Powered by Deep Web Technologies
Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

COMBINING DIVERSE DATA SOURCES FOR CEDSS, AN AGENT-BASED MODEL OF DOMESTIC ENERGY DEMAND  

E-Print Network [OSTI]

Model CEDSS (Community Energy Demand Social Simulator) wasthe determinants of domestic energy demand and covering fivescenarios of domestic energy demand to 2050, and for its

Gotts, Nicholas Mark; Polhill, Gary; Craig, Tony; Galan-Diaz, Carlos

2014-01-01T23:59:59.000Z

2

COMBINING DIVERSE DATA SOURCES FOR CEDSS, AN AGENT-BASED MODEL OF DOMESTIC ENERGY DEMAND  

E-Print Network [OSTI]

market and social network structures, and cultural factors, are likely to affect the dynamics of direct domestic energy

Gotts, Nicholas Mark; Polhill, Gary; Craig, Tony; Galan-Diaz, Carlos

2014-01-01T23:59:59.000Z

3

Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water  

E-Print Network [OSTI]

heaters. The methods presented demonstrate how integrated systems can be of value in reducing daily summertime peaks. INTRODUCTION A need for descriptors to evaluate systems that condition space and heat domestic water has been recognized for several... added to and used by the water from the desuperheated refrigerant - heat normally provided by the electric water heater's resistance elements. DESCRIPTION OF EQUIPMENT The system considered for this study is best described by U.S. Patent No. 4...

Cawley, R.

4

Turkey's energy demand and supply  

SciTech Connect (OSTI)

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

5

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy-2 Demand Forecast Disaggregation......................................................1-4 Statewide

6

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

Shen, Bo

2013-01-01T23:59:59.000Z

7

Energy Demand Staff Scientist  

E-Print Network [OSTI]

Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused on End-Use Energy Efficiency ~ 40 Current Projects in China Collaborations with ~50 Institutions in China Researcher #12;Talk OutlineTalk Outline · Overview · China's energy use and CO2 emission trends · Energy

Eisen, Michael

8

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

9

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

10

Effect of Increased Natural Gas Exports on Domestic Energy Markets  

Reports and Publications (EIA)

This report responds to an August 2011 request from the Department of Energy's Office of Fossil Energy (DOE\\/FE) for an analysis of "the impact of increased domestic natural gas demand, as exports." Appendix A provides a copy of the DOE\\/FE request letter. Specifically, DOE\\/FE asked the U.S. Energy Information Administration (EIA) to assess how specified scenarios of increased natural gas exports could affect domestic energy markets, focusing on consumption, production, and prices.

2012-01-01T23:59:59.000Z

11

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Data for Automated Demand Response in Commercial Buildings,Demand Response Infrastructure for Commercial Buildings",demand response and energy efficiency functions into the design of buildings,

Shen, Bo

2013-01-01T23:59:59.000Z

12

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

13

Towards an Holistic View of the Energy and Environmental Impacts of Domestic Media and IT  

E-Print Network [OSTI]

-to-day practices that they sup- port, their measured direct energy demand, and their approxi- mate embodied (e.g., HCI): Miscellaneous. INTRODUCTION The domestic energy demand of consumer electronics, digitalTowards an Holistic View of the Energy and Environmental Impacts of Domestic Media and IT Oliver

Hazas, Mike

14

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

15

Driving Demand | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

strategies, results achieved to date, and advice for other programs. Driving Demand for Home Energy Improvements. This guide, developed by the Lawrence Berkeley National...

16

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

Goldman, Charles

2010-01-01T23:59:59.000Z

17

Demand Response and Energy Efficiency  

E-Print Network [OSTI]

Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5... for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 5 What is Demand Response? ?The temporary reduction of electricity demanded from the grid by an end-user in response to capacity shortages, system reliability events, or high wholesale...

18

Home, Habits, and Energy: Examining Domestic Interactions and Energy Consumption  

E-Print Network [OSTI]

, habitual, and irrational. Implications for the design of energy-conserving interactions with technology investigate the relationships among "normal" domestic interactions with technology, energy consumptionHome, Habits, and Energy: Examining Domestic Interactions and Energy Consumption James Pierce1

Paulos, Eric

19

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

20

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

In terms of demand response capability, building operatorsautomated demand response and improve building energy andand demand response features directly into building design

Goldman, Charles

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

22

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

23

Demand models for U.S. domestic air passenger markets  

E-Print Network [OSTI]

The airline industry in recent years has suffered from the adverse effects of top level planning decisions based upon inaccurate demand forecasts. The air carriers have recognized the immediate need to develop their ...

Eriksen, Steven Edward

1978-01-01T23:59:59.000Z

24

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product estimates. Margaret Sheridan provided the residential forecast. Mitch Tian prepared the peak demand

25

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

26

Global energy demand to 2060  

SciTech Connect (OSTI)

The projection of global energy demand to the year 2060 is of particular interest because of its relevance to the current greenhouse concerns. The long-term growth of global energy demand in the time scale of climatic change has received relatively little attention in the public discussion of national policy alternatives. The sociological, political, and economic issues have rarely been mentioned in this context. This study emphasizes that the two major driving forces are global population growth and economic growth (gross national product per capita), as would be expected. The modest annual increases assumed in this study result in a year 2060 annual energy use of >4 times the total global current use (year 1986) if present trends continue, and >2 times with extreme efficiency improvements in energy use. Even assuming a zero per capita growth for energy and economics, the population increase by the year 2060 results in a 1.5 times increase in total annual energy use.

Starr, C. (Electric Power Research Institute, Palo Alto, CA (USA))

1989-01-01T23:59:59.000Z

27

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

DEMAND RESPONSE .7 Wholesale Marketuse at times of high wholesale market prices or when systemenergy expenditure. In wholesale markets, spot energy prices

Shen, Bo

2013-01-01T23:59:59.000Z

28

Demand Response | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005Department ofDOE AccidentWasteZone Modeling |Demand Response Demand

29

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and Demand Response A pilot program from NSTAR in Massachusetts,Massachusetts, aiming to test whether an intensive program of energy efficiency and demand response

Goldman, Charles

2010-01-01T23:59:59.000Z

30

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 1 in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard. Margaret Sheridan contributed to the residential forecast. Mitch Tian prepared the peak demand

31

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 2 Director #12; i ACKNOWLEDGEMENTS The demand forecast is the combined product prepared the peak demand forecast. Ravinderpal Vaid provided the projections of commercial

32

Reducing Energy Demand in Buildings Through State Energy Codes...  

Energy Savers [EERE]

Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

33

Energy demand and population changes  

SciTech Connect (OSTI)

Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

Allen, E.L.; Edmonds, J.A.

1980-12-01T23:59:59.000Z

34

Department of Energy to Invest $50 Million to Advance Domestic...  

Office of Environmental Management (EM)

to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal Department of Energy to Invest 50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot...

35

Global Nuclear Energy Partnership Fact Sheet - Expand Domestic...  

Broader source: Energy.gov (indexed) [DOE]

Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will build on the recent advances made by the...

36

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy for demand response program impacts and contributed to the residential forecast. Mitch Tian prepared

37

Modeling Energy Demand Aggregators for Residential Consumers  

E-Print Network [OSTI]

Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand

Paris-Sud XI, Université de

38

Transportation Energy: Supply, Demand and the Future  

E-Print Network [OSTI]

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

Saldin, Dilano

39

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

in peak demand. This definition of energy efficiency makesthe following definitions are used: Energy efficiency refersThis definition implicitly distinguishes energy efficiency

Goldman, Charles

2010-01-01T23:59:59.000Z

40

CALIFORNIA ENERGY CALIFORNIA ENERGY DEMAND 2010-2020  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2010-2020 ADOPTED FORECAST for this report: Kavalec, Chris and Tom Gorin, 2009. California Energy Demand 20102020, Adopted Forecast. California Energy Commission. CEC2002009012CMF #12; i Acknowledgments The demand forecast

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network [OSTI]

that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controllingUS Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

42

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

43

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network [OSTI]

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

44

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network [OSTI]

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work Sheridan provided the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid

45

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

46

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network [OSTI]

ED2, September. CEC (2005b) Energy demand forecast methodsCalifornia Baseline Energy Demands to 2050 for Advancedof a baseline scenario for energy demand in California for a

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

47

Energy use of icemaking in domestic refrigerators  

SciTech Connect (OSTI)

This study was designed to develop and test a procedure to measure the electrical consumption of ice making in domestic refrigerators. The Department of Energy (DOE) test procedure was modified to include the energy used for icemaking in conventional refrigerators and those equipped with automatic icemakers. The procedure assumed that 500 grams of ice would be produced daily. Using the new test procedure and the existing DOE test (as a benchmark), four refrigerators equipped with automatic icemakers were tested for ice-making energy use. With the revised test, gross electricity consumption increased about 10% (100 kWh/yr) due to automatic icemaking but about 5% (55 kWh/yr) could be attributed to the special features of the automatic icemaker. The test also confirmed the feasibility of establishing procedures for measuring energy use of specific loads and other activities related to domestic refrigerators. Field testing and subsequent retesting revealed a 14% increase in energy use.

Meier, A. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.; Martinez, M.S. [ENVEST-SCE, Irwindale, CA (United States)

1996-02-01T23:59:59.000Z

48

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network [OSTI]

description of six energy and demand management concepts.how quickly it can modify energy demand. This is not a newimprovements in both energy efficiency and demand response (

Piette, Mary Ann

2009-01-01T23:59:59.000Z

49

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

Institute, Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

50

Energy policy in Iran: domestic choices and international implications  

SciTech Connect (OSTI)

This book assesses energy-demand patterns, evaluates major energy supply sources, and recommends policy guidelines intended to comprise an integrated national energy plan for Iran. The book also provides some insights for other developing countries facing similar energy options and serves as a reminder that Iran, in addition to the strategic importance of its geography, remains a potential force in international energy markets. The general policy guidelines the author proposes are: (1) to expand domestic natural gas consumption; (2) promote the use of liquefied-petroleum gas where natural gas is unavailable; (3) cancel the nuclear power program; (4) develop hydropower resources; (5) prepare an inventory of oil and gas resources; (6) hold natural gas until world prices justify exporting surpluses; (7) encourage conservation; (8) expand electric power systems; (9) coordinate national planning; (10) monitor advanced energy-technology development; (11) expand manpower training; and (12) limit petrochemical programs until they are fully assessed. 41 tables.

Mossavar-Rahjmani, B.

1981-01-01T23:59:59.000Z

51

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity forecast is the combined product of the hard work and expertise of numerous staff members in the Demand prepared the peak demand forecast. Ravinderpal Vaid provided the projections of commercial floor space

52

Coordination of Energy Efficiency and Demand Response  

SciTech Connect (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

53

Global Energy: Supply, Demand, Consequences, Opportunities  

ScienceCinema (OSTI)

July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Arun Majumdar

2010-01-08T23:59:59.000Z

54

Real-Time Demand Side Energy Management  

E-Print Network [OSTI]

Real-Time Demand Side Energy Management Annelize Victor Michael Brodkorb Sr. Business Consultant Business Development Manager Aspen Technology, Inc. Aspen Technology Espaa, S.A. Houston, TX Barcelona, Spain ABSTRACT To remain... competitive, manufacturers must capture opportunities to increase bottom-line profitability. The goal of this paper is to present a new methodology for reducing energy costs Demand-Side Energy Management. Learn how process manufacturers assess energy...

Victor, A.; Brodkorb, M.

2006-01-01T23:59:59.000Z

55

Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing  

E-Print Network [OSTI]

Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing Jin Xiao, Jae--In this paper, we present demand-side energy manage- ment under real-time demand-response pricing as a task, demand-response, energy management I. INTRODUCTION The growing awareness of global climate change has

Boutaba, Raouf

56

Electricity Demand and Energy Consumption Management System  

E-Print Network [OSTI]

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

57

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network [OSTI]

iv Chapter 5: National energy demand and potential energyEnergyDemandsandEfficiencyStrategies inDataCenterAC02?05CH11231. Energy Demands and Efficiency Strategies

Shehabi, Arman

2010-01-01T23:59:59.000Z

58

A residential energy demand system for Spain  

E-Print Network [OSTI]

Sharp price fluctuations and increasing environmental and distributional concerns, among other issues, have led to a renewed academic interest in energy demand. In this paper we estimate, for the first time in Spain, an ...

Labandeira Villot, Xavier

2005-01-01T23:59:59.000Z

59

Energy technologies and their impact on demand  

SciTech Connect (OSTI)

Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

Drucker, H.

1995-06-01T23:59:59.000Z

60

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

BEST PRACTICES AND RESULTS OF DR IMPLEMENTATION . 31 Encouraging End-User Participation: The Role of Incentives 16 Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network [OSTI]

Importance Total off- site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decrease

Stadler, Michael

2011-01-01T23:59:59.000Z

62

Learning Energy Demand Domain Knowledge via Feature Transformation  

E-Print Network [OSTI]

Learning Energy Demand Domain Knowledge via Feature Transformation Sanzad Siddique Department -- Domain knowledge is an essential factor for forecasting energy demand. This paper introduces a method knowledge substantially improves energy demand forecasting accuracy. However, domain knowledge may differ

Povinelli, Richard J.

63

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network [OSTI]

these trends lead to declining natural gas consumption byNatural gas demand has been rising in California and this trendnatural gas demands regionally, to account for variability in energy usage trends

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

64

Demand Response Initiatives at CPS Energy  

E-Print Network [OSTI]

Demand Response Initiatives at CPS Energy Clean Air Through Energy Efficiency (CATEE) Conference December 17, 2013 ESL-KT-13-12-53 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 CPSEs DR Program DR... than the military bases and Toyota combined. Schools & Universities contributed 6 MWs of Demand Response in 2013. 2013 DR Participants Trinity University - $5,654 Fort Sam ISD - $18,860 Judson ISD - $45,540 Alamo Colleges - $98,222 UTSA - $168...

Luna, R.

2013-01-01T23:59:59.000Z

65

Response to several FOIA requests - Renewable Energy. Demand...  

Office of Environmental Management (EM)

Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA...

66

Energy Upgrade California Drives Demand From Behind the Wheel...  

Energy Savers [EERE]

Upgrade California Drives Demand From Behind the Wheel Energy Upgrade California Drives Demand From Behind the Wheel Photo of a trailer with the Energy Upgrade California logo and...

67

Energy Demand (released in AEO2010)  

Reports and Publications (EIA)

Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

2010-01-01T23:59:59.000Z

68

Drivers of Future Energy Demand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee Draft Advice9DrillingDrive

69

Domestic Energy Partners | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1DeringDolgeville, New York: Energy Resources

70

Demand Control Utilizing Energy Management Systems - Report of Field Tests  

E-Print Network [OSTI]

Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

Russell, B. D.; Heller, R. P.; Perry, L. W.

