete EVent System Specification

  16. Atomic-resolution study of Mn tetramer clusters using scanning tunneling Rong Yang, Haiqiang Yang, and Arthur R. Smitha

    E-Print Network [OSTI]

    Atomic-resolution study of Mn tetramer clusters using scanning tunneling microscopy Rong Yang clusters is investigated. The clusters are composed of a quadrant array of Mn atoms forming a tetramer of manganese nitride, on which are stabilized peri- odic, self-organized array of MnN-bonded Mn tetramer clus

  17. Method for removing semiconductor layers from salt substrates

    DOE Patents [OSTI]

    Shuskus, Alexander J. (West Hartford, CT); Cowher, Melvyn E. (East Brookfield, MA)

    1985-08-27

    A method is described for removing a CVD semiconductor layer from an alkali halide salt substrate following the deposition of the semiconductor layer. The semiconductor-substrate combination is supported on a material such as tungsten which is readily wet by the molten alkali halide. The temperature of the semiconductor-substrate combination is raised to a temperature greater than the melting temperature of the substrate but less than the temperature of the semiconductor and the substrate is melted and removed from the semiconductor by capillary action of the wettable support.

  18. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect (OSTI)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  19. Light sources based on semiconductor current filaments

    DOE Patents [OSTI]

    Zutavern, Fred J. (Albuquerque, NM); Loubriel, Guillermo M. (Albuquerque, NM); Buttram, Malcolm T. (Sandia Park, NM); Mar, Alan (Albuquerque, NM); Helgeson, Wesley D. (Albuquerque, NM); O'Malley, Martin W. (Edgewood, NM); Hjalmarson, Harold P. (Albuquerque, NM); Baca, Albert G. (Albuquerque, NM); Chow, Weng W. (Cedar Crest, NM); Vawter, G. Allen (Albuquerque, NM)

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  20. Codoped direct-gap semiconductor scintillators

    DOE Patents [OSTI]

    Derenzo, Stephen Edward (Pinole, CA); Bourret-Courchesne, Edith (Berkeley, CA); Weber, Marvin J. (Danville, CA); Klintenberg, Mattias K. (Berkeley, CA)

    2008-07-29

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  1. Two-Photon Emission from Semiconductors

    E-Print Network [OSTI]

    Alex Hayat; Pavel Ginzburg; Meir Orenstein

    2007-10-25

    We report the first experimental observations of two-photon emission from semiconductors, to the best of our knowledge, and develop a corresponding theory for the room-temperature process. Spontaneous two-photon emission is demonstrated in optically-pumped bulk GaAs and in electrically-driven GaInP/AlGaInP quantum wells. Singly-stimulated two-photon emission measurements demonstrate the theoretically predicted two-photon optical gain in semiconductors - a necessary ingredient for any realizations of future two-photon semiconductor lasers. Photon-coincidence experiment validates the simultaneity of the electrically-driven GaInP/AlGaInP two-photon emission, limited only by detector's temporal resolution.

  2. Substrate solder barriers for semiconductor epilayer growth

    DOE Patents [OSTI]

    Drummond, Timothy J. (Tijeras, NM); Ginley, David S. (Albuquerque, NM); Zipperian, Thomas E. (Albuquerque, NM)

    1989-01-01

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

  3. Codoped direct-gap semiconductor scintillators

    DOE Patents [OSTI]

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  4. Support apparatus for semiconductor wafer processing

    DOE Patents [OSTI]

    Griffiths, Stewart K.; Nilson, Robert H.; Torres, Kenneth J.

    2003-06-10

    A support apparatus for minimizing gravitational stress in semiconductor wafers, and particularly silicon wafers, during thermal processing. The support apparatus comprises two concentric circular support structures disposed on a common support fixture. The two concentric circular support structures, located generally at between 10 and 70% and 70 and 100% and preferably at 35 and 82.3% of the semiconductor wafer radius, can be either solid rings or a plurality of spaced support points spaced apart from each other in a substantially uniform manner. Further, the support structures can have segments removed to facilitate wafer loading and unloading. In order to withstand the elevated temperatures encountered during semiconductor wafer processing, the support apparatus, including the concentric circular support structures and support fixture can be fabricated from refractory materials, such as silicon carbide, quartz and graphite. The claimed wafer support apparatus can be readily adapted for use in either batch or single-wafer processors.

  5. Radio frequency identification (RFID) applications in semiconductor manufacturing

    E-Print Network [OSTI]

    Cassett, David Ian, 1971-

    2004-01-01

    Radio frequency identification (RFID) has an enormous potential impact within the semiconductor supply chain, especially within semiconductor manufacturing. The end benefit of RFID will be in the mass serialization, and ...

  6. A study of corporate entrepreneurship in the semiconductor industry

    E-Print Network [OSTI]

    Tallapureddy, Anish R

    2014-01-01

    The number of semiconductor companies receiving venture funding has been decreasing through-out the last decade. The economics of manufacturing semiconductors do not offer an attractive risk-reward profile to the traditional ...

  7. Lattice mismatched compound semiconductors and devices on silicon

    E-Print Network [OSTI]

    Yang, Li, Ph. D. Massachusetts Institute of Technology

    2011-01-01

    III-V compound semiconductors, due to their superior electron mobility, are promising candidates for n-type metal-oxide-semiconductor field effect transistors (MOSFETs). However, the limited size of III-V substrates and ...

  8. Ultrafast optical studies of electronic dynamics in semiconductors

    E-Print Network [OSTI]

    Ruzicka, Brian Andrew

    2012-05-31

    The dynamics of charge carriers in semiconductors are of fundamental importance for semiconductor applications. This includes studies of energy relaxation, carrier recombination, and carrier transport (both diffusive and ballistic). Due...

  9. Electroluminescence in ion gel gated organic polymer semiconductor transistors

    E-Print Network [OSTI]

    Bhat, Shrivalli

    2011-07-12

    This thesis reports the light emission in ion gel gated, thin film organic semiconductor transistors and investigates the light emission mechanism behind these devices. We report that ion gel gated organic polymer semiconductor transistors emit...

  10. Course Information --EE 531 Semiconductor Devices and Device Simulation

    E-Print Network [OSTI]

    Hochberg, Michael

    of Semiconductor Devices" by Hess "Si Processing for the VLSI Era: Vol. 3-- The Submicron MOSFET" by Wolf "Advanced: 20% Exam 1: 30% Exam 2: 30% Project: 20% Prerequisite: Semiconductor Devices (EE 482) or equivalent

  11. Dry etching method for compound semiconductors

    DOE Patents [OSTI]

    Shul, R.J.; Constantine, C.

    1997-04-29

    A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.

  12. Statistical mechanics of Yang-Mills classical mechanics

    SciTech Connect (OSTI)

    Bannur, Vishnu M. [Department of Physics, University of Calicut, Kerala-673 635 (India)

    2005-08-01

    Statistical mechanics (SM) of Yang-Mills classical mechanics is studied by using a toy model that resembles chaotic quartic oscillators. This nonlinear system attains the thermodynamic equilibrium not by collisions, which is generally assumed in SM, but by chaotic dynamics. This is a new mechanism of thermalization that may be relevent to the quark-gluon plasma (QGP) formation in relativistic heavy-ion collisions because the interactions governing QGP involve quantum chromodynamics (QCD), which is a Yang-Mills theory [SU(3)]. The thermalization time is estimated from the Lyapunov exponent. The Lyapunov exponent is evaluated using the recently developed monodromy matrix method. We also discuss the physical meaning of thermalization and SM in this system of few degrees in terms of chromo-electric and chromomagnetic fields. One of the consequence of thermalization, such as equipartition of energy and dynamical temperature, is also numerically verified.

  13. Isovalent Anion Substitution in Ga-Mn-pnictide Ferromagnetic Semiconductors

    E-Print Network [OSTI]

    Stone, Peter

    2010-01-01

    5 Ferromagnetic Semiconductors as Spintronicthe previous two examples, spintronic devices aim to exploitdevice [1]. Moreover, spintronic devices are proposed to

  14. Synthesis, Characterization and Applications of InSb Semiconductor Nanowires

    E-Print Network [OSTI]

    Paul, Rajat Kanti

    2011-01-01

    and semiconductor thin films and nanostructures [10, 11]. Recent development of graphene (one atom thick 2D

  15. Vacuum Structure of Yang-Mills Theory in Curved Spacetime

    E-Print Network [OSTI]

    Samuel J. Collopy

    2009-08-31

    The stability of the chromomagnetic Savvidy vacuum in QCD under the influence of positive Riemannian curvature is studied. The heat traces of the operators relevant to SO(2) gauge-invariant Yang-Mills fields and Faddeev-Popov ghosts are calculated on product spaces of S^2 and S^1 \\times S^1. It is shown that the chromomagnetic vacuum with covariantly constant chromomagnetic field is stable in a certain set of radii and field strengths.

  16. Four Dimensional Quantum Yang-Mills Theory and Mass Gap

    E-Print Network [OSTI]

    Simone Farinelli

    2015-07-17

    A quantization procedure for the Yang-Mills equations for the Minkowski space $\\mathbf{R}^{1,3}$ is carried out in such a way that field maps satisfying Wightman's axioms of Constructive Quantum Field Theory can be obtained. Moreover, the spectrum of the corresponding Hamilton operator is proven to be positive and bounded away from zero except for the case of the vacuum state which has vanishing energy level. The particles corresponding to all solution fields are bosons.

  17. Advances in wide bandgap materials for semiconductor spintronics

    E-Print Network [OSTI]

    Hebard, Arthur F.

    Advances in wide bandgap materials for semiconductor spintronics S.J. Pearton1,* , C.R. Abernathy1 or light emission. The relatively new field of semiconductor spintronics seeks, in addition, to exploit Elsevier Science B.V. All rights reserved. Keywords: Wide bandgap materials; Semiconductor; Spintronics 1

  18. LINEAR STABILITY OF ELECTRON-FLOW HYDRODYNAMICS IN UNGATED SEMICONDUCTORS

    E-Print Network [OSTI]

    Sen, Mihir

    LINEAR STABILITY OF ELECTRON-FLOW HYDRODYNAMICS IN UNGATED SEMICONDUCTORS A Dissertation Submitted All Rights Reserved #12;LINEAR STABILITY OF ELECTRON-FLOW HYDRODYNAMICS IN UNGATED SEMICONDUCTORS Abstract by Williams R. Calder´on Mu~noz Semiconductors play an important role in modern electronic

  19. Method of physical vapor deposition of metal oxides on semiconductors

    DOE Patents [OSTI]

    Norton, David P. (Knoxville, TN)

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  20. Semiconductors 80C552/83C552

    E-Print Network [OSTI]

    Berndt, Richard

    Supersedes data of 1998 Jan 06 IC20 Data Handbook 1998 Aug 13 INTEGRATED CIRCUITS #12;Philips SemiconductorsPhilips Semiconductors 80C552/83C552 Single-chip 8-bit microcontroller Product specification VSS VDD AVSS AVDD HIGH ORDER ADDRESS AND DATA BUS #12;Philips Semiconductors Product specification 80C

  1. Amorphous Silicon as Semiconductor Material for High Resolution LAPS

    E-Print Network [OSTI]

    Moritz, Werner

    ) is limited by the properties of the semiconductor material used. We investigated metalAmorphous Silicon as Semiconductor Material for High Resolution LAPS Werner Moritz1 , Tatsuo-insulator- semiconductor (MIS) structures based on amorphous silicon (a-Si) prepared as a thin layer on transparent glass

  2. High-Resolution Three-Dimensional Mapping of Semiconductor Dopant

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    ,2 The electrical properties of nanoscale semiconductor structures are strongly dependent on the presence of interfaces and surfaces. Near such features, the electrical properties of the semiconductor may deviate substantially from its bulk properties. Many semiconductor characterization techniques, for example, scanning

  3. Deconfinement in Yang-Mills Theory through Toroidal Compactification

    SciTech Connect (OSTI)

    Simic, Dusan; Unsal, Mithat; /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    We introduce field theory techniques through which the deconfinement transition of four-dimensional Yang-Mills theory can be moved to a semi-classical domain where it becomes calculable using two-dimensional field theory. We achieve this through a double-trace deformation of toroidally compactified Yang-Mills theory on R{sup 2} x S{sub L}{sup 1} x S{sub {beta}}{sup 1}. At large N, fixed-L, and arbitrary {beta}, the thermodynamics of the deformed theory is equivalent to that of ordinary Yang-Mills theory at leading order in the large N expansion. At fixed-N, small L and a range of {beta}, the deformed theory maps to a two-dimensional theory with electric and magnetic (order and disorder) perturbations, analogs of which appear in planar spin-systems and statistical physics. We show that in this regime the deconfinement transition is driven by the competition between electric and magnetic perturbations in this two-dimensional theory. This appears to support the scenario proposed by Liao and Shuryak regarding the magnetic component of the quark-gluon plasma at RHIC.

  4. Organic conductive films for semiconductor electrodes

    DOE Patents [OSTI]

    Frank, A.J.

    1984-01-01

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor over-coated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  5. Preparation of III-V semiconductor nanocrystals

    DOE Patents [OSTI]

    Alivisatos, A.P.; Olshavsky, M.A.

    1996-04-09

    Nanometer-scale crystals of III-V semiconductors are disclosed. They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline. 4 figs.

  6. Semiconductor laser with multiple lasing wavelengths

    DOE Patents [OSTI]

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-07-29

    A new class of multi-terminal vertical-cavity semiconductor laser components has been developed. These multi-terminal laser components can be switched, either electrically or optically, between distinct lasing wavelengths, or can be made to lase simultaneously at multiple wavelengths.

  7. HYDROGEN LOCAL VIBRATIONAL MODES IN COMPOUND SEMICONDUCTORS

    E-Print Network [OSTI]

    McCluskey, Matthew

    HYDROGEN LOCAL VIBRATIONAL MODES IN COMPOUND SEMICONDUCTORS M.D. MCCLUSKEY* University) spectroscopy of hydrogen and deuterium in GaP, AlSb, ZnSe, and GaN has provided important information about the structures of dopant- hydrogen complexes and their interaction with the host lattice. In GaN:Mg, for example

  8. High resolution scintillation detector with semiconductor readout

    DOE Patents [OSTI]

    Levin, Craig S. (Santa Monica, CA); Hoffman, Edward J. (Los Angeles, CA)

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  9. Semiconductor detectors with proximity signal readout

    SciTech Connect (OSTI)

    Asztalos, Stephen J. [XIA, LLC, Hayward, CA (United States)

    2014-01-30

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need.

  10. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-01-01

    Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

  11. Bi-Se doped with Cu, p-type semiconductor

    DOE Patents [OSTI]

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  12. Lattice matched semiconductor growth on crystalline metallic substrates

    DOE Patents [OSTI]

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2013-11-05

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter (a). The semiconductor alloy may further be prepared to have a selected band gap.

  13. TenniVis: Visualization for Tennis Match Analysis Tom Polk, Member, IEEE, Jing Yang, Yueqi Hu, and Ye Zhao

    E-Print Network [OSTI]

    Ras, Zbigniew W.

    TenniVis: Visualization for Tennis Match Analysis Tom Polk, Member, IEEE, Jing Yang, Yueqi Hu Polk, Jing Yang, and Yueqi Hu are with the University of North Carolina at Charlotte. E-mail: tepolk

  14. Yang Zhao, Martin Jones, David Baillie and Ann Rose Developing an integrating biological

    E-Print Network [OSTI]

    Baillie, David

    Yang Zhao, Martin Jones, David Baillie and Ann Rose Developing an integrating biological dosimeter, Martin Jones, David Baillie and Ann Rose: Developing an integrating biological dosimeter for spaceflight for use as a biolog- ical dosimeter. Authors Yang Zhao, Ann Rose Department of Medical Genetics

  15. Loop formulation of supersymmetric Yang-Mills quantum mechanics

    E-Print Network [OSTI]

    Kyle Steinhauer; Urs Wenger

    2014-10-01

    We derive the fermion loop formulation of N=4 supersymmetric SU(N) Yang-Mills quantum mechanics on the lattice. The loop formulation naturally separates the contributions to the partition function into its bosonic and fermionic parts with fixed fermion number and provides a way to control potential fermion sign problems arising in numerical simulations of the theory. Furthermore, we present a reduced fermion matrix determinant which allows the projection into the canonical sectors of the theory and hence constitutes an alternative approach to simulate the theory on the lattice.

  16. The lattice and quantized Yang-Mills theory

    E-Print Network [OSTI]

    Creutz, Michael

    2015-01-01

    Quantized Yang-Mills fields lie at the heart of our understanding of the strong nuclear force. To understand the theory at low energies, we must work in the strong coupling regime. The primary technique for this is the lattice. While basically an ultraviolet regulator, the lattice avoids the use of a perturbative expansion. I discuss the historical circumstances that drove us to this approach, which has had immense success, convincingly demonstrating quark confinement and obtaining crucial properties of the strong interactions from first principles.

  17. The lattice and quantized Yang-Mills theory

    E-Print Network [OSTI]

    Michael Creutz

    2015-10-07

    Quantized Yang-Mills fields lie at the heart of our understanding of the strong nuclear force. To understand the theory at low energies, we must work in the strong coupling regime. The primary technique for this is the lattice. While basically an ultraviolet regulator, the lattice avoids the use of a perturbative expansion. I discuss the historical circumstances that drove us to this approach, which has had immense success, convincingly demonstrating quark confinement and obtaining crucial properties of the strong interactions from first principles.

  18. Supersymmetry Algebra in Super Yang-Mills Theories

    E-Print Network [OSTI]

    Shuichi Yokoyama

    2015-09-18

    We compute supersymmetry algebra (superalgebra) in supersymmetric Yang-Mills theories (SYM) consisting of a vector multiplet including fermionic contribution in six dimensions. We show that the contribution of fermion is given by boundary terms. From six dimensional results we determine superalgebras of five and four dimensional SYM by dimensional reduction. In five dimensional superalgebra the Kaluza-Klein momentum and the instanton particle charge are not the same but algebraically indistinguishable. We also extend this calculation including a hyper multiplet and for maximally SYM. We derive extended supersymmetry algebras in these four dimensional SYM with the holomorphic coupling constant given in hep-th/9408099.

  19. Semiclassical solution for Yang-Mills field with given energy

    E-Print Network [OSTI]

    Michael Kuchiev

    2009-04-28

    A new classical solution for the Yang-Mills theory in which the Euclidean energy plays a role of a parameter is discussed. The instanton and sphaleron are shown to be particular examples of this more general solution. The energy parameter for them takes on special values, which are zero and sphaleron mass for the instanton and sphaleron, respectively. The solution is employed to describe the tunneling process, which is accompanied by a variation of the topological charge. A range of temperatures, where the new solution makes this tunneling more effective than the known mechanisms based on the instanton, caloron or sphaleron is found.

  20. Fusion hierarchies for N = 4 superYang-Mills theory

    E-Print Network [OSTI]

    A. V. Belitsky

    2008-04-12

    We employ the analytic Bethe Anzats to construct eigenvalues of transfer matrices with finite-dimensional atypical representations in the auxiliary space for the putative long-range spin chain encoding anomalous dimensions of all composite single-trace gauge invariant operators of the maximally supersymmetric Yang-Mills theory. They obey an infinite fusion hierarchy which can be reduced to a finite set of integral relations for a minimal set of transfer matrices. This set is used to derive a finite systems of functional equations for eigenvalues of nested Baxter polynomials.

  1. Supersymmetry Algebra in Super Yang-Mills Theories

    E-Print Network [OSTI]

    Yokoyama, Shuichi

    2015-01-01

    We compute supersymmetry algebra (superalgebra) in supersymmetric Yang-Mills theories (SYM) consisting of a vector multiplet including fermionic contribution in six dimensions. We show that the contribution of fermion is given by boundary terms. From six dimensional results we determine superalgebras of five and four dimensional SYM by dimensional reduction. In five dimensional superalgebra the Kaluza-Klein momentum and the instanton particle charge are not the same but algebraically indistinguishable. We also extend this calculation including a hyper multiplet and for maximally SYM. We derive extended supersymmetry algebras in those four dimensional SYM with the holomorphic coupling constant given in hep-th/9408099.

