Sample records for donaldson progress energy

  1. Donaldson Active Regeneration PM System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuaryDominion Resources, Inc. Video

  2. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    I Figure 21. Sample building energy use label expressed inanalyses of actual buildings energy consumption data confirm1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W. Wall

  3. Progress Energy Carolinas- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Progress Energy provides rebates for energy efficiency measures in new construction or retrofits, as well as Technical Assistance for feasibility/energy studies to commercial, industrial and...

  4. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    Seven recent energy-efficient U.S. office buildings areSeven recent energy-efficient U.S. office buildings are18, 1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W.

  5. Progress Energy Carolinas- CFL Rebate Program

    Broader source: Energy.gov [DOE]

    Progress Energy is working with lighting manufacturers and local retailers to offer discounted pricing on CFLs.  The residential lighting program at Progress Energy's gives discounts at over 400...

  6. Progress, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for EnergyWister|ProductionProfit EnergyProgress,

  7. Progress Energy Carolinas Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPowerPrincetonProgramProgress Energy

  8. Progress Energy Florida Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPowerPrincetonProgramProgress

  9. Progress Energy Florida Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPowerPrincetonProgramProgressFlorida Inc

  10. The blowup formula for higher rank Donaldson invariants

    E-Print Network [OSTI]

    Culler, Lucas Howard

    2014-01-01T23:59:59.000Z

    In this thesis, I study the relationship between the higher rank Donaldson invariants of a smooth 4-manifold X and the invariants of its blowup X#CP2 . This relationship can be expressed in terms of a formal power series ...

  11. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    cooling, and lighting using passive systems, and optimal building design strategies to realize that potential. ASSESSMENT OF PROGRESS-

  12. Progress Energy Carolinas- Commercial and Industrial Energy-Efficiency Program

    Broader source: Energy.gov [DOE]

    Progress Energy provides rebates for energy efficiency measures in new construction or retrofits, as well as Technical Assistance for feasibility/energy studies to commercial, industrial and...

  13. Progress Energy Carolinas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Progress Energy provides incentives for residential customers to increase home energy efficiency. Rebates are provided for certain heating and cooling products, duct sealing and repairs, air...

  14. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    of actual buildings energy consumption data confirm thedata bases. Actual energy consumption data are necessary toten years. The energy consumption data for new low-energy

  15. Energy and Environment: Progress and Existence Energy Provides Existence and Is Cause for Change (hopefully Progress)

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Energy and Environment: Progress and Existence Energy Provides Existence and Is Cause for Change (hopefully Progress) Energy is possessed (thus equilibrium property) by material systems and redistributed-displacement interactions (process) towards the equilibrium (equi- partition of energy over mass and space); thus energy

  16. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    Engineers, 5th Energy Audit Symposium and Productivitycontributions. Numerous energy audits have taken placeabout the accuracy of energy audit procedures used to

  17. Computerized Reporting of Energy Conservation Progress 

    E-Print Network [OSTI]

    Troyan, J. E.

    1979-01-01T23:59:59.000Z

    Reporting of energy conservation progress, particularly by companies with a multiplicity of Plants and products, can be facilitated by application of data processing systems. Experience with the development and use of a specific computer program...

  18. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    the case for building energy-efficiency labels. 3.1 Trendsenergy efficiency. Building energy efficiency labels are anThe use of building energy efficiency labels may be the

  19. Federal Energy Consumption and Progress Made toward Requirements

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) tracks Federal agency energy consumption and progress toward achieving energy laws and requirements.

  20. Fuel Cells For Transportation - 1999 Annual Progress Report Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1999 Annual Progress Report Energy Conversion Team Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Developing Advanced PEM Fuel Cell Technologies...

  1. Progress Energy Carolinas- CFL Rebate Program (North Carolina)

    Broader source: Energy.gov [DOE]

    Progress Energy is working with lighting manufacturers and local retailers to offer discounted pricing on CFLs. The residential lighting program at Progress Energy's gives discounts at over 400...

  2. Converting Energy to Medical Progress

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, and technologyConverting to

  3. Wind Energy Department Annual Progress Report 2002

    E-Print Network [OSTI]

    Wind Energy Department Annual Progress Report 2002 Edited by Birgitte D. Johansen and Ulla Riis The new Test Station at Høvsøre Risø National Laboratory December 2003 Risø-R-1419(EN) #12;Wind Energy Aeroelastic Design (AED) p. 10 Atmospheric Physics (ATM) p. 15 Electrical Design and Control (EDS) p. 24 Wind

  4. Wind Energy Department Annual Progress Report 2003

    E-Print Network [OSTI]

    Wind Energy Department Annual Progress Report 2003 Edited by Birgitte D. Johansen and Ulla Riis 2003 p. 6 Projects of the Department Meteorology (MET) p. 11 Aeroelastic Design (AED) p. 30 Wind Turbines (VIM) p. 36 Wind Energy Systems (VES) p. 41 Test and Measurements (TEM) p. 53 Sparkær Blade Test

  5. Making Progress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy Maine StateEnergy

  6. Progress Energy Carolinas- Rate Discount for Energy Star Homes

    Broader source: Energy.gov [DOE]

    Progress Energy Carolinas (PEC) offers an incentive to residential customers for improving the energy efficiency of homes. To qualify, the home must meet the standards of the U.S. Environmental...

  7. Progress Energy Carolinas- Rate Discount for Energy Star Homes

    Broader source: Energy.gov [DOE]

    Progress Energy Carolinas (PEC) offers an incentive to residential customers for purchasing or building new energy efficient homes. To qualify the home must meet the standards of the US...

  8. Converting Energy to Medical Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution AndControlling Graphene'sPortal

  9. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeffrey; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-01-01T23:59:59.000Z

    Towards a Sustainable Energy Balance: Progressive EfficiencyTowards a Sustainable Energy Balance: Progressive Efficiencyachieve a sustainable energy balance. Along the way, we may

  10. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeffrey; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-01-01T23:59:59.000Z

    WP 171 Towards a Sustainable Energy Balance: ProgressiveTowards a Sustainable Energy Balance: Progressive Efficiencyin order to achieve a sustainable energy balance. Along the

  11. Energy conservation in Kenya: progress, potentials, problems

    SciTech Connect (OSTI)

    Schipper, L.; Hollander, J.M.; Milukas, M.; Alcamo, J.; Meyers, S.; Noll, S.

    1981-09-01T23:59:59.000Z

    A study was carried out of the flows of commercial energy in the economy of Kenya. Indications were sought of the extent to which energy conservation, (i.e., increase in efficiency of energy use) has reduced the ratio of energy inputs to economic outputs, in the post-1973 years. An assessment was made of the potential for energy conservation to reduce the growth of Kenyan energy use in the future and of significant barriers to increasing energy efficiency. Consideration was given to the role of government policy and of international assistance in fostering energy conservation in Kenya and other developing countries. The study was performed by analyzing available energy data and statistics from the largest oil companies, the Kenyan electric utility, and the government. These sources were supplemented by conducting personal interviews with personnel of nearly 50 commercial firms in Kenya. Direct consumption of fuel accounts for 94% of the commercial energy use in Kenya, while electricity accounts for 6%. The sectoral division of fuel use is: transportation 53%, industry 21%, energy production 11%, agriculture 9%, buildings and residences 5%, and construction 1%. For electricity the division is: buildings and residences 48%, industry 45%, energy production 4%, agriculture 2%, and construction 1%. Recent progress in conservation is reported.

  12. EMS Goals/Progress/Plans/Reports | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Significant Environmental Aspects LM Significant Environmental Aspects Sustainability Progress Reports Datasheets - Consolidated Energy Data Report (CEDR) 2014 2013 Site...

  13. Fossil energy program. Progress report, July 1980

    SciTech Connect (OSTI)

    McNeese, L. E.

    1980-10-01T23:59:59.000Z

    This report - the seventy-second of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component development and process evaluation, technical support to major liquefaction projects, process and program analysis, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, technical support to the TVA fluidized bed combustion demonstration plant program, fossil energy applications assessments, performance assurance system support for fossil energy projects, international assessment of atmospheric fluidized bed combustion technology, and PFBC systems analysis.

  14. 1999 annual progress report -- Energy conservation team

    SciTech Connect (OSTI)

    Chalk, S. (EERE OTT Office of Advanced Automotive Technologies Energy Conversion Team Leader)

    1999-10-19T23:59:59.000Z

    This report highlights progress achieved during FY 1999 under the Light-duty Fuels Utilization R and D Program. The program is comprised of two elements: the Advanced Petroleum-Based APB Fuels Program which focused on developing and testing advanced fuels for use with compression-ignition direct-injection (CIDI) engines and fuel cells and the Alternative Fuels Program which focused on Natural gas and natural gas derived fuels. The report contains 17 summaries of industry and National Laboratory projects. Fuel efficient vehicles with very low emissions are essential to meet the challenges of climate change, energy security, and improved air quality. The authors anticipate cooperative efforts with the auto and energy industries to develop new and innovative technologies that will be used to make advanced transportation vehicles that are fuel efficient, clean, and safe.

  15. Progress Energy Florida- SunSense Commercial PV Incentive Program

    Broader source: Energy.gov [DOE]

    '''''Progress Energy Florida will begin accepting applications at 10:00 a.m. October 1, 2012, for customers to apply for the 2013 rebates.'''''

  16. Progress report on renewable energy in Hawaii

    SciTech Connect (OSTI)

    Troy, M.; Brown, N.E.

    1982-04-01T23:59:59.000Z

    Renewable energy projects in Hawaii are reviewed as follows: geothermal energy, ocean energy, biomass, wind energy, direct solar energy, hydroelectric and other energy.

  17. Progress Energy Service Company, LLC Smart Grid Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPowerPrincetonProgramProgressFlorida

  18. Federal Progress Toward Energy/Sustainability Goals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf MoreEnergy GovernmentDepartment ofProgress

  19. Duke Energy Progress- SunSense Residential PV Incentive Program

    Broader source: Energy.gov [DOE]

    To participate in the program, the customer must surrender all their Renewable Energy Credits (RECs*) to Duke Energy Progress for a period of five years and they will receive the $4.50 per kW b...

  20. Progress Energy Carolinas- Residential New Construction Rebate Program (South Carolina)

    Broader source: Energy.gov [DOE]

    Progress Energy's residential new construction program provides cash incentives of up to $4,000 to builders and developers who build new energy-efficient homes and multi-family residences that meet...

  1. Progress Energy Carolinas- Residential New Construction Rebate Program (North Carolina)

    Broader source: Energy.gov [DOE]

    Progress Energy's residential new construction program provides cash incentives of up to $4,000 to builders and developers who build new energy-efficient homes and multi-family residences that meet...

  2. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeff

    2008-01-01T23:59:59.000Z

    Towards a Sustainable Energy Balance: Progressive Efficiencyin order to achieve a sustainable energy balance. Along theconsumer desires. 1.2 Sustainable Energy Balance as the Goal

  3. U.S. Department of Energy Fuel Cell Activities: Progress and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities: Progress and Future Directions: Total Energy USA 2012 U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions: Total Energy USA 2012 Presentation...

  4. Progress Energy Florida- SunSense Schools Program (Florida)

    Broader source: Energy.gov [DOE]

    Progress Energy Florida (PEF) offers the SunSense Schools Program which provides up to 11 public schools with fully installed solar photovoltaic systems annually. The application process is...

  5. Vehicle Technologies Office: 2013 Energy Storage R&D Progress...

    Broader source: Energy.gov (indexed) [DOE]

    are on this page; the last three sections, appendix and back cover are on the page 2013 Energy Storage R&D Progress Report, Sections 4-6 and Appendix. Cover, Disclaimer and...

  6. Vehicle Technologies Office: 2013 Energy Storage R&D Progress...

    Broader source: Energy.gov (indexed) [DOE]

    cover are on this page; the front cover and first three sections are on the page 2013 Energy Storage R&D Progress Report, Sections 1-3. IV. Battery Testing, Analysis, and...

  7. Computerized Reporting of Energy Conservation Progress

    E-Print Network [OSTI]

    Troyan, J. E.

    1979-01-01T23:59:59.000Z

    is described. Energy input data are mechanically converted into energy efficiency reports, which supply management with timely information on conservation efforts. Results are also applied to meet periodic reporting requirements of the Department of Energy...

  8. Renewable Energy: American and Global Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)RenewableRenewable Energy

  9. Energy technology progress for sustainable development

    SciTech Connect (OSTI)

    Arvizu, D.E.; Drennen, T.E.

    1997-03-01T23:59:59.000Z

    Energy security is a fundamental part of a country`s national security. Access to affordable, environmentally sustainable energy is a stabilizing force and is in the world community`s best interest. The current global energy situation however is not sustainable and has many complicating factors. The primary goal for government energy policy should be to provide stability and predictability to the market. This paper differentiates between short-term and long-term issues and argues that although the options for addressing the short-term issues are limited, there is an opportunity to alter the course of long-term energy stability and predictability through research and technology development. While reliance on foreign oil in the short term can be consistent with short-term energy security goals, there are sufficient long-term issues associated with fossil fuel use, in particular, as to require a long-term role for the federal government in funding research. The longer term issues fall into three categories. First, oil resources are finite and there is increasing world dependence on a limited number of suppliers. Second, the world demographics are changing dramatically and the emerging industrialized nations will have greater supply needs. Third, increasing attention to the environmental impacts of energy production and use will limit supply options. In addition to this global view, some of the changes occurring in the US domestic energy picture have implications that will encourage energy efficiency and new technology development. The paper concludes that technological innovation has provided a great benefit in the past and can continue to do so in the future if it is both channels toward a sustainable energy future and if it is committed to, and invested in, as a deliberate long-term policy option.

  10. Federal Progress Toward Energy/Sustainability Goals

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartmentEnergyEnergyDepartmentFLASH 2004-12 April 5,

  11. Cleanup Progress Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 BuildingEnergy Efficiency and Renewable Energy | Department

  12. Cleanup Progress Report - 2013 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT §Cleantech SBIR/STTR

  13. Cleanup Progress Report - 2010 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents Clean EnergyofDepartment of0 Cleanup

  14. Cleanup Progress Report - 2011 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents Clean EnergyofDepartment of0

  15. Cleanup Progress Report - 2012 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents Clean EnergyofDepartment of02 Cleanup

  16. Cleanup Progress Report - 2013 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents Clean EnergyofDepartment of02 Cleanup3

  17. Cleanup Progress Report - 2014 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents Clean EnergyofDepartment of02 Cleanup34

  18. Clean Energy Technology: American and Global Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing: U.S. Competitiveness andCU Energy

  19. Cleanup Progress Report - 2011 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWasteDepartmentUtilitiesStephen|Department ofIn this issue,

  20. CAAFI Progress Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment ofBUILDING-TO-GRIDLightDOESectionA

  1. Paducah Cleanup Progress | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducation ProgramsTourPPPO WebsiteCommunity Outreach

  2. Portsmouth Cleanup Progress | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602Policy_Flash_2011-85__Attachment_2.pdfPollution

  3. Clean Energy Technology: American and Global Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing: U.S. Competitiveness and

  4. Progress Report Template | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S.Logistical Challenges | Department

  5. Energy technology X: a decade of progress. Proceedings

    SciTech Connect (OSTI)

    Hill, R.F. (ed.)

    1983-06-01T23:59:59.000Z

    The characterization, development, and availability of various energy sources for large scale energy production are discussed. Attention is given to government, industry, and international policies on energy resource development and implementation. Techniques for energy analysis, planning, and regulation are examined, with consideration given to conservation practices, military energy programs, and financing schemes. Efficient energy use is examined, including energy and load management, building retrofits, and cogeneration installations, as well as waste heat recovery. The state of the art of nuclear, fossil, and geothermal power extraction is investigated, with note taken of synthetic fuels, fluidized bed combustion, and pollution control in coal-powered plants. Finally, progress in renewable energy technologies, including solar heating and cooling, biomass, and large and small wind energy conversion devices is described.

  6. Progress Energy Florida- SunSense Solar Water Heating with EnergyWise

    Broader source: Energy.gov [DOE]

    Progress Energy Florida (PEF) launched the ''Solar Water Heating with EnergyWise Program'' in February 2007 to encourage its residential customers to participate in its load control program and...

  7. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Diamond, Richard

    1 Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy in order to achieve a sustainable energy balance. Along the way, we may find it possible to shift Siderius ABSTRACT We argue that a primary focus on energy efficiency may not be sufficient to slow (and

  8. Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress...

    Energy Savers [EERE]

    Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report 2009energystorage.pdf More...

  9. Vehicle Technologies Office: 2008 Energy Storage R&D Annual Progress...

    Broader source: Energy.gov (indexed) [DOE]

    energystorage.pdf More Documents & Publications FY 2012 Annual Progress Report for Energy Storage R&D Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report...

  10. Progress in Grid Scale Flow Batteries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | Department ofPlant | DepartmentProgress andImre

  11. Progress Energy Florida- SunSense Solar Photovoltaics Rebate Program (Florida)

    Broader source: Energy.gov [DOE]

    '''''All funds for Progress Energy Florida's SunSense Solar PV Rebate program have been committed at this time.'''''

  12. Progress Energy Carolinas Inc (South Carolina) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for EnergyWister|ProductionProfit Energy sro

  13. Progress Village, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for EnergyWister|ProductionProfit Energy

  14. IEA Clean Energy Progress Report | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9Moat

  15. Progressive Lighting And Energy Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for EnergyWister|ProductionProfit

  16. Fossil Energy Program. Progress report for April 1980

    SciTech Connect (OSTI)

    McNeese, L.E.

    1980-06-01T23:59:59.000Z

    This report - the sixty-ninth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, technical support to the TVA fluidized bed combustion demonstration plant program, coal cogeneration/district heating plant assessment, performance assurance system support, and international energy technology assessment.

  17. Fossil energy program. Progress report for June 1980

    SciTech Connect (OSTI)

    McNeese, L.E.

    1980-08-01T23:59:59.000Z

    This report - the seventy-first of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluation, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, TVA fluidized combustion demonstration plant program technical support, coal cogeneration/district heating plant assessment, performance assurance system support, and international energy technology assessment.

  18. Fossil energy program. Progress report for May 1980

    SciTech Connect (OSTI)

    McNeese, L.E.

    1980-08-01T23:59:59.000Z

    This report - the seventieth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, technical support to the TVA fluidized bed combustion demonstration plant program, coal cogeneration/district heating plant assessment, atmospheric fluidized bed coal combustor for cogeneration, performance assurance system support and international energy technology assessment.

  19. HCCI - Update of Progress 2005 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration0-1HAWAI'I CLEAN ENERGYUpdate of Progress

  20. Energy Division progress report, fiscal years 1994--1995

    SciTech Connect (OSTI)

    Moser, C.I. [ed.

    1996-06-01T23:59:59.000Z

    At ORNL, the Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this progress report for FY 1994 and FY 1995. The Division`s expenditures in FY 1995 totaled 44.9 million. Sixty percent of the divisions work was supported by the US DOE. Other significant sponsors include the US DOT, the US DOD, other federal agencies, and some private organizations. The Division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) transportation systems, and (3) energy use and delivery technologies. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, and impact statements, research on emergency preparedness, analysis of energy and environmental needs in developing countries, and transportation analysis. Transportation systems research seeks to improve the quality of both civilian and military transportation efforts. Energy use and delivery technologies focus on building equipment, building envelopes, (walls, roofs, attics, and materials), improvement of energy efficiency in buildings, and electric power systems.

  1. Progress Energy Service Company, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,PowerInformationOpenProe Power SystemsNC

  2. Progress Energy Florida - Commercial Energy Efficiency Rebate Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | Department ofPlant | Department of

  3. Progress Energy Florida - Home Energy Check Audit and Rebate Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | Department ofPlant | Department ofDepartment of

  4. The Donaldson-Thomas theory of $K3\\times E$ via the topological vertex

    E-Print Network [OSTI]

    Jim Bryan

    2015-04-11T23:59:59.000Z

    Oberdieck and Pandharipande conjectured that the curve counting invariants of $S\\times E$, the product of a $K3$ surface and an elliptic curve, is given by minus the reciprocal of the Igusa cusp form of weight 10. For a fixed primitive curve class in $S$ of square $2h-2$, their conjecture predicts that the corresponding partition functions are given by meromorphic Jacobi forms of weight $-10$ and index $h-1$. We prove their conjecture for primitive classes of square -2 and of square 0. Our computation uses reduced Donaldson-Thomas invariants which are defined as the Behrend function weighted Euler characteristics of the quotient of the Hilbert scheme of curves in $S\\times E$ by the action of $E$. Our technique is a mixture of motivic and toric methods (developed with Martijn Kool) which allows us to express the partition functions in terms of the topological vertex and subsequently in terms of Jacobi forms.

  5. IEA: Tracking Clean Energy Progress: Energy Technology Perspectives 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND DTechnologies |cents6,IEA

  6. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Frontier Research Center of the DOE Office of Basic Energy Sciences SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER Progress from DOE EFRC: Solid-State Solar-Thermal...

  7. Progress in Nuclear Energy 53 (2011) 618 625 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Demazière, Christophe

    Progress in Nuclear Energy 53 (2011) 618 625 Contents lists available at ScienceDirect Progress in Nuclear Energy journal homepage: www.elsevier.com/locate/pnucene Comparison of thorium-based fuels Fhager a , Christophe Demazière b a Thor Energy, Sommerrogaten 13 15, NO-0255 Oslo, Norway b Chalmers

  8. FY 2011 Annual Progress Report for Energy Storage R&D

    Broader source: Energy.gov (indexed) [DOE]

    Progress Report 467 Energy Storage R&D V.A Introduction Duong - DOE, Srinivasan - LBNL The work is administered by the Lawrence Berkeley National Laboratory (LBNL), with...

  9. Enforcing Building Energy Codes in China: Progress and Comparative Lessons

    SciTech Connect (OSTI)

    Evans, Meredydd; Shui, Bin; Halverson, Mark A.; Delgado, Alison

    2010-08-15T23:59:59.000Z

    From 1995 to 2005, building energy use in China increased more rapidly than the world average. China has been adding 0.4 to 1.6 billion square meters of floor space annually , making it the world’s largest market for new construction. In fact, by 2020, China is expected to comprise half of all new construction. In response to this, China has begun to make important steps towards achieving building energy efficiency, including the implementation of building energy standards that requires new buildings to be 65% more efficient than buildings from the early 1980s. Making progress on reducing building energy use requires both a comprehensive code and a robust enforcement system. The latter – the enforcement system – is a particularly critical component for assuring that a building code has an effect. China has dramatically enhanced its enforcement system in the past two years, with more detailed requirements for ensuring enforcement and new penalties for non-compliance. We believe that the U.S. and other developed countries could benefit from learning about the multiple checks and the documentation required in China. Similarly, some of the more user-friendly enforcement approaches developed in the U.S. and elsewhere may be useful for China as it strives to improve enforcement in rural and smaller communities. In this article, we provide context to China’s building codes enforcement system by comparing it to the U.S. Among some of the enforcement mechanisms we look at are testing and rating procedures, compliance software, and training and public information.

  10. Tracking Progress Last updated 5/7/2014 Statewide Energy Demand 1

    E-Print Network [OSTI]

    Tracking Progress Last updated 5/7/2014 Statewide Energy Demand 1 Statewide Energy Demand Energy Commission's energy demand forecast includes multiple scenarios, the Energy Commission worked together1 to agree upon a single managed demand forecast that incorporates all energy efficiency

  11. NOON TUESDAY: Energy Department to Release New Report on Progress...

    Broader source: Energy.gov (indexed) [DOE]

    Affairs, will host a conference call with reporters to release a new DOE report on electric vehicles. The report will examine progress to date in meeting President Obama's...