1984-01-01T23:59:59.000Z

71

Global Climate Change and Demand for Energy  

E-Print Network [OSTI]

-CARES) Washington University in St. Louis #12;9 Jun ­ Jul ­ Aug Temperature Anomaly Distribution Frequency of air and water temperatures Losses of ice from Greenland and Antarctica Sea-level rise Energy demands 169 390 327 90 16 H2O, CO2, O3 Earth receives visible light from hot Sun and Earth radiates to space

Subramanian, Venkat

72

AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.  

E-Print Network [OSTI]

AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

Povinelli, Richard J.

73

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

for each day type for the demand response study - moderate8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderate

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

74

Demand-Side Management and Energy Efficiency Revisited  

E-Print Network [OSTI]

EPRI). 1984. Demand Side Management. Vol. 1:Overview of Key1993. Industrial Demand-Side Management Programs: WhatsJ. Kulick. 2004. Demand side management and energy e?ciency

Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

2007-01-01T23:59:59.000Z

75

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network [OSTI]

for Demand Response in a New Commercial Building in NewDemand Response and Energy Efficiency in Commercial Buildings.Demand Response Mary Ann Piette, Sila Kiliccote, and Girish Ghatikar Lawrence Berkeley National Laboratory Building

Piette, Mary Ann

2009-01-01T23:59:59.000Z

76

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

in significant energy and demand savings for refrigeratedbe modified to reduce energy demand during demand responsein refrigerated warehouse energy demand if they are not

Lekov, Alex

2009-01-01T23:59:59.000Z

77

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST Energy Demand 2008-2018 forecast supports the analysis and recommendations of the 2007 Integrated Energy Commission demand forecast models. Both the staff draft energy consumption and peak forecasts are slightly

78

Optimal Demand Response with Energy Storage Management  

E-Print Network [OSTI]

In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

Huang, Longbo; Ramchandran, Kannan

2012-01-01T23:59:59.000Z

79

Univariate Modeling and Forecasting of Monthly Energy Demand Time Series  

E-Print Network [OSTI]

Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural demand time series based only on data for six years to forecast the demand for the seventh year. Both networks, Neural networks, Modeling, Forecasting, Energy demand, Time series forecasting, Power system

Abdel-Aal, Radwan E.

80

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

services provided to the energy markets, Order 745 advancesin the wholesale energy market (both day-ahead and real-the capacity market is. The energy market does not feature

Shen, Bo

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Demand Response (transactional control) - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data FilesFeFe-HydrogenaseDemandEnergy Analysis

82

Examining Synergies between Energy Management and Demand Response: A Case Study at Two California Industrial Facilities  

E-Print Network [OSTI]

and Demand Response History Energy Management Activities o #and Demand Response History Energy Management Activities

Olsen, Daniel

2013-01-01T23:59:59.000Z

83

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

84

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

Vehicle Conventional and Alternative Fuel Response Simulatormodified to include alternative fuel demand scenarios (whichvehicle adoption and alternative fuel demand) later in the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

85

Modeling supermarket refrigeration energy use and demand  

SciTech Connect (OSTI)

A computer model has been developed that can predict the performance of supermarket refrigeration equipment to within 3% of field test measurements. The Supermarket Refrigeration Energy Use and Demand Model has been used to simulate currently available refrigerants R-12, R-502 and R-22, and is being further developed to address alternative refrigerants. This paper reports that the model is expected to be important in the design, selection and operation of cost-effective, high-efficiency refrigeration systems. It can profile the operation and performance of different types of compressors, condensors, refrigerants and display cases. It can also simulate the effects of store humidity and temperature on display cases; the efficiency of various floating head pressure setpoints, defrost alternatives and subcooling methods; the efficiency and amount of heat reclaim from refrigeration systems; and the influence of other variables such as store lighting and building design. It can also be used to evaluate operational strategies such as variable-speed drive or cylinder unloading for capacity control. Development of the model began in 1986 as part of a major effort, sponsored by the U.S. electric utility industry, to evaluate energy performance of then conventional single compressor and state-of-the-art multiplex refrigeration systems, and to characterize the contribution of a variety of technology enhancement features on system energy use and demand.

Blatt, M.H.; Khattar, M.K. (Electric Power Research Inst., Palo Alto, CA (US)); Walker, D.H. (Foster Miller Inc., Waltham, MA (US))

1991-07-01T23:59:59.000Z

86

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST forecast is the combined product of the hard work and expertise of numerous staff members in the Demand, and utilities. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption

87

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST forecast is the combined product of the hard work and expertise of numerous staff in the Demand Analysis. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data

88

Examining Synergies between Energy Management and Demand Response: A  

E-Print Network [OSTI]

LBNL-5719E Examining Synergies between Energy Management and Demand Response: A Case Study at Two Summary #12;Introduction Energy Management · · · · · · · · · · #12;Demand Response #12;#12;Bentley Prince-Project Personnel Changes #12;Enablement of Demand Response Capabilities due to Energy Management Improvement

89

Opportunities for Energy Efficiency and Demand Response in the California  

E-Print Network [OSTI]

LBNL-4849E Opportunities for Energy Efficiency and Demand Response in the California Cement in this report was coordinated by the Demand Response Research Center and funded by the California Energy. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry. PIER Industrial

90

Alberta's Energy Reserves 2007 and Supply/Demand Outlook  

E-Print Network [OSTI]

Alberta's Energy Reserves 2007 and Supply/Demand Outlook 2008-2017 0 ST98-2008 Energy Resources RESOURCES CONSERVATION BOARD ST98-2008: Alberta's Energy Reserves 2007 and Supply/Demand Outlook 2008: Reserves Andy Burrowes, Rick Marsh, Nehru Ramdin, and Curtis Evans; Supply/Demand and Economics

Laughlin, Robert B.

91

Pseudo dynamic transitional modeling of building heating energy demand using artificial neural network  

E-Print Network [OSTI]

R. Satake, Prediction of energy demands using neural networkof Building Heating Energy Demand Using Artificial Neuralknow energy flows and energy demand of the buildings for the

Paudel, Subodh; Elmtiri, Mohamed; Kling, Wil L; Corre, Olivier Le; Lacarriere, Bruno

2014-01-01T23:59:59.000Z

92

Energy and Security in Northeast Asia: Supply and Demand, Conflict and  

E-Print Network [OSTI]

favorable economically, energy demand, and particularly oil3 Energy Policies and Energy Demand in Northeastissue of whether rising energy demand generates new security

Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

1998-01-01T23:59:59.000Z

93

Smart Meter Aware Domestic Energy Trading Agents Nicola Capodieci  

E-Print Network [OSTI]

Smart Meter Aware Domestic Energy Trading Agents Nicola Capodieci University of Modena and RE illustrate an implementation includ- ing the interfacing with a physical Smart Meter and provide initial--Intelligent agents, Multiagent systems General Terms Design, Economy Keywords Energy trade, agents, smart meter 1

Aiello, Marco

94

Residential Energy Demand Reduction Analysis and Monitoring Platform...  

Broader source: Energy.gov (indexed) [DOE]

objective will be achieved by - Energy efficient home construction with roof- integrated PV system - Demand Side Management - Battery Energy Storage System Project schematic...

95

Coordination of Energy Efficiency and Demand Response: A Resource...  

Open Energy Info (EERE)

Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Coordination of Energy Efficiency and...

96

Smoothing the Energy Consumption: Peak Demand Reduction in Smart Grid  

E-Print Network [OSTI]

for autonomous demand side management within one house. The DRS devices are able to sense and control the peak energy consumption or demand. We assume that several appliances within one building access to oneSmoothing the Energy Consumption: Peak Demand Reduction in Smart Grid Shaojie Tang , Qiuyuan Huang

Li, Xiang-Yang

97

Trinity College Green Week 2012 Energy Competition Win a Domestic Energy Meter  

E-Print Network [OSTI]

Trinity College Green Week 2012 Energy Competition ­ Win a Domestic Energy Meter As part of College Green Week the "e3" programme and Director of Buildings Office is promoting an energy related would you like to win a domestic whole house energy meter as part of Trinity College Green Week 2012

O'Mahony, Donal E.

98

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

on the forecast of total energy demand. Based on this, weIndustrialization and Energy Demand Scenarios Nathaniel T.adjustment spurred energy demand for construction of new

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

99

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network [OSTI]

of Distributed Energy Resources and Demand Response underof Distributed Energy Resources and Demand Response underof Distributed Energy Resources and Demand Response under

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

100

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network [OSTI]

ABORATORY Japans Residential Energy Demand Outlook to 2030o r n i a Japans Residential Energy Demand Outlook to 2030residential sector, where energy demand has grown vigorously

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

in the presence of renewable resources and on the amount ofprimarily from renewable resources, and to a limited extentintegration of renewable resources and deferrable demand. We

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

102

Demand Response - Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

prices or when grid reliability is jeopardized. In regions with centrally organized wholesale electricity markets, demand response can help stabilize volatile electricity prices...

103

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

water heaters with embedded demand responsive controls can be designed to automatically provide day-ahead and real-time response

Goldman, Charles

2010-01-01T23:59:59.000Z

104

PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022  

E-Print Network [OSTI]

PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022 AUGUST 2011 CEC-200-2011-011-SD CALIFORNIA or adequacy of the information in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

105

UK Energy Research Centre Demand Reduction Theme, University of Oxford  

E-Print Network [OSTI]

UK Energy Research Centre Demand Reduction Theme, University of Oxford The Experience of Carbon Energy Research Centre ­ Demand Reduction Theme Environmental Change Institute Oxford University Centre for the Environment South Parks Road Oxford OX1 3QY www.eci.ox.ac.uk www.ukerc.ac.uk #12;UK Energy Research Centre 2 1

106

Agreement for Energy Conservation and Demand Side Management...  

Broader source: Energy.gov (indexed) [DOE]

agreement between a U.S. Federal agency and a utility company for the implementation of energy conservation measures (ECMs) and demand side management (DSM) services....

107

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network [OSTI]

Total Energy Source Demand Coal, Oil, Gas, Heat, ElectricityEnergy Source Demand per Household Coal, Oil, Gas, Heat,ton of oil equivalent Considerable increases in demand for

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

108

The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners  

E-Print Network [OSTI]

to inform projected energy and demand reductions in regionaldown to reflect energy and demand savings due to spillover (market and estimate the energy and demand savings associated

Vine, Edward

2007-01-01T23:59:59.000Z

109

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

Energy. Benefits of Demand Response in Electricity MarketsEnergy Efficiency and Demand Response?7 3.1.Demand Response in Commercial

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

110

A Successful Case Study of Small Business Energy Efficiency and Demand Response with Communicating Thermostats  

E-Print Network [OSTI]

to everyone at the Demand Response Research Center, theEnergy Efficiency and Demand Response with CommunicatingEnergy Efficiency and Demand Response with Communicating

Herter, Karen

2010-01-01T23:59:59.000Z

111

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network [OSTI]

Energy Resources and Demand Response under Uncertainty AfzalEnergy Resources and Demand Response under Uncertainty ?DER in conjunction with demand response (DR): the expected

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

112

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network [OSTI]

PA. 3. DEMAND RESPONSE IN COMMERCIAL BUILDINGS ElectricityDemand Response and Energy Efficiency in Commercial BuildingsDemand Response and Energy Efficiency in Commercial Buildings

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

113

Sandia National Laboratories: domestic energy sources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NRELdeep-water multiple-megawattdirector

114

The Economics of Energy (and Electricity) Demand  

E-Print Network [OSTI]

home to charge up at night. 12 The Tesla Roadster is an electric sport car prototype manufactured by Tesla Motors (http://www.teslamotors.com/). 13 This is based on there being around 25 million homes... 25 3.3.2 Electrification of personal transport New sources of electricity demand may emerge which substantially change the total demand for electricity and the way electricity is consumed by the household. The Tesla Roadster12 stores 53 k...

Platchkov, Laura M.; Pollitt, Michael G.

115

Domestic Uranium Production Report - Quarterly - Energy Information  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-1410.

116

Domestic Uranium Production Report - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683Diesel prices increase The

117

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

Scale Renewable Energy Integration . . . . . . . . . . .Impacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

118

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

energy scenarios to explore alternative energy pathways indo not include the alternative energy pathways (such asmodeling to investigate alternative energy supply strategies

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

119

ENERGY USE AND DOMESTIC HOT WATER CONSUMPTION Final Report  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6.DavidE-print NetworkUSE AND DOMESTIC HOT

120

Strategies for reducing energy demand in the materials sector  

E-Print Network [OSTI]

This research answers a key question - can the materials sector reduce its energy demand by 50% by 2050? Five primary materials of steel, cement, aluminum, paper, and plastic, contribute to 50% or more of the final energy ...

Sahni, Sahil

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)  

SciTech Connect (OSTI)

Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Majumdar, Arun

2008-07-29T23:59:59.000Z

122

Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)  

ScienceCinema (OSTI)

Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Majumdar, Arun

2011-04-28T23:59:59.000Z

123

Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful  

E-Print Network [OSTI]

Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful emissions, and minimizes the cost of providing energy to the campus. As a result of energy conservation initiatives that have been implemented over the past 20 years, growth in the average demand per

124

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

Programs Integrated Energy Audit Provide engineeringtechnicians performed energy audits and provided advice to8 PG&Es Integrated Energy Audit, a program for businesses

Goldman, Charles

2010-01-01T23:59:59.000Z

125

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

of locational renewable energy production in each renewableto total renewable energy production, although accountingproduction data from the 2006 data set of the National Renewable Energy

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

126

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

as marketing and outreach, energy audits, and installationPrograms Integrated Energy Audit Provide engineeringtechnicians performed energy audits and provided advice to

Goldman, Charles

2010-01-01T23:59:59.000Z

127

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

has for years used New York Energy $mart as the umbrellaevent days. The New York State Energy Research & DevelopmentEnergy Challenge). The New York State Energy Research and

Goldman, Charles

2010-01-01T23:59:59.000Z

128

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network [OSTI]

L ABORATORY Japans Residential Energy Demand Outlook tol i f o r n i a Japans Residential Energy Demand Outlook toParticularly in Japans residential sector, where energy

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

129

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

energy efficiency savings that are achieved through monitoring- based commissioning, as well as documenting best practicesEnergy Efficiency Alliance Sue Gander Director, Environment, Energy, and Natural Resources Division National Governors AssociationCenter for Best Practices

Goldman, Charles

2010-01-01T23:59:59.000Z

130

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

your Power. (2008). "Demand Response Programs." RetrievedS. (2008). Automated Demand Response Results from Multi-Yearusing Open Automated Demand Response, California Energy

Lekov, Alex

2009-01-01T23:59:59.000Z

131

The role of domestic energy choices in building social resilience  

E-Print Network [OSTI]

, Cambridge, UK. Heatwave 2003 #12;20041995 - THE DREAM OF CLIMATE-PROOF SELF SUFFICIIENT SOLAR HOUSES 60% of the buildings hot water needs Based in Forres, Morayshire The UK's oldest existing solar. #12;Opportunity: Solar energy availability & heat demands Tenement (four storeys) Comparison

Painter, Kevin

132

DemandDirect | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park,Dell Prairie,DeltaDemand

133

Energy Demand Modelling Introduction to the PhD project  

E-Print Network [OSTI]

Energy Demand Modelling Introduction to the PhD project Erika Zvingilaite Risø DTU System Analysis for optimization of energy systems Environmental effects Global externalities cost of CO2 Future scenarios for the Nordic energy systems 2010, 2020, 2030, 2040, 2050 (energy-production, consumption, emissions, net costs

134

Domestic Health Studies and Activities | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005Department ofDOEDisability Employment POCsTown HallServicesDomestic

135

Examining Synergies between Energy Management and Demand Response: A Case Study at Two California Industrial Facilities  

E-Print Network [OSTI]

Capabilities due to Energy Management Improvement inSummary Introduction Energy Management Demand Responseand Processes Energy Management and Demand Response History

Olsen, Daniel

2013-01-01T23:59:59.000Z

136

Opportunities for Energy Efficiency and Demand Response in the California Cement Industry  

E-Print Network [OSTI]

OpportunitiesforEnergy EfficiencyandDemandResponseinAgricultural/WaterEnd?UseEnergyEfficiencyProgram. i1 4.0 EnergyEfficiencyandDemandResponse

Olsen, Daniel

2012-01-01T23:59:59.000Z

137

Energy and Demand Savings from Implementation Costs in Industrial Facilities  

E-Print Network [OSTI]

1 ENERGY AND DEMAND SAVINGS FROM IMPLEMENTATION COSTS IN INDUSTRIAL FACILITIES 1 Razinha, J.A. and Heffington, W.M. Industrial Assessment Center and Mechanical Engineering Department Texas A&M University, College Station, Texas 77843.... noted that a direct calculation of cost savings from the implementation cost could eliminate as much as 30% of the preparation time (and associated cost) for the LoanSTAR reports. The savings result from not having to calculate energy or demand...