  2. Width of the Confining String in Yang-Mills Theory

    SciTech Connect (OSTI)

    Gliozzi, F.; Pepe, M.; Wiese, U.-J.

    2010-06-11

    We investigate the transverse fluctuations of the confining string connecting two static quarks in (2+1)D SU(2) Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string increases logarithmically with the distance between the static quark charges. Corrections at intermediate distances due to universal higher-order terms in the effective string action are calculated analytically. They accurately fit the numerical data.

  3. Ming-Yang Ho | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetectionBenchmark Performancelayer module typeMing-Yang

  4. Dali Yang er Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation, searchDaimler Evonik JV Jump to:Daizy AgroYang

  5. Optical cavity furnace for semiconductor wafer processing

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  6. Proximity charge sensing for semiconductor detectors

    DOE Patents [OSTI]

    Luke, Paul N; Tindall, Craig S; Amman, Mark

    2013-10-08

    A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.

  7. Method of transferring strained semiconductor structure

    DOE Patents [OSTI]

    Nastasi, Michael A. (Santa Fe, NM); Shao, Lin (College Station, TX)

    2009-12-29

    The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the deposited multilayer structure is bonded to a second substrate and is separated away at the interface, which results in transferring a multilayer structure from one substrate to the other substrate. The multilayer structure includes at least one strained semiconductor layer and at least one strain-induced seed layer. The strain-induced seed layer can be optionally etched away after the layer transfer.

  8. Semiconductor junction formation by directed heat

    DOE Patents [OSTI]

    Campbell, Robert B. (Pittsburgh, PA)

    1988-03-24

    The process of the invention includes applying precursors 6 with N- and P-type dopants therein to a silicon web 2, with the web 2 then being baked in an oven 10 to drive off excessive solvents, and the web 2 is then heated using a pulsed high intensity light in a mechanism 12 at 1100.degree.-1150.degree. C. for about 10 seconds to simultaneously form semiconductor junctions in both faces of the web.

  9. GaTe semiconductor for radiation detection

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Burger, Arnold (Nashville, TN); Mandal, Krishna C. (Ashland, MA)

    2009-06-23

    GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

  10. Changhuei Yang 1200 E. California Blvd, MC: 136-96 e-mail: chyang@caltech.edu

    E-Print Network [OSTI]

    ) 4. Changhuei Yang, Kyungwon An, Lev T. Perelman, Adam Wax, Ramachandra R. Dasari and Michael S. Feld. Changhuei Yang, Adam Wax, Irene Georgakoudi, Eugene B. Hanlon, Kamran Badizadegan, Ramachandra R. Dasari). 6. Changhuei Yang, Adam Wax and Michael S. Feld; "Measurement of anomalous phase velocity

  11. Visible-wavelength semiconductor lasers and arrays

    DOE Patents [OSTI]

    Schneider, Jr., Richard P. (Albuquerque, NM); Crawford, Mary H. (Albuquerque, NM)

    1996-01-01

    A visible semiconductor laser. The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1.lambda.) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%.

  12. Environmental Stewardship: How Semiconductor Suppliers Help to Meet Energy-Efficiency Regulations and Voluntary Specifications in China

    E-Print Network [OSTI]

    Aizhen, Li; Fanara, Andrew; Fridley, David; Merriman, Louise; Ju, Jeff

    2008-01-01

    partners, semiconductor suppliers, and other stakeholdersHow Semiconductor Suppliers Help to Meet Energy-Efficiencythe role that semiconductor suppliers can play in meeting

  13. ENG EC574 Physics and Semiconductor Materials 2007-2008 Catalog Data

    E-Print Network [OSTI]

    of the fundamentals of quantum mechanics necessary to understand the properties of semiconductor materials. Study the basic electrical and optical properties of semiconductor material that are important for semiconductor of the semiconductor material properties. 6. Gain insight on the potential impact of the semiconductor material

  14. An ancient Chinese wisdom for metabolic engineering: Yin-Yang

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Stephen G.; He, Lian; Wang, Qingzhao; Tang, Yinjie J.

    2015-03-20

    In ancient Chinese philosophy, Yin-Yang describes two contrary forces that are interconnected and interdependent. This concept also holds true in microbial cell factories, where Yin represents energy metabolism in the form of ATP, and Yang represents carbon metabolism. Current biotechnology can effectively edit the microbial genome or introduce novel enzymes to redirect carbon fluxes. On the other hand, microbial metabolism loses significant free energy as heat when converting sugar into ATP; while maintenance energy expenditures further aggravate ATP shortage. The limitation of cell “powerhouse” prevents hosts from achieving high carbon yields and rates. Via an Escherichia coli flux balance analysismore »model, we further demonstrate the penalty of ATP cost on biofuel synthesis. To ensure cell powerhouse being sufficient in microbial cell factories, we propose five principles: 1. Take advantage of native pathways for product synthesis. 2. Pursue biosynthesis relying only on pathways or genetic parts without significant ATP burden. 3. Combine microbial production with chemical conversions (semi-biosynthesis) to reduce biosynthesis steps. 4. Create “minimal cells” or use non-model microbial hosts with higher energy fitness. 5. Develop a photosynthesis chassis that can utilize light energy and cheap carbon feedstocks. Meanwhile, metabolic flux analysis can be used to quantify both carbon and energy metabolisms. The fluxomics results are essential to evaluate the industrial potential of laboratory strains, avoiding false starts and dead ends during metabolic engineering« less

  15. Photovoltaic healing of non-uniformities in semiconductor devices

    DOE Patents [OSTI]

    Karpov, Victor G.; Roussillon, Yann; Shvydka, Diana; Compaan, Alvin D.; Giolando, Dean M.

    2006-08-29

    A method of making a photovoltaic device using light energy and a solution to normalize electric potential variations in the device. A semiconductor layer having nonuniformities comprising areas of aberrant electric potential deviating from the electric potential of the top surface of the semiconductor is deposited onto a substrate layer. A solution containing an electrolyte, at least one bonding material, and positive and negative ions is applied over the top surface of the semiconductor. Light energy is applied to generate photovoltage in the semiconductor, causing a redistribution of the ions and the bonding material to the areas of aberrant electric potential. The bonding material selectively bonds to the nonuniformities in a manner such that the electric potential of the nonuniformities is normalized relative to the electric potential of the top surface of the semiconductor layer. A conductive electrode layer is then deposited over the top surface of the semiconductor layer.

  16. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2014-03-04

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  17. Deposition method for producing silicon carbide high-temperature semiconductors

    DOE Patents [OSTI]

    Hsu, George C. (La Crescenta, CA); Rohatgi, Naresh K. (W. Corine, CA)

    1987-01-01

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  18. Methods and devices for fabricating and assembling printable semiconductor elements

    SciTech Connect (OSTI)

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2013-05-14

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  19. Method and system for powering and cooling semiconductor lasers

    DOE Patents [OSTI]

    Telford, Steven J; Ladran, Anthony S

    2014-02-25

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  20. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Durham, NC); Lee, Keon Jae (Daejeon, KR); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Champaign, IL); Meitl, Matthew (Raleigh, NC); Zhu, Zhengtao (Urbana, IL)

    2011-07-19

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  1. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Urbana, IL); Lee, Keon Jae (Savoy, IL); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Champaign, IL); Meitl, Matthew (Champaign, IL); Zhu, Zhengtao (Urbana, IL)

    2009-11-24

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  2. Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers

    E-Print Network [OSTI]

    Engel, Jesse H.

    2014-01-01

    Controlled Chemical Doping of Semiconductor Nanocrys- talsHerein, we demonstrate a chemical strategy for the con-dope the nanocrystal solid. Chemical doping methods reported

  3. Spin injection and transport in semiconductor and metal nanostructures

    E-Print Network [OSTI]

    Zhu, Lei

    2009-01-01

    1 1.1 Introduction to spintronics: fundamentals andCahay, Introduction to spintronics (CRC Press, Boca Raton,in Semiconductor Spintronics and Quantum Computation, edited

  4. Semiconductor nanowires: from LEDs to Solar Cells | MIT-Harvard...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semiconductor nanowires: from LEDs to Solar Cells May 4, 2010 at 3pm36-428 Silvija Gradeak Laboratory for Nanophotonics and Electronics, Massachusetts Institute of Technology...

  5. Argonne announces new licensing agreement with AKHAN Semiconductor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    suite of breakthrough diamond-based semiconductor inventions developed by nanoscientist Ani Sumant of Argonne's Center for Nanoscale Materials, a DOE Office of Science User...

  6. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    E-Print Network [OSTI]

    Dasgupta, Neil

    2014-01-01

    low-cost, high efficiency solar energy conversion devices.Awards under the SunShot Solar Energy Technologies Program.Photoelectrochemistry, Solar Energy Abstract Semiconductor

  7. Organic Semiconductor Chemistry | MIT-Harvard Center for Excitonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marder Department of ChemistryBiochemistry, Director, Center for Organic Photonics and Electronics, Georgia Tech marder000 Abstract: Organic semiconductors have attracted...

  8. Method for fabricating an interconnected array of semiconductor devices

    DOE Patents [OSTI]

    Grimmer, Derrick P. (White Bear Lake, MN); Paulson, Kenneth R. (North St. Paul, MN); Gilbert, James R. (St. Paul, MN)

    1989-10-10

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  9. Interface design principles for high-performance organic semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Interface design principles for high-performance organic semiconductor devices Organic solar cells (OSCs) are a promising cost-effective candidate in next generation photovoltaic...

  10. Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor Photoelectrodes Enhanced by Inversion Channel Charge Collection and Hydrogen Spillover Citation Details In-Document...

  11. Method for depositing high-quality microcrystalline semiconductor materials

    DOE Patents [OSTI]

    Guha, Subhendu (Bloomfield Hills, MI); Yang, Chi C. (Troy, MI); Yan, Baojie (Rochester Hills, MI)

    2011-03-08

    A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

  12. Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics

    E-Print Network [OSTI]

    Rogers, John A.

    -integrated electronics; flexible electronics; semiconductor nanomaterials; stretchable electronics; transfer printing flexible/stretchable electronics, in which semiconductor nanomaterials serve as the active componentsREVIEW Inorganic semiconductor nanomaterials for flexible and stretchable bio

  13. Electronically Nonalloyed State of a Statistical Single Atomic Layer Semiconductor Alloy

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    spectroscopy Alloying different semiconductor compounds attracted wide attention, since the material properties formed semiconductor alloy has spatially homogeneous properties; that is, the original materials semiconductor materials with, for example, intentionally designed band gaps, lattice constants, and/or optical

  14. Chem. Rev. 1995, 95, 69-96 69 Environmental Applications of Semiconductor Photocatalysis

    E-Print Network [OSTI]

    Chem. Rev. 1995, 95, 69-96 69 Environmental Applications of Semiconductor Photocatalysis Michael R November 30, 1994) Contents I. Introduction A. General Background B. Semiconductor Photocatalysis II. Mechanisms of Semiconductor Photocatalysis A. Basic Features and Characteristic Times B. Formation

  15. Hydrogen local vibrational modes in semiconductors

    SciTech Connect (OSTI)

    McCluskey, M D

    1997-06-01

    Following, a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient. exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen. the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the [111] direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, and anti-crossing is observed between LVM and phonon modes.

  16. Semiconductor bridge, SCB, ignition of energetic materials

    SciTech Connect (OSTI)

    Bickes, R.W.; Grubelich, M.D.; Harris, S.M.; Merson, J.A.; Tarbell, W.W.

    1997-04-01

    Sandia National Laboratories` semiconductor bridge, SCB, is now being used for the ignition or initiation of a wide variety of exeoergic materials. Applications of this new technology arose because of a need at the system level to provide light weight, small volume and low energy explosive assemblies. Conventional bridgewire devices could not meet the stringent size, weight and energy requirements of our customers. We present an overview of SCB technology and the ignition characteristics for a number of energetic materials including primary and secondary explosives, pyrotechnics, thermites and intermetallics. We provide examples of systems designed to meet the modern requirements that sophisticated systems must satisfy in today`s market environments.

  17. Transient Rayleigh scattering from single semiconductor nanowires

    SciTech Connect (OSTI)

    Montazeri, Mohammad; Jackson, Howard E.; Smith, Leigh M.; Yarrison-Rice, Jan M.; Kang, Jung-Hyun; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati

    2013-12-04

    Transient Rayleigh scattering spectroscopy is a new pump-probe technique to study the dynamics and cooling of photo-excited carriers in single semiconductor nanowires. By studying the evolution of the transient Rayleigh spectrum in time after excitation, one can measure the time evolution of the density and temperature of photo-excited electron-hole plasma (EHP) as they equilibrate with lattice. This provides detailed information of dynamics and cooling of carriers including linear and bimolecular recombination properties, carrier transport characteristics, and the energy-loss rate of hot electron-hole plasma through the emission of LO and acoustic phonons.

  18. Fabrication of Semiconductors by Wet Chemical Etch

    E-Print Network [OSTI]

    Francoviglia, Laura

    2008-07-01

    AlGaAs not intentionally doped (i) 130 Å InGaAs not intentionally doped (i) 30 Å AlGaAs not intentionally doped (i) Delta Si Doping 1.1E12/cm2 Superlattice Buffer GaAs Buffer S.I. GaAs Substrate Epi Layer Structures of V3339 350 Å GaAs 5E18 Si Doping... with Bardeen, Brittain and Shockley’s invention of the transistor in Bell Labs in 1947 and Kilby and Noyce’s introduction of the integrated circuit about a decade later, semiconductor devices have dramat- ically advanced the computing and electronics...

  19. Hemlock Semiconductor Corp HSC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTLTechnology Srl JumpSubObjectsHemlock Semiconductor

  20. The Spectrum of Softly Broken N=1 Supersymmetric Yang-Mills Theory

    E-Print Network [OSTI]

    G. R. Farrar; G. Gabadadze; M. Schwetz

    1998-06-24

    We study the spectrum of the softly broken generalized Veneziano-Yankielowicz effective action for N=1 SUSY Yang-Mills theory. Two dual formulations of the effective action are given. The spurion method is used for the soft SUSY breaking. Masses of the bound states are calculated and mixing patterns are discussed. Mass splittings of pure gluonic states are consistent with predictions of conventional Yang-Mills theory. The results can be tested in lattice simulations of the SUSY Yang-Mills model.

  1. Recombination of H and He in Yang-Mills Gravity

    E-Print Network [OSTI]

    Daniel Katz

    2015-06-26

    We investigate some aspects of the thermal history of the early universe according to Yang-Mills Gravity (YMG); a gauge theory of gravity set in flat spacetime. Specifically, equations for the ionization fractions of hydrogen and singly ionized helium during the recombination epoch are deduced analytically and then solved numerically. By considering several approximations we find that the presence of primordial helium and its interaction with Lyman series photons has a much stronger effect on the overall free electron density in YMG than it does in the standard, General Relativity (GR) based, model. Compared to the standard model recombination happens over a much larger range of temperatures, although there is still a very sharp temperature of last scattering around 2000 K. Since the ionization history of the universe is not directly observable we discuss how one may use it to predict the CMB power spectrum and thus test YMG. This topic will be explored in detail in an upcoming paper.

  2. Dual superconductivity and vacuum properties in Yang--Mills theories

    E-Print Network [OSTI]

    A. D'Alessandro; M. D'Elia; L. Tagliacozzo

    2007-05-03

    We address, within the dual superconductivity model for color confinement, the question whether the Yang-Mills vacuum behaves as a superconductor of type I or type II. In order to do that we compare, for the theory with gauge group SU(2), the determination of the field penetration depth $\\lambda$ with that of the superconductor correlation length $\\xi$. The latter is obtained by measuring the temporal correlator of a disorder parameter developed by the Pisa group to detect dual superconductivity. The comparison places the vacuum close to the border between type I and type II and marginally on the type II side. We also check our results against the study of directly measurable effects such as the interaction between two parallel flux tubes, obtaining consistent indications for a weak repulsive behaviour. Future strategies to improve our investigation are discussed.

  3. Perturbative study of Yang-Mills theory in the infrared

    E-Print Network [OSTI]

    Siringo, Fabio

    2015-01-01

    Pure Yang-Mills SU(N) theory is studied in four dimensional space and Landau gauge by a double perturbative expansion based on a massive free-particle propagator. By dimensional regularization, all diverging mass terms cancel exactly in the double expansion, without the need to include mass counterterms that would spoil the symmetry of the original Lagrangian. The emerging perturbation theory is safe in the infrared and shares the same behaviour of the standard perturbation theory in the UV. At one-loop, Gluon and ghost propagators are found in excellent agreement with the data of lattice simulations and an infrared-safe running coupling is derived. A natural scale m=0.5-0.6 GeV is extracted from the data for N=3.

  4. A Hybrid Life Cycle Inventory of Nano-Scale Semiconductor Manufacturing

    E-Print Network [OSTI]

    Krishnan, Nikhil; Boyd, Sarah; Somani, Ajay; Dornfeld, David

    2008-01-01

    Aspects in Semiconductor Manufacturing. Proceed- ings of thefrom semiconductor manufacturing processes. EHS AssessmentM. Energy in chemical manufacturing processes: Gate-to-gate

  5. Semiconductors 4-bit I2C LED dimmer

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    LEDs to 25 mA · Edge rate control on outputs · No glitch on power-up · Supports hot insertion · LowPhilips Semiconductors PCA9533 4-bit I2C LED dimmer Product data sheet Supersedes data of 2003 Sep 19 2004 Oct 01 INTEGRATED CIRCUITS #12;Philips Semiconductors Product data sheet PCA95334-bit I2C LED

  6. Semiconductor Few-Electron Quantum Dots as Spin Qubits

    E-Print Network [OSTI]

    the experimental steps we have taken towards using a single electron spin, trapped in a semiconductor quantum dot detector is pushed to a faster regime (100 kHz), to detect single electron tunnel events in real time. WeSemiconductor Few-Electron Quantum Dots as Spin Qubits J.M. Elzerman1,2 , R. Hanson1 , L.H.W. van

  7. Semiconductors 8-bit multiplying D/A converter

    E-Print Network [OSTI]

    Gustafsson, Torgny

    Philips Semiconductors MC1408-8 8-bit multiplying D/A converter Product data Supersedes data of 1994 Aug 31 File under Integrated Circuits, IC11 Handbook 2001 Aug 03 INTEGRATED CIRCUITS #12;Philips Semiconductors Product data MC1408-88-bit multiplying D/A converter 22001 Aug 03 853-0935 26835 DESCRIPTION

  8. Effects of Quantum Confinement on the Doping Limit of Semiconductor

    E-Print Network [OSTI]

    Wu, Junqiao

    . The magnitude of this effect in a given material is found to be determined by two material properties of semiconductor nanostructures in terms of their fundamental material parameters. Doping limits in various bulk are generated in semiconductor materials in response to extrinsic doping so as to pull EF back toward EFS

  9. Semiconductor Fundamentals tlu@math.pku.edu.cn

    E-Print Network [OSTI]

    Lu, Tiao

    physics to solid materials. More specifically, we are interested in semiconductor crystals. Crystals. Such a structure yields a periodic potential throughout the material. #12;Introduction Two properties of crystalsSemiconductor Fundamentals tlu@math.pku.edu.cn :http://dsec.pku.edu.cn/~tlu :http

  10. Spherical deformation of compliant substrates with semiconductor device islands

    E-Print Network [OSTI]

    Suo, Zhigang

    is a function of the island structure, size, and substrate material properties. Although the substrate semiconductor device materials, such as amor- phous silicon and silicon nitride, are brittle and crack easily and thinning the substrate cannot be used to reduce the strain. Because inorganic semiconductor materials

  11. NewsTrack -Science New semiconductor technology created

    E-Print Network [OSTI]

    Rogers, John A.

    NewsTrack - Science New semiconductor technology created CHAMPAIGN, Ill., Dec. 14 (UPI) -- U of Illinois-Champaign say the new technology permits either a one- or three-dimensional layout. The approach Rogers Page 1 of 1United Press International - NewsTrack - New semiconductor technology created 12

  12. NICE3 SO3 Cleaning Process in Semiconductor Manufacturing

    SciTech Connect (OSTI)

    Blazek, S.