  12. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    SciTech Connect (OSTI)

    Diamond, Rick; Harris, Jeff; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-08-13T23:59:59.000Z

    We argue that a primary focus on energy efficiency may not be sufficient to slow (and ultimately reverse) the growth in total energy consumption and carbon emissions. Instead, policy makers need to return to an earlier emphasis on"conservation," with energy efficiency seen as a means rather than an end in itself. We briefly review the concept of"intensive" versus"extensive" variables (i.e., energy efficiency versus energy consumption), and why attention to both consumption and efficiency is essential for effective policy in a carbon- and oil-constrained world with increasingly brittle energy markets. To start, energy indicators and policy evaluation metrics need to reflect energy consumption as well as efficiency. We introduce the concept of"progressive efficiency," with the expected or required level of efficiency varying as a function of house size, appliance capacity, or more generally, the scale of energy services. We propose introducing progressive efficiency criteria first in consumer information programs (including appliance labeling categories) and then in voluntary rating and recognition programs such as ENERGY STAR. As acceptance grows, the concept could be extended to utility rebates, tax incentives, and ultimately to mandatory codes and standards. For these and other programs, incorporating criteria for consumption as well as efficiency offers a path for energy experts, policy-makers, and the public to begin building consensus on energy policies that recognize the limits of resources and global carrying-capacity. Ultimately, it is both necessary and, we believe, possible to manage energy consumption, not just efficiency in order to achieve a sustainable energy balance. Along the way, we may find it possible to shift expectations away from perpetual growth and toward satisfaction with sufficiency.

  13. PROGRESS IN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRY PERSPECTIVE -

    E-Print Network [OSTI]

    Schipper, Lee

    2013-01-01T23:59:59.000Z

    Conference, "New Energy Conservation Technologies", Berlin,IN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRYIN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRY

  14. Metrics for Measuring Progress under the Hawai`i Clean Energy Initiative

    E-Print Network [OSTI]

    ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Manoa #12 by Hawai`i Natural Energy Institute School of Ocean and Earth Science and Technology University of HawaiMetrics for Measuring Progress under the Hawai`i Clean Energy Initiative: Hawai`i Clean Energy

  15. Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency

    Broader source: Energy.gov [DOE]

    Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency

  16. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    SciTech Connect (OSTI)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01T23:59:59.000Z

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  17. Energy-Efficient Progressive Remote Update for Flash-Based Firmware of Networked Embedded

    E-Print Network [OSTI]

    Chou, Pai H.

    Energy-Efficient Progressive Remote Update for Flash-Based Firmware of Networked Embedded Systems. Of course, the premise is that the patching overhead is kept low. Firmware is usually stored in nonvolatile

  18. PROGRESS IN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRY PERSPECTIVE -

    E-Print Network [OSTI]

    Schipper, Lee

    2013-01-01T23:59:59.000Z

    markedly future demand for both oil and other energy formsin space heating energy demand in oil~heated dwel~ lings: anheating energy demand per dwelling since the oil embargo,

  19. Fossil Energy Program semiannual progress report for April 1992-- September 1992

    SciTech Connect (OSTI)

    Judkins, R.R.

    1992-12-01T23:59:59.000Z

    This report covers progress made during the period April 1, 1992, through September 30, 1992, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Office of Basic Energy Sciences, the DOE Fossil Energy Office of Petroleum Reserves, the DOE Fossil Energy Office of Naval Petroleum and Oil Shale Reserves, and the US Agency for International Development.

  20. Magma Energy Research Project, FY80 annual progress report

    SciTech Connect (OSTI)

    Colp, J.L. (ed.)

    1982-04-01T23:59:59.000Z

    The technical feasibility of extracting energy from magma bodies is explored. Five aspects of the project are studied: resource location and definition, source tapping, magma characterization, magma/material compatibility, and energy extraction.

  1. Progress and Effect of Energy-Saving Standards in China

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the development of energy-saving standards in China, results of standards, and work highlights.

  2. Energy Star for Hospitals 2011 Update: Progression or Regression?

    E-Print Network [OSTI]

    Travis, B.

    2012-01-01T23:59:59.000Z

    Agency created Energy Star for Buildings, as well as Portfolio Manager, an online benchmarking tool which allowed users to input their utility bills while simultaneously tracking important energy performance metrics for their building..., such as the Energy Utilization Intensity (E.U.I.) and Energy Cost Intensity (E.C.I.). Since its inception, Portfolio Manager has also added the ability to track water consumption, as well as greenhouse gas emissions. As of September of 2011, the U.S. EPA...

  3. D:\0myfiles\Blackout Progress\Blackout-Progress.vp | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications Infrastructure2 10 CFR

  4. Underground Energy Storage Program: 1981 annual report. Volume I. Progress summary

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1982-06-01T23:59:59.000Z

    This is the 1981 annual report for the Underground Energy Storage Program administered by the Pacific Northwest Laboratory for the US Department of Energy. The two-volume document describes all of the major research funded under this program during the period March 1981 to March 1982. Volume I summarizes the activities and notable progress toward program objectives in both Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). Major changes in program emphasis and structure are also documented.

  5. PROGRESS IN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRY PERSPECTIVE -

    E-Print Network [OSTI]

    Schipper, Lee

    2013-01-01T23:59:59.000Z

    Table Comparison of LBL and IEA Residential Energy Dataof LBL Country LBL (PJ) IEA (PJ) Comment CANADA FRANCEITALY JAPAN SWEDEN UK IEA (and Stat.Canada) omit large

  6. Ambitious Vision Drives Oak Ridge's Progress | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03EnergyAlternative DisputeAmbitious Vision

  7. Better Buildings Progress Report 2012 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2, 2015Energyon23264Compare energy use4OctoberThis

  8. Task Scheduling in an energy harvesting WSN for Structural Health Monitoring Project Progress Report

    E-Print Network [OSTI]

    Simunic, Tajana

    of system is the management and conservation of energy while maintaining the minimum level of QoS requiredTask Scheduling in an energy harvesting WSN for Structural Health Monitoring Project Progress sensor networks in advanced Structural health monitoring (SHM) systems has proliferated in the last few

  9. Fossil Energy Program semiannual progress report for October 1992 through March 1993

    SciTech Connect (OSTI)

    Judkins, R.R. [Oak Ridge National Lab., TN (United States)

    1993-07-01T23:59:59.000Z

    This report covers progress made during the period October 1, 1992, through March 31, 1993, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Fossil Energy Office of Petroleum Reserves, and the US Agency for International Development. In particular, projects related to materials and coal combustion, environmental analysis, and bioconversion are described.

  10. High energy hadron-hadron collisions. Annual progress report

    SciTech Connect (OSTI)

    Chou, T.T.

    1992-12-31T23:59:59.000Z

    Results of a study on high energy collisions with the geometrical model are summarized in three parts: (1) the elastic hadron-hadron collision, (2) the inelastic hadron-hadron collision, and (3) e{sup +}e{sup {minus}} annihilation. For elastic scattering, a modified form for the hadronic matter form factor of the proton was proposed which is still dipole in form but contains an energy--dependent range parameter. This new expression of the opacity function fits the elastic {bar p}p scattering very well from the ISR to S{bar p}pS energies. Extrapolation of this theory also yielded results {bar p}p in good agreement with the {bar p}p differential cross section measured at the Tevatron. For inelastic hadron-hadron collisions, we have made a systematic investigation of the single-particle momentum spectra in the entire S{bar p}pS energy region. Results are useful for the extrapolation of angular distribution to the higher SSC energies. In e{sup +}e{sup {minus}} annihilation, a detailed analysis of all available experimental multiplicity data from PETRA to LEP energies has been performed. The cluster size of emitted hadrons increases gradually with energy. Aside from high-energy collisions, the giant fullerene molecules were studied and precise algebraic eigenvalue expressions of the Hueckel problem for carbon-240 were obtained.

  11. High energy hadron-hadron collisions. Annual progress report

    SciTech Connect (OSTI)

    Chou, T.T.

    1991-12-01T23:59:59.000Z

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (1) the elastic hadron-hadron collision, (2) the inelastic hadron-hadron collision, and (3) the e{sup +}e{sup {minus}} annihilation. More recent studies are highlighted below. For elastic scattering, a modified form for the hadronic matter form factor of the proton was proposed which remains to be dipole in form but contains an energy-dependent range parameter. This new expression of the opacity function fits the elastic {bar p}p scattering very well from the ISR to S{bar p}pS energies. Extrapolation of this theory also yielded results in good agreement with the {bar p}p differential cross section measured at the Tevatron. For inelastic hadron-hadron collisions, we have made a systematic investigation of the single-particle momentum spectra in the entire S{bar p}pS energy region. Results are useful for the extrapolation of angular distribution to the higher SSC energies. In e{sup +}e{sup {minus}} annihilation, a detailed analysis of all available experimental multiplicity data from PETRA to LEP energies has been performed. We discovered that the cluster size of emitted hadrons increases steadily with energy and is close to 2 as we predicted.

  12. Guide for Benchmarking Residential Energy Efficiency Program Progress |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment ofof EnergyEnvironmentalAnalysis

  13. SGIG Program Progress Report II Now Available | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913| Department of EnergyNYSGIG

  14. Progress Report: Advancing Solar Energy Across America | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCODepartment ofRecipients |DemonstrationDepartment13Energy

  15. Better Plants Progress Update 2014 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2, 2015Energyon23264CompareDepartmentBetterThe 2014

  16. Better Plants Progress Update Fall 2013 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2, 2015Energyon23264CompareDepartmentBetterThe 2014The

  17. Progress in passive solar energy systems. Volume 8. Part 1

    SciTech Connect (OSTI)

    Hayes, J.; Andrejko, D.A.

    1983-01-01T23:59:59.000Z

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  18. Nuclear power for energy and for scientific progress

    E-Print Network [OSTI]

    Giacomelli, G

    2012-01-01T23:59:59.000Z

    The Introduction in this paper underlines the present general situation for energy and the environment using the words of the US Secretary of Energy. A short presentation is made of some major nuclear power plants used to study one fundamental parameter for neutrino oscillations. The nuclear power status in some Far East Nations is summarized. The 4th generation of nuclear power stations, with emphasis on Fast Neutron Reactors, is recollected. The world consumptions of all forms of energies is recalled, fuel reserves are considered and the opportunities for a sustainable energy future is discussed. These considerations are applied to the italian situation, which is rather peculiar, also due to the many consequencies of the strong Nimby effects in Italy.

  19. Scientists discuss progress toward magnetic fusion energy at 2013 AAAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearchPhysics Lab Scientist's QuestCorners

  20. Energy-efficient mortgages and home energy rating systems: A report on the nation`s progress

    SciTech Connect (OSTI)

    Farhar, B.C.; Eckert, J.

    1993-09-01T23:59:59.000Z

    This report summarizes progress throughout the nation in establishing voluntary programs linking home energy rating systems (HERS) and energy-efficient mortgages (EEMs). These programs use methods for rating the energy efficiency of new and existing homes and predicting energy cost savings so lenders can factor in energy cost savings when underwriting mortgages. The programs also encourage lenders to finance cost-effective energy-efficiency improvements to existing homes with low-interest mortgages or other instruments. The money saved on utility bills over the long term can more than offset the cost of such energy-efficiency improvements. The National Collaborative on HERS and EEMs recommended that this report be prepared.

  1. (Energy related business development grant project): Final technical progress report

    SciTech Connect (OSTI)

    Not Available

    1987-10-26T23:59:59.000Z

    CONSERVE, Inc., a private, not-for-profit organization, was launched in 1986 to provide energy conservation and weatherization services to low-income neighborhoods throughout New York City. Founded by three non-profit community development groups - Northern Manhattan Improvement Corporation, Operation Open City and the Coalition Management Training Company - CONSERVE, Inc., couples NYS Weatherization Assistance Program funds with privately leveraged dollars to achieve more thorough workscopes and higher energy savings in multi-family buildings housing low-income tenants. CONSERVE's services include: energy audit and workscope preparation, financial analysis and packaging and construction management. During its first year of operation, CONSERVE's primary goal was to test the feasibility of coordinating the services described above by making them available to owners of multi-family buildings and potential lenders. First-year findings proved conclusively CONSERVE's viability as an energy conservation resource for owners and tenants of low-income, multi-family buildings in New York City. Based on its accomplishments as well as its potential, the organization has received full funding for the 1987-88 fiscal year from the NYS Energy Office and the NYS Weatherization Assistance Program. This report documents the organization's activities over the last year.

  2. Climate VISION Progress Report 2007 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT §CleantechClimateClimateClimate

  3. Continuing Progress in Tribal Communities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluor Federal

  4. Vehicle Technologies Office: Annual Progress Reports | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment ofConstruction|(EVSE)Each year, the Vehicle

  5. Better Buildings Progress Report 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114, 2013BetterOctoberReport

  6. Fuel Cells For Transportation - 1999 Annual Progress Report Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overview FuelStorage,CellsConversion

  7. Groundwater Cleanup Progresses at Paducah Site | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 BudgetGoals andSenate | DepartmentGroundwater Cleanup

  8. Climate Vision Progress Report 2007 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents CleanSeattle, WA ClimateClimateClimate

  9. Sandia Energy - Wind-Turbine Blade Materials and Reliability Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety HomeWater PowerEnergyWind-Turbine Blade

  10. Progress and issues in single well seismic imaging | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,PowerInformationOpenProe

  11. Cryogenic Pressure Vessels: Progress and Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts for theof EnergyRev.Hydrogen

  12. Fuel Cell Systems Annual Progress Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment of Energy's2ofFuel Cell FinancingSystems Annual

  13. 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, Sept. 2008 PROGRESS IN THE SURFACE PASSIVATION OF SILICON SOLAR CELLS

    E-Print Network [OSTI]

    23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, Sept. 2008 PROGRESS typically lead to a sig- nificant degradation of the bulk lifetime [3]. Hence, low- temperature surface

  14. Annual Progress Report - Environmental Justice | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVMAgriculturalAn1 Annual FOIA

  15. Environment, Safety and Health Progress Assessment of the Morgantown Energy Technology Center (METC)

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    This report documents the result of the US Department of Energy`s (DOE) Environment, Safety and Health (ES&H) Progress Assessment of the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. METC is currently a research and development facility, managed by DOE`s Office of Fossil Energy. Its goal is to focus energy research and development to develop engineered fossil fuel systems, that are economically viable and environmentally sound, for commercial application. There is clear evidence that, since the 1991 Tiger Team Assessment, substantial progress has been made by both FE and METC in most aspects of their ES&H program. The array of new and restructured organizations, systems, and programs at FE and METC; increased assignments of staff to support these initiatives; extensive training activities; and the maturing planning processes, all reflect a discernable, continuous improvement in the quality of the ES&H performance.

  16. Progress in ultra high energy neutrino experiments using radio techniques

    SciTech Connect (OSTI)

    Liu Jiali [Physics department, Kunming University, Kunming, 650214 (China); Tiedt, Douglas [Physics department, South Dakota School of Mines and Technology, Rapid City, SD, 57701-3995 (United States)

    2013-05-23T23:59:59.000Z

    Studying the source of Ultra High Energy Cosmic Ray (UHECR) can provide important clues on the understanding of UHE particle physics, astrophysics, and other extremely energetic phenomena in the universe. However, charged CR particles are deflected by magnetic fields and can not point back to the source. Furthermore, UHECR charged particles above the Greisen-Zatsepin-Kuzmin (GZK) cutoff (about 5 Multiplication-Sign 10{sup 19} eV) suffer severe energy loss due to the interaction with the Cosmic Microwave Background Radiation (CMBR). Consequently almost all the information carried by CR particles about their origin is lost. Neutrinos, which are neutral particles and have extremely weak interactions with other materials can arrive at the earth without deflection and absorption. Therefore UHE neutrinos can be traced back to the place where they are produced. Due to their weak interaction and ultra high energies (thus extremely low flux) the detection of UHE neutrinos requires a large collecting area and massive amounts of material. Cherenkov detection at radio frequency, which has long attenuation lengths and can travel freely in natural dense medium (ice, rock and salt et al), can fulfill the detection requirement. Many UHE neutrino experiments are being performed by radio techniques using natural ice, lunar, and salt as detection mediums. These experiments have obtained much data about radio production, propagation and detection, and the upper limit of UHE neutrino flux.

  17. Fossil Energy Program semiannual progress report for October 1991--March 1992

    SciTech Connect (OSTI)

    Judkins, R.R.

    1992-11-01T23:59:59.000Z

    This report covers progress made during the period October 1, 1991, through March 31, 1992, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Office of Basic Energy Sciences, the DOE Fossil Energy Office of Petroleum Reserves, the DOE Fossil Energy Naval Petroleum and Oil Shale Reserves, and the US Agency for International Development. The Fossil Energy Program organization chart is shown in the appendix. Topics discussed are under the following projects: materials research and developments; environmental analysis support; coal conversion development; coal combustion research; and fossil fuels supplies modeling and research.

  18. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    SciTech Connect (OSTI)

    Judkins, RR

    2001-06-14T23:59:59.000Z

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support to the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.

  19. Applications and Progress of Dust Injection to Fusion Energy

    SciTech Connect (OSTI)

    Wang Zhehui; Wurden, Glen A. [Los Alamos National Laboratory (United States); Mansfield, Dennis K.; Roquemore, Lane A. [Princeton Plasma Physics Laboratory (United States); Ticos, Catalin M. [National Institute for Laser, Plasma, and Radiation Physics, Bucharest (Romania)

    2008-09-07T23:59:59.000Z

    Three regimes of dust injection are proposed for different applications to fusion energy. In the 'low-speed' regime (<5 km/s), basic dust transport study, edge plasma diagnostics, edge-localized-mode (ELM) pacing in magnetic fusion devices can be realized by injecting dust of known properties into today's fusion experiments. ELM pacing, as an alternative to mini-pellet injection, is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion devices. Different schemes are available to inject dust. In the 'intermediate-speed' regime (10-200 km/s), possible applications of dust injection include fueling of the next-step fusion devices, core-diagnostics of the next-step fusion devices, and compression of plasma and solid targets to aid fusion energy production. Promising laboratory results of dust moving at 10-50 km/s do exist. Significant advance in this regime may be expected in the near term to achieve higher dust speeds. In the 'high-speed' regime (>500 km/s), dust injection can potentially be used to directly produce fusion energy through impact. Ideas on how to achieve these extremely high speeds are mostly on paper. No plan exists today to realize them in laboratory. Some experimental results, including electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration, are summarized and compared. Some features and limitations of the different acceleration methods will be discussed. A necessary component of all dust injectors is the dust dropper (also known as dust dispenser). A computer-controlled piezoelectric crystals has been developed to dropped dust in a systematic and reproducible manner. Particle fluxes ranges from a few tens of particles per second up to thousands of particles per second by this simple device.

  20. Electrolyzer Manufacturing Progress and Challenges | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6:Energy|Electrifying Your

  1. Continuing Progress in Tribal Communities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us Contact Us U.S.EnforcementDepartment

  2. DOE Releases Climate VISION Progress Report 2007 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOEDepartment|Amchitka, Alaska, Site

  3. DOE Reports Progress on Loan Guarantee Program | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2

  4. Progress Energy draft regarding Smart Grid RFI: Addressing Policy and

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring Solar for FederalProgramLogistical Challenges |

  5. FY 2011 Progress Report for Lightweighting Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexasManager6-OPAMGuidingScienceStatistical Table8Energy

  6. DOE Releases Climate VISION Progress Report 2007 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU WasteAdministrator |20.1CPlanEP9425Held thisDOE

  7. Progress Energy draft regarding Smart Grid RFI: Addressing Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S.Logistical Challenges | Department of

  8. Progress in Thermoelectrical Energy Recovery from a Light Truck Exhaust |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S.Logistical(S3TEC ) | Department

  9. Progress of the Engine Combustion Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S.Logistical(S3TEC ) |Manufacturingof

  10. Energy Storage Research and Development 2008 Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC | DepartmentSource |  WhyEnergyofand

  11. Guide for Benchmarking Residential Energy Efficiency Program Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration andGuidance onProcedures for

  12. Guide for Benchmarking Residential Energy Efficiency Program Progress |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration andGuidance onProcedures forDepartment of

  13. History of, and recent progress in, wind-energy utilization

    SciTech Connect (OSTI)

    Soerensen, B. [Roskilde Univ. (Denmark)

    1995-11-01T23:59:59.000Z

    This review presents the current status of wind turbine technology and recent advances in understanding the long history of wind energy. Reasons for the convergence of technologies solutions towards a horizontal axis concept with two or three blades are discussed, and the advances in materials science are identified as determinants of the change toward increasing optimum turbine size. The modest environmental impacts of wind turbines are illustrated by recent life-cycle analyses, and the economic incentive structure and power buy-back rates in different countries are invoked to explain the variation in wind technology penetration in countries with similar resource potentials. Finally, the possible future role of wind technology is discussed, based on resource estimates, competing land demands, government commitments and technological trends, including the recent offshore wind farm developments. 83 refs., 15 figs., 6 tabs.

  14. High energy. Progress report, March 1, 1992--February 28, 1997

    SciTech Connect (OSTI)

    Bonner, B.E.; Roberts, J.B. Jr.

    1996-09-01T23:59:59.000Z

    The Bonner Lab High Energy Group at Rice University has major hardware and software design and construction responsibilities in three of the flagship experiments of US High Energy Physics: D0, CMS, and KTeV. These commitments were undertaken after managing boards of the collaborations had evaluated the unique capabilities that Bonner Lab has to offer. Although fiscal constraints prohibited their participation in the final year of the SMC experiment (1996) on the spin dependent structure functions of nucleons, they played a major role there since it was proposed in 1988. The new results from the SMC data taken in previous years continue to generate a buzz of theoretical activity--and to increase understanding of the nucleon structure functions and their behavior as a function of Q{sup 2} and x. They have also spawned large new experimental spin physics programs at HERA and at RHIC that ultimately will provide answers to these fundamental questions. This is a direct result of the unprecedented precision and kinematic range of the SMC results. Such precision would not have been possible without the improvement in the knowledge of the muon beam polarization using the Rice-designed beam polarimeter. In D0 Bonner Lab has been active in data taking, data analysis, upgrade design, and upgrade construction projects. In CMS they are responsible for the design and construction of the trigger electronics for one of the crucial subsystems: the end cap muon detectors. Other responsibilities are fully expected as the US commitment to LHC projects becomes clearer. The technical capabilities are well matched to the enormous challenges posed by the physics measurements being contemplated for the CMS detector. KTeV will be taking data shortly. Rice made major contributions to the construction and commissioning of this experiment. The long list of publications and presentations during the past five years attests to the fact that the group has been working hard and productively.

  15. Fusion Energy Division annual progress report period ending December 31, 1986

    SciTech Connect (OSTI)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01T23:59:59.000Z

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  16. ARTICLE IN PRESS Progress in Energy and Combustion Science 34 (2008) 254273

    E-Print Network [OSTI]

    Fischlin, Andreas

    2008-01-01T23:59:59.000Z

    ARTICLE IN PRESS Progress in Energy and Combustion Science 34 (2008) 254­273 CO2 storage the continued use well into this century of fossil fuels, mainly coal, for power generation and combustion potable groundwater, soils and/or atmosphere. Such geological media are mainly oil and gas reservoirs

  17. Fossil Energy Program semiannual progress report for April 1991 through September 1991

    SciTech Connect (OSTI)

    Judkins, R.R.