Razinha, J. A.; Heffington, W. M.

138

Solar in Demand | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment ofAnShare yourAof Energy

139

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

to ensure reliability. Capacity market programs: Customerswholesale, forward capacity markets offer new opportunitiesinto the forward-capacity market. Coordination of Energy

Goldman, Charles

2010-01-01T23:59:59.000Z

140

Demand Response - Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. DepartmenttoJuneEnergy This document

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Exhausting Battery Statistics Understanding the energy demands on mobile handsets  

E-Print Network [OSTI]

energy models and resources managers designed for laptops [20] and data cen- ters [4] inapplicableExhausting Battery Statistics Understanding the energy demands on mobile handsets Narseo Vallina.surname@telekom.de ABSTRACT Despite the advances in battery technologies, mobile phones still suffer from severe energy

Cambridge, University of

142

Retrofitting Existing Buildings for Demand Response & Energy Efficiency  

E-Print Network [OSTI]

partnership) · Plug loads, data centers ­ remainder (solution: WTR, WBM) Source: US Energy Information, higher "critical peak" energy charges will be assessed for usage between noon and 6pm. - CustomersRetrofitting Existing Buildings for Demand Response & Energy Efficiency www

California at Los Angeles, University of

143

Load Reduction, Demand Response and Energy Efficient Technologies and Strategies  

SciTech Connect (OSTI)

The Department of Energys (DOEs) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

2008-11-19T23:59:59.000Z

144

Distributed Automated Demand Response - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation oftheAmperometricEnergy Analysis Energy Analysis

145

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network [OSTI]

Net- Energy Buildings with Demand Response Michael Stadler,Net-Energy Buildings with Demand Response 1 Michael Stadlerbuilding simulation tools, e.g. , EnergyPlus, require specification of the demand response

Stadler, Michael

2009-01-01T23:59:59.000Z

146

Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response  

E-Print Network [OSTI]

Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response October 10, 2012 ENERGY EFFICIENCY PROGRAMS OVERVIEW ?Program rules and guidelines established by Public Utility Commission of Texas (PUCT) ?All Texas investor... to be administered by transmission-distribution utilities ?Programs are implemented by Energy Efficiency Services Providers and Retail Electric Providers 1 WHY DOES ONCOR DO SOLAR PV? ?Helps meet our energy efficiency goals ?Helps customers reduce...

Tyra, K.; Hanel, J.

2012-01-01T23:59:59.000Z

147

BPA, Energy Northwest launch demand response pilot  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperiment Rain drop

148

Measured energy savings and demand reduction from a reflective roof membrane on a large retail store in Austin  

E-Print Network [OSTI]

the abated annual energy and demand expenditures, simplea/c annual abated energy and demand expenditures and presentof future abated energy and demand expenditures is estimated

Konopacki, Steven J.; Akbari, Hashem

2001-01-01T23:59:59.000Z

149

Energy demand and indoor climate of a traditional low-energy building in a hot climate.  

E-Print Network [OSTI]

?? Energy demand in the built environment is quite important. China holds a large population and the energy use in the building sector is about (more)

Li, Ang

2009-01-01T23:59:59.000Z

150

A dynamic model of industrial energy demand in Kenya  

SciTech Connect (OSTI)

This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

Haji, S.H.H. [Gothenburg Univ. (Sweden)

1994-12-31T23:59:59.000Z

151

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network [OSTI]

s natural gas and electricity sectors within the timeframeto Californias electricity sector led to rolling blackoutsimpacts on the electricity sector is the hourly demand

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

152

Solar energy for domestic use in southern Brazil.  

E-Print Network [OSTI]

?? Almost all the domestic water in Brazil is heated with an electrical heater directly by the end consumer. A typical heater has an effect (more)

Hedenberg, Ola

2008-01-01T23:59:59.000Z

153

A study of industrial equipment energy use and demand control  

E-Print Network [OSTI]

Technologies. A battery storage system, capable of providing up to 5, 000 kW was installed (Hunt 1999). The batterics allow the plant's demand peaks to be lowcrcd by using energy stored in the batteries during off-peak periods to provide a portion...

Dooley, Edward Scott

2001-01-01T23:59:59.000Z

154

ENABLING ENERGY DEMAND RESPONSE WITH VEHICULAR MESH NETWORKS  

E-Print Network [OSTI]

ENABLING ENERGY DEMAND RESPONSE WITH VEHICULAR MESH NETWORKS Howard CheHao Chang1, Haining Du2 compared to their counterparts such as laptops in nomad computing or sensor networks. First, vehicles response (DR) [1] for automatic utility usage retrievals and price dispatching. DR is a project in- itiated

Chuah, Chen-Nee

155

An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network  

E-Print Network [OSTI]

An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network Sheetalkumar Doshi of an on-demand minimum energy routing protocol and suggests mechanisms for their imple- mentation. We of an on-demand minimum energy routing protocol in terms of energy savings with an existing on-demand ad

156

A Supply-Demand Model Based Scalable Energy Management System for Improved Energy  

E-Print Network [OSTI]

the dependency of an electronic system to primary energy sources (i.e. AC power or battery). For reliable energy generation and consumption parameters. The system uses economics inspired supply-demand modelA Supply-Demand Model Based Scalable Energy Management System for Improved Energy Utilization

Bhunia, Swarup

157

Tankless or Demand-Type Water Heaters | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type Water Heaters Tankless or Demand-Type Water

158

Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs  

E-Print Network [OSTI]

Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs Supervisory Committee Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management of Environmental Studies) Departmental Member For energy utilities faced with expanded jurisdictional energy

Victoria, University of

159

E-Print Network 3.0 - assessment demand-side energy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Demand Response (DR) and Energy Efficiency (EE... Collaborators: Jose M. Pinto, Praxair Inc., Danbury, CT Nikhil Arora, Praxair Inc., Tonawanda, NY 12;DemandSide......

160

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network [OSTI]

A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

Piette, Mary Ann

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network [OSTI]

that energy efficiency or energy intensity for a particularbased upon trends in energy intensity parameters which areBuilding type (12) Energy intensity Industrial Shipments

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

162

Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building  

E-Print Network [OSTI]

of Automated Demand Response in a Large Office Building, inBuilding Control Strategies and Techniques for Demand Response.Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

Dudley, Junqiao Han

2010-01-01T23:59:59.000Z

163

Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under  

E-Print Network [OSTI]

Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under Real-time Demand of appliance specific adapters. Designed and implemented GHS Modeled the demand-side energy management problem (NP-hard) Designed a scheduling algorithm for demand side energy management Showed that our

Boutaba, Raouf

164

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network [OSTI]

produce the greatest energy and demand savings. Aeration andand C.Y. Chang (2005). "Energy Demand in Sludge Dewatering."be modified to reduce energy demand during demand response

Lekov, Alex

2010-01-01T23:59:59.000Z

165

Development of a local carbon dioxide emissions inventory based on energy demand and waste production  

SciTech Connect (OSTI)

The paper describes the study that led to the development of a carbon dioxide emissions matrix for the Oeiras municipality, one of the largest Portuguese municipalities, located in the metropolitan area of Lisbon. This matrix takes into account the greenhouse gas (GHG) emissions due to an increase of electricity demand in buildings as well as solid and liquid wastes treatment from the domestic and services sectors. Using emission factors that were calculated from the relationship between the electricity produced and amount of treated wastes, the GHC emissions in the Oeiras municipality were estimated for a time series of 6 yr (1998 - 2003). The obtained results showed that the electricity sector accounts for approximately 75% of the municipal emissions in 2003. This study was developed to obtain tools to base options and actions to be undertaken by local authorities such as energy planning and also public information. 11 refs., 12 tabs.

Joao Gomes; Joana Nascimento; Helena Rodrigues [Instituto Superior de Engenharia de Lisboa, Lisboa (Portugal)

2007-09-15T23:59:59.000Z

166

Pseudo Dynamic Transitional Modeling of Building Heating Energy Demand Using Artificial1 Neural Network2  

E-Print Network [OSTI]

Transitional Modeling of Building Heating Energy Demand Using Artificial1 Neural Network2 Subodh Paudel a, it is39 essential to know energy flows and energy demand of the buildings for the control of heating and40 cooling energy production from plant systems. The energy demand of the building system, thus,41

Paris-Sud XI, Université de

167

Demand Response Resources for Energy and Ancillary Services (Presentation)  

SciTech Connect (OSTI)

Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating

Hummon, M.

2014-04-01T23:59:59.000Z

168

Demand Response Energy Consulting LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park,Dell Prairie,DeltaDemand Response

169

Tracking Progress Last updated 5/7/2014 Statewide Energy Demand 1  

E-Print Network [OSTI]

dollars) to $1.8 trillion in 2012 (2012 dollars). Forecast Electricity Demand Although the California Energy Commission's energy demand forecast includes multiple scenarios, the Energy Commission worked together1 to agree upon a single managed demand forecast that incorporates all energy efficiency

170

An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network  

E-Print Network [OSTI]

An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network Sheetalkumar Doshi the necessary features of an on-demand minimum energy routing protocol and suggests mechanisms the performance of an on-demand minimum energy routing protocol in terms of energy savings with an existing on

Brown, Timothy X.

171

STRENGTH AND ENERGY DEMANDS FROM THE AUGUST 1999 KOCAELI EARTHQUAKE GROUND MOTIONS  

E-Print Network [OSTI]

STRENGTH AND ENERGY DEMANDS FROM THE AUGUST 1999 KOCAELI EARTHQUAKE GROUND MOTIONS A. Sari 1 and L the demands placed on structures during earthquakes one might also employ an energy-based approach, especially such as absorbed energy (Chou and Uang, 2000) and input energy (Chapman, 1999). Understanding seismic demands

Manuel, Lance

172

Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption  

E-Print Network [OSTI]

Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption Scheduling distributed demand side energy management strategy requires each user to simply apply its best response-average ratio of the total energy demand, the total energy costs, as well as each user's individual daily

Mohsenian-Rad, Hamed

173

ECEEE 2005 SUMMER STUDY WHAT WORKS & WHO DELIVERS? 183 Local energy efficiency and demand-side  

E-Print Network [OSTI]

ECEEE 2005 SUMMER STUDY ­ WHAT WORKS & WHO DELIVERS? 183 1,202 Local energy efficiency and demand be the basis for local energy policies and energy efficiency/demand-side management activities1, have been) activities in 1. DSM: Demand-Side Management; EE: energy efficiency (here, does not include renewable

Paris-Sud XI, Université de

174

Cooling energy demand evaluation by means of regression models obtained from dynamic simulations  

E-Print Network [OSTI]

Cooling energy demand evaluation by means of regression models obtained from dynamic simulations Ph, Université Lyon1, FRANCE ABSTRACT The forecast of the energy heating/cooling demand would be a good indicator between simple and complex methods of evaluating the cooling energy demand we have proposed to use energy

Paris-Sud XI, Université de

175

Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York  

E-Print Network [OSTI]

of Fully Automated Demand Response in Large Facilities.for Energy Efficiency and Demand Response, Proceedings ofAuthority (NYSERDA), the Demand Response Research Center (

Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

2006-01-01T23:59:59.000Z

176

Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York  

E-Print Network [OSTI]

potential demand response in commercial buildings with EMCSbuildings for integrated energy efficiency and demand response (buildings provide an excellent resource for demand response.

Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

2006-01-01T23:59:59.000Z

177

A critical review of single fuel and interfuel substitution residential energy demand models  

E-Print Network [OSTI]

The overall purpose of this paper is to formulate a model of residential energy demand that adequately analyzes all aspects of residential consumer energy demand behavior and properly treats the penetration of new technologies, ...

Hartman, Raymond Steve

1978-01-01T23:59:59.000Z

178

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity  

E-Print Network [OSTI]

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

179

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

No.4 Japan's Long-term Energy Demand and Supply Scenario towe projected Japan's energy demand/supply and energy-relatedcrises (to cut primary energy demand per GDP ( T P E S / G D

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

180

Assumption to the Annual Energy Outlook 2014 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8U.S.NA NAOil and GasDemand

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

energy: Supply, Demand, and impacts CooRDinATinG LeAD AUThoR  

E-Print Network [OSTI]

240 chapter 12 energy: Supply, Demand, and impacts CooRDinATinG LeAD AUThoR Vincent C. Tidwell the potential to impact the production, demand, and delivery of energy in a number of ways. Chapter citation;energy: supply, demand, and impacts 241 · Delivery of electricity may become more vulnerable

Kammen, Daniel M.