    1999-01-29

    This fact sheet explains how Anon, Inc., has developed a novel method of removing photoresist--a light-sensitive material used to produce semiconductor wafers for computers--from the computer manufacturing process at reduced cost and greater efficiency. The new technology is technically superior to existing semiconductor cleaning methods and results in reduced use of hazardous chemicals.

  13. Transition metal oxides on organic semiconductors Yongbiao Zhao a

    E-Print Network [OSTI]

    Xiong, Qihua

    inverted organic light-emitting diodes (OLEDs) and inverted organic solar cells (OSCs), which can improve of organic semiconductors (OSs). For example, in organic light-emitting diodes (OLEDs) [7], they are used! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic

  14. Distributed Quantum Computation Architecture Using Semiconductor Nanophotonics

    E-Print Network [OSTI]

    Rodney Van Meter; Thaddeus D. Ladd; Austin G. Fowler; Yoshihisa Yamamoto

    2009-09-17

    In a large-scale quantum computer, the cost of communications will dominate the performance and resource requirements, place many severe demands on the technology, and constrain the architecture. Unfortunately, fault-tolerant computers based entirely on photons with probabilistic gates, though equipped with "built-in" communication, have very large resource overheads; likewise, computers with reliable probabilistic gates between photons or quantum memories may lack sufficient communication resources in the presence of realistic optical losses. Here, we consider a compromise architecture, in which semiconductor spin qubits are coupled by bright laser pulses through nanophotonic waveguides and cavities using a combination of frequent probabilistic and sparse determinstic entanglement mechanisms. The large photonic resource requirements incurred by the use of probabilistic gates for quantum communication are mitigated in part by the potential high-speed operation of the semiconductor nanophotonic hardware. The system employs topological cluster-state quantum error correction for achieving fault-tolerance. Our results suggest that such an architecture/technology combination has the potential to scale to a system capable of attacking classically intractable computational problems.

  15. Coated semiconductor devices for neutron detection

    DOE Patents [OSTI]

    Klann, Raymond T. (Bolingbrook, IL); McGregor, Douglas S. (Whitmore Lake, MI)

    2002-01-01

    A device for detecting neutrons includes a semi-insulated bulk semiconductor substrate having opposed polished surfaces. A blocking Schottky contact comprised of a series of metals such as Ti, Pt, Au, Ge, Pd, and Ni is formed on a first polished surface of the semiconductor substrate, while a low resistivity ("ohmic") contact comprised of metals such as Au, Ge, and Ni is formed on a second, opposed polished surface of the substrate. In one embodiment, n-type low resistivity pinout contacts comprised of an Au/Ge based eutectic alloy or multi-layered Pd/Ge/Ti/Au are also formed on the opposed polished surfaces and in contact with the Schottky and ohmic contacts. Disposed on the Schottky contact is a neutron reactive film, or coating, for detecting neutrons. The coating is comprised of a hydrogen rich polymer, such as a polyolefin or paraffin; lithium or lithium fluoride; or a heavy metal fissionable material. By varying the coating thickness and electrical settings, neutrons at specific energies can be detected. The coated neutron detector is capable of performing real-time neutron radiography in high gamma fields, digital fast neutron radiography, fissile material identification, and basic neutron detection particularly in high radiation fields.

  16. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    SciTech Connect (OSTI)

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  17. Evolving Materialized Views in Data Warehouse Chuan Zhang,* Xin Yao: Jian Yang t

    E-Print Network [OSTI]

    Yao, Xin

    Evolving Materialized Views in Data Warehouse Chuan Zhang,* Xin Yao: Jian Yang t Abstract- A data have some views materialized, and some vir- 'Chuan Zhang and Xin Yao are with the School of Computer

  18. Radiating black holes in Einstein-Yang-Mills theory and cosmic censorship

    SciTech Connect (OSTI)

    Ghosh, Sushant G.; Dadhich, Naresh

    2010-08-15

    Exact nonstatic spherically symmetric black-hole solutions of the higher dimensional Einstein-Yang-Mills equations for a null dust with Yang-Mills gauge charge are obtained by employing Wu-Yang ansatz, namely, HD-EYM Vaidya solution. It is interesting to note that gravitational contribution of Yang-Mills (YM) gauge charge for this ansatz is indeed opposite (attractive rather than repulsive) that of Maxwell charge. It turns out that the gravitational collapse of null dust with YM gauge charge admits strong curvature shell focusing naked singularities violating cosmic censorship. However, there is significant shrinkage of the initial data space for a naked singularity of the HD-Vaidya collapse due to presence of YM gauge charge. The effect of YM gauge charge on structure and location of the apparent and event horizons is also discussed.

  19. BRST Invariant PV Regularization of SUSY Yang-Mills and SUGRA

    E-Print Network [OSTI]

    Gaillard, Mary K

    2012-01-01

    September 2011 BRST Invariant PV Regularization of SUSYemployer. ii BRST INVARIANT PV REGULARIZATION OF SUSY YANG-a number of years on Pauli-Villars (PV) regu- larization of

  20. A finite-energy solution in Yang-Mills theory and quantum fluctuations

    E-Print Network [OSTI]

    O. V. Pavlovsky

    2000-07-05

    A finite-energy solution of Yang-Mills theory with a nonstandard lagrangian is provided. Properties of these solution are studied and also a possible physical interpretation is given.

  1. Future applications of the Yang-Mills gradient flow in lattice QCD

    E-Print Network [OSTI]

    Martin Lüscher

    2013-08-26

    The Yang--Mills gradient flow has many interesting applications in lattice QCD. In this talk, some recent and possible future uses of the flow are discussed, emphasizing the underlying theoretical concepts rather than any computational aspects.

  2. Taming Compiler Fuzzers Yang Chen Alex Groce Chaoqiang Zhang Weng-Keen Wong

    E-Print Network [OSTI]

    Groce, Alex David

    Taming Compiler Fuzzers Yang Chen Alex Groce Chaoqiang Zhang Weng-Keen Wong Xiaoli Fern Eric EideScript engine. Google's proprietary ClusterFuzz effort "hammers away at it [Chrome, includ- ing its V8 Java

  3. Taming Compiler Fuzzers Yang Chen Alex Groce Chaoqiang Zhang Weng-Keen Wong

    E-Print Network [OSTI]

    Regehr, John

    Taming Compiler Fuzzers Yang Chen Alex Groce Chaoqiang Zhang Weng-Keen Wong Xiaoli Fern Eric Eide previously unknown bugs in the same JavaScript engine. Google's proprietary ClusterFuzz effort "hammers away

  4. Fusion procedure for the Yang-Baxter equation and Schur-Weyl duality

    E-Print Network [OSTI]

    L. Poulain d'Andecy

    2013-07-25

    We first review the fusion procedure for an arbitrary solution of the Yang-Baxter equation and the study of distinguished invariant subspaces for the fused solutions. Then we apply these general results to four particular solutions: the Yang solution, its standard deformation and their generalizations for super vector spaces. For the Yang solution, respectively, its "super" generalization, we explain how, using the fusion formula for the symmetric group together with the (super) Schur-Weyl duality, the fusion procedure allows to construct a family of fused solutions of the Yang-Baxter equation acting on irreducible representations of the general linear Lie algebra, respectively, of the general linear Lie superalgebra. For the deformations of the two previous solutions, we use the fusion formula for the Hecke algebra together with the (super) quantum Schur--Weyl duality to obtain fused solutions acting on irreducible representations of the quantum groups associated to the general linear Lie (super)algebras.

  5. Classical M-Fivebrane Dynamics and Quantum N=2 Yang-Mills

    E-Print Network [OSTI]

    P. S. Howe; N. D. Lambert; P. C. West

    1997-11-05

    We obtain the complete quantum Seiberg-Witten effective action for N=2 supersymmetric SU(N) Yang-Mills theory from the classical M-fivebrane equations of motion with N threebranes moving in its worldvolume.

  6. (Shin-Jun Lee) (Sung-Bong Yang) GIS(Geographic Information System) ,

    E-Print Network [OSTI]

    Yang, Sung-Bong

    1 2 (Shin-Jun Lee) (Sung-Bong Yang) GIS(Geographic Information System) , . , (node) (link) , (cost) . GIS , . 4 . , . , (path tree of the basic functions provided in the network analysis of a geographic information system(GIS). A network

  7. BRST invariant PV regularization of SUSY Yang-Mills and SUGRA

    E-Print Network [OSTI]

    Gaillard, Mary K

    2011-01-01

    Pauli-Villars regularization of Yang-Mills theories and of supergravity theories is outlined, with an emphasis on BRST invariance. Applications to phenomenology and the anomaly structure of supergravity are discussed.

  8. BRST invariant PV regularization of SUSY Yang-Mills and SUGRA

    E-Print Network [OSTI]

    Mary K. Gaillard

    2011-09-14

    Pauli-Villars regularization of Yang-Mills theories and of supergravity theories is outlined, with an emphasis on BRST invariance. Applications to phenomenology and the anomaly structure of supergravity are discussed.

  9. Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates

    DOE Patents [OSTI]

    Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin

    2015-05-26

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.

  10. Quark confinement due to non-Abelian magnetic monopoles in SU(3) Yang-Mills theory

    SciTech Connect (OSTI)

    Kondo, Kei-Ichi; Shibata, Akihiro; Shinohara, Toru; Kato, Seikou [Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522 (Japan); Computing Research Center, High Energy Accelerator Research Organization, Tsukuba 305-0801 (Japan); Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522 (Japan); Fukui National College of Technology, Sabae 916-8507 (Japan)

    2012-10-23

    We present recent results on quark confinement: in SU(3) Yang-Mills theory, confinement of fundamental quarks is obtained due to the dual Meissner effect originated from non-Abelian magnetic monopoles defined in a gauge-invariant way, which is distinct from the well-known Abelian projection scenario. This is achieved by using a non-Abelian Stokes theorem for the Wilson loop operator and a new reformulation of the Yang-Mills theory.

  11. FPT 2009 Xiao Patrick Dong

    E-Print Network [OSTI]

    Lemieux, Guy

    : Reduce critical path è shorter period Decrease dynamic power 2 #12; Goal: Reduce critical path è shorter period Decrease dynamic power Approach: Add: Reduce critical path è shorter period Decrease dynamic power Approach: Add

  12. NREL: Energy Analysis - Changgui Dong

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:NewsWebmasterWorking With UsAnnaCaraChad

  13. dong(2)-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulationdetonation detection |InnovationPhysica D xxx5

  14. dong(2)-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulationdetonation detection |InnovationPhysica D

  15. dong(3)-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulationdetonation detection |InnovationPhysica D7

  16. Electron states in semiconductor quantum dots

    SciTech Connect (OSTI)

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-11-28

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.

  17. Nonclassical Light from Semiconductor Quantum Wells

    E-Print Network [OSTI]

    P. Grünwald; W. Vogel

    2014-05-06

    The fluorescence light from semiconductor quantum wells is analyzed with respect to its quantum optical properties. The light emitted by the excitons is described by bosonic excitations with a Kerr-type nonlinear interaction. To create the excitons, the incoming pump laser light is absorbed and the absorption acts as a spectral filter for the emitted light. The quantum properties of the emitted light are analyzed for the bare excitonic and the quantum-well systems. Squeezing of the quantum-well fluorescence persists for higher pump laser powers than the squeezing of the excitonic fluorescence. For strong pumping, the nonlinearity suppresses the creation of photon pairs and the photon statistics becomes sub-Poisson.

  18. Modeling direct interband tunneling. I. Bulk semiconductors

    SciTech Connect (OSTI)

    Pan, Andrew; Chui, Chi On

    2014-08-07

    Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority of the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.

  19. Development and evaluation of the Nurotron 26-electrode cochlear implant system

    E-Print Network [OSTI]

    2015-01-01

    Liu, B. , Dong, R. , Chen, X. , Gong, S. , Li, Y. , Qi, B. ,Shiming Yang f , Shusheng Gong g , Beibei Yang h , Hou-YongVan Harrison, Keli Cao, Qin Gong, Demin Han, Weijia Kong,

  20. Polymeric semiconductor/graphene hybrid field-effect transistors Jia Huang a,b,

    E-Print Network [OSTI]

    Polymeric semiconductor/graphene hybrid field-effect transistors Jia Huang a,b, , Daniel R. Hines semiconductor Graphene Thin film transistor Hybrid material a b s t r a c t Solution processed organic field semiconductors and graphene. Compared against OFETs with only pure organic semiconductors, our hybrid FETs

  1. Electronic properties of hybrid organicinorganic semiconductors B. Fluegel, Y. Zhang, and A. Mascarenhas

    E-Print Network [OSTI]

    Li, Jing

    Electronic properties of hybrid organic­inorganic semiconductors B. Fluegel, Y. Zhang, and A semiconductor band gaps and lattice constants. The gradual exhaustion of usable new inorganic material; published 8 November 2004) Hybrid semiconductors comprising networks of inorganic II­VI semiconductor

  2. ssentially all semiconductor technology is based on electronic devices, such as

    E-Print Network [OSTI]

    Roukes, Michael L.

    , spintronicsmayalsoleadinthenearfutureto the development of semiconductor devices capable of performing high-speed logic and memory

  3. Simulation of neutron radiation damage in silicon semiconductor devices.

    SciTech Connect (OSTI)

    Shadid, John Nicolas; Hoekstra, Robert John; Hennigan, Gary Lee; Castro, Joseph Pete Jr.; Fixel, Deborah A.

    2007-10-01

    A code, Charon, is described which simulates the effects that neutron damage has on silicon semiconductor devices. The code uses a stabilized, finite-element discretization of the semiconductor drift-diffusion equations. The mathematical model used to simulate semiconductor devices in both normal and radiation environments will be described. Modeling of defect complexes is accomplished by adding an additional drift-diffusion equation for each of the defect species. Additionally, details are given describing how Charon can efficiently solve very large problems using modern parallel computers. Comparison between Charon and experiment will be given, as well as comparison with results from commercially-available TCAD codes.

  4. Finite-Volume Spectra of the Lee-Yang Model

    E-Print Network [OSTI]

    Zoltan Bajnok; Omar el Deeb; Paul A. Pearce

    2014-12-29

    We consider the non-unitary Lee-Yang minimal model ${\\cal M}(2,5)$ in three different finite geometries: (i) on the interval with integrable boundary conditions labelled by the Kac labels $(r,s)=(1,1),(1,2)$, (ii) on the circle with periodic boundary conditions and (iii) on the periodic circle including an integrable purely transmitting defect. We apply $\\varphi_{1,3}$ integrable perturbations on the boundary and on the defect and describe the flow of the spectrum. Adding a $\\Phi_{1,3}$ integrable perturbation to move off-criticality in the bulk, we determine the finite size spectrum of the massive scattering theory in the three geometries via Thermodynamic Bethe Ansatz (TBA) equations. We derive these integral equations for all excitations by solving, in the continuum scaling limit, the TBA functional equations satisfied by the transfer matrices of the associated $A_{4}$ RSOS lattice model of Forrester and Baxter in Regime III. The excitations are classified in terms of $(m,n)$ systems. The excited state TBA equations agree with the previously conjectured equations in the boundary and periodic cases. In the defect case, new TBA equations confirm previously conjectured transmission factors.

  5. Analysis of anisotropic flow with Lee-Yang zeroes

    E-Print Network [OSTI]

    R. S. Bhalerao; N. Borghini; J. -Y. Ollitrault

    2003-10-03

    We present a new method to extract anisotropic flow in heavy ion collisions from the genuine correlation among a large number of particles. Anisotropic flow is obtained from the zeroes in the complex plane of a generating function of azimuthal correlations, in close analogy with the theory of phase transitions by Lee and Yang. Flow is first estimated globally, i.e., averaged over the phase space covered by the detector, and then differentially, as a function of transverse momentum and rapidity for identified particles. The corresponding estimates are less biased by nonflow correlations than with any other method. The practical implementation of the method is rather straightforward. Furthermore, it automatically takes into account most corrections due to azimuthal anisotropies in the detector acceptance. The main limitation of the method is statistical errors, which can be significantly larger than with the ``standard'' method of flow analysis if the flow and/or the event multiplicities are too small. In practice, we expect this to be the most accurate method to analyze directed and elliptic flow in fixed-target heavy-ion collisions between 100 MeV and 10 GeV per nucleon (at the Darmstadt SIS synchrotron and the Brookhaven Alternating Gradient Synchrotron), and elliptic flow at ultrarelativistic energies (at the Brookhaven Relativistic Heavy Ion Collider, and the forthcoming Large Hadron Collider at CERN).

  6. Amorphization of elemental and compound semiconductors upon ion implantation

    E-Print Network [OSTI]

    Florida, University of

    application to semiconductor doping.1 "7 Amorphization is known to reduce the random channeling tails of light, knowledge of the threshold dam- age density may also allow us to use the defects associ- ated with the solid

  7. Improving reuse of semiconductor equipment through benchmarking, standardization, and automation

    E-Print Network [OSTI]

    Silber, Jacob B. (Jacob Bradley)

    2006-01-01

    The 6D program at Intel® Corporation was set up to improve operations around capital equipment reuse, primarily in their semiconductor manufacturing facilities. The company was faced with a number of challenges, including ...

  8. Printable semiconductor structures and related methods of making and assembling

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang; , Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2013-03-12

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  9. Printable semiconductor structures and related methods of making and assembling

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Durham, NC); Lee, Keon Jae (Tokyo, JP); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Westmont, IL); Meitl, Matthew (Raleigh, NC); Zhu, Zhengtao (Rapid City, SD); Ko, Heung Cho (Urbana, IL); Mack, Shawn (Goleta, CA)

    2011-10-18

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  10. Printable semiconductor structures and related methods of making and assembling

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Urbana, IL); Lee, Keon Jae (Tokyo, JP); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Westmont, IL); Meitl, Matthew (Champaign, IL); Zhu, Zhengtao (Rapid City, SD); Ko, Heung Cho (Urbana, IL); Mack, Shawn (Goleta, CA)

    2010-09-21

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  11. DECENTRALIZING SEMICONDUCTOR CAPACITY PLANNING VIA INTERNAL MARKET COORDINATION

    E-Print Network [OSTI]

    Wu, David

    and S. DAVID WU Manufacturing Logistics Institute, Department of Industrial and Manufacturing Systems semiconductor manufacturer: marketing managers reserve capacity from manufacturing based on product demands, while attempting to maximize profit; manufacturing managers allocate capacity to competing marketing

  12. Exploring and enhancing conductivity in semiconductor nanoparticle films

    E-Print Network [OSTI]

    Porter, Venda Jane

    2007-01-01

    Semiconductor nanocrystals (NCs) are a promising material for use in opto-electronic devices as their optical properties tune with particle size. NCs formed via colloidal synthesis are suspended in solution by the organic ...

  13. Thermo-electrically pumped semiconductor light emitting diodes

    E-Print Network [OSTI]

    Santhanam, Parthiban

    2014-01-01

    Thermo-electric heat exchange in semiconductor light emitting diodes (LEDs) allows these devices to emit optical power in excess of the electrical power used to drive them, with the remaining power drawn from ambient heat. ...

  14. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOE Patents [OSTI]

    Ashby, Carol I. H. (Edgewood, NM); Dishman, James L. (Albuquerque, NM)

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  15. Translating semiconductor device physics into nanoparticle films for electronic applications

    E-Print Network [OSTI]

    Wanger, Darcy Deborah

    2014-01-01

    This thesis explores and quantifies some of the important device physics, parameters, and mechanisms of semiconductor nanocrystal quantum dot (QD) electronic devices, and photovoltaic devices in particular. This involves ...