    1992-10-01T23:59:59.000Z

    This report covers progress made during the period April 1, 1991, through September 30, 1991, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Fossil Energy Office of Petroleum Reserves, and the US Agency for International Development (USAID). The Fossil Energy Program organization chart is shown in the appendix. Project discussed are: materials research and development; environmental analysis support; coal conversion development; coal combustion research; fossil fuel supplies modeling and research; evaluations and assessments; and coal structure and chemistry.

  18. Mechanisms of photochemical energy conversion by chlorophyll. Progress report, April 1, 1980-March 30, 1981

    SciTech Connect (OSTI)

    Tollin, G.

    1981-01-01T23:59:59.000Z

    The results presented demonstrate that important progress has been made towards defining the elementary processes involved in chlorophyll one-electron transfer reactions. Considerable insight was obtained into how these can be made more efficient and how energy-wasting back reactions can be minimized. An understanding of the mechanisms involved in the coupling of these reactions in more complex systems to obtain a vectorial storage of energy across an insulating barrier (i.e. a lipid bilayer) is developing. The information must ultimately prove useful in the long-range goal of developing practical means of solar energy utilization. (ERB)

  19. Fossil-energy program. Quarterly progress report for June 30, 1983

    SciTech Connect (OSTI)

    McNeese, L.E.

    1983-08-01T23:59:59.000Z

    This quarterly report covers the progress made during the period March 31 through June 30 for the Oak Ridge National Laboratory research and development projects that are carried out in support of the increased utilization of coal and other fossil fuels as sources of clean energy. These projects are supported by various parts of DOE including Fossil Energy, Basic Energy Sciences, Office of Health and Environmental Research, Office of Environmental Compliance and Overview, the Electric Power Research Institute, and by the Tennessee Valley Authority and the EPA Office of Research and Development through inter-agency agreement with DOE.

  20. FY 2009 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in Representative GeologicReportingEnergy3,EnergyMetals-Steeland PROGRESS

  1. FY 2011 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1 Annual Progress

  2. Fossil Energy Program annual progress report for April 1997 through March 1998

    SciTech Connect (OSTI)

    Judkins, R.R.

    1998-07-01T23:59:59.000Z

    This report covers progress made on research and development projects that contribute to the advancement of fossil energy technologies, covering the areas of coal, clean coal technology, gas, petroleum, and support to the Strategic Petroleum Reserve (SPR). Papers are arranged under the following topical sections: materials research and development; environmental analysis support; bioprocessing research; fossil fuels supplies modeling and research; and oil and gas production.

  3. Quarterly Progress Report

    Broader source: Energy.gov [DOE]

    Quarterly Progress Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  4. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeffrey; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-01-01T23:59:59.000Z

    1999 Aspen/Pitkin Energy Conservation Code, as Amendments toand the Return of Energy Conservation Jeffrey Harris, Rickand the Return of Energy Conservation Jeffrey Harris,

  5. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeff

    2008-01-01T23:59:59.000Z

    1999 Aspen/Pitkin Energy Conservation Code, as Amendments toFederal Regulations, (2002). Energy Conservation Program forand the Return of Energy Conservation Jeffrey Harris, Rick

  6. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeff

    2008-01-01T23:59:59.000Z

    words, the sustainable energy balance serves as a goal forthe sustainable energy balance would mean a renewable energythe goal of a sustainable energy balance. Figure 2 shows how

  7. Cleanup Progresses at the Office of River Protection | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment. Cash 6-1Clay Sell SwornofofCleaning0Progresses

  8. Seasonal Thermal Energy Storage Program: Progress summary for the period April 1986 through March 1988

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1988-10-01T23:59:59.000Z

    This report discusses recent progress in the DOE program, directed by Pacific Northwest Laboratory, to develop seasonal thermal energy storage (STES). STES has been identified as one method to substantially improve energy efficiency and economics in certain sectors of our economy. It provides a potentially economic means of using waste heat and climatic energy resources to meet a significant portion of our growing energy need for building and industrial process heating and cooling. Environmental benefits accompany the use of STES in many applications. Furthermore, STES can contribute to reduced reliance on premium fuels that are often obtained from foreign sources. Lastly by improving the energy economics of industry, STES can contribute to improved US industrial competitiveness. The report is provided in four sections; the first being this introduction Section 2 of the report describes the program and briefly documents its organization, goals, history, and long-term plans. Section 3 describes the progress during the period from April, 1986, through March, 1988. Section 4 provides a short update on international development of STES. 17 refs., 16 figs., 7 tabs.

  9. Energy Division annual progress report for period ending September 30, 1990

    SciTech Connect (OSTI)

    Selden, R.H. (ed.)

    1991-06-01T23:59:59.000Z

    The Energy Division is one of 17 research divisions at Oak Ridge National Laboratory. The goals and accomplishments of the Energy Division are described in this annual progress report for FY 1990. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of how societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy efficient technologies; and (4) developing improved transportation planning and policy. Disciplines of the 129 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include building equipment (thermally activated heat pumps, chemical heat pumps, refrigeration systems, novel cycles), building enveloped (walls, foundations, roofs, attics, and materials), retrofits for existing buildings, and electric power systems. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination. 48 refs., 34 figs., 7 tabs.

  10. Seasonal thermal energy storage program. Progress report, January 1980-December 1980

    SciTech Connect (OSTI)

    Minor, J.E.

    1981-05-01T23:59:59.000Z

    The objectives of the Seasonal Thermal Energy Storage (STES) Program is to demonstrate the economic storage and retrieval of energy on a seasonal basis, using heat or cold available from waste sources or other sources during a surplus period to reduce peak period demand, reduce electric utilities peaking problems, and contribute to the establishment of favorable economics for district heating and cooling systems for commercialization of the technology. Aquifers, ponds, earth, and lakes have potential for seasonal storage. The initial thrust of the STES Program is toward utilization of ground-water systems (aquifers) for thermal energy storage. Program plans for meeting these objectives, the development of demonstration programs, and progress in assessing the technical, economic, legal, and environmental impacts of thermal energy storage are described. (LCL)

  11. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeff

    2008-01-01T23:59:59.000Z

    energy consumption can mean real sacrifice for many in the developing worldconsumption along with energy efficiency can also help energy experts, policy-makers, and the public begin to acknowledge a worldconsumption, rather than energy efficiency, should be the main focus of energy policy in a resource-constrained and carbon-burdened world.

  12. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeffrey; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-01-01T23:59:59.000Z

    energy consumption can mean real sacrifice for many in the developing worldconsumption along with energy efficiency can also help energy experts, policy-makers, and the public begin to acknowledge a worldconsumption, rather than energy efficiency, should be the main focus of energy policy in a resource-constrained and carbon-burdened world.

  13. Energy Division annual progress report for period ending September 30, 1988: Volume 2

    SciTech Connect (OSTI)

    Not Available

    1989-06-01T23:59:59.000Z

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics.

  14. Energy Division annual progress report for period ending September 30, 1991

    SciTech Connect (OSTI)

    Stone, J.N. [ed.

    1992-04-01T23:59:59.000Z

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division`s total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division`s programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  15. Energy Division annual progress report for period ending September 30, 1991

    SciTech Connect (OSTI)

    Stone, J.N. (ed.)

    1992-04-01T23:59:59.000Z

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division's total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  16. Solar-energy research at Los Alamos. Progress report, October 1, 1981-March 31, 1982

    SciTech Connect (OSTI)

    Reisfeld, S.K.; Neeper, D.A. (comps.)

    1982-09-01T23:59:59.000Z

    Solar energy research for the period October 1, 1981 through March 31, 1982 by the Los Alamos National Laboratory's Solar Energy Group is described. Work in the area of materials includes chemical conversion coatings, exposure testing of materials, and evaluation of fluid from collector-corrosion test loops. Additional active solar investigation includes projects of the Solar Federal Buildings Program and final results of the sewage sludge-drying project. Salt gradient solar pond laboratory research into predicting interface behavior is recounted in addition to a presentation of calculations from our numerical computer model. Also described is progress on the Passive Solar Heating Analysis manual, on a new passive design manual for the US Navy, on Class A performance evaluation, and on evaporative cooling potential for office buildings. Technical support to the Office of Solar Heat Technologies, US Department of Energy, is also described.

  17. Energy Division annual progress report for period ending September 30, 1993

    SciTech Connect (OSTI)

    Wolff, P.P. [ed.

    1994-07-01T23:59:59.000Z

    One of 17 research divisions at Oak Ridge National Laboratory, Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society`s understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division`s expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination.

  18. Experimental and theoretical high energy physics research. Annual progress report, September 1, 1991--September 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R & D.

  19. Energy Division annual progress report for period ending September 30, 1992

    SciTech Connect (OSTI)

    Counce, D.M.; Wolff, P.P. [eds.

    1993-04-01T23:59:59.000Z

    Energy Division`s mission is to provide innovative solutions to energy and related Issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY 1992. Energy Division`s total expenditures in FY 1992 were $42.8 million. The work is supported by the US Department of Energy, the US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 116.5 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on waste management, technology transfer, analysis of energy and environmental needs in developing countries, and civilian transportation analysis. Energy conservation technologies focus on electric power systems, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Military transportation systems conduct research for sponsors within the US military to improve the efficiency of military deployment, scheduling, and transportation coordination. Much of Energy Division`s research is valuable to other organizations as well as to sponsors. This information is disseminated by the staff`s involvement in professional and trade organizations and workshops; joint research with universities and private-sector firms; collaboration with state and local governments; presentation of work at conferences; and publication of research results in journals, reports, and conference proceedings.

  20. IEA Unveils Clean Energy Progress Report in London | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37EnergySubmit ait's LEDParticipatingIEA Unveils

  1. Linking home energy rating systems with energy efficiency financing: Progress on national and state programs

    SciTech Connect (OSTI)

    Farhar, B.C.; Collins, N.E.; Walsh, R.W.

    1996-10-01T23:59:59.000Z

    In 1991 and early 1992, the U.S. Department of Energy (DOE), in cooperation with the U.S. Department of Housing and Urban Development (HUD), established a National Collaborative on Home Energy Rating Systems (HERS) and Energy Efficient Mortgages (EEMs). The Collaborative's purpose was to involve stakeholders at a national policy level to develop a plan leading the nation toward a voluntary system linking HERS with EEMs. The National Renewable Energy Laboratory (NREL) coordinated the National Collaborative's meetings for DOE. Composed of representatives from 25 stakeholder organizations, the Collaborative, after some 14 meetings, reached consensus on two documents, both published by NREL in mg 1992: A National Program for Energy-Efficient Mortgages and Home Energy Rating Systems: A Blueprint for Action and Going National with HERS and EEMs: Issues and Impacts, The Collected Papers of the National Collaborative.

  2. Appears in Work in Progress Session, HPCA-6, Toulouse, France, January 2000 Energy-Exposed Instruction Set Architectures

    E-Print Network [OSTI]

    applications with complex control flow as we believe this type of code will become the energy bottleneckAppears in Work in Progress Session, HPCA-6, Toulouse, France, January 2000 Energy avoid features that would impede a high-performance implementation. They also avoid providing alternate

  3. Hawai'i Makes Progress Toward Clean Energy Goals with Energy Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy Completing theWhiz! | Department ofAssistance

  4. Syllabus as of 2/27/2013. Will be updated as course progresses. Energy Economics and Policy Spring 2013 ENV/ENERGY 635

    E-Print Network [OSTI]

    Ferrari, Silvia

    of markets and policies for various energy supply sources (such as petroleum, coal, natural gas, electricity are to increase your comprehension of the economic behavior of energy and environmental markets and policiesSyllabus as of 2/27/2013. Will be updated as course progresses. 1 Energy Economics and Policy

  5. A program in medium energy nuclear physics. Progress report, January 1, 1992--March 31, 1995

    SciTech Connect (OSTI)

    Berman, B.L.; Dhuga, K.S.

    1995-10-01T23:59:59.000Z

    This progress report and continuation proposal summarizes our achievements for the period from July 1, 1994 to September 30, 1995 and requests continued funding for our program in experimental medium-energy nuclear physics. The focus of our program remains the understanding of the short-range part of the strong interaction in the nuclear medium. In the past year we have focused our attention ever more sharply on experiments with real tagged photons, and we have successfully defended two new experimental proposals: Photofission of Actinide and Preactinide Nuclei at SAL and Photoproduction of the {rho} Meson from the Proton with Linearly Polarized Photons at CEBAF. (We are co-spokespersons on two previously approved Hall-B experiments at CEBAF, Photoreactions on {sup 3}He and Photoabsorption and Photofission of Nuclei.) As part of the team that is instrumenting the Photon Tagger for Hall B; we report excellent progress on the focal-plane detector array that is being built at our Nuclear Detector Laboratory, as well as progress on our plans for instrumentation of a tagged polarized-photon beam using coherent bremsstrahlung. Also, we shall soon receive a large computer system (from the SSC) which will form the basis for our new Data Analysis Center, which, like the Nuclear Detector Laboratory, will be operated under the auspices of The George Washington University Center for Nuclear Studies. Finally, during the past year we have published six more papers on the results of our measurements of pion scattering at LAMPF and of electron scattering at NIKHEF and Bates, and we can report that nearly all of the remaining papers documenting this long series of measurements are in the pipeline.

  6. Hawai'i Makes Progress Toward Clean Energy Goals with Energy...

    Office of Environmental Management (EM)

    29, 2014 - 4:50pm Addthis Set in the Waianae Valley of Oahu, Kaupuni Village is the first net-zero energy affordable housing community in Hawaii.| Photo by Ryan Siphers Group 70,...

  7. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeffrey; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-01-01T23:59:59.000Z

    www.californiaenergycircuit.net/ City of Aspen, Colorado.2002. Adoption of the 1999 Aspen/Pitkin Energy Conservationhttp://www.bpcnet.com/codes/aspen/_DATA/Title_8/20/020.html

  8. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeff

    2008-01-01T23:59:59.000Z

    www.californiaenergycircuit.net/ City of Aspen, Colorado. (2002). Adoption of the 1999 Aspen/Pitkin Energy Conservationhttp://www.bpcnet.com/codes/aspen/ DATA/Title 8/20/020.html

  9. Progress Report on U.S.-China Energy Cooperation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | Department ofPlant | Department

  10. EM Makes Progress on GAO High-Risk List | Department of Energy

    Office of Environmental Management (EM)

    Makes Progress on GAO High-Risk List EM Makes Progress on GAO High-Risk List February 14, 2013 - 12:00pm Addthis WASHINGTON, D.C. - The U.S. Government Accountability Office (GAO)...

  11. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01T23:59:59.000Z

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  12. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect (OSTI)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01T23:59:59.000Z

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  13. FY 2012 Progress Report for Energy Storage R&D | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForeword heApril 10,FY 2012

  14. FY 2011 Progress Report for Energy Storage R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexasManager6-OPAMGuidingScienceStatistical Table8Energy Storage

  15. State of the Union Highlights Clean Energy Progress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Staffing Model5 FOA Informational|Energy

  16. National Institute for Petroleum and Energy Research monthly progress report for August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    Brief progress reports are presented under the following tasks: energy production research; fuels research; and supplemental Government programs. Energy production research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuels research covers; development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government program includes: feasibility study of heavy oil recovery in the Midcontinent region: Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade PBO crude oil database; simulation analysis of steam-foam projects; DOE education initiative project; technology transfer to independent producers; compilation and analysis of outcrop data from the Muddy and Almond formations; implementation of oil and gas technology transfer initiative; horizontal well production from fractured reservoirs; chemical EOR workshop; and organization of UNITAR 6th International conference of Heavy Crude and Tar Sands.

  17. [National Institute for Petroleum and Energy Research] monthly progress report for July 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Brief progress reports are presented under the following tasks: energy production research; fuels research; and supplemental Government programs. Energy production research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuels research covers; development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the Midcontinent region: Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade PBO crude oil database; simulation analysis of steam-foam projects; DOE education initiative project; technology transfer to independent producers; compilation and analysis of outcrop data from the Muddy and Almond formations; implementation of oil and gas technology transfer initiative; horizontal well production from fractured reservoirs; chemical EOR workshop; and organization of UNITAR 6th International conference of Heavy Crude and Tar Sands.

  18. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01T23:59:59.000Z

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  19. Progress In Electromagnetics Research M, Vol. 37, 1120, 2014 Energy Optimized Wireless Sensor Network for Monitoring inside

    E-Print Network [OSTI]

    Halgamuge, Malka N.

    , lighting, cooling, humidity levels and ventilation systems in a building using the electronic devicesProgress In Electromagnetics Research M, Vol. 37, 11­20, 2014 Energy Optimized Wireless Sensor. INTRODUCTION Building Automation System (BAS) challenges to monitor and have automatic control of the security

  20. Progress in Energy and Combustion Science 34 (2008) 377416 Discrete reaction waves: Gasless combustion of solid powder mixtures

    E-Print Network [OSTI]

    Mukasyan, Alexander

    2008-01-01T23:59:59.000Z

    Progress in Energy and Combustion Science 34 (2008) 377­416 Discrete reaction waves: Gasless combustion of solid powder mixtures A.S. Mukasyana,Ã, A.S. Rogachevb a Department of Chemical Abstract This review considers a specific domain in combustion science, so-called discrete combustion waves

  1. www.elsevier.com/locate/pnucene Progress in Nuclear Energy, Vol. 43, No. I-4, pp. 313-319, 2003

    E-Print Network [OSTI]

    Pázsit, Imre

    Pergamon www.elsevier.com/locate/pnucene Progress in Nuclear Energy, Vol. 43, No. I-4, pp. 313 Department of Reactor Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden ABSTRACT is investigated. This investigation relies on 2-group diffusion theory, and all the calculations are performed

  2. Solar energy research at Los Alamos. Progress report, October 1-December 31, 1980

    SciTech Connect (OSTI)

    Reisfeld, S.K.; Neeper, D.A. (comps.)

    1981-09-01T23:59:59.000Z

    Progress is reported in the passive solar systems program with the initiation of a study on the performance of so-called sun-tempered buildings, which represent minimal departures from conventional building design and may, therefore, be more enticing to builders. Additional detailed analyses of the Balcomb house, including the thermal effects of water transpiration in the greenhouse, are reported. The convective loop experiment has shown that collector efficiency is nearly independent of the depth of the flow channels in the collector. As part of the work on active solar systems, an investigation of corrosion in liquid-cooled systems was initiated. Numerical modeling to investigate various methods for solar drying of sewage sludge is being conducted and is reported. In the solar pond program, a survey of oceanographic literature was conducted. Transport rules for oceanographic thermohaline systems are felt to be applicable to solar ponds. As a result, the existence of a boundary layer at the interface between the convecting and nonconvecting regions of a solar pond is postulated. Numerical analysis indicates that the convecting region will encroach upon the nonconvecting region when the temperature difference across the nonconvecting region exceeds a critical value. Technical Support of Department of Energy programs continued with emphasis on technical monitoring of solar collector and materials research and development projects. Activities, including special presentations, in the important area of technology transfer are reported in detail.

  3. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending December 31, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1982-1986 in which projects are organized according to fossil energy technologies. This report is divided into parts and chapters with each part describing projects related to a particular fossil energy technology. Chapters within a part provide details of the various projects associated with that technology. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program. Plans for the program will be issued annually. A draft of the program plan for FY 1982 to 1986 has been prepared and is in the review process. The implementation of these plans will be reflected by these quarterly progress reports, and this dissemination of information will bw augmented by topical or final reports as appropriate.

  4. Sensitization and quenching in the conversion of light energy into chemical energy. Progress report, February 1, 1980-January 31, 1981

    SciTech Connect (OSTI)

    Cristol, S.J.

    1980-09-01T23:59:59.000Z

    Extensive data from Stern-Volmer, Lamola-Hammond, and Ilenda-Daughenbaugh-Cristol quenching kinetics have now been accumulated on photosolvolysis in t-butyl alcohol for benzyl chloride and a number of meta and para substituted benzyl chlorides. Evidence for the existence of two triplet states, one relatively short-lived (tau 0-2 nsec) which gives solvolysis product and a second, relatively long-lived (tau 5-26 nsec), which does not give product, but instead is energy wasting, has been accumulated. The system, p-acetobenzyl chloride, has been investigated in detail. A method for quenching of singlet states for measurement of singlet lifetimes in the 100 picosecond to nanosecond range is being developed. Preliminary work on benzyl acetate photosolvolysis has been conducted. Some work on the goemetrical requirements for intra-molecular excitation transfer in bichromophoric molecules has been conducted. Several dienes related to norbornadiene have been prepared and preparative photoisomerizations to quadricyclene analogues have been carried out. Considerable attention has been given to certain di-..pi..-methane rearrangements, work on most of which is still in progress. One system, the ethyl ester of dibenzobarrelene-7-carboxylic acid, has been scrutinized in detail.

  5. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    SciTech Connect (OSTI)

    Bradley, R.A. (comp.) [comp.

    1981-12-01T23:59:59.000Z

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  6. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect (OSTI)

    Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Butterworth, St.W. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States)

    2008-07-01T23:59:59.000Z

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  7. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect (OSTI)

    Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States); Suttora, L.C. [U.S. Department of Energy, Washington, D.C. (United States); Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Stanisich, N. [Portage Environmental, Inc., Idaho Falls, ID (United States)

    2007-07-01T23:59:59.000Z

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  8. Current Trends, DC, 3/24-28/03Progress towards Energy Supported by

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    development · Recent NSTX research progress · FESAC: fusion net electrical output in 35 years · Near New Mexico U Wash U Wisc UKAEA Fusion Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokyo

  9. Progress in heavy ion drivers inertial fusion energy: From scaled experiments to the integrated research experiment

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    ION DRIVEN INERTIAL FUSION ENERGY: FROM SCALED EXPERIMENTSThe promise of inertial fusion energy driven by heavy ionleading to an inertial fusion energy power plant. The focus

  10. Progress Toward A High-Energy, High.Luminosity p+-p"Collider David V. Neuffer, CEBAF, 12000 Jefferson Avenue, Newport News VA 23606

    E-Print Network [OSTI]

    McDonald, Kirk

    subsequent n decay. The source is followed by a p-cooling system, and an accelerating system of recirculatingProgress Toward A High-Energy, High.Luminosity p+-p"Collider David V. Neuffer, CEBAF, 12000 progress has been made in development of the p+-p-eollider concept. This collider concept could permit

  11. Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

  12. Fossil Energy Program Annual Progress Report for April 1, 2002, Through March 31, 2003

    SciTech Connect (OSTI)

    Judkins, RR

    2003-06-19T23:59:59.000Z

    The mission of the Fossil Energy Program is to conduct research and development that contribute to the advancement of fossil energy technologies. The Oak Ridge National Laboratory Fossil Energy Program research and development activities, performed for the Department of Energy Assistant Secretary for Fossil Energy, cover the areas of coal, clean coal technology, gas, petroleum, and support to the Strategic Petroleum Reserve. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy Office of Fossil Energy, the DOE National Energy Technology Laboratory, the DOE Fossil Energy Clean Coal Technology Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve. The ORNL Fossil Energy Program shares with DOE Oak Ridge Operations technical management responsibility for all activities on the DOE Fossil Energy Advanced Research Materials Program. The Advanced Research Materials Program includes research at other DOE and government laboratories, at universities, and at industrial organizations.

  13. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion chen.pdf More Documents & Publications Solar Thermoelectric...

  14. Photochemical energy storage: Studies of inorganic photoassistance agents: Progress report, April 1, 1985-October 30, 1987

    SciTech Connect (OSTI)

    Wrighton, M.S.

