Powered by Deep Web Technologies
Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Organized and hosted two technology transfer meetings; (2) Collaborated with the Pennsylvania Oil and Gas Association (POGAM) to host a Natural Gas Outlook conference in Pittsburgh, PA; (3) Provided a SWC presentation at the Interstate Oil and Gas Compact Commission (IOGCC) meeting in Jackson Hole, WY; and (4) Completed and released a stripper well industry documentary entitled: ''Independent Oil: Rediscovering America's Forgotten Wells''.

Joel Morrison; Sharon Elder

2006-01-24T23:59:59.000Z

2

State Support of Domestic Production  

SciTech Connect (OSTI)

This project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under the State Support of Domestic Production DE-FC26-04NT15456. The Interstate Oil and Gas Compact Commission (IOGCC) performed efforts in support of State programs related to the security, reliability and growth if our nation's domestic production of oil and natural gas. The project objectives were to improve the States ability to monitor the security of oil and gas operations; to maximize the production of domestic oil and natural gas thereby minimizing the threat to national security posed by interruptions in energy imports; to assist States in developing and maintaining high standards of environmental protection; to assist in addressing issues that limit the capacity of the industry; to promote the deployment of the appropriate application of technology for regulatory efficiency; and to inform the public about emerging energy issues.

Amy Wright

2007-12-30T23:59:59.000Z

3

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the seventeenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing and hosting the SWC fall technology transfer meetings in Oklahoma City, Oklahoma and State College, Pennsylvania, (2) planning of the upcoming SWC spring proposal meeting, (3) release of the SWC Request-for-proposals (RFP), (4) revision of the SWC By-Laws, and (5) the SWC Executive Council nomination and election for 2005-2006 term members.

Joel L. Morrison

2005-01-04T23:59:59.000Z

4

Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) has established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the seventh quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) Nomination and election of the Executive Council members for the 2006-07 term, (2) Finalize and release the 2006 Request for Proposals (RFP), (3) Invoice and recruit members, (4) Plan for the spring meeting, (5) Improving communication efforts, and (6) Continue distribution of the DVD entitled: ''Independent Oil: Rediscovering American's Forgotten Wells''.

Joel L. Morrison; Sharon L. Elder

2006-04-21T23:59:59.000Z

5

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the US petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the four quarterly technical progress report for the SWC. During this reporting period, Penn State primary focus was on finalizing all subcontracts, planning the SWC technology transfer meeting and two workshops in the southern US, and preparing the next SWC newsletter. Membership in the SWC now stands at 49.

Joel L. Morrison

2001-09-14T23:59:59.000Z

6

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eighth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) issuing subcontracts, (2) SWC membership class expansion, (3) planning SWC technology transfer meetings, and (4) extending selected 2001 project periods of performance. In addition, a literature search that focuses on the use of lasers, microwaves, and acoustics for potential stripper well applications continued.

Joel L. Morrison

2002-09-27T23:59:59.000Z

7

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the ninth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing and hosting two fall technology transfer meetings, (2) SWC membership class expansion, and (3) planning the SWC 2003 Spring meeting. In addition, a literature search that focuses on the use of lasers, microwaves, and acoustics for potential stripper well applications continued.

Joel L. Morrison

2003-04-08T23:59:59.000Z

8

Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eighth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) Organize and host the 2006 Spring Meeting in State College, PA to review and select projects for SWC co-funding; (2) Participation in the 2006 PA CleanEnergy Expo Energy Theater to air the DVD on ''Independent Oil: Rediscovering American's Forgotten Wells''; (3) New member additions; (4) Improving communications; and (5) Planning of the fall technology meetings.

Joel L. Morrison; Sharon L. Elder

2006-05-01T23:59:59.000Z

9

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the thirteenth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) hosting three fall technology transfer meetings in Wyoming, Texas, and Pennsylvania, (2) releasing the 2004 SWC request-for-proposal (RFP), and (3) initial planning of the SWC spring meeting in Golden Colorado for selecting the 2004 SWC projects. The Fall technology transfer meetings attracted 100+ attendees between the three workshops. The SWC membership which attended the Casper, Wyoming workshop was able to see several SWC-funded projects operating in the field at the Rocky Mountain Oilfield Testing Center. The SWC is nearing the end of its initial funding cycle. The Consortium has a solid membership foundation and a demonstrated ability to review and select projects that have relevancy to meet the needs of domestic stripper well operators.

Joel L. Morrison

2004-05-17T23:59:59.000Z

10

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. the consortium creates a partnership with the US petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the third quarterly technical progress report for the SWC. During this reporting period the SWC entered into a co-funding arrangement with the New York State Energy Development Authority (NYSERDA) to provide an additional $100,000 in co-funding for stripper well production-orientated projects.The SWC hosted its first meeting in which members proposed research projects to the SWC membership. The meeting was held on April 9-10, 2001 in State College, Pennsylvania. Twenty three proposals were submitted to the SWC for funding consideration. Investigators of the proposed projects provided the SWC membership with a 20 minute (15 minute technical discussion, 5 minute question and answer session) presentation. Of the 23 proposals, the Executive Council approved $921,000 in funding for 13 projects. Penn State then immediately started the process of issuing subcontracts to the various projects approved for funding.

Joel L. Morrison

2001-09-12T23:59:59.000Z

11

Projections of the impact of expansion of domestic heavy oil production on the U.S. refining industry from 1990 to 2010. Topical report  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil (10{degrees} to 20{degrees} API gravity) production. This report provides a compendium of the United States refining industry and analyzes the industry by Petroleum Administration for Defense District (PADD) and by ten smaller refining areas. The refining capacity, oil source and oil quality are analyzed, and projections are made for the U.S. refining industry for the years 1990 to 2010. The study used publicly available data as background. A linear program model of the U.S. refining industry was constructed and validated using 1990 U.S. refinery performance. Projections of domestic oil production (decline) and import of crude oil (increases) were balanced to meet anticipated demand to establish a base case for years 1990 through 2010. The impact of additional domestic heavy oil production, (300 MB/D to 900 MB/D, originating in select areas of the U.S.) on the U.S. refining complex was evaluated. This heavy oil could reduce the import rate and the balance of payments by displacing some imported, principally Mid-east, medium crude. The construction cost for refining units to accommodate this additional domestic heavy oil production in both the low and high volume scenarios is about 7 billion dollars for bottoms conversion capacity (delayed coking) with about 50% of the cost attributed to compliance with the Clean Air Act Amendment of 1990.

Olsen, D.K.; Ramzel, E.B.; Strycker, A.R. [National Institute for Petroleum and Energy Research, Bartlesville, OK (United States). ITT Research Institute] [National Institute for Petroleum and Energy Research, Bartlesville, OK (United States). ITT Research Institute; Guariguata, G.; Salmen, F.G. [Bonner and Moore Management Science, Houston, TX (United States)] [Bonner and Moore Management Science, Houston, TX (United States)

1994-12-01T23:59:59.000Z

12

2013 Domestic Uranium Production Report  

E-Print Network [OSTI]

Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA.S. Energy Information Administration | 2013 Domestic Uranium Production Report iii Preface The U.S. Energy://www.eia.doe.gov/glossary/. #12;U.S. Energy Information Administration | 2013 Domestic Uranium Production Report iv Contents

13

By Patricia A. Plunkert Domestic primary aluminum production increased slightly in  

E-Print Network [OSTI]

of primary metal produced domestically in 1995 was Voluntary Aluminum Industrial Partnership (VAIP) committed metal came from new (manufacturing) scrap and 47% from old scrap (discarded aluminum products, and Washington conjunction with the domestic primary aluminum industry, accounted for 36% of the production

14

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon the 2000  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based upon the 2000 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, and Issues: World refinery production of germanium remained steady in 2000. The recycling of scrap continued

15

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1999  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based on the 1999 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania@usgs.gov, fax: (703) 648-7757] #12;73 GERMANIUM Events, Trends, and Issues: World refinery production

16

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1996 producer  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based on the 1996 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, and chemotherapy), 5%. Salient Statistics--United States: 1992 1993 1994 1995 1996e Production, refinery 13,000 10

17

2014 Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotal (Data from forms4 Domestic

18

2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases211 2014 Domestic

19

2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases211 2014 Domestic5. U.S.

20

2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases211 2014 Domestic5.

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases211 2014 Domestic5.2.

22

2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases211 2014 Domestic5.2.3.

23

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1998 producer  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based on the 1998 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania Production, refinery 10,000 10,000 18,000 20,000 22,000e Total imports 14,700 16,200 27,500 23,700 20

24

(Data in kilograms of germanium content, unless noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1995  

E-Print Network [OSTI]

: The value of domestic refinery production of germanium, based on the 1995 producer price, was approximately industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania. World Refinery Production, Reserves, and Reserve Base: Refinery production Reserves6 Reserve base6 1994

25

Process for Low Cost Domestic Production of LIB Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Process for Low Cost Domestic Production of LIB Cathode Materials Construction of a Li Ion Battery (LIB) Cathode Production Plant in Elyria, Ohio Li-Ion Battery Cell...

26

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1997 producer  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based on the 1997 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, refinery 10,000 10,000 10,000 18,000 20,000e Total imports 15,000 15,000 16,000 27,000 17,0001 Exports NA

27

Creating Value Wood Products Industry  

E-Print Network [OSTI]

Louisiana Forest Products Development Center #12;2 Louisiana is blessed with quality timberland for the Wood Products Industry The forest industry contributes more than 50 percent of the total value of all for quality information, research and education in forest products in Louisiana, recognized regionally

28

Domestic production of medical isotope Mo-99 moves a step closer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mo-99 Domestic production of medical isotope Mo-99 moves a step closer Irradiated uranium fuel has been recycled and reused for molybdenum-99 (Mo-99) production, with...

29

FINLAND SOURCES 2007 -Forest industry production Authorities  

E-Print Network [OSTI]

FINLAND SOURCES 2007 - Forest industry production Print Home Finland Government Authorities Local administration Federations, organizations Company outlooks Industry » Overview » Forest industry production » Turnover » Profit » Energy Year 2006 » Shipping Business services Infrastructure Economy Education

30

(Data in thousand metric tons of copper content, unless noted) Domestic Production and Use: Domestic mine production in 1995 continued its upward trend, begun in 1984, rising  

E-Print Network [OSTI]

in new scrap was consumed at brass mills. Of the total copper recovered from scrap, copper smelters50 COPPER (Data in thousand metric tons of copper content, unless noted) Domestic Production, Arizona, Utah, New Mexico, Montana, and Michigan, accounted for 97% of domestic production; copper

31

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c : U.S.WelcomeDomestic Crude Oil Production,

32

(Data in kilograms of germanium content unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based upon an estimated 2004 producer refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery

33

Agricultural productivity and industrialization: A reformulation  

E-Print Network [OSTI]

Agricultural productivity and industrialization: A reformulation Debasis Mondal Sept 20, 2014 Abstract In this paper we examine the role of agricultural productivity on the process of industrialization industrialization by releasing labor from agriculture to industry. In fact, when agriculture is highly productive

Bandyopadhyay, Antar

34

Impact of an Export Subsidy on the Domestic Cotton Industry.  

E-Print Network [OSTI]

for upland cotton' were about $1.4 billion, which amoun~ed to about one-half of the gross value of production (USDA, 1984). In light of these considerations, attention has focused on ways to expand export demand, including export subsidies. This report... deflated polyester price (LDPPRL), the logarithm of deflated prices of imported textiles (LDPM), and the logarithm of deflated income per capita (LPDY). This is a partially reduced form specification of derived demand as described in Foote (1958...

Wohlgenant, Michael K.

1986-01-01T23:59:59.000Z

35

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production, which had remained unchanged in 1995, resumed the  

E-Print Network [OSTI]

recovered from scrap, copper smelters and refiners recovered 26%; ingot makers, 10%; brass mills, 5752 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic% of domestic production; copper was also recovered at mines in six other States. While copper was recovered

36

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based upon an estimated 2003 producer. A germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery in Oklahoma produced refined germanium compounds for the production of fiber optics, infrared

37

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon the 2002  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based upon the 2002 producer price-bearing materials generated from the processing of zinc ores. The germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. The refinery in Oklahoma doubled its production

38

(Data in kilograms of germanium content unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based upon an estimated 2008 producer of 2008. A germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery in Oklahoma produced refined germanium compounds for the production of fiber optics

39

(Data in kilograms of germanium content unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based upon an estimated 2007 producer in the fourth quarter of 2007. A germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery in Oklahoma produced refined germanium compounds for the production

40

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1998, there was no domestic tin mine production. Production of tin at the only U.S.  

E-Print Network [OSTI]

180 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1998, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1997, there was no domestic tin mine production. Production of tin at the only  

E-Print Network [OSTI]

178 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1997, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

42

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1999, there was no domestic tin mine production. Production of tin at the only  

E-Print Network [OSTI]

176 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1999, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 97% of the primary tin. The major uses

43

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1996, there was no domestic tin mine production. Production of tin at the only U.S.  

E-Print Network [OSTI]

178 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1996, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

44

Colorado Statewide Forest Products Industry Profile  

E-Print Network [OSTI]

Colorado Statewide Forest Products Industry Profile Economic Sustainability and Ecological and Comparisons Production and Processing Sales and Markets Economic and Ecological Contributions Sawmills 1/4 for Roundwood (post and pole, vigas, house logs), furniture, excelsior etc. Sawmill

45

New Technologies that Enhance Environmental Protection, Increase Domestic Production, Result from DOE-Supported Consortium  

Broader source: Energy.gov [DOE]

New technologies that help small, independent oil and natural gas operators contribute to domestic energy production while improving environmental protection have resulted from U.S. Department of Energy support of the Stripper Well Consortium.

46

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon the 2001  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based upon the 2001 producer price-bearing materials generated from the processing of zinc ores. The germanium refineries in New York and Oklahoma and set up in New York. The refinery in Oklahoma expanded, and a new secondary facility was built in North

47

Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997  

SciTech Connect (OSTI)

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

NONE

1998-03-01T23:59:59.000Z

48

Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993  

SciTech Connect (OSTI)

This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

Not Available

1994-07-08T23:59:59.000Z

49

Magnetic refrigeration, based on the magnetocaloric ef-fect, has great promise for domestic and industrial use and is at-  

E-Print Network [OSTI]

energy consumption. Furthermore, it would reduce the use of greenhouse-effect gases the industrial development of the materials, McPHy Energy for powder treatments, and Cooltech ApplicationsMagnetic refrigeration, based on the magnetocaloric ef- fect, has great promise for domestic

Canet, Léonie

50

Industrial and Agricultural Production Efficiency Program  

Broader source: Energy.gov [DOE]

Energy Trust of Oregon offers the Industrial and Agricultural Production Efficiency Program to customers of Portland General Electric, Pacific Power, NW Natural and Cascade Natural Gas. In order to...

51

A Blueprint for Forest Products Industry  

E-Print Network [OSTI]

Major Model Components - Resource Assessment - Industry Structure - Product/Market Strategy - Economic Impacts Workforce Training Network Formation Resource Assessment Government Support Financing Economic Development Technology Profitability Resource Assessment Current & projected Commercial species Lesser-used species

52

Domestic Uranium Production Report 4th Quarter 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal Cycle ofDoDocuments forWHAT'S1.Domestic

53

TrendSetter Solar Products Inc aka Trendsetter Industries formerly...  

Open Energy Info (EERE)

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name: TrendSetter Solar Products Inc (aka Trendsetter Industries,...

54

(Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.  

E-Print Network [OSTI]

176 TIN (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 92% of the primary tin consumed

55

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.  

E-Print Network [OSTI]

174 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 80% of the primary tin consumed

56

(Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.  

E-Print Network [OSTI]

174 TIN (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 77% of the primary tin consumed

57

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production of copper in 2010 declined by about 5% to 1.12 million  

E-Print Network [OSTI]

plants, 14%; ingot makers, 11%; and copper smelters and refiners, 5%. Copper in all old and new, refined48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production of copper in 2010 declined by about 5% to 1.12 million tons

58

Process for Low Cost Domestic Production of LIB Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

information" 4 Approach BASF has a low cost production process for Li ion battery cathode materials. In this project, the cathode materials developed in the laboratory will be...

59

Process for Low Cost Domestic Production of LIB Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

- EV) Use BASF's existing assets and low cost production process. Validate that cost and quality targets are met via coin cells, pouch cells and 18650 cells. ...

60

Forest Products Industry of the Future  

SciTech Connect (OSTI)

Los Alamos Technical Associates, Inc (LATA) conducted an evaluation of the potential impact and value of a portion of the current portfolio of r&d projects supported by the Office of Industrial Technology and the Forest Products Industry of the Future. The mission of the evaluation was to (a) assess the potential impact of the projects to meet the critical goals of the industry as identified in the vision and roadmapping documents. (b) Evaluate the relationship between the current portfolio of projects and the Agenda 202 Implementation Plan. In addition, evaluate the relationship between the portfolio and the newly revised draft technology strategy being created by the industry. (c) Identify areas where current efforts are making significant progress towards meeting industry goals and identify areas where additional work my be required to meet these goals. (d) Make recommendations to the DOE and the Forest Products Industry on possible improvements in the portfolio and in the current methodology that DOE uses to assess potential impacts on its R&D activities.

Los Alamos Technical Associates, Inc

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Salmonella contamination during production of domestic and imported canaloupe  

E-Print Network [OSTI]

In this study, 8 cantaloupe farms and packing sheds from the United States (U.S.) and Mexico were sampled to evaluate cantaloupe contamination with Salmonella and Escherichia coli during production and processing. Samples collected from external...

Uribe, Imelda Mercado

2002-01-01T23:59:59.000Z

62

Process for Low Cost Domestic Production of LIB Cathode Materials  

SciTech Connect (OSTI)

The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASFs battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASFs already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111, 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEMs and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.

Thurston, Anthony

2012-10-31T23:59:59.000Z

63

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1997 was essentially unchanged at 1.9 million metric  

E-Print Network [OSTI]

52 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Mexico, Nevada, and Montana, accounted for 98% of domestic production; copper was also recovered at mines in six other States. While copper was recovered at about 35 mines operating in the United States, 15

64

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2009 declined by about 9% to 1.2 million tons and its  

E-Print Network [OSTI]

makers, 11%; and copper smelters and refiners, 6%. Copper in all old and new, refined or remelted scrap48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also

65

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2002 declined to 1.13 million metric tons and was  

E-Print Network [OSTI]

- and nickel-base scrap), brass mills recovered 70%; copper smelters and refiners, 8%; ingot makers, 1156 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, accounted for 99% of domestic production; copper was also recovered at mines in three other States. Although

66

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2008 increased by about 12% to 1.3 million tons and  

E-Print Network [OSTI]

plants, 14%; ingot makers, 9%; and copper smelters and refiners, 5%. Copper in all old and new, refined50 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also

67

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2000 declined to 1.45 million metric tons and was  

E-Print Network [OSTI]

scrap, brass mills recovered 67%; copper smelters and refiners,18%; ingot makers, 11%; and miscellaneous52 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, and Montana, accounted for 99% of domestic production; copper was also recovered at mines in three other

68

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2004 rose to 1.16 million tons and was valued at  

E-Print Network [OSTI]

scrap (including aluminum- and nickel-base scrap), brass mills recovered 71%; copper smelters54 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic% of domestic production; copper was also recovered at mines in four other States. Although copper was recovered

69

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2001 declined to 1.34 million metric tons and was  

E-Print Network [OSTI]

scrap (including aluminum- and nickel-base scrap), brass mills recovered 65%; copper smelters54 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, accounted for 99% of domestic production; copper was also recovered at mines in three other States. Although

70

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2007 declined nominally to 1.19 million tons, but its  

E-Print Network [OSTI]

plants, 11%; ingot makers, 9%; and copper smelters and refiners, 5%. Copper in all old and new, refined54 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for 99% of domestic production; copper was also

71

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2006 rose to more than 1.2 million tons and was  

E-Print Network [OSTI]

manufacturers, foundries, and chemical plants, 12%; ingot makers, 10%; and copper smelters and refiners, 452 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Mexico, Nevada, and Montana--accounted for 99% of domestic production; copper was also recovered at mines

72

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1999 declined to 1.66 million metric tons and was  

E-Print Network [OSTI]

mills. Of the total copper recovered from scrap, brass mills recovered 67%; copper smelters and refiners56 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, Nevada, and Montana, accounted for 99% of domestic production; copper was also recovered at mines

73

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2003 declined to 1.12 million tons and was valued at  

E-Print Network [OSTI]

- and nickel-base scrap), brass mills recovered 70%; copper smelters and refiners, 6%; ingot makers, 1254 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic% of domestic production; copper was also recovered at mines in three other States. Although copper

74

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1998 declined to 1.85 million metric tons and was  

E-Print Network [OSTI]

, copper smelters and refiners recovered 23%; ingot makers, 10%; brass mills, 63%; and miscellaneous56 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, Nevada, and Montana, accounted for 99% of domestic production; copper was also recovered at mines

75

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2005 fell nominally to 1.15 million tons and was  

E-Print Network [OSTI]

(including aluminum- and nickel-base scrap), brass mills recovered 73%; copper smelters and refiners, 556 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Mexico, Nevada, and Montana, accounted for 99% of domestic production; copper was also recovered at mines

76

India's Fertilizer Industry: Productivity and Energy Efficiency  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

Schumacher, K.; Sathaye, J.