  16. OPTICAL PROPERTIES OF DIELECTRIC AND SEMICONDUCTOR I. Chambouleyron

    E-Print Network [OSTI]

    Martínez, José Mario

    Chapter 12 OPTICAL PROPERTIES OF DIELECTRIC AND SEMICONDUCTOR THIN FILMS I. Chambouleyron Instituto, Young sketched the current theory of color vision in terms of three different (pri- Handbook of Thin

  17. Scanning probe characterization of novel semiconductor materials and devices

    E-Print Network [OSTI]

    Zhou, Xiaotian

    2007-01-01

    structure and properties of semiconductor materials andsemiconductor material systems. In the first part of this dissertation, propertiessemiconductor devices shrink in size, it becomes more important to characterize and understand electronic properties of the materials

  18. Conductive layer for biaxially oriented semiconductor film growth

    DOE Patents [OSTI]

    Findikoglu, Alp T. (Los Alamos, NM); Matias, Vladimir (Santa Fe, NM)

    2007-10-30

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  19. Semiconductor nanocrystals : synthesis, mechanisms of formation, and applications in biology

    E-Print Network [OSTI]

    Allen, Peter M. (Peter Matthew)

    2010-01-01

    The primary focus of this thesis is the synthesis and applications of semiconductor nanocrystals, or quantum dots (QDs). Novel synthetic routes to ternary 1-III-VI QDs are presented, and we report the first highly luminescent ...

  20. Three-terminal semiconductor laser for wave mixing 

    E-Print Network [OSTI]

    Belyanin, Alexey; Kocharovsky, V.; Kocharovsky, V.; Scully, Marlan O.

    2002-01-01

    We suggest and analyze the concept of a semiconductor laser device that incorporates two basic ideas: (i) dual-wavelength generation of two optical fields on the interband transitions with independent control of each field in a three...

  1. AlGaN/GaN-based power semiconductor switches

    E-Print Network [OSTI]

    Lu, Bin, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    AlGaN/GaN-based high-electron-mobility transistors (HEMTs) have great potential for their use as high efficiency and high speed power semiconductor switches, thanks to their high breakdown electric field, mobility and ...

  2. Spectral properties of semiconductor nanocrystals and their applications

    E-Print Network [OSTI]

    Liptay, Thomas J. (Thomas John)

    2007-01-01

    The ability to engineer the optical properties of the semiconductor nanocrystals by controlling their growth - size, shape, materials, coatings, etc - makes them appealing for many optical applications. Despite the impressive ...

  3. Brittle and ductile fracture of semiconductor nanowires --molecular dynamics simulations

    E-Print Network [OSTI]

    Cai, Wei

    Brittle and ductile fracture of semiconductor nanowires -- molecular dynamics simulations Keonwook November 9, 2006 Abstract Fracture of silicon and germanium nanowires in tension at room temperature potentials predict brittle fracture initiated by crack nucleation from the surface, most potentials predict

  4. Thermally robust semiconductor optical amplifiers and laser diodes

    DOE Patents [OSTI]

    Dijaili, Sol P. (Moraga, CA); Patterson, Frank G. (Danville, CA); Walker, Jeffrey D. (El Cerrito, CA); Deri, Robert J. (Pleasanton, CA); Petersen, Holly (Manteca, CA); Goward, William (Antioch, CA)

    2002-01-01

    A highly heat conductive layer is combined with or placed in the vicinity of the optical waveguide region of active semiconductor components. The thermally conductive layer enhances the conduction of heat away from the active region, which is where the heat is generated in active semiconductor components. This layer is placed so close to the optical region that it must also function as a waveguide and causes the active region to be nearly the same temperature as the ambient or heat sink. However, the semiconductor material itself should be as temperature insensitive as possible and therefore the invention combines a highly thermally conductive dielectric layer with improved semiconductor materials to achieve an overall package that offers improved thermal performance. The highly thermally conductive layer serves two basic functions. First, it provides a lower index material than the semiconductor device so that certain kinds of optical waveguides may be formed, e.g., a ridge waveguide. The second and most important function, as it relates to this invention, is that it provides a significantly higher thermal conductivity than the semiconductor material, which is the principal material in the fabrication of various optoelectronic devices.

  5. Reconditioning of semiconductor substrates to remove photoresist during semiconductor device fabrication

    DOE Patents [OSTI]

    Farino, Anthony J.

    2004-01-27

    A method for reconditioning the surface of a semiconductor substrate to remove an unwanted (i.e. defective) layer of photoresist is disclosed. The method adapts a conventional automated spinner which is used to rotate the substrate at high speed while a stream of a first solvent (e.g. acetone) is used to dissolve the photoresist. A stream of a second solvent (e.g. methanol) is then used to clean the substrate at a lower speed, with the substrate being allowed to dry with continued rotation. The method of the present invention can be used within a photolithography track so that the substrates need never leave the track for reconditioning.

  6. Competing interactions in semiconductor quantum dots

    SciTech Connect (OSTI)

    van den Berg, R.; Brandino, G. P.; El Araby, O.; Konik, R. M.; Gritsev, V.; Caux, J. -S.

    2014-10-01

    We introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions at longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.

  7. Excitonic exchange splitting in bulk semiconductors

    SciTech Connect (OSTI)

    Fu, H.; Wang, L.; Zunger, A.

    1999-02-01

    We present an approach to calculate the excitonic fine-structure splittings due to electron-hole short-range exchange interactions using the local-density approximation pseudopotential method, and apply it to bulk semiconductors CdSe, InP, GaAs, and InAs. Comparing with previous theoretical results, the current calculated splittings agree well with experiments. Furthermore, we provide an approximate relationship between the short-range exchange splitting and the exciton Bohr radius, which can be used to estimate the exchange splitting for other materials. The current calculation indicates that a commonly used formula for exchange splitting in quantum dot is not valid. Finally, we find a very large pressure dependence of the exchange splitting: a factor of 4.5 increase as the lattice constant changes by 3.5{percent}. This increase is mainly due to the decrease of the Bohr radius via the change of electron effective mass. {copyright} {ital 1999} {ital The American Physical Society}

  8. Characterization and electrical modeling of semiconductors bridges

    SciTech Connect (OSTI)

    Marx, K.D.; Bickes, R.W. Jr.; Wackerbarth, D.E.

    1997-03-01

    Semiconductor bridges (SCBs) are finding increased use as initiators for explosive and pyrotechnic devices. They offer advantages in reduced voltage and energy requirements, coupled with excellent safety features. The design of explosive systems which implement either SCBs or metal bridgewires can be facilitated through the use of electrical simulation software such as the PSpice{reg_sign} computer code. A key component in the electrical simulation of such systems is an electrical model of the bridge. This report has two objectives: (1) to present and characterize electrical data taken in tests of detonators which employ SCBs with BNCP as the explosive powder; and (2) to derive appropriate electrical models for such detonators. The basis of such models is a description of the resistance as a function of energy deposited in the SCB. However, two important features which must be added to this are (1) the inclusion of energy loss through such mechanisms as ohmic heating of the aluminum lands and heat transfer from the bridge to the surrounding media; and (2) accounting for energy deposited in the SCB through heat transfer to the bridge from the explosive powder after the powder ignites. The modeling procedure is entirely empirical; i.e., models for the SCB resistance and the energy gain and loss have been estimated from experimental data taken over a range of firing conditions. We present results obtained by applying the model to the simulation of SCB operation in representative tests.

  9. Competing interactions in semiconductor quantum dots

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van den Berg, R.; Brandino, G. P.; El Araby, O.; Konik, R. M.; Gritsev, V.; Caux, J. -S.

    2014-10-01

    We introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions at longer times. Onmore »the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  10. Semiconductor-inspired superconducting quantum computing

    E-Print Network [OSTI]

    Yun-Pil Shim; Charles Tahan

    2015-07-28

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some almost magical and very useful properties which can be utilized for spin qubit based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control with minimal overhead (zero overhead in 2-qubit gates), and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is especially suited to qubits based on variable super-semi junctions.

  11. M5-Branes, D4-Branes and Quantum 5D super-Yang-Mills

    E-Print Network [OSTI]

    Neil Lambert; Constantinos Papageorgakis; Maximilian Schmidt-Sommerfeld

    2011-02-22

    We revisit the relation of the six-dimensional (2,0) M5-brane Conformal Field Theory compactified on a circle to 5D maximally supersymmetric Yang-Mills Gauge Theory. We show that in the broken phase 5D super-Yang-Mills contains a spectrum of soliton states that can be identified with the complete Kaluza-Klein modes of an M2-brane ending on the M5-branes. This provides evidence that the (2,0) theory on a circle is equivalent to 5D super-Yang-Mills with no additional UV degrees of freedom, suggesting that the latter is in fact a well-defined quantum theory and possibly finite.

  12. String theories as the adiabatic limit of Yang-Mills theory

    E-Print Network [OSTI]

    Alexander D. Popov

    2015-07-14

    We consider Yang-Mills theory with a matrix gauge group $G$ on a direct product manifold $M=\\Sigma_2\\times H^2$, where $\\Sigma_2$ is a two-dimensional Lorentzian manifold and $H^2$ is a two-dimensional open disc with the boundary $S^1=\\partial H^2$. The Euler-Lagrange equations for the metric on $\\Sigma_2$ yield constraint equations for the Yang-Mills energy-momentum tensor. We show that in the adiabatic limit, when the metric on $H^2$ is scaled down, the Yang-Mills equations plus constraints on the energy-momentum tensor become the equations describing strings with a worldsheet $\\Sigma_2$ moving in the based loop group $\\Omega G=C^\\infty (S^1, G)/G$, where $S^1$ is the boundary of $H^2$. By choosing $G=R^{d-1, 1}$ and putting to zero all parameters in $\\Omega R^{d-1, 1}$ besides $R^{d-1, 1}$, we get a string moving in $R^{d-1, 1}$. In arXiv:1506.02175 it was described how one can obtain the Green-Schwarz superstring action from Yang-Mills theory on $\\Sigma_2\\times H^2$ while $H^2$ shrinks to a point. Here we also consider Yang-Mills theory on a three-dimensional manifold $\\Sigma_2\\times S^1$ and show that in the limit when the radius of $S^1$ tends to zero, the Yang-Mills action functional supplemented by a Wess-Zumino-type term becomes the Green-Schwarz superstring action.

  13. Hopf Soliton Solutions from Low Energy Effective Action of SU(2) Yang-Mills Theory

    E-Print Network [OSTI]

    N. Sawado; N. Shiiki; S. Tanaka

    2005-11-17

    The Skyrme-Faddeev-Niemi (SFN) model which is an O(3) $\\sigma$ model in three dimensional space up to fourth-order in the first derivative is regarded as a low-energy effective theory of SU(2) Yang-Mills theory. One can show from the Wilsonian renormalization group argument that the effective action of Yang-Mills theory recovers the SFN in the infrared region. However, the theory contains another fourth-order term which destabilizes the soliton solution. In this paper we derive an extended action including second derivative terms and obtain soliton solutions numerically. A new topological lower bound formula is infered for the extended action.

  14. Hagedorn spectrum and equation of state of Yang-Mills theories

    E-Print Network [OSTI]

    Michele Caselle; Alessandro Nada; Marco Panero

    2015-09-23

    We present a novel lattice calculation of the equation of state of SU(2) Yang-Mills theory in the confining phase. We show that a gas of massive, non-interacting glueballs describes remarkably well the results, provided that a bosonic closed-string model is used to derive an exponentially growing Hagedorn spectrum for the heavy glueball states with no free parameters. This effective model can be applied to SU(3) Yang-Mills theory and the theoretical prediction agrees nicely with the lattice results reported by Bors\\'anyi et al. in JHEP 07 (2012) 056.

  15. Anisotropy-based crystalline oxide-on-semiconductor material

    DOE Patents [OSTI]

    McKee, Rodney Allen (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  16. Control of the Casimir Force Using Semiconductor Test Bodies

    E-Print Network [OSTI]

    G. L. Klimchitskaya; U. Mohideen; V. M. Mostepanenko

    2011-04-09

    We describe experimental and related theoretical work on the measurement of the Casimir force using semiconductor test bodies. This field of research started in 2005 and several important and interesting results have already been obtained. Specifically, the Casimir force or its gradient were measured in the configuration of an Au-coated sphere and different semiconductor surfaces. It was found that the force magnitude depends significantly on the replacement of the metal with a semiconductor and on the concentration of charge carriers in the semiconductor material. Special attention is paid to the experiment on the optical modulation of the Casimir force. In this experiment the difference Casimir force between an Au-coated sphere and Si plate in the presence and in the absence of laser light was measured. Possible applications of this experiment are discussed, specifically, for the realization of the pulsating Casimir force in three-layer systems. Theoretical problems arising from the comparison of the experimental data for the difference Casimir force with the Lifshitz theory are analyzed. We consider the possibility to control the magnitude of the Casimir force in phase transitions of semiconductor materials. Experiments on measuring the Casimir force gradient between an Au-coated sphere and Si plate covered with rectangular corrugations of different character are also described. Here, we discuss the interplay between the material properties and nontrivial geometry and the applicability of the proximity force approximation. The review contains comparison between different experiments and analysis of their advantages and disadvantages.

  17. Wavelength-resonant surface-emitting semiconductor laser

    DOE Patents [OSTI]

    Brueck, Steven R. J. (Albuquerque, NM); Schaus, Christian F. (Albuquerque, NM); Osinski, Marek A. (Albuquerque, NM); McInerney, John G. (Cedar Crest, NM); Raja, M. Yasin A. (Albuquerque, NM); Brennan, Thomas M. (Albuquerque, NM); Hammons, Burrell E. (Tijeras, NM)

    1989-01-01

    A wavelength resonant semiconductor gain medium is disclosed. The essential feature of this medium is a multiplicity of quantum-well gain regions separated by semiconductor spacer regions of higher bandgap. Each period of this medium consisting of one quantum-well region and the adjacent spacer region is chosen such that the total width is equal to an integral multiple of 1/2 the wavelength in the medium of the radiation with which the medium is interacting. Optical, electron-beam and electrical injection pumping of the medium is disclosed. This medium may be used as a laser medium for single devices or arrays either with or without reflectors, which may be either semiconductor or external.

  18. Reactive codoping of GaAlInP compound semiconductors

    DOE Patents [OSTI]

    Hanna, Mark Cooper (Boulder, CO); Reedy, Robert (Golden, CO)

    2008-02-12

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  19. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.

    1996-02-20

    A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.

  20. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, Kent D. (Albuquerque, NM); Lear, Kevin L. (Albuquerque, NM); Schneider, Jr., Richard P. (Albuquerque, NM)

    1996-01-01

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  1. Size dependence of the Directional Scattering Conditions on Semiconductor Nanoparticles

    E-Print Network [OSTI]

    Garcia-Camara, Braulio; Cuadrado, Alexander; Urruchi, Virginia; Sanchez-Pena, Jose Manuel; Vergaz, Ricardo

    2015-01-01

    The resonant modes observed in semiconductor nanoparticles and the coherence interaction between them, producing directional light scattering, may be very interesting for CMOS integrated all-optical devices. In these systems the control over the light scattering should be crucial, as well as the strength of this control. Fabrication parameters such as the size and shape of the nanoparticles and the optical properties of the environment can strongly affect to the emergence of these phenomena. In this work, we numerically explore the size dependence of the directional scattering conditions of semiconductor nanoparticles. Several semiconductor materials and a large size range have been considered to be a reference for further works. An interesting and unexpected linear behavior has been observed.

  2. Descreening of field effect in electrically gated nanopores Yang Liu,1,a

    E-Print Network [OSTI]

    Liu, Yang

    , e.g., biosensing under physiological condi- tions 150 mM or desalination of seawater 500 m and desalination.14 In contrast to semiconductors, ionic solutions are essentially zero-band gap conductors

  3. Semiconductor wire array structures, and solar cells and photodetectors based on such structures

    DOE Patents [OSTI]

    Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.

    2014-08-19

    A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.

  4. Quantitative Determination of Nanoscale Electronic Properties of Semiconductor Surfaces by Scanning Tunnelling Spectroscopy

    E-Print Network [OSTI]

    Feenstra, Randall

    Quantitative Determination of Nanoscale Electronic Properties of Semiconductor Surfaces by Scanning semiconductor surfaces permits quantitative evaluation of nanoscale electronic properties of the surface. Band properties associated with particular point defects within the material. An overview of the methods employed

  5. Gravity as the square of Yang-Mills: implications for N=8 Supergravity

    E-Print Network [OSTI]

    Sudarshan Ananth

    2009-02-18

    The pure gravity Lagrangian can be written as the "square" of the pure Yang-Mills Lagrangian to second order in coupling constants. This paper uses this form of the gravity Lagrangian as a starting point to arrive at a compact light-cone superspace Lagrangian for N=8 Supergravity to order $\\kappa$^2.

  6. CRYSTAL IMAGE ANALYSIS USING 2D SYNCHROSQUEEZED TRANSFORMS HAIZHAO YANG, JIANFENG LU, AND LEXING YING

    E-Print Network [OSTI]

    Ying, Lexing

    vectors for dislocations, which play an important role in crystal plasticity. We refer the readers to [19CRYSTAL IMAGE ANALYSIS USING 2D SYNCHROSQUEEZED TRANSFORMS HAIZHAO YANG, JIANFENG LU, AND LEXING transforms to extract mesoscopic and microscopic information from atomic crystal images. The methods analyze

  7. Chaotic Dynamics of Spin-Valve Oscillators Z. Yang and S. Zhang

    E-Print Network [OSTI]

    Li, Charles

    Chaotic Dynamics of Spin-Valve Oscillators Z. Yang and S. Zhang Department of Physics and Astronomy oscillators with tunable mi- crowave frequencies in spin valves are very desirable for magnetic storage it is not an intrinsic property of the current-driven oscillator. Here we consider a single-domain current-driven spin-valve

  8. The low-lying spectrum of N=1 supersymmetric Yang-Mills theory

    E-Print Network [OSTI]

    Bergner, Georg; Montvay, Istvan; Muenster, Gernot; Piemonte, Stefano

    2015-01-01

    The spectrum of the lightest bound states in N=1 supersymmetric Yang-Mills theory with SU(2) gauge group, calculated on the lattice, is presented. The masses have first been extrapolated towards vanishing gluino mass and then to the continuum limit. The final picture is consistent with the formation of degenerate supermultiplets.

  9. Effects of CO2 adsorption upon coal deformation during geological sequestration Kan Yang1,2

    E-Print Network [OSTI]

    Muzzio, Fernando J.

    ], which affect the coal seam structure, adsorption, and transport properties, such as density, surface1 Effects of CO2 adsorption upon coal deformation during geological sequestration Kan Yang1. Neimark: aneimark@rutgers.edu Yangzheng Lin: sealin2008@hotmail.com TITLE RUNNING HEAD: Effects of coal

  10. Scalable Continuous Query Processing by Tracking Pankaj K. Agarwal Junyi Xie Jun Yang Hai Yu

    E-Print Network [OSTI]

    Agarwal, Pankaj K.

    Scalable Continuous Query Processing by Tracking Hotspots Pankaj K. Agarwal Junyi Xie Jun Yang Hai}@cs.duke.edu ABSTRACT This paper considers the problem of scalably processing a large number of continuous queries for group-processing and indexing hundreds of thousands of continuous queries. In our approach, we first

  11. Scalable Continuous Query Processing by Tracking Hotspots Pankaj K. Agarwal Junyi Xie Jun Yang Hai Yu

    E-Print Network [OSTI]

    Yang, Jun

    Scalable Continuous Query Processing by Tracking Hotspots Pankaj K. Agarwal Junyi Xie Jun Yang Hai}@cs.duke.edu Abstract This paper considers the problem of scalably processing a large number of continuous queries. We for intervals in linear time. 1 Introduction Continuous query processing has attracted much interest

  12. Conditional symmetry and new classical solutions of the YangMills equations

    E-Print Network [OSTI]

    Zhdanov, Renat

    .I. Fushchych Institute of Mathematics of the Academy of Sciences of Ukraine, Tereshchenkivska Str.3, 252004 Kiev, Ukraine March 15, 1999 Abstract We suggest an effective method for reducing the Yang of Sciences of Ukraine, Tereshchenkivska Str.3, 252004 Kiev, Ukraine e­mail: asrz@pta3.pt.tu­clausthal.de 1

  13. Critical Path Analysis for the Execution of Parallel and Distributed Programs Cui-Qing Yang

    E-Print Network [OSTI]

    Miller, Barton P.