182

CSEM WP 165R Demand-Side Management and Energy Efficiency  

E-Print Network [OSTI]

CSEM WP 165R Demand-Side Management and Energy Efficiency Revisited Maximilian Auffhammer, Carl, California 94720-5180 www.ucei.org #12;Demand-Side Management and Energy Efficiency Revisited Maximilian associated with energy efficiency demand side management (DSM) programs. This claim is based on point

Auffhammer, Maximilian

183

Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid  

E-Print Network [OSTI]

Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid Libin Jiang and Steven Low manages user load through real-time demand response and purchases balancing power on the spot market and demand response in the presence of uncertain renewable supply and time-correlated demand. The overall

Low, Steven H.

184

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"  

SciTech Connect (OSTI)

As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

2008-05-15T23:59:59.000Z

185

Reducing Energy Demand in Buildings Through State Energy Codes | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumpingStudy

186

EnergySolve Demand Response | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformation Contracts (ESPC) WebinarEnergyConnectEnergySolve

187

Estimating fare and expenditure elasticities of demand for air travel in the U.S. domestic market  

E-Print Network [OSTI]

.56, respectively). The latter interpretation should be taken with caution since the date of study completion does not mean that the data used are more recent. It is noteworthy to mention here that Brons et al. (2001) and Gillen et al. (2004) reach the same.... The literature reported a wide range of value (-0.04 to ?4.51) for estimated own-fare elasticity of air travel demand. Oum et al. (1992), Brons et al. (2001) and Gillen et al. (2004) attribute this wide range to many factors such as the availability...

Alwaked, Ahmad Abdelrahman Fahed

2007-04-25T23:59:59.000Z

188

Increasing primary energy and electricity demand. Persistent energy deficit situation.  

E-Print Network [OSTI]

greater commercial utilization of solar energy in India. · Determination of market acceptance for SLC (PV, T, and PV/T). · Design Solar Linear Concentrators to address market expectations in India) Grid connected (only 2MWp currently). Technical And Economic Potential Of Solar Linear Concentrators

189

39610 Energy Conversion & Supply (6) 39611 Energy Demand &Utilization (6)  

E-Print Network [OSTI]

. Energy & Environment (12) 19740 (24740) Combustion & Air Pollution Cntrl (12) 19612 Int. Life Cycle:20 12711 Adv. Project Management for Construction (12) 12742 Data Mining in Infrastructure (6) 12750 Infrastructure Systems (12) 12651/751 Air Quality Engr. (9/12) TR10:3011:50/NA 12740 Data Acq

McGaughey, Alan

190

39610 Energy Conversion & Supply (6) 39611 Energy Demand &Utilization (6)  

E-Print Network [OSTI]

() 19740 (24740) Comb. & Air Pollution Ctrl 19612 Int. Life Cycle Assessment (12) 19739 (18875) Econ& Engr Combustion & Air Pollution (12) 24642 Fuel Cell Systems (12)MW9:3011:20 24643 S.T. Electrochem. Energy Course (18) 12711 Adv. Project Management for Construction (12) 12742 Data Mining

McGaughey, Alan

191

Analysis of the influence of residential location on light passenger vehicle energy demand.  

E-Print Network [OSTI]

??New Zealand???s current urban environment assumes a constant availability and affordability of energy (oil) and as such the energy demand of private vehicles is rarely (more)

Williamson, Mark

2013-01-01T23:59:59.000Z

192

Demand Reduction  

Broader source: Energy.gov [DOE]

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

193

The Domestic Natural Gas Shortage in China.  

E-Print Network [OSTI]

?? This thesis analyzes the domestic shortage in the Chinese natural gas market. Both the domestic supply and demand of natural gas are growing fast (more)

Guo, Ting

2014-01-01T23:59:59.000Z

194

Demand-Side Load Scheduling Incentivized by Dynamic Energy Hadi Goudarzi, Safar Hatami, and Massoud Pedram  

E-Print Network [OSTI]

Demand-Side Load Scheduling Incentivized by Dynamic Energy Prices Hadi Goudarzi, Safar Hatami growth in electrical energy consumption under worst- case demand conditions [1]. To avoid expending 90089 {hgoudarz, shatami, pedram}@usc.edu Abstract--Demand response is an important part of the smart

Pedram, Massoud

195

Control and Optimization Meet the Smart Power Grid: Scheduling of Power Demands for Optimal Energy  

E-Print Network [OSTI]

Control and Optimization Meet the Smart Power Grid: Scheduling of Power Demands for Optimal Energy technologies to enforce sensible use of energy through effective demand load management. We envision a scenario con- sumer power demand requests with different power require- ments, durations, and deadlines

Koutsopoulos, Iordanis

196

Demand Response and Smart Metering Policy Actions Since the Energy...  

Broader source: Energy.gov (indexed) [DOE]

This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response...

197

Tankless or Demand-Type Water Heaters | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters May 2, 2012 - 6:47pm Addthis Diagram of a tankless water heater. Diagram of a tankless water heater. How...

198

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network [OSTI]

January 2008. Biography Mary Ann Piette is a Staff ScientistAutomated Demand Response Mary Ann Piette, Sila Kiliccote,

Piette, Mary Ann

2009-01-01T23:59:59.000Z

199

Reducing Energy Demand in Buildings Through State Energy Codes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof Energy Redefining9Codes

200

Energy Demands and Efficiency Strategies in Data Center Buildings  

SciTech Connect (OSTI)

Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature for office or residential buildings. Estimates using a material-balance model match well with empirical results, indicating that the dominant particle sources and losses -- ventilation and filtration -- have been characterized. Measurements taken at a data center using economizers show nearly an order of magnitude increase in particle concentration during economizer activity. However, even with the increase, themeasured particle concentrations are still below concentration limits recommended in most industry standards. The research proceeds by exploring the feasibility of using economizers in data centers while simultaneously controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at a data center using economizers and varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to the measurements when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration couldsignificantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in

Shehabi, Arman

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Driving change : evaluating strategies to control automotive energy demand growth in China  

E-Print Network [OSTI]

As the number of vehicles in China has relentlessly grown in the past decade, the energy demand, fuel demand and greenhouse gas emissions associated with these vehicles have kept pace. This thesis presents a model to project ...

Bonde kerlind, Ingrid Gudrun

2013-01-01T23:59:59.000Z

202

Proceedings of the Chinese-American symposium on energy markets and the future of energy demand  

SciTech Connect (OSTI)

The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

Meyers, S. (ed.)

1988-11-01T23:59:59.000Z

203

Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides a brief description of the Wind Energy Market and describes the U.S. Department of Energy's Wind Program research and development efforts.

Not Available

2012-10-01T23:59:59.000Z

204

Energy-Agile Laptops: Demand Response of Mobile Plug Loads Using Sensor/Actuator Networks  

E-Print Network [OSTI]

Energy-Agile Laptops: Demand Response of Mobile Plug Loads Using Sensor/Actuator Networks Nathan@me.berkeley.edu Abstract--This paper explores demand response techniques for managing mobile, distributed loads with on observed. Our first simulation study explores a classic demand response scenario in which a large number

Culler, David E.

205

Comfort demand leading the optimization to energy supply from the Smart Grid  

E-Print Network [OSTI]

). The control of loads in the building, may also be a resource to the grid using the flexibilities in service of the grid in Demand Side Management (DSM) scenarios as so called Demand Response (DR) or Load Control (LC). (Callaway and Hiskens 2011) However... of energy management, building management, and comfort management have to be developed to anticipate on the coming possible changes on Demand Side Management by Demand Response (DR) and Load Control (LC). This study is a first step towards...

Aduba,K.; Zeiler,W.; Boxem,G.

2014-01-01T23:59:59.000Z

206

PAN-on-Demand: Leveraging multiple radios to build self-organizing, energy-efficient PANs  

E-Print Network [OSTI]

, it adapts the network struc- ture to minimize energy usage. Our results show that PAN-on- Demand reducesPAN-on-Demand: Leveraging multiple radios to build self-organizing, energy-efficient PANs Manish- area network (PAN) that balances performance and energy con- cerns by scaling the structure

Flinn, Jason

207

Large-Scale Integration of Deferrable Demand and Renewable Energy Sources  

E-Print Network [OSTI]

1 Large-Scale Integration of Deferrable Demand and Renewable Energy Sources Anthony Papavasiliou. In order to accurately assess the impacts of renewable energy integration and demand response integration model for assessing the impacts of the large-scale integration of renewable energy sources

Oren, Shmuel S.

208

Generation Scheduling for Power Systems with Demand Response and a High Penetration of Wind Energy.  

E-Print Network [OSTI]

??With renewable energy sources and demand response programs expanding in many power systems, traditional unit commitment and economic dispatch approaches are inadequate. The power system (more)

Liu, Guodong

2014-01-01T23:59:59.000Z

209

Sustainable Energy Resources for Consumers (SERC)- On-Demand Tankless Water Heaters  

Broader source: Energy.gov [DOE]

This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters.

210

Program Strategies and Results for Californias Energy Efficiency and Demand Response Markets  

E-Print Network [OSTI]

Global Energy Partners provides a review of Californias strategic approach to energy efficiency and demand response implementation, with a focus on the industrial sector. The official role of the state, through the California Energy Commission (CEC...

Ehrhard, R.; Hamilton, G.

2008-01-01T23:59:59.000Z

211

Department of Energy Awards $338 Million to Accelerate Domestic Geothermal  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S.Development Projects |Reserve |EducationEnergy | Department

212

Model for Analysis of Energy Demand (MAED-2) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine:Energy Information23.Energy Demand (MAED-2)

213

Opportunities and Domestic Barriers to Clean Energy Investment in Chile |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: EnergyOpenBarter JumpOppenheim, New York: EnergyOpen

214

Montana Domestic Sewage Treatment Lagoons General Permit | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate Zone Subtype A. PlacesEnergyProgram

215

Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)  

Reports and Publications (EIA)

For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

2007-01-01T23:59:59.000Z

216

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network [OSTI]

Linking Continuous Energy Management and Open AutomatedKeywords: Continuous Energy Management, Automated Demandlinking continuous energy management and continuous

Piette, Mary Ann

2009-01-01T23:59:59.000Z

217

THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY PROFESSION  

E-Print Network [OSTI]

1 THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY, Iowa State University ABSTRACT There is a tremendous imbalance between engineering workforce demand and supply in the world in general, and in the US, in particular. The electric power and energy industry

218

COMBINING DIVERSE DATA SOURCES FOR CEDSS, AN AGENT-BASED MODEL OF DOMESTIC ENERGY DEMAND  

E-Print Network [OSTI]

the heating system, a cooker, refrigerator and washinghere are heating systems, cookers, cold appliances (heating systems, cookers, refrigerators, freezers, washing

Gotts, Nicholas Mark; Polhill, Gary; Craig, Tony; Galan-Diaz, Carlos

2014-01-01T23:59:59.000Z

219

Residential energy demand modeling and the NIECS data base : an evaluation  

E-Print Network [OSTI]

The purpose of this report is to evaluate the 1978-79 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance ...

Cowing, Thomas G.

1982-01-01T23:59:59.000Z

220

Impacts of Temperature Variation on Energy Demand in Buildings (released in AEO2005)  

Reports and Publications (EIA)

In the residential and commercial sectors, heating and cooling account for more than 40% of end-use energy demand. As a result, energy consumption in those sectors can vary significantly from year to year, depending on yearly average temperatures.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Economic development and the structure of the demand for commerial energy  

E-Print Network [OSTI]

To deepen the understanding of the relation between economic development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption in major economic sectors to per-capita GDP. Panel ...

Judson, Ruth A.

222

Economic development and the structure of the demand for commerial energy  

E-Print Network [OSTI]

To deepen understanding of the relation between economic development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption in major economic sectors to per-capita GDP. Panel ...

Judson, Ruth A.; Schmalensee, Richard.; Stoker, Thomas M.

223

1.0 INTRODUCTION As the world's demand for energy continues to grow, unconventional gas will  

E-Print Network [OSTI]

CHAPTER 1 1.0 INTRODUCTION As the world's demand for energy continues to grow, unconventional gas energy source in the world and plays host to a lot of natural gas resources. Between 3,500 and 9

224

Factors Influencing Water Heating Energy Use and Peak Demand in a Large Scale Residential Monitoring Study  

E-Print Network [OSTI]

, as well as obtain improved appliance energy consumption indexes and load profiles. A portion of the monitoring measures water heater energy use and demand in each home on a 15-minute basis....

Bouchelle, M. P.; Parker, D. S.; Anello, M. T.

2000-01-01T23:59:59.000Z

225

Electrical Energy Conservation and Peak Demand Reduction Potential for Buildings in Texas: Preliminary Results  

E-Print Network [OSTI]

This paper presents preliminary results of a study of electrical energy conservation and peak demand reduction potential for the building sector in Texas. Starting from 1980 building stocks and energy use characteristics, technical conservation...

Hunn, B. D.; Baughman, M. L.; Silver, S. C.; Rosenfeld, A. H.; Akbari, H.

1985-01-01T23:59:59.000Z

226

The Window Market in Texas: Opportunities for Energy Savings and Demand Reduction  

E-Print Network [OSTI]

The use of high performance windows represents a promising opportunity to reduce energy consumption and summer electrical demand in homes and commercial buildings in Texas and neighboring states. While low-e glass coatings and other energy...

Zarnikau, J.; Campbell, L.

2002-01-01T23:59:59.000Z

227

Domestic Hot Water Event Schedule Generator - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal Cycle ofDoDocuments forWHAT'S RIGHTEnergy

228

Effect of Increased Natural Gas Exports on Domestic Energy Markets  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr. Steven ChuEffect of Increased Natural Gas

229

Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy Supply  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N-Capture ofCaptureIndustrial Oily

230

Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy Supply  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N-Capture ofCaptureIndustrial OilyOil

231

Calculating Energy and Demand Retrofit Savings for Victoria High School: Interim Report  

E-Print Network [OSTI]

ESL-TR-92/12-03 Calculating Energy and Demand Retrofit Savings For Victoria High School Yue Liu, T. Agami Reddy, S. Katipamula and David E. Claridge. Interim Report Energy Systems Laboratory Texas A&M University College Station, TX 77843 December... 1992 Calculating Energy and Demand Retrofit Savings For Victoria High School Yue Liu, T. Agami Reddy, S. Katipamula and David E. Claridge. Interim Report Energy Systems Laboratory Texas A&M University College Station, TX 77843 December 1992 Abstract...

Liu, Y.; Reddy, T. A.; Katipamula, S.; Claridge, D. E.

1992-01-01T23:59:59.000Z

232

Control and Optimization Meet the Smart Power Grid - Scheduling of Power Demands for Optimal Energy Management  

E-Print Network [OSTI]

The smart power grid aims at harnessing information and communication technologies to enhance reliability and enforce sensible use of energy. Its realization is geared by the fundamental goal of effective management of demand load. In this work, we envision a scenario with real-time communication between the operator and consumers. The grid operator controller receives requests for power demands from consumers, with different power requirement, duration, and a deadline by which it is to be completed. The objective is to devise a power demand task scheduling policy that minimizes the grid operational cost over a time horizon. The operational cost is a convex function of instantaneous power consumption and reflects the fact that each additional unit of power needed to serve demands is more expensive as demand load increases.First, we study the off-line demand scheduling problem, where parameters are fixed and known. Next, we devise a stochastic model for the case when demands are generated continually and sched...