    1987-01-01T23:59:59.000Z

    This progress report outlines research activities supported by DOE during the period April 1, 1985-March 31, 1988. The sections of the report give a brief outline of the major features of the work. Areas of work included are: photochemistry of semiconductor photoelectrodes; quinone-viologen redox polymers; high surface area biocatalysts; intramolecular electron transfer in a porphyrin-viologen molecule; and hydrophobic surface modifiers. (JDH)

  15. Tracking Progress Last updated 10/7/2013 Energy Efficiency 1

    E-Print Network [OSTI]

    Building Standards implemented by the California Energy Commission are following a path toward zero-net achieve "net zero energy" levels by 2020 for residences and by 2030 for commercial buildings. A net zero-site renewable energy system. The Energy Commission has begun a path toward a tiered approach to achieve zero net

  16. Geothermal Energy R&D Program Annual Progress Report Fiscal Year 1993

    SciTech Connect (OSTI)

    None

    1994-04-01T23:59:59.000Z

    In this report, the DOE Geothermal Program activities were split between Core Research and Industrial Development. The technical areas covered are: Exploration Technology, Drilling Technology, Reservoir Technology (including Hot Dry Rock Research and The Geyser Cooperation), and Conversion Technology (power plants, materials, and direct use/direct heat). Work to design the Lake County effluent pipeline to help recharge The Geysers shows up here for the first time. This Progress Report is another of the documents that are reasonable starting points in understanding many of the details of the DOE Geothermal Program. (DJE 2005)

  17. Accelerating progress toward operational excellence of fossil energy plants with CO2 capture

    SciTech Connect (OSTI)

    Zitney, S.; Liese, E.; Mahapatra, P.; Turton, R. Bhattacharyya, D.

    2012-01-01T23:59:59.000Z

    To address challenges in attaining operational excellence for clean energy plants, the National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training And Research (AVESTARTM). The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This paper will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of an integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture.

  18. FY 2011 Annual Progress Report for Energy Storage R&D

    Broader source: Energy.gov (indexed) [DOE]

    DEVELOPMENT, SYSTEMS ANALYSIS, AND TESTING One of the primary objectives of the Energy Storage effort is the development of durable and affordable advanced batteries and...

  19. Energy efficient louver and blind. Technical progress report for Quarter 1, 1996

    SciTech Connect (OSTI)

    Khajavi, S.

    1996-04-19T23:59:59.000Z

    This report decribes designs for energy efficient louvers and blinds for windows. The design includes silver and aluminium coated v-grooves.

  20. Energy Division annual progress report for period ending September 30, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-06-01T23:59:59.000Z

    This report describes work done by staff of the Energy Division of Oak Ridge National Laboratory during FY 1986. The work of the Division is quite diversified, but it can be divided into four research themes: (1) technology for improving the productivity of energy use; (2) technology for electric power systems; (3) analysis and assessment of energy and environmental issues, policies, and technologies; and (4) data systems research and development (R and D). The research is supported by the US Department of Energy (DOE), numerous other federal agencies, and some private organizations. 190 refs., 60 figs., 23 tabs.

  1. Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress...

    Broader source: Energy.gov (indexed) [DOE]

    energy storage research and development effort within the Vehicle Technologies Office (VTO) is responsible for researching and improving advanced batteries and ultracapacitors for...

  2. Vehicle Technologies Office: 2008 Energy Storage R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of EnergyEnergyVehicle Data| Department of Energy Energy

  3. NOON TUESDAY: Energy Department to Release New Report on Progress of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLEChallenges| Department ofEnergyDoingEnergy

  4. (National Institute for Petroleum and Energy Research) monthly progress report, February 1992

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    For this period, research is divided into Energy Production Research and Fuels Research. Energy Production Research includes reservoir characterization, microbial enhanced oil recovery, thermal EOR, alkaline flooding, gas flooding, flood process modelling, permeability and porosity research. Fuels Research included analysis of heavy crudes, and thermochemistry of organic nitrogen- and diheteroatom-containing compounds. The research of the Supplemental Government Program is also discussed.

  5. [National Institute for Petroleum and Energy Research] monthly progress report, February 1992

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    For this period, research is divided into Energy Production Research and Fuels Research. Energy Production Research includes reservoir characterization, microbial enhanced oil recovery, thermal EOR, alkaline flooding, gas flooding, flood process modelling, permeability and porosity research. Fuels Research included analysis of heavy crudes, and thermochemistry of organic nitrogen- and diheteroatom-containing compounds. The research of the Supplemental Government Program is also discussed.

  6. Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment ofConstruction| Department of Energy

  7. Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment ofConstruction| Department of Energy|

  8. Our Climate Action Progress: One-Year Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverviewEfficiencyof EnergyOokieSolarWorld receivedProgramA

  9. FY 2011 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. Recycling FYForeword „ „ „Energy

  10. FY 2011 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. Recycling FYForeword „ „Energy

  11. FY 2011 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. Recycling FYForeword „Energy

  12. FY 2011 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. Recycling FYForewordEnergy

  13. FY 2012 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1 Annual135

  14. FY 2012 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1 Annual1352

  15. FY 2012 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1

  16. FY 2012 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1Duong - DOE V.A

  17. FY 2012 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1Duong - DOE V.AA

  18. FY 2012 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1Duong - DOE

  19. FY 2012 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1Duong -

  20. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1Duong

  1. Converting energy to medical progress [nuclear medicine] | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 Clean Energy Technologies5 PPPL-page

  2. U.S.-India Partnership to Advance Clean Energy: A Progress Report (June

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation&DepartmentFurtherU.S.-ChinaIndia

  3. EPA and DOE Join States to Speed Energy Efficiency Progress in the United

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpact StatementDepartmentFrontCallChairWHITEDepartment of

  4. Energy Division annual progress report for period ending September 30, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-06-01T23:59:59.000Z

    This report covers work done during FY 1983 by the staff of the Energy Division and its subcontractors and by colleagues in other Oak Ridge National Laboratory divisions working on Energy Division projects. The work can be divided into four areas: (1) analysis and assessment, (2) models and data systems, (3) research to improve the efficiency of energy use and to improve electric power transmission and distribution, and (4) research utilization. Support came principally from the US Department of Energy (DOE), the US Nuclear Regulatory Commission, and the US Department of Defense, but also from a number of other agencies and organizations. Analysis and assessment included work on (a) environmental issues, including those deriving from the preparation of environmental impact statements; (b) energy and resource analysis; and (c) emergency preparedness. The models and data systems area involved research on evaluating and developing energy, environment, and engineering simulation models and on devising large data management systems, evaluating user data requirements, and compiling data bases. Research on improving the efficiency of energy use was focused primarily on the buildings and electricity sectors. A major effort on heat pump technology, which includes both heat-activated and electrically driven systems, continues. An important aspect of all the work was research utilization. Since the Energy Division is doing applied research, results are, by definition, intended to solve problems or answer questions of DOE and other sponsors. However, there are other users, and research utilization activities include technology transfer, commercialization efforts, outreach to state and regional organizations, and, of course, information dissemination.

  5. FY 2011 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. Recycling

  6. Sandia Energy - Wake-Imaging System Progresses to Outdoor Scaled Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia'sEvent Video

  7. Nevada`s energy research strategy. Progress report, September 30, 1991--September 29, 1992

    SciTech Connect (OSTI)

    McNelis, D.N.

    1992-10-01T23:59:59.000Z

    This document was produced by the University and Community College System of Nevada (UCCSN) under a grant from the US Department of Energy (DOE) Office of Energy Research as part of the DOE-Experimental Program for the Simulation of Competitive Research (DOE-EPSCoR). The document develops Nevada`s strategies for the UCCSN to broaden and deepen energy-related research over the next five years in hydrology sciences, environmental biology and chemistry, chemical physics, and global change. A strategy was also developed to support energy-related research with education and human resources in science, math and engineering. A key concept of these strategies is continued success under the DOE-EPSCOR program. Participation in the Environmental Restoration and Waste Management, Civilian Radioactive Waste Management, Basic Energy Science and Global Climate Change programs in collaboration with the Nevada Test Site and DOE multi-program laboratories is also part of Nevada`s strategy for success in energy-related research.

  8. Fossil Energy Program. Progress report for November 1979. [35 Wt % Illinois No. 6 coal with Wilsonville recycle solvent

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This report - the sixty-fourth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, materials engineering, a coal equipment test program, an atmospheric fluid bed combustor for cogeneration, engineering studies and technical support, process and program analysis, environmental assessment studies, magnetic beneficiation of dry pulverized coal, technical support to the TVA fluid bed combustion program, coal cogeneration/district heating plant assessment, chemical research and development, and technical support to major liquefaction projects.

  9. Fossil Energy Program annual progress report for April 1996 through March 1997

    SciTech Connect (OSTI)

    Judkins, R.R.

    1997-07-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Fossil Energy Program research and development activities, performed for the Department of Energy (DOE) Assistant Secretary for Fossil Energy, cover the areas of coal, clean coal technology, gas, petroleum, and support to the Strategic Petroleum Reserve. The coal activities include materials research and development; environmental analysis support; bioprocessing of coal to produce liquid or gaseous fuels; and coal combustion research. The work in support of gas technologies includes activities on the Advanced Turbine Systems Program, primarily in the materials and manufacturing aspects. Several activities are contributing to petroleum technologies in the areas of computational tools for seismic analysis and the use of bioconversion for the removal of impurities from heavy oils. This report contains 32 papers describing the various research activities, arranged under the following topical sections: materials research and development; environmental analysis support; bioprocessing research; coal combustion research; fossil fuel supply modeling and research; and advanced turbine systems.

  10. 2012 U.S. Department of Energy: Joint Genome Institute: Progress Report

    SciTech Connect (OSTI)

    Gilbert, David [DOE JGI Public Affairs Manager] [DOE JGI Public Affairs Manager

    2013-01-01T23:59:59.000Z

    The mission of the U.S. Department of Energy Joint Genome Institute (DOE JGI) is to serve the diverse scientific community as a user facility, enabling the application of large-scale genomics and analysis of plants, microbes, and communities of microbes to address the DOE mission goals in bioenergy and the environment. The DOE JGI's sequencing efforts fall under the Eukaryote Super Program, which includes the Plant and Fungal Genomics Programs; and the Prokaryote Super Program, which includes the Microbial Genomics and Metagenomics Programs. In 2012, several projects made news for their contributions to energy and environment research.

  11. Cleanup Progresses at the Office of River Protection | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT §Cleantech SBIR/STTRCleanup

  12. EM Continues Progress in U.S. - U.K. Collaboration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartmentDepartmentStatementEnergy EMEM CollaboratesContinues

  13. Global Fuel Economy Initiative: 50by50 Prospects and Progress | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell2008)InformationGlobal Fuel

  14. Our Climate Action Progress: One-Year Report | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and OilGeothermal and Solar Energy |HSSOrmondOur Climate

  15. FY 2011 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. Recycling FYForeword „ „

  16. FY 2011 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. Recycling FYForeword „

  17. FY 2011 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. Recycling FYForeword

  18. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Documents & PublicationsEnergy

  19. Progress Report on U.S.-China Clean Energy Cooperation | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | Department ofPlant | Department ofDepartment

  20. US Tier 2 Bin 2 Diesel Research Progress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and Battery TechnologyDepartmentIndia Joint Center forGridUS

  1. Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of EnergyEnergyVehicle Data|Report | Department

  2. Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of EnergyEnergyVehicle Data|Report | DepartmentSections 4-6

  3. HCCI - A Technical Review and Progress Report 2006 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration0-1HAWAI'I CLEAN ENERGY

  4. Progress Report Atomic Energy Commission Contract AT-(04-3)-34, Agreement No. 126

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35InformationProgramming Hybrid Workgroup

  5. Indiana University High Energy Physics, Task A. Technical progress report, 1992--1993

    SciTech Connect (OSTI)

    Brabson, B.; Crittenden, R.; Dzierba, A. [and others

    1993-10-01T23:59:59.000Z

    This report discusses research at Indians University on the following high energy physics experiments: A search for mesons with unusual quantum numbers; hadronic states produced in association with high-mass dimuons; FNAL E740 (D0); superconducting super collider; and OPAL experiment at CERN.

  6. National Institute for Petroleum and Energy Research monthly progress report for December 1990

    SciTech Connect (OSTI)

    Not Available

    1991-01-22T23:59:59.000Z

    Research programs from the National Institute for Petroleum and Energy Research (NIPER) are briefly described. Topics include enhanced recovery, studies on reservoir rock, microbial EOR, development of analytical techniques for petroleum analysis, and imaging techniques applied to fluids study in porous media. (CBS)

  7. Superconducting magnetic energy storage (SMES) program. Progress report, January 1-December 31, 1980

    SciTech Connect (OSTI)

    Rogers, J.D. (comp.)

    1981-03-01T23:59:59.000Z

    Work is reported on the development of two superconducting magnetic energy storage (SMES) units. One is a 30-MJ unit for use by the Bonneville Power Administration (BPA) to stabilize power oscillations on their Pacific AC Intertie, and the second is a 1- to 10-GWh unit for use as a diurnal load leveling device. Emphasis has been on the stabilizing system. The manufacturing phase of the 30-MJ superconducting coil was initiated and the coil fabrication has advanced rapidly. The two converter power transformers were manufactured, successfully factory tested, and shipped. One transformer reached the Tacoma Substation in good condition; the other was dropped enroute and has been returned to the factory for rebuilding. Insulation of the 30-MJ coil has been examined for high voltage effects apt to be caused by transients such as inductive voltage spikes from the protective dump circuit. The stabilizing system converter and protective energy dump system were completed, factory tested, and delivered.

  8. Advanced Energy Storage Life and Health Prognostics (INL) FY 2012 Annual Progress Report

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2012-10-01T23:59:59.000Z

    The objective of this work is to develop methodologies that will accurately estimate state-of-health (SOH) and remaining useful life (RUL) of electrochemical energy storage devices using both offline and online (i.e., in-situ) techniques through: · A statistically robust offline battery calendar life estimator tool based on both testing and simulation, and · Novel onboard sensor technology for improved online battery diagnostics and prognostics.

  9. Studies in nonlinear problems of energy. Progress report, January 1, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Matkowsky, B.J.

    1992-07-01T23:59:59.000Z

    Emphasis has been on combustion and flame propagation. The research program was on modeling, analysis and computation of combustion phenomena, with emphasis on transition from laminar to turbulent combustion. Nonlinear dynamics and pattern formation were investigated in the transition. Stability of combustion waves, and transitions to complex waves are described. Combustion waves possess large activation energies, so that chemical reactions are significant only in thin layers, or reaction zones. In limit of infinite activation energy, the zones shrink to moving surfaces, (fronts) which must be found during the analysis, so that (moving free boundary problems). The studies are carried out for limiting case with fronts, while the numerical studies are carried out for finite, though large, activation energy. Accurate resolution of the solution in the reaction zones is essential, otherwise false predictions of dynamics are possible. Since the the reaction zones move, adaptive pseudo-spectral methods were developed. The approach is based on a synergism of analytical and computational methods. The numerical computations build on and extend the analytical information. Furthermore, analytical solutions serve as benchmarks for testing the accuracy of the computation. Finally, ideas from analysis (singular perturbation theory) have induced new approaches to computations. The computational results suggest new analysis to be considered. Among the recent interesting results, was spatio-temporal chaos in combustion. One goal is extension of the adaptive pseudo-spectral methods to adaptive domain decomposition methods. Efforts have begun to develop such methods for problems with multiple reaction zones, corresponding to problems with more complex, and more realistic chemistry. Other topics included stochastics, oscillators, Rysteretic Josephson junctions, DC SQUID, Markov jumps, laser with saturable absorber, chemical physics, Brownian movement, combustion synthesis, etc.

  10. Progress in heavy ion driven inertial fusion energy: From scaledexperiments to the integrated research experiment

    SciTech Connect (OSTI)

    Barnard, J.J.; Ahle, L.E.; Baca, D.; Bangerter, R.O.; Bieniosek,F.M.; Celata, C.M.; Chacon-Golcher, E.; Davidson, R.C.; Faltens, A.; Friedman, A.; Franks, R.M.; Grote, D.P.; Haber, I.; Henestroza, E.; deHoon, M.J.L.; Kaganovich, I.; Karpenko, V.P.; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Logan, B.G.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.; Prost, L.R.; Qin, H.; Rose, D.; Sabbi, G-L.; Sangster, T.C.; Seidl, P.A.; Sharp, W.M.; Shuman, D.; Vay, J.L.; Waldron, W.L.; Welch, D.; Yu, S.S.

    2001-06-22T23:59:59.000Z

    The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents ({approx}100s Amperesheam) and ion energies ({approx}1-10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tune depressions. and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now being constructed at LBNL. The mission of the HCX will be to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial Fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned.

  11. Geothermal Energy R&D Program Annual Progress Report for Fiscal Year 1992

    SciTech Connect (OSTI)

    None

    1993-07-01T23:59:59.000Z

    Geothermal budget actual amounts are shown for FY 1989 -1992, broken down by about 15 categories. Here, the main Program categories are: Exploration Technology, Drilling Technology, Reservoir Technology, Conversion Technology (power plants and materials), Industry-Coupled Drilling, Drilling Applications, Reservoir Engineering Applications, Direct Heat, Geopressured Wells Operation, and Hot Dry Rock Research. Here the title--Industry-Coupled Drilling--covered case studies of the Coso, CA, and Dixie Valley, NV, fields, and the Long Valley Exploratory Well (which had started as a magma energy exploration project, but reported here as a hydrothermal prospect evaluation well). (DJE 2005)

  12. Progress in development of neutron energy spectrometer for deuterium plasma operation in KSTAR

    SciTech Connect (OSTI)

    Tomita, H., E-mail: tomita@nagoya-u.jp; Yamashita, F.; Nakayama, Y.; Morishima, K.; Yamamoto, Y.; Sakai, Y.; Hayashi, S.; Kawarabayashi, J.; Iguchi, T. [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Cheon, M. S. [Diagnostics Technology Team, ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Isobe, M. [The Graduate University for Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292 (Japan); National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Ogawa, K. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2014-11-15T23:59:59.000Z

    Two types of DD neutron energy spectrometer (NES) are under development for deuterium plasma operation in KSTAR to understand behavior of beam ions in the plasma. One is based on the state-of-the-art nuclear emulsion technique. The other is based on a coincidence detection of a recoiled proton and a scattered neutron caused by an elastic scattering of an incident DD neutron, which is called an associated particle coincidence counting-NES. The prototype NES systems were installed at J-port in KSTAR in 2012. During the 2012 and 2013 experimental campaigns, multiple shots-integrated neutron spectra were preliminarily obtained by the nuclear emulsion-based NES system.

  13. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForeword he ReportsHawaii

  14. LM Progressing with Uranium Mines Report to Congress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15 LM 05-15FIMS

  15. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Documents & Publications FY 2011

  16. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Documents & Publications FY

  17. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Documents & Publications FYEnergy

  18. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Documents & Publications

  19. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S.Logistical(S3TEC ) | Department of

  20. U.S. Department of Energy Fuel Cell Activities: Progress and Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarchC. U.S. Department ofEarth DayMayDepartment

  1. U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarchC. U.S. Department ofEarth

  2. U.S. Department of Energy Fuel Cell Activities: Progress and Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTestFeed Families" | Department of Energy

  3. An Update on the Hanford Site and Cleanup Progress | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta FeAuthorization| Iron is| DepartmentUpdate

  4. Stabilization of coal cleaning wastes. Fossil Energy Program. Technical progress report, 1 April 1985-30 June 1985

    SciTech Connect (OSTI)

    Burnet, G.; Gokhale, A.

    1985-07-01T23:59:59.000Z

    This report describes research work in progress on the stabilization of waste from the mining and cleaning of coal. A survey of the literature in the area of coal refuse processing has been conducted using computerized searches of the Energy Data Base and Chemical Abstracts as well as manual scanning of the Chemical Abstracts, NTIS and Energy Research Abstracts. Relevant data from these sources are being assimilated to augment the present research efforts. The coal refuse material to be studied has been analyzed for major elements, Si, Al, Fe and Ca, using atomic absorption. Qualitative information on the mineralogy of the refuse has been obtained using x-ray diffraction. Small scale pelletization and sintering tests have been conducted on the coal refuse which had been ground to different levels of fineness. Water was used as a binding agent and, in the case of coarse refuse, fly ash was added in order to form pellets. The coal refuse had to be ground to about minus 30 mesh particle size to obtain intact pellets after sintering. A laboratory fixed bed reactor system has been designed and built for processing green pellets to simulate the treatment occurring in a traveling grate furnace. The reactor is heated electrically and sequentially exposes samples to drying, ignition, combustion, tempering and cooling. 12 refs., 4 figs., 6 tabs.

  5. National Institute for Petroleum and Energy Research monthly progress report, May 1993

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    Accomplishments for the month of May are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuels Research covers: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteratom-containing compounds. Supplemental Government Program covers: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; DOE education initiative project; field application of foams for oil production symposium; technology transfer to independent producers; compilation and analysis of outcrop data from the Muddy and Almond formations; implementation of oil and gas technology transfer initiative; horizontal well production from fractured reservoirs; and chemical EOR workshop.

  6. [National Institute for Petroleum and Energy Research], monthly progress report for March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    Accomplishments for the month of April are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuels Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nigrogen- and diheteroatom-containing compounds. Supplemental Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant- enhanced alkaline flooding field project; process- engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; DOE education initiative project; field application of foams of oil production symposium; technology transfer to independent producers; compilations and analysis of outcrop data from the Muddy and Almond formations; and horizontal well production from fractured reservoirs.

  7. [National Institute for Petroleum and Energy Research] monthly progress report, January 1993

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    Accomplishments for the month of January are briefly described for the following tasks: energy production research; fuels research; and supplemental government programs. Energy production research includes: reservoir assessment and characterization; TORI research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modifications, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluid in porous media. Fuel research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen and diheteroatom containing compounds. supplemental Government program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant- enhanced alkaline flooding field project; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; DOE education initiative project; field application of foams for oil production symposium; technology transfer to independent producers; and compilations and analysis of outcrop data from the Muddy and Almond formations.

  8. (National Institute for Petroleum and Energy Research) monthly progress report, July 1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    Accomplishments for the month of July are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplement Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1. unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; analysis of the US oil resource base and estimate of future recoverable oil; DOE education initiative project; and technology transfer to independent producers.

  9. [National Institute for Petroleum and Energy Research] monthly progress report, July 1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    Accomplishments for the month of July are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplement Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1. unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; analysis of the US oil resource base and estimate of future recoverable oil; DOE education initiative project; and technology transfer to independent producers.

  10. [National Institute for Petroleum and Energy Research] monthly progress report for April 1992

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved alkaline flooding methods, surfactant flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Programs covers; field projects in microbial-enhanced waterflooding and surfactant-enhanced alkaline flooding; feasibility study of heavy oil recovery in the midcontinent region -- Oklahoma, Kansas, and Missouri; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; and process-engineering property measurements on heavy petroleum components.

  11. (National Institute for Petroleum and Energy Research) monthly progress report for April 1992

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved alkaline flooding methods, surfactant flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Programs covers; field projects in microbial-enhanced waterflooding and surfactant-enhanced alkaline flooding; feasibility study of heavy oil recovery in the midcontinent region -- Oklahoma, Kansas, and Missouri; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; and process-engineering property measurements on heavy petroleum components.

  12. [National Institute for Petroleum and Energy Research] monthly progress report for June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluid in porous media. Fuels research includes; development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; and analysis of the U. S. oil resource base and estimate of future recoverable oil.

  13. (National Institute for Petroleum and Energy Research) monthly progress report for June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluid in porous media. Fuels research includes; development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; and analysis of the U. S. oil resource base and estimate of future recoverable oil.