1999-07-01T23:59:59.000Z

77

Made in China : the rise of the Chinese domestic firms in the information industry  

E-Print Network [OSTI]

This research uses a multi-case analysis approach to study China's catching-up as a late-industrialized economy in the information and communications technology (ICT) industries. The significant contributions of this study ...

Fan, Peilei, 1972-

2003-01-01T23:59:59.000Z

78

Domestic production of medical isotope Mo-99 moves a step closer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:Directives Templates8. U.S. uraniumDomestic production of

79

Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume II. Industry profiles  

SciTech Connect (OSTI)

Econoimc profiles of the industries most affected by the construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) powerplants are presented. Six industries which will contribute materials and/or components to the construction of OTEC plants have been identified and are profiled here. These industries are: steel industry, concrete industry, titanium metal industry, fabricated structural metals industry, fiber glass-reinforced plastics industry, and electrical transmission cable industry. The economic profiles for these industries detail the industry's history, its financial and economic characteristics, its technological and production traits, resource constraints that might impede its operation, and its relation to OTEC. Some of the historical data collected and described in the profile include output, value of shipments, number of firms, prices, employment, imports and exports, and supply-demand forecasts. For most of the profiled industries, data from 1958 through 1980 were examined. In addition, profiles are included on the sectors of the economy which will actualy construct, deploy, and supply the OTEC platforms.

None

1981-12-22T23:59:59.000Z

80

Chemical production from industrial by-product gases: Final report  

SciTech Connect (OSTI)

The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

Lyke, S.E.; Moore, R.H.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Production of bioenergy and biochemicals from industrial and  

E-Print Network [OSTI]

Production of bioenergy and biochemicals from industrial and agricultural wastewater Largus T biological processing strat- egies that produce bioenergy or biochemicals while treating industrial on wastewater treatment from pollution control to resource exploitation. Many bioprocesses can provide bioenergy

Angenent, Lars T.

82

Supply chain network optimization : low volume industrial chemical product  

E-Print Network [OSTI]

The chemical industry is a highly competitive and low margin industry. Chemical transportation faces stringent safety regulations meaning that Cost-To-Serve (C2S), costs associated with products net flow from manufacturers ...

Dacha, Fred (Frederick Omondi)

2013-01-01T23:59:59.000Z

83

Determining Levels of Productivity and Efficiency in the Electricity Industry  

SciTech Connect (OSTI)

A few major themes run fairly consistently through the history of productivity and efficiency analysis of the electricity industry: environmental controls, economies of scale, and private versus government.

Abbott, Malcolm

2005-11-01T23:59:59.000Z

84

WA_99_022_AIR_PRODUCTS_AND_CHEMICAL_Waiver_of_Domestic_and_F...  

Broader source: Energy.gov (indexed) [DOE]

9022AIRPRODUCTSANDCHEMICALWaiverofDomesticandF.pdf WA99022AIRPRODUCTSANDCHEMICALWaiverofDomesticandF.pdf WA99022AIRPRODUCTSANDCHEMICALWaiverofDomestic...

85

Photovoltaics industry profile  

SciTech Connect (OSTI)

A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

None

1980-10-01T23:59:59.000Z

86

Mercantilism and Domestic Industry in West-Central Nepal: Significance for Anthropological Study of the Community  

E-Print Network [OSTI]

. They were to be organtze4 in tndustrta.l cooperatl~assoctatJons which would provide the raw materials, tools, and marketing facllitles. Four prominent famtlles of BandJpUI" look advantage of Juddha Sharnshe,.s cottage Industry program to bulld a textile... such as Blrla. Tata and so forth used the bazaar as a basis to take the opportunity of g10bal crises in capltallsm to enter into direct partne~hJpwith foreign capitalists (Ray 1988). the BandJpUf" merchants only expanded their trade with India (whUe the palace...

Mikesell, Stephen L; Shrestha, Jamuna

1990-01-01T23:59:59.000Z

87

An Overview of the Louisiana Secondary Wood Products Industry  

E-Print Network [OSTI]

. Marketing issues were also addressed such as the value of products shipped, market areas served or strategic planning with most companies relying on word-of-mouth to promote products directly to consumers issues identified by respondents regarding the secondary wood product industry improvement are production

88

EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99  

Broader source: Energy.gov [DOE]

This EA evaluates the potential environmental impacts of a proposal to use federal funds to support and accelerate Northstar Medical Radioisotopes' project to develop domestic, commercial production capability for the medical isotope Molybdenum-99 without the use of highly enriched uranium.

89

(Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2000, 12 companies operated 23 primary aluminum reduction plants. Montana,  

E-Print Network [OSTI]

, and Issues: Domestic primary aluminum production decreased owing in large part to the smelter production cutbacks caused by increased energy costs, particularly in the Pacific Northwest. Domestic smelters aluminum smelter in Hawesville, KY. The acquisition was subject to the completion of a labor agreement

90

(Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies  

E-Print Network [OSTI]

44 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

91

(Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies  

E-Print Network [OSTI]

46 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

92

Training Needs in Louisiana's Value-Added Forest Products Industry  

E-Print Network [OSTI]

Training Needs in Louisiana's Value-Added Forest Products Industry Richard VloskyRichard Vlosky Director, Louisiana Forest Products Development CenterDirector, Louisiana Forest Products DevelopmentLSU Agricultural Center England Air ParkEngland Air Park--January 18, 2005January 18, 2005 Louisiana Forest

93

Productivity benefits of industrial energy efficiency measures  

E-Print Network [OSTI]

the linkage between energy efficiency and productivity.and increased energy efficiency in integrated paper andand Office of Energy Efficiency and Renewable Energy, 1997.

Worrell, Ernst

2011-01-01T23:59:59.000Z

94

Production design for plate products in the steel industry  

E-Print Network [OSTI]

Apr 5, 2007 ... The use of these tools provides two types of benefits: improvements in the productivity of the plant and an approach to making the key business...

Sanjeeb Dash

2007-04-05T23:59:59.000Z

95

The structural preconditions for maximizing FDI spillovers in Colombia : a sectoral impact analysis of Foreign Direct Investment (FDI) on Industry output, labor payments, firm productivity, and the productive structure (1995-2009)  

E-Print Network [OSTI]

Do multinational corporations (MNCs) crowd out domestic firms in developing countries, or is foreign direct investment (FDI) complementary to domestic firm profitability, productivity, and employment? Empirical literature ...

Hyman, Benjamin G. (Benjamin Gabriel)

2011-01-01T23:59:59.000Z

96

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

SciTech Connect (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-09-23T23:59:59.000Z

97

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

ScienceCinema (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-12-03T23:59:59.000Z

98

An Overview of the Louisiana Primary Solid Wood Products Industry  

E-Print Network [OSTI]

Laboratory can better serve Louisiana companies in this industry sector. Results include a discussion in Louisiana consists of 81 companies compared to approximately 750 companies in the secondary wood products sector. * Just over 36 percent of companies surveyed have 50 employees or more and 18.2 percent have 200

99

Moving Toward Product Line Engineering in a Nuclear Industry Consortium  

E-Print Network [OSTI]

Moving Toward Product Line Engineering in a Nuclear Industry Consortium Sana Ben Nasr, Nicolas line engineering, variability mining 1. INTRODUCTION Nuclear power plants are some of the most.ben-nasr, nicolas.sannier, mathieu.acher, benoitbaudry}@inria.fr ABSTRACT Nuclear power plants are some of the most

Boyer, Edmond

100

Production design for plate products in the steel industry  

E-Print Network [OSTI]

products in a steel plant, i.e., a detailed list of operational steps and ..... number of orders fulfilled by their due dates are important in every phase of our solution ..... The column-generation subproblem consists of taking the optimum dual...

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

India's pulp and paper industry: Productivity and energy efficiency  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

Schumacher, Katja

1999-07-01T23:59:59.000Z

102

Estimates of future regional heavy oil production at three production rates--background information for assessing effects in the US refining industry  

SciTech Connect (OSTI)

This report is one of a series of publications from a project considering the feasibility of increasing domestic heavy oil (10{degree} to 20{degree} API gravity inclusive) production being conducted for the US Department of Energy. The report includes projections of future heavy oil production at three production levels: 900,000; 500,000; and 300,000 BOPD above the current 1992 heavy oil production level of 750,000 BOPD. These free market scenario projections include time frames and locations. Production projections through a second scenario were developed to examine which heavy oil areas would be developed if significant changes in the US petroleum industry occurred. The production data helps to define the possible constraints (impact) of increased heavy oil production on the US refining industry (the subject of a future report). Constraints include a low oil price and low rate of return. Heavy oil has high production, transportation, and refining cost per barrel as compared to light oil. The resource is known, but the right mix of technology and investment is required to bring about significant expansion of heavy oil production in the US.

Olsen, D.K.

1993-07-01T23:59:59.000Z

103

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: Limited shipments of tungsten concentrates were made from a California mine in  

E-Print Network [OSTI]

178 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and primary products, wrought and unwrought tungsten, and waste and scrap: China, 43%; Germany, 11%; Canada,630 1,450 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

104

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A tungsten mine in California produced concentrates in 2012. Approximately eight  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 45,200 3,630 1,610 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

105

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: One mine in California produced tungsten concentrates in 2010. Approximately  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production. Import Sources (200609): Tungsten contained in ores and concentrates, intermediate and primary products, Trends, and Issues: World tungsten supply is dominated by Chinese production and exports. China

106

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A mine in California produced tungsten concentrates in 2009. Approximately eight  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production. Import Sources (2005-08): Tungsten contained in ores and concentrates, intermediate and primary products, and Issues: World tungsten supply was dominated by Chinese production and exports. China's Government limited

107

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A tungsten mine in California produced concentrates in 2013. Approximately eight  

E-Print Network [OSTI]

174 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 45,100 2,300 2,240 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

108

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: One mine in California produced tungsten concentrates in 2011. Approximately  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production (200710): Tungsten contained in ores and concentrates, intermediate and primary products, wrought: World tungsten supply is dominated by Chinese production and exports. China's Government regulates its

109

a-si alloy production: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for silicon metal comes primarily from the aluminum and chemical industries. Domestic secondary aluminum production--the primary materials source for aluminum-silicon alloys--was...

110

Study of Reasons for the Adoption of Lean Production in the Automobile Industry: Questions for the AEC Industries  

E-Print Network [OSTI]

Study of Reasons for the Adoption of Lean Production in the Automobile Industry: Questions IN THE AUTOMOBILE INDUSTRY: QUESTIONS FOR THE AEC INDUSTRIES Scott Featherston1 ABSTRACT The primary intent in opting for an alternative? Were there pressures that gave automobile producers no option but to alter

Tommelein, Iris D.

111

Opportunities for UPC Product and Service Suppliers: The Wood Products Industry  

E-Print Network [OSTI]

product and service suppliers. #12;4 UPC Suppliers To The Wood Products Industry Twenty-seven companies.3 percent of all corporate sales for these 27 respondent companies. An additional 15 companies indicated, from the largest timbers to small lengths of wood moulding are complying with customer requirements

Wu, Qinglin

112

Divisionalization, product cannibalization and product location choice: Evidence from the U.S. automobile industry  

E-Print Network [OSTI]

), and the products of a sister division of the same firm (intra-firm divisional new product distance). The hypotheses were tested using data on the U.S. automobile industry between 1979 and 1999. The results show that a focal division with a high level of inter...

Jeong, Eui Kyo

2004-09-30T23:59:59.000Z

113

Uranium Industry Annual, 1992  

SciTech Connect (OSTI)

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

114

Expansion of Domestic Production of Lithium Carbonate and Lithium Hydroxide to Supply US Battery Industry  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

115

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine  

E-Print Network [OSTI]

94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine operation in Nevada. The mine's production capacity was expanded in 2012, and a new lithium hydroxide plant opened in North

116

Crossing innovation & product projects management: A comparative analysis in automotive industry  

E-Print Network [OSTI]

1 Crossing innovation & product projects management: A comparative analysis in automotive industry Keywords: organizational learning, new product projects portfolio, innovation management, automotive in automotive industry INTRODUCTION Projectification and platform approaches have been two main transformation

Paris-Sud XI, Université de

117

The Production Tax Credit is Key to a Strong U.S. Wind Industry  

Office of Energy Efficiency and Renewable Energy (EERE)

New report finds the production tax credit has been critical to the growth of the U.S. wind industry.

118

(Data in kilograms of gallium content unless otherwise noted) Domestic Production and Use: No domestic primary gallium recovery was reported in 2012. One company in Utah  

E-Print Network [OSTI]

consumed was used in integrated circuits (ICs). Optoelectronic devices, which include laser diodes, light. Optoelectronic devices were used in areas such as aerospace, consumer goods, industrial equipment, medical

119

A complex order for industry : design of an urban factory  

E-Print Network [OSTI]

Whereas the separation of work from domestic life introduced during the industrial revolution has brought enormous increases in productivity through the division of labor, the cultural cost of this fracture for society is ...

Kaup, Thomas

1993-01-01T23:59:59.000Z

120

(Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor-and solar-  

E-Print Network [OSTI]

Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor- and solar- grade and aluminum alloys and the chemical industry. The semiconductor and solar industries, which manufacture chips China, 49%; Russia, 20

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

122

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

100 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

123

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

98 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

124

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

96 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

125

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine operating in the United States was a  

E-Print Network [OSTI]

94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine operating in the United States was a brine operation in Nevada. Two companies produced a large array of downstream lithium compounds in the United States from

126

(Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world, followed by China,  

E-Print Network [OSTI]

, but growing through the recycling of lithium batteries. Import Sources (1994-97): Chile, 96%; and other, 4 lithium salts from battery recycling and lithium hydroxide monohydrate from former Department of Energy102 LITHIUM (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production

127

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters  

E-Print Network [OSTI]

and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters were closed the entire year. Demolition of two smelters that had been idle for several years was started in 2010. Based: During the first half of 2010, production from domestic primary aluminum smelters had stabilized after

128

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2007, 6 companies operated 14 primary aluminum smelters; 5 smelters were  

E-Print Network [OSTI]

and Use: In 2007, 6 companies operated 14 primary aluminum smelters; 5 smelters were temporarily idled primary aluminum production increased substantially owing to smelter restarts after new power contracts were obtained by producers. Domestic smelters operated at about 69% of rated or engineered capacity

129

(Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2003. Two companies,  

E-Print Network [OSTI]

with the curtailment of primary refining capacity have added an extra incentive to the recovery of secondary indium be compared with Japan where the decline in domestic zinc refining has stimulated an aggressive recycling in the world economy. The report of reduced production from mines that produce byproduct indium had a negative

130

Productivity and labor management in Shanghai state-owned industrial enterprises  

E-Print Network [OSTI]

., China's Industrial Revolution ; Brugger, William, Democracy & Organization in the Chinese IndustrialProductivity and labor management in Shanghai state-owned industrial enterprises Christian HENRIOT picture of the state of national industries. It became clear to the Chinese leaders that their past

Paris-Sud XI, Université de

131

BIOCHEMICALS FOR THE PRINTING INDUSTRY THE CARBOHYDRATE ECONOMY INDUSTRIAL PRODUCTS FROM THE SOILINTRODUCTION  

E-Print Network [OSTI]

The printing industry is one of the largest and most geographically diverse manufacturing industries in the U.S. In 1996, the industry consisted of more than 50,000 establishments

unknown authors

132

(Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2000. Domestically  

E-Print Network [OSTI]

Statistics--United States: 1996 1997 1998 1999 2000e Production, refinery -- -- -- -- -- Imports fluctuations. World Refinery Production, Reserves, and Reserve Base: Refinery productione Reserves2 Reserve

133

(Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2002. Domestically  

E-Print Network [OSTI]

Statistics--United States: 1998 1999 2000 2001 2002e Production, refinery -- -- -- -- -- Imports. World Refinery Production, Reserves, and Reserve Base: Refinery productione Reserves3 Reserve base3 2001

134

Presentation 2.3: The sustainable forest products industry, carbon and climate change Mikael Hannus  

E-Print Network [OSTI]

emissions, the forest products industry can - become more energy efficient and increase its share of biomass International Seminar onFAO IEA ICFPA International Seminar on Energy and the Forest Products IndustryEnergy the industry. To assist in the efforts to reduce society's energy use and greenhouse gas emissions, the forest

135

Managing novelty at the interfaces between concept and product : case studies for the automotive industry  

E-Print Network [OSTI]

Appearance of the product is a discerning factor for the consumers purchase decisions. Time from concept to product creation is a critical factor in the competitive automotive industry. The period to develop a product is ...

Zarewych, Lara Daniv, 1972-

2005-01-01T23:59:59.000Z

136

Domestic Titus  

E-Print Network [OSTI]

Critical examinations of William Shakespeares Titus Andronicus almost always occlude questions of the domestic. Yet, a major portion of the plays action takes place in a house and the methods of the characters revenge can be construed as domestic...

Brinkman, Ashley Marie

2009-05-15T23:59:59.000Z

137

ITP Forest Products: Report for AIChE Pulp and Paper Industry...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Report for AIChE Pulp and Paper Industry Energy Bandwidth Study Report ITP Forest Products: Report for AIChE Pulp and Paper Industry Energy Bandwidth Study Report doebandwidth.pdf...

138

(Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2001. Domestically  

E-Print Network [OSTI]

--United States: 1997 1998 1999 2000 2001e Production, refinery -- -- -- -- -- Imports for consumption 85.5 75 77 fluctuations caused by economic uncertainties. World Refinery Production, Reserves, and Reserve Base: Refinery

139

(Data in metric tons, unless otherwise noted) Domestic Production and Use: No indium was recovered from ores in the United States in 1997. Domestically  

E-Print Network [OSTI]

--United States: 1993 1994 1995 1996 1997e Production, refinery -- -- -- -- -- Imports for consumption 73.4 70 for the indium market remains promising. World Refinery Production, Reserves, and Reserve Base: Refinery

140

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2012 increased by 4% to about 1.15 million tons,  

E-Print Network [OSTI]

%; and copper smelters and refiners, 5%. Copper in all old and new, refined or remelted scrap contributed about48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2012 increased by 4% to about 1.15 million tons

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2011 increased slightly to about 1.1 million tons  

E-Print Network [OSTI]

%; and copper smelters and refiners, 5%. Copper in all old and new, refined or remelted scrap contributed about48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2011 increased slightly to about 1.1 million tons

142

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons,  

E-Print Network [OSTI]

manufacturers, foundries, and chemical plants, 11%; ingot makers,10%; and copper smelters and refiners, 548 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons

143

Rails Beyond Coal The Impacts of "New Energy" & the Dawning of the Domestic Intermodal Age  

E-Print Network [OSTI]

Potential 5 Secular stories (in order).... · 1-Intermodal ­ International and now Domestic · 2 ­Shale/Oil/International Shale/oil Agricultural products Export Coal Chemicals! Industrial-Products/ Metals @GDP;Shale · Frac Sand, brine & water, pipe and aggregates inbound · In cases of Oil, "Rolling Pipelines" out

Bustamante, Fabián E.

144

Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry  

SciTech Connect (OSTI)

The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. The original project objectives had to be modified as a result of DOE funding cuts, the Biomass Program did not receive adequate funding to fully fund its selected projects. Nonetheless, effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. PI Dorgan taught one of the newly developed classes will in the Fall 2006, after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revisions. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PIs group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the development of a better educated workforce and citizenry capable of providing technological innovation as a means of growing the economy and providing jobs. In particular, the educational components addressing the production of bioethanol, biodiesel, and bioplastics provide graduates that can assist American industries in including greater renewable content in feedstocks for materials and fuels. Finally, the collaboration fostered by this grant led to the drafting of a new book entitled, Bioengineering for Sustainability: Materials and Fuels for the 21st Century. This text will be widely available to the public interested in learning more about these important areas of technology.

John R. Dorgan

2005-09-30T23:59:59.000Z

145

Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry  

SciTech Connect (OSTI)

The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. Effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. The PI will be teaching one of the newly developed classes will next Fall (Fall 2006), after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revision. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PIs group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the development of a better educated workforce and citizenry capable of providing technological innovation as a means of growing the economy and providing jobs. In particular, the educational components addressing the production of bioethanol, biodiesel, and bioplastics provide graduates that can assist American industries in including greater renewable content in feedstocks for materials and fuels. Finally, the collaboration fostered by this grant led to the drafting of a new book entitled, Bioengineering for Sustainability: Materials and Fuels for the 21st Century. This text will be widely available to the public interested in learning more about these important areas of technology.