    Critical Path Analysis for the Execution of Parallel and Distributed Programs Cui-Qing Yang. One example of such techniques finds the critical path through a graph of a program's execution history. This paper presents the design, implementation and test- ing of the critical path analysis

  14. YANG ET AL. VOL. XXX ' NO. XX ' 000000 ' XXXX www.acsnano.org

    E-Print Network [OSTI]

    Wang, Zhong L.

    cells can be used to con- vert solar energy into electric energy.14,15 Usually, the materials used Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies Ya Yang, Hulin Zhang, Guang Zhu, Sangmin Lee, Zong-Hong Lin, and Zhong Lin Wang,,* School of Materials Science

  15. Joint Pricing-procurement Control under Fluctuating Raw Material and Jian Yang

    E-Print Network [OSTI]

    Yang, Jian

    Joint Pricing-procurement Control under Fluctuating Raw Material Costs Yifeng Liu and Jian Yang procures raw material units, stores them, and processes them into finished products upon order arrivals. The raw material cost evolves in a Markovian fashion, whereas the demand process is influenced by both

  16. Quantum Chaos in a Yang--Mills--Higgs System Luca Salasnich 1

    E-Print Network [OSTI]

    Quantum Chaos in a Yang--Mills--Higgs System Luca Salasnich 1 Dipartimento di Matematica Pura ed to quantum chaos, i.e. the study of properties of quantum systems which are classically chaotic 9 theory 13) . In this paper we study quantum chaos in a field--theory schematic model. We analyze

  17. arXiv:heplat/0610123 Propagators in YangMills theory

    E-Print Network [OSTI]

    Maas, Axel

    : 11.15.Ha 12.38.Aw Green's functions encode completely the non­perturbative properties of a quantum, Caixa Postal 369, 13560­970 São Carlos, SP, Brazil Abstract. Green's functions are gauge minimal Landau gauge. Keywords: Yang­Mills theory; Green's functions; Confinement; Gauge dependence PACS

  18. Stochastic resonance in surface catalytic oxidation of carbon monoxide Lingfa Yang, Zhonghuai Hou, and Houwen Xina)

    E-Print Network [OSTI]

    Yang, Lingfa

    Stochastic resonance in surface catalytic oxidation of carbon monoxide Lingfa Yang, Zhonghuai Hou: catalytic oxidation on a single sur- face, by analysis of the behavior of a set of ordinary differ- ential help researchers to find SR in this system experimentally. II. REACTION MODEL The catalytic oxidation

  19. Adsorption structure and doping effect of azidotrimethyltin on graphene , S.N. Yang b

    E-Print Network [OSTI]

    Kim, Sehun

    Adsorption structure and doping effect of azidotrimethyltin on graphene J. Choi a , S.N. Yang b , K Graphene Chemical functionalization Synchrotron Photoemission spectroscopy a b s t r a c t The adsorption demonstrate the variation of characteristic of graphene induced by the chemical functionalized molecule as we

  20. Wireless ad hoc networks Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale

    E-Print Network [OSTI]

    Gao, Jie

    are not flexible. ­ Vulnerable to attacks. · Ad hoc networks· Ad hoc networks ­ Flexible, easy to deploy, cheaper · Optimal power assignment /transmission range · Optimal scheduling & multi-hop routing · Node are staticWireless ad hoc networks Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale #12

  1. Energy Efficient Cooperative MIMO Systems Hsin-Yi Shen, Haiming Yang, Shivkumar Kalyanaraman

    E-Print Network [OSTI]

    Kalyanaraman, Shivkumar

    Energy Efficient Cooperative MIMO Systems Hsin-Yi Shen, Haiming Yang, Shivkumar Kalyanaraman an energy efficient cooperative MIMO system. Space-time block codes (STBC) and code combining techniques to cooperation overheads [1]. Thus there is tradeoff between energy consumption and system capacity in proposed

  2. THE INDUCTIVE STRENGTH OF RAMSEY'S THEOREM FOR C. T. CHONG, THEODORE A. SLAMAN, AND YUE YANG

    E-Print Network [OSTI]

    Chong, Chi Tat

    THE INDUCTIVE STRENGTH OF RAMSEY'S THEOREM FOR PAIRS C. T. CHONG, THEODORE A. SLAMAN, AND YUE YANG and applications of Ramsey's Theorem for Pairs?" We show that, over the base theory RCA0, Ramsey's Theorem for Pairs does not imply 0 2-induction. 1. Introduction Ramsey's Theorem is the assertion that for any

  3. Operational limit of closed loop pulsating heat pipes Honghai Yang a,*, S. Khandekar b

    E-Print Network [OSTI]

    Khandekar, Sameer

    Operational limit of closed loop pulsating heat pipes Honghai Yang a,*, S. Khandekar b , M. Groll c an experimental study on the operational limitation of closed loop pulsating heat pipes (CLPHPs), which consist pipes; Performance limit; Dry-out 1. Introduction Pulsating heat pipes (PHPs) or oscillating heat pipes

  4. SIMPLE PULSE ASYNCHRONOUS STATE MACHINES Jeffrey Miller 1 Woodward Yang 2

    E-Print Network [OSTI]

    Yang, Woodward

    SIMPLE PULSE ASYNCHRONOUS STATE MACHINES Jeffrey Miller 1 Woodward Yang 2 Division of Applied Sciences, Harvard University, USA 1 miller@eecs.harvard.edu 2 woody@eecs.harvard.edu ABSTRACT Pulse­ tion in the time domain. In this paper we present a new technique for pulse computation with simple

  5. Food Recognition Using Statistics of Pairwise Local Features Shulin (Lynn) Yang1

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Food Recognition Using Statistics of Pairwise Local Features Shulin (Lynn) Yang1 Mei Chen2 Dean Food recognition is difficult because food items are de- formable objects that exhibit significant variations in ap- pearance. We believe the key to recognizing food is to ex- ploit the spatial relationships

  6. Genetics of caffeine consumption and responses to caffeine Amy Yang & Abraham A. Palmer & Harriet de Wit

    E-Print Network [OSTI]

    Gilad, Yoav

    of Parkinson's and cardiovascular diseases in habitual caffeine consumers. Results Twin studies find . CYP1A2 . Parkinson's cardiovascular disease Introduction Caffeine is the most commonly consumedREVIEW Genetics of caffeine consumption and responses to caffeine Amy Yang & Abraham A. Palmer

  7. NEAR REAL-TIME IMAGE RECONSTRUCTION C. DENKER, G. YANG and H. WANG

    E-Print Network [OSTI]

    NEAR REAL-TIME IMAGE RECONSTRUCTION C. DENKER, G. YANG and H. WANG Big Bear Solar Observatory, New-processing algorithms have been developed to achieve diffraction-limited observations of the solar surface. We present is performed on a Beowulf-class computer which utilizes off-the-shelf, mass-market technologies to provide high

  8. BIST for Word-Oriented DRAM L. Zakrevski, M. Karpovsky, S. H. Yang

    E-Print Network [OSTI]

    Karpovsky, Mark

    BIST for Word-Oriented DRAM L. Zakrevski, M. Karpovsky, S. H. Yang Research Lab. on Reliable generation for detection of coupling faults between cells in word- oriented memories is considered. According to this fault model, contents of any w-bit memory word in a memory with n words, or ability to change

  9. Ni-dispersed fullerenes: Hydrogen storage and desorption properties Weon Ho Shin and Seong Ho Yang

    E-Print Network [OSTI]

    Goddard III, William A.

    Ni-dispersed fullerenes: Hydrogen storage and desorption properties Weon Ho Shin and Seong Ho Yang could be viable alternatives to reversible hydrogen storage. It is demonstrated that a single Ni coated-dispersed fullerenes are considered to be the novel hydrogen storage media capable of storing 6.8 wt % H2, thus

  10. Chemical Wave Packet Propagation, Reflection, and Spreading Lingfa Yang and Irving R. Epstein*

    E-Print Network [OSTI]

    Yang, Lingfa

    Chemical Wave Packet Propagation, Reflection, and Spreading Lingfa Yang and Irving R. Epstein 02454-9110 ReceiVed: May 8, 2002; In Final Form: July 10, 2002 Chemical waves can travel in well-defined packets. Two types of phase wave packets, distinguished by whether their component waves move toward

  11. Optimal Control of a Magnetic Bearing without Bias Flux Using Finite Voltage Charles Yang *, Research Assistant

    E-Print Network [OSTI]

    Knospe, Carl

    Optimal Control of a Magnetic Bearing without Bias Flux Using Finite Voltage Charles Yang, Sterling Heights, MI 48314 SUMMARY Conventional Active Magnetic Bearings (AMB) are operated using a bias. In this paper, optimal control of a magnetic bearing without bias is investigated. A single degree

  12. Practicality-Based Probabilistic Roadmaps Method Jing Yang, Patrick Dymond and Michael Jenkin

    E-Print Network [OSTI]

    Jenkin, Michael R. M.

    Practicality-Based Probabilistic Roadmaps Method Jing Yang, Patrick Dymond and Michael Jenkin: {jyang, jenkin, dymond}@cse.yorku.ca Abstract--Probabilistic roadmap methods (PRMs) are a commonly used roadmap can then be used to generate more practical paths. The approach is general and can be adapted

  13. $\\mathbb{Z}_3$ Parafermionic Chain Emerged From Yang-Baxter Equation

    E-Print Network [OSTI]

    Li-Wei Yu; Mo-Lin Ge

    2015-11-07

    We construct the 1D $\\mathbb{Z}_3$ parafermionic model based on the solution of Yang-Baxter equation and express the model by three types of fermions. It is shown that the $\\mathbb{Z}_3$ parafermionic chain possesses both triple degenerate ground states and non-trivial topological winding number. Hence, the $\\mathbb{Z}_3$ parafermionic model is a direct generalization of 1D $\\mathbb{Z}_2$ Kitaev model. Hence both the $\\mathbb{Z}_2$ and $\\mathbb{Z}_3$ model can be obtained from Yang-Baxter equation. On the other hand, to show the algebra of parafermionic tripling intuitively, we define a new 3-body Hamiltonian $\\hat{H}_{123}$ based on Yang-Baxter equation. Different from the Majorana doubling, the $\\hat{H}_{123}$ holds triple degeneracy at each of energy levels. The triple degeneracy is protected by two symmetry operators of the system, $\\omega$-parity $P$($\\omega=e^{{\\textrm{i}\\frac{2\\pi}{3}}}$) and emergent parafermionic operator $\\Gamma$, which are the generalization of parity $P_{M}$ and emergent Majorana operator in Lee-Wilczek model, respectively. Both the $\\mathbb{Z}_3$ parafermionic model and $\\hat{H}_{123}$ can be viewed as SU(3) models in color space. In comparison with the Majorana models for SU(2), it turns out that the SU(3) models are truly the generalization of Majorana models resultant from Yang-Baxter equation.

  14. Seismic Data Reconstruction via Matrix Yi Yang, Jianwei Ma and Stanley Osher

    E-Print Network [OSTI]

    Ferguson, Thomas S.

    1 Seismic Data Reconstruction via Matrix Completion Yi Yang, Jianwei Ma and Stanley Osher Abstract In seismic processing, one goal is to recover missing traces when the data is sparsely and incom- pletelyFit) are discussed in this paper. The seismic data can then be recovered by the conversion of the completed matrix

  15. Heat transfer and friction characteristics of air flow in microtubes Chien-Yuh Yang a,

    E-Print Network [OSTI]

    Kandlikar, Satish

    Heat transfer and friction characteristics of air flow in microtubes Chien-Yuh Yang a, , Chia September 2011 Keywords: Microtube Heat transfer Liquid Crystal Thermography a b s t r a c t Several researches dealing with the single-phase forced convection heat transfer inside microchannels have been

  16. Energy Saving Mechanisms in Sensor Networks Lan Wang and Yang Xiao

    E-Print Network [OSTI]

    Wang, Lan

    Energy Saving Mechanisms in Sensor Networks Lan Wang and Yang Xiao Computer Science Department try to save energy by configuring the sensors into certain topologies, therefore such mechanisms have-efficient scheduling mech- anisms". There are many other methods to save energy, such as reducing communication range

  17. Assessment and use of Loy Yang brown coal for power generation

    SciTech Connect (OSTI)

    Ottrey, A.; Woskoboenko, F. [HRL Technology Pty Ltd., Mulgrave, Victoria (Australia); Draper, I.; Fitzclarence, N. [Loy Yang Power Ltd., Traralgon, Victoria (Australia)

    1996-12-31

    The Loy Yang brown coal resource in the Latrobe Valley of Victoria has been extensively characterized in respect of: the extent, distribution and structure of the resource; the variations in properties throughout the resource; and evaluation of the behavior of the coal during processing. The resource characterization program involved an extensive borehole drilling program, backed by geological modelling and comprehensive material characterization (chemical, physical and petrological). Evaluation of the behavior of the coal has involved theoretical modelling, laboratory-scale investigations, pilot-scale combustion tests and observations on full-scale boilers. The Loy Yang open cut mine currently annually supplies 26 million tonne (Mt) of brown coal to: the 4 x 4500 MW units operated by Loy Yang Power Ltd.; the 2 x 500 MW units operated by Edison Mission Ltd.; and a steam-fluidized bed dryer operated by Dry Coal Australia Pty Ltd. (a joint venture between Lurgi and Australian Char Pty Ltd.). This paper highlights significant features of Loy Yang Power`s operations in the mine and the power station, with particular emphasis on ash fouling and slagging behavior.

  18. YANG ET AL. VOL. 6 ' NO. 4 ' 28772892 ' 2012 www.acsnano.org

    E-Print Network [OSTI]

    Hu, Wenchuang "Walter"

    for future global energy production. Among existing solar cells, organic photovoltaics (OPVs) have many Chemical Society Nanoimprinted Polymer Solar Cell Yi Yang, Kamil Mielczarek, Mukti Aryal,^ Anvar Zakhidov favorable characteristics, such as the potential of being flexible, semitransparent, and applicable to low

  19. Cascaded third harmonic generation in hybrid graphene-semiconductor waveguides

    E-Print Network [OSTI]

    Smirnova, Daria A

    2015-01-01

    We study cascaded harmonic generation of hybrid surface plasmons in integrated planar waveguides composed of a graphene layer and a doped-semiconductor slab. We derive a comprehensive model of cascaded third harmonic generation through phase-matched nonlinear interaction of fundamental, second harmonic and third harmonic plasmonic modes supported by the structure. We show that hybrid graphene-semiconductor waveguides can simultaneously phase-match these three interacting harmonics, increasing the total third-harmonic output by a factor of 5 compared to the non-cascaded regime.

  20. Low temperature production of large-grain polycrystalline semiconductors

    DOE Patents [OSTI]

    Naseem, Hameed A. (Fayetteville, AR); Albarghouti, Marwan (Loudonville, NY)

    2007-04-10

    An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

  1. Method for depositing layers of high quality semiconductor material

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Yang, Chi C. (Troy, MI)

    2001-08-14

    Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.

  2. Semiconductor microlasers with intracavity microfluidics for biomedical applications

    SciTech Connect (OSTI)

    Gourley, P.L.; McDonald, A.E.

    1997-03-01

    Microfabricated electro-optical-mechanical systems are expected to play an important role in future biomedical, biochemical and environmental technologies. Semiconductor photonic materials and devices are attractive components of such systems because of their ability to generate, transmit, modulate, and detect light. In this paper the authors report investigations of light-emitting semiconductor/glass microcavities filled with simple fluids. They examine surface tension for transporting liquids into the intracavity space and study the influence of the liquid on the spectral emission of the microcavity.

  3. Entrainment by Spatiotemporal Chaos in Glow Discharge-Semiconductor Systems

    E-Print Network [OSTI]

    Marat Akhmet; Ismail Rafatov; Mehmet Onur Fen

    2014-06-15

    Entrainment of limit cycles by chaos [1] is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach [2], it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [3].

  4. Features of the electric-field distribution in anisotropic semiconductor wafers in a transverse magnetic field

    SciTech Connect (OSTI)

    Filippov, V. V., E-mail: wwfilippow@mail.ru [Lipetsk State Pedagogical University (Russian Federation); Bormontov, E. N. [Voronezh State University (Russian Federation)

    2013-07-15

    A macroscopic model of the Hall effects and magnetoresistance in anisotropic semiconductor wafers is developed. The results obtained by solving the electrodynamic boundary problem allow the potential and eddy currents in anisotropic semiconductors to be calculated at different current-contact locations, depending on the parameters of the sample material's anisotropy. The results of this study are of great practical importance for investigating the physical properties of anisotropic semiconductors and simulating the electron-transport phenomena in devices based on anisotropic semiconductors.

  5. Contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication

    DOE Patents [OSTI]

    Sopori, Bhushan

    2014-05-27

    Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.

  6. Effect of n-p-n heterostructures on interface recombination and semiconductor laser cooling

    E-Print Network [OSTI]

    Sheik-Bahae, Mansoor

    semiconductor heterostructures such as n-p-n junctions are ubiquitous in electronics and are of increasingEffect of n-p-n heterostructures on interface recombination and semiconductor laser cooling G 2010; published online 13 December 2010 The design of doped n-p-n semiconductor heterostructures has

  7. Novel Logic Devices based on 2D Crystal Semiconductors: Opportunities and Challenges

    E-Print Network [OSTI]

    Novel Logic Devices based on 2D Crystal Semiconductors: Opportunities and Challenges (Invited Paper that the advent of 2D crystal semiconductors has caused excitement in the field [2]. These materials can: djena@nd.edu Abstract Two-dimensional crystal semiconductors such as graphene, BN, and the transition

  8. Cross-sectional scanning tunneling microscopy of mixed-anion semiconductor heterostructures

    E-Print Network [OSTI]

    Yu, Edward T.

    a detailed understanding of atomic- to nanometer-scale properties of semiconductor materials and devices of semiconductor materials and devices at the atomic to nanometer scale. Cross-sectional scanning tunneling and electronic properties in semiconductor epitaxial and device structures with spatial resolution at or near

  9. Metrology-Related Costs in the U.S. Semiconductor Industry,

    E-Print Network [OSTI]

    98-4 Planning Report Metrology-Related Costs in the U.S. Semiconductor Industry, 1990, 1996 Administration #12;Metrology-Related Costs in the U.S. Semiconductor Industry, 1990, 1996 and 2001 NIST Contract Acknowledgements 5 II. Defining Metrology-Related Costs in the Semiconductor Industry 6 A. Physical Measurements

  10. Theory of semiconductor magnetic bipolar transistors M. E. Flattea)

    E-Print Network [OSTI]

    Flatte, Michael E.

    - rating both semiconductors and ferromagnets, such as the spin-valve transistor,12 have demonstrated polarized before passing into the collector. The first is a dramatic spin-filtering effect on carriers passing from the emitter to the p base, the second is spin-selective conduction electron spin flipping

  11. Controlled nanoscale doping of semiconductors via molecular monolayers

    E-Print Network [OSTI]

    California at Berkeley, University of

    -limiting and self-assembly processes where surface and chemical phenomena guide the synthesis and fabrication) the formation of self-assembled monolayers of dopant-containing molecules on the surface of crystalline SiARTICLES Controlled nanoscale doping of semiconductors via molecular monolayers JOHNNY C. HO1

  12. Main resonances in directly modulated semiconductor lasers: effect of spontaneous

    E-Print Network [OSTI]

    Toral, Raúl

    Main resonances in directly modulated semiconductor lasers: effect of spontaneous emission and gain saddle-node bifurcations related to the main resonances in pump-modulated laser diodes are obtained via] and of the spontaneous emission terms [lo] have already been considered, but little attention has been given to main

  13. Method for altering the luminescence of a semiconductor

    DOE Patents [OSTI]

    Barbour, J. Charles (Albuquerque, NM); Dimos, Duane B. (Albuquerque, NM)

    1999-01-01

    A method is described for altering the luminescence of a light emitting semiconductor (LES) device. In particular, a method is described whereby a silicon LES device can be selectively irradiated with a radiation source effective for altering the intensity of luminescence of the irradiated region.