Koutsopoulos, Iordanis

2010-01-01T23:59:59.000Z

233

Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response  

E-Print Network [OSTI]

account demand response signals, building?integratedofAutomatedDemandResponseinCommercialBuildings. andDemandResponseinCommercial Buildings. ,LBNL

Piette, Mary Ann

2014-01-01T23:59:59.000Z

234

Retrofitting the domestic built environment: investigating household perspectives towards energy efficiency technologies and behaviour  

E-Print Network [OSTI]

]. Retrofitting homes is a complex task con- flated by multiple factors, ranging from pure economics to subjective psychology [Dixon & Eames, 2013; Institution of Mechanical Engineers, 2009; Kelly, 2009; Lior, 2010; Stafford et al., 2012]. Such complexity invites... cultural heritage research, and geo-technical soil surveying. Therefore, in order to delimit a more focused scope 3 1. Introduction of research, this thesis specifically investigated improving the uptake of energy ef- ficiency retrofits in the domestic...

Pelenur, Marcos

2014-03-04T23:59:59.000Z

235

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

11% oil, 6% coal, and traditional energy. A survey conductedand Renewable Energy Ministry of Coal Ministry of Commerce &in Figure 10, coal represents the largest energy product

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

236

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

10. Final and Primary Energy Consumption in the Industry35 Figure 16. Primary Energy Consumption byby end users while primary energy consumption includes final

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

237

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

U.S. DOE, 2006, Buildings Energy Data Book 2006, Septembersame period (US Buildings Energy Data Book). Over the next

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

238

A Full Demand Response Model in Co-Optimized Energy and  

SciTech Connect (OSTI)

It has been widely accepted that demand response will play an important role in reliable and economic operation of future power systems and electricity markets. Demand response can not only influence the prices in the energy market by demand shifting, but also participate in the reserve market. In this paper, we propose a full model of demand response in which demand flexibility is fully utilized by price responsive shiftable demand bids in energy market as well as spinning reserve bids in reserve market. A co-optimized day-ahead energy and spinning reserve market is proposed to minimize the expected net cost under all credible system states, i.e., expected total cost of operation minus total benefit of demand, and solved by mixed integer linear programming. Numerical simulation results on the IEEE Reliability Test System show effectiveness of this model. Compared to conventional demand shifting bids, the proposed full demand response model can further reduce committed capacity from generators, starting up and shutting down of units and the overall system operating costs.

Liu, Guodong [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

2014-01-01T23:59:59.000Z

239

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

SciTech Connect (OSTI)

This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

2009-05-11T23:59:59.000Z

240

Tankless Demand Water Heater Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 SpecialMaximizingResidential Buildings »Coil andDemand

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

U.S. Energy Information Administration (EIA)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Figure 10). The projected growth in energy imports is moderated by increased use of biofuels (much of which are produced domestically), demand reductions resulting from the...

242

Barriers to reducing energy demand in existing building stock -a perspective based on  

E-Print Network [OSTI]

Barriers to reducing energy demand in existing building stock - a perspective based on observation another radiator." #12;Typical End User Training #12;Demand Side Problem #12;Workman Mis(?)conceptions "If, interviews, probes, home inspections intervention - management committees, "message of the month", magazine

Carletta, Jean

243

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network [OSTI]

site location into energy-efficient design strategies. Theof IT and non-IT energy efficient design measures (Brown etcenter with an energy-efficient design. A closer evaluation

Shehabi, Arman

2010-01-01T23:59:59.000Z

244

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

an estimated total energy consumption of 19 GWh (0.07PJ),to 28% in 2005. Total energy consumption in 2020 in thecan have similar total energy consumption but produce very

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

245

Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)  

SciTech Connect (OSTI)

Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

Neubauer, J.; Simpson, M.

2013-10-01T23:59:59.000Z

246

Experts Meeting: Behavioral Economics as Applied to Energy Demand...  

U.S. Energy Information Administration (EIA) Indexed Site

- Maps out how to convert the intention to save energy with an actual plan to save energy: - Organizations interact with consumers in many ways in addition to pricing....

247

Lifestyle studies Market demand Usage patterns Funding: Calif. Energy Commission, BMW, Calif. ARB, ECOtality  

E-Print Network [OSTI]

as much energy as it consumes. When done in 2014, the 130-acre UC Davis West Village will be home to 3Consumers Lifestyle studies · Market demand · Usage patterns Funding: Calif. Energy Commission, BMW operation · Energy savings Funding: Chrysler, US Dept of Energy Lead researcher: Kevin Nesbitt, Ph

California at Davis, University of

248

June 10, 2013 Canada's energy future meeting demand AND the climate change challenge  

E-Print Network [OSTI]

MEDIA TIP June 10, 2013 Canada's energy future ­meeting demand AND the climate change challenge Energy and business reporters are welcome to attend a high-level energy experts' presentation and panel on "Seeking Common Ground on Canada's Energy Future" during the Pacific Institute for Climate Solutions (PICS

Pedersen, Tom

249

1.0 Motivation............................................................................................................2 1.1Overview of Energy Supply and Demand in the 21st  

E-Print Network [OSTI]

............................................................................................................2 1.1Overview of Energy Supply and Demand in the 21st Century..........................2 1.2 UK Energy ...................................................................................24 6.6 Correlation between Wind Strength and Demand for Electricity..................24 6

250

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Demand Side Strategies for Energy Efficiency in University of British Columbia  

E-Print Network [OSTI]

of a project/report". #12;DEMAND&SIDE)STRATEGIES)FOR)ENERGY)EFFICIENCY) INUBC Social Ecological Economic Development Studies (SEEDS) Student Report Demand Side Strategies for Energy Efficiency in University of British Columbia Residences Jennifer Clark, Nate Croft, Liam Fast

251

Potential For Energy, Peak Demand, and Water Savings in California Tomato Processing Facilities  

E-Print Network [OSTI]

of electrical energy in these plants will be shown. Results from potential electrical efficiency, demand response, and natural gas efficiency measures that have applications in tomato processing facilities will be presented. Additionally, water conservation...

Trueblood, A. J.; Wu, Y. Y.; Ganji, A. R.

2013-01-01T23:59:59.000Z

252

Deployment of Behind-The-Meter Energy Storage for Demand Charge...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment of Behind-The- Meter Energy Storage for Demand Charge Reduction J. Neubauer and M. Simpson Technical Report NRELTP-5400-63162 January 2015 NREL is a national laboratory...

253

Cooling Energy Demand Evaluation by Meansof Regression Models Obtained From Dynamic Simulations  

E-Print Network [OSTI]

The forecast of the energy heating/cooling demand would be a good indicator for the choice between different conception solutions according to the building characteristics and the local climate. A previous study (Catalina T. et al 2008...

Catalina, T.; Virgone, J.

2011-01-01T23:59:59.000Z

254

Three Case Studues of the Application of Energy Systems Optimization Best Prectices for Automatic Demand Response  

E-Print Network [OSTI]

This paper summarizes three case study buildings located in Austin, Texas that were selected for inclusion in a review of the demand reduction program of the utility company Austin Energy. The buildings studied include a city government office...

Shi, Y.; Guiberteau, K.; Yagua, C.; Watt, J.

2013-01-01T23:59:59.000Z

255

Conserving Energy with On-Demand Topology Management  

E-Print Network [OSTI]

@cs.uiuc.edu Abstract-- To reduce idle-time energy consumption, nodes in ad hoc networks can switch to a power-save mode], [4]. A common approach to idle- time energy conservation is to switch to a power-save mode where of potential energy savings from proactive and reactive approaches. We show that proactive approaches save

Kravets, Robin

256

The Impact of Neighbourhood Density on the Energy Demand of Passive Houses and on Potential Energy Sources from the Waste Flows and Solar Energy.  

E-Print Network [OSTI]

??This study demonstrates how the density of a neighbourhood affects its energy demand, metabolism (energy and material flows) and its ability to produce its own (more)

Stupka, Robert

2011-01-01T23:59:59.000Z

257

Energy-Efficient Reliable Paths for On-Demand Routing Protocols Tamer Nadeem, Suman Banerjee, Archan Misra, Ashok Agrawala  

E-Print Network [OSTI]

1 Energy-Efficient Reliable Paths for On-Demand Routing Protocols Tamer Nadeem, Suman Banerjee does not work for on-demand protocols and some additional mechanisms are needed to compute energy-efficient-Demand routing proto- col (AODV), and show how it can be enhanced to compute such energy-efficient reliable paths

Banerjee, Suman

258

EnergyEfficient Reliable Paths for OnDemand Routing Protocols Tamer Nadeem, Suman Banerjee, Archan Misra, Ashok Agrawala  

E-Print Network [OSTI]

1 EnergyEfficient Reliable Paths for OnDemand Routing Protocols Tamer Nadeem, Suman Banerjee does not work for ondemand protocols and some additional mechanisms are needed to compute energyefficientDemand routing proto col (AODV), and show how it can be enhanced to compute such energyefficient reliable paths

Banerjee, Suman

259

Design Considerations for an On-Demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network  

E-Print Network [OSTI]

1 Design Considerations for an On-Demand Minimum Energy Routing Protocol for a Wireless Ad Hoc- demand minimum energy routing protocol and suggests mechanisms for their implementation. We highlight of an 'energy aware' link cache for storing this information. We also compare the performance of an on-demand

Brown, Timothy X.

260

National Action Plan on Demand Response | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor U.S. Department 6 3 9 12 6 3

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy demand and conservation in Kenya: initial appraisal  

SciTech Connect (OSTI)

Ongoing research into the use and conservation of energy in Kenya is reported briefly. A partial accounting of energy use in Kenya is presented, and evidence that some energy conservation has been taking place is discussed. A fuller accounting for all commercial energy flows is both possible and desirable. The work presented should serve as a basis for further data collection and analysis in Kenya, and can be used as a model for similar efforts in other countries. The author intends to continue much of this energy accounting in Kenya in the latter half of 1980.

Schipper, L.

1980-03-01T23:59:59.000Z

262

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect (OSTI)

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

263

Web-based energy information systems for energy management and demand response in commercial buildings  

SciTech Connect (OSTI)

Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are discussed: Metering and Connectivity; Visualization and Analysis Features; Demand Response Features; and Remote Control Features. This report also describes the following technologies and the potential benefits of incorporating them into future EIS products: Benchmarking; Load Shape Analysis; Fault Detection and Diagnostics; and Savings Analysis.

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

2003-04-18T23:59:59.000Z

264

High Electric Demand Days: Clean Energy Strategies for Improving Air Quality  

Broader source: Energy.gov [DOE]

This presentation by Art Diem of the State and Local Capacity Building Branch in the U.S. Environmental Protection Agency was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

265

Generating Demand for Multifamily Building Upgrades | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy FreeportEnergyPrivacy Act GuidanceGenerating

266

Retail Demand Response in Southwest Power Pool | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department ofRequirementsEnergyJ u l yEnergyRetail

267

Agreement for Energy Conservation and Demand Side Management Services  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet,ProposedEnergySITINGDepartment

268

Demand Response - Policy: More Information | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. Department of Energy | December 2012 Table of

269

Environmental and Resource Economics Household Energy Demand in Urban China: Accounting for regional prices and rapid  

E-Print Network [OSTI]

Energy Demand in Urban China: Accounting for regional prices and rapid income change Article Type and changing demographics. We estimate income and price elasticities for these energy types using a two effects into account, we find that total energy is price-inelastic for all income groups. For individual

270

Comfort-Aware Home Energy Management Under Market-Based Demand-Response  

E-Print Network [OSTI]

pricing and consumption data in South Korea. Index Terms--smart grid, demand-response, energy management I-based pricing. In peak capping, each home is allocated an energy quota. In market-based pricing, the price-term viable way of regulating energy consumptions. We work with day-ahead market pricing in this paper

Boutaba, Raouf

271

A Multipath Energy-Aware On demand Source Routing Protocol for Mobile Ad-Hoc Networks  

E-Print Network [OSTI]

to re-establish broken routes. Thus, a considerable global energy gain can be achieved by minimizing. The choice of the primary route in MEA-DSR is conditioned by two factors: 1) the residual energy of nodesA Multipath Energy-Aware On demand Source Routing Protocol for Mobile Ad-Hoc Networks S. Chettibi

Boyer, Edmond

272

India Energy Outlook: End Use Demand in India to 2020  

SciTech Connect (OSTI)

Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

2009-03-30T23:59:59.000Z

273

An overview of energy supply and demand in China  

SciTech Connect (OSTI)

Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world`s largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China`s energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China`s energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

Liu, F.; Davis, W.B.; Levine, M.D.

1992-05-01T23:59:59.000Z

274

An overview of energy supply and demand in China  

SciTech Connect (OSTI)

Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world's largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China's energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China's energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

Liu, F.; Davis, W.B.; Levine, M.D.

1992-05-01T23:59:59.000Z

275

Draft Chapter 3: Demand-Side Resources | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S.7685 Vol. 76, No. 29DoingSRS-WD-2010-001 Revision 0

276

Assessment of Achievable Potential from Energy Efficiency and Demand  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior, Ontario: EnergyAskja Energy JumpGuide |

277

Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demands  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment of Energy Watch itEnergyOptimization

278

Hydrogen Demand and Resource Assessment Tool | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,isHydro orHydroelectricA)

279

Life-Cycle Energy Demand of Computational Logic:From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU  

E-Print Network [OSTI]

Boyd et al. : Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

Bol, David; Boyd, Sarah; Dornfeld, David

2011-01-01T23:59:59.000Z

280

Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU  

E-Print Network [OSTI]

Boyd et al. : Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

Bol, David; Boyd, Sarah; Dornfeld, David

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

SciTech Connect (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

282

Energy and Demand Savings from Implementation Costs in Industrial Facilities  

E-Print Network [OSTI]

Improve Lubrication Practices 0.91 4 na 3 na 0 24 16 487 Use Waste Heat from Hot Flue Gases to Preheat Combustion Air 0.29 483 na 2 0.31 449 25 11 464 Use Synthetic Lubricant 0.03 198 0.03 198 na 0 5 Table 3. National IAC... 2 25 11 Use Synthetic Lubricant 0.00 159 0.00 24 6 Table 4. Texas A&M University IAC Energy Conservation - Implementation Cost Correlations Rank No. TAMU Assessment Recommendation (AR) Total Energy Electrical Consumption Natural...

Razinha, J. A.; Heffington, W. M.