John R. Dorgan

2005-07-31T23:59:59.000Z

146

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only active lithium carbonate plant in the United States was a brine operation in  

E-Print Network [OSTI]

94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only active lithium carbonate plant in the United States was a brine operation in Nevada. Two companies produced a large array of downstream lithium compounds in the United States from domestic or South

147

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 90% of the primary tin consumed domestically in 2012. The major uses were as follows

148

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

172 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 81% of the primary tin consumed domestically in 2006. The major uses were as follows

149

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

172 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 86% of the primary tin consumed domestically in 2008. The major uses were as follows

150

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

176 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 81% of the primary tin consumed domestically in 2005. The major uses were as follows

151

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 84% of the primary tin consumed domestically in 2009. The major uses were as follows

152

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

168 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms accounted for about 90% of the primary tin consumed domestically in 2013. The major uses for tin

153

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 91% of the primary tin consumed domestically in 2010. The major uses were as follows

154

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

176 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 84% of the primary tin consumed domestically in 2007. The major uses were as follows

155

International Journal of Industrial Ergonomics Measuring consumer perceptions for the development of product  

E-Print Network [OSTI]

International Journal of Industrial Ergonomics Measuring consumer perceptions for the development in "International Journal of Industrial Ergonomics 33, 6 (2004) 507-525" DOI : 10.1016/j.ergon.2003.12.004 #12;2 International Journal of Industrial Ergonomics Abstract Product semantics, the "study of the symbolic qualities

Boyer, Edmond

156

Product Market Characteristics and the Industry Life Cycle Kenneth L. Simons *  

E-Print Network [OSTI]

permission to use US data which the author helped to collect. Teams of research assistants worked to assemble-sectional, cross-national (US and UK) industry data on narrowly-defined product markets. The process by which industries evolve to their static outcomes is found to occur similarly for the same industry in the different

Lü, James Jian-Qiang

157

Accelerated New Product Development in Credit Card Industry  

E-Print Network [OSTI]

CALIFORNIA Los Angeles Accelerated New Product DevelopmentABSTRACT OF THE THESIS Accelerated New Product Developmentmodels to provide accelerated new product development

Gupta, Ravi Kumar

2012-01-01T23:59:59.000Z

158

eBusiness in the Forest Products Industry: A Comparison of the United States & Canada  

E-Print Network [OSTI]

eBusiness in the Forest Products Industry: A Comparison of the United States & Canada Olivian Pitis products industry in the United States and Canada. Both solid and pulp/paper companies were surveyed the United States & Canada. Objectives #12;All Respondents Results #12;1 company .05% of respondents North

159

Using E-Commerce in the Forest Products Industry Chapter 1.2.  

E-Print Network [OSTI]

Using E-Commerce in the Forest Products Industry Chapter 1.2. Using E-Commerce in the Forest The forest products industry is rapidly adopting e-commerce solutions as it advances in the information age. In this chapter, the unique e-commerce needs of this sector's small businesses are discussed. Current experience

160

Ergonomic Solutions for the Secondary Wood Products Industry On October 17th  

E-Print Network [OSTI]

Ergonomic Solutions for the Secondary Wood Products Industry On October 17th and 18th , 2001, you are invited to a conference entitled: Ergonomic Solutions for the Secondary Wood Products Industry. This seminar will be held at Executive Inn, in Louisville, Kentucky. Hear the latest developments in ergonomics

Gazo, Rado

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

(Data in metric tons, unless noted) Domestic Production and Use: No indium was recovered from ores in the United States in 1995. Domestic indium  

E-Print Network [OSTI]

, refinery NA NA NA NA -- Imports for consumption 36.3 36.3 73.4 70.2 73.0 Exports NA NA NA NA NA marketed through a U.S. company. World Refinery Production, Reserves, and Reserve Base: Refinery

162

Crude Oil Domestic Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes)Countries0 0 0 0

163

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-14 Oct-14 Nov-141.

164

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-14 Oct-14

165

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-14 Oct-147.

166

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-14 Oct-147.8. U.S.

167

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-14 Oct-147.8.

168

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-14 Oct-147.8.4.

169

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-14 Oct-147.8.4.2.

170

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-14

171

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-1410. Uranium

172

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-1410. Uranium9.

173

Industry  

E-Print Network [OSTI]

SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

Bernstein, Lenny

2008-01-01T23:59:59.000Z

174

Production of Biogas from Wastewaters of Food Processing Industries  

E-Print Network [OSTI]

An Upflow Anaerobic Sludge Blanket Process used in converting biodegradable, soluble, organic pollutants in industrial wastewaters to a directly-burnable biogas composed mainly of methane has been developed, tested, and commercially applied...

Sax, R. I.; Holtz, M.; Pette, K. C.

1980-01-01T23:59:59.000Z

175

Industrial recovered-materials-utilization targets for the metals and metal-products industry  

SciTech Connect (OSTI)

The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

None

1980-03-01T23:59:59.000Z

176

Strategic change and the coevolution of industry-university relationships : evidence from the forest products industry  

E-Print Network [OSTI]

In this thesis we present an analysis of the dynamics of industry-university relationships tracing the origin of the relationship and its changes over time as the firm's strategies evolve. We analyze the strategic trajectories ...

Pertuz Salas, Julio Alberto

2014-01-01T23:59:59.000Z

177

Practical Training in Microalgae Utilization with Key Industry Engineering Group Key Industry Engineering Group s.r.o. has developed a biotechnology for the production of an animal  

E-Print Network [OSTI]

Practical Training in Microalgae Utilization with Key Industry Engineering Group Key Industry on a suspension of Planktochlorella microalgae. The product consists of a suspension of algae in the growing

178

Covered Product Category: Industrial Luminaires (High/Low Bay)  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for Industrial Luminaires (High/Low Bay). Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

179

Scope for industrial applications of production scheduling models and  

E-Print Network [OSTI]

Computers and Chemical Engineering 62 (2014) 161­ 193 © ABB Group March 18, 2014 | Slide 2 #12 learned and success stories on real industrial scheduling implementations General guidelines and examples and scheduling © ABB Group March 18, 2014 | Slide 5 #12;Where is scheduling "located" Traditional system

Grossmann, Ignacio E.

180

Establishment of a Graduate Certificate Program in Biobased Industrial Products Final Technical Report  

SciTech Connect (OSTI)

A certificate of graduate studies in Biobased Industrial Products is to be established at Kansas State University (KSU) along with the development of a similar program at Pittsburg State University, Pittsburg, KS. At KSU, the program of study will be coordinated through the steering committee of the Agricultural Products Utilization Forum (APUF); the certificate of graduate studies will be awarded through the Graduate School of Kansas State University. This certificate will establish an interdisciplinary program of study that will: (1) ensure participating students receive a broad education in several disciplines related to Biobased Industrial Products, (2) provide a documented course of study for students preferring a freestanding certificate program, and (3) provide a paradigm shift in student awareness away from petroleum-based feedstocks to the utilization of renewable resources for fuels and chemical feedstocks. The academic program described herein will accomplish this goal by: (1) providing exposure to several academic disciplines key to Biobased Industrial Products; (2) improving university/industry collaboration through an external advisory board, distance learning opportunities, and student internships; (3) expanding the disciplines represented on the students' supervisory committee; (4) establishing a seminar series on Biobased Industrial Products that draws upon expert speakers representing several disciplines; and (5) increasing collaboration between disciplines. Numerous research programs emphasizing Biobased Industrial Products currently exist at KSU and PSU. The certificate of graduate studies, the emphasis on interdisciplinary collaboration within the students? thesis research, the proposed seminar series, and formation of an industrial advisory board will: (1) provide an interdisciplinary academic experience that spans several departments, four colleges, four research centers, and two universities; (2) tangibly promote collaboration between KSU and PSU; (3) catalyze involvement of plant geneticists with researchers active in the development and utilization of biobased industrial products; and, (4) promote university/industry collaboration.

John R. Schlup

2005-11-04T23:59:59.000Z

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

[Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted] Domestic Production and Use: Rare earths were mined by one U.S. company in 2013. Bastnasite, a rare-earth  

E-Print Network [OSTI]

to represent 0.12 percent of the rare-earth elements in the Mountain Pass bastnasite ore. The leading end uses Production and Use: Rare earths were mined by one U.S. company in 2013. Bastnasite, a rare-earth fluorocarbonate mineral, was mined as a primary product at Mountain Pass, CA. Domestic production of rare-earth

182

Highlights of Industrial Energy Audits with Application in Paper Product Manufacturing  

E-Print Network [OSTI]

Experience in executing comprehensive energy audits in varied industrial plants has resulted in a basic audit methodology and has revealed several interesting energy conservation opportunities applicable to paper products manufacturing. The most...

Hart, M. N.; Bond, S. K.

1979-01-01T23:59:59.000Z

183

The Power of Integrality: Linkages between Product Architecture, Innovation, and Industry Structure  

E-Print Network [OSTI]

A substantial literature stream suggests that many products are becoming more modular over time, and that this development is often associated with a change in industry structure towards higher degrees of specialization. ...

Fixson, Sebastian K.

2008-04-30T23:59:59.000Z

184

Industry  

E-Print Network [OSTI]

of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

Bernstein, Lenny

2008-01-01T23:59:59.000Z

185

Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals  

SciTech Connect (OSTI)

This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube is produced by direct powder co-extrusion. This technology has potential for domestic energy savings of up to 4.1 trillion BTU/year (4.3 x 1015J/year) and a reduction of 370,000 tons (340,000 tonnes) of CO2 emissions in short-residence-time ethylene furnaces. This represents an energy savings and CO2 emissions reduction of about 3.3%. If the technology is also applied to other types of ethylene pyrolysis furnaces, total energy savings and CO2 emissions reductions could increase by up to five times. The work involved: Developing powder and consolidation processing protocols to produce an oxide-dispersion strengthened variant of Alloy 803 exhibiting creep strength comparable to Incoloy? Alloy MA956, Developing a direct powder co-extrusion protocol for fabricating co-extruded bimetallic Incoloy? Alloy MA956 / ODS Alloy 803 tubes, Characterizing the properties of the ODS Alloy 803 material, the welding characteristics of the bimetallic tubes, and the coking characteristics of the Incoloy? MA956 alloy, and Documenting the potential energy savings and user requirements for these bimetallic pyrolysis furnace tubes. The project demonstrated that oxide dispersion strengthened Alloy 803 can be produced successfully using conventional mechanical alloying technology. The oxide dispersion strengthened bimetallic radiant coil technology explored under this program has significant potential for energy savings and productivity improvements for domestic ethylene producers. In today's competitive market, however, domestic furnace manufacturers and ethylene producers appear reluctant to pay any cost premium for higher-performance coil materials offering either higher temperature capabilities or longer service life. Interest in oxide dispersion strengthened radiant coils is likely to increase if furnace and ethylene producers begin to focus more on increasing tube wall temperatures to improve productivity.

McKimpson, Marvin G.

2006-04-06T23:59:59.000Z

186

Assessing and reducing product portfolio complexity in the pharmaceutical industry  

E-Print Network [OSTI]

Overly complex product portfolios lead to inefficient use of resources and limit an organization's ability to react quickly to changing market dynamics. The challenges of reducing portfolio complexity are defining excess ...

Leiter, Kevin M. (Kevin Michael)

2011-01-01T23:59:59.000Z

187

Aggregate Production Planning for Process Industries under Competition  

E-Print Network [OSTI]

for the rise in the price of crude oil. But, an article inby crude oil producers and refiners to control prices andprices, production quantities and profits for refiners and the crude oil

Karmarkar, U. S.; Rajaram, K.

2008-01-01T23:59:59.000Z

188

Aggregate Production Planning for Process Industries under Competition  

E-Print Network [OSTI]

occurs in oil production, where the supply of crude is oftenproduction quantities and profits for refiners and the crude oilproduction quantities and profits for refiners and the crude oil

Karmarkar, U. S.; Rajaram, K.

2008-01-01T23:59:59.000Z

189

Understanding the link between aggregated industrial production and the carbon price  

E-Print Network [OSTI]

and regional initiatives are underway that result in the creation of new domestic markets (RGGI, California

Boyer, Edmond

190

India's cement industry: Productivity, energy efficiency and carbon emissions  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's cement sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector increased by 0.8% per annum. An econometric analysis reveals that technical progress in India's cement sector has been biased towards the use of energy and capital, while it has been material and labor saving. The increase in productivity was mainly driven by a period of progress between 1983 and 1991 following partial decontrol of the cement sector in 1982. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian cement sector is moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. However, substantial further energy savings and carbon reduction potentials still exist.

Schumacher, Katja; Sathaye, Jayant

1999-07-01T23:59:59.000Z

191

1 INTRODUCTION Industry has become an essentialpart of modem society,and waste production is  

E-Print Network [OSTI]

Food Processing and Dairy Products Ink Formulation Inorganic Chemicals Synthetics Inorganic Pigments1 INTRODUCTION Industry has become an essentialpart of modem society,and waste production and environmental threats, contaminated sites can contribute to the long-term contaminationof the ambient air, soils

Ma, Lena

192

Secure Fuels from Domestic Resources The Continuing Evolution of Americas Oil Shale and Tar  

E-Print Network [OSTI]

domestic oil shale and tar sands industries since the first release and to include profiles of additional

Sands Industries

193

Industry  

E-Print Network [OSTI]

of world production and typically uses 6070% less energy (world steel production, finding potential CO 2 emission reductions due to energy

Bernstein, Lenny

2008-01-01T23:59:59.000Z

194

Structure of Cow-Calf Industry Beef production in Texas is a $7 billion industry,  

E-Print Network [OSTI]

, carcass evaluation, record-keeping, and organic and natural beef production. For more than a half century Cattle Short Course. Economic Benefit The economic benefit of the Beef Cattle Short Course was measured with these practices range from $8 to $25 per animal, resulting in a total economic benefit of $350,000 in 2011

195

Industry  

E-Print Network [OSTI]

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

196

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

197

Lost Opportunities in Industrial Energy Efficiency: New Production Lean Manufacturing and Lean Energy  

E-Print Network [OSTI]

companies regularly increase production by adding additional manufacturing equipment, or increasing operating hours. This approach can add large new energy loads to the electrical grid and gas distribution networks. Alternately, increasing production...Lost Opportunities in Industrial Energy Efficiency: New Production, Lean Manufacturing and Lean Energy John Seryak Gary Epstein Mark DAntonio Engineer jseryak@ers-inc.com President gepstein@ers-inc.com Vice President mdantonio...

Seryak, J.; Epstein, G.; D'Antonio, M.

2006-01-01T23:59:59.000Z

198

Development of a New Extended Motor Product Label for Industrial Energy Efficiency  

E-Print Network [OSTI]

opportunities ESL-IE-14-05-11 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Prescriptive Rebate Programs Provides a rebate for specific products that have been determined to be more efficient... of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Example: Prescriptive Rebates Example: NEMA Premium Label identifies highest efficiency motors Label is acceptable documentation for efficiency programs...

Rogers, E.; Boteler, R.; Elliot, R. N.

2014-01-01T23:59:59.000Z

199

SYNTHESIS Industrial-strength ecology: trade-offs and opportunities in algal biofuel production  

E-Print Network [OSTI]

REVIEW AND SYNTHESIS Industrial-strength ecology: trade-offs and opportunities in algal biofuel biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either for biofuel productivity and resilience. We argue that a community engineering approach that manages

200

Influence of combustion parameters on NOx production in an industrial boiler  

E-Print Network [OSTI]

Influence of combustion parameters on NOx production in an industrial boiler M.A. Habib a,*, M; accepted 14 April 2007 Available online 24 June 2007 Abstract NOx formation during the combustion process occurs mainly through the oxidation of nitrogen in the combustion air (thermal NOx) and through oxidation

Aldajani, Mansour A.

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Organizational Assessment Of Integrating CAD And Product Data Management Tools In The Furniture Industry  

E-Print Network [OSTI]

Organizational Assessment Of Integrating CAD And Product Data Management Tools In The Furniture Industry Furniture Manufacturing and Management Center Technical Report 1996-1997 Eric N. Wiebe Jennifer J) organizational structure, 3) power distribution, and 4) user communication patterns. The technology

202

(Data in metric tons of yttrium oxide (Y O ) content, unless otherwise noted)2 3 Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the  

E-Print Network [OSTI]

Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth.20.0000 Free Free. Rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed 2805

203

(Data in metric tons of yttrium oxide (Y O ) content, unless otherwise noted)2 3 Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the  

E-Print Network [OSTI]

Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth/31/96 Thorium ores and concentrates (monazite) 2612.20.0000 Free Free. Rare-earth metals, scandium and yttrium

204

(Data in metric tons of yttrium oxide (Y O ) content, unless otherwise noted)2 3 Domestic Production and Use: The rare-earth element, yttrium, was mined as a constituent of the mineral bastnasite,  

E-Print Network [OSTI]

Domestic Production and Use: The rare-earth element, yttrium, was mined as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth/31/98 Thorium ores and concentrates (monazite) 2612.20.0000 Free Free. Rare-earth metals, scandium and yttrium

205

Addendum to industrial market assessment of the products of mild gasification  

SciTech Connect (OSTI)

The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

Not Available

1992-05-01T23:59:59.000Z

206

Addendum to industrial market assessment of the products of mild gasification  

SciTech Connect (OSTI)

The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., ``Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

Not Available

1992-05-01T23:59:59.000Z

207

COST EFFECTIVE REGULATORY APPROACHES TO ENHANCE DOMESTIC OIL & GAS PRODUCTION AND ENSURE THE PROTECTION OF THE ENVIRONMENT  

SciTech Connect (OSTI)

The Environmental Information Management Suite/Risk Based Data Management System (EIMS/RBDMS) and Cost Effective Regulatory Approach (CERA) programs continue to be successful. All oil and gas state regulatory programs participate in these efforts. Significant accomplishments include: streamline regulatory approaches, enhancing environmental protection, and making oil and gas data available via the Internet. Oil and gas companies worldwide now have access to data on state web sites. This reduces the cost of exploration and enables companies to develop properties in areas that would have been cost prohibited for exploration. Early in project, GWPC and State Oil and Gas agencies developed the EIMS and CERA strategic plan to prioritize long term development and implementation. The planning process identifies electronic commerce and coal bed methane as high priorities. The group has involved strategic partners in industry and government to develop a common data exchange process. Technical assistance to Alaska continues to improve their program management capabilities. New initiatives in Alaska include the development of an electronic permit tracking system. This system allows managers to expedite the permitting process. Nationwide, the RBDMS system is largely completed with 22 states and one Indian Nation now using this nationally accepted data management system. Additional remaining tasks include routine maintenance and the installation of the program upon request for the remaining oil and gas states. The GWPC in working with the BLM and MMS to develop an XML schema to facilitate electronic permitting and reporting (Appendix A, B, and C). This is a significant effort and, in years to come, will increase access to federal lands by reducing regulatory barriers. The new initiatives are coal bed methane and e-commerce. The e-commerce program will provide industry and BLM/MMS access to the millions of data points housed in the RBDMS system. E-commerce will streamline regulatory approaches and allow small operators to produce energy from areas that have become sub-economic for the major producers. The GWPC is working with states to develop a coal bed methane program, which will both manage the data and develop a public education program on the benefits of produced water. The CERA program benefits all oil and gas states by reducing the cost of regulatory compliance, increasing environmental protection, and providing industry and regulatory agencies a discussion forum. Activities included many small and large group forum settings for discussions of technical and policy issues as well as the ongoing State Class II UIC peer review effort. The accomplishments detailed in this report will be the basis for the next initiative which is RBDMS On-Line. RBDMS On-Line will combine data mining, electronic permitting and electronic reporting with .net technology. Industry, BLM, GWPC and all Oil and Gas states are partnering this effort.

Ben Grunewald; Paul Jehn; Tom Gillespie; Ben Binder

2004-12-21T23:59:59.000Z

208

From Domestic vs. International to Domestic and International  

E-Print Network [OSTI]

% 20% 30% 40% 50% 60% 70% 80% 90% 100% Domestic International International Domestic 100% 67% 86% 29

Amin, S. Massoud

209

Demonstration of Heat Recovery in the Meat Industry  

E-Print Network [OSTI]

products, nut products, edible oils, chemicals, pharmaceuticals, animal and veterinary products, pet foods, detergents, feathers and down. Energy management has played an poultry leather, important rein the company's efforts to remain competikive... Annual Industrial Energy Technology Conference Volume II, Houston, TX, April 15-18, 1984 FIG. 1. THURLEY DIRECT CONTACT RECUPERATOR COOLED FLUE GASES AND WATER VAPOUR TO ATMOSPHERE 30 _ 40 D C HEAT RECUPERATOR I TO BOILER STACK FAN ___ DOMESTIC...

Molczan, T. J.; Scriven, A. P.; Magro, J.

1984-01-01T23:59:59.000Z

210

Comparative Life-Cycle Air Emissions of Coal, Domestic Natural  

E-Print Network [OSTI]

come domestically from the production of synthetic natural gas (SNG) via coal gasification- methanation gasification technologies that use coal to produce SNG. This National Gasification Strategy calls

Jaramillo, Paulina

211

The Pacific Northwest National Laboratory delivers financially attractive systems that use biomass to produce industrial and consumer products.  

E-Print Network [OSTI]

biomass to produce industrial and consumer products. While biomass holds potential for a ready supply from biomass--has stymied government and industry alike. The U.S. Department of Energy's Pacific to using biomass. Our research is focused on producing high-value bioproducts, such as chemicals

212

India's iron and steel industry: Productivity, energy efficiency and carbon emissions  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's iron and steel sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both growth accounting and econometric estimates of productivity growth for this sector. Their results show that over the observed period from 1973--74 to 1993--94 productivity declined by 1.71{percent} as indicated by the Translog index. Calculations of the Kendrick and Solow indices support this finding. Using a translog specification the econometric analysis reveals that technical progress in India's iron and steel sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protective policy regarding price and distribution of iron and steel as well as by large inefficiencies in public sector integrated steel plants. Will these trends continue into the future, particularly where energy use is concerned? Most likely they will not. The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with the liberalization of the iron and steel sector, the industry is rapidly moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use in existing and future plants.