  14. Nonlocal electrodynamics of weakly confined excitons in semiconductor nanostructures

    E-Print Network [OSTI]

    Mukamel, Shaul

    -VI, and I-VII materials are summarized in Table I. Due to the dominance of strongly confined structures." For example, in an ideal 2D-QW the exciton Bohr radius is half of that in 3D, af = ao/2,3 which leads 1994; accepted 28 July 1994) The third order nonlinear optical response of semiconductor quantum dots

  15. Tunable photonic microwave generation using optically injected semiconductor

    E-Print Network [OSTI]

    Chan, Sze-Chun

    Tunable photonic microwave generation using optically injected semiconductor laser dynamics feedback are investigated for photonic microwave generation. The optical injection first drives the laser into P1 dynamics so that its intensity oscillates at a microwave frequency. A dual-loop optical feedback

  16. Metal Oxide Semiconductor Gas Sensors and Neural Networks

    E-Print Network [OSTI]

    Siegel, Mel

    Olfaction Metal Oxide Semiconductor Gas Sensors and Neural Networks M. W. Siegel Carnegie Mellon around a chemical plant, sniffing as it goes for gas leaks (or the vapors of liquid leaks), navigating perhaps directed to the offending pipe fissure or open valve by acoustic homing toward the source

  17. Dielectric function of diluted magnetic semiconductors in the infrared regime 

    E-Print Network [OSTI]

    Aguado, R.; Lopez-Sancho, MP; Sinova, Jairo; Brey, L.

    2004-01-01

    We present a study of the dielectric function of metallic (III,Mn)V diluted magnetic semiconductors in the infrared regime. Our theoretical approach is based on the kinetic exchange model for carrier induced (III,Mn)V ferromagnetism. The dielectric...

  18. Hydrogen in compound semiconductors M. D. McCluskeya)

    E-Print Network [OSTI]

    McCluskey, Matthew

    Hydrogen in compound semiconductors M. D. McCluskeya) and N. M. Johnson Xerox Palo Alto Research Center, Palo Alto, California 94304 Received 9 October 1998; accepted 18 December 1998 Hydrogen can consequence of hydrogenation is the passivation of dopant impurities, which leads to a decrease

  19. DOI: 10.1002/adma.200602223 Inorganic Semiconductors for Flexible

    E-Print Network [OSTI]

    Rogers, John A.

    DOI: 10.1002/adma.200602223 Inorganic Semiconductors for Flexible Electronics** By Yugang Sun* and John A. Rogers* 1. Introduction Electronic systems that can cover large areas on flexible substrates of applications that lie outside those easily addressed with wafer-based electron- ics. Examples include flexible

  20. Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic

    E-Print Network [OSTI]

    Illing, Lucas

    Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback S Science, University of California, San Diego, La Jolla, CA 93093-0402, USA Abstract. A communication of GHz chaotic signals. We then test a proposed communication scheme by successfully transmitting

  1. Simulations of Deep-Level Defects in Semiconductors

    E-Print Network [OSTI]

    Jones, Robert

    ( Z Y X v = 1 2f1 +2 +3 +4g;tx = 1 2f1 +2 ,3 ,4g 19 4 1999 4 #12;A. Resende AIMPRO Group ENDEASD. European Network on Defect Engineering of Advanced Semiconductor Devices ENDEASD #12;A. Resende AIMPRO

  2. Patterned Arrays of Lateral Heterojunctions within Monolayer 2D Semiconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; Lupini, Andrew R; Lee, Jaekwang; Basile Carrasco, Leonardo A; Rouleau, Christopher M; Boulesbaa, Abdelaziz; Puretzky, Alexander A; Ivanov, Ilia N; et al

    2015-01-01

    The formation of semiconductor heterojunctions and their high density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional (2D) crystalline semiconductors as building blocks in next generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate a process strategy for the formation of lithographically-patterned lateral semiconducting heterojunctions within a single 2D crystal. E-beam lithography is used to pattern MoSe2 monolayer crystals with SiO2, and the exposed locations are selectively and totally converted to MoS2 using pulsed laser deposition (PLD) of sulfur in order to form MoSe2/MoS2 heterojunctions in predefined patterns. The junctions and conversionmore »process are characterized by atomically resolved scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. This demonstration of lateral semiconductor heterojunction arrays within a single 2D crystal is an essential step for the lateral integration of 2D semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin circuitry.« less

  3. Semiconductor Components Industries, LLC, 2004 July, 2004 -Rev. 13

    E-Print Network [OSTI]

    Ravikumar, B.

    download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. PDIP-14 N, P Power Dissipation @ TA = 25°C Plastic Package Derate above 25°C PD 1/RqJA 1.0 8.0 W mW/°C Junction

  4. Mechanical nanomanipulation of single strain-induced semiconductor quantum dots

    E-Print Network [OSTI]

    Ludwig-Maximilians-Universität, München

    Mechanical nanomanipulation of single strain-induced semiconductor quantum dots C. Obermu¨ller, A of single strain-induced Ga0.9In0.1As quantum dots. This was achieved by scanning a metal coated tapered of the dots2 owing to the lattice mismatch between the materials. In this case the InP islands are acting

  5. Nonlinear Optical Processes in Two-Dimensional Semiconductor Structures 

    E-Print Network [OSTI]

    Wang, Yongrui

    2015-07-28

    The optical properties of two types of two-dimensional (2D) semiconductor structures are studied. One of them is for structures based on quantum wells (QWs), and the other is graphene. We study the dynamics of optically excited electron-hole plasma...

  6. By Lindsey Haugh Semiconductors are one of the nation's

    E-Print Network [OSTI]

    - tant industry for the economy and national security. In 2012, the Semiconductor In- dustry Association. Rachel Umbel, a doctoral student in the materials science and engineering program at Virginia Tech materials science and engineering and electrical and computer engineering. Guido's research group is made up

  7. Method for altering the luminescence of a semiconductor

    DOE Patents [OSTI]

    Barbour, J.C.; Dimos, D.B.

    1999-01-12

    A method is described for altering the luminescence of a light emitting semiconductor (LES) device. In particular, a method is described whereby a silicon LES device can be selectively irradiated with a radiation source effective for altering the intensity of luminescence of the irradiated region. 4 figs.

  8. Energy Transfer from Individual Semiconductor Nanocrystals to Graphene

    E-Print Network [OSTI]

    Energy Transfer from Individual Semiconductor Nanocrystals to Graphene Zheyuan Chen,,§ Ste when a dipole is placed in the vicin- ity of a transparent insulating surface. Graphene,3 5 and practical interest. Indeed, single-layer graphene (SLG) possesses extremely high carrier mobility,6 while

  9. Quantum of optical absorption in two-dimensional semiconductors

    E-Print Network [OSTI]

    California at Berkeley, University of

    . Absorptance quantization appears to be universal in 2D systems including III­V quantum wells and graphene quantitative examination of the intrinsic absorption properties of free-standing 2D semiconductor thin films work has shown that graphene, a 2D semimetal, has a universal value of light absorption, namely , where

  10. Advanced Stress, Strain And Geometrical Analysis In Semiconductor Devices

    SciTech Connect (OSTI)

    Neels, Antonia; Dommann, Alex; Niedermann, Philippe; Farub, Claudiu; Kaenel, Hans von

    2010-11-24

    High stresses and defect densities increases the risk of semiconductor device failure. Reliability studies on potential failure sources have an impact on design and are essential to assure the long term functioning of the device. Related to the dramatically smaller volume of semiconductor devices and new bonding techniques on such devices, new methods in testing and qualification are needed. Reliability studies on potential failure sources have an impact on design and are essential to assure the long term functioning of the device. In this paper, the applications of advanced High Resolution X-ray Diffraction (HRXRD) methods in strain, defect and deformation analysis on semiconductor devices are discussed. HRXRD with Rocking Curves (RC's) and Reciprocal Space Maps (RSM's) is used as accurate, non-destructive experimental method to evaluate the crystalline quality, and more precisely for the given samples, the in-situ strain, defects and geometrical parameters such as tilt and bending of device. The combination with advanced FEM simulations gives the possibility to support efficiently semiconductor devices design.

  11. Study of Phase Selectivity of Organic-Inorganic Hybrid Semiconductors

    E-Print Network [OSTI]

    Li, Jing

    observation of the phase selection for these hybrid materials. Introduction Hybrid organic_Youn_Moon@nrel.gov. Present address: University of Texas, Austin, TX 78712. (1) Handbook of Organic-Inorganic Hybrid MaterialsArticles Study of Phase Selectivity of Organic-Inorganic Hybrid Semiconductors Chang-Youn Moon

  12. Infrared photothermal radiometry of deep subsurface defects in semiconductor materials

    E-Print Network [OSTI]

    Mandelis, Andreas

    Infrared photothermal radiometry of deep subsurface defects in semiconductor materials M. E. Rodri sensitivity to the electronic transport properties of the laser photoexcited material.3 Using two information. INTRODUCTION The nondestructive, nonintrusive evaluation of semicon- ductor materials has been of common

  13. Theory and Design of Smith-Purcell Semiconductor Terahertz Sources 

    E-Print Network [OSTI]

    Smith, Don DeeWayne

    2013-12-06

    difficulties reaching the THz, and no THz device of any type operates on the full range at room temperature. This dissertation proposes a novel semiconductor source which utilizes the transferred-electron (Gunn) effect and the Smith-Purcell effect to operate...

  14. Non-equilibrium processes in modern semiconductor devices. Spring 2008.

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    EE 606 Non-equilibrium processes in modern semiconductor devices. Spring 2008. A. F. J. Levi TTh 11 still use equilibrium or near equilibrium concepts to describe device operation. The purpose of this course is to introduce a more realistic approach to understanding device operation in modern sub

  15. Patterned Arrays of Lateral Heterojunctions within Monolayer 2D Semiconductors

    SciTech Connect (OSTI)

    Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; Lupini, Andrew R; Lee, Jaekwang; Basile Carrasco, Leonardo A; Rouleau, Christopher M; Boulesbaa, Abdelaziz; Puretzky, Alexander A; Ivanov, Ilia N; Xiao, Kai; Yoon, Mina; Geohegan, David B

    2015-01-01

    The formation of semiconductor heterojunctions and their high density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional (2D) crystalline semiconductors as building blocks in next generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate a process strategy for the formation of lithographically-patterned lateral semiconducting heterojunctions within a single 2D crystal. E-beam lithography is used to pattern MoSe2 monolayer crystals with SiO2, and the exposed locations are selectively and totally converted to MoS2 using pulsed laser deposition (PLD) of sulfur in order to form MoSe2/MoS2 heterojunctions in predefined patterns. The junctions and conversion process are characterized by atomically resolved scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. This demonstration of lateral semiconductor heterojunction arrays within a single 2D crystal is an essential step for the lateral integration of 2D semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin circuitry.

  16. Coherent Control of Colloidal Semiconductor Nanocrystals R. Wilcken,

    E-Print Network [OSTI]

    Kassel, Universität

    Hannover e.V., Semiconductor and Photovoltaics-Group, Hollerithallee 8, D-30419 Hannover, Germany ABSTRACT pulses being phase-modulated in frequency domain. The luminescence generated by electron. In the experiment, we applied polynomial spectral phase functions of second- (GDD) and third-order (TOD), as well

  17. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Chen, Gang (Carlisle, MA); Poudel, Bed (West Newton, MA); Kumar, Shankar (Newton, MA); Wang, Wenzhong (Beijing, CN); Dresselhaus, Mildred (Arlington, MA)

    2009-09-08

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  18. Surface Magnetism: Relativistic Effects at Semiconductor Interfaces and Solar Cells

    E-Print Network [OSTI]

    Schmidt, Wolf Gero

    excellently into the energy level scheme of this kind of solar cell and has the potential to replace with high potential for a further devel- opment. The global market for photovoltaics cells is expectedSurface Magnetism: Relativistic Effects at Semiconductor Interfaces and Solar Cells U. Gerstmann, M

  19. Data Mining for Thesaurus Generation in Informal Design Information Retrieval Maria C. Yang, William H. Wood, and Mark R. Cutkosky

    E-Print Network [OSTI]

    Yang, Maria

    Data Mining for Thesaurus Generation in Informal Design Information Retrieval Maria C. Yang-offs with each type of thesaurus, especially concerning the resources required to build them as well

  20. Effect of Hydrogen Passivation on the Electronic Structure of Ionic Semiconductor Nanostructures

    SciTech Connect (OSTI)

    Deng, H. X.; Li, S. S.; Li, J. B.; Wei, S. H.

    2012-05-15

    In theoretical studies of thin film and nanostructured semiconductors, pseudohydrogen (PH) is widely used to passivate the surface dangling bonds. Based on these calculations, it is often believed that nanostructured semiconductors, due to quantum confinement, have a larger band gap than their bulk counterparts. Using first-principles band structure theory calculation and comparing systematically the differences between PH-passivated and real-hydrogen-passivated (RH-passivated) semiconductor surfaces and nanocrystals, we show that, unlike PH passivation that always increases the band gap with respect to the bulk value, RH passivation of the nanostructured semiconductors can either increase or decrease the band gap, depending on the ionicity of the nanocompounds. The differences between PH and RH passivations decreases when the covalency of the semiconductor increases and can be explained using a band coupling model. This observation greatly increases the tunability of nanostructured semiconductor properties, especially for wide-gap ionic semiconductors.

  1. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2012-10-16

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  2. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon (Pinole, CA); Bruchez, Marcel (Newark, CA); Alivisatos, Paul (Oakland, CA)

    2011-12-06

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  3. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon (Pinole, CA); Bruchez, Marcel (Newark, CA); Alivisatos, Paul (Oakland, CA)

    2011-12-20

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  4. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2014-01-28

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  5. Semiconductor Physics and Quantum Solar Energy Conversion PV-related research at CvO University Oldenburg

    E-Print Network [OSTI]

    Semiconductor Physics and Quantum Solar Energy Conversion PV-related research at CvO University Oldenburg GRECO Cvo UNI OL/ Nds.PV-Symp. 06-2009 semiconductor physics / quantum solar energy conversion;Semiconductor Physics and Quantum Solar Energy Conversion Semiconductor Physics and Quantum Solar Energy

  6. Medical Imaging with Semiconductor Detectors Dipartimento di Scienze e Tecnologie Avanzate, Universit del Piemonte Orientale and INFN,

    E-Print Network [OSTI]

    Ramello, Luciano

    . Angiographic and mammographic dual energy techniques will be discussed in some detail. 1. SEMICONDUCTOR

  7. Determination of Reference Scales for Wilson Gauge Action from Yang--Mills Gradient Flow

    E-Print Network [OSTI]

    Masayuki Asakawa; Takumi Iritani; Masakiyo Kitazawa; Hiroshi Suzuki

    2015-10-08

    A parametrization of the lattice spacing ($a$) in terms of the bare coupling ($\\beta$) for the SU(3) Yang--Mills theory with the Wilson gauge action is given in a wide range of~$\\beta$. The Yang--Mills gradient flow with respect to the flow time~$t$ for the dimensionless observable, $t\\frac{d}{dt}t^2\\langle E(t)\\rangle$, is utilized to determine the parametrization. With fine lattice spacings ($6.3\\le\\beta\\le7.5$) and large lattice volumes ($N_{\\rm s}=64$--$128$), the discretization and finite-volume errors are significantly reduced to the same level as the statistical error.

  8. Towards a manifestly gauge invariant and universal calculus for Yang-Mills theory

    E-Print Network [OSTI]

    Arnone, S; Morris, T R; Arnone, Stefano; Gatti, Antonio; Morris, Tim R.

    2002-01-01

    A manifestly gauge invariant exact renormalization group for pure SU(N) Yang-Mills theory is proposed, along with the necessary gauge invariant regularisation which implements the effective cutoff. The latter is naturally incorporated by embedding the theory into a spontaneously broken SU(N|N) super-gauge theory, which guarantees finiteness to all orders in perturbation theory. The effective action, from which one extracts the physics, can be computed whilst manifestly preserving gauge invariance at each and every step. As an example, we give an elegant computation of the one-loop SU(N) Yang-Mills beta function, for the first time at finite N without any gauge fixing or ghosts. It is also completely independent of the details put in by hand, e.g. the choice of covariantisation and the cutoff profile, and, therefore, guides us to a procedure for streamlined calculations.

  9. Towards a manifestly gauge invariant and universal calculus for Yang-Mills theory

    E-Print Network [OSTI]

    Stefano Arnone; Antonio Gatti; Tim R. Morris

    2002-09-16

    A manifestly gauge invariant exact renormalization group for pure SU(N) Yang-Mills theory is proposed, along with the necessary gauge invariant regularisation which implements the effective cutoff. The latter is naturally incorporated by embedding the theory into a spontaneously broken SU(N|N) super-gauge theory, which guarantees finiteness to all orders in perturbation theory. The effective action, from which one extracts the physics, can be computed whilst manifestly preserving gauge invariance at each and every step. As an example, we give an elegant computation of the one-loop SU(N) Yang-Mills beta function, for the first time at finite N without any gauge fixing or ghosts. It is also completely independent of the details put in by hand, e.g. the choice of covariantisation and the cutoff profile, and, therefore, guides us to a procedure for streamlined calculations.

  10. Dual Superconductor Picture for Strongly-coupled SU(2) Yang-Mills Theory

    E-Print Network [OSTI]

    Duoje Jia; Yi-shi Duan

    2006-05-18

    A new framework that fulfills the dual superconductor picture is proposed for the strongly-coupled Yang-Mills theory. This framework is based on the idea that at the classic level the strong-coupling limit of the theory vacuum behaves as a back hole with regard to colors in the sense of the effective field theory, and the theory variables undergo an ultraviolet/infrared scale separation. We show that at the quantum level the strong-coupled theory vacuum is made up of a Bose-condensed many-body system of magnetic charges. We further check this framework by reproducing the dual Abelian-Higgs model from the Yang-Mills theory and the predicting the vacuum type of the theory which is very near to the border between type-I and type-II superconductors and remarkably consistent with the recent simulations.

  11. Prompt Multi-Gluon Production in High Energy Collisions from Singular Yang-Mills Solutions

    E-Print Network [OSTI]

    Romuald A. Janik; Edward Shuryak; Ismail Zahed

    2002-06-03

    We study non-perturbative parton-parton scattering in the Landau method using singular O(3) symmetric solutions to the Euclidean Yang-Mills equations. These solutions combine instanton dynamics (tunneling) and overlap (transition) between incoming and vacuum fields. We derive a high-energy solution at small Euclidean times, and assess its susequent escape and decay into gluons in Minkowski space-time. We describe the spectrum of the {\\it outgoing} gluons and show that it is related through a particular rescaling to the Yang-Mills sphaleron explosion studied earlier. We assess the number of {\\it incoming} gluons in the same configuration, and argue that the observed scaling is in fact more general and describes the energy dependence of the spectra and multiplicities at {\\it all} energies. Applications to hadron-hadron and nucleus-nucleus collisions are discussed elsewhere.

  12. N = 4 Super-Yang-Mills on Conic Space as Hologram of STU Topological Black Hole

    E-Print Network [OSTI]

    Xing Huang; Yang Zhou

    2014-09-05

    We construct four-dimensional N=4 super-Yang-Mills theories on a conic sphere with various background R-symmetry gauge fields. We study free energy and supersymmetric Renyi entropy using heat kernel method as well as localization technique. We find that the universal contribution to the partition function in the free field limit is the same as that in the strong coupling limit, which implies that it may be protected by supersymmetry. Based on the fact that, the conic sphere can be conformally mapped to $S^1\\times H^3$ and the R-symmetry background fields can be supported by the R-charges of black hole, we propose that the holographic dual of these theories are five-dimensional, supersymmetric STU topological black holes. We demonstrate perfect agreement between N=4 super-Yang-Mills theories in the planar limit and the STU topological black holes.

  13. Universal aspects in the equation of state for Yang-Mills theories

    E-Print Network [OSTI]

    Alessandro Nada

    2015-10-05

    We present high-precision lattice calculations of the thermodynamics of Yang-Mills theories with different gauge groups. In the confining phase, we show that the equation of state is described remarkably well by a gas of massive, non-interacting glueballs, provided that an effective bosonic closed-string model is used to derive an exponentially growing Hagedorn spectrum for the heavy states. In particular, this model describes very accurately the results for the SU(3) theory reported by Bors\\'anyi et al. in JHEP 07 (2012) 056, as well as a novel set of lattice data for the SU(2) theory. In addition, we also also show that the equation of state in the deconfined phase exhibits a near perfect proportionality to the number of gluon degrees of freedom, including for the Yang-Mills theory based on the exceptional, center-less gauge group $G_2$.