283

Behavioral Economics Applied to Energy Demand Analysis: A Foundation -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P.2.2 Beamline21BeckyEnergy

284

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network [OSTI]

an overview of the economic opportunities for demand responsive control technologies and strategies in commercial buildings. The economic opportunities focus on advanced controls from a building owners perspective. The secondary objective is to evaluate.... Table 1 outlines how DR fits into historical demand side management (DSM) concepts. Column three compares DR with energy efficiency and daily peak load management. The emphasis for DR is dynamic control and event driven building response...

Kiliccote, S.; Piette, M. A.

2005-01-01T23:59:59.000Z

285

U.S. Energy Demand, Offshore Oil Production and  

E-Print Network [OSTI]

that is outside of us. Instead, we are a part of a bigger system that comprises us and technology PE departments the Earth The resource size (current balance of a banking account) is mistakenly equated with the speed supply Energy flow-based solutions (wind turbines, photovoltaics, and biofuels) will require most radical

Patzek, Tadeusz W.

286

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network [OSTI]

best practices that could be applied to form the basis for demand responsebest practices that could be applicable in improving the energy efficiency and demand responsedemand response activities. The following case studies illustrate best practices

Lekov, Alex

2010-01-01T23:59:59.000Z

287

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network [OSTI]

best practices that could be applicable in improving the energy efficiency and demand responsebest practices that could be applied to form the basis for demand responsedemand response activities. The following case studies illustrate best practices

Lekov, Alex

2010-01-01T23:59:59.000Z

288

Energy Demand in China (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Price, Lynn

2011-06-08T23:59:59.000Z

289

Assisting Mexico in Developing Energy Supply and Demand Projections | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio EnergyInstituteFunding Jump to:

290

SmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Automation  

E-Print Network [OSTI]

solar panels)], for each time slot (say each hour) the DNO price policy defines an interval of energySmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Automation Enrico Tronci.prodanovic,jorn.gruber, barry.hayes}@imdea.org I. INTRODUCTION The SmartHG project [1], [2] has the goal of developing

Tronci, Enrico

291

Energy-efficiency and environmental policies & income supplements in the UK: Their evolution and distributional impact in relation to domestic energy bills  

E-Print Network [OSTI]

efficiency of houses; this research draws attention towards the need for definitive evidence on the ways in which energy suppliers charge policy costs from their domestic customers. This would facilitate in making the future policies more empirically grounded...

Chawla, Mallika; Pollitt, Michael G.

2012-12-14T23:59:59.000Z

292

Fabricate-on-Demand Vacuum Insulating Glazings | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department-5 METRIC SUMMARY FY 2015

293

Indianapolis Offers a Lesson on Driving Demand | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012Pathways toDayThe flier for

294

Assumption to the Annual Energy Outlook 2014 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8U.S.NA NA NA NADemand Module

295

Assumption to the Annual Energy Outlook 2014 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8U.S.NA NA NA

296

Assumption to the Annual Energy Outlook 2014 - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8U.S.NA NAOil and

297

Residential Energy Demand Reduction Analysis and Monitoring Platform - REDRAMP  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments onReply CommentsNext-GenerationDryerDramatic Peak

298

International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity GenerationIndustry

299

Light-Duty Vehicle Energy Demand, Demographics, and Travel Behavior  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 § ¨,43332EIA

300

Behavioral Economics Applied to Energy Demand Analysis: A Foundation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1Vulture SpatialBECOMEBehaviorBehavior

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Upgrade California Drives Demand From Behind the Wheel | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClick on the graphic to learn more the

302

Network-Driven Demand Side Management Website | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenter Jump to:2 Rules,NellisAntilles:

303

Regulation Services with Demand Response - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST3 AÇORIANONews Mediaexcitation-induced

304

Calculating Impacts of Energy Standards on Energy Demand in U.S. Buildings under Uncertainty with an Integrated Assessment Model: Technical Background Data  

SciTech Connect (OSTI)

This report presents data and assumptions employed in an application of PNNLs Global Change Assessment Model with a newly-developed Monte Carlo analysis capability. The model is used to analyze the impacts of more aggressive U.S. residential and commercial building-energy codes and equipment standards on energy consumption and energy service costs at the state level, explicitly recognizing uncertainty in technology effectiveness and cost, socioeconomics, presence or absence of carbon prices, and climate impacts on energy demand. The report provides a summary of how residential and commercial buildings are modeled, together with assumptions made for the distributions of statelevel population, Gross Domestic Product (GDP) per worker, efficiency and cost of residential and commercial energy equipment by end use, and efficiency and cost of residential and commercial building shells. The cost and performance of equipment and of building shells are reported separately for current building and equipment efficiency standards and for more aggressive standards. The report also details assumptions concerning future improvements brought about by projected trends in technology.

Scott, Michael J.; Daly, Don S.; Hathaway, John E.; Lansing, Carina S.; Liu, Ying; McJeon, Haewon C.; Moss, Richard H.; Patel, Pralit L.; Peterson, Marty J.; Rice, Jennie S.; Zhou, Yuyu

2014-12-06T23:59:59.000Z

305

Regional Differences in the Price-Elasticity of Demand for Energy  

SciTech Connect (OSTI)

At the request of the National Renewable Energy Laboratory (NREL), the RAND Corporation examined the relationship between energy demand and energy prices with the focus on whether the relationships between demand and price differ if these are examined at different levels of data resolution. In this case, RAND compares national, regional, state, and electric utility levels of data resolution. This study is intended as a first step in helping NREL understand the impact that spatial disaggregation of data can have on estimating the impacts of their programs. This report should be useful to analysts in NREL and other national laboratories, as well as to policy nationals at the national level. It may help them understand the complex relationships between demand and price and how these might vary across different locations in the United States.

Bernstein, M. A.; Griffin, J.

2006-02-01T23:59:59.000Z

306

Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)  

Reports and Publications (EIA)

Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

2007-01-01T23:59:59.000Z

307

U.S. energy policy during the 1990s  

E-Print Network [OSTI]

This essay discusses U.S. energy policy and the associated evolution of energy supply, energy demand, energy prices and the industrial organization of the domestic energy industries during the period 1991 through 2000. ...

Joskow, Paul L.

2001-01-01T23:59:59.000Z

308

Opportunities for Energy Efficiency and Demand Response in Corrugated Cardboard Manufacturing Facilities  

E-Print Network [OSTI]

OPPORTUNITIES FOR ENERGY EFFICIENCY AND DEMAND RESPONSE IN CORRUGATED CARDBOARD MANUFACTURING FACILITIES Sandra Chow BASE Energy, Inc.* San Francisco, CA 94103 Ahmad R. Ganji, Ph.D., P.E. San Francisco State University San Francisco, CA....6 Plant F 7 53,307 0.7 Plant G 14 294,544 0.3 Plant H 13 61,553 0.8 Plant I 9 28,945 1.1 Plant J 9 24,759 2.9 Plant K 12 124,854 0.8 Plant L 18 113,640 1.2 MAJOR OPPORTUNITIES IN DEMAND RESPONSE In recent years, due...

Chow, S.; Hackett, B.; Ganji, A. R.

2005-01-01T23:59:59.000Z

309

Demand Response and Open Automated Demand Response  

E-Print Network [OSTI]

LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

310

Methodology for Analyzing Energy and Demand Savings From Energy Services Performance Contract Using Short-Term Data  

E-Print Network [OSTI]

..iilJlf t '_:pUIltaD ? (e) (d) ? ? I I , , ., ? BJ ? AmmJl.thm:pIIILt1II:l ....iind?t.m'.m1R.Dl (,) (f) r ~ ~, ~I-----------'l,----------f .. AmmJl.thJII.:p1mt1ll:1 ., February 9, 2009 Energy Systems Laboratory 10 CONCLUSIONSCASE STUDIESMETHODOLOGY DEMAND SAVINGS...METHODOLOGY FOR ANALYZING ENERGY AND DEMAND SAVINGS FROM ENERGY SERVICES PERFORMANCE CONTRACT USING SHORT-TERM DATA Zi Liu, Jeff Haberl, Soolyeon Cho Energy Systems Laboratory Texas A&M University System College Station, TX 77843 Bobby...

Liu, Z.; Haberl, J. S.; Cho, S.; Lynn, B.; Cook, M.

2006-01-01T23:59:59.000Z

311

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices  

DOE Patents [OSTI]

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

2011-12-06T23:59:59.000Z

312

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices  

DOE Patents [OSTI]

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

2006-12-12T23:59:59.000Z

313

Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach  

SciTech Connect (OSTI)

This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to perform detailed hourly impact studies of building adaptation and mitigation strategies on energy use and electricity peak demand within the context of the entire grid and economy.

Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

2015-01-01T23:59:59.000Z

314

Calibration of an EnergyPlus Building Energy Model to Assess the Impact of Demand Response Measures  

E-Print Network [OSTI]

1 Karine Lavigne Simon Sansregret Ahmed DaoudLouis-Alexandre Leclaire CALIBRATION OF AN ENERGYPLUS BUILDING ENERGY MODEL TO ASSESS THE IMPACT OF DEMAND RESPONSE MEASURES ICEBO 2013, Montr?al Groupe ? Technologie2 ICEBO-2013 Contextualization... ICEBO-2013 Groupe ? Technologie Calibrated Results 22 ICEBO-2013 12 Groupe ? Technologie Conclusion 23 ICEBO-2013 > Calibrating model for a demand response objective : Challenging and High Effort > Capturing building and human erratic behaviour...

Lavigne, K.; Sansregret, S.; Daoud, A.; Leclair, L. A.

2013-01-01T23:59:59.000Z

315

Comparison of domestic olivine and European magnesite for electrically charged thermal energy storage  

SciTech Connect (OSTI)

Electrically charged thermal energy storage (TES) heaters employing high heat capacity ceramic refractories for sensible heat storage have been in use in Europe for several years. With these devices, low cost off-peak electrical energy is stored by heating a storage core composed of ceramic material to approximately 800/sup 0/C. During the peak period, no electrical energy is used as the building heating needs are supplied by extracting the stored energy from the core by forced air circulation. The recent increase in use of off-peak TES units in the U.S. has led to the search for a domestic supply of high heat capacity ceramic refractory material. North Carolina's extensive but underutilized supply of refractory grade olivine has been proposed as a source of storage material for these units. In this paper the suitability of North Carolina olivine for heat storage applications is assessed by comparing its thermal performance with that of European materials. Using the method of ASHRAE Standard 94.2, the thermal performance of two commercially available room-size TES units was determined experimentally with two different storage materials, North Carolina olivine and German magnesite. Comparisons are made and conclusions are drawn.

Laster, W.R.; Gay, B.M.; Palmour, H.; Schoenhals, R.J.

1982-01-01T23:59:59.000Z

316

Economic Development and the Structure of the Demand for Commercial Energy Ruth A. Judson, Richard Schmalensee and Thomas M. Stoker*  

E-Print Network [OSTI]

development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption in major economic sectors to per- capita GDP. Panel data covering up to 123 nations are employedEconomic Development and the Structure of the Demand for Commercial Energy Ruth A. Judson, Richard

317

DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program  

E-Print Network [OSTI]

DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program 4 operating hours for the lights in each room a. Assign a usage category to each room in all buildings (e electrical usage and savings in room by room spreadsheet d. Subtotal savings by building

Hofmann, Hans A.

318

DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program  

E-Print Network [OSTI]

DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program 4 Works Association Research Foundation (AwwaRF) and building demographics for savings calculations 4-retrofit; calculate savings in room by room spreadsheet 5. Pre-retrofit (Process water audit) ­ Walk buildings

Hofmann, Hans A.

319

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

to cut primary energy demand per GDP ( T P E S / G D P ) inhowever, primary energy supply per GDP decelerated a declineattention to primary energy supply per GDP, per capita GDP

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

320

Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction  

SciTech Connect (OSTI)

This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

Neubauer, J.; Simpson, M.

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Property:OpenEI/UtilityRate/FlatDemandMonth8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to:FlatDemandMonth8 Jump to:

322

Property:OpenEI/UtilityRate/FlatDemandMonth9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to:FlatDemandMonth8 Jump

323

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network [OSTI]

of Fully Automated Demand Response in Large FacilitiesNYSERDA) and the Demand Response Research Center (LLC Working Group 2 Demand Response Program Evaluation

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

324

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network [OSTI]

Fully Automated Demand Response Tests in Large Facilities.also provided through the Demand Response Research Center (of Fully Automated Demand Response in Large Facilities

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

325

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network [OSTI]

buildings. A demand-side management framework from buildingthe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

326

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

perspective, a demand-side management framework with threethe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

327

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

Demand Response in Commercial Buildings 3.1. Demand Response in Commercial Buildings ElectricityDemand Response: Understanding the DR potential in commercial buildings

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

328

Model documentation report: Industrial sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

NONE

1997-01-01T23:59:59.000Z

329

The domestic natural gas and oil initiative. Energy leadership in the world economy  

SciTech Connect (OSTI)

Two key overarching goals of this Initiative are enhancing the efficiency and competitiveness of U.S. industry and reducing the trends toward higher imports. These goals take into account new Federal policies that reflect economic needs, including economic growth, deficit reduction, job creation and security, and global competitiveness, as well as the need to preserve the environment, improve energy efficiency, and provide for national security. The success of this Initiative clearly requires coordinated strategies that range far beyond policies primarily directed at natural gas and oil supplies. Therefore, this Initiative proposes three major strategic activities: Strategic Activity 1 -- increase domestic natural gas and oil production and environmental protection by advancing and disseminating new exploration, production, and refining technologies; Strategic Activity 2 -- stimulate markets for natural gas and natural-gas-derived products, including their use as substitutes for imported oil where feasible; and Strategic Activity 3 -- ensure cost-effective environmental protection by streamlining and improving government communication, decision making, and regulation. Finally, the Initiative will reexamine the costs and benefits of increase oil imports through a broad new Department of Energy study. This study will form the basis for additional actions found to be warranted under the study.

Not Available

1993-12-01T23:59:59.000Z

330

False optimism for the hydrogen economy and the potential of biofuels and advanced energy storage to reduce domestic greenhouse gas emissions  

E-Print Network [OSTI]

Discussion of the general domestic energy situation addresses the motivations which underlie the push for an hydrogen energy economy. The validity of claims about such a hydrogen economy and the official DOE position ...

Foster, Rory, 1982-

2004-01-01T23:59:59.000Z

331

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

SciTech Connect (OSTI)

The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

2009-05-26T23:59:59.000Z

332

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

NONE

1998-01-01T23:59:59.000Z

333

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities  

E-Print Network [OSTI]

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options Neufville Professor of Engineering Systems Chair, ESD Education Committee #12;2 #12;3 Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities By Chia

de Weck, Olivier L.