Schumacher, Katja; Sathaye, Jayant

1998-10-01T23:59:59.000Z

213

Productivity of the U.S. freight rail industry: a review of the past and prospects for the future  

E-Print Network [OSTI]

Productivity growth in the U.S. freight rail industry has slowed in recent years, raising the issue of the sustainability of the significant improvements achieved during the past three decades. Indeed, between 1979 and ...

Kriem, Youssef

2011-01-01T23:59:59.000Z

214

(Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: In 2002, the United States consumed about 14% of world chromite ore production in  

E-Print Network [OSTI]

-2001): Chromium contained in chromite ore and chromium ferroalloys and metal: South Africa, 50%; Kazakhstan, 20, Kazakhstan, and South Africa) accounted for about 76% of world production. South Africa alone accounts States -- -- -- 7,000 India 1,680 1,900 18,000 39,000 Kazakhstan 2,050 2,300 410,000 410,000 South Africa

215

(Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: The United States consumes about 14% of world chromite ore production in various  

E-Print Network [OSTI]

1998 1999e Production: Mine -- -- -- -- -- Secondary 112 98 120 105 103 Imports for consumption 416 362 (excludes secondary) 298 277 345 e 280 196 Apparent3 (includes secondary) 565 467 488 531 522 Price enhancements that improve recovery and reduce cost, such as agglomeration and preheating of furnace feed

216

(Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: In 2000, the United States consumed about 13% of world chromite ore production in  

E-Print Network [OSTI]

--United States:1 1996 1997 1998 1999 2000e Production: Mine -- -- -- -- -- Secondary 98 120 104 118 110 Imports Consumption: Reported2 (excludes secondary) 275 333 277 298 280 Apparent3 (includes secondary) 467 490 531 558 was then expanded through the addition of furnaces and plant enhancements that improved recovery and reduced cost

217

New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report  

SciTech Connect (OSTI)

This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

Ray, W. Harmon

2002-06-05T23:59:59.000Z

218

Domestic Uranium Production Report - Quarterly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal Cycle ofDoDocuments forWHAT'S

219

Domestic Uranium Production Report - Quarterly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal Cycle ofDoDocuments forWHAT'S1. Total

220

Domestic Uranium Production Report - Quarterly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal Cycle ofDoDocuments forWHAT'S1. Total2.

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Domestic Uranium Production Report - Quarterly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal Cycle ofDoDocuments forWHAT'S1. Total2.3.

222

Domestic Uranium Production Report - Quarterly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal Cycle ofDoDocuments forWHAT'S1.

223

2014 Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotal (Data from forms4

224

2014 Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotal (Data from forms49 2014

225

2014 Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotal (Data from forms49 20142014

226

2014 Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotal (Data from forms49

227

2014 Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotal (Data from forms49 U.S.

228

2014 Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotal (Data from forms49 U.S.7

229

2014 Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotal (Data from forms49 U.S.75

230

2014 Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotal (Data from forms49 U.S.75

231

2014 Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotal (Data from forms49 U.S.75

232

2014 Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotal (Data from forms49 U.S.75

233

2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases211 2014

234

2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases211 20149. Summary

235

Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries  

SciTech Connect (OSTI)

The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

Gary D. McGinnis

2001-12-31T23:59:59.000Z

236

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

237

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 3  

SciTech Connect (OSTI)

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

Miller, Bruce; Shea, Winton

2010-12-31T23:59:59.000Z

238

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 4  

SciTech Connect (OSTI)

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

Miller, Bruce; Shea, Winton

2010-12-31T23:59:59.000Z

239

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 2  

SciTech Connect (OSTI)

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

Miller, Bruce; Winton, Shea

2010-12-31T23:59:59.000Z

240

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 5  

SciTech Connect (OSTI)

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

Miller, Bruce; Shea, Winton

2010-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 1  

SciTech Connect (OSTI)

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

Miller, Bruce; Winton, Shea

2010-12-31T23:59:59.000Z

242

Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation  

SciTech Connect (OSTI)

Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH{sub 4}) emission resulting from rice cultivation. In laboratory incubations, CH{sub 4} production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt{sup -1}), while observed CO{sub 2} production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH{sub 4} emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha{sup -1}) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha{sup -1} application level of the amendments, total seasonal CH{sub 4} emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH{sub 4} production rates as well as total seasonal CH{sub 4} flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH{sub 4} emissions as well as sustaining rice productivity.

Ali, Muhammad Aslam [Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202 (Bangladesh); Lee, Chang Hoon [Functional Cereal Crop Research Division, National Institute of Crop Science, RDA, 1085, Naey-dong, Milyang (Korea, Republic of); Kim, Sang Yoon [Division of Applied Life Science, Graduate School (Brain Korea 21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kim, Pil Joo [Division of Applied Life Science, Graduate School (Brain Korea 21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)], E-mail: pjkim@gnu.ac.kr

2009-10-15T23:59:59.000Z

243

Aerogel-Based Insulation for Industrial Steam Distribution Systems  

SciTech Connect (OSTI)

Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energys Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspens best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XTs commercial success has been driven by its 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

John Williams

2011-03-30T23:59:59.000Z

244

By Henry E. Hilliard Domestic survey data and tables were prepared by Mahbood Mahdavi, statistical assistant, and the world production table  

E-Print Network [OSTI]

accounted for 47% of domestic consumption; electrical and electronics, 27%; jewelry and silverware, 10%; coins and medallions, 10%; and others, 6%. U.S. imports for consumption increased substantially compared% to $4.62 per ounce. Despite this modest increase, silver prices remained historically low. Except

245

Recycling of the product of thermal inertization of cement-asbestos for various industrial applications  

SciTech Connect (OSTI)

Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 {sup o}C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY.AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a long termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY.AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca{sub 3}Cr{sub 2}(SiO{sub 4}){sub 3}] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO{sub 5}]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY.AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed.

Gualtieri, Alessandro F., E-mail: alessandro.gualtieri@unimore.it [Dipartimento di Scienze della Terra, Universita di Modena e R.E., Via S. Eufemia 19, I-41100 Modena (Italy); Giacobbe, Carlotta; Sardisco, Lorenza; Saraceno, Michele [Dipartimento di Scienze della Terra, Universita di Modena e R.E., Via S. Eufemia 19, I-41100 Modena (Italy); Lassinantti Gualtieri, Magdalena [Dipartimento Ingegneria dei Materiali e dell'Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Lusvardi, Gigliola [Dipartimento di Chimica, Universita degli Studi di Modena e Reggio Emilia, Via G. Campi 183, I-41100 Modena (Italy); Cavenati, Cinzia; Zanatto, Ivano [ZETADI S.r.l., Via dell'Artigianato 10, Ferno (Italy)

2011-01-15T23:59:59.000Z

246

Important driving forces in livestock production and agriculture  

E-Print Network [OSTI]

and labor, accounts for 40% of agricultural gross domestic product (GDP). Creates livelihoods for one of industrialized production systems impair air and water quality, de-value real estate and create health and well for a large number of impoverished producers. 2 #12;Past and projected regional differences in meat

Archer, Steven R.

247

Swedish industry is exposed to increasingly fierce competition. We need improved condi-  

E-Print Network [OSTI]

to medium sized companies as members. LiU is the largest contributor in this area in addition to basic edSwedish industry is exposed to increasingly fierce competition. We need improved condi- tions for robust domestic production. Effec- tive use of resources is necessary for sustain- able development. Li

Zhao, Yuxiao

248

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Renewable Energy Production .Benefits and Renewable Energy Production One source ofauspicious source of renewable energy production from such

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

249

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Energy Production . C.Benefits and Renewable Energy Production One source ofsource of renewable energy production from such facilities.

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

250

Product strategy in response to technological innovation in the semiconductor test industry  

E-Print Network [OSTI]

After the market boom of 2000 in the semiconductor industry changed significantly. The changes included stricter limits on capital cost spending, and the increased propensity of the industry to outsource the manufacturing ...

Lin, Robert W. (Robert Wei-Pang), 1976-

2004-01-01T23:59:59.000Z

251

Impact of product design choices on supply chain performance in the notebook computer industry  

E-Print Network [OSTI]

Intel Corporation is the world's leading manufacturer of processors for personal computers. As the company strives to maintain its leadership position in this industry, it identifies significant trends in the industry and ...

Sailer, Chad (Chad Darren)

2010-01-01T23:59:59.000Z

252

Freeze concentration of dairy products Phase 2. Final report  

SciTech Connect (OSTI)

An efficient, electrically driven freeze concentration system offers potential for substantially increasing electricity demand while providing the mature dairy industry with new products for domestic and export markets together with enhanced production efficiencies. Consumer tests indicate that dairy products manufactured from freeze-concentrated ingredients are either preferred or considered equivalent in quality to fresh milk-based products. Economic analyses indicate that this technology should be competitive with thermal evaporation processes on a commercial basis.

Best, D.E.; Vasavada, K.C.

1993-09-01T23:59:59.000Z

253

US energy industry financial developments, 1993 first quarter  

SciTech Connect (OSTI)

Net income for 259 energy companies-- including, 20 major US petroleum companies-- rose 38 percent between the first quarter of 1992 and the first quarter of 1993. An increased level of economic activity, along with colder weather, helped lift the demand for natural gas. crude oil, coal, and electricity. The sharp rise in the domestic price of natural gas at the wellhead relative to the year-ago quarter was the most significant development in US energy during the first quarter. As a consequence of higher natural gas prices, the upstream segment of the petroleum industry reported large gains in income, while downstream income rose due to higher refined product demand. Increased economic activity and higher weather-related natural gas demand also led to improvements in income for the rate-regulated energy segment. However, declining domestic oil production continued to restrain upstream petroleum industry earnings growth, despite a moderate rise in crude oil prices.

Not Available

1993-06-25T23:59:59.000Z

254

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A mine in California restarted operations and made its first shipment of tungsten  

E-Print Network [OSTI]

in the metalworking, mining, oil- and gas-drilling, and construction industries. The remaining tungsten was consumed inventory inventory for disposal FY 2007 FY 2007 Ferrotungsten 6 136 Metal powder 268 268 136 34 Ores

255

Manufacturing industry challenges and responses to EU, California, and other product-targeted environmental regulations  

E-Print Network [OSTI]

overnight. In both Electronics and Automotive (as well assuch as electronics, aerospace, automotive, etc. ), resultselectronics industry body consult with its counterparts in the automotive

Kirschner, Michael

2008-01-01T23:59:59.000Z

256

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THEEVEN BEYOND MANURE-ASSOCIATED METHANE EMISSIONS, INDUSTRIAL

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

257

Industrial Energy-Efficiency Improvement Program. Annual report to the Congress and the President 1979  

SciTech Connect (OSTI)

The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies and practices which will improve energy efficiency; encourage substitution of more plentiful domestic fuels; and enhance recovery of energy and materials from industrial waste streams is described. The role of research, development, and demonstration; technology implementation; the reporting program; and progress are covered. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. Additional data from voluntary submissions, a summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix are briefly presented. (MCW)

Not Available

1980-12-01T23:59:59.000Z

258

WOSMIP II- Workshop on Signatures of Medical and Industrial Isotope Production  

SciTech Connect (OSTI)

Medical and industrial fadioisotopes are fundamental tools used in science, medicine and industry with an ever expanding usage in medical practice where their availability is vital. Very sensitive environmental radionuclide monitoring networks have been developed for nuclear-security-related monitoring [particularly Comprehensive Test-Ban-Treaty (CTBT) compliance verification] and are now operational.

Matthews, Murray; Achim, Pascal; Auer, M.; Bell, Randy; Bowyer, Ted W.; Braekers, Damien; Bradley, Ed; Briyatmoko, Budi; Berglund, Helena; Camps, Johan; Carranza, Eduardo C.; Carty, Fitz; DeCaire, Richard; Deconninck, Benoit; DeGeer, Lars E.; Druce, Michael; Friese, Judah I.; Hague, Robert; Hoffman, Ian; Khrustalev, Kirill; Lucas, John C.; Mattassi, G.; Mattila, Aleski; Nava, Elisabetta; Nikkinin, Mika; Papastefanou, Constantin; Piefer, Gregory R.; Quintana, Eduardo; Ross, Ole; Rotty, Michel; Sabzian, Mohammad; Saey, Paul R.; Sameh, A. A.; Safari, M.; Schoppner, Michael; Siebert, Petra; Unger, Klaus K.; Vargas, Albert

2011-11-01T23:59:59.000Z

259

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2000, based on contained zinc recoverable from  

E-Print Network [OSTI]

three-fourths of production. Three primary and 12 large- and medium-sized secondary smelters refined 92 Employment: Mine and mill, numbere 2,700 2,500 2,400 2,500 2,600 Smelter primary, numbere 1,000 1 production of zinc concentrate by about 3% in 2000. U.S. mine production greatly exceeded smelter capacity

260

E-Print Network 3.0 - agro-industrial products materiels Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

volumes Plans... Employment generationincome exports By products Power for offgrid rural areas 12;For discussion purposes Source: Louisiana Forest Products Development...

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fact #564: March 30, 2009 Transportation and the Gross Domestic...  

Energy Savers [EERE]

of the U.S. Gross Domestic Product (GDP) in 2007 is related to transportation. Housing, health care, and food are the only categories with greater shares of the GDP. GDP by...

262

(Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon metal and alloys (excluding semiconductor-grade silicon)  

E-Print Network [OSTI]

%; China, 16%; South Africa, 13%; Canada, 12%; and other, 39%. Tariff: Item Number Normal Trade Relations metal: Brazil, 37%; South Africa, 25%; Canada, 14%; Norway, 6%; and other, 18%. Total: Brazil, 20 energy costs. Demand for silicon metal comes primarily from the aluminum and chemical industries

263

Productivity and competition in the U.S. trucking industry since deregulation  

E-Print Network [OSTI]

In 1980 Congress passed the Motor Carrier Act, substantially liberating trucking carriers from a federal regulatory structure that had exercised broad economic control over the industry for over four decades. Changes in ...

Parming, Veiko Paul

2013-01-01T23:59:59.000Z

264

Convergence in the US airline industry : a unit cost and productivity analysis  

E-Print Network [OSTI]

The last decade has been a period of fundamental transformations for the US airline industry and has caused many carriers to make significant changes in their operational strategies. The traditional US network or "Legacy" ...

Tsoukalas, Gerassimos

2007-01-01T23:59:59.000Z

265

Supply chain management for fast-moving products in the electronic industry  

E-Print Network [OSTI]

The objective of this Thesis was to strategically redesign and transform the supply chain of a series of detonators in a leading Company serving the oil and gas industry. The scope of the Thesis included data gathering and ...

Zafiriou, Konstantinos F

2006-01-01T23:59:59.000Z

266

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2008, 6 companies operated 14 primary aluminum smelters; 4 smelters were  

E-Print Network [OSTI]

and Use: In 2008, 6 companies operated 14 primary aluminum smelters; 4 smelters were temporarily idled primary aluminum production increased substantially owing to smelter restarts after new power contracts, production was curtailed at two smelters owing to high electricity prices, power supply issues, and a sharp

267

(Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2005, based on contained zinc recoverable from  

E-Print Network [OSTI]

accounted for 86% of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters Production: Mine, zinc in ore1 842 780 768 739 760 Primary slab zinc 203 182 187 189 250 Secondary slab zinc a major price recovery that started in the third quarter of 2004 and picked up renewed momentum

268

Industry Alliance Industry Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

269

Digital production pipelines: examining structures and methods in the computer effects industry  

E-Print Network [OSTI]

Computer animated films require collaboration: blending artistic concept with technical skill, meeting budget constraints and adhering to deadlines. The path which production follows from initial idea to finished product is known as the pipeline...

Bettis, Dane Edward

2005-08-29T23:59:59.000Z

270

Sustainability in the product cycle : adopting a shared standard for the apparel industry  

E-Print Network [OSTI]

Decisions made by product designers strongly influence the social and environmental impacts that a consumer product will have over its lifetime. This study examines the Sustainable Apparel Index, a decision-support tool ...

Hartley, Alice C. (Alice Catherine)

2012-01-01T23:59:59.000Z

271

Pricing and licensing of software products and services : a study on industry trends  

E-Print Network [OSTI]

The software product business reached the $150 billion mark at the end of 2005. The pricing and licensing of new products, maintenance services, services and service maintenance have become an important strategy to deliver ...

Nayak, Shivashis

2006-01-01T23:59:59.000Z

272

Presentation 2.7: Energy and the Forest Products Industry in Malaysia Zulkifli Bin Ahmad  

E-Print Network [OSTI]

balanced utilization of oil, gas, hydro & coal To prolong lifespan of Malaysia's oil reserves for future in the production of wood products are collected to be used as raw materials to produce fibre boards

273

High-efficiency Forage Systems for Texas Beef Production The cattle industry in Texas is facing a crisis due to doubling of fertilizer, grain, and  

E-Print Network [OSTI]

High-efficiency Forage Systems for Texas Beef Production The cattle industry in Texas is facing production systems will be developed and evaluated to target· the development of heavy, healthy calves ready production systems that limit profit-· ability for both the cow-calf and stocker operator. Develop new forage

274

(Data in metric tons of silver content, unless otherwise noted)1 Domestic Production and Use: Silver, produced by about 76 mines in 16 States, had an estimated value of $338  

E-Print Network [OSTI]

,8002 Shipments from Government stockpile excesses 186 220 232 109 250 Consumption, apparent NA NA NA 4,980 5 and technical uses. Industrial and technical uses include photographic materials, electrical products, catalysts NA 1,360 1,700 Imports for consumption 2,600 3,250 3,010 2,540 2,6002 Exports 967 2,890 2,950 3,080 3

275

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Energy Savers [EERE]

(1 slide) Develo Project Objecve Current StateChallenges Heavy industrial water utilization footprint Freshwater Withdrawals in the U.S. by Sector (2005) Domestic...

276

Sponsors of CIEEDAC: Natural Resources Canada, Canadian Industry Program for Energy Conservation, Aluminium Industry Association, Canadian Petroleum Products Institute, Canadian Portland Cement Association, Canadian Pulp  

E-Print Network [OSTI]

of REGIONAL TRENDS IN INDUSTRIAL GREENHOUSE GAS EMISSIONS, 1990 - 1996 in Canada Prepared for EnvironmentSponsors of CIEEDAC: Natural Resources Canada, Canadian Industry Program for Energy Conservation. Not for Quotation GHG Emissions, 1990 - 1996 CIEEDAC i March, 2001 Analysis of Regional Trends in Industrial

277

U.S. Domestic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0SalesDrilled (Number of1 Domestic

278

U.S. Domestic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0SalesDrilled (Number of1 Domestic2

279

Solar production of industrial process steam at the Home Cleaning and Laundry Co. Final technical report  

SciTech Connect (OSTI)

This report presents the results of the operation and performance evaluation period at the Home Laundry Solar Industrial Process Heat Project at Pasadena, California. The installation comprises 6496 ft/sup 2/ (603.5 m/sup 2/) of linear parabolic trough concentrating collectors supplying solar thermal energy for use in laundry and dry cleaning processes. The design phase began in September 1977, and an acceptance test was conducted during the week of April 12, 1982. The plant has been in operation since May 1982, with the 12-month Phase III (operational) period starting in October 1982. The objective of the operational evaluation experiment was to maximize energy delivery to the industrial participant while characterizing system performance. Data were acquired for monthly documentation of system performance, maintenance requirements, and operating costs.

Not Available

1984-06-01T23:59:59.000Z

280

Industrial Productivity Assessment Or One of the Best Ways to Save Energy is to Find Ways to Produce More Product!  

E-Print Network [OSTI]

The success of an energy program is often judged by measuring the change in energy consumption over time. It can be argued that a more valid method would measure the change in energy consumption per pound (or other unit) of product since this takes...

Welch, D.

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2006, 5 companies operated 13 primary aluminum smelters; 6 smelters were  

E-Print Network [OSTI]

,800 South Africa 851 890 860 900 United Arab Emirates, Dubai 75%. Tariff: Item Number Normal Trade Relations 12-31-06 Unwrought (in coils) 7601.10.3000 2.6% ad val aluminum production decreased slightly owing to cutbacks attributed to increased energy and alumina costs

282

(Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2002, 11 companies operated 16 primary aluminum reduction plants; 6 smelters  

E-Print Network [OSTI]

and Use: In 2002, 11 companies operated 16 primary aluminum reduction plants; 6 smelters were temporarily idled. The 11 smelters east of the Mississippi River accounted for 75% of the production; whereas the remaining 11 smelters, which included the 9 Pacific Northwest smelters, accounted for only 25%. Based upon

283

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2001, based on contained zinc recoverable from  

E-Print Network [OSTI]

-fourths of production. Three primary and 12 large- and medium-sized secondary smelters refined zinc metal of commercial,500 2,600 2,400 Smelter primary, numbere 1,000 1,000 1,000 1,000 900 Net import reliance3 greatly exceeded smelter capacity, necessitating exports of concentrate. More than one-third of all

284

(Data in metric tons unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2008. Indium-containing  

E-Print Network [OSTI]

: Data on the quantity of secondary indium recovered from scrap were not available. Indium is most loop--from collection of scrap to production of secondary materials--now takes less than 30 days. ITO to dissolve the ITO, from which the indium is recovered. Indium recovery from tailings was thought to have

285

(Data in metric tons unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2007. Indium-containing  

E-Print Network [OSTI]

of solar power. Research was underway to develop a low-cost manufacturing process for flexible CIGS solar collection of scrap to fabrication of secondary indium products. A recycler may have millions of dollars%. Mainstream LCD devices were also trending toward larger panel sizes, which require more indium per unit

286

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and  

E-Print Network [OSTI]

States is extremely difficult because of the large number of compounds used in a wide variety of end uses are estimated as follows: ceramics and glass, 31%; batteries, 23%; lubricating greases, 9%; air treatment, 6 conditions improved for lithium-based products in 2010. Sales volumes for the major lithium producers were

287

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2005, 6 companies operated 15 primary aluminum smelters; 4 smelters  

E-Print Network [OSTI]

547 550 542 554 Norway 1,320 1,350 1,320 1,380 Russia 3,590 3,650 3,640 3,760 South Africa 863 830 850%. Tariff: Item Number Normal Trade Relations 12-31-05 Unwrought (in coils) 7601.10.3000 2.6% ad val aluminum production decreased slightly owing to cutbacks attributed to increased energy and alumina costs

288

Effect of Increased Natural Gas Exports on Domestic Energy Markets  

Reports and Publications (EIA)

This report responds to an August 2011 request from the Department of Energy's Office of Fossil Energy (DOE\\/FE) for an analysis of "the impact of increased domestic natural gas demand, as exports." Appendix A provides a copy of the DOE\\/FE request letter. Specifically, DOE\\/FE asked the U.S. Energy Information Administration (EIA) to assess how specified scenarios of increased natural gas exports could affect domestic energy markets, focusing on consumption, production, and prices.