  14. Energy Division annual progress report for period ending September 30, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    This eighth annual report of the Division covers work done during FY 1981 (October 1, 1980, through September 30, 1981). As with these documents in the past, the format follows approximately the organizational structure of the Energy Division. Chapters 2 through 6 summarize the activities of the sections of the Division: Environmental Impact Section, headed by H.E. Zittel; Regional and Urban Studies Section, R.M. Davis; Economic Analysis Section, R.B. Shelton; Data and Analysis Section, A.S. Loebl; and Efficiency and Renewables Research Section, J.W. Michel. In addition, work on a variety of projects which cut across section lines is reported in Chapter 7, Integrated Programs. These activities are under the supervision of T.J. Wilbanks, Associate Director for the Division. Separate abstracts are included for individual projects.

  15. Recent Progress in the Research on Ion and Electron Transport in Gases at Swarm Energies

    SciTech Connect (OSTI)

    Urquijo, Jaime de [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, P.O. Box 48-3, 62251, Cuernavaca, Mor. (Mexico)

    2004-12-01T23:59:59.000Z

    This paper deals with the presentation and discussion of recent research on the transport of electrons and ions in gases at low energies. Particular emphasis is placed on electron swarm experiments related with the negative differential conductivity of electrons in some gas mixtures, and with secondary ionisation processes due to the impact of metastables with neutrals (Penning ionisation). Ion transport is firstly addressed through some recent measurements on atomic and molecular systems for which both theory and experiment have reached a high degree of agreement, and also on those in which the ranges of the density-normalized electric field intensity E/N have been increased substantiality. Also, the recent advances on the application of transport theories dealing with inelastic collisions are presented, as well as some recent measurements of negative ions and charged clusters in gaseous mixtures, leading to the successful test of Blanc's law at low fields, to the experimental mobilities.

  16. www.elsevier.com/locate/pnucene Progre,ss in Nuclear Energy, Vol. 43, No. 1-4, pp. 151-158, 2003

    E-Print Network [OSTI]

    Pázsit, Imre

    ~ Pergamon www.elsevier.com/locate/pnucene Progre,ss in Nuclear Energy, Vol. 43, No. 1-4, pp. 151 Diagnostics of core-barrel vibrations has traditionally been made by use of ex- vessel neutron detector were tested on some measurements taken in the Ringhals PWRs. The results confirm the validity

  17. www.elsevier.com/locate/pnucene Progress in Nuclear Energy, Vol. 43, No. 1-4, pp. 429-436, 2003

    E-Print Network [OSTI]

    Pázsit, Imre

    Pergamon www.elsevier.com/locate/pnucene Progress in Nuclear Energy, Vol. 43, No. 1-4, pp. 429. INTRODUCTION Monitoring of criticality in low-power subcritical systems has gained some renewed interest to be run in a subcritical mode, continuous monitoring of the margins to criticality is essential for safe

  18. Donaldson Active Regeneration PM System

    Broader source: Energy.gov (indexed) [DOE]

    Modeling - FEA * Failure Mode Analysis & Life Prediction - Reliability Analysis * FMEA, Fault Tree Analysis, Risk Assessment, etc. Active System Durability & Reliability...

  19. Medium energy nuclear physics research. Progress report, July 1, 1987--September 30, 1988

    SciTech Connect (OSTI)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1988-09-01T23:59:59.000Z

    The UMass group has concentrated on using electromagnetic probes, particularly the electron in high-energy scattering experiments at the Stanford Liner Accelerator Center (SLAC). Plans are also being made for high energy work at the Continuous Beam Accelerator Facility (CEBAF). The properties of this accelerator should permit a whole new class of coincidence experiments to be carried out. At SLAC UMass has made major contributions toward the plans for a cluster-jet gas target and detector system at the 16 GeV PEP storage ring. For the future CEBAF accelerator, tests were made of the feasibility of operating wire drift chambers in the vicinity of a continuous electron beam at the University Illinois microtron. At the same time a program of studies of the nuclear structure of more complex nuclei has been continued at the MIT-Bates Linear Accelerator Center and in Amsterdam at the NIKHEF-K laboratory. At the MIT-Bates Accelerator, because of an unforeseen change in beam scheduling as a result of problems with the T{sub 20} experiment, the UMass group was able to complete data acquisition on experiments involving 180{degrees} elastic magnetic scattering on {sup 117}Sn and {sup 41}Ca. A considerable effort has been given to preparations for a future experiment at Bates involving the high-resolution threshold electrodisintegration of the deuteron. The use of these chambers should permit a high degree of discrimination against background events in the measurement of the almost neutrino-like small cross sections that are expected. In Amsterdam at the NIKHEF-K facility, single arm (e,e{prime}) measurements were made in November of 1987 on {sup 10}B in order to better determine the p{sub 3/2} wave function from the transition from the J{sup pi} = 3{sup +} ground state to the O{sup +} excited state at 1.74 MeV. In 1988, (e,e{prime}p) coincidence measurements on {sup 10}B were completed. The objective was to obtain information on the p{sub 3/2} wave function by another means.

  20. Fusion Energy Division annual progress report period ending December 31, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-09-01T23:59:59.000Z

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

  1. Superconducting magnetic energy storage (SMES) program. Progress report, January 1-December 31, 1984

    SciTech Connect (OSTI)

    Rogers, J.D. (comp.)

    1985-05-01T23:59:59.000Z

    The 30 MJ, 10 MW superconducting magnetic energy storage (SMES) system was devised to interact in the Western US Power System as an alternate means to damp unstable oscillations at 0.35 Hz on the Pacific HVAC Intertie. The SMES unit was installed at the Tacoma Substation of the Bonneville Power Administration (BPA). The operating limits of the 30 MJ SMES unit were established, and different means of controlling real and reactive power were tested. The unit can follow a sinusoidal power demand signal with an amplitude of up to 8.6 MW with the converter working in a 12 pulse mode. When the converter operates in the constant VAR mode, a time varying real power demand signal of up to 5 MW can be met. Experiments showed that the Pacific ac Intertie has current and reactive power variations of the same frequency as the modulating frequency of the SMES device. Endurance tests were run to assess the reliability of the SMES subsystems with a narrow band noise input, which is characteristic of the modulation signal for stabilizer operation. During the endurance tests, parameters of the ac power system were determined. Converter short circuit tests, load tests under various control conditions, dc breaker tests for coil current interruption, and converter failure mode tests were conducted. The experimental operation of the SMES system was concluded and the operation was terminated in early 1984.

  2. Organic photochemical storage of solar energy. Progress report, February 1, 1980-January 31, 1981

    SciTech Connect (OSTI)

    Jones, G. II

    1980-03-02T23:59:59.000Z

    The valence isomerization of organic compounds has been studied with emphasis on mechanisms involving photoionization of electron donor-acceptor pairs. Norbornadienes have been shown to undergo rearrangement as the result of quenching fluorescent sensitizers. A mechanism involving the formation of radical-ion pairs in polar solvent and triplet states of either sensitizer or quencher is supported by flash photolysis results and the observation of chemically induced dynamic nuclear polarization. Valence photoisomerization of charge-transfer complexes of quadricyclenes and hexamethyl(Dewar benzene) has been studied, including the finding of a novel wavelength dependence of quantum yield of photoionization. In a model study projections have been made, using a computerized analysis of kinetic parameters, of the dependence on temperature of quantum efficiencies for photoreactions involving electron or energy transfer. Preliminary results are reported concerning a new investigation of the photodecomposition of water using organic redox reagents. Electron donor-acceptor pairs (dicarbonyl compounds and amines or CT complexes of methyl viologen) have been photolyzed in aqueous solution with the evolution of hydrogen in the presence of a platinum catalyst.

  3. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01T23:59:59.000Z

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  4. Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2010 Annual Progress Report

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

    2011-01-31T23:59:59.000Z

    Marine and Hydro Kinetic devices (MHK) are being widely studied as a source of renewable energy. The Marrowstone Island site is a potential location for installing MHK devices because the tidal currents observed that are sufficient for power generation. In order to quantify the effects of turbulence on MHK devices and the surrounding environment at this site, a prelimi- nary fluid flow field study was conducted here by the Pacific Northwest National Lab (PNNL) in collaboration with the Applied Physics Lab at the University of Washington (APL-UW). This study entailed continuous The Acoustic Doppler Velocimetry (ADV), Acoustic Doppler Current Profiler (ADCP) and Conductivity, Temperature and Depth (CTD) measurements from May 4, 2010 to May 22, 2010, in order to obtain information about turbulence effects during different tidal conditions. The instruments used for collecting the above measurements were deployed at the Marrowstone site using a R/V Jack Robertson provided by the University of Washington (APL-UW). All the measurements were taken at the site with an average depth of 22 m below the sea surface. ADV acquired velocity data at 32 Hz sampling frequency at 4.6 m above the seabed, and ADCP acquired velocity profile data at a sampling frequency of 2 Hz, from a height of 2.6 m above the seabed to the surface with a bin resolution of 0.5 m. The ADV and ADCP measurements showed that the horizontal velocity had a turbulence intensity of 10%. Further- more, the spectral analysis from ADV measurements showed that the flow is fully turbulent with -5/3 slope in the inertial sub-range of the spectra. Moreover, the temporal-frequency analysis showed presence of ”eddies” at high frequencies. These preliminary studies provided initial flow field and site characteristics, showed the limitations of the instruments used and highlighted changes that need to be made in the experimental setup for deployment in FY-2011 studies.

  5. Flux of energy and essential elements through the continental shelf ecosystem. Progress report

    SciTech Connect (OSTI)

    Pomeroy, L.R.

    1981-11-30T23:59:59.000Z

    There are three distinct but not mutually exclusive areas of research in this contract, studies of intrusions of the west wall of the Gulf Stream onto the outer continental shelf, studies of the flux of materials across nearshore density fronts, and advances in understanding of the planktonic food web of the continental shelf. Studies of frontal events on the outer and inner continental shelf involve distinctive physical and chemical regimes and have proven to require distinctive biological approaches. The studies of the food web run through our work on both of the frontal regimes, but certain aspects have become subjects in their own right. We have developed a simulation model of the flux of energy through the continental shelf food web which we believe to be more realistic than previous ones of its type. We have examined several of the many roles of dissolved organic compounds in sea water which originate either from release by phytoplankton, digestive processes or metabolites of zooplankton, or extracellular digestion of microorganisms. Methods have been developed under this contract to measure both the chelating capacity of naturally occurring organic materials and the copper concentration in the water. It has been possible to characterize the effects, both toxic and stimulatory, of copper on photosynthesis of naturally occurring phytoplankton populations. It is possible to characterize in considerable detail the course of biological events associated with meanders of the Gulf Stream. We are now in a position to explain the limits to biological productivity of the outer continental shelf of the southeastern US and the reasons why that biological production moves through the food web in the characteristic way that it does.

  6. Progress Energy- Net Metering

    Broader source: Energy.gov [DOE]

    In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made available by the regulated electric utilities; the order incorporates a net metering...

  7. PROGRESS REPORT CONTINUATION REQUEST

    E-Print Network [OSTI]

    Jones, William D.

    PROGRESS REPORT and CONTINUATION REQUEST SUBMITTED TO THE U.S. DEPARTMENT OF ENERGY BY Prof (year 2): $135,000 Unexpended Balance from Previous Year: $0 #12;2 Abstract of FY 2005 Research City. Prof. Odile Eisenstein and Dr. Eric Clot at the University of Montpellier, France Overview

  8. Hydrogen and Fuel Cell Activities, Progress, and Plans: August...

    Energy Savers [EERE]

    Cell Activities, Progress, and Plans: August 2007 to August 2010 Hydrogen and Fuel Cell Activities, Progress, and Plans: August 2007 to August 2010 The Department of Energy (DOE)...

  9. Application of microfabrication technology to thermionic energy conversion. Progress report No. 5, August 1, 1980-October 31, 1980

    SciTech Connect (OSTI)

    Brodie, I.; Shepherd, C.

    1980-11-14T23:59:59.000Z

    Considerable effort was directed toward the fabrication of a micron-spaced thermionic converter. In the process, a new technique has evolved which appears more promising and has been investigated theoretically. In both techniques, electrodes of similar differential thermal expansions are utilized to prevent shear stresses from disrupting the spacing pillars. The newer technique has additional advantages that simplify the fabrication of the diode structure, thus making it more practical. Progress is described.

  10. Engineering and Physics Optimization of Breed and Burn Fast Reactor Systems; NUCLEAR ENERGY RESEARCH INITIATIVE (NERI) QUARTERLY PROGRESS REPORT

    SciTech Connect (OSTI)

    ERROR, [value too long for type character varying(50); Hejzlar, Pavel; Yarsky, Peter; Driscoll, Mike; Wachs, Dan; Weaver, Kevan; Czerwinski, Ken; Pope, Mike; Parry, James; Marshall, Theron D.; Davis, Cliff B.; Crawford, Dustin; Hartmann, Thomas; Saha, Pradip

    2005-01-31T23:59:59.000Z

    This project is organized under four major tasks (each of which has two or more subtasks) with contributions among the three collaborating organizations (MIT, INEEL and ANL-West): Task A: Core Physics and Fuel Cycle; Task B: Core Thermal Hydraulics; Task C: Plant Design; Task D: Fuel Design The lead PI, Michael J. Driscoll, has consolidated and summarized the technical progress submissions provided by the contributing investigators from all sites, under the above principal task headings.

  11. Tracking Progress Last updated 6/2/2014 Current and Expected Energy From Coal for California 1

    E-Print Network [OSTI]

    in California load during 2012. A little over 93 percent of this coal-based energy came from power plants of this coal-based energy came from power plants located outside California. Nearly all these energy imports 2007 to 2012, energy from in-state coal and petroleum (pet) coke plants declined by 62 percent

  12. Woody biomass plots at Sierra Foothill Range Field Station. RichardB. Standiford o Dean R. Donaldson u Roy M. Sachs 0 Janine K. Hasey

    E-Print Network [OSTI]

    Standiford, Richard B.

    and rapidly increasing energy costs,wood cameto be viewed asa po- tential alternative source of renewable with the effortsof several state and federal agencies, and a cooperative group of interested private and public energy. Firewood and co- generation technology, two already-developed uses of wood for energy

  13. Theoretical aspects of electroweak and other interactions in medium energy physics. Interim progress report, November 20, 1992

    SciTech Connect (OSTI)

    Mukhopadhyay, N.C.

    1992-12-01T23:59:59.000Z

    Progress in the study of electroweak structure of baryon resonances and in the analysis of data for pion and eta photoproduction. Four graduate students are currently associated with the program. One has obtained his Ph.D. degree in the year under review. Six research articles have been completed in this year, and five conference contributions have been made. Collaborations with scientists from Illinois, Los Alamos, Westinghouse, William and Mary, Yale, Mainz (Germany), Saskatchewan (Canada) and TRIUMF (Canada) continue, along with participation in collaborations at CEBAF.

  14. Recovery Act Progress Update: Reactor Closure Feature

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01T23:59:59.000Z

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  15. Recovery Act Progress Update: Reactor Closure Feature

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14T23:59:59.000Z

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  16. ISABELLE: a progress report

    SciTech Connect (OSTI)

    Hahn, H

    1980-01-01T23:59:59.000Z

    This paper discusses the ISABELLE project, which has the objective of constructing a high-energy proton colliding beam facility at Brookhaven National Laboratory. The major technical features of the intersecting storage accelerators with their projected performance are described. Application of over 1000 superconducting magnets in the two rings represents the salient characteristic of the machine. The status of the entire project, the technical progress made so far, and difficulties encountered are reviewed.

  17. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January--March 1997

    SciTech Connect (OSTI)

    Jubin, R.T.

    1998-01-01T23:59:59.000Z

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division (CTD) at Oak Ridge National Laboratory (ORNL) during the period January--March 1997. Created in March 1997 when the CTD Chemical Development and Energy Research sections were combined, the Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within seven major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Solution Thermodynamics, and Biotechnology Research. The name of a technical contact is included with each task described in the report, and readers are encouraged to contact these individuals if they need additional information.

  18. Quarterly technical progress report - base program on energy related research. Quarterly report, February 1--April 30, 1994

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    Research is presented on oil and gas technologies, advanced systems for fossil fuels, environmental technologies for remediation and waste management, applied energy science on heavy oil and plastics coprocessing, and fossil fuel and hydrocarbon conversion using hydrogen rich plasma.

  19. Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency: Preprint

    SciTech Connect (OSTI)

    Schott, M.; Scheib, J.; Long, N.; Fleming, K.; Benne, K.; Brackney, L.

    2012-06-01T23:59:59.000Z

    Many studies have reported energy savings after installing a dashboard, but dashboards provide neither individual feedback to the occupant nor the ability to report individual comfort. The Building Agent (BA) provides an interface to engage the occupant in a conversation with the building control system and the building engineer. Preliminary outcomes of the BA-enabled feedback loop are presented, and the effectiveness of the three display modes will be compared to other dashboard studies to baseline energy savings in future research.

  20. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    SciTech Connect (OSTI)

    Jubin, R.T.

    1999-06-01T23:59:59.000Z

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  1. Progress Update

    Broader source: Energy.gov (indexed) [DOE]

    of energy efficiency projects on campus. Utilizing previously restricted funds, the University was able to create a revenue-neutral transaction that did not affect the debt...

  2. Quarterly Progress Report

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Foundenhancer activity than FINAL Progress Report Project Title:

  3. Quarterly Progress Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITY AEROSOL:QuantumApril 2015Quarterly Progress

  4. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998

    SciTech Connect (OSTI)

    Jubin, R.T.

    1999-03-01T23:59:59.000Z

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

  5. Displacement of diesel fuel with wind energy in rural Alaskan villages. Final progress and project closeout report

    SciTech Connect (OSTI)

    Meiners, Dennis; Drouhilet, Steve; Reeve, Brad; Bergen, Matt

    2002-03-11T23:59:59.000Z

    The basic concept behind this project was to construct a wind diesel hybrid power system which combines and maximizes the intermittent and variable energy output of wind turbine(s) with diesel generator(s) to provide continuous high quality electric power to weak isolated mini-grids.

  6. Properties of nuclei and elementary particles at low and intermediate energies. Progress report, July 1992--August 1993

    SciTech Connect (OSTI)

    Boehm, F.

    1993-12-31T23:59:59.000Z

    Work reported relate to: a 12 ton low energy neutrino detector for neutrino oscillation studies at the San Onofre Reactor Station; new limits on the 17 keV neutrino; time reversal and parity tests for hindered nuclear gamma transitions; and theory of nuclear structure and its application.

  7. Providing solutions to energy and environmental problems. Quarterly technical progress report, April 1, 1997--June 30, 1997

    SciTech Connect (OSTI)

    Not Available

    1997-07-01T23:59:59.000Z

    The Jointly Sponsored Research Program emphasizes technology commercialization and continues to be highly successful and supported strongly and enthusiastically by WRI`s industrial clientele. All of the available Department of Energy (USDOE) funding for each of the first seven years has been committed to projects. This report provides fossil fuel project descriptions and environmental programs related to the monitoring in those programs.

  8. Providing solutions to energy and environmental problems. Quarterly technical progress report, July 1, 1997--September 30, 1997

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The Jointly Sponsored Research Program emphasizes technology commercialization and continues to be highly successful and supported strongly and enthusiastically by WRI`s industrial clientele. All of the available Department of Energy (USDOE) funding for each of the first seven years has been committed to projects. This report provides a description of projects and expenditures on fossil projects and environmental monitoring.

  9. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    SciTech Connect (OSTI)

    Jubin, R.T.

    1998-07-01T23:59:59.000Z

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  10. Providing solutions to energy and environmental problems. Quarterly technical progress report, October 1, 1997--December 31, 1997

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The Jointly Sponsored Research Program emphasizes technology commercialization and continues to be highly successful and supported strongly and enthusiastically by WRI`s industrial clientele, All of the available Department of Energy (USDOE) funding for each of the first seven years has been committed to projects. All available FY 97 funding was obligated in June 1997. This report describes funding on fossil fuels research projects and environmental monitoring programs related to the development of fossil fuels programs.

  11. Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R. [comps.

    1992-12-01T23:59:59.000Z

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  12. ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGENDDepartmentSeptember 20092009 The U.S.

  13. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    SciTech Connect (OSTI)

    Jubin, R.T.

    1999-02-01T23:59:59.000Z

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

  14. Recent Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaising fundsRealPrintingRecap:RecentRecentRecent

  15. Large scale solubilization of coal and bioconversion to utilizable energy. Technical progress report, January 1--March 31, 1996

    SciTech Connect (OSTI)

    Mishra, N.C.

    1996-05-01T23:59:59.000Z

    In order develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the authors plan to clone the genes encoding Neurospora protein that facilitates depolymerization of coal. They also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the products of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein. Results are presented for the cloning of genes for Neurospora CSA-protein.

  16. Application of microfabrication technology to thermionic energy conversion. Progress report No. 6, November 1, 1980-January 31, 1981

    SciTech Connect (OSTI)

    Brodie, I.; Shepherd, C.; Spindt, C.A.

    1981-03-09T23:59:59.000Z

    Effort was directed toward the fabrication of a micron-spaced thermionic converter diode. This technique demonstrated that interelectrode spacings down to 1.5 ..mu..m could be obtained. Several methods of duplicating the emitter and collector surfaces were also investigated. Two new techniques are proposed; both stem from an earlier idea of using evaporation, photolithography, and etching techniques. These two fabrication methods yielded a one-piece diode structure with a thick-film copper collector, eliminating the need to physically duplicate the electrode surfaces and realign the electrodes. Effort has also been directed toward a more detailed theoretical analysis of micron-spaced thermionic converter performance. Taking into account heat losses through the interelectrode support structure, it is likely that the maximum energy conversion efficiency may be greatest at a spacing somewhat larger than 1 micron (..mu..m), but less than 10 ..mu..m.

  17. Photochemical energy conversion by membrane-bound photoredox systems. Progress report, July 1, 1989--March 1, 1992

    SciTech Connect (OSTI)

    Tollin, G.

    1992-03-01T23:59:59.000Z

    Most of our effort during the past grant period has been directed towards investigating electron transfer processes involving redox proteins at lipid bilayer/aqueous interfaces. This theme, as was noted in our previous three year renewal proposal, is consistent with our goal of developing biomimetic solar energy conversion systems which utilize the unique properties of biological electron transfer molecules. Thus, small redox proteins such as cytochrome c, plastocyanin and ferredoxin function is biological photosynthesis as mediators of electron flow between the photochemical systems localized in the membrane, and more complex soluble or membrane-bound redox proteins which are designed to carry out specific biological tasks such as transbilayer proton gradient formation, dinitrogen fixation, ATP synthesis, dihydrogen synthesis, generation of strong reductants, etc. In these studies, we have utilized two principal experimental techniques, laser flash photolysis and cyclic voltammetry, both of which permit direct measurements of electron transfer processes.

  18. Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program

    SciTech Connect (OSTI)

    Judkins, R.R.; Cole, N.C. [comps.

    1992-04-01T23:59:59.000Z

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  19. Progress in Nuclear Energy. 1982, Vol. 9, pp. 223-232 007%6530/82/03223-1055.00/0 Printed in Great Britain. All rights reserved. Copyright 1982 Pergamon Press Ltd

    E-Print Network [OSTI]

    Pázsit, Imre

    BASED ON RESEARCH REACTORS: THEORY AND EXPERIMENT I. PAZSIT and I. Lux Central Research InstituteProgress in Nuclear Energy. 1982, Vol. 9, pp. 223-232 007%6530/82/03223-1055.00/0 Printed in Great for Physics, H-1525 Budapest 114, P. O. Box 49, Hungary ABSTRACT A concept for research reactor based noise

  20. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1999

    SciTech Connect (OSTI)

    Jubin, R.T.