  14. Scaling and Density of Lee-Yang Zeroes in the Four Dimensional Ising Model

    E-Print Network [OSTI]

    R. Kenna; C. B. Lang

    1993-11-20

    The scaling behaviour of the edge of the Lee--Yang zeroes in the four dimensional Ising model is analyzed. This model is believed to belong to the same universality class as the $\\phi^4_4$ model which plays a central role in relativistic quantum field theory. While in the thermodynamic limit the scaling of the Yang--Lee edge is not modified by multiplicative logarithmic corrections, such corrections are manifest in the corresponding finite--size formulae. The asymptotic form for the density of zeroes which recovers the scaling behaviour of the susceptibility and the specific heat in the thermodynamic limit is found to exhibit logarithmic corrections too. The density of zeroes for a finite--size system is examined both analytically and numerically.

  15. Universal aspects in the equation of state for Yang-Mills theories

    E-Print Network [OSTI]

    Nada, Alessandro

    2015-01-01

    We present high-precision lattice calculations of the thermodynamics of Yang-Mills theories with different gauge groups. In the confining phase, we show that the equation of state is described remarkably well by a gas of massive, non-interacting glueballs, provided that an effective bosonic closed-string model is used to derive an exponentially growing Hagedorn spectrum for the heavy states. In particular, this model describes very accurately the results for the SU(3) theory reported by Bors\\'anyi et al. in JHEP 07 (2012) 056, as well as a novel set of lattice data for the SU(2) theory. In addition, we also also show that the equation of state in the deconfined phase exhibits a near perfect proportionality to the number of gluon degrees of freedom, including for the Yang-Mills theory based on the exceptional, center-less gauge group $G_2$.

  16. Superspace Formulation of N=4 Super Yang-Mills Theory with a Central Charge

    E-Print Network [OSTI]

    Jun Saito

    2005-12-19

    A superspace formulation using superconnections and supercurvatures is specifically constructed for N=4 extended super Yang-Mills theory with a central charge in four dimensions, first proposed by Sohnius, Stelle and West long ago. We find that the constraints, almost uniquely derived from the possible spin structure of the multiplet, can be algebraically solved which results in an off-shell supersymmetric formulation of the theory on the superspace.

  17. Particle motion in a Yang-Mills field Wong's equations and spin one-half analogues

    E-Print Network [OSTI]

    Van Holten, J W

    1995-01-01

    A complete, straightforward and natural Lagrangian description is given for the classical non-relativistic dynamics of a particle with colour or internal symmetry degrees of freedom moving in a background Yang-Mills field. This provides a new simple Lagrangian formalism for Wong's equations for spinless particles, and presents also their generalisation, in gauge covariant form, for spin-\\frack particles, within a complete Lagrangian formalism.

  18. The Chinese Aspect System and its Semantic Interpretation Guowen Yang and John A. Bateman

    E-Print Network [OSTI]

    (-le, -zhe, -guo4, etc.) and aspect adverbials (Yang, 1999, 2001). #12;name form name form unmarked (ceng2jing1)+V+(guo)unmarked- experiential V+(guo) marked-remote- experiential (ceng2jing1)+V recent-past-existing V+ (N) + (lai2zhe) unmarked-durative V+(zhe) activity-durative (zai4)+V long-durative (yi1zhi2)+V

  19. Particle Motion in a Yang-Mills Field: Wong's Equations and Spin One-half Analogues

    E-Print Network [OSTI]

    N Linden A J Macfarlane; J W van Holten

    1995-12-11

    A complete, straightforward and natural Lagrangian description is given for the classical non-relativistic dynamics of a particle with colour or internal symmetry degrees of freedom moving in a background Yang-Mills field. This provides a new simple Lagrangian formalism for Wong's equations for spinless particles, and presents also their generalisation, in gauge covariant form, for spin-$\\frack$ particles, within a complete Lagrangian formalism.

  20. Topologically massive Yang-Mills: A Hamilton-Jacobi constraint analysis

    SciTech Connect (OSTI)

    Bertin, M. C.; Pimentel, B. M.; Valcárcel, C. E.; Zambrano, G. E. R.

    2014-04-15

    We analyse the constraint structure of the topologically massive Yang-Mills theory in instant-form and null-plane dynamics via the Hamilton-Jacobi formalism. The complete set of hamiltonians that generates the dynamics of the system is obtained from the Frobenius’ integrability conditions, as well as its characteristic equations. As generators of canonical transformations, the hamiltonians are naturally linked to the generator of Lagrangian gauge transformations.

  1. Canonical simulations of supersymmetric SU(N) Yang-Mills quantum mechanics

    E-Print Network [OSTI]

    Georg Bergner; Hang Liu; Urs Wenger

    2015-09-04

    The fermion loop formulation naturally separates partition functions into their canonical sectors. Here we discuss various strategies to make use of this for supersymmetric SU(N) Yang-Mills quantum mechanics obtained from dimensional reduction in various dimensions and present numerical results for the separate canonical sectors with fixed fermion numbers. We comment on potential problems due to the sign of the contributions from the fermions and due to flat directions.

  2. Web-Based List Question Answering Hui Yang, Tat-Seng Chua

    E-Print Network [OSTI]

    .396 nusmml03r2 0.319 MITCSAIL03c 0.134 isi03a 0.118 BBN2003B 0.097 Average 0.213 Table 1: TREC-12 Top 5Web-Based List Question Answering Hui Yang, Tat-Seng Chua School of Computing National University a complete set of distinct answers to list questions in huge corpora or the Web is still far from being

  3. Canonical simulations of supersymmetric SU(N) Yang-Mills quantum mechanics

    E-Print Network [OSTI]

    Bergner, Georg; Wenger, Urs

    2015-01-01

    The fermion loop formulation naturally separates partition functions into their canonical sectors. Here we discuss various strategies to make use of this for supersymmetric SU(N) Yang-Mills quantum mechanics obtained from dimensional reduction in various dimensions and present numerical results for the separate canonical sectors with fixed fermion numbers. We comment on potential problems due to the sign of the contributions from the fermions and due to flat directions.

  4. Supersymmetry algebra and BPS states of super Yang-Mills theories on noncommutative tori

    E-Print Network [OSTI]

    A. Konechny; A. Schwarz

    1999-01-18

    We consider 10-dimensional super Yang-Mills theory with topological terms compactified on a noncommutative torus. We calculate supersymmetry algebra and derive BPS energy spectra from it. The cases of d-dimensional tori with d=2,3,4 are considered in full detail. SO(d,d|Z)-invariance of the BPS spectrum and relation of new results to the previous work in this direction are discussed.

  5. Lee-Yang zero distribution of high temperature QCD and Roberge-Weiss phase transition

    E-Print Network [OSTI]

    Keitaro Nagata; Kouji Kashiwa; Atsushi Nakamura; Shinsuke M. Nishigaki

    2015-05-16

    Canonical partition functions and Lee-Yang zeros of QCD at finite density and high temperature are studied. Recent lattice simulations have confirmed that the free energy of QCD is a quartic function of quark chemical potential at temperature slightly above pseudo-critical temperature $T_c$, as in the case with a gas of free massless fermions. We present analytic derivation of the canonical partition functions and Lee-Yang zeros for this type of free energy using the saddle point approximation. We also perform lattice QCD simulation in a canonical approach using the fugacity expansion of the fermion determinant, and carefully examine its reliability. By comparing the analytic and numerical results, we conclude that the canonical partition functions follow the Gaussian distribution of the baryon number, and the accumulation of Lee-Yang zeros of these canonical partition functions exhibit the first-order Roberge-Weiss phase transition. We discuss the validity and applicable range of the result and its implications both for theoretical and experimental studies.

  6. Yang-Mills condensate dark energy coupled with matter and radiation

    E-Print Network [OSTI]

    Y. Zhang; T. Y. Xia; W. Zhao

    2006-09-26

    The coincidence problem is studied for the dark energy model of effective Yang-Mills condensate in a flat expanding universe during the matter-dominated stage. The YMC energy $\\rho_y(t)$ is taken to represent the dark energy, which is coupled either with the matter, or with both the matter and the radiation components. The effective YM Lagrangian is completely determined by quantum field theory up to 1-loop order. It is found that under very generic initial conditions and for a variety of forms of coupling, the existence of the scaling solution during the early stages and the subsequent exit from the scaling regime are inevitable. The transition to the accelerating stage always occurs around a redshift $z\\simeq (0.3\\sim 0.5)$. Moreover, when the Yang-Mills condensate transfers energy into matter or into both matter and radiation, the equation of state $w_y$ of the Yang-Mills condensate can cross over -1 around $z\\sim 2$, and takes on a current value $\\simeq -1.1$. This is consistent with the recent preliminary observations on supernovae Ia. Therefore, the coincidence problem can be naturally solved in the effective YMC dark energy models.

  7. Topological configurations of Yang-Mills field responsible for magnetic-monopole loops as quark confiner

    E-Print Network [OSTI]

    Akihiro Shibata; Kei-Ichi Kondo; Seikou Kato; Shoichi Ito; Toru Shinohara; Nobuyui Fukui

    2009-11-24

    We have given a new description of the lattice Yang-Mills theory a la Cho-Faddeev-Niemi-Shabanov, which has enabled us to confirm in a gauge-independent manner "Abelian"-dominance and magnetic-monopole dominance in the Wilson loop average, yielding a gauge-independent dual superconductor picture for quark confinement. In particular, we have given a new procedure (called reduction) for obtaining a gauge-independent magnetic monopole from a given Yang-Mills field. In this talk, we demonstrate how some of known topological configurations in the SU(2) Yang-Mills theory such as merons and instantons generate closed loops of magnetic-monopole current as the quark confiner, both of which are characterized by the gauge-invariant topological index, topological charge (density) and magnetic charge (density), respectively. We also try to detect which type of topological configurations exist in the lattice data involving magnetic-monopole loops generated by Monte Carlo simulation. Here we apply a new geometrical algorithm based on "computational homology" to discriminating each closed loop from clusters of magnetic-monopole current, since the magnetic-monopole current on a lattice is integer valued.

  8. Method of plasma etching GA-based compound semiconductors

    DOE Patents [OSTI]

    Qiu, Weibin; Goddard, Lynford L.

    2013-01-01

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.

  9. Method of plasma etching Ga-based compound semiconductors

    DOE Patents [OSTI]

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  10. Extension of spatiotemporal chaos in glow discharge-semiconductor systems

    SciTech Connect (OSTI)

    Akhmet, Marat Fen, Mehmet Onur; Rafatov, Ismail

    2014-12-15

    Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528–4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šija?i? U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).].

  11. New non-linear photovoltaic effect in uniform bipolar semiconductor

    SciTech Connect (OSTI)

    Volovichev, I.

    2014-11-21

    A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitude is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.

  12. Electrically pumped edge-emitting photonic bandgap semiconductor laser

    DOE Patents [OSTI]

    Lin, Shawn-Yu; Zubrzycki, Walter J.

    2004-01-06

    A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.

  13. Semiconductor Quantum Rods as Single Molecule FluorescentBiological Labels

    SciTech Connect (OSTI)

    Fu, Aihua; Gu, Weiwei; Boussert, Benjamine; Koski, Kristie; Gerion, Daniele; Manna, Liberato; Le Gros, Mark; Larabell, Carolyn; Alivisatos, A. Paul

    2006-05-29

    In recent years, semiconductor quantum dots have beenapplied with great advantage in a wide range of biological imagingapplications. The continuing developments in the synthesis of nanoscalematerials and specifically in the area of colloidal semiconductornanocrystals have created an opportunity to generate a next generation ofbiological labels with complementary or in some cases enhanced propertiescompared to colloidal quantum dots. In this paper, we report thedevelopment of rod shaped semiconductor nanocrystals (quantum rods) asnew fluorescent biological labels. We have engineered biocompatiblequantum rods by surface silanization and have applied them fornon-specific cell tracking as well as specific cellular targeting. Theproperties of quantum rods as demonstrated here are enhanced sensitivityand greater resistance for degradation as compared to quantum dots.Quantum rods have many potential applications as biological labels insituations where their properties offer advantages over quantumdots.

  14. Neutron detection using boron gallium nitride semiconductor material

    SciTech Connect (OSTI)

    Atsumi, Katsuhiro [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Inoue, Yoku; Nakano, Takayuki, E-mail: ttnakan@ipc.shizuoka.ac.jp [Department of Electrical and Materials Science, Graduate School of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Mimura, Hidenori; Aoki, Toru [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011 (Japan)

    2014-03-01

    In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN) semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN) samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to ?-rays but poor sensitivity to ?-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after ?-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  15. Selective etchant for oxide sacrificial material in semiconductor device fabrication

    SciTech Connect (OSTI)

    Clews, Peggy J.; Mani, Seethambal S.

    2005-05-17

    An etching composition and method is disclosed for removing an oxide sacrificial material during manufacture of semiconductor devices including micromechanical, microelectromechanical or microfluidic devices. The etching composition and method are based on the combination of hydrofluoric acid (HF) and sulfuric acid (H.sub.2 SO.sub.4). These acids can be used in the ratio of 1:3 to 3:1 HF:H.sub.2 SO.sub.4 to remove all or part of the oxide sacrificial material while providing a high etch selectivity for non-oxide materials including polysilicon, silicon nitride and metals comprising aluminum. Both the HF and H.sub.2 SO.sub.4 can be provided as "semiconductor grade" acids in concentrations of generally 40-50% by weight HF, and at least 90% by weight H.sub.2 SO.sub.4.

  16. Semiconductor light source with electrically tunable emission wavelength

    DOE Patents [OSTI]

    Belenky, Gregory (Port Jefferson, NY); Bruno, John D. (Bowie, MD); Kisin, Mikhail V. (Centereach, NY); Luryi, Serge (Setauket, NY); Shterengas, Leon (Centereach, NY); Suchalkin, Sergey (Centereach, NY); Tober, Richard L. (Elkridge, MD)

    2011-01-25

    A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

  17. Semiconductor-based, large-area, flexible, electronic devices

    DOE Patents [OSTI]

    Goyal, Amit (Knoxville, TN)

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  18. Method for measuring the drift mobility in doped semiconductors

    DOE Patents [OSTI]

    Crandall, R.S.

    1982-03-09

    A method for measuring the drift mobility of majority carriers in semiconductors consists of measuring the current transient in a Schottky-barrier device following the termination of a forward bias pulse. An example is given using an amorphous silicon hydrogenated material doped with 0.2% phosphorus. The method is particularly useful with material in which the dielectric relaxation time is shorter than the carrier transit time. It is particularly useful in material useful in solar cells. 10 figs.

  19. Metal-Semiconductor junctions tlu@math.pku.edu.cn

    E-Print Network [OSTI]

    Lu, Tiao

    of Ec and Ev and also changes EFi n=ni e -q F - kT , p=ni e q F- kT n-p 2ni = e -F1 Metal-Semiconductor junctions tlu@math.pku.edu.cn homepage: dsec.pku.edu.cn/~tlu blog: http://hi.baidu.com/motioo #12;2 - Many of the properties of pn junctions can be realized by forming an appropriate metal

  20. Computational models for the berry phase in semiconductor quantum dots

    SciTech Connect (OSTI)

    Prabhakar, S. Melnik, R. V. N.; Sebetci, A.

    2014-10-06

    By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrödinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.

  1. Ultrafast laser-induced changes in optical properties of semiconductors

    SciTech Connect (OSTI)

    Chirila, C. C.; Lim, Freda C. H.; Gavaza, M. G. [Institute of High Performance Computing, 1 Fusionopolis Way, 16-16 Connexis, 138632 (Singapore)

    2012-04-01

    We study the effect of laser radiation on optical properties of semiconductors of industrial interest. The material is pumped with a laser of chosen central frequency, for which the absorption is maximal, thus inducing electron dynamics, which modifies the optical properties. By using an improved theoretical model, we study ultrafast dynamic changes in the refraction index and reflectivity corresponding to a wide frequency-interval of probing radiation and identify that interval where these optical changes are most significant.

  2. Method for measuring the drift mobility in doped semiconductors

    DOE Patents [OSTI]

    Crandall, Richard S. (Princeton, NJ)

    1982-01-01

    A method for measuring the drift mobility of majority carriers in semiconductors consists of measuring the current transient in a Schottky-barrier device following the termination of a forward bias pulse. An example is given using an amorphous silicon hydrogenated material doped with 0.2% phosphorous. The method is particularly useful with material in which the dielectric relaxation time is shorter than the carrier transit time. It is particularly useful in material useful in solar cells.

  3. Single-Crystal Mesostructured Semiconductors with Cubic Ia3hd Symmetry and Ion-Exchange Properties

    E-Print Network [OSTI]

    Trikalitis, Pantelis N.

    Pantelis N. Trikalitis, Krishnaswamy K. Rangan, Thomas Bakas, and Mercouri G. Kanatzidis*, Contribution.; Elliott, J. M.; Owen, J. R.; Wang, J. H. Science 1997, 278, 838-840. (6) (a) Yang, P. D.; Wirnsberger, G

  4. Molecular Chemistry to the Fore: New Insights into the Fascinating World of Photoactive Colloidal Semiconductor Nanocrystals

    SciTech Connect (OSTI)

    Vela-Becerra, Javier

    2013-02-01

    Colloidal semiconductor nanocrystals possess unique properties that are unmatched by other chromophores such as organic dyes or transition-metal complexes. These versatile building blocks have generated much scientific interest and found applications in bioimaging, tracking, lighting, lasing, photovoltaics, photocatalysis, thermoelectrics, and spintronics. Despite these advances, important challenges remain, notably how to produce semiconductor nanostructures with predetermined architecture, how to produce metastable semiconductor nanostructures that are hard to isolate by conventional syntheses, and how to control the degree of surface loading or valence per nanocrystal. Molecular chemists are very familiar with these issues and can use their expertise to help solve these challenges. In this Perspective, we present our group’s recent work on bottom-up molecular control of nanoscale composition and morphology, low-temperature photochemical routes to semiconductor heterostructures and metastable phases, solar-to-chemical energy conversion with semiconductor-based photocatalysts, and controlled surface modification of colloidal semiconductors that bypasses ligand exchange.

  5. Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study

    SciTech Connect (OSTI)

    Zhong, Haijian; Liu, Zhenghui; Xu, Gengzhao; Shi, Lin; Fan, Yingmin; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Xu, Ke, E-mail: kxu2006@sinano.ac.cn; Wang, Jianfeng; Ren, Guoqiang [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Suzhou Nanowin Science and Technology Co., Ltd., Suzhou 215123 (China)

    2014-01-07

    Graphene has been proposed as a material for semiconductor electronic and optoelectronic devices. Understanding the charge transport mechanisms of graphene/semiconductor Schottky barriers will be crucial for future applications. Here, we report a theoretical model to describe the transport mechanisms at the interface of graphene and semiconductors based on conventional semiconductor Schottky theory and a floating Fermi level of graphene. The contact barrier heights can be estimated through this model and be close to the values obtained from the experiments, which are lower than those of the metal/semiconductor contacts. A detailed analysis reveals that the barrier heights are as the function of the interface separations and dielectric constants, and are influenced by the interfacial states of semiconductors. Our calculations show how this behavior of lowering barrier heights arises from the Fermi level shift of graphene induced by the charge transfer owing to the unique linear electronic structure.

  6. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO? and Ge, in which the band gap of the former is enhanced with Zr content x. We presentmore »structural and electrical characterization of SrZrxTi1-xO?-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less

  7. YANG ET AL. VOL. 8 ' NO. 8 ' 82248231 ' 2014 www.acsnano.org

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    competitor to organic light-emitting diodes (OLEDs) for lighting and display appli- cations.15,16 QLEDs Chemical Society Highly Flexible, Electrically Driven, Top-Emitting, Quantum Dot Light- Emitting Stickers,,* and Hilmi Volkan Demir,,§,* LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, School

  8. Comment on "Analysis of quantum coherent semiconductor quantum dot p-i-n junction photovoltaic cells"

    E-Print Network [OSTI]

    Scully, Marlan O

    2010-01-01

    This is a comment on PRL paper by A.P. Kirk "Analysis of quantum coherent semiconductor quantum dot p-i-n junction photovoltaic cells"

  9. Optical and electronic properties of some binary semiconductors from energy gaps

    E-Print Network [OSTI]

    Sunil K. Tripathy; Anup Pattanaik

    2015-10-14

    II-VI and III-V tetrahedral semiconductors have significant potential for novel optoelectronic applications. In the present work, some of the optical and electronic properties of these groups of semiconductors have been studied using a recently proposed empirical relationship for refractive index from energy gap. The calculated values of these properties are also compared with those calculated from some well known relationships. From an analysis of the calculated electronic polarisability of these tetrahedral binary semiconductors from different formulations, we have proposed an empirical relation for its calculation. The predicted values of electronic polarisability of these semiconductors agree fairly well with the known values over a wide range of energy gap.