2012-01-01T23:59:59.000Z

289

A cross-industry analysis and framework of aftermarket products and services  

E-Print Network [OSTI]

This thesis looks at how supply chains of Aftermarket Products and Services are structured. The study includes an overall examination of the Aftermarket Function, as well as an overview and examination of Aftermarket Supply ...

Englezos, Petros

2006-01-01T23:59:59.000Z

290

Economic Impacts of Expanded Woody Biomass Utilization on the Bioenergy and Forest Products Industries in Florida  

E-Print Network [OSTI]

1 Economic Impacts of Expanded Woody Biomass Utilization on the Bioenergy and Forest Products as the starting point for implementation of the CGE model, which finds a solution where all markets

Florida, University of

291

Change management, production ramp up and the sustainable supply chain in the transportation industry  

E-Print Network [OSTI]

The ramp up phase is always the most risky part of any project, especially with a product material the company and its partners have very little experience with. One result of this lack of experience is frequent engineering ...

Fortin, Sean (Sean Dub)

2009-01-01T23:59:59.000Z

292

Product line-up design based on preference measurement : a case study on TV industry  

E-Print Network [OSTI]

Sony, in 2010, introduced innovative product line-up setting process for its TV, using the technique of market segmentation and conjoint analysis. This practice was expected to increase its sales compared to traditional ...

Park, Chang Bae, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

293

eBusiness in the Forest Products Industry Opportunities and Realities  

E-Print Network [OSTI]

2004 0 1 2 3 4 5 6 7 8 $USTrillion Asia Pacific Latin America W estern Europe North America (Forrester & Professor Louisiana Forest Products Development Center School of Renewable Natural Resources Louisiana State

294

Supply Chain Integration, Product Modularity, and Market Valuation: Evidence from the Solar Energy Industry  

E-Print Network [OSTI]

of the solar modules that are ultimately installed as panels on rooftops to Page 15 convert solar energy to electricity. The supply chain for the production of thin-film cells involves a subset of these processes: the production of solar cells... determine the network by identifying the supply chain linkages reported in 119 newswire announcements of solar PV supply contracts in Factiva for the year 2007. We supplement this data with information on customer and supplier relationships provided...

Davies, Jane; Joglekar, Nitin

2013-07-17T23:59:59.000Z

295

Industrial market assessment of the products of mild gasification: Final report  

SciTech Connect (OSTI)

The goal of this study is to determine the best available conditions, in terms of market volumes and prices, for the products from a mild gasification facility. A process feasibility study will then have to determine the cost of building and operating a facility to make those products. The study is presented as a summary of the options available to a coal producer for creating added product value. For this reason, three specific coal mines owned by AMAX Inc. were chosen, and the options were analyzed from the viewpoint of increasing the total revenue derived from those coals. No specific mild gasification, or mild devolatilization technology was assumed during the assessment. The analysis considers only product prices, volumes, and specifications. It does not assign any intangible value or national benefit to substituting coal for oil or to producing a cleaner fuel. Although it would be desirable to conceive of a product slate which would be immune from energy price fluctuations, such a goal is probably unattainable and no particular emphasis was placed on it. 76 figs., 75 tabs.

Sinor, J.E.

1988-01-01T23:59:59.000Z

296

Romanian refining industry assesses restructuring  

SciTech Connect (OSTI)

The Romanian crude oil refining industry, as all the other economic sectors, faces the problems accompanying the transition from a centrally planned economy to a market economy. At present, all refineries have registered as joint-stock companies and all are coordinated and assisted by Rafirom S.A., from both a legal and a production point of view. Rafirom S.A. is a joint-stock company that holds shares in refineries and other stock companies with activities related to oil refining. Such activities include technological research, development, design, transportation, storage, and domestic and foreign marketing. This article outlines the market forces that are expected to: drive rationalization and restructuring of refining operations and define the targets toward which the reconfigured refineries should strive.

Tanasescu, D.G. (General Consulting and Procurement, Poolgec Ltd., Bucharest (RO))

1991-12-30T23:59:59.000Z

297

Photovoltaic industry progress through 1984  

SciTech Connect (OSTI)

The growth of the US photovoltaics (PV) industry over the past decade has been impressive. First designed to provide power for satellites using high-cost production techniques, PV is now the economical choice in many remote terrestrial applications. The remarkable growth of PV in terms of quality of cells and modules, production techniques, and system design, was initiated by a cooperative effort of the US Government and the domestic PV manufacturers. European and Japanese firms entered the PV industry later, but are also growing rapidy. The Europeans continue to supply PV systems for village electrification and water pumping to many Third World countries. The Japanese have been developing the amorphous silicon (A-Si) technology by expanding its use in consumer goods. The world PV industry saw dramatic changes in industry ownership and in the emphasis on developing new and improved technology during 1984. The objective of this report is to present information on the developments of the world PV industry and focuses on developments occurring in 1984. Information is presented on a regional basis (US, Europe, Japan, other) to avoid disclosing company-confidential data. All information was gleaned from several sources, including a review of the technical literature and direct contacts with PV manufacturers. Prior to publishing the regional totals, all numbers were compared with those of other sources. The information contained in this report is prepared for use by the Department of Energy for their use in long-term R and D planning. However, this information should also be of interest by PV manufacturers and to those who may be contemplating entering the PV market. PV shipments for 1984, government supports for PV, and various PV market sectors are discussed.

Watts, R.L.; Smith, S.A.; Dirks, J.A.

1985-04-01T23:59:59.000Z

298

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

SciTech Connect (OSTI)

This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be economically competitive with current processes, and yet be environmentally friendly as well. The solvent extraction process developed uses mild hydrogenation of low cost oils to create powerful solvents that can dissolve the organic portion of coal. The insoluble portion, consisting mainly of mineral matter and fixed carbon, is removed via centrifugation or filtration, leaving a liquid solution of coal chemicals and solvent. This solution can be further refined via distillation to meet specifications for products such as synthetic pitches, cokes, carbon foam and fibers. The most economical process recycles 85% of the solvent, which itself is obtained as a low-cost byproduct from industrial processes such as coal tar or petroleum refining. Alternatively, processes have been developed that can recycle 100% of the solvent, avoiding any need for products derived from petroleum or coal tar.

Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2004-08-31T23:59:59.000Z

299

Thermal stress analysis of fused-cast AZS refractories during production; Part 1: Industrial study  

SciTech Connect (OSTI)

A study has been conducted to understand and prevent the formation of cracks in alumina-zirconia-silica (AZS) refractory blocks during solidification processing. A fundamental approach has been taken, centered on the development of a three-dimensional mathematical model to predict heat flow and stress generation in fused-cast AZS refractory blocks. In the first part of a two-part study, the voidless'' casting process has been carefully examined in an industrial setting. From a survey of the distribution, frequency of occurrence, and fracture surface morphology of cracks, an attempt was made to link the crack types found in the study to process variables. In-mold temperature data collected for a single casting throughout the normal cooling period have been used to validate the heat-flow model which is described in Part 2. The stress analysis, cause of the different cracks, and remedial action are also presented in Part 2.

Cockcroft, S.L.; Brimacombe, J.K. (Univ. of British Columbia, Vancouver, British Columbia (Canada). Centre for Metallurgical Process Engineering); Walrod, D.G.; Myles, T.A. (Carborundum Co., Falconer, NY (United States). Monofrax-S Plant)

1994-06-01T23:59:59.000Z

300

Making Industry Part of the Climate Solution  

SciTech Connect (OSTI)

Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

Lapsa, Melissa Voss [ORNL; Brown, Dr. Marilyn Ann [Georgia Institute of Technology; Jackson, Roderick K [ORNL; Cox, Matthew [Georgia Institute of Technology; Cortes, Rodrigo [Georgia Institute of Technology; Deitchman, Benjamin H [ORNL

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

AFFIDAVIT OF TERMINATION OF DOMESTIC PARTNERSHIP Declaration  

E-Print Network [OSTI]

AFFIDAVIT OF TERMINATION OF DOMESTIC PARTNERSHIP Declaration I of Termination of Domestic Partnership form to my former Domestic Partner on ____________________, 20 or misleading statement made will subject me to disciplinary action up to and including termination

Ohta, Shigemi

302

Du, X., Kockelman, K. M. 1 1 TRACKING TRANSPORTATION AND INDUSTRIAL PRODUCTION ACROSS A  

E-Print Network [OSTI]

commodities highlight the importance of food 35 and petroleum manufacturing sectors, in terms of production expansions) and exogenous economic shocks (e.g., increases in14 export demands).15 Other spatial IO commodity flows and transportation network flows to17 evaluate the indirect impacts of an unexpected event

Kockelman, Kara M.

303

Department of Industrial Engineering Fall 2012 Laser Non-Contact Measurement of Moving Product  

E-Print Network [OSTI]

With a non-contact measurement system improvements can be made in the inspection area ultimately eliminating Product Overview ArcelorMittal produces steel rails for railroads, cranes, transit agencies companies The team visited the factory again to conduct more measurements for the prototype and CAD models

Demirel, Melik C.

304

The Domestic Natural Gas Shortage in China.  

E-Print Network [OSTI]

?? This thesis analyzes the domestic shortage in the Chinese natural gas market. Both the domestic supply and demand of natural gas are growing fast (more)

Guo, Ting

2014-01-01T23:59:59.000Z

305

Re-utilization of Industrial CO2 for Algae Production Using a Phase Change Material  

SciTech Connect (OSTI)

This is the final report of a 36-month Phase II cooperative agreement. Under this project, Touchstone Research Laboratory (Touchstone) investigated the merits of incorporating a Phase Change Material (PCM) into an open-pond algae production system that can capture and re-use the CO2 from a coal-fired flue gas source located in Wooster, OH. The primary objective of the project was to design, construct, and operate a series of open algae ponds that accept a slipstream of flue gas from a coal-fired source and convert a significant portion of the CO2 to liquid biofuels, electricity, and specialty products, while demonstrating the merits of the PCM technology. Construction of the pilot facility and shakedown of the facility in Wooster, OH, was completed during the first two years, and the focus of the last year was on operations and the cultivation of algae. During this Phase II effort a large-scale algae concentration unit from OpenAlgae was installed and utilized to continuously harvest algae from indoor raceways. An Algae Lysing Unit and Oil Recovery Unit were also received and installed. Initial parameters for lysing nanochloropsis were tested. Conditions were established that showed the lysing operation was effective at killing the algae cells. Continuous harvesting activities yielded over 200 kg algae dry weight for Ponds 1, 2 and 4. Studies were conducted to determine the effect of anaerobic digestion effluent as a nutrient source and the resulting lipid productivity of the algae. Lipid content and total fatty acids were unaffected by culture system and nutrient source, indicating that open raceway ponds fed diluted anaerobic digestion effluent can obtain similar lipid productivities to open raceway ponds using commercial nutrients. Data were also collected with respect to the performance of the PCM material on the pilot-scale raceway ponds. Parameters such as evaporative water loss, temperature differences, and growth/productivity were tracked. The pond with the PCM material was consistently 2 to 5C warmer than the control pond. This difference did not seem to increase significantly over time. During phase transitions for the PCM, the magnitude of the difference between the daily minimum and maximum temperatures decreased, resulting in smaller daily temperature fluctuations. A thin layer of PCM material reduced overall water loss by 74% and consistently provided algae densities that were 80% greater than the control pond.

Joseph, Brian

2013-12-31T23:59:59.000Z

306

LonMark Open Solutions: An Industry Update-New Products, Solutions, Educational Programs, Standards, and how They Affect the Future of Building  

E-Print Network [OSTI]

? Standardization of enterprise data model LONMARK Update, Programs, And Resources Who is LONMARK International? ? Independent, non-profit member supported organization ? Product Manufacturers ? System Integrators ? Engineers ? End Users Vision ? LONMARK...1 LONMARK Open Solutions Programs and Industry Update Ron Bernstein LonMark International a non-profit industry trade and standards development association supporting the open buildings control market Agenda ? Trend Towards Open Systems...

Bernstein, R.

2011-01-01T23:59:59.000Z

307

NPDES Individual Permit for Industrial Facilities - Mail Merge...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITY FROM FABRICATED METAL PRODUCTS INDUSTRY......44 I. CONTENTS OF PLAN. ......

308

Workbook for prioritizing petroleum industry exploration and production sites for remediation  

SciTech Connect (OSTI)

The purpose of this Workbook is to provide a screening-level method for prioritizing petroleum exploration and production sites for remediation that is based on readily available information, but which does not require a full characterization of the sites being evaluated. The process draws heavily from the Canadian National Classification System for Contaminated Sites, and fits into the framework for ecological risk assessment provided in guidance from the US Environmental Protection Agency. Using this approach, scoring guidelines are provided for a number of Evaluation Factors relating to: (1) the contaminants present at the site; (2) the potential exposure pathways for these contaminants; and (3) the potential receptors of those contaminants. The process therefore incorporates a risk-based corrective action (RBCA) framework to estimate the relative threat posed by a site to human health and to ecological systems. Physical (non-toxic) disturbance factors have also been incorporated into the process. It should also be noted that the process described in this Workbook has not yet been field tested at petroleum E and P sites. The first logical step in the field testing of this process is to apply the method at a small number of sites to assess the availability of the information that is needed to score each evaluation factor. Following this evaluation, the Workbook process should be applied at a series of sites to determine the effectiveness of the process at ranking sites according to their relative need for remediation. Upon completion of these tests, the Workbook should be revised to reflect the findings of the field tests.

White, G.J.

1998-08-03T23:59:59.000Z

309

Domestic Uranium Production Report - Quarterly - Energy Information  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-1410.

310

Domestic Uranium Production Report 2004-13  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-1410.

311

Domestic Uranium Production Report - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683Diesel prices increase The

312

Stumbling Toward Capitalism: The State, Global Production Networks, and the Unexpected Emergence of China's Independent Auto Industry  

E-Print Network [OSTI]

Chinas overall energy needs, Chinese ?green industries? especially those firms engaged in wind turbine and solar

Chang, Crystal Whai-ku

2011-01-01T23:59:59.000Z

313

Technical Report #98T-010, Department of Industrial & Mfg. Systems Egnieering, Lehigh Univerisity COORDINATION PRODUCTION AND TRANSPORTATION  

E-Print Network [OSTI]

. In manufacturing-centric industries such as automotive and electronics, costs constitute the secondtransportation and transportation planning in manufacturing supply chains typical in automotive and electronic industries. Main cost.g., in the automotive industry, a ten- to fourteen-day inventory buffer is a common practice for the very purpose

Wu, David

314

Estonia`s oil shale industry - meeting environmental standards of the future  

SciTech Connect (OSTI)

Oil shale is Estonia`s greatest mineral resource. In the 1930s, it was used as a source of gasoline and fuel oil, but now it is mined primarily for thermal generation of electricity. With the loss of its primary market for electricity in the early 1990s and in the absence of another domestic source of fuel Estonia once again is considering the use of a larger proportion of its shale for oil production. However, existing retorting operations in Estonia may not attain western European environmental standards and desired conversion efficiencies. As a reference point, the Estonian authorities have documented existing environmental impacts. It is evaluating technologies to reduce the impacts and is setting a direction for the industry that will serve domestic needs. This paper provides a description of the existing oil shale industry in Estonia and options for the future.

Tanner, T. [Jaakko Poyry International, Helsinki (Finland); Bird, G.; Wallace, D. [Alberta Research Council, Edmonton (Canada)] [and others

1995-12-31T23:59:59.000Z

315

Home Page > Business > Industrial > Global Trade Of Wood Chips Down 26% In 2009 As Pulpmills Reduce Production Worldwide, Reports Wood Resources International  

E-Print Network [OSTI]

from South Africa have declined 40%. With pulp production slowly increasing this fall and energy are Australia, South Africa, Vietnam and Uruguay. Australia, the world's largest exporter, has reduced shipmentsHome Page > Business > Industrial > Global Trade Of Wood Chips Down 26% In 2009 As Pulpmills Reduce

316

Document: P1332 Category: Physical Sciences, Chemical/Materials License Status: Available for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products  

E-Print Network [OSTI]

for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products Lower-cost fuel cells ProblemInventors Document: P1332 Category: Physical Sciences, Chemical/Materials License Status: Available effective strategies government can pursue for cutting air emissions, responding to climate change, reducing

Lightsey, Glenn

317

Electrotechnologies in Process Industries  

E-Print Network [OSTI]

The Industrial Program at the Electric Power Research Institute (EPRI) promotes the efficient use of electricity to improve the competitive position of the American industry. Electrotechnologies that improve productivity, improve quality...

Amarnath, K. R.

318

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect (OSTI)

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

319

Stormwater Best Management Practices (BMPs) for Selected Industrial Sectors in the Lower Fraser Basin  

E-Print Network [OSTI]

Concrete Industry Lime Industry Refined Petroleum Products (Bulk Storage) Other Petroleum and Coal Products and Planing Mill Products Industry Wire and Wire Products Industries Hydraulic Cernent Industry Ready Mixed

320

Solar industrial process heat  

SciTech Connect (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. Table 1 provides an overview of the major markets for carbon products. Current sources of materials for these processes generally rely on petroleum distillation products or coal tar distillates obtained as a byproduct of metcoke production facilities. In the former case, the American materials industry, just as the energy industry, is dependent upon foreign sources of petroleum. In the latter case, metcoke production is decreasing every year due to the combined difficulties associated with poor economics and a significant environmental burden. Thus, a significant need exists for an environmentally clean process which can used domestically obtained raw materials and which can still be very competitive economically.

Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-04-13T23:59:59.000Z

322

The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization  

SciTech Connect (OSTI)

The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directory and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.

Not Available

1994-01-01T23:59:59.000Z

323

addressing domestic violence: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

domestic violence and abuse. There is help available. Understanding domestic violence and abuse Men can be victims, too Women Leistikow, Bruce N. 9 Domestic violence is a health...

324

U.S. Domestic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State OffshoreProduction Forecast-Drilled (Number of3

325

Experimental and cost analyses of a one kilowatt-hour/day domestic refrigerator-freezer  

SciTech Connect (OSTI)

Over the past ten years, government regulations for energy standards, coupled with the utility industry`s promotion of energy-efficient appliances, have prompted appliance manufacturers to reduce energy consumption in refrigerator-freezers by approximately 40%. Global concerns over ozone depletion have also required the appliance industry to eliminate CFC-12 and CFC-11 while concurrently improving energy efficiency to reduce greenhouse emissions. In response to expected future regulations that will be more stringent, several design options were investigated for improving the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such as cabinet and door insulation improvements and a high-efficiency compressor were incorporated into a prototype refrigerator-freezer cabinet and refrigeration system. Baseline energy consumption of the original 1996 production refrigerator-freezer, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. The goal for the project was to achieve an energy consumption that is 50% below in 1993 National Appliance Energy Conservation Act (NAECA) standard for 20 ft{sup 3} (570 l) units. Based on discussions with manufacturers to determine the most promising energy-saving options, a laboratory prototype was fabricated and tested to experimentally verify the energy consumption of a unit with vacuum insulation around the freezer, increased door thicknesses, a high-efficiency compressor, a low wattage condenser fan, a larger counterflow evaporator, and adaptive defrost control.

Vineyard, E.A.; Sand, J.R.

1997-05-01T23:59:59.000Z

326

The domestic travel sector in China  

E-Print Network [OSTI]

China is already the largest domestic tourism market in the world. Chinese citizens made as many as 800 million overnight domestic trips in 2005. While travel is not a new concept in China, the disposable income they wield, ...

Anders, Jeff, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

327

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2003 through September 30, 2004  

SciTech Connect (OSTI)

Since 1998, The Pennsylvania State University (PSU) has been successfully operating the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by PSU, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with PSU responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes PSU and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. A second contract was executed with DOE NETL starting in October 2003 to continue the activities of CPCPC. An annual funding meeting was held in October 2003 and the council selected 10 projects for funding. Base funding for the projects is provided by NETL with matching funds from industry. Subcontracts were let from Penn State to the various subcontractors on March 1, 2004.