    1999-11-01T23:59:59.000Z

    This reports summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January--March 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within eight major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included column loading of cesium from Melton Valley Storage Tank supematants using an engineered form of crystalline silicotitanate. A second task was to design and construct a continuously stirred tank reactor system to test the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium, and transuranics from supematant. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed, including issues such as pipeline plugging and viscosity measurements. Investigation of solution conditions required to dissolve Hanford saltcake was also continued. MSRE Remediation Studies focused on recovery of {sup 233}U and its transformation into a stable oxide and radiolysis experiments to permit remediation of MSRE fuel salt. In the area of Chemistry Research, activities included studies relative to molecular imprinting for use in areas such as selective sorption, chemical sensing, and catalysis, as well as spectroscopic investigation into the fundamental interaction between ionic solvents and solutes in both low- and high-temperature ionic liquids. In the area of Separations and Materials Synthesis, fundamental studies explored the use of electromagnetic fields to enhance transport processes in multiphase separations; investigated nucleation and particle growth for the synthesis, characterization, application, and processing of ultrafine particles; and examined the use of electric fields to modify phase equilibria in multiphase separations processes. Other efforts involved enhanced oxidation of organic pollutants in aqueous solutions by applying electric fields to form microbubbles and the use of electric fields to improve distillation efficiency. Research was also directed toward the use of ozonation to treat water-soluble organics, the application of electrical and acoustic methods to remediate aerosol problems, and the development of improved means of decontamination using aqueous surfactant cleaners. Fluid Structure and Properties included molecular-based studies of systems with supercritical solvents, a multi-institutional initiative to develop a molecular understanding of reverse miscelles in supercritical carbon dioxide through experimentation and molecular simulation calculations, and molecular-based prediction of the structure and properties of long-chain molecules undergoing shear flow.

  1. Progress Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program Direction andPrograms and1999-2000 CONTENTS

  2. Progress Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program Direction andPrograms and1999-2000

  3. In progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News Community Connections: Your linkIn

  4. In progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News Community Connections: Your linkInNo data

  5. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the U.S. Department of Energy. Quarter ending December 31, 1996

    SciTech Connect (OSTI)

    Davis, G.; Mansur, D.L.; Ruhter, W.D.; Strauch, M.S.

    1997-01-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the First Quarter of Fiscal Year 1997 (October through December, 1996). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in four areas: (1) safeguards technology; (2) safeguards and material accountability; (3) computer security--distributed systems; and (4) physical and personnel security support. The remainder of this report describes the activities in each of these four areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  6. Lawrence Livermore National Laboratory Safeguards and Security quarterly progress report to the US Department of Energy: Quarter ending December 31, 1993

    SciTech Connect (OSTI)

    Davis, G.; Mansur, D.L.; Ruhter, W.D.; Steele, E.; Strait, R.S.

    1994-01-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the first quarter of fiscal year 1994 (October through December, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: (1) Safeguards Technology, (2) Safeguards and Decision Support, (3) Computer Security, (4) DOE Automated Physical Security, and (5) DOE Automated Visitor Access Control System. This report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  7. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the US Department of Energy: Quarter ending September 30, 1993

    SciTech Connect (OSTI)

    Ruhter, W.D.; Strait, R.S.; Mansur, D.L.; Davis, G.

    1993-10-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the fourth quarter of Fiscal Year 1993 (July through September, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: Safeguards Technology, Safeguard System Studies, Computer Security, DOE Automated Physical Security and DOE Automated Visitor Access Control System. The remainder of this report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  8. Technical progress report

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report summarizes experimental and theoretical work in basic nuclear physics carried out between October 1, 1995, the closing of our last Progress Report, and September 30, 1996 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contracts DE-FG03-93ER-40774 and DE-FG03-95ER-40913 with the United States Department of Energy. The experimental contract supports broadly-based experimental research in intermediate energy nuclear physics. This report includes results from studies of Elementary Systems involving the study of the structure of the nucleon via polarized high-energy positron scattering (the HERMES experiment) and lower energy pion scattering from both polarized and unpolarized nucleon targets. Results from pion- and kaon-induced reactions in a variety of nuclear systems are reported under the section heading Meson Reactions; the impact of these and other results on understanding the nucleus is presented in the Nuclear Structure section. In addition, new results from scattering of high-energy electrons (from CEBAF/TJNAF) and pions (from KEK) from a broad range of nuclei are reported in the section on Incoherent Reactions. Finally, the development and performance of detectors produced by the laboratory are described in the section titled Instrumentation.

  9. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    forecasting. The Passive Solar Analysis and Design Group hasThe design techniques include active solar, passive solar,

  10. Progress in ELENA Design

    E-Print Network [OSTI]

    Bartmann, W; Breuker, H; Butin, F; Carli, C; Eriksson, T; Kersevan, R; Maury, S; Pasinelli, S; Tranquille, G; Vanbavinckhove, G; Oelert, W

    2013-01-01T23:59:59.000Z

    The Extra Low Energy Antiproton ring (ELENA) is a small ring at CERN which will be built to increase substantially the number of usable (or trappable) antiprotons delivered to experiments for studies with antihydrogen and antiprotonic nuclei. The report shows the progress in the ELENA design. The choice of optics and ring layout inside the AD hall is given. The main limitations for beam parameters at extraction like intra beam scattering and tune shift due to space charge are discussed. The electron cooler plays a key role in ELENA both for efficient deceleration as well as for preparing extracted beam with parameters defined by the experiments. The other important systems like beam vacuum, beam instrumentations and others are reviewed as well.

  11. Progress and Accomplishments in Hydrogen and Fuel Cells

    Energy Savers [EERE]

    Department of Energy's (DOE's) efforts have advanced the state of the art of hydrogen and fuel cell technologies-making significant progress toward overcoming key chal- lenges to...

  12. Overview and Progress of the Applied Battery Research (ABR) Activity

    Broader source: Energy.gov (indexed) [DOE]

    Overview and Progress of the Applied Battery Research (ABR) Activity Peter Faguy Energy Storage R&D Hybrid and Electric Systems Team Vehicle Technologies Program Tuesday, May 10,...

  13. PVUSA progress report, 1991

    SciTech Connect (OSTI)

    Ellyn, W. [ed.] [Nesbit (William) and Associates, Santa Rosa, CA (United States); Jennings, C. [ed.] [Pacific Gas and Electric Co., San Ramon, CA (United States)

    1991-12-31T23:59:59.000Z

    Photovoltaics for Utility Scale Applications (PVUSA) is a national public-private partnership that is assessing and demonstrating the viability of utility-scale photovoltaic (PV) electric generating systems. PVUSA participants include Pacific Gas & Electric (PG&E), the US Department of Energy (DOE), the Electric Power Research Institute (EPRI), the California Energy Commission (CEC), and eight utilities and other agencies. This report updates the progress of the PVUSA project, reviews the status and performance of the various PV installations during 1991, and summarizes key findings and conclusions from work to date. PVUSA offers utilities hands-on experience needed to evaluate and utilize maturing PV technology. The project also provides manufacturers a test bed for their products, encourages technology improvement and cost reductions in PV modules and other system components, and establishes communication channels between utilities and the PV industry. The project consists of two types of demonstrations: Emerging Module Technology (EMT) arrays, which are unproven but promising state-of-the-art PV technologies in 20-kW (nominal) arrays; and Utility Scale (US) systems, which represent more mature PV technologies in 200- to 500-kW turnkey systems.

  14. Effects of Electromagnetic Fields on Fish and Invertebrates Task 2.1.3: Effects on Aquatic Organisms Fiscal Year 2012 Progress Report Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Woodruff, Dana L.; Cullinan, Valerie I.; Copping, Andrea E.; Marshall, Kathryn E.

    2013-05-20T23:59:59.000Z

    Energy generated by the world’s oceans and rivers offers the potential to make substantial contributions to the domestic and global renewable energy supply. However, the marine and hydrokinetic (MHK) energy industry faces challenges related to siting, permitting, construction, and operation of pilotand commercial-scale facilities. One of the challenges is to understand the potential effects to marine organisms from electromagnetic fields, which are produced as a by-product of transmitting power from offshore to onshore locations through underwater transmission cables. This report documents the progress of the third year of research (fiscal year 2012) to investigate environmental issues associated with marine and hydrokinetic energy (MHK) generation. This work was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) Wind and Water Technologies Office. The report addresses the effects of electromagnetic fields (EMFs) on selected marine species where significant knowledge gaps exist. The species studied this fiscal year included one fish and two crustacean species: the Atlantic halibut (Hippoglossus hippoglossus), Dungeness crab (Metacarcinus magister), and American lobster (Homarus americanus).

  15. Quarterly Technical Progress Report *** SAMPLE ***

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Foundenhancer activity than FINAL Progress Report Project

  16. Texas LoanSTAR Monitoring and Analysis Program Progress Report

    E-Print Network [OSTI]

    Britton, A. J.; Heffington, W. M.; Nutter, D. W.

    1990-01-01T23:59:59.000Z

    Darin W. Nutter Energy Systems Laboratory Mechanical Engineering Texas A&M University College Station, Texas July 1990 Task 1. Audit Review and Assignments Progress Report for MARC Meeting EXECUTIVE SUMMARY Eleven audit reports have been accepted... reports and reviewing overall auditing progress. REPORT OF PROGRESS Since January 1, 1989, energy audits of 19.6 million square feet of building space and 43 facilities or systems have been assigned to the nine consulting engineering firms which...

  17. Nuclear Energy Research Initiative (NERI) Program Continuous Fiber Wound Ceramic Composite (CFCC) for Commercial Water Reactor Fuel-Technical Progress Report

    SciTech Connect (OSTI)

    NONE

    2000-07-11T23:59:59.000Z

    This project began on August 1, 1999. As of July 1, 2000, the progress has been in materials production, test planning, testing facility design & instruction, and calibration. One new subcontractor was added to provide a solution to the CFCC material permeability issue (Northwestern University). This is in addition to the three subcontracts that were previously in place (McDermott Technologies Inc. for continuous fiber reinforced ceramic tubing fabrication, Swales Aerospace for LOCA testing of tubes, and Massachusetts Institute of Technology for In Reactor testing of tubes).

  18. South Carolina DOE/EPSCoR energy-related graduate research traineeships. [Progress Performance Report for period September 30, 1991 to September 29, 1992

    SciTech Connect (OSTI)

    Durig, J.R.

    1992-01-01T23:59:59.000Z

    The three primary objectives of the DOE/EPSCOR Traineeship Grant are to increase the number of US graduates with training in energy-related disciplines; to provide training and research experience through active participation in on-going energy research programs; and to ensure that the trainees obtain a broader understanding of energy-related research and technology.

  19. South Carolina DOE/EPSCoR energy-related graduate research traineeships. Progress performance report, September 30, 1991--September 29, 1992

    SciTech Connect (OSTI)

    Durig, J.R.

    1992-09-01T23:59:59.000Z

    The three primary objectives of the DOE/EPSCOR Traineeship Grant are to increase the number of US graduates with training in energy-related disciplines; to provide training and research experience through active participation in on-going energy research programs; and to ensure that the trainees obtain a broader understanding of energy-related research and technology.

  20. Progresses in Ab Initio QM/MM Free Energy Simulations of Electrostatic Energies in Proteins: Accelerated QM/MM Studies of pKa, Redox Reactions and Solvation Free Energies

    E-Print Network [OSTI]

    Kamerlin, Shina C. L.

    2009-01-01T23:59:59.000Z

    an acid in a protein and water respectively, ? G solv w and? G solv p represent the difference in solvation energy ofin protein, (that is, ? G solv w ( AH ) ). Subsequently, 1

  1. Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Home Energy Use Poneman visits Houston to review progress of CenterPoint Energy's Smart MeterIntelligent Grid Deployment November 17, 2010 Department of Energy Announces...

  2. MCCAA (Mercer County Community Action Agency) residential ESCO (Energy Service Company) market study: (Technical progress report for the period January 1, 1986 through December 31, 1986)

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The Mercer County Community Action Agency has become interested in the possibility of expanding the scope of their energy conservation activities to the larger population, those homeowners whose income disqualifies them for publicly-funded weatherization programs, but who may be willing to purchase similar energy reduction and comfort enhancing services from a private entity. This market study attempts to describe the potential market for residential energy management services in Mercer County and to offer relevant strategies for developing a for-profit, residential energy service company capable of responding to the specific market conditions uncovered.

  3. Nuclear Energy Research Initiative (NERI) Program Continuous Fiber Wound Ceramic Composite (CFCC) for Commercial Water Reactor Fuel-Technical Progress Report

    SciTech Connect (OSTI)

    Feinroth, Herbert

    2000-01-01T23:59:59.000Z

    Our program began on August 1, 1999. As of January 1, 2000, the progress has been in contracting, materials selection, and test planning. All 3 subcontracts are now in place (McDermott Technologies Inc. for ceramic fabrication, Swales Aerospace for LOCA testing, and Massachusetts Institute of Technology for in Reactor testing). With regard to material selection, we visited McDermott Technologies on December 6, 1999 to discuss the progress on Materials Selection and issues regarding Permeability Reduction in CFCC materials. We are evaluating several options for reducing the permeability of the CFCC materials, including Chemical Vapor Infiltration. McDermott Technologies is approximately two months late on their scheduled delivery to Gamma of Materials Selection reports. They have indicated by letter that they plan to deliver a draft and then final Materials Selection Report to Gamma by January 15 and February 1st, 2000, respectively. With regard to Test Planning, Swales Aerospace is proceeding with engineering the test chamber. The power supply selection for the Kanthal furnace was changed from AC to DC current to simplify equipment and operation. The mechanism for opening the ''sliding door'' on bottom of furnace has been changed from air cylinder to stainless steel spring/cord to provide inherent simplicity and failsafe operation. Alumina tubing for apparatus calibration was obtained from Coors Ceramics; 0.5 x 1/16 foot wall x 16 inches, grade AD-998, 99.8% Al{sub 2}O{sub 3}, density 3.9 gr/cc. This will be cut into 3 inch specimen and very closely matches the expected test specimens from McDermott. Swales and Gamma are currently selecting extension springs from Associated Spring to provide a tension on furnace ''bottom door''. Swales and Gamma are currently evaluating sample of Alumina board from Zircar for the furnace ''door.''

  4. Quarterly Progress Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LAr Detector (pdf) HAWC y-Ray Observatory (pdf) DUNE (pdf) MicroBooNE (pdf) Theoretical Physics 1QFY15 Progress Reports Accelerator R&D (pdf) CAPTAIN LAr Detector (pdf) HAWC...

  5. Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991

    SciTech Connect (OSTI)

    Judkins, R.R.; Cole, N.C. (comps.)

    1992-04-01T23:59:59.000Z

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  6. Report to Congress on the Progress of the Federal Government in Meeting the Renewable Goals of the Energy Policy Act of 2005

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy using Fues CellsReport on Separate Disposal6

  7. High energy physics program: Task A, Experiment and theory; Task B, Numerical simulation. Progress report, July 1, 1988--June 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    This report discusses research in High Energy Physics at Florida State University. Contained in this paper are: highlights of activities during the past few years; five year summary; fixed target experiments; collider experiments; SSC preparation, detector development and detector construction; computing, networking and VAX upgrade to ALPHA; and particle theory programs.

  8. Lieth et al -p.1 Progress Report

    E-Print Network [OSTI]

    Lieth, J. Heinrich

    of the greenhouse system, such as inner air, soil surface and glass. It is also necessary to monitor cooling controlLieth et al - p.1 Progress Report covering 10/1/1999 - 12/31/1999 for project EISG program project be found in greenhouse systems. The greenhouse is a transparent structure, its primary energy source

  9. DCDC 2007-2008 Annual Progress Report

    E-Print Network [OSTI]

    Thorpe, Michael

    and energy-balance models with diverse urban design options, allows us to better understand the sensitivityDCDC 2007-2008 Annual Progress Report Decision Center for a Desert City SES-0345945 Compiled IV. Education and Outreach 17 V. Contributions 25 Decision Center for a Desert City Principal

  10. Assessment of Financial Savings from Peer Reviews of In-Progress Projects: A Case Study from the Department of Energy's Hydrogen Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWind Siting Articles about Wind SitingBStates

  11. Progress Report EISG program Project #99-01-37

    E-Print Network [OSTI]

    Lieth, J. Heinrich

    -1- 2nd Progress Report on EISG program Project #99-01-37 Modeling Greenhouse Temperature on the greenhouse environment control strategies for energy conservation, especially during heating and cooling-cost extension to the project. WORK PROGRESS 1. Data Collection Various sensors were tested, calibrated

  12. Human genome program report. Part 1, overview and progress

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  13. 1992 PVUSA progress report

    SciTech Connect (OSTI)

    Ellyn, W. [ed.] [Nesbit (William) and Associates, Santa Rosa, CA (United States)

    1992-12-31T23:59:59.000Z

    Photovoltaics for Utility Scale Applications (PVUSA) is a national public-private partnership that is assessing and demonstrating the viability of utility-scale photovoltaic (PV) electric generating systems. This report updates the progress of the PVUSA project, reviews the status and performance of the various PV installations during 1992, and summarizes key accomplishments and conclusions from work to date.

  14. Progress Report 2014 Sustainability

    E-Print Network [OSTI]

    Y Yale Progress Report 2014 Sustainability Strategic Plan #12;President Salovey announced Yale's continued commitment to sustainability when he released the University's second Sustainability Strategic-going efforts to address sustainability and called upon students, faculty, and staff to play an active role

  15. Final report on progress of grant "Few-nucleon systems in the laboratory, supernovae, and the comsos"

    SciTech Connect (OSTI)

    Daniel R .Phillips

    2006-01-19T23:59:59.000Z

    This report describes progress made on research projects associated with my Department of Energy Outstanding Junior Investigator grant.

  16. Large scale solubilization of coal and bioconversion to utilizable energy. Eighth quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    Mishra, N.C.

    1996-02-01T23:59:59.000Z

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  17. Large scale solubilization of coal and bioconversion to utilizable energy. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Mishra, N.C.

    1995-12-01T23:59:59.000Z

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  18. Executive summary. Wind-energy assessment studies in the Goodnoe Hills and Cape Blanco areas. Progress report, October 1980-September 1981

    SciTech Connect (OSTI)

    Baker, R W; Wade, J E; Persson, P O.G.; Katz, R W

    1981-12-01T23:59:59.000Z

    Work performed in FY81 on Wind Energy Assessment Studies in the Goodnoe Hills and Cape Blanco Areas is summarized. The research centers on defining the extent of the wind resource at site specific locations that have been documented earlier as having good wind power potential. The work consists of spatial wind surveys in the Goodnoe Hills and Cape Blanco area, wind turbine generator wake measurements at the Goodnoe Hills site, and developing a methodology for sampling the wind flow using a kite anemometer. (LEW)

  19. HMSC SUSTAINABILITY PROGRESS AND

    E-Print Network [OSTI]

    Future Projects Expand Water Catchment System Campus-wide Metal Recycling #12;In Progress Solar panels Heating Efficiently #12;Waste(lbs) 0 1000 3000 2000 trash 1/16/09 1/23/09 1/30/09 2/06/09 2/13/09 2 Uhler (Solar Ki, Inc.) · Noon hour, Lib. Sem. Room · Events #12;Lead by example · Demonstration Projects

  20. Large scale solubilization of coal and bioconversion to utilizable energy. Third quarterly technical progress report, April 1, 1994--June 30, 1994

    SciTech Connect (OSTI)

    Mishra, N.C.

    1994-08-01T23:59:59.000Z

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the investigators plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. They also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein. Main objectives are: (1) cloning of Neurospora gene for coal depolymerization protein controlling solubilization in different host cells, utilizing Neurospora plasmid and other vector(s); (2) (a) development of a large scale electrophoretic separation of coal drived products obtained after microbial solubilization; (b) identification of the coal derived products obtained after biosolubilization by Neurospora cultures or obtained after Neurospora enzyme catalyzed reaction in in vitro by the wildtype and mutant enzymes; (3) bioconversion of coal drived products into utilizable fuel; and (4) characterization of Neurospora wildtype and mutant CSA protein(s) involved in solubilization of coal in order to assess the nature of the mechanism of solubilization and the role of Neurospora proteins in this process.

  1. Ris-R-1161(EN) Annual Progress Report for 1999

    E-Print Network [OSTI]

    and consultancy assistance on wind turbine technology and the exploitation of wind energy, as well as to mapRisø-R-1161(EN) Annual Progress Report for 1999 Wind Energy and Atmospheric Physics Department The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø National

  2. Building Performance Services: Guidelines and Program Test Progress Report

    E-Print Network [OSTI]

    Anderson, K. J.; Tuffo, M.; Schick, S.

    2003-01-01T23:59:59.000Z

    Alliance Northwest Energy Efficiency Alliance Schick Consulting Portland, OR Portland, OR Portland, OR ABSTRACT This paper presents the progress of the Building Performance Services (BPS) program begun in July 2002 as a partnership... year by 2010. REFERENCES Retro-commissioning Handbook for Facility Managers, Prepared for the Oregon Office of Energy by Portland Energy Conservation Inc. (PECI), March 2001. Energy Smart Operations?Low- and No-Cost Ways to Save Energy...

  3. 2014 DOE Hydrogen and Fuel Cells Program Annual Progress Report Posted

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Fuel Cell Technologies Office has posted the 2014 Hydrogen and Fuel Cells Program Annual Progress Report.

  4. Progress of DOE Materials, Manufacturing Process R&D, and ARRA...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report FY 2012 Annual Progress Report for Energy Storage R&D...

  5. (Medium energy particle physics): Annual progress report

    SciTech Connect (OSTI)

    Nefkens, B.M.K.

    1985-10-01T23:59:59.000Z

    Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of /sup 3/H, /sup 3/He, /sup 4/He; Detailed Balance in pd /r reversible/ /gamma//sup 3/H; Interaction Dynamics); and Search for the Rare Decay /Mu//sup +/ /yields/ e/sup +/ + /gamma/ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects.

  6. Annual Progress Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat 1 Table

  7. The Elena project: Progress in the design

    E-Print Network [OSTI]

    Eriksson, T; Belochitskii, P; Breuker, H; Butin, F; Carli, C; Kersevan, R; Martini, M; Maury, S; Pasinelli, S; Tranquille, G; Oelert, W

    2012-01-01T23:59:59.000Z

    The Extra Low ENergy Antiproton ring (ELENA) project started in June 2011 and is aimed at substantially increasing the number of antiprotons delivered to the Antiproton Decelerator (AD) physics community. ELENA will be a small machine that receives antiprotons from AD at 5.3 MeV kinetic energy and decelerates them further down to 100 keV. It will be equipped with an electron cooler to avoid beam losses during deceleration and to reduce beam phase space at extraction. Design work is progressing with emphasis on machine parameters and design as well as infrastructure, ring, transfer lines and vital subsystem design.

  8. Geothermal Progress Monitor: Report No. 14

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    This issue of the Geothermal Progress Monitor, the 14th since its inception in 1980, highlights the anticipated rapid growth in the use of geothermal heat pumps and documents the continued growth in the use of geothermal energy for power generation, both in this country and abroad. In countries with a relatively large demand for new generation capacity, geothermal, if available, is being called on as a preferable alternative to the use of domestic or imported oil. On the other hand, in this country where current demand for new capacity is less, geothermal energy is commonly being put to use in small power generation units operating on the hot water resource.

  9. Progress Report SEAB Recommendations on Unconventional Resource

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNS Electric,RM Exit Procedures.docThe Program Update2014 Progress Report

  10. Progress Towards International Repositories

    SciTech Connect (OSTI)

    McCombie, C.; Chapman, N.