  10. 2012 DEFECTS IN SEMICONDUCTORS GORDON RESEARCH CONFERENCE, AUGUST 12-17, 2012

    SciTech Connect (OSTI)

    GLASER, EVAN

    2012-08-17

    The meeting shall strive to develop and further the fundamental understanding of defects and their roles in the structural, electronic, optical, and magnetic properties of bulk, thin film, and nanoscale semiconductors and device structures. Point and extended defects will be addressed in a broad range of electronic materials of particular current interest, including wide bandgap semiconductors, metal-oxides, carbon-based semiconductors (e.g., diamond, graphene, etc.), organic semiconductors, photovoltaic/solar cell materials, and others of similar interest. This interest includes novel defect detection/imaging techniques and advanced defect computational methods.

  11. Optical and electronic properties of some binary semiconductors from energy gaps

    E-Print Network [OSTI]

    Sunil K. Tripathy; Anup Pattanaik

    2015-08-23

    II-VI and III-V tetrahedral semiconductors have significant potential for novel optoelectronic applications. In the present work, some of the optical and electronic properties of these groups of semiconductors have been studied using a recently proposed empirical relationship for refractive index from energy gap. The calculated values of these properties are also compared with those calculated from some well known relationships. From an analysis of the calculated electronic polarisability of these tetrahedral binary semiconductors from different formulations, we have proposed an empirical relation for its calculation. The predicted values of electronic polarisability of these semiconductors agree fairly well with the known values over a wide range of energy gap.

  12. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    DOE Patents [OSTI]

    Hui, Rongqing (Lenexa, KS); Jiang,Hong-Xing (Manhattan, KS); Lin, Jing-Yu (Manhattan, KS)

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  13. Group I-III-VI.sub.2 semiconductor films for solar cell application

    DOE Patents [OSTI]

    Basol, Bulent M. (Redondo Beach, CA); Kapur, Vijay K. (Northridge, CA)

    1991-01-01

    This invention relates to an improved thin film solar cell with excellent electrical and mechanical integrity. The device comprises a substrate, a Group I-III-VI.sub.2 semiconductor absorber layer and a transparent window layer. The mechanical bond between the substrate and the Group I-III-VI.sub.2 semiconductor layer is enhanced by an intermediate layer between the substrate and the Group I-III-VI.sub.2 semiconductor film being grown. The intermediate layer contains tellurium or substitutes therefor, such as Se, Sn, or Pb. The intermediate layer improves the morphology and electrical characteristics of the Group I-III-VI.sub.2 semiconductor layer.

  14. Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN); Chisholm, Matthew F. (Oak Ridge, TN)

    2000-01-01

    A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

  15. Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures

    E-Print Network [OSTI]

    Dukovic, Gordana

    2008-01-01

    94720, USA Semiconductor photocatalysis has been identifiedarchitectures. For photocatalysis in particular, the highinsights useful for photocatalysis at the nanoscale, as well

  16. Development of fluorescent semi-conductor nanocrystal conjugates for in vitro and in vivo imaging applications

    E-Print Network [OSTI]

    Han, Hee-Sun, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    Semiconductor nanocrystals, also known as quantum dots (QDs), are promising imaging probes with characteristic optical properties: tunable bandgap from visible to infrared, narrow and symmetric emission features, broad ...

  17. Optical and electronic properties of some binary semiconductors from energy gaps

    E-Print Network [OSTI]

    Tripathy, Sunil K

    2015-01-01

    II-VI and III-V tetrahedral semiconductors have significant potential for novel optoelectronic applications. In the present work, some of the optical and electronic properties of these groups of semiconductors have been studied using a recently proposed empirical relationship for refractive index from energy gap. The calculated values of these properties are also compared with those calculated from some well known relationships. From an analysis of the calculated electronic polarisability of these tetrahedral binary semiconductors from different formulations, we have proposed an empirical relation for its calculation. The predicted values of electronic polarisability of these semiconductors agree fairly well with the known values over a wide range of energy gap.

  18. Reformulations of the Yang-Mills theory toward quark confinement and mass gap

    E-Print Network [OSTI]

    Kei-Ichi Kondo; Seikou Kato; Akihiro Shibata; Toru Shinohara

    2014-12-27

    We propose the reformulations of the $SU(N)$ Yang-Mills theory toward quark confinement and mass gap. In fact, we have given a new framework for reformulating the $SU(N)$ Yang-Mills theory using new field variables. This includes the preceding works given by Cho, Faddeev and Niemi, as a special case called the maximal option in our reformulations. The advantage of our reformulations is that the original non-Abelian gauge field variables can be changed into the new field variables such that one of them called the restricted field gives the dominant contribution to quark confinement in the gauge-independent way. Our reformulations can be combined with the $SU(N)$ extension of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator to give a gauge-invariant definition for the magnetic monopole in the $SU(N)$ Yang-Mills theory without the scalar field. In the so-called minimal option, especially, the restricted field is non-Abelian and involves the non-Abelian magnetic monopole with the stability group $U(N-1)$. This suggests the non-Abelian dual superconductivity picture for quark confinement. This should be compared with the maximal option: the restricted field is Abelian and involves only the Abelian magnetic monopoles with the stability group $U(1)^{N-1}$, just like the Abelian projection. We give some applications of this reformulation, e.g., the stability for the homogeneous chromomagnetic condensation of the Savvidy type, the large N treatment for deriving the dimensional transmutation and understanding the mass gap, and also the numerical simulations on a lattice which are given by Dr. Shibata in a subsequent talk.

  19. Off-shell Invariant D=N=2 Twisted Super Yang-Mills Theory with a Gauged Central Charge without Constraints

    E-Print Network [OSTI]

    Asaka, Keisuke; Kawamoto, Noboru; Miyake, Akiko

    2013-01-01

    We formulate N=2 twisted super Yang-Mills theory with a gauged central charge by superconnection formalism in two dimensions. We obtain off-shell invariant supermultiplets and actions with and without constraints, which is in contrast with the off-shell invariant D=N=4 super Yang-Mills formulation with unavoidable constraints.

  20. Off-shell Invariant D=N=2 Twisted Super Yang-Mills Theory with a Gauged Central Charge without Constraints

    E-Print Network [OSTI]

    Keisuke Asaka; Junji Kato; Noboru Kawamoto; Akiko Miyake

    2013-09-18

    We formulate N=2 twisted super Yang-Mills theory with a gauged central charge by superconnection formalism in two dimensions. We obtain off-shell invariant supermultiplets and actions with and without constraints, which is in contrast with the off-shell invariant D=N=4 super Yang-Mills formulation with unavoidable constraints.

  1. Web-based Support Systems for Sustainable Communities W.N. Liu J.T. Yao L. Fan Y.Y. Yao X.D. Yang

    E-Print Network [OSTI]

    Yao, JingTao

    present an architecture of Web-based support systems for sustainable communities. The architectureWeb-based Support Systems for Sustainable Communities W.N. Liu J.T. Yao L. Fan Y.Y. Yao X.D. Yang,fan,yyao,yang}@cs.uregina.ca ABSTRACT This paper studies Web-based support systems for sustain- able communities. A sustainable

  2. On the Effective Action of N=1 Supersymmetric Yang-Mills Theory

    E-Print Network [OSTI]

    G. R. Farrar; G. Gabadadze; M. Schwetz

    1997-12-22

    We propose a generalization of the Veneziano-Yankielowicz effective low-energy action for N=1 SUSY Yang-Mills theory which includes composite operators interpolating pure gluonic bound states. The chiral supermultiplet of anomalies is embedded in a larger three-form multiplet and an extra term in the effective action is introduced. The mass spectrum and mixing of the lowest-spin bound states are studied within the effective Lagrangian approach. The physical mass eigenstates form two multiplets, each containing a scalar, pseudoscalar and Weyl fermion. The multiplet containing the states which are most closely related to glueballs is the lighter one.

  3. A proposal for a manifestly gauge invariant and universal calculus in Yang-Mills theory

    E-Print Network [OSTI]

    Arnone, S; Morris, T R; Arnone, Stefano; Gatti, Antonio; Morris, Tim R.

    2003-01-01

    We uncover a method of calculation that proceeds at every step without fixing the gauge or specifying details of the regularisation scheme. Results are obtained by iterated use of integration by parts and gauge invariance identities. The initial stages can even be computed diagrammatically. The method is formulated within the framework of an exact renormalization group for SU(N) Yang-Mills gauge theory, incorporating an effective cutoff through a manifest spontaneously broken SU(N|N) gauge invariance. We demonstrate the technique with a compact calculation of the one-loop beta function, achieving a manifestly universal result, and without gauge fixing, for the first time at finite N.

  4. A proposal for a manifestly gauge invariant and universal calculus in Yang-Mills theory

    E-Print Network [OSTI]

    Stefano Arnone; Antonio Gatti; Tim R. Morris

    2002-09-20

    We uncover a method of calculation that proceeds at every step without fixing the gauge or specifying details of the regularisation scheme. Results are obtained by iterated use of integration by parts and gauge invariance identities. The initial stages can even be computed diagrammatically. The method is formulated within the framework of an exact renormalization group for SU(N) Yang-Mills gauge theory, incorporating an effective cutoff through a manifest spontaneously broken SU(N|N) gauge invariance. We demonstrate the technique with a compact calculation of the one-loop beta function, achieving a manifestly universal result, and without gauge fixing, for the first time at finite N.

  5. Cut-and-join operators and N=4 super Yang-Mills

    E-Print Network [OSTI]

    T. W. Brown

    2010-05-06

    We show which multi-trace structures are compatible with the symmetrisation of local operators in \\cN=4 super Yang-Mills when they are organised into representations of the global symmetry group. Cut-and-join operators give the non-planar expansion of correlation functions of these operators in the free theory. Using these techniques we find the 1/N corrections to the quarter-BPS operators which remain protected at weak coupling. We also present a new way of counting these chiral ring operators using the Weyl group S_N.

  6. Hadron masses from fixed topology simulations: parity partners and SU(2) Yang-Mills results

    E-Print Network [OSTI]

    Arthur Dromard; Christopher Czaban; Marc Wagner

    2014-10-20

    Lattice QCD simulations tend to get stuck in a single topological sector at fine lattice spacing, or when using chirally symmetric quarks. In such cases computed observables differ from their full QCD counterparts by finite size effects, which need to be understood on a quantitative level. We discuss extensions of existing relations from the literature between correlation functions at fixed topology and hadron masses at unfixed topology. Particular focus is put on disentangling positive and negative parity states, which mix, when the topological charge is fixed. We also present numerical results for SU(2) Yang-Mills Theory.

  7. Asymptotic behavior of physical amplitudes in the N = 4 super Yang-Mills theory

    SciTech Connect (OSTI)

    Helayel-Neto, J.A.; Smith, A.W. (Centro Brasilerio de Pesquisas Fisicas, 150, 22290 Rio de Janeiro (BR)); Rajpoot, S. (Dept. of Physics, Univ. of California, CA (US))

    1990-07-20

    Using the N = 4 super-Yang-Mills theory softly broken by supersymmetric N = 1 mass terms for the matter superfields, the authors compute the one-loop chiral + chiral {r arrow} antichiral + antichiral scattering amplitude directly in superspace. By suitable choices of the mass parameters, one can endow the model with a heirachy of light and heavy particles, and the decoupling of the heavy sector from the light-light physical amplitude is studies. The authors also analyze the high-energy limit of the cross-section for a two physical scalar scattering and find a (logs) behavior, which then respects the Froissart bound.

  8. A novel computation of the thermodynamics of the SU(3) Yang-Mills theory

    E-Print Network [OSTI]

    Giusti, Leonardo

    2015-01-01

    We present an accurate computation of the Equation of State of the SU(3) Yang-Mills theory using shifted boundary conditions in the temporal direction. In this framework, the entropy density s can be obtained in a simple way from the expectation value of the space-time components T0k of the energy-momentum tensor. At each given value of the temperature, s is measured in an independent way at several values of the lattice spacing. The extrapolation to the continuum limit shows small discretization effects with respect to the statistical errors of approximatively 0.5%.

  9. BPS Equations in Omega-deformed N=4 Super Yang-Mills Theory

    E-Print Network [OSTI]

    Ito, Katsushi; Nakajima, Hiroaki; Sasaki, Shin

    2015-01-01

    We study supersymmetry of N=4 super Yang-Mills theory in four dimensions deformed in the Omega-background. We take the Nekrasov-Shatashvili limit of the background so that two-dimensional super Poincare symmetry is recovered. We compute the deformed central charge of the superalgebra and study the 1/2 and 1/4 BPS states. We obtain the Omega-deformed 1/2 and 1/4 BPS dyon equations from the deformed supersymmetry transformation and the Bogomol'nyi completion of the energy.

  10. Counting the Massive Vacua of N=1* Super Yang-Mills Theory

    E-Print Network [OSTI]

    Bourget, Antoine

    2015-01-01

    We compute the number of massive vacua of N=4 supersymmetric Yang-Mills theory mass-deformed to preserve N=1 supersymmetry, for any gauge group G. We use semi-classical techniques and efficiently reproduce the known counting for A,B and C-type gauge groups, present the generating function for both O(2n) and SO(2n), and compute the supersymmetric index for gauge groups of exceptional type. A crucial role is played by the classification of nilpotent orbits, as well as global properties of their centralizers. We give illustrative examples of new features of our analysis for the D-type algebras.

  11. Gluon scattering in N=4 super-Yang-Mills theory fromweak to strong coupling

    SciTech Connect (OSTI)

    Dixon, Lance J.; /SLAC

    2008-03-25

    I describe some recent developments in the understanding of gluon scattering amplitudes in N = 4 super-Yang-Mills theory in the large-N{sub c} limit. These amplitudes can be computed to high orders in the weak coupling expansion, and also now at strong coupling using the AdS/CFT correspondence. They hold the promise of being solvable to all orders in the gauge coupling, with the help of techniques based on integrability. They are intimately related to expectation values for polygonal Wilson loops composed of light-like segments.

  12. BPS Equations in Omega-deformed N=4 Super Yang-Mills Theory

    E-Print Network [OSTI]

    Katsushi Ito; Yusuke Kanayama; Hiroaki Nakajima; Shin Sasaki

    2015-09-24

    We study supersymmetry of N=4 super Yang-Mills theory in four dimensions deformed in the Omega-background. We take the Nekrasov-Shatashvili limit of the background so that two-dimensional super Poincare symmetry is recovered. We compute the deformed central charge of the superalgebra and study the 1/2 and 1/4 BPS states. We obtain the Omega-deformed 1/2 and 1/4 BPS dyon equations from the deformed supersymmetry transformation and the Bogomol'nyi completion of the energy.

  13. Higher Rank Wilson Loops in N = 2* Super-Yang-Mills Theory

    E-Print Network [OSTI]

    Xinyi Chen-Lin; Konstantin Zarembo

    2015-02-13

    The N=2* Super-Yang-Mills theory (SYM*) undergoes an infinite sequence of large-N quantum phase transitions. We compute expectation values of Wilson loops in k-symmetric and antisymmetric representations of the SU(N) gauge group in this theory and show that the same phenomenon that causes the phase transitions at finite coupling leads to a non-analytic dependence of Wilson loops on k/N when the coupling is strictly infinite, thus making the higher-representation Wilson loops ideal holographic probes of the non-trivial phase structure of SYM*.

  14. Jets in strongly-coupled N = 4 super Yang-Mills theory

    E-Print Network [OSTI]

    Paul M. Chesler; Kristan Jensen; Andreas Karch

    2008-06-21

    We study jets of massless particles in N=4 super Yang-Mills using the AdS/CFT correspondence both at zero and finite temperature. We set up an initial state corresponding to a highly energetic quark/anti-quark pair and follow its time evolution into two jets. At finite temperature the jets stop after traveling a finite distance, whereas at zero temperature they travel and spread forever. We map out the corresponding baryon number charge density and identify the generic late time behavior of the jets as well as features that depend crucially on the initial conditions.

  15. From Decay to Complete Breaking: Pulling the Strings in SU(2) Yang-Mills Theory

    SciTech Connect (OSTI)

    Pepe, M.; Wiese, U.-J.

    2009-05-15

    We study (2Q+1) strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental (2) string between two charges Q=(1/2) is unbreakable, the adjoint (3) string connecting two charges Q=1 can break. When a (4) string is stretched beyond a critical length, it decays into a (2) string by gluon pair creation. When a (5) string is stretched, it first decays into a (3) string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.

  16. Lee-Yang zeroes in the one flavour massive lattice Schwinger model

    E-Print Network [OSTI]

    H. Gausterer; C. B. Lang

    1994-08-26

    We study the partition function of the model formulated with Wilson fermions with only one species, both analytically and numerically. At strong coupling we construct the solution for lattice size up to $8\\times 8$, a polynomial in the hopping parameter up to $O(\\ka^{128})$. At $\\be>0$ we evaluate the expectation value of the fermion determinant for complex values of $\\ka$. From the Lee-Yang zeroes we find support for the existence of a line of phase transitions from $(\\be=0, \\ka\\simeq 0.38)$ up to $(\\be=\\infty, \\ka=1/4)$.

  17. Lee-Yang Zeroes and Logarithmic Corrections in the $?^4_4$ Theory

    E-Print Network [OSTI]

    R. Kenna; C. B. Lang

    1992-10-13

    The leading mean-field critical behaviour of $\\phi^4_4$-theory is modified by multiplicative logarithmic corrections. We analyse these corrections both analytically and numerically. In particular we present a finite-size scaling theory for the Lee-Yang zeroes and temperature zeroes, both of which exhibit logarithmic corrections. On lattices from size $8^4$ to $24^4$, Monte-Carlo cluster methods and multi-histogram techniques are used to determine the partition function zeroes closest to the critical point. Finite-size scaling behaviour is verified and the logarithmic corrections are found to be in good agreement with our analytical predictions.

  18. Chern--Simons--Yang--Mills system in presence of Gribov horizon with fundamental Higgs matter

    E-Print Network [OSTI]

    Arturo J. Gomez; Sebastian Gonzalez; Silvio P. Sorella

    2015-09-29

    In this work we study the behaviour of Yang--Mills--Chern--Simons theory coupled to a Higgs field in the fundamental representation by taking into account the effects of the presence of the Gribov horizon. By analyzing the infrared structure of the gauge field propagator, both confined and de-confined regions can be detected. The confined region corresponds to the appearance of complex poles in the propagators, while the de-confined one to the presence of real poles. One can move from one region to another by changing the parameters of the theory.

  19. Peidong Yang, 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D-Nicholas Turro, 1982Science (SC)Peidong Yang, 2014

  20. Activation of molecular catalysts using semiconductor quantum dots

    DOE Patents [OSTI]

    Meyer, Thomas J. (Chapel Hill, NC); Sykora, Milan (Los Alamos, NM); Klimov, Victor I. (Los Alamos, NM)

    2011-10-04

    Photocatalytic materials based on coupling of semiconductor nanocrystalline quantum dots (NQD) and molecular catalysts. These materials have capability to drive or catalyze non-spontaneous chemical reactions in the presence of visible radiation, ultraviolet radiation, or both. The NQD functions in these materials as a light absorber and charge generator. Following light absorption, the NQD activates a molecular catalyst adsorbed on the surface of the NQD via transfer of one or more charges (either electrons or electron-holes) from the NQD to the molecular catalyst. The activated molecular catalyst can then drive a chemical reaction. A photoelectrolytic device that includes such photocatalytic materials is also described.