Andresen, John; Schobert, Harold; Miller, Bruce G

2006-03-01T23:59:59.000Z

328

A National Resource for Industry  

E-Print Network [OSTI]

alloys, and metal matrix composite products carbon fibe's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization-efficient manufacturing processes and materials targeting products of the future. The Department of Energy's first

329

Innovation and the state : development strategies for high technology industries in a world of fragmented production : Israel, Ireland, and Taiwan  

E-Print Network [OSTI]

One of the most unexpected changes of the 1990s is that firms in a number of emerging economies not previously known for their high-technology industries have leapfrogged to the forefront in new Information Technologies ...

Breznitz, Dan

2005-01-01T23:59:59.000Z

330

Johnson Controls Inc. Domestic Advanced Battery Industry Creation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt019esellerman2011...

331

Johnson Controls Inc. Domestic Advanced Battery Industry Creation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. esarravt019ellerman2010...

332

Johnson Controls Inc. Domestic Advanced Battery Industry Creation Project  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

333

Johnson Controls Inc. Domestic Advanced Battery Industry Creation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt019esellerman2012...

334

Johnson Controls Inc. Domestic Advanced Battery Industry Creation Project |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DC 20585 AprilJohansen About UsDepartment of

335

Johnson Controls Inc. Domestic Advanced Battery Industry Creation Project |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DC 20585 AprilJohansen About UsDepartment

336

Johnson Controls Inc. Domestic Advanced Battery Industry Creation Project |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DC 20585 AprilJohansen About

337

Free Trade and the Greening of Domestic Industry Sumeet Gulati  

E-Print Network [OSTI]

and the Environment. JEL: F18, H23, Q52, Q56. Valuable comments were provided by Werner Antweiler, Brian Copeland, Don

Farrell, Anthony P.

338

Economic and Policy Factors Affecting Energy Efficiency Improvements in the U. S. Paper Industry  

E-Print Network [OSTI]

The U.S. pulp, paper and paperboard industry has made significant improvements over the past eleven years in the energy efficiency of its operations. The industry is firmly committed to: increased utilization of important renewable domestic energy...

Freund, S. H.

1984-01-01T23:59:59.000Z

339

Industrial policy and the Indian electronics industry  

E-Print Network [OSTI]

Recently, production within India's Electronics sector amounted to a low $12 billion when compared to the global output of $1400 billion. The slow growth in the local industry is often judged to be the result of late ...

Love, Robert (Robert Eric)

2008-01-01T23:59:59.000Z

340

Value Capture in the Global Wind Energy Industry  

E-Print Network [OSTI]

Wind Energy Council, 2011 New installation in 2010 The wind industry value chain Wind turbineWind Energy Council (GWEC, 2011) domestic content in U.S. -deployed turbines

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS SOLAR INDUSTRIES...  

Broader source: Energy.gov (indexed) [DOE]

UNDER DOE CONTRACT NO. DE- AC36-83CH10093; W(A)-98-019; CH-0987 The Petitioner, Siemens Solar Industries (hereinafter "SSI"), has requested a waiver of domestic and foreign...

342

The domestic natural gas and oil initiative. Energy leadership in the world economy  

SciTech Connect (OSTI)

Two key overarching goals of this Initiative are enhancing the efficiency and competitiveness of U.S. industry and reducing the trends toward higher imports. These goals take into account new Federal policies that reflect economic needs, including economic growth, deficit reduction, job creation and security, and global competitiveness, as well as the need to preserve the environment, improve energy efficiency, and provide for national security. The success of this Initiative clearly requires coordinated strategies that range far beyond policies primarily directed at natural gas and oil supplies. Therefore, this Initiative proposes three major strategic activities: Strategic Activity 1 -- increase domestic natural gas and oil production and environmental protection by advancing and disseminating new exploration, production, and refining technologies; Strategic Activity 2 -- stimulate markets for natural gas and natural-gas-derived products, including their use as substitutes for imported oil where feasible; and Strategic Activity 3 -- ensure cost-effective environmental protection by streamlining and improving government communication, decision making, and regulation. Finally, the Initiative will reexamine the costs and benefits of increase oil imports through a broad new Department of Energy study. This study will form the basis for additional actions found to be warranted under the study.

Not Available

1993-12-01T23:59:59.000Z

343

Industrial Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

344

This program prepares you for careers in the pharmaceutical, consumer products, and healthcare industries. As a Pharmaceutical Science graduate, you are qualified to seek a diverse range of career options, including research and  

E-Print Network [OSTI]

industries. As a Pharmaceutical Science graduate, you are qualified to seek a diverse range of career options the pharmaceutical industry, in addition to careers in research and regulatory oversight within government agenciesThis program prepares you for careers in the pharmaceutical, consumer products, and healthcare

Rhode Island, University of

345

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2005 through September 30, 2006  

SciTech Connect (OSTI)

Since 1998, The Pennsylvania State University has been successfully managing the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by Penn State, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. Base funding for the selected projects is provided by NETL with matching funds from industry. At the annual funding meeting held in October 2003, ten projects were selected for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2004. Nine of the ten 2004 projects were completed during the previous annual reporting period and their final reports were submitted with the previous annual report (i.e., 10/01/04-09/30/05). The final report for the remaining project, which was submitted during this reporting period (i.e., 10/01/05-09/30/06), is attached. At the annual funding meeting held in November 2004, eleven projects were selected for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2005. Three additional projects were selected for funding during the April 2005 tutorial/funding meeting. Subcontracts were let from Penn State to the subcontractors on July 1, 2005. Of these fourteen 2005 projects, eleven have been completed and the final reports are attached. An annual funding meeting was held in November 2005 and the council selected five projects for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2006, except for one that started October 1, 2006.

Bruce G. Miller

2006-09-29T23:59:59.000Z

346

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2004 through September 30, 2005  

SciTech Connect (OSTI)

Since 1998, The Pennsylvania State University (PSU) has been successfully operating the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by PSU, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with PSU responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes PSU and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. A second contract was executed with DOE NETL starting in October 2003 to continue the activities of CPCPC. An annual funding meeting was held in October 2003 and the council selected ten projects for funding. Base funding for the projects is provided by NETL with matching funds from industry. Subcontracts were let from Penn State to the subcontractors on March 1, 2004. Nine of the ten projects have been completed and the final reports for these 2004 projects are attached. An annual funding meeting was held in November 2004 and the council selected eleven projects for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2005. Three additional projects were selected for funding during the April 2005 tutorial/funding meeting. Subcontracts were let from Penn State to the subcontractors on July 1, 2005.

Miller, Bruce G

2006-03-01T23:59:59.000Z

347

Seeking New Approaches to Investigate Domestication Events |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Anthropology and Zooarcheology Laboratory The domestication of wild animal species has underpinned some of the most fundamental developments in human...

348

2015-01-16 Issuance: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Notice of Information Collection Extension  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of information collection extension regarding consumer products and commercial and industrial equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on January 16, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

349

Proceedings of the Seventh Walnut Council Research Symposium 15GTR-NRS-P-115 BIOREFINERY OPPORTUNITIES FOR FOREST PRODUCTS INDUSTRIES  

E-Print Network [OSTI]

capabilities to succeed with biorefineries. Most forest products companies already have the first capability the acquisition of woody residues for making new products while minimizing competition for valuable timber companies to look at the overall biorefinery effort and acquire the expertise to move thermal

350

Econometric and Neural Network Analysis of the Labor Productivity and Average Gross Earnings Indices in the Romanian Industry  

E-Print Network [OSTI]

Econometric and Neural Network Analysis of the Labor Productivity and Average Gross Earnings and models that were used consist of several lag econometric models, ARIMA processes, as well as feed forward AGEI and LPI. Key-Words: - labor productivity, econometric model, ARIMA, VAR, neural network, forecast

Paris-Sud XI, Universit de

351

CALIFORNIA ENERGY PETROLEUM INDUSTRY INFORMATION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION PETROLEUM INDUSTRY INFORMATION REPORTING ACT (PIIRA) PROGRAM REPORTING PETROLEUM AND NON-PETROLEUM ................................................... 40 PRODUCT DEFINITIONS Major Petroleum Product Storer and Terminal Weekly Report Major petroleum product storers, terminal

352

International standardization -- Changing the future of the oil and gas industry  

SciTech Connect (OSTI)

Suppliers to the Oil and Gas Industry have become accustomed to compliance to mandatory and voluntary programs such as quality system requirements, international standards developed by ISO, industry training programs, Occupation, Safety and Hazard Association (OSHA) requirements, and environmental requirements. However, the real impact to the industry will come through international standardization and certification methods, also known as the International Conformity Assessment Movement. This impact will make domestic efforts appear pale by comparison and will be an eye opening experience if US suppliers do not seriously monitor or become involved in what is happening internationally. The International Conformity Assessment Movement is a series of movements which will virtually affect all suppliers of oilfield and gas equipment and services in one way or another. The impact will be felt through one or more of the following ways: (1) ISO 9000 series quality system registration; (2) oilfield product certification as outlined in ISO/TC 67 WG2 documents; (3) design methodologies for oilfield equipment as outlined in ISO/TC 67; (4) European directive compliance; (5) replacement of Domestic Standards with International Standards. The conditions for which compliance is mandatory will vary from company to company and may depend upon the geographical area in which the supplier operates or supplies product. The paper discusses all five systems of standards and lists sources for further information.

Bergman, A.J.; Weightman, R.T.

1995-12-31T23:59:59.000Z

353

Uranium industry annual 1994  

SciTech Connect (OSTI)

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

354

A multi-attribute value assessment method for the early product development phase with application to the business airplane industry  

E-Print Network [OSTI]

(cont.) market. The method is also used to extract quantitative evidence indicating the existence of enterprise-related attributes for consumer value in products. Marking the first independent review of the loss function-based ...

Downen, Troy Douglas

2005-01-01T23:59:59.000Z

355

1989 Industry Directory  

SciTech Connect (OSTI)

Solid Waste Power's 1989 Industry Directory is divided into three main sections: the Company Directory, the Service Directory, and the Product Directory. The Company Directory lists all companies involved in the waste-to-energy industry that responded to a survey Solid Waste Power conducted in the fall of 1988. Companies are listed alphabetically. Each of the companies in the Company Directory is further referenced in the Service and Product directories follow. The Service and Product directories are broken down into various categories. Within each category is a list of the names of companies identified themselves as providing the service or product. Preceding the Service and Product directories is the Category Index.

Not Available

1998-12-01T23:59:59.000Z

356

State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries  

SciTech Connect (OSTI)

With the growing concern about global warming placing greater demands on improving energy efficiency and reducing CO{sub 2} emissions, the need for improving the energy intensive, separation processes involving CO{sub 2} is well recognized. The US Department of Energy estimates that the separation of CO{sub 2} represents 75% of the cost associated with its separation, storage, transport, and sequestration operations. Hence, energy efficient, CO{sub 2} separation technologies with improved economics are needed for industrial processing and for future options to capture and concentrate CO{sub 2} for reuse or sequestration. The overall goal of this review is to foster the development of new adsorption and membrane technologies to improve manufacturing efficiency and reduce CO{sub 2} emissions. This study focuses on the power, petrochemical, and other CO{sub 2} emitting industries, and provides a detailed review of the current commercial CO{sub 2} separation technologies, i.e., absorption, adsorption, membrane, and cryogenic, an overview of the emerging adsorption and membrane technologies for CO{sub 2} separation, and both near and long term recommendations for future research on adsorption and membrane technologies. Flow sheets of the principal CO{sub 2} producing processes are provided for guidance and new conceptual flow sheets with ideas on the placement of CO{sub 2} separations technologies have also been devised.

Ebner, A.D.; Ritter, J.A. [University of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering

2009-07-01T23:59:59.000Z

357

GNEP Element:Expand Domestic Use of Nuclear Power | Department...  

Broader source: Energy.gov (indexed) [DOE]

Expand Domestic Use of Nuclear Power GNEP Element:Expand Domestic Use of Nuclear Power A report discussing the intentions of the GNEP. GNEP Element:Expand Domestic Use of Nuclear...

358

Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems  

SciTech Connect (OSTI)

This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

Rudd, A.

2012-08-01T23:59:59.000Z

359

Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions  

SciTech Connect (OSTI)

United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and reuse this energy. As shown in Table E-1, non-CO2 GHG emissions from U.S. industry were identified as having 2180 peta joules (PJ) or 2 Quads (quadrillion Btu) of residual chemical fuel value. Since landfills are not traditionally considered industrial organizations, the industry component of these emissions had a value of 1480 PJ or 1.4 Quads. This represents approximately 4.3% of the total energy used in the United States Industry.

Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

2006-04-01T23:59:59.000Z

360

Department of Energy to Invest $50 Million to Advance Domestic...  

Office of Environmental Management (EM)

to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal Department of Energy to Invest 50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot...

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Table 22. Domestic Crude Oil First Purchase Prices for Selected...  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-182, "Domestic Crude Oil First Purchase Report." 22. Domestic Crude Oil First Purchase Prices for Selected Crude Streams 44 Energy Information Administration...

362

Global Nuclear Energy Partnership Fact Sheet - Expand Domestic...  

Broader source: Energy.gov (indexed) [DOE]

Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will build on the recent advances made by the...

363

Report to the President on Capturing Domestic Competitive Advantage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Capturing Domestic Competitive Advantage in Advanced Manufacturing Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing pcastjuly2012.pdf...

364

Model Simulating Real Domestic Hot Water Use - Building America...  

Energy Savers [EERE]

Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe...

365

Optimal supply chain and product design of biofuels.  

E-Print Network [OSTI]

??Growth of a biomass-to-biofuels industry has the potential to reduce oil imports, support agriculture and forestry growth, foster a domestic biorefinery industry, and reduce greenhouse (more)

Marvin, William Alexander

2013-01-01T23:59:59.000Z

366

Industrial Engineering Industrial Advisory Board  

E-Print Network [OSTI]

Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

Gelfond, Michael

367

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network [OSTI]

energy efficiency. Among industries included are cement, pulp and paper and plasticenergy efficiency in industry. Achievements: Production standards have been set for the engineering, plastics,

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

368

Uranium industry annual 1996  

SciTech Connect (OSTI)

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

369

The Impact of Oil Prices on the Air Transportation Industry  

E-Print Network [OSTI]

The Impact of Oil Prices on the Air Transportation Industry Final Report Prepared by: John Hansman................................................................................................47 3 EVALUATING THE EFFECTS OF OIL PRICE CHANGE ON THE US DOMESTIC CARGO INDUSTRY .................48 3............................................................................................................................74 4 OIL PRICE IMPACTS IN GENERAL AVIATION

Hill, Wendell T.

370

Sun, Jan 09, 2005 Domestic Economy  

E-Print Network [OSTI]

Sun, Jan 09, 2005 Front Page National Domestic Economy Science Panorama Economic Focus Dot Coms on which SM was focusing, the team used a 'bubble test' in which only part of the face is revealed

Gosselin, Frédéric

371

SymposiumandIndustrialAffiliatesProgramLightinAction Industrial Affiliates Program  

E-Print Network [OSTI]

SymposiumandIndustrialAffiliatesProgramLightinAction #12;Industrial Affiliates Program Friday, 8 Session I Abstract: Recently Additive Manufacturing (AM) has been hailed as the "third industrial revolution" by Economist magazine [April -2012]. Precision of the product manufactured by AM largely depends

Van Stryland, Eric

372

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving...

373

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

losses in power production to generate heat and/or cold for industrial processes and district heating,

Worrell, Ernst

2009-01-01T23:59:59.000Z

374

Fridge of the future: Designing a one-kilowatt-hour/day domestic refrigerator-freezer  

SciTech Connect (OSTI)

An industry/government Cooperative Research and Development Agreement (CRADA) was established to evaluate and test design concepts for a domestic refrigerator-freezer unit that represents approximately 60% of the US market. The goal of the CRADA was to demonstrate advanced technologies which reduce, by 50 percent, the 1993 NAECA standard energy consumption for a 20 ft{sup 3} (570 I) top-mount, automatic-defrost, refrigerator-freezer. For a unit this size, the goal translated to an energy consumption of 1.003 kWh/d. The general objective of the research was to facilitate the introduction of cost-efficient technologies by demonstrating design changes that can be effectively incorporated into new products. A 1996 model refrigerator-freezer was selected as the baseline unit for testing. Since the unit was required to meet the 1993 NAECA standards, the energy consumption was quite low (1.676 kWh/d), thus making further reductions in energy consumption very challenging. Among the energy saving features incorporated into the original design of the baseline unit were a low-wattage evaporator fan, increased insulation thicknesses, and liquid line flange heaters.

Vineyard, E.A.; Sand, J.R.

1998-03-01T23:59:59.000Z

375

Impact of recent energy legislation on the aluminum industry  

SciTech Connect (OSTI)

This report examines the aluminum industry's technology in energy use and emissions control. Data on consumption and pollution levels are presented. A history of the aluminum industry in the Pacific Northwest, its role in providing power reserves, and how that role fits into the present power situation are given. The Northwest Power Act, the rates the industry will probably pay as a result of the Act, the implications of those rates to the industry, as well as the availability of federal power to the industry are discussed. Finally, the Act's effects on the relative competitiveness of the industry in both domestic and world markets are examined.

Edelson, E.; Emery, J.G.; Hopp, W.J.; Kretz, A.L.

1981-06-01T23:59:59.000Z

376

Expanding the Pool of Federal Policy Options to Promote Industrial Energy Efficiency  

SciTech Connect (OSTI)

Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

Brown, Dr. Marilyn Ann [Georgia Institute of Technology] [Georgia Institute of Technology; Cox, Matthew [Georgia Institute of Technology] [Georgia Institute of Technology; Jackson, Roderick K [ORNL] [ORNL; Lapsa, Melissa Voss [ORNL] [ORNL

2011-01-01T23:59:59.000Z

377

(Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2007. All  

E-Print Network [OSTI]

Production and Use: The rare-earth element yttrium was not mined in the United States in 2007. All yttrium Number Normal Trade Relations 12-31-07 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth-bearing materials and compounds containing by weight >19% to rare-earth

378

(Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2009. All  

E-Print Network [OSTI]

Production and Use: The rare-earth element yttrium was not mined in the United States in 2009. All yttrium. Rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed 2805.30.0000 5.0% ad. Other rare-earth compounds, including yttrium oxide >85% Y2O3, yttrium nitrate, and other individual

379

[Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted] Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2010. All  

E-Print Network [OSTI]

Production and Use: The rare-earth element yttrium was not mined in the United States in 2010. All yttrium. Rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed 2805.30.0000 5.0% ad. Other rare-earth compounds, including yttrium oxide >85% Y2O3, yttrium nitrate, and other individual

380

(Data in metric tons of yttrium oxide (Y2O3) content, unless noted) Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the  

E-Print Network [OSTI]

Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth ores and concentrates (monazite) 2612.20.0000 Free Free. Rare-earth metals, scandium and yttrium

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

(Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2008. All  

E-Print Network [OSTI]

Production and Use: The rare-earth element yttrium was not mined in the United States in 2008. All yttrium 12-31-08 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and compounds containing by weight >19% to rare-earth compounds, including

382

(Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was mined as a constituent of the mineral bastnsite  

E-Print Network [OSTI]

Production and Use: The rare-earth element yttrium was mined as a constituent of the mineral bastnäsite at Mountain Pass, CA, but was not recovered as a separate element during processing. Bastnäsite, a rare-earth Number Normal Trade Relations 12/31/02 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth

383

(Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2006. All  

E-Print Network [OSTI]

Production and Use: The rare-earth element yttrium was not mined in the United States in 2006. All yttrium-31-06 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and yttrium and compounds containing by weight >19% to rare-earth compounds, including

384

(Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2010. All  

E-Print Network [OSTI]

Production and Use: The rare-earth element yttrium was not mined in the United States in 2010. All yttrium Normal Trade Relations 12-31-10 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth-bearing materials and compounds containing by weight >19% to rare-earth compounds

385

(Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2003.  

E-Print Network [OSTI]

Production and Use: The rare-earth element yttrium was not mined in the United States in 2003. Yttrium Relations 12/31/03 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and compounds containing by weight >19% to rare-earth compounds, including

386

(Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2004. Yttrium  

E-Print Network [OSTI]

Production and Use: The rare-earth element yttrium was not mined in the United States in 2004. Yttrium Relations 12-31-04 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and compounds containing by weight >19% to rare-earth compounds, including

387

(Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was mined as a constituent of the mineral bastnasite,  

E-Print Network [OSTI]

Production and Use: The rare-earth element yttrium was mined as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth fluocarbonate mineral, was mined and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and yttrium, whether or not intermixed

388

(Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element, yttrium, was mined as a constituent of the mineral  

E-Print Network [OSTI]

Production and Use: The rare-earth element, yttrium, was mined as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth fluocarbonate mineral, was mined.20.0000 Free. Rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed 2805.30.0000 5

389

(Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2005. All  

E-Print Network [OSTI]

Production and Use: The rare-earth element yttrium was not mined in the United States in 2005. All yttrium-31-05 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and yttrium and compounds containing by weight >19% to rare-earth compounds, including

390

(Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was mined as a constituent of the mineral bastnasite  

E-Print Network [OSTI]

Production and Use: The rare-earth element yttrium was mined as a constituent of the mineral bastnasite at Mountain Pass, CA, but was not recovered as a separate element during processing. Bastnasite, a rare-earth Number Normal Trade Relations 12/31/01 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth

391

author research productivity: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2007 -Forest industry production Authorities Renewable Energy Websites Summary: FINLAND SOURCES 2007 - Forest industry production Print Home Finland Government Authorities...