334

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network [OSTI]

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

335

Model documentation report: Industrial sector demand module of the national energy modeling system  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1998-01-01T23:59:59.000Z

336

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network [OSTI]

driven building response. Demand Side Management Energybuildings. Table 1 outlines how DR fits into historical demand side management (

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

337

Projections up for total energy demand by IEA nations in 1990  

SciTech Connect (OSTI)

The author reviews the most recent IEA projections for energy demand to the year 2000 in IEA countries. These show that the expectations for 1990 are now higher than estimates made last year. Production of solid fuels is expected to increase from 814 million toe in 1983 to 1044 million toe in 1990 and 1345 million toe by 2000. Nearly all the increase is expected in the US, Canada and Australia.

Vielvoye, R.

1985-06-17T23:59:59.000Z

338

Property:OpenEI/UtilityRate/FixedDemandChargeMonth8 | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to: navigation,Information FixedDemandChargeMonth8

339

Property:OpenEI/UtilityRate/FlatDemandMonth4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to: navigation, search This

340

Property:OpenEI/UtilityRate/FlatDemandMonth5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to: navigation, search

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Property:OpenEI/UtilityRate/FlatDemandMonth6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to: navigation,

342

Property:OpenEI/UtilityRate/FlatDemandMonth7 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to:

343

Summary history of domestic uranium procurement under US Atomic Energy Commission contracts. Final report  

SciTech Connect (OSTI)

During the period 1947 through 1970, the Atomic Energy Commission (AEC) fostered the rapid development and expansion of the domestic uranium mining and milling industry by providing a market for uranium. Some thirty-two mills were constructed during that period to produce U/sub 3/O/sub 8/ concentrates for sale to the AEC. In addition, there were various pilot plants, concentrators, upgraders, heap leach, and solution mining facilities that operated during the period. The purpose of this report is to compile a short narrative history of the AEC's uranium concentrate procurement program and to describe briefly each of the operations that produced uranium for sale to the AEC. Contractual arrangements are described and data are given on quantities of U/sub 3/O/sub 8/ purchased and prices paid. Similar data are included for V/sub 2/O/sub 5/, where applicable. Mill and other plant operating data were also compiled from old AEC records. These latter data were provided by the companies, as a contractual requirement, during the period of operation under AEC contracts. Additionally, an effort was made to determine the present status of each facility by reference to other recently published reports. No sites were visited nor were the individual reports reviewed by the companies, many of which no longer exist. The authors relied almost entirely on published information for descriptions of facilities and milling processes utilized.

Albrethsen, H. Jr.; McGinley, F.E.

1982-09-01T23:59:59.000Z

344

A Multipath Energy-Aware On demand Source Routing Protocol for Mobile Ad-Hoc Networks  

E-Print Network [OSTI]

Energy consumption is the most challenging issue in routing protocol design for mobile ad-hoc networks (MANETs), since mobile nodes are battery powered. Furthermore, replacing or recharging batteries is often impossible in critical environments such as in military or rescue missions. In a MANET, the energy depletion of a node does not affect the node itself only, but the overall network lifetime. In this paper, we present multipath and energy-aware on demand source routing (MEA-DSR) protocol, which exploits route diversity and information about batteries-energy levels for balancing energy consumption between mobile nodes. Simulation results, have shown that MEA-DSR protocol is more energy efficient than DSR in almost mobility scenarios.

Chettibi, Saloua

2009-01-01T23:59:59.000Z

345

The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market  

SciTech Connect (OSTI)

This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

Baek, Young Sun [ORNL; Hadley, Stanton W [ORNL

2012-01-01T23:59:59.000Z

346

Local government involvement in long term resource planning for community energy systems. Demand side management  

SciTech Connect (OSTI)

A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

Not Available

1992-03-01T23:59:59.000Z

347

Property:OpenEI/UtilityRate/DemandWindow | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms JumpEnergyDemandWindow Jump to: navigation,

348

Property:OpenEI/UtilityRate/EnableDemandCharge | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms JumpEnergyDemandWindow Jump to:

349

Centre on Innovation and Energy Demand The UK's climate goals are ambitious and challenging. Achieving an 80% reduction in GHG emissions  

E-Print Network [OSTI]

Centre on Innovation and Energy Demand The UK's climate goals are ambitious and challenging demand. While many low-energy innovations represent relatively incremental changes to existing on energy demand and carbon emissions; and to provide practical recommendations for UK energy and climate

Jensen, Max

350

Model documentation report: Residential sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

NONE

1995-03-01T23:59:59.000Z

351

2013 Domestic Uranium Production Report  

E-Print Network [OSTI]

Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA.S. Energy Information Administration | 2013 Domestic Uranium Production Report iii Preface The U.S. Energy://www.eia.doe.gov/glossary/. #12;U.S. Energy Information Administration | 2013 Domestic Uranium Production Report iv Contents

352

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

Japans 2007 primary plastics demand of 107.95 kilograms perChina reaches a lower plastic demand level of 75 kilogramsper capita primary plastics demand was used to estimate per

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

353

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network [OSTI]

and individuals. DEMAND RESPONSE BUILDINGS RESEARCH Recentand event driven building response. Demand Side ManagementDemand Response does not involve human intervention, but is initiated at a home, building,

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

354

Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response  

E-Print Network [OSTI]

As we developlow?energybuildings,theneedformodelsBuilding Energy Information and Control Systems for Low-Building Energy Information and Control Systems for Low

Piette, Mary Ann

2014-01-01T23:59:59.000Z

355

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

Best Practices. Kiliccote, S. (2008). Automated Demand Responsebest operation practices and behaviors to enhance the impact of DR activities. 1.0 Introduction Background and Overview Demand Response (

Lekov, Alex

2009-01-01T23:59:59.000Z

356

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

SciTech Connect (OSTI)

This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

2009-04-01T23:59:59.000Z

357

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

SciTech Connect (OSTI)

We take the perspective of a microgrid that has installed distribution energy resources (DER) in the form of distributed generation with combined heat and power applications. Given uncertain electricity and fuel prices, the microgrid minimizes its expected annual energy bill for various capacity sizes. In almost all cases, there is an economic and environmental advantage to using DER in conjunction with demand response (DR): the expected annualized energy bill is reduced by 9percent while CO2 emissions decline by 25percent. Furthermore, the microgrid's risk is diminished as DER may be deployed depending on prevailing market conditions and local demand. In order to test a policy measure that would place a weight on CO2 emissions, we use a multi-criteria objective function that minimizes a weighted average of expected costs and emissions. We find that greater emphasis on CO2 emissions has a beneficial environmental impact only if DR is available and enough reserve generation capacity exists. Finally, greater uncertainty results in higher expected costs and risk exposure, the effects of which may be mitigated by selecting a larger capacity.

Siddiqui, Afzal; Stadler, Michael; Marnay, Chris; Lai, Judy

2010-06-01T23:59:59.000Z

358

Opportunities for Energy Efficiency and Demand Response in the California Cement Industry  

SciTech Connect (OSTI)

This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

2010-12-22T23:59:59.000Z

359

Property:OpenEI/UtilityRate/DemandChargePeriod2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump to:DemandChargePeriod2 Jump

360

Property:OpenEI/UtilityRate/DemandChargePeriod2FAdj | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump to:DemandChargePeriod2

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Property:OpenEI/UtilityRate/DemandChargePeriod4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: Demand Charge Period 4

362

Property:OpenEI/UtilityRate/DemandChargePeriod4FAdj | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: Demand Charge Period

363

Property:OpenEI/UtilityRate/DemandChargePeriod5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: Demand Charge

364

Property:OpenEI/UtilityRate/DemandChargePeriod5FAdj | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: Demand

365

Property:OpenEI/UtilityRate/DemandChargePeriod6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber. Name:

366

Property:OpenEI/UtilityRate/DemandChargePeriod6FAdj | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.

367

Property:OpenEI/UtilityRate/DemandChargePeriod7 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.This is a

368

Property:OpenEI/UtilityRate/DemandChargePeriod7FAdj | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.This is

369

Property:OpenEI/UtilityRate/DemandChargePeriod8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.This is

370

Property:OpenEI/UtilityRate/DemandChargePeriod8FAdj | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.This

371

Property:OpenEI/UtilityRate/DemandChargePeriod9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.This

372

Property:OpenEI/UtilityRate/FlatDemandMonth3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to: navigation, search This is

373

Economic development and the structure of the demand for commercial energy  

SciTech Connect (OSTI)

To deepen understanding of the relation between economic development and energy demand, this study estimates the relations between per-capita GDP and per-capita energy consumption in major economic sectors. Panel data covering up to 123 nations are employed, and measurement problems are treated both in dataset construction and in estimation. Time and country fixed effects are assumed, and flexible forms for income effects are employed. There are substantial differences among sectors in the structure of country, time, and income effects. In particular, the household sector's share of aggregate energy consumption tends to fall with income, the share of transportation tends to rise, and the share of industry follows an inverse-U pattern.

Judson, R.A.; Schmalensee, R.; Stoker, T.M.

1999-07-01T23:59:59.000Z

374

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1995-02-01T23:59:59.000Z

375

World population growth, industrialization, energy demand, and environmental goals are presently driving rapid global change in emissions with complex conse-  

E-Print Network [OSTI]

395 World population growth, industrialization, energy demand, and environmental goals the average transport time is 2­3 weeks (Liu and Mauzerall 2005). Circumpolar trans- port of pollution around

Mauzerall, Denise

376

World population growth, industrialization, energy demand, and environmental goals are presently driving rapid global change in emissions with complex conse-  

E-Print Network [OSTI]

377 World population growth, industrialization, energy demand, and environmental goals the average transport time is 2­3 weeks (Liu and Mauzerall 2005). Circumpolar trans- port of pollution around

Mauzerall, Denise

377

Study of Energy and Demand Savings on a High Efficiency Hydraulic Pump System with Infinite Turn Down Technology (ITDT)  

E-Print Network [OSTI]

Detailed field measurement and verification of electrical energy (kWh) and demand (kW) savings is conducted on an injection molding machine used in typical plastic manufacturing facility retrofitted with a high efficiency hydraulic pump system...

Sfeir, R. A.; Kanungo, A.; Liou, S.

2005-01-01T23:59:59.000Z

378

Rails Beyond Coal The Impacts of "New Energy" & the Dawning of the Domestic Intermodal Age  

E-Print Network [OSTI]

Potential 5 Secular stories (in order).... · 1-Intermodal ­ International and now Domestic · 2 ­Shale/Oil/International Shale/oil Agricultural products Export Coal Chemicals! Industrial-Products/ Metals @GDP;Shale · Frac Sand, brine & water, pipe and aggregates inbound · In cases of Oil, "Rolling Pipelines" out

Bustamante, Fabián E.

379

International Energy Agency (IEA) Task 40 Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2010 for the United States  

SciTech Connect (OSTI)

This report updates the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

2011-12-01T23:59:59.000Z

380

International Energy Agency (IEA) Task 40 Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2009 for the United States  

SciTech Connect (OSTI)

This report outlines the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

China's Building Energy Demand: Long-Term Implications from a Detailed Assessment  

SciTech Connect (OSTI)

We present here a detailed, service-based model of Chinas building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of Chinas building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how Chinas building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that Chinas building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

2012-10-01T23:59:59.000Z

382

Domestic Titus  

E-Print Network [OSTI]

Critical examinations of William Shakespeares Titus Andronicus almost always occlude questions of the domestic. Yet, a major portion of the plays action takes place in a house and the methods of the characters revenge can be construed as domestic...

Brinkman, Ashley Marie

2009-05-15T23:59:59.000Z

383

A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making  

SciTech Connect (OSTI)

Highlights: We developed a methodology useful to environmentally compare industrial waste management options. The methodology uses a Net Energy Demand indicator which is life cycle based. The method was simplified to be widely used, thus avoiding cost driven decisions. This methodology is useful for governments to promote the best environmental options. This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

Puig, Rita, E-mail: rita.puig@eei.upc.edu [Escola dEnginyeria dIgualada (EEI), Universitat Politcnica de Catalunya (UPC), Plaa del Rei, 15, 08700 Igualada (Spain); Fullana-i-Palmer, Pere [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comer Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain); Baquero, Grau; Riba, Jordi-Roger [Escola dEnginyeria dIgualada (EEI), Universitat Politcnica de Catalunya (UPC), Plaa del Rei, 15, 08700 Igualada (Spain); Bala, Alba [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comer Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain)

2013-12-15T23:59:59.000Z

384

Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand for deployment of autonomous  

E-Print Network [OSTI]

Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand wind energy harvesting is presented, with a focus on an anemometer-based solution. By utilizing for localized, independent energy harvesting capabilities for each node. In this paper, a method of remote area

385

IMPACT Vol. 5 No. 1 | Spring 2010 CLeAn eneRGy DeMAnDS  

E-Print Network [OSTI]

IMPACT Vol. 5 No. 1 | Spring 2010 CLeAn eneRGy DeMAnDS: SCienCe, innovATion, PUBLiC PoLiCy Maryland on foreign oil and become the world leader in tomorrow's clean-energy economy," says Steve Fetter, a former researchers shape the new energy economy #12;impact overview impact overview EnErgy rEsEarcH EnErgy r

Hill, Wendell T.

386

Journal of Artificial Intelligence Research 50 (2014) 885-922 Submitted 4/14; published 8/14 Demand Side Energy Management via Multiagent Coordination in  

E-Print Network [OSTI]

Abstract A key challenge in creating a sustainable and energy-efficient society is to make consumer demand propose a novel multiagent coordination algorithm, to shape the energy demand of the cooperativeJournal of Artificial Intelligence Research 50 (2014) 885-922 Submitted 4/14; published 8/14 Demand

Sadeh, Norman M.

387

Residential-energy-demand modeling and the NIECS data base: an evaluation  

SciTech Connect (OSTI)

The purpose of this report is to evaluate the 1978-1979 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance choice and utilization decisions. The NIECS contains detailed energy usage information at the household level for 4081 households during the April 1978 to March 1979 period. Among the data included are information on the structural and thermal characteristics of the housing unit, demographic characteristics of the household, fuel usage, appliance characteristics, and actual energy consumption. The survey covers the four primary residential fuels-electricity, natural gas, fuel oil, and liquefied petroleum gas - and includes detailed information on recent household conservation and retrofit activities. Section II contains brief descriptions of the major components of the NIECS data set. Discussions are included on the sample frame and the imputation procedures used in NIECS. There are also two extensive tables, giving detailed statistical and other information on most of the non-vehicle NIECS variables. Section III contains an assessment of the NIECS data, focusing on four areas: measurement error, sample design, imputation problems, and additional data needed to estimate appliance choice/use models. Section IV summarizes and concludes the report.

Cowing, T.G.; Dubin, J.A.; McFadden, D.