    2002-02-27T23:59:59.000Z

    The nuclear fuel cycle is designed to be very international, with some specialist activities (e.g. fuel fabrication, reprocessing, etc.) being confined to a few countries. Nevertheless, political and public opposition has in the past been faced by proposals to internationalise the back-end of the cycle, in particular waste disposal. Attitudes, however, have been changing recently and there is now more acceptance of the general concept of shared repositories and of specific proposals such as that of Pangea. However, as for national facilities, progress towards implementation of shared repositories will be gradual. Moreover, the best vehicle for promoting the concept may not be a commercial type of organization. Consequently the Pangea project team are currently establishing a widely based Association for this purpose.

  11. 1992 PVUSA progress report

    SciTech Connect (OSTI)

    NONE

    1992-12-31T23:59:59.000Z

    Photovoltaics for Utility Scale Applications (PVUSA) is a national public-private partnership that is assessing and demonstrating the viability of utility-scale photovoltaic (PV) electric generating systems. This report updates the progress of the PVUSA project, reviews the status and performance of the various PV installations during 1992, and summarizes key accomplishments and conclusions from work to date. Fall PV module costs and rising environmental pressures could make PV a significant source of large-scale power within the next decade. However, utility acceptance of this technology requires knowledge of PV operational characteristics in a utility system and confidence in predicting PV performance, reliability, and economics. PVUSA consists of two types of demonstrations: Emerging Module Technologies (EMTs), which are unproven but promising state-of-the-art PV technologies in 20-kW (nominal) arrays; and Utility Scale (US) systems, which represent more mature PV technologies in 200- to 500-kW (nominal) turnkey systems.

  12. Progressing batch hydrolysis process

    DOE Patents [OSTI]

    Wright, J.D.

    1985-01-10T23:59:59.000Z

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  13. Progress in Induction Linacs

    SciTech Connect (OSTI)

    Caporaso, G J

    2000-09-27T23:59:59.000Z

    This presentation will be a broad survey of progress in induction technology over the past four years. Much work has been done on accelerators for hydrodynamic test radiography and other applications. Solid-state pulsers have been developed which can provide unprecedented flexibility and precision in pulse format and accelerating voltage for both ion and electron induction machines. Induction linacs can now be built which can operate with MHz repetition rates. Solid-state technology has also made possible the development of fast kickers for precision control of high current beams. New insulator technology has been developed which will improve conventional induction linacs in addition to enabling a new class of high gradient induction linacs.

  14. Progress Update: TRU Waste Shipping

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14T23:59:59.000Z

    A progress update at the Savannah River Site. A continued effort on shipping TRU waste to WIPP in Carlsbad, New Mexico.

  15. Construction Work in Progress (Kansas)

    Broader source: Energy.gov [DOE]

    This Act allows nuclear power plants to qualify for recovery of Construction Work in Progress (CWIP) and other preconstruction expenditures in rates. Previously, nuclear power plants were excluded...

  16. 2014 Cleanup Progress

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)Department of EnergyOffice |

  17. 2004 Progress in Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment of Energy with6, 2014, 6:32 p.m.January 200543

  18. 2005 Progress in Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment of Energy with6, 2014, 6:32 p.m.January5

  19. CancerProgressReport.org // AACR.org // #CancerProgress14 AACR CANCER

    E-Print Network [OSTI]

    Sherman, S. Murray

    CancerProgressReport.org // AACR.org // #CancerProgress14 AACR CANCER PROGRESS REPORT 2014 TRA NSFO RMING LIVES THRO UG H RE SE ARC H #12;CancerProgressReport.org // AACR.org // #CancerProgress14 AACR CANCER PROGRESS REPORT 2014 TRANSFORMING LIVES THROUGH RESEARCH #12;II AACR Cancer Progress Report 2014

  20. Regional Efficiency Progress Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead5"Redline" Comparison

  1. Quarterly Progress Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITY AEROSOL:QuantumApril 2015

  2. STRATEGIC PLAN PROGRESS REPORT 2014

    E-Print Network [OSTI]

    Shahriar, Selim

    STRATEGIC PLAN PROGRESS REPORT 2014 NORTHWESTERN WILL #12;#12;Dear members of the Northwestern by the progress already made and the impact that the plan continues to have on Northwestern. The plan provides Professor of Molecular Biol- ogy and Biochemistry at the Feinberg School of Medicine. · Ground broken

  3. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

  4. 1993 PVUSA progress report

    SciTech Connect (OSTI)

    NONE

    1993-12-31T23:59:59.000Z

    Photovoltaics for Utility Scale Applications (PVUSA) is a national public-private partnership that is assessing and demonstrating the viability of utility-scale photovoltaic (PV) electric generation systems and recent developments in module technology. This report updates the progress of the PVUSA project, review the status and performance of all PV installations during 1993, and summarizes key accomplishments and conclusions for the year. The PVUSA project has five objectives designed to narrow the gap between a large utility industry that is unfamiliar with PV, and a small PV industry that is aware of a potentially large utility market but unfamiliar with how to meet its requirements. The objectives are: to evaluate the performance, reliability, and cost of promising PV modules and balance-of-system (BOS) components side-by-side at a single location; to assess PV system operation and maintenance (O and M) in a utility setting; to compare PV technologies in diverse geographic areas; to provide US utilities with hands-on experience in designing, procuring, and operating PV systems; and to document and disseminate knowledge gained from the project.

  5. Annual Technical Progress Report

    SciTech Connect (OSTI)

    Ayman I. Hawari

    2002-10-02T23:59:59.000Z

    This report describes the results generated during phase 1 of this project. During this phase, the main tools that are used to compute the thermal neutron scattering kernels for graphite, beryllium, beryllium oxide, zirconium hydride, light water, polyethylene were implemented and tested. This includes a modified NJOY/LEAPR code system, the GASKET code, and the ab initio condensed matter codes VASP and PHONON. Thermal neutron scattering kernels were generated for graphite, beryllium, beryllium oxide. In the case of graphite, new phonon spectra were examined. The first is a spectrum based on experiments performed at Oak Ridge National Laboratory in the early seventies, and the second is generated using the ab initio methods. In the case of beryllium, and beryllium oxide, a synthetic approach for generating the phonon spectra was implemented. In addition, significant progress was made on an experiment to benchmark the graphite scattering kernels was made. The simulations of this experiment show that differences on the order of a few percent, in Pu-239 detector responses, can be expected due to the use of different scattering kernels. (B204) NOT A FINAL REPORT

  6. The Scottish Forestry Strategy: 2010-2013 Implementation Plan & 2009-2010 Progress Report.

    E-Print Network [OSTI]

    The Scottish Forestry Strategy: 2010-2013 Implementation Plan & 2009-2010 Progress Report. Progress Installed capacity of wood energy plant (in megawatt thermal and electrical) FCS 2006 2007 2008 2009 58 MWt Number of non-domestic, wood fuelled energy systems installed FCS 2006 2007 2008 2009 49 91 154 170 1

  7. The Scottish Forestry Strategy: 2011-2014 Implementation Plan & 2010-2011 Progress Report.

    E-Print Network [OSTI]

    The Scottish Forestry Strategy: 2011-2014 Implementation Plan & 2010-2011 Progress Report. Progress.43 Mt CO2 0.45 Mt CO2 1 year Installed capacity of wood energy plant (megawatt thermal and electrical MWth 75 MWe 1 year Number of non-domestic, wood fuelled energy systems installed FCS 2006 2007 2008

  8. Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices Task 2.1.3: Effects on Aquatic Organisms – Fiscal Year 2011 Progress Report Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Kropp, Roy K.

    2011-09-30T23:59:59.000Z

    A literature search was conducted by using the Web of Science® Databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on marine mammals, seabirds, and fish. Several relatively recent general review articles that included possible effects of marine renewable energy devices on marine mammals and seabirds were examined to begin the search process (e.g., Boehlert et al. 2008; Thompson et al. 2008; Simas et al. 2009). From these articles, several general topics of potential environmental effects on marine mammals, seabirds, and fish were derived. These topics were used as the primary search factors. Searches were conducted with reference to the potential effects of offshore wind farms and MHK devices on marine mammals, seabirds, and fish. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that often the potential effects were offered as hypotheses that often were not supported by the presentation of appropriate documentation. Therefore, the search was refined and focused on trying to obtain the necessary information to support or challenge a proposed potential effect to a specific concern. One of the expressed concerns regarding MHK devices is that placing wave parks in coastal waters could compromise the migration patterns of whales. Disruption of the annual migration of the gray whale (Eschrichtius robustus), which swims at least 30,000 km on its round trip from breeding grounds in Baja California to feeding areas in the Bering Sea, is of particular concern. Among the hypothesized effects on the migrating gray whales are increased predation risk by constricting migration corridor to between array and shore or by forcing the whales to swim into deeper waters, increased metabolic energy costs and delays in reaching the destinations, and interrupting feeding by blocking access to benthic areas under arrays. The literature search focused on identifying published studies that could provide information to evaluate these concerns. The results were developed into a case study that evaluated the potential effects of the placement of wave parks in coastal waters along the migration route of the gray whale. Wave parks and other MHK arrays may have additional effects on gray whales and other marine mammals, including entanglement in mooring lines and interference with communications among other effects, that were not included in this case study. The case study results were rewritten into a simpler form that would be suitable for placement on a web blog

  9. CCUS Demonstrations Making Progress

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6 (2-91)A2015 Peer ReviewCCS Task Force9,

  10. Sixth Progress Report f

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9Morgan McCorkleSingin'ix truck

  11. Progress in two major CCPI projects

    SciTech Connect (OSTI)

    NONE

    2007-07-01T23:59:59.000Z

    Two projects under the US Department of Energy (DOE) sponsored Clean Coal Power initiative have made significant progress in demonstrating new technologies to remove mercury from coal and enhance use of low-Btu lignite coals while increasing energy efficiency. The Wisconsin Electricity Power Company is demonstrating the TOXECON{trademark} mercury control process at its Presque Isle Power Plant near Marquette, Michigan, while Great River Energy (GRE) is showing the viability of lignite fuel enhancement at its Coal Creek Station in Underwood, North Dakota. Both projects were awarded in 2004 under Round I of the Clean Coal Power Initiative. Elsewhere in the program, six projects are in various phases of planning or operation. Plans for a third round under the CCPI were announced on May 23, 2007. 2 figs.

  12. 2010 Annual Progress Report: DOE Hydrogen Program

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  13. Geothermal Progress Monitor. Report No. 15

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    Two themes dominate this issue of the Geothermal Progress Monitor, the 15th since its inception in 1980. The first of these is the significance of the government/industry partnership role in geothermal development. This joint effort is reflected in the continued, measured growth in the use of geothermal energy, for both power generation and direct use applications, in this country and abroad, as well as in the development of new, innovative technologies to ensure a bright future for the resource. The second theme is the growing popularity of geothermal heat pumps (GHPs) among utilities, their customers, and federal agencies, all with disparate interests in the technology.

  14. Cell Stem Cell Clinical Progress

    E-Print Network [OSTI]

    Zandstra, Peter W.

    Cell Stem Cell Clinical Progress Rapid Expansion of Human Hematopoietic Stem Cells by Automated of Toronto, Toronto, ON M5G 1L7, Canada 6McEwen Centre for Regenerative Medicine, University Health Network

  15. Progress Update: M Area Closure

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14T23:59:59.000Z

    A progress update of the Recovery Act at work at the Savannah River Site. The celebration of the first area cleanup completion with the help of the Recovery Act.

  16. A Conceptual Framework for Progressing Towards Sustainability...

    Open Energy Info (EERE)

    Progressing Towards Sustainability in the Agriculture and Food Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Conceptual Framework for Progressing Towards...

  17. Fuel Cell Technologies Office Accomplishments and Progress |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Fuel Cell Technologies Office Fuel Cell Technologies Office Accomplishments and Progress Fuel Cell Technologies Office Accomplishments and Progress The U.S. Department of...

  18. Muon Collider Progress: Accelerators

    E-Print Network [OSTI]

    Michael S. Zisman

    2011-09-14T23:59:59.000Z

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 \\times 10^34 cm^-2s^-1. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance ("cooling"). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  19. INSIDE: ITER Site Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage inChangApplications |DOE programLog*

  20. INSIDE: ITER Site Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage inChangApplications |DOE

  1. INSIDE: ITER Site Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage inChangApplications |DOEIndustry,

  2. PROGRESS IN RESEARCH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognized forPRODUCTION6 - March

  3. PROGRESS IN RESEARCH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognized forPRODUCTION6 -

  4. PROGRESS IN RESEARCH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognized forPRODUCTION6 -8 -

  5. PROGRESS IN RESEARCH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognized forPRODUCTION6 -8 -9 -

  6. PROGRESS IN RESEARCH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognized forPRODUCTION6 -8 -9

  7. PROGRESS IN RESEARCH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognized forPRODUCTION6 -8 -92

  8. PROGRESS IN RESEARCH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognized forPRODUCTION6 -8 -924

  9. PROGRESS IN RESEARCH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognized forPRODUCTION6 -8

  10. PROGRESS IN RESEARCH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognized forPRODUCTION6 -83 -

  11. PROGRESS IN RESEARCH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognized forPRODUCTION6 -83 -4

  12. PROGRESS IN RESEARCH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognized forPRODUCTION6 -83 -45

  13. Back-Surface Passivation for High-Efficiency Crystalline Silicon Solar Cells: Final Technical Progress Report, September 2010 -- May 2012

    SciTech Connect (OSTI)

    Schultz-Wittmann, O.

    2012-07-01T23:59:59.000Z

    Final technical progress report for TetraSun, a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's (DOE) SunShot Program.

  14. Progressively safer, cheaper demolition of Fernald

    SciTech Connect (OSTI)

    Robert Nichols; Norman Pennington

    2000-09-29T23:59:59.000Z

    Fluor Fernald, Inc. has been progressively improving Decontamination and Dismantlement (D&D) at the Department of Energy's Fernald Environmental Management Project by applying new technologies and better methodologies to the work. Demolition issues existed in the past that necessitated new or improved solutions to maintain worker safety, protect the environment and accomplish the work in a cost effective manner. Lessons learned from D&D of 80 structures has led to a systematic approach, which can be implemented in various D&D arenas. When facility production was halted, hold-up material and process residues remained in the process piping and components. Over 500,000 pounds of material was removed by workers who completed the tasks two years ahead of schedule, $7 million under budget and with an excellent safety record. This success was the result of detailed planning and irdision of lessons learned as work progressed from facility to facility. Work sequences were developed that reduced airborne contamination. Demolition of structures has been performed at Fernald by carefully selected and qualified subcontractors. Asbestos and lead abatement, equipment, piping and conduit removal, and structural demolition have been completed to progressively higher performance specifications developed by Fluor Fernald based on lessons learned during execution. Safety continues to be the primary consideration in performing potentially hazardous work. Technologies such as hydraulic shears have been developed and used to keep workers away from danger. A new technology, ''Cool Suits,'' has been demonstrated to help prevent heat stress when anti-contamination clothing is required in elevated temperature working conditions. For tall structures, implosion technologies have been employed with progressively improved results, Several other new technologies have been evaluated by Fluor Fernald and applied by subcontractors. The improved technologies included the oxy-gas torch, which uses gasoline instead of acetylene gas, and a vacuum system for asbestos removal of wall insulation. These new methods proved effective and beneficial. Fluor Fernald has integrated demolition activities with waste disposal requirements to enhance overall efficiency. The relatively straight steel configurations required for recycling, and waste acceptance criteria that dictate waste sizes are typically included in the subcontract specifications The progressive improvements by Fluor Fernald have led to cost savings and schedule acceleration without increased risk to workers or the environment. When Fluor Fernald came to the site in 1992, the remediation baseline reflected a completion schedule of 2020 and a cost of $7.2 billion. The current projection is 2008 and $4.2 billion.

  15. Biology Division progress report, June 1, 1980-July 31, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-12-01T23:59:59.000Z

    Highlights of progress for the period June 1980 through July 1982 are summarized. Discussions of projects are presented under the following headings: molecular and cellular sciences; cellular and comparative mutagenesis; mammalian genetics and teratology; toxicology; and carcinogenesis. In addition this report includes an outline of educational activities. Separate abstracts have been prepared for individual technical reports for inclusion in the Energy Data Base. (RJC)

  16. Space nuclear safety program: Progress report, April-June 1987

    SciTech Connect (OSTI)

    George, T.G. (comp.)

    1988-07-01T23:59:59.000Z

    This quarterly report describes studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems, carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed are ongoing; the results and conclusions described may change as the work progresses.

  17. Space nuclear safety program: Progress report, July--September 1987

    SciTech Connect (OSTI)

    George, T.G. (comp.)

    1989-02-01T23:59:59.000Z

    This quarterly report describes studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems, carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. The studies discussed are ongoing; the results and conclusions described may change as the work progresses. 20 figs., 4 tabs.

  18. Magellan at NERSC Progress Report for June 2010

    SciTech Connect (OSTI)

    Broughton, Richard Canon, Lavanya Ramakrishnan, Brent Draney, Jeff

    2010-06-30T23:59:59.000Z

    The Magellan Project was funded by the American Recovery and Reinvestment Act to investigate the applicability of cloud computing for the Department of Energy's Office of Science (DOE-SC). This report covers the progress for the Magellan Project at NERSC since it began in September 2009and focuses on the research aspects of the project.

  19. Progress in Absorber R&D for Muon Cooling

    E-Print Network [OSTI]

    D. M. Kaplan; E. L. Black; M. Boghosian; K. W. Cassel; R. P. Johnson; S. Geer; C. J. Johnstone; M. Popovic; S. Ishimoto; K. Yoshimura; L. Bandura; M. A. Cummings; A. Dyshkant; D. Hedin; D. Kubik; C. Darve; Y. Kuno; D. Errede; M. Haney; S. Majewski; M. Reep; D. Summers

    2001-08-17T23:59:59.000Z

    A stored-muon-beam neutrino factory may require transverse ionization cooling of the muon beam. We describe recent progress in research and development on energy absorbers for muon-beam cooling carried out by a collaboration of university and laboratory groups.

  20. Progress in year 1995 1. Optically plugged magnetic quadrupole trap

    E-Print Network [OSTI]

    Progress in year 1995 1. Optically plugged magnetic quadrupole trap In 1995, we have demonstrated samples of ultracold atoms at unprecedented densities (>1014 cm-3) and to evaporatively cool atoms to Bose Dressed-StateEnergyMagneticField Atoms During evaporative cooling, the cloud shrunk and finally split up

  1. Progress in Direct-Drive Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Meyerhofer,D.D.

    2004-12-17T23:59:59.000Z

    Recent progress in direct-drive inertial confinement fusion research at LLE using the 60-beam, 30-kJUV OMEGA laser system and cryogenic target capability to perform ignition-scaled implosions will be reported. In addition, a new high-energy (2.6-kJ) petawatt capability is currently under construction.

  2. Physics Division progress report for period ending June 30, 1981

    SciTech Connect (OSTI)

    Not Available

    1981-11-01T23:59:59.000Z

    Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers. (WHK)

  3. IMHEX fuel cells progress toward commercialization

    SciTech Connect (OSTI)

    Woods, R.R. [M-C Power Corporation, Burr Ridge, IL (United States)

    1995-12-31T23:59:59.000Z

    As the gas industry emerges from deregulation with a greater understanding of market forces, they are positioned to become a major player as the electric industry begins its transition toward competition. Participants, which view themselves as integrated suppliers of a full-line of value-added energy services, will become the winners in today`s and tomorrow`s energy marketplace. The molten carbonate fuel cell is uniquely qualified to meet the demand for localized, efficient, and environmentally friendly power generation and will enable these players to offer on-site energy service. With its Team members-Stewart & Stevenson Services, Bechtel, and the Institute of Gas Technology-M-C Power is progressing toward the commercialization of a 1-MW IMHEX fuel cell power plant in 1999. The first of two proof-of-concept power plants began operation in 1995 and the second will operate during 1996. The Team projects the market entry product will achieve electrical generation efficiencies as high as 60% (LHV of natural gas) and electric energy costs in the range of 5 to 7 cents/kWh in typical energy service applications. This paper will review the status of the program and demonstration activities, introduce the characteristics of the market entry product, and evaluate the opportunities and benefits this product has for the new competitive power industry in the United States.

  4. Wind Power on Native American Lands: Process and Progress (Poster)

    SciTech Connect (OSTI)

    Jimenez, A.; Flowers, L.; Gough, R.; Taylor, R.

    2005-05-01T23:59:59.000Z

    The United States is home to more than 700 American Indian tribes and Native Alaska villages and corporations located on 96 million acres. Many of these tribes and villages have excellent wind resources that could be commercially developed to meet their electricity needs or for electricity export. The Wind Powering America program engages Native Americans in wind energy development. This poster describes the process and progress of Wind Powering America's involvement with Native American wind energy projects.

  5. PROCEEDINGS OF 1976 SUMMER WORKSHOP ON AN ENERGY EXTENSION SERVICE

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Because of heightened energy -awareness and higher prices,study: Energy crisis attitudes and awareness. Lansing,DEVELOPMENT OF AN ENERGY PUBLIC AWARENESS PROGRAM Progress

  6. Guide for Benchmarking Residential Energy Efficiency Program...

    Broader source: Energy.gov (indexed) [DOE]

    Guide for Benchmarking Residential Energy Efficiency Program Progress as part of the DOE Better Buildings Program. Guide for Benchmarking Residential Energy Efficiency Program...

  7. Presentations for Industry | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    materials. Energy Management Get Started Profile Your Energy Situation Create a Plan Finance and Implement Measure Progress and Results Reassess to Achieve Continuous...

  8. Smart Grid Investment Grant Program: Progress Report II

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafely Delivering DOE'sEnergy3 SGIG Program Progress Report II

  9. Progress Update: Stack Project Complete

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14T23:59:59.000Z

    Progress update from the Savannah River Site. The 75 foot 293 F Stack, built for plutonium production, was cut down to size in order to prevent injury or release of toxic material if the structure were to collapse due to harsh weather.

  10. Progress Update: Stack Project Complete

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01T23:59:59.000Z

    Progress update from the Savannah River Site. The 75 foot 293 F Stack, built for plutonium production, was cut down to size in order to prevent injury or release of toxic material if the structure were to collapse due to harsh weather.

  11. Sample Environment Plans and Progress

    E-Print Network [OSTI]

    Pennycook, Steve

    Sample Environment Plans and Progress at the SNS & HFIR SNS HFIR User Group Meeting American Conference on Neutron Scattering Ottawa, Canada June 26 ­ 30, 2010 Lou Santodonato Sample Environment Group our sample environment capabilities Feedback SHUG meetings User surveys Sample Environment Steering

  12. ACCESSCCESS MARINE ECOLOGY PROGRESS SERIES

    E-Print Network [OSTI]

    Zuschin, Martin

    OPENPEN ACCESSCCESS MARINE ECOLOGY PROGRESS SERIES Mar Ecol Prog Ser Vol. 458: 39­52, 2012 doi: 10 and the instability or unpre- dictability of disturbance. Global warming is expec- ted to increase the vulnerability. 2010, Gruber 2011). Much of the available information about the impact on benthic systems comes

  13. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .microparticles. Annals of Nuclear Energy, [96] F.B. Brown,In Progress in Nuclear Energy, 17. Pergamon Press, 1986.