392

Potential Land Use Implications of a Global Biofuels Industry  

E-Print Network [OSTI]

In this paper we investigate the potential production and implications of a global biofuels industry. We

Gurgel, Angelo C.

393

Washington: Battery Manufacturer Brings Material Production Home...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

most of the project's equipment, and this project is helping to build out a domestic industry that creates jobs for U.S. workers. EnerG2 created more than 200 temporary...

394

RESULTS OF THE TECHNICAL AND ECONOMIC FEASIBILITY ANALYSIS FOR A NOVEL BIOMASS GASIFICATION-BASED POWER GENERATION SYSTEM FOR THE FOREST PRODUCTS INDUSTRY  

SciTech Connect (OSTI)

In 2001, the Gas Technology Institute (GTI) entered into Cooperative Agreement DE-FC26-01NT41108 with the U.S. Department of Energy (DOE) for an Agenda 2020 project to develop an advanced biomass gasification-based power generation system for near-term deployment in the Forest Products Industry (FPI). The advanced power system combines three advanced components, including biomass gasification, 3-stage stoker-fired combustion for biomass conversion, and externally recuperated gas turbines (ERGTs) for power generation. The primary performance goals for the advanced power system are to provide increased self-generated power production for the mill and to increase wastewood utilization while decreasing fossil fuel use. Additional goals are to reduce boiler NOx and CO{sub 2} emissions. The current study was conducted to determine the technical and economic feasibility of an Advanced Power Generation System capable of meeting these goals so that a capital investment decision can be made regarding its implementation at a paper mill demonstration site in DeRidder, LA. Preliminary designs and cost estimates were developed for all major equipment, boiler modifications and balance of plant requirements including all utilities required for the project. A three-step implementation plan was developed to reduce technology risk. The plant design was found to meet the primary objectives of the project for increased bark utilization, decreased fossil fuel use, and increased self-generated power in the mill. Bark utilization for the modified plant is significantly higher (90-130%) than current operation compared to the 50% design goal. For equivalent steam production, the total gas usage for the fully implemented plant is 29% lower than current operation. While the current average steam production from No.2 Boiler is about 213,000 lb/h, the total steam production from the modified plant is 379,000 lb/h. This steam production increase will be accomplished at a grate heat release rate (GHRR) equal to the original boiler design. Boiler efficiencies (cogeneration-steam plus air) is increased from the original design value of 70% to 78.9% due to a combination of improved burnout, operation with lower excess air, and drier fuel. For the fully implemented plant, the thermal efficiency of fuel to electricity conversion is 79.8% in the cogeneration mode, 5% above the design goal. Finally, self-generated electricity will be increased from the 10.8 MW currently attributable to No.2 Boiler to 46.7MW, an increase of 332%. Environmental benefits derived from the system include a reduction in NOx emissions from the boiler of about 30-50% (90-130 tons/year) through syngas reburning, improved carbon burnout and lower excess air. This does not count NOx reduction that may be associated with replacement of purchased electricity. The project would reduce CO{sub 2} emissions from the generation of electricity to meet the mill's power requirements, including 50,000 tons/yr from a net reduction in gas usage in the mill and an additional 410,000 tons/yr reduction in CO{sub 2} emissions due to a 34 MW reduction of purchased electricity. The total CO{sub 2} reduction amounts to about 33% of the CO{sub 2} currently generated to meet the mills electricity requirement. The overall conclusion of the study is that while significant engineering challenges are presented by the proposed system, they can be met with operationally acceptable and cost effective solutions. The benefits of the system can be realized in an economic manner, with a simple payback period on the order of 6 years. The results of the study are applicable to many paper mills in the U.S. firing woodwastes and other solid fuels for steam and power production.

Bruce Bryan; Joseph Rabovitser; Sunil Ghose; Jim Patel

2003-11-01T23:59:59.000Z

395

Production  

Broader source: Energy.gov [DOE]

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

396

Coal industry annual 1997  

SciTech Connect (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

397

Coal industry annual 1993  

SciTech Connect (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

398

Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine  

SciTech Connect (OSTI)

PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the woodterpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

None

2012-01-01T23:59:59.000Z

399

Metered Mail Form Domestic Mail Only  

E-Print Network [OSTI]

Metered Mail Form Domestic Mail Only For USPS Mail Only Charge to Department First Class Mail Media Meter Form. · All outgoing USPS Mail that needs postage should be kept separate from all other mail already be sealed prior to being metered. Failure to properly seal this type of mail could result

Palmeri, Thomas

400

Office of Domestic and International Health Studies  

Broader source: Energy.gov [DOE]

The Office of Domestic and International Health Studies engages in the conduct of international scientific studies that may provide new knowledge and information about the human response to ionizing radiation in the workplace or people exposed in communities as a result of nuclear accidents, including providing health and environmental monitoring services to populations specified by law.

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Home, Habits, and Energy: Examining Domestic Interactions and Energy Consumption  

E-Print Network [OSTI]

, habitual, and irrational. Implications for the design of energy-conserving interactions with technology investigate the relationships among "normal" domestic interactions with technology, energy consumptionHome, Habits, and Energy: Examining Domestic Interactions and Energy Consumption James Pierce1

Paulos, Eric

402

Keynote Address: Ali Zaidi, the White House Domestic Policy Council...  

Energy Savers [EERE]

Ali Zaidi, the White House Domestic Policy Council Keynote Address: Ali Zaidi, the White House Domestic Policy Council May 21, 2014 2:05PM to 2:30PM PDT Pacific Ballroom Keynote...

403

Industrial Hygienist  

Broader source: Energy.gov [DOE]

A successful candidate in this position wil l serve as an Industrial Hygienist in the Operations Division, providing technical oversight of the Pacific Northwest National Laboratory contractors...

404

Hydrogen from Diverse Domestic ResourcesHydrogen from Diverse Domestic Resources Distributed  

E-Print Network [OSTI]

Sequestration Biomass Hydro Wind Solar Biomass Hydro Wind Solar Coal Nuclear Natural Gas Oil Sequestration #12 on foreign oil. · Promote the use of diverse, domestic, and sustainable energy sources. · Reduce carbon

405

Production  

Broader source: Energy.gov [DOE]

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

406

Lean Manufacturing in the Oil and Gas Industry .  

E-Print Network [OSTI]

??This research aims to investigate the lean production tools and techniques in the oil and gas industry with a focus on the oilfield services industry. (more)

Sakhardande, Rohan

2011-01-01T23:59:59.000Z

407

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect (OSTI)

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

408

STATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW)  

E-Print Network [OSTI]

STATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW) CEC- CF-6R-MECH-02 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-02 Solar Domestic Hot Water Systems (SDHW OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW) CEC- CF-6R-MECH-02 (Revised 08/09) CALIFORNIA ENERGY

409

Industry Partners Panel  

Broader source: Energy.gov [DOE]

Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

410

INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER  

SciTech Connect (OSTI)

The U. S. Department of Energys Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

MELINDA KRAHENBUHL

2010-05-28T23:59:59.000Z

411

Energy use of icemaking in domestic refrigerators  

SciTech Connect (OSTI)

This study was designed to develop and test a procedure to measure the electrical consumption of ice making in domestic refrigerators. The Department of Energy (DOE) test procedure was modified to include the energy used for icemaking in conventional refrigerators and those equipped with automatic icemakers. The procedure assumed that 500 grams of ice would be produced daily. Using the new test procedure and the existing DOE test (as a benchmark), four refrigerators equipped with automatic icemakers were tested for ice-making energy use. With the revised test, gross electricity consumption increased about 10% (100 kWh/yr) due to automatic icemaking but about 5% (55 kWh/yr) could be attributed to the special features of the automatic icemaker. The test also confirmed the feasibility of establishing procedures for measuring energy use of specific loads and other activities related to domestic refrigerators. Field testing and subsequent retesting revealed a 14% increase in energy use.

Meier, A. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.; Martinez, M.S. [ENVEST-SCE, Irwindale, CA (United States)

1996-02-01T23:59:59.000Z

412

Domestic institutions, strategic interests, and international conflict  

E-Print Network [OSTI]

(Huth and Russett 1984, 1988; Fearon 1994a, 1995; Zagare and Kilgour 2000; Schultz 2001; Danilovic 2002). Two recent theoretical angles are most relevant for the approach I take here. Though both attempt to explain the same phenomena?strategic bargaining... of resolve are more credible when leaders face domestic punishment for failing to carry out their threats. Most notably advanced in the audience costs approach (Fearon 1994; Smith 1998; Schultz 2001), this premise leads to an expectation for democratic states...

Clare, Joseph Daniel

2007-04-25T23:59:59.000Z

413

The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and  

E-Print Network [OSTI]

Design of Biodiesel Manufacturing", that appears in the Industrial and Engineering Chemistry Research a Biodiesel Process Model To access NIST TDE Data Engine in Aspen Plus version 2006.5 or V7.0 Step 1. Enter

Liu, Y. A.

414

Using federal technology policy to strength the US microelectronics industry  

SciTech Connect (OSTI)

A review of US and Japanese experiences with using microelectronics consortia as a tool for strengthening their respective industries reveals major differences. Japan has established catch-up consortia with focused goals. These consortia have a finite life targeted from the beginning, and emphasis is on work that supports or leads to product and process-improvement-driven commercialization. Japan`s government has played a key role in facilitating the development of consortia and has used consortia promote domestic competition. US consortia, on the other hand, have often emphasized long-range research with considerably less focus than those in Japan. The US consortia have searched for and often made revolutionary technology advancements. However, technology transfer to their members has been difficult. Only SEMATECH has assisted its members with continuous improvements, compressing product cycles, establishing relationships, and strengthening core competencies. The US government has not been a catalyst nor provided leadership in consortia creation and operation. We propose that in order to regain world leadership in areas where US companies lag foreign competition, the US should create industry-wide, horizontal-vertical, catch-up consortia or continue existing consortia in the six areas where the US lags behind Japan -- optoelectronics, displays, memories, materials, packaging, and manufacturing equipment. In addition, we recommend that consortia be established for special government microelectronics and microelectronics research integration and application. We advocate that these consortia be managed by an industry-led Microelectronics Alliance, whose establishment would be coordinated by the Department of Commerce. We further recommend that the Semiconductor Research Corporation, the National Science Foundation Engineering Research Centers, and relevant elements of other federal programs be integrated into this consortia complex.

Gover, J.E.; Gwyn, C.W.

1994-07-01T23:59:59.000Z

415

Expansion of Domestic Production of Lithium Carbonate and Lithium...  

Broader source: Energy.gov (indexed) [DOE]

3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt010esgroves2013...

416

Expansion of Domestic Production of Lithium Carbonate and Lithium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt010esgroves2012...

417

Expansion of Domestic Production of Lithium Carbonate and Lithium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt010esgroves2011...

418

Expansion of Domestic Production of Lithium Carbonate and Lithium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. esarravt010groves2010...

419

CRUDE OIL PRICE SHOCKS AND GROSS DOMESTIC PRODUCT.  

E-Print Network [OSTI]

??This study uses ordinary least squares estimation to test multivariate models in order to find out whether or not crude oil price shocks are contractionary (more)

Hernandez, Jordan

2012-01-01T23:59:59.000Z

420

Expansion of Domestic Production of Lithium Carbonate and Lithium...  

Broader source: Energy.gov (indexed) [DOE]

2010 End Date: February, 2013 Partners Engineering: BE&K (a KBR company) Environmental Assessment: Nevada BLM Budget DOE Share - 28.4 million Rockwood Share - 34.5 million...

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Expansion of Domestic Production of Lithium Carbonate and Lithium...  

Broader source: Energy.gov (indexed) [DOE]

2010 End Date: February, 2013 Partners Engineering: BE&K (a KBR company) Environmental Assessment: Nevada Bureau of Land Mgmt Budget DOE Share - 28.4 million Rockwood Share -...

422

Expansion of Domestic Production of Lithium Carbonate and Lithium...  

Broader source: Energy.gov (indexed) [DOE]

2010 End Date: December, 2013 Partners Engineering: BE&K (a KBR company) Environmental Assessment: Nevada Bureau Land Mgmt Budget DOE Share - 28.4 million Rockwood Share -...

423

Expansion of Domestic Production of Lithium Carbonate and Lithium...  

Broader source: Energy.gov (indexed) [DOE]

June, 2014 Partners Engineering: BE&K (a KBR company), Jacobs Engineering Environmental Assessment: Nevada Bureau Land Mgmt Forecast Spending DOE Share - 28.4 million Rockwood...

424

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shale gas

425

4th Quarter 2014 Domestic Uranium Production Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value4 3.P48 Star4He(α,Prices

426

4th Quarter 2014 Domestic Uranium Production Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value4 3.P48

427

4th Quarter 2014 Domestic Uranium Production Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value4 3.P48Capacity (short

428

4th Quarter 2014 Domestic Uranium Production Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value4 3.P48Capacity

429

4thQuarter 2014 Domestic Uranium Production Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value4 3.P48CapacityFigure 1.

430

Expansion of Domestic Production of Lithium Carbonate and Lithium Hydroxide  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaustEnergy Expanding the Use ofto

431

Expansion of Domestic Production of Lithium Carbonate and Lithium Hydroxide  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaustEnergy Expanding the Use

432

Expansion of Domestic Production of Lithium Carbonate and Lithium Hydroxide  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaustEnergy Expanding the Useto

433

Process for Low Cost Domestic Production of LIB Cathode Materials |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department of EnergyProcessDepartment of Energy 1

434

Process for Low Cost Domestic Production of LIB Cathode Materials |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department of EnergyProcessDepartment of Energy

435

4th Quarter 2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2.Reformulated, Average RefinerEnergy Supply Crude

436

4th Quarter 2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2.Reformulated, Average RefinerEnergy Supply Crude2. Number of uranium

437

4th Quarter 2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2.Reformulated, Average RefinerEnergy Supply Crude2. Number of uranium3.

438

4th Quarter 2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2.Reformulated, Average RefinerEnergy Supply Crude2. Number of

439

4thQuarter 2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2.Reformulated, Average RefinerEnergy Supply Crude2. Number ofFigure

440

Safeguards and security by design (SSBD) for the domestic threat - theft and sabotage  

SciTech Connect (OSTI)

Safeguards by Design (SBD) is receiving significant interest with respect to international safeguards objectives. However, less attention has been focused on the equally important topic of domestic Safeguards and Security by Design (SSBD), which addresses requirements such as those of the Nuclear Regulatory Commission (NRC) in the United States. While international safeguards are concerned with detecting State diversion of nuclear material from peaceful to nuclear explosives purposes, domestic Material Protection, Control and Accounting measures (MPC&A) are focused on non-State theft and sabotage. The International Atomic Energy Agency (IAEA) has described the Safeguards by Design (SBD) concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' This same concept is equally applicable to SSBD for domestic requirements. The United States Department of Energy (DOE) has initiated a project through its Office of Nuclear Energy (NE) and more specifically its Fuel Cycle Research and Development (FCRD) program, to develop a domestic SSBD discipline and methodology in parallel with similar efforts sponsored by the DOE Next Generation Safeguards Initiative (NGSI) and the IAEA for international safeguards. This activity includes the participation of industry (through DOE-sponsored contracts) and DOE National Laboratories. This paper will identify the key domestic safeguards and security requirements (i.e. MC&A and physical protection) and explain how and why Safeguards and Security by Design (SSBD) is important and beneficial for the design of future US nuclear energy systems.

Demuth, Scott F [Los Alamos National Laboratory; Mullen, Mark [Los Alamos National Laboratory

2011-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

SciTech Connect (OSTI)

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18T23:59:59.000Z

442

U.S. Pellet Industry Analysis  

SciTech Connect (OSTI)

This report is a survey of the U.S. Pellet Industry, its current capacity, economic drivers, and projected demand for biomass pellets to meet future energy consumption needs. Energy consumption in the US is projected to require an ever increasing portion of renewable energy sources including biofuels, among which are wood, and agrictulrual biomass. Goals set by federal agencies will drive an ever increasing demand for biomass. The EIA projections estimate that renewable energy produced by 2035 will be roughly 10% of all US energy consumption. Further analysis of the biofuels consumption in the US shows that of the renewable energy sources excluding biofuels, nearly 30% are wood or biomass waste. This equates to roughly 2% of the total energy consumption in the US coming from biomass in 2009, and the projections for 2035 show a strong increase in this amount. As of 2009, biomass energy production equates to roughly 2-2.5 quadrillion Btu. The EIA projections also show coal as providing 21% of energy consumed. If biomass is blended at 20% to co-fire coal plants, this will result in an additional 4 quadrillion Btu of biomass consumption. The EISA goals aim to produce 16 billion gal/year of cellulosic biofuels, and the US military has set goals for biofuels production. The Air Force has proposed to replace 50% of its domestic fuel requirements with alternative fuels from renewable sources by 2016. The Navy has likewise set a goal to provide 50% of its energy requirements from alternative sources. The Department of Energy has set similarly ambitious goals. The DOE goal is to replace 40% of 2004 gasoline use with biofuels. This equates to roughly 60 billion gal/year, of which, 45 billion gal/year would be produced from lignocellulosic resources. This would require 530 million dry tons of herbaceous and woody lignocellulosic biomass per year.

Corrie I. Nichol; Jacob J. Jacobsen; Richard D. Boardman

2011-06-01T23:59:59.000Z

443

7-114 Commercial/Industrial Societies Chapter 7. COMMERCIAL/INDUSTRIAL SOCIETIES  

E-Print Network [OSTI]

in production technol- ogy associated with the Industrial Revolution, beginning around 1800. Others, typically from 1500 onwards and that the Industrial Revolution, as impressive at it is in some ways, is a natural7-114 Commercial/Industrial Societies Chapter 7. COMMERCIAL/INDUSTRIAL SOCIETIES I. Introduction A

Richerson, Peter J.

444

Industrial Engineering Roles In Industry  

E-Print Network [OSTI]

, be they processes, products or systems Typical focus areas include: Project Management Manufacturing Quality Measurement and Improvement Program Management Ergonomics/Human Factors Technology, Production and Distribution Supply Chain Management Productivity, Methods and Process Engineering

Massachusetts at Amherst, University of

445

Industry to trim spending in U. S. during 1992  

SciTech Connect (OSTI)

The petroleum industry plans to cut U.S. capital and exploration spending in 1992 after boosting outlays the past 2 years. This paper shows U.S. companies plan to spend $32.5 billion on domestic projects this year, compared with $34.6 billion in outlays in 1991.

Beck, R.J.; Biggs, J.B.

1992-02-24T23:59:59.000Z

446

Analysis of selected energy security issues related to US crude oil and natural gas exploration, development, production, transportation and processing. Final report, Task 13  

SciTech Connect (OSTI)

In July 1989, President Bush directed the Secretary of Energy to initiate the development of a comprehensive National Energy Strategy (NES) built upon a national consensus. The overall principle for the NES, as defined by the President and articulated by the Economic Policy Council (EPC), is the continuation of the successful policy of market reliance, consistent with the following goals: Balancing of energy, economic, and environmental concerns; and reduced dependence by the US and its friends and allies on potentially unreliable energy suppliers. The analyses presented in this report draw upon a large body of work previously conducted for DOE/Office of Fossil Energy, the US Department of Interior/Minerals Management Service (DOI/MMS), and the Gas Research Institute (GRI), referenced throughout the text of this report. This work includes assessments in the following areas: the potential of advanced oil and gas extraction technologies as improved through R&D, along with the successful transfer of these technologies to the domestic petroleum industry; the economic and energy impacts of environmental regulations on domestic oil and gas exploration, production, and transportation; the potential of tax incentives to stimulate domestic oil and gas development and production; the potential environmental costs associated with various options for leasing for US oil and gas resources in the Outer Continental Shelf (OCS); and the economic impacts of environmental regulations affecting domestic crude oil refining.

Not Available

1990-10-01T23:59:59.000Z

447

Industrial energy-efficiency-improvement program  

SciTech Connect (OSTI)

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

Not Available

1980-12-01T23:59:59.000Z

448

Innovation and the big builders : barriers to integrating sustainable design and construction practices into the production homebuilding industry : the case of Pulte Homes  

E-Print Network [OSTI]

The homebuilding industry has held a dominant presence in the U.S. economy over the past century. It has been a source of profit, shelter and jobs for countless Americans. In order to meet the needs of an ever-burgeoning ...

Pauly, Justin T. (Justin Talbott)

2005-01-01T23:59:59.000Z

449

The waters of Southeastern Wisconsin are vast but vulnerable. We depend on our waters for drinking water, irrigation, industry, transportation, power production,  

E-Print Network [OSTI]

. Understanding our region's water-related issues and future challenges can help us protect clean, abundant water and industry, public health and ecosystem health. Water quality gains more at- tention during summer, when cause illness. The bacteria and other pollutants that affect our water quality come from a variety

Saldin, Dilano

450

Table 21. Domestic Crude Oil First Purchase Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

451

Table 21. Domestic Crude Oil First Purchase Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

452

Table 22. Domestic Crude Oil First Purchase Prices for Selected...  

U.S. Energy Information Administration (EIA) Indexed Site

company data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information AdministrationPetroleum Marketing Annual...

453

Table 22. Domestic Crude Oil First Purchase Prices for Selected...  

U.S. Energy Information Administration (EIA) Indexed Site

company data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information Administration Petroleum Marketing...

454

Solar energy for domestic use in southern Brazil.  

E-Print Network [OSTI]

?? Almost all the domestic water in Brazil is heated with an electrical heater directly by the end consumer. A typical heater has an effect (more)

Hedenberg, Ola

2008-01-01T23:59:59.000Z

455

BTU Accounting for Industry  

E-Print Network [OSTI]

, salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

Redd, R. O.

1979-01-01T23:59:59.000Z

456

printed on recycled paper INDUSTRIAL ASSESSMENT CENTER  

E-Print Network [OSTI]

printed on recycled paper INDUSTRIAL ASSESSMENT CENTER ENERGY EFFICIENCY, POLLUTION PREVENTION ASSESSMENT REPORT FOR ENERGY EFFICIENCY, POLLUTION PREVENTION, AND PRODUCTIVITY IMPROVEMENT No. CO0999 ASSESSMENT DATE: February 29, 2000 LOCATION: ______, Colorado PRINCIPAL PRODUCTS: Injection molded plastic

457

Certificate Industrial and Systems Engineering  

E-Print Network [OSTI]

Six Sigma Certificate Industrial and Systems Engineering San José State University September, 2008 #12;1 Lean Enterprise and Six Sigma Lean Enterprise about transforming the old mass production-to-cradle design, incorporating design for manufacturability, reproducibility, product lifecycle, etc. Six Sigma

Su, Xiao

458

Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China  

SciTech Connect (OSTI)

A USEPA procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo(a)pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from {approximately} 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from {approximately} 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 {+-} 2.87 ng/m{sup 3} on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m{sup 3}, 41% of the entire population lives within this area. 37 refs., 9 figs.

Shu Tao; Xinrong Li; Yu Yang; Raymond M. Coveney, Jr.; Xiaoxia Lu; Haitao Chen; Weiran Shen [Peking University, Beijing (China). Laboratory for Earth Surface Processes, College of Environmental Sciences

2006-08-01T23:59:59.000Z

459

Domestic surface : a framework for advancement  

E-Print Network [OSTI]

The residential building sector currently makes up one-half of the total U.S. building industry; yet less than five percent of residential construction involves architectural services. This irrelevancy has only further ...

Hart, Jason Wilbur, 1977-

2004-01-01T23:59:59.000Z

460

Substitution for petroleum products in Brasil: Urgent issues  

SciTech Connect (OSTI)

Brazililan energy policy during the last decade has focused on the replacement of imported petroleum with domestic energy sources, combined with efforts at conservation. The substitution results, however, have been more spectacular by far. The strategy of replacement is based on two elements. first, to increase domestic petroleum exploration and production. Second, to promote non-petroleum fuels as alternatives to the industrial and transportation sectors, for the substitution of fuel oil and gasoline, respectively. A combination of the substitution strategy, the country's petroleum refining structure, and the composition of the substitution strategy, the country's petroleum refining structure, and the composition of demand, has resulted in large surpluses of both gasoline and fuel oil, while diesel has become the most used among petroleum products. The surpluses are not easily exportable because there is ample availability of fuel oil in the world market, and because the low octane number of the gasoline produced in Brasil is not compatible with the engines of cars elsewhere in the region and in the world. Furthermore, although gasoline might be upgraded, the question remains that prospects for the world market are not encouraging, and an export-based strategy does not seem justified in view of the growing surpluses. The objective of this analysis is to review the mechanisms of themajor petroleum-substitution programs currently in existence, identifying their past impact on the energy market and the possible consequences of changes in the goals and operating conditions of these programs, in the light of the new prospects for increased domestic oil production and self-sufficiency. 23 refs., 2 figs., 1 tab.

de Araujo, J.L.; Ghirardi, A.

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Bidirectional Technology Transfer: Sabbaticals in Industry  

E-Print Network [OSTI]

Bidirectional Technology Transfer: Sabbaticals in Industry Mark D. Hill University of Wisconsin---not just technology transfer---through a ten­month sabbatical in an industrial product group. I advocate product group. The next sections discuss technology transfer, my recent sabbatical, and conclude

Hill, Mark D.

462

Domestic animals in a changing world  

E-Print Network [OSTI]

of high quality feed Management systems Higher total production Environmental impact Diseases (infectious material Production of high quality feed Management systems Higher total production Environmental impact with high production in the feeding and management systems that we provide, without compromising animal

463

The Productivity Dilemma in Manufacturing  

E-Print Network [OSTI]

industry's needs, improve productivity, and reduce costs is known, but the technology transfer needed to impact our industrial productivity has not taken place. A key factor in accomplishing technology transfer and implementation is the availability...

Byrer, T. G.

1983-01-01T23:59:59.000Z

464

Directory of Community Service and Domestic Violence Service Providers  

E-Print Network [OSTI]

2008 Directory of Community Service and Domestic Violence Service Providers for the Community of the service providers listed in this directory have self-identifself-identifself-identifself-identifself-identifiediediediedied as be- ing LGBT "friendly" with a knowledge of domestic violence. Inclusion in this directory does

Firestone, Jeremy

465

The Soviet uranium industry and exports of nuclear materials and services  

SciTech Connect (OSTI)

The USSR has been offering Western countries, through long-term contracts, services in the processing and enrichment of uranium for their nuclear power industries since 1973. Although known for some time from Western sources, this was confirmed by Boris Semyenov, First Deputy Chairman of the USSR State Committee for the Utilization of Atomic Energy, in 1989. Other sources state that the first service contract was signed in 1971, with initial deliveries beginning in 1973, and that altogether, there are now about 10-12 long-term contracts with firms in various Western European countries that extend to the year 2000 or in some cases to 2010. Although these services are said to remain the mainstay of business with the capitalist countries of the West, the export of enriched uranium materials produced from domestic ore began in 1988. Clients include firms in both the US and Western Europe. Evidently, the severe balance-of-payments problems in Soviet foreign trade operations in recent years have led the Soviets to push alternatives to oil exports as much as possible, notably metals and minerals and chemicals and fertilizers, and this has now extended to the Soviet uranium industry. The paper discusses the USSR uranium industry, uranium mining, uranium enrichment, and plutonium production.

Sagers, M.J.

1990-08-01T23:59:59.000Z

466

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 3, MARCH 2008 1421 On the Use of a Lower Sampling Rate for Broken  

E-Print Network [OSTI]

industries, petrochemical industries, and domestic appliance industries. Induction motors are often used in critical applications such as nuclear plants, aerospace, and military applications, where the reliability itself, in addition to a likely costly downtime of the whole plant. More important, these failures may

Chow, Mo-Yuen

467

Forest products and services, international trade Trade in forest products and services  

E-Print Network [OSTI]

Forest products and services, international trade Trade in forest products and services The forest products sector is estimated to contribute about one percent of world gross domestic product and to account, pulp and paper exceeds US$200 billion. The value of non-wood forest products and the environmental

468

Petroleum industry in Iran  

SciTech Connect (OSTI)

This study examines the oil industry in Iran from the early discovery of oil nearly two hundred years ago in Mazandaran (north part) to the development of a giant modern industry in the twentieth century. Chapter I presents a brief historical setting to introduce the reader to the importance of oil in Iran. It focuses on the economic implications of the early oil concessions in the period 1901 to 1951. Chapter II discusses the nationalization of the Iranian oil industry and creation of NIOC in 1951 and the international political and economic implication of these activities. Chapter III explains the activities of NIOC in Iran. Exploration and drilling, production, exports, refineries, natural gas, petrochemicals and internal distributions are studied. Chapter IV discusses the role of the development planning of Iran. A brief presentation of the First Development Plan through the Fifth Development Plan is given. Sources and uses of funds by plan organization during these Five Plans is studied. The Iran and Iraq War is also studied briefly, but the uncertainty of its resolution prevents any close analysis of its impact on the Iranian oil industry. One conclusion, however, is certain; oil has been a vital resource in Iran's past and it will remain the lifetime of its economic development in the future.

Farideh, A.

1981-01-01T23:59:59.000Z

469

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the Complex andIndustrial

470

Industry Economists  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the ComplexIndustry

471

Industry @ ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In AboutIn theIndustry @ ALS

472

National Skills Assessment of the U.S. Wind Industry in 2012  

SciTech Connect (OSTI)

A robust workforce is essential to developing domestic wind power projects, including manufacturing, siting, operations, maintenance, and research capabilities. The purpose of our research is to better understand today's domestic wind workforce, projected workforce needs as the industry grows, and how existing and new programs can meet the wind industry's future education and training needs. Results presented in this report provide the first published investigation into the detailed makeup of the wind energy workforce, educational infrastructure and training needs of the wind industry. Insights from this research into the domestic wind workforce will allow the private sector, educational institutions, and federal and state governmental organizations to make workforce-related decisions based on the current employment and training data and future projections in this report.

Levanthal, M.; Tegen, S.

2013-06-01T23:59:59.000Z

473

Office of Industrial Technologies research in progress  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

Not Available

1993-05-01T23:59:59.000Z

474

Determinants of energy intensity in industrialized countries : a comparison of China and India  

E-Print Network [OSTI]

The amount of final energy per unit of economic output (usually in terms of gross domestic product, or GDP), known as energy intensity, is often used to measure the effectiveness of energy use and the consumption patterns ...

Huang, Feiya

2006-01-01T23:59:59.000Z

475

Table 23. Domestic Crude Oil First Purchase Prices by API Gravity  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-182, "Domestic Crude Oil First Purchase Report." 23. Domestic Crude Oil First Purchase Prices by API Gravity Energy Information Administration Petroleum...

476

COMBINING DIVERSE DATA SOURCES FOR CEDSS, AN AGENT-BASED MODEL OF DOMESTIC ENERGY DEMAND  

E-Print Network [OSTI]

Model CEDSS (Community Energy Demand Social Simulator) wasthe determinants of domestic energy demand and covering fivescenarios of domestic energy demand to 2050, and for its

Gotts, Nicholas Mark; Polhill, Gary; Craig, Tony; Galan-Diaz, Carlos

2014-01-01T23:59:59.000Z

477

Oil products distribution in Iran: a planning approach  

SciTech Connect (OSTI)

The significance of this study is that it examines the functions of the most important element in the public sector of the economy of Iran - the Ministry of Oil. Oil is the main source of Iran's foreign earnings and the commodity most crucial to the country's economy as its prime export. Furthermore, it plays a vital role in meeting domestic energy demands. The distribution of oil products affects, on the one hand, households, small businesses, and larger industries while, on the other, it affects the allocation, in general of other national resources. Accordingly, the effects of the Ministry of Oil's policies with regard to its production-distribution system cannot be overemphasized. The research entailed has elicited certain factors: The Ministry of Oil's present system suffers from a number of weaknesses in its production-distribution design. These deficiencies involved, among others, terminal location, number of terminals, assignment of terminals to customers, substitution of other major sources of energy for major oil products, the middle distillates problem, and an outmoded distribution method and techniques. This dissertation addresses alternatives that will eliminate faults in the present system. The approach and conclusions of this research have the potential of application to any type of industry in Iran - oil or otherwise, whether in the private or public sector - that has a similar intricate distribution-system design subject to similar variables.

Abrishami, H.

1986-01-01T23:59:59.000Z

478

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

Mountziaris, T. J.

479

ICP-PECVD PRODUCTION TOOL FOR INDUSTRIAL AlOX AND Si-BASED PASSIVATION LAYERS B.F.P. Roos1  

E-Print Network [OSTI]

of different materials on silicon solar wafers using inductively coupled plasma (ICP). One of the major features of the ICP technology is the high plasma density at low kinetic ion energy. These plasma on the SINGULAR production tool platform is discussed. A special focus will be placed on a-SiOxNy/SiNx and Al

480

Industrial Technologies Program ORNL-developed cast nickel aluminide rolls  

E-Print Network [OSTI]

intensity by 25% over ten years and to reduce industry's carbon footprint. The program works to develop). Our program works to reduce industrial energy intensity and to develop energy saving products with industry to reduce energy use and carbon emissions and to improve industrial competitiveness. We

Note: This page contains sample records for the topic "domestic production industrial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

2008 Industrial Technologies Market Report, May 2009  

SciTech Connect (OSTI)

The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

Energetics; DOE

2009-07-01T23:59:59.000Z

482

Engineering Industrial & Systems  

E-Print Network [OSTI]

Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

Berdichevsky, Victor

483

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

484

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

485

Phase 2: Seminars to US industry of TDA feasibility study. US export potential for oil and gas suppliers to Russian production associations. Final report. Export trade information  

SciTech Connect (OSTI)

The study was funded by the U.S. Trade and Development Agency on behalf of the Russian Production Association Varyeganneftegas Joint Stock Company (VNG JSC). It is a report Phase II of the Russian Oilfield Study, and it had two main objectives. The first was to enhance the competitiveness of the U.S. private sector in sales of oilfield equipment and services; the second goal was to assist the World Bank and VNG JSC in efforts to rehabilitate their oilfields by familiarizing VNG representatives with U.S. production and service capabilities in the petroleum sector. The report is divided into the following sections: (1) Background; (2) The Planning Stage; (3) The Implementation Stage; and (4) Conclusions.

Not Available

1994-09-18T23:59:59.000Z

486

Solar production of industrial process steam. Phase III. Operation and evaluation of the Johnson and Johnson solar facility. Final report, January 1, 1980-March 31, 1981  

SciTech Connect (OSTI)

A solar facility that generates 177/sup 0/C (350/sup 0/F) process steam has been designed and constructed by Acurex Corporation and has operated for 1 yr supplying steam to the Johnson and Johnson manufacturing plant in Sherman, Texas. The facility consists of 1068 m/sup 2/ (11,520 ft/sup 2/) of parabolic trough concentrating collectors, a 18,900 1 (5000 gal) flash boiler, and an 18.6 kW (25 hp) circulating pump. In the first year of operation the system was available 97 percent of the days, and with sufficient solar radiation available it operated 70 percent of the days during this period. The measured data showed that the collector field operated at an efficiency of 25.4 percent for the year, and that at least 75 percent of the energy reaching the flash boiler was delivered to the plant as steam. A total of 309,510 kg (682,400 lb) of steam was produced by the solar facility for the first year. An analysis of the data showed that the delivered energy was within 90 to 100 percent of the predicted value. The successful completion of the first year of operation has demonstrated the technical feasibility of generating industrial process steam with solar energy.

Brink, D.F.; Kendall, J.M.; Youngblood, S.B.

1981-03-01T23:59:59.000Z

487

Table 21. Domestic Crude Oil First Purchase Prices  

U.S. Energy Information Administration (EIA) Indexed Site

19.11 18.73 18.63 17.97 18.75 18.10 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

488

China's industrial sector in an international context  

SciTech Connect (OSTI)

The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-05-01T23:59:59.000Z

489

MIT and the Building/Construction Industries MIT Industry Brief  

E-Print Network [OSTI]

devoted to improving the ability of companies to efficiently customize products and services in various in these areas. Please note that this is not a comprehensive summary of research being conducted at MIT in the topic areas listed above. MIT's Industrial Liaison Program (ILP) can bring the intellectual power of MIT

Ceder, Gerbrand

490

A behavioral catalogue of domestic cattle on grazing lands  

E-Print Network [OSTI]

A BEHAVIORAL CATALOGUE OF DOMESTIC CATTLE ON GRAZING LANDS A Thesis by PA1MELA LIND ANTILLEY Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement fnr t. he degree of MASTER OF SCIENCE December... 1983 Major Subject: Range Science A BEHAVIORAL CATALOGVE OF DOMESTIC CATTLE ON GRAZING LANDS A Thesis by PAMELA LIND ANTILLEY Approved as to style and content by: J. L. Schuster (Chairman of Committee) F. R. Walthe (Member) T. . Friend...

Antilley, Pamela Lind

1983-01-01T23:59:59.000Z

491

Materials needs and opportunities in the pulp and paper industry  

SciTech Connect (OSTI)

The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

Angelini, P. [comp.

1995-08-01T23:59:59.000Z

492

Experimental and Numerical Investigation of Forming and Springback Behavior and the Resulting Effects on Industrial Application on a Structural Part in Mass Production  

SciTech Connect (OSTI)

Springback prediction and compensation is nowadays a widely recommended discipline in finite element modeling. Many researches have shown an improvement of the accuracy in prediction of springback using advanced modeling techniques, e.g. by including the Bauschinger effect. In this work different models were investigated in the commercial simulation program AutoForm for a large series production part, manufactured from the dual phase steel HC340XD. The work shows the differences between numerical drawbead models and geometrically modeled drawbeads. Furthermore, a sensitivity analysis was made for a reduced kinematic hardening model, implemented in the finite element program AutoForm.

Prexl, A.; Hoffmann, H. [Institute of Metal Forming and Casting, Technische Universitaet Muenchen D-85747 Garching (Germany); Golle, M. [Institute of Metal Forming and Casting, Technische Universitaet Muenchen D-85747 Garching (Germany); Institute of Punching and Blanking, Pforzheim University, D-75175 Pforzheim (Germany); Kudrass, S.; Wahl, M. [AUDI AG, D-85045 Ingolstadt (Germany)

2011-01-17T23:59:59.000Z

493

Assistance to Oil and Gas State Agencies and Industry through Continuation of Environmental and Production Data Management and a Water Regulatory Initiative  

SciTech Connect (OSTI)

This grant project was a major step toward completion of the Risk Based Data Management System (RBDMS) project. Additionally the project addresses the needs identified during the projects initial phases. By implementing this project, the following outcomes were sought: (1) State regulatory agencies implemented more formalized environmental risk management practices as they pertain to the production of oil and gas, and injection via Class II wells. (2) Enhancement of oil and gas production by implementing a management system supporting the saving of abandoned or idle wells located in areas with a relatively low environmental risk of endangering underground sources of drinking water (USDWs) in a particular state. (3) Verification that protection of USDWs is adequate and additional restrictions of requirements are not necessary in areas with a relatively low environmental risk. (4) Standardization of data and information maintained by state regulatory agencies and decrease the regulatory cost burden on producers operating in multiple states, and (5) Development of a system for electronic data transfer among operators and state regulatory agencies and reduction of overall operator reporting burdens.

Grunewald, Ben; Arthur, Dan; Langhus, Bruce; Gillespie, Tom; Binder, Ben; Warner, Don; Roberts, Jim; Cox, D.O.

2002-05-31T23:59:59.000Z

494

The natural and industrial cycling of indium in the environment  

E-Print Network [OSTI]

Indium is an important metal whose production is increasing dramatically due to new uses in the rapidly growing electronics, photovoltaic, and LED industries. Little is known, however, about the natural or industrial cycling ...

White, Sarah Jane O'Connell

2012-01-01T23:59:59.000Z

495

Industrial and Commercial Heat Pump Applications in the United States  

E-Print Network [OSTI]

compression cycle. Using readily available fluorocarbon refrigerants as the heat pump working fluid, this cycle is commonly used because of its wide application opportunities. Compressed Vapors Heat Pump Compressor Heat Sink PrOCess (Condenser... and refrigerants most commonly used and the open-cycle mechanical vapor compression heat pumps. Waste heat sources, heat loads served by heat pumps--and typical applications using heat pumps for large-scale space heating, domestic water heating, and industrial...

Niess, R. C.

496

Long-Term Nuclear Industry Outlook - 2004  

SciTech Connect (OSTI)

The nuclear industry has become increasingly efficient and global in nature, but may now be poised at a crossroads between graceful decline and profound growth as a viable provider of electrical energy. Predicted population and energy-demand growth, an increased interest in global climate change, the desire to reduce the international dependence on oil as an energy source, the potential for hydrogen co-generation using nuclear power reactors, and the improved performance in the nuclear power industry have raised the prospect of a nuclear renaissance in which nuclear power would play an increasingly more important role in both domestic and international energy market. This report provides an assessment of the role nuclear-generated power will plan in the global energy future and explores the impact of that role on export controls.

Reichmuth, Barbara A.; Wood, Thomas W.; Johnson, Wayne L.

2004-09-30T23:59:59.000Z

497

Essays on Environmental Regulatory Policy  

E-Print Network [OSTI]

private consumption demand in oil intensive industry sectorsand domestic demand for oil refinery production, and as adecrease in the domestic demand for the oil refinery sector,

Dobson, Sarah

2012-01-01T23:59:59.000Z

498

Water issues associated with heavy oil production.  

SciTech Connect (OSTI)

Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

Veil, J. A.; Quinn, J. J.; Environmental Science Division

2008-11-28T23:59:59.000Z

499

The development of an operational game for the U.S. domestic airline industry  

E-Print Network [OSTI]

Introduction: The use of computer simulations to analyze large complex systems is now a well-established technique. By combining detailed numerical models of each component of the system, the behavior of the entire system ...

Elias, Antonio L.

1979-01-01T23:59:59.000Z

500

How Many Jobs are there in the Domestic Small Wind Industry? (Presentation)  

SciTech Connect (OSTI)

This poster introduces the preliminary small wind Jobs and Economic Development Impacts (JEDI) model.

Tegen, S.

2013-07-01T23:59:59.000Z