  14. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

  15. Geothermal Progress Monitor, report No. 13

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to substantial diversification'' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation tha the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  16. Geothermal Progress Monitor report No. 11

    SciTech Connect (OSTI)

    Not Available

    1989-12-01T23:59:59.000Z

    This issue of the Geothermal Progress Monitor (GPM) is the 11th since the inception of the publication in 1980. It continues to synthesize information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this energy technology. In addition, the GPM is a mechanism for transferring current information on geothermal technology development to the private sector, and, over time, provides a historical record for those interested in the development pathway of the resource. In sum, the Department of Energy makes the GPM available to the many diverse interests that make up the geothermal community for the multiple uses it may serve. This issue of the GPM points up very clearly how closely knit many of those diverse interests have become. It might well be called an international issue'' since many of its pages are devoted to news of geothermal development abroad, to the efforts of the US industry to participate in overseas development, to the support given those efforts by federal and state agencies, and to the formation of the International Geothermal Association (IGA). All of these events indicate that the geothermal community has become truly international in character, an occurrence that can only enhance the future of geothermal energy as a major source of energy supply worldwide. 15 figs.

  17. Environment, Safety and Health Progress Assessment of the Hanford Site

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    This report documents the result of the US Department of Energy (DOE) Environment, Safety and Health (ES&H) Progress Assessment of the Hanford Site, in Richland, Washington. The assessment, which was conducted from May 11 through May 22, 1992, included a selective-review of the ES&H management systems and programs of the responsible DOE Headquarters Program Offices the DOE Richland Field Office, and the site contractors. The ES&H Progress Assessments are part of the Secretary of Energy`s continuing effort to institutionalize line management accountability and the self-assessment process throughout DOE and its contractor organizations. The purpose of the Hanford Site ES&H Progress Assessment is to provide the Secretary with an independent assessment of the adequacy and effectiveness of the DOE and contractor management structures, resources, and systems to address ES&H problems and requirements. They are not intended to be comprehensive compliance assessments of ES&H activities. The point of reference for assessing programs at the Hanford Site was, for the most part, the Tiger Team Assessment of the Hanford Site, which was conducted from May 21 through July 18, 1990. A summary of issues and progress in the areas of environment, safety and health, and management is included.

  18. Technical and Economic Assessment of Transition Strategies Toward Widespread Use of Hydrogen as an Energy Carrier

    E-Print Network [OSTI]

    Ogden, Joan M; Yang, Christopher; Johnson, Nils; Ni, Jason; Lin, Zhenhong

    2005-01-01T23:59:59.000Z

    an energy carrier,” Hydrogen Energy Progress XI, Proceedingsof the 11th World Hydrogen Energy Conference, Stuttgart,Strategies For Developing Hydrogen Energy Systems With CO 2

  19. TECHNICAL AND ECONOMIC ASSESSMENT OF TRANSITION STRATEGIES TOWARD WIDESPREAD USE OF HYDROGEN AS AN ENERGY CARRIER

    E-Print Network [OSTI]

    Ogden, J; Yang, Christopher; Johnson, Nils; Ni, Jason; Lin, Zhenhong

    2005-01-01T23:59:59.000Z

    an energy carrier,” Hydrogen Energy Progress XI, Proceedingsof the 11th World Hydrogen Energy Conference, Stuttgart,Strategies For Developing Hydrogen Energy Systems With CO 2

  20. Geothermal Progress Monitor report No. 5. Progress report, June 1981

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Updated information is presented on activities and progress in the areas of electric power plants, direct heat applications, deep well drilling, leasing of federal lands, legislative and regulatory actions, research and development, and others. Special attention is given in this report to 1980 highlights, particularly in the areas of electric and direct heat uses, drilling, and the Federal lands leasing program. This report also includes a summary of the DOE FY 1982 geothermal budget request to Congress.

  1. Geothermal Progress Monitor report No. 8. Progress report

    SciTech Connect (OSTI)

    Not Available

    1983-11-01T23:59:59.000Z

    Geothermal Progress Monitor (GPM) Report Number 8 presents information concerning ongoing technology transfer activities and the mechanisms used to support these activities within geothermal R and D programs. A state-by-state review of major geothermal development activities for the reporting period 1 February 1983 through 31 July 1983 is provided. Recent drilling and exploration efforts and the current status of geothermal electric power plant development in the United States are summarized.

  2. Hawaii Natural Energy Institute annual report, July 1981-June 1982

    SciTech Connect (OSTI)

    Brown, N.E. (ed.)

    1982-01-01T23:59:59.000Z

    This report includes brief progress reports on the 35 research and development projects in geothermal energy, ocean energy, biomass energy, wind energy, solar energy, and other renewable energy sources. (DLC)

  3. US Energy Secretary Samuel Bodman and Russian Atomic Energy Director...

    Energy Savers [EERE]

    Atomic Energy Director Alexander Rumyantsev discuss progress in achieving the Bratislava Nuclear Security Initiatives in Moscow Tuesday, May 24, 2005. The Bratislava agreement was...

  4. PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2006; 14:275280

    E-Print Network [OSTI]

    PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2006; 14 COMMUNICATION: ACCELERATED PUBLICATION Photovoltaics Energy Payback Times, Greenhouse Gas Emissions and External University, The Netherlands Life cycle assessments and external cost estimates of photovoltaics have been

  5. Progress of MICE RFCC Module

    SciTech Connect (OSTI)

    Li, D.; Bowring, D.; DeMello, A.; Gourlay, S.; Green, M.; Li, N.; Niinikoski, T.; Pan, H.; Prestemon, S.; Virostek, S.; Zisman, M.; Bross, A.; Carcagno, R.; Kashikhin, V.; Sylvester, C.; Chen, A.B.; Guo, Bin; Li, Liyi; Xu, Fengyu; Cao, Y.; Sun, S.; Wang, Li; Yin, Lixin; Luo, Tianhuan; Summers, Don; Smith, B.; Radovinsky, A.; Zhukovsky, A.; Kaplan, D.

    2012-05-20T23:59:59.000Z

    Recent progress on the design and fabrication of the RFCC (RF and superconducting Coupling Coil) module for the international MICE (Muon Ionization Cooling Experiment) are reported. The MICE ionization cooling channel has two RFCC modules, each having four 201- MHz normal conducting RF cavities surrounded by one superconducting coupling coil (solenoid) magnet. The magnet is designed to be cooled by three cryocoolers. Fabrication of the RF cavities is complete; preparation for the cavity electro-polishing, low power RF measurements, and tuning are in progress at Lawrence Berkeley National Laboratory (LBNL). Fabrication of the cold mass of the first coupling coil magnet has been completed in China and the cold mass arrived at LBNL in late 2011. Preparations for testing the cold mass are currently under way at Fermilab. Plans for the RFCC module assembly and integration are being developed and are described.

  6. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergy /newsroom/_assets/images/energy-icon.png Energy

  7. Outreach Timeline | Department of Energy

    Energy Savers [EERE]

    University Energy Program (STEP). B3c Outreach Timeline.pdf More Documents & Publications Quarterly Progress Report Communications Consultant RFP Statement of Project Objectives...

  8. UNITED STATES DEPARTMENT OF ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    regional progress in reducing loads and improving reliability through aggressive demand response and energy efficiency programs and PJM- approved backbone transmission...

  9. Particle beam fusion progress report for 1989

    SciTech Connect (OSTI)

    Sweeney, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States). Pulsed Power Sciences Center

    1994-08-01T23:59:59.000Z

    This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/cm{sup 2} on PBFA-II in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-II experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-II have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall.

  10. Agricultural Mitigation and Offsets: Policy Issues, Progress

    E-Print Network [OSTI]

    Agricultural Mitigation and Offsets: Policy Issues, Progress Purdue Climate Change Research Center, 2010 #12;Agricultural Mitigation and Offsets: Policy Issues, Progress Presentation Overview: Global Climate Change...and Agriculture Policy Landscape: US and International Agricultural Offsets and Policy

  11. Wavelet Analysis for Progressive Meshes Martin Bertram

    E-Print Network [OSTI]

    Hering-Bertram, Martin

    Wavelet Analysis for Progressive Meshes Martin Bertram Fraunhofer ITWM Kaiserslautern Abstract We present a wavelet construction for irregular triangle meshes based on edge-collapse and vertex: progressive meshes, wavelets, compression, multires- olution modeling 1 Introduction Wavelets provide

  12. Gammasphere software development. Progress report

    SciTech Connect (OSTI)

    Piercey, R.B.

    1994-01-01T23:59:59.000Z

    This report describes the activities of the nuclear physics group at Mississippi State University which were performed during 1993. Significant progress has been made in the focus areas: chairing the Gammasphere Software Working Group (SWG); assisting with the porting and enhancement of the ORNL UPAK histogramming software package; and developing standard formats for Gammasphere data products. In addition, they have established a new public ftp archive to distribute software and software development tools and information.

  13. Neighborhood Progress Through Organized Action.

    E-Print Network [OSTI]

    Newman, Eula; Cox, Bonnie; Martin, E. C.

    1955-01-01T23:59:59.000Z

    [Blank Page in Original Bulletin] ~ei~ h borhood Progress Through Organized Action E. C. MARTIN, Administrative Assistant BONNIE COX, Organization Specialist MRS. EULA NEWMAN, Specialist in Home Management TEXAS A. & M. COLLEGE SYSTEM "The... coord: lent r peo plt 1. mmunity organization is successful when all families erested groups participate. Such an organization may inate interest in the community and provide an excel- neans for channeling most programs. The interest...

  14. Recent Progress in ultracold atoms

    E-Print Network [OSTI]

    Baltisberger, Jay H.

    , cold gas experiments 2. How to make a BEC out of fermions 3. Recent Progress: Controlling Interaction (Feshbach Resonance) 4. From BCS to BEC: Rotating trap and spin- polarized condensates. 5. Future research and Einstein What is Bose-Einstein condensation (BEC)? #12;300 K to 1 mK 109 atoms 1 mK to 1 mK 108 106 atoms

  15. Geothermal Progress Monitor. Report No. 18

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    The near-term challenges of the US geothermal industry and its long-range potential are dominant themes in this issue of the US Department of Energy (DOE) Geothermal Progress Monitor which summarizes calendar-year 1996 events in geothermal development. Competition is seen as an antidote to current problems and a cornerstone of the future. Thus, industry's cost-cutting strategies needed to increase the competitiveness of geothermal energy in world markets are examined. For example, a major challenge facing the US industry today is that the sales contracts of independent producers have reached, or soon will, the critical stage when the prices utilities must pay them drop precipitously, aptly called the cliff. However, Thomas R. Mason, President and CEO of CalEnergy told the DOE 1996 Geothermal Program Review XIV audience that while some of his company's plants have ''gone over the cliff, the world is not coming to an end.'' With the imposition of severe cost-cutting strategies, he said, ''these plants remain profitable... although they have to be run with fewer people and less availability.'' The Technology Development section of the newsletter discusses enhancements to TOUGH2, the general purpose fluid and heat flow simulator and the analysis of drill cores from The Geysers, but the emphasis is on advanced drilling technologies.

  16. Questions and answers about ITER and fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    providing the significant funds needed for rapid progress in fusion or in any new carbon-free energy source. Major progress toward fusion energy was made in the 1980s and 1990s as...

  17. Ris Report No. 327 Danish Atomic Energy Commission

    E-Print Network [OSTI]

    Risø Report No. 327 Danish Atomic Energy Commission Research Establishment Risø Metallurgy Atomic Energy Commission Research Establishment Risø METALLURGY DEPARTMENT PROGRESS REPORT for the Period Commission Research Establishment Risø METALLURGY DEPARTMENT PROGRESS REPORT for the Period 1 January to 31

  18. FY 2009 Annual Progress Report for Advanced Power Electronics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in Representative GeologicReportingEnergy3,EnergyMetals-Steeland PROGRESS

  19. DOE Progress Review of the MINERvA Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevantDOE Progress Review of MINERvA Main

  20. The Progressive Insurance Automotive X PRIZE Education Program

    SciTech Connect (OSTI)

    Robyn Ready

    2011-12-31T23:59:59.000Z

    The Progressive Insurance Automotive X PRIZE Education Program conducted education and outreach activities and used the competition's technical goals and vehicle demonstrations as a means of attracting students and the public to learn more about advanced vehicle technologies, energy efficiency, climate change, alternative fuels, and the science and math behind efficient vehicle development. The Progressive Insurance Automotive X PRIZE Education Program comprised three integrated components that were designed to educate the general public and create a multi-tiered initiative to engage students and showcase the 21st century skills students will need to compete in our global economy: teamwork, creativity, strong literacy, math and science skills, and innovative thinking. The elements included an Online Experience, a National Student Contest, and in person education events and activites. The project leveraged online connections, strategic partnerships, in-classroom, and beyond-the-classroom initiatives, as well as mainstream media. This education program supported by the U.S. Department of Energy (DOE) also funded the specification of vehicle telemetry and the full development and operation of an interactive online experience that allowed internet users to follow the Progressive Insurance Automotive X PRIZE vehicles as they performed in real-time during the Progressive Insurance Automotive X PRIZE competition events.

  1. Overview of Progress in Thermoelectric Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in government- and...

  2. BETTER BUILDINGS CHALLENGE PROGRESS UPDATE, MAY 2014 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    progress-update-may2014.pdf More Documents & Publications Better Buildings Challenge Progress Update, May 2013 Better Buildings Progress Report 2012 Better Buildings Alliance for...

  3. 195FY 2010 Annual Progress Report DOE Hydrogen Program Tasios Melis

    E-Print Network [OSTI]

    chlorophyll antenna size and energy utilization efficiency in wild type, tla1, tla2 and tlaR mutant mutant light energy (out of a theoretical maximum of 30% possible) in unicellular green. Progress has currently achieved a green alga utilization efficiency of absorbed light energy of about 25%. Approach Employ

  4. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmerging ThreatsEmployment Openings

  5. USSR report: Energy, Number 106, [July 1, 1982

    SciTech Connect (OSTI)

    NONE

    1982-07-01T23:59:59.000Z

    The report contains information on USSR energy production with particular attention to electric power and pipeline construction progress.

  6. 12 PLANET EARTH Summer 2014 Earthquake progression with time along the North Anatolian Fault. The current sequence started with the 1939 earthquake and has progressed westwards towards Istanbul.

    E-Print Network [OSTI]

    Brierley, Andrew

    that to the amount of energy being stored on the fault. Finally, the modelling team will link these observations12 PLANET EARTH Summer 2014 Earthquake progression with time along the North Anatolian Fault in the world: the North Anatolian Fault. This is a system of large fractures within the Earth on which energy

  7. Hanford Site pollution prevention progress report

    SciTech Connect (OSTI)

    BETSCH, M.D.

    1999-10-05T23:59:59.000Z

    The Richland Operations Office (RL) and Office of River Protection (ORP) are pleased to issue the attached Pollution Prevention Progress Report. We have just met the most aggressive waste reduction and A recycling goals to date and are publishing this report to recognize A the site's progress, and to ensure it will sustain success beyond 1 Fiscal Year 2000. This report was designed to inform the been made by RL and ORP in Waste Minimization (WMin) and Pollution Prevention (P2). RL, ORP and their contractors are committed to protecting the environment, and we reiterate pollution prevention should continue to be at the forefront of the environmental cleanup and research efforts. As you read the attached report, we believe you will see a clear demonstration of RL and ORP's outstanding performance as it has been responsible and accountable to the nation, its employees, and the community in which we live and work. commitment that all employees have for environmental stewardship. The report provides useful information about the U.S. Department of Energy's (DOE'S) environmental policy and programs, and contains countless examples of waste minimization projects. This year was the first year our site received the White House Closing the Circle in the category of Affirmative Procurement. This Award recognizes our site for designing a comprehensive strategy for achieving 100 percent purchases of the U.S.Environmenta1 Protection Agency designated recycled items. DOE-Headquarters also acknowledged the site in 1999 for its public outreach efforts in communicating pollution prevention to Hanford Site employees and the community. Our site is truly a recognized leader in outreach as it has kept this title for two consecutive years. In previous years, we received the White House Closing the Circle Honorable Mention in Affirmative Procurement and several other National DOE Awards. Through partnership with the local community and stakeholders, the site and its contractors have a clear sense of direction toward achieving environmental protection, cleanup, and research.

  8. Sludge Treatment Evaluation: 1992 Technical progress

    SciTech Connect (OSTI)

    Silva, L J; Felmy, A R; Ding, E R

    1993-01-01T23:59:59.000Z

    This report documents Fiscal Year 1992 technical progress on the Sludge Treatment Evaluation Task, which is being conducted by Pacific Northwest Laboratory. The objective of this task is to develop a capability to predict the performance of pretreatment processes for mixed radioactive and hazardous waste stored at Hanford and other US Department of Energy (DOE) sites. Significant cost savings can be achieved if radionuclides and other undesirable constituents can be effectively separated from the bulk waste prior to final treatment and disposal. This work is initially focused on chemical equilibrium prediction of water washing and acid or base dissolution of Hanford single-shell tank (SST) sludges, but may also be applied to other steps in pretreatment processes or to other wastes. Although SST wastes contain many chemical species, there are relatively few constituents -- Na, Al, NO[sub 3], NO[sub 2], PO[sub 4], SO[sub 4], and F -- contained in the majority of the waste. These constituents comprise 86% and 74% of samples from B-110 and U-110 SSTS, respectively. The major radionuclides of interest (Cs, Sr, Tc, U) are present in the sludge in small molal quantities. For these constituents, and other important components that are present in small molal quantities, the specific ion-interaction terms used in the Pitzer or NRTL equations may be assumed to be zero for a first approximation. Model development can also be accelerated by considering only the acid or base conditions that apply for the key pretreatment steps. This significantly reduces the number of chemical species and chemical reactions that need to be considered. Therefore, significant progress can be made by developing all the specific ion interactions for a base model and an acid dissolution model.

  9. Black Holes at the LHC: Progress since 2002

    SciTech Connect (OSTI)

    Park, Seong Chan [FRDP, Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of)

    2008-11-23T23:59:59.000Z

    We review the recent noticeable progresses in black hole physics focusing on the up-coming super-collider, the LHC. We discuss the classical formation of black holes by particle collision, the greybody factors for higher dimensional rotating black holes, the deep implications of black hole physics to the 'energy-distance' relation, the security issues of the LHC associated with black hole formation and the newly developed Monte-Carlo generators for black hole events.

  10. Heat source technology programs. Monthly progress report, March 1995

    SciTech Connect (OSTI)

    Tomlinson, L.J. [comp.

    1996-02-01T23:59:59.000Z

    This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

  11. Monthly progress report heat source technology programs, June 1994

    SciTech Connect (OSTI)

    George, T.G. [comp.

    1994-06-01T23:59:59.000Z

    This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the U.S. Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

  12. Heat Source Technology Program monthly progress report, July 1993

    SciTech Connect (OSTI)

    George, T.G. [comp.

    1993-10-01T23:59:59.000Z

    This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

  13. FY 2005 Annual Progress Report for the DOE Hydrogen Program

    SciTech Connect (OSTI)

    None

    2005-10-01T23:59:59.000Z

    In cooperation with industry, academia, national laboratories, and other government agencies, the Department of Energy's Hydrogen Program is advancing the state of hydrogen and fuel cell technologies in support of the President's Hydrogen Fuel Initiative. The initiative seeks to develop hydrogen, fuel cell, and infrastructure technologies needed to make it practical and cost-effective for Americans to choose to use fuel cell vehicles by 2020. Significant progress was made in fiscal year 2005 toward that goal.

  14. Monte Carlos of the new generation: status and progress

    SciTech Connect (OSTI)

    Frixione, Stefano [INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy)

    2005-03-22T23:59:59.000Z

    Standard parton shower monte carlos are designed to give reliable descriptions of low-pT physics. In the very high-energy regime of modern colliders, this is may lead to largely incorrect predictions of the basic reaction processes. This motivated the recent theoretical efforts aimed at improving monte carlos through the inclusion of matrix elements computed beyond the leading order in QCD. I briefly review the progress made, and discuss bottom production at the Tevatron.

  15. Recent Progress on Spherical Torus Research

    SciTech Connect (OSTI)

    Ono, Masayuki [PPPL; Kaita, Robert [PPPL

    2014-01-01T23:59:59.000Z

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ? 2.5. As the aspect ratio is reduced, the ideal tokamak beta ? (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as ? ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation ?, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  16. Progress on DCLL Blanket Concept

    SciTech Connect (OSTI)

    Wong, Clement; Abdou, M.; Katoh, Yutai; Kurtz, Richard J.; Lumsdaine, A.; Marriott, Edward P.; Merrill, Brad; Morley, Neil; Pint, Bruce A.; Sawan, M.; Smolentsev, S.; Williams, Brian; Willms, Scott; Youssef, M.

    2013-09-01T23:59:59.000Z

    Under the US Fusion Nuclear Science and Technology Development program, we have selected the Dual Coolant Lead Lithium concept (DCLL) as a reference blanket, which has the potential to be a high performance DEMO blanket design with a projected thermal efficiency of >40%. Reduced activation ferritic/martensitic (RAF/M) steel is used as the structural material. The self-cooled breeder PbLi is circulated for power conversion and for tritium breeding. A SiC-based flow channel insert (FCI) is used as a means for magnetohydrodynamic pressure drop reduction from the circulating liquid PbLi and as a thermal insulator to separate the high-temperature PbLi (~700°C) from the helium-cooled RAF/M steel structure. We are making progress on related R&D needs to address critical Fusion Nuclear Science and Facility (FNSF) and DEMO blanket development issues. When performing the function as the Interface Coordinator for the DCLL blanket concept, we had been developing the mechanical design and performing neutronics, structural and thermal hydraulics analyses of the DCLL TBM module. We had estimated the necessary ancillary equipment that will be needed at the ITER site and a detailed safety impact report has been prepared. This provided additional understanding of the DCLL blanket concept in preparation for the FNSF and DEMO. This paper will be a summary report on the progress of the DCLL TBM design and R&Ds for the DCLL blanket concept.

  17. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    E-Print Network [OSTI]

    Kim, H.-M.

    2012-01-01T23:59:59.000Z

    Progress in electrical energy storage system: a criticalcurrent and future energy storage technologies for electricwind- diesel-compressed air energy storage system for remote

  18. Energy

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...) "..

  19. Progress on Superconducting Magnets for the MICE Cooling Channel

    E-Print Network [OSTI]

    Green, Michael A

    2010-01-01T23:59:59.000Z

    the MICE cooling channel magnets and the progress in theProgress on the Superconducting Magnets for the MICE Cooling

  20. A study of potential high band-gap photovoltaic materials for a two step photon intermediate technique in fission energy conversion. Progress report for year one, December 1, 1990--November 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-16T23:59:59.000Z

    A diamond synthesis chamber and an ion implanter have been constructed. Work has been rapidly progressing and diamond has been synthesized. There are five variables which affect the quality of diamond: (1) mass flow of methane, (2) mass flow of hydrogen, (3) filament temperature, (4) substrate temperature, and (5) substrate material. Enclosed are pictures and data of previous diamond growth experiments. Current work is focused on the conditions which produce the best quality diamond films. In this study, diamond films were deposited using a hot-filament CVD method with boron trioxide (B{sub 2}O{sub 3}) and diphosphorus pentoxide (P{sub 2}O{sub 5}) as the doping sources. P{sub 2}O{sub 5} is the only known effective phosphorus source for forming n-type semiconducting material. An RF generator has been made operation for epitaxial growth of AIN by the chemical vapor deposition method. In initial experiments with a graphite substrate, the RF generator heated the material to a temperature of 1100{degrees}C. A reactor which will use the RF generator has been built for AIN synthesis. The device should be assembled and tested by the end of August. A new process for fabricating platinum silicide photovoltaic cells has been developed. A diffused guard ring has been added to minimize leakage current. VUV to near IR capability has been developed for optical characterization. A microwave driven excimer lamp has been built and tested. Our previous work used a microwave source on an electron cyclotron heated ion source.