1982-01-01T23:59:59.000Z

388

Energy and Security in Northeast Asia: Supply and Demand, Conflict and  

E-Print Network [OSTI]

increased to 18 percent, nuclear power's to 15 percent, andgovernment is promoting nuclear power to meet the demand for

Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

1998-01-01T23:59:59.000Z

389

Abstract --Due to the potentially large number of Distributed Energy Resources (DERs) demand response, distributed  

E-Print Network [OSTI]

to accurately estimate the transients caused by demand response is especially important to analyze the stability of the system under different demand response strategies, where dynamics on time scales of seconds to minutes demand response. The aggregated model efficiently includes statistical information of the population

Zhang, Wei

390

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearchDEMAND Freight

391

Big Problems. Big Results. Energy demands, environmental impacts, and national security are some of America's toughest challenges.  

E-Print Network [OSTI]

Big Problems. Big Results. Energy demands, environmental impacts, and national security are some-leading expertise in subsurface science is reducing the environmental impacts of human activ- ities. Environmental to size. EMSL, the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy national

392

The Impact of CO2-Based Demand-Controlled Ventilation on Energy Consumptions for Air Source Heat Pumps in Schools  

E-Print Network [OSTI]

There have been increasingly growing concerns for many years over the quality of the air inside buildings and the associated energy use. The CO2-based demand-controlled ventilation DCV offers a great opportunity to reduce energy consumption in HVAC...

AlRaees, N.; Nassif, N.

2013-01-01T23:59:59.000Z

393

A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic  

E-Print Network [OSTI]

) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time developed as a sustainable energy technology, as they can directly produce electricity from wastewater

394

A Unit Commitment Model with Demand Response for the Integration of Renewable Energies  

E-Print Network [OSTI]

The output of renewable energy fluctuates significantly depending on weather conditions. We develop a unit commitment model to analyze requirements of the forecast output and its error for renewable energies. Our model obtains the time series for the operational state of thermal power plants that would maximize the profits of an electric power utility by taking into account both the forecast of output its error for renewable energies and the demand response of consumers. We consider a power system consisting of thermal power plants, photovoltaic systems (PV), and wind farms and analyze the effect of the forecast error on the operation cost and reserves. We confirm that the operation cost was increases with the forecast error. The effect of a sudden decrease in wind power is also analyzed. More thermal power plants need to be operated to generate power to absorb this sudden decrease in wind power. The increase in the number of operating thermal power plants within a short period does not affect the total opera...

Ikeda, Yuichi; Kataoka, Kazuto; Ogimoto, Kazuhiko

2011-01-01T23:59:59.000Z

395

The worldwide demand for green energy systems is evident. In this context, wind energy converters will play a paramount role. Extending the service life of a  

E-Print Network [OSTI]

ABSTRACT The worldwide demand for green energy systems is evident. In this context, wind energy converters will play a paramount role. Extending the service life of a wind energy converter translates and operation of the wind energy converters make it beneficial to know the structural condition

Stanford University

396

Table 22. Domestic Crude Oil First Purchase Prices for Selected...  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-182, "Domestic Crude Oil First Purchase Report." 22. Domestic Crude Oil First Purchase Prices for Selected Crude Streams 44 Energy Information Administration...

397

The addition of a US Rare Earth Element (REE) supply-demand model improves the characterization and scope of the United States Department of Energy's effort to forecast US REE Supply and Demand  

E-Print Network [OSTI]

This paper presents the development of a new US Rare Earth Element (REE) Supply-Demand Model for the explicit forecast of US REE supply and demand in the 2010 to 2025 time period. In the 2010 Department of Energy (DOE) ...

Mancco, Richard

2012-01-01T23:59:59.000Z

398

Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards  

SciTech Connect (OSTI)

In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

2010-04-08T23:59:59.000Z

399

Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes  

SciTech Connect (OSTI)

High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

Hun, Diana E [ORNL; Jackson, Mark C [University of Texas at Austin; Shrestha, Som S [ORNL

2014-01-01T23:59:59.000Z

400

An Energy-Aware On-Demand Routing Protocol for Ad-Hoc Wireless Networks  

E-Print Network [OSTI]

An ad-hoc wireless network is a collection of nodes that come together to dynamically create a network, with no fixed infrastructure or centralized administration. An ad-hoc network is characterized by energy constrained nodes, bandwidth constrained links and dynamic topology. With the growing use of wireless networks (including ad-hoc networks) for real-time applications, such as voice, video, and real-time data, the need for Quality of Service (QoS) guarantees in terms of delay, bandwidth, and packet loss is becoming increasingly important. Providing QoS in ad-hoc networks is a challenging task because of dynamic nature of network topology and imprecise state information. Hence, it is important to have a dynamic routing protocol with fast re-routing capability, which also provides stable route during the life-time of the flows. In this thesis, we have proposed a novel, energy aware, stable routing protocol named, Stability-based QoS-capable Ad-hoc On-demand Distance Vector (SQ-AODV), which is an enhancement...

Veerayya, Mallapur

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

402

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

403

Evaluation of design options for improving the energy efficiency of an environmentally safe domestic refrigerator-freezer  

SciTech Connect (OSTI)

In order to reduce greenhouse emissions from power plants and respond to regulatory actions arising from the National Appliance Energy Conservation Act (NAECA), several design options were investigated for improving the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such as improved cabinet insulation and high-efficiency compressor and fans, were incorporated into a prototype refrigerator-freezer cabinet and refrigeration system to produce a unit that is superior from an environmental viewpoint due to its lower energy consumption and the use of refrigerant HFC-134a as a replacement for CFC-12. Baseline energy performance of the original 1993 production refrigerator-freezer, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. A detailed refrigerator system computer model was used to evaluate the energy savings for several design modifications that, collectively, could achieve a targeted energy consumption of 1.00 kWh/d for a 20 ft{sup 3} (570 l) top-mount, automatic-defrost, refrigerator-freezer. The energy consumption goal represents a 50% reduction in the 1993 NAECA standard for units of this size. Following the modeling simulation, laboratory prototypes were fabricated and tested to experimentally verify the analytical results and aid in improving the model in those areas where discrepancies occurred. While the 1.00 kWh/d goal was not achieved with the modifications, a substantial energy efficiency improvement of 22% (1.41 kWh/d) was demonstrated using near-term technologies. It is noted that each improvement exacts a penalty in terms of increased cost or system complexity/reliability. Further work on this project will analyze cost-effectiveness of the design changes and investigate alternative, more-elaborate, refrigeration system changes to further reduce energy consumption.

Vineyard, E.A.; Sand, J.R. [Oak Ridge National Lab., TN (United States); Bohman, R.H.

1995-03-01T23:59:59.000Z

404

PURDUE UNIVERSITY LEADERSHIP IN ENERGY RESEARCH Recognizing the grand-challenge problems of global energy demands with evidence of climate change  

E-Print Network [OSTI]

PURDUE UNIVERSITY LEADERSHIP IN ENERGY RESEARCH Recognizing the grand-challenge problems of global of energy including fossil fuels, nuclear, solar, wind and bioenergy. The activities incorporate socio energy demands with evidence of climate change and broader environmental impacts, Purdue is building

405

The Impact of Technological Change and Lifestyles on the Energy Demand  

E-Print Network [OSTI]

demand into a model of total private consumption. Private consumption is determined by economic variables of technological and socio- demographic variables on the demand for gasoline/diesel, heating and electricity. Key, households' electricity and heat consumption are growing rapidly despite of technological progress

Steininger, Karl W.

406

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network [OSTI]

A demand-side management framework from building operationsdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This paper summarizes the integration of DR in demand-side management

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

407

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

a building operations perspective, a demand-side managementdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This report summarizes the integration of DR in demand-side management

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

408

The increasing world energy demand, depletion and unequal distribution of fossil resources, and the dangers caused by climate change are the driving forces for the  

E-Print Network [OSTI]

Summary Summary The increasing world energy demand, depletion and unequal distribution of fossil demand, many nations have established new regimes on renewable energy. For instance, the European of alternative energy sources. In view of the GHG emission reduction target agreed upon in the Kyoto protocol

van den Brink, Jeroen

409

Field Verification of Energy and Demand Savings of Two Injection Molding Machines Retrofitted with Variable Frequency Drives  

E-Print Network [OSTI]

Detailed field measurements of energy consumption (kWh) and demand (kW) are conducted on two injection molding machines (IMMs) used in a typical plastic manufacturing facility in the San Francisco Bay Area, with/without Variable Frequency Drives...

Liou, S. P.; Aguiar, D.

410

E-Print Network 3.0 - alternative domestic energy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

loads independent of weather... in a sustainable, reliable, and marketable energy generation system. Collaborative Business Arrangement The project... : Demonstration...

411

Unexpected consequences of demand response : implications for energy and capacity price level and volatility  

E-Print Network [OSTI]

Historically, electricity consumption has been largely insensitive to short term spot market conditions, requiring the equating of supply and demand to occur almost exclusively through changes in production. Large scale ...

Levy, Tal Z. (Tal Ze'ev)

2014-01-01T23:59:59.000Z

412

Deployment of Behind-The-Meter Energy Storage for Demand Charge...  

Office of Scientific and Technical Information (OSTI)

It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand....

413

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network [OSTI]

your Power. (2008). "Demand Response Programs." RetrievedUsing Open Automated Demand Response, Lawrence Berkeley2008). "What is Demand Response?" Retrieved 10/10/2008, from

Lekov, Alex

2010-01-01T23:59:59.000Z

414

Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York  

E-Print Network [OSTI]

introduction of a demand-side management (DSM) framework forof building controls. Demand-Side Management Framework forDOE 2006). The demand-side management (DSM) framework

Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

2006-01-01T23:59:59.000Z

415

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

SciTech Connect (OSTI)

In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

2009-09-01T23:59:59.000Z

416

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

417

Wood, energy and households: Perspectives on rural Kenya  

SciTech Connect (OSTI)

This book presents papers on the use of wood fuels in Kenya. Topics considered include domestic energy consumption, historical aspects, the Kenyan economy, ecology, supply and demand, forests, aspects of energy consumption in a pastoral ecosystem, estimation of present and future demand for wood fuels, and energy source development.

Barnes, C.; Ensminger, J.; O'Keefe, P.

1984-01-01T23:59:59.000Z

418

Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet), Wind Program (WP)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartment of Energy Moniz: WhatM-1 Section J Appendix

419

Converting 15-Minute Interval Electricity Load Data into Reduced Demand, Energy Reduction and Cash Flow  

E-Print Network [OSTI]

, store managers are intimidated. 5 So what are the solutions? A data acquisition system. Pro-active with alarming and demand-response. Is there staff to maintain and ensure a response? Passive. Acquire the data and then evaluate and assess... is not required, this will prevent the requirement for additional costs of installing an OAT sensor at the building and potentially adding costs to the datalogger hardware or configuration. If possible, it is best to use and on-site OAT sensor. If a demand-response...

Herrin, D. G.

420

Scalable, Secure Energy Information Management for Demand-Response Analysis Yogesh Simmhan1,2  

E-Print Network [OSTI]

, pricing, and demand among utility providers and consumers. While the smart meter infrastructure the events streaming from smart meters through the smart grid, to meaningful analysis and feedback for these decisions comes from diverse sources: smart meters that report near real-time power usage and quality

Prasanna, Viktor K.

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Potential for substitution of geothermal energy at domestic defense installations and White Sands Missile Range  

SciTech Connect (OSTI)

Geothermal resources that might provide substitute energy at any of 76 defense installations are identified and evaluated. The geologic characteristics and related economics of potential geothermal resources located at or near the 76 installations were estimated. The geologic assessment identified 18 installations with possible geothermal resources and 4 Atlantic Coastal Plain resource configurations that represented the alternatives available to East Coast bases. These 18 locations and 4 resource configurations, together with 2 possible resources at the White Sands Missile Range and a potential resource at Kings Bay, Georgia, were examined to determine the relative economics of substituting potential geothermal energy for part or all of the existing oil, gas, and electrical energy usage. Four of the military installations - Mountain Home, Norton, Hawthorne, and Sierra - appear to be co-located with possible geothermal resources which, if present, might provide substitute energy at or below current market prices for oil. Six additional locations - Ellsworth, Luke, Williams, Bliss, Fallon, and Twentynine Palms - could become economically attractive under certain conditions. No geothermal resource was found to be economically competitive with natural gas at current controlled prices. Generation of electric power at the locations studied is estimated to be uneconomic at present.

Bakewell, C.A.; Renner, J.L.

1982-01-01T23:59:59.000Z

422

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

was provided by the New York State Energy and ResearchCalifornia Energy Commission and the New York State Energysupplies of affordable energy. In New York and California,

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

423

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network [OSTI]

was provided by the New York State Energy and Researchwork was supported by the New York State Energy and Researchsupplies of affordable energy. In New York and California,

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

424

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network [OSTI]

and Operation in Zero-Net- Energy Buildings with Demandand Operation in Zero-Net-Energy Buildings with Demandhas launched the Zero-Net- Energy (ZNE) Commercial Building

Stadler, Michael

2009-01-01T23:59:59.000Z

425

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

Study in Energy Efficiency in Buildings August Nationalelectric loads in buildings: energy efficiency (for steady-and Energy Efficiency Options Using Commercial Building

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

426

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

ammonia production energy intensity lags behind the worldworld best practice primary energy intensity for ethylene productionproduction using only 23% more energy than the current world

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

427

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

urbanization and trade to elucidate the energy and emissionsindustrial energy use, lower urbanization and trade as wellof urbanization rate and trade as well as energy efficiency

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

428

Fact Sheet: U.S. and China Actions Matter for Global Energy Demand...  

Energy Savers [EERE]

work together to increase energy security through: Fostering transparent and efficient energy markets; Lowering trade barriers, particularly for clean energy and other...

429

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

21 Figure 13: Primary Energy Consumption byEffects on Industry Primary Energy Consumption, 1995-share of total primary energy consumption surged even higher

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

430

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

2007. 27 3.2.3 Energy Intensity and Fuel Mix As a result ofEnergy Intensity and Fuel Mix Energy Intensity and Fuel Mix

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

431

Department of Energy to Invest $50 Million to Advance Domestic Solar  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ Title Standards

432

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

white wine production instead of the more energy intensiveand dairy and wine processors. The energy loads in these

Lekov, Alex

2009-01-01T23:59:59.000Z

433

Energy and Security in Northeast Asia: Supply and Demand, Conflict and  

E-Print Network [OSTI]

with coal the main energy supplier for the industry. Theboth potential energy suppliers--Russia and possibly

Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

1998-01-01T23:59:59.000Z

434

Lessons learned from new construction utility demand side management programs and their implications for implementing building energy codes  

SciTech Connect (OSTI)

This report was prepared for the US Department of Energy (DOE) Office of Codes and Standards by the Pacific Northwest Laboratory (PNL) through its Building Energy Standards Program (BESP). The purpose of this task was to identify demand-side management (DSM) strategies for new construction that utilities have adopted or developed to promote energy-efficient design and construction. PNL conducted a survey of utilities and used the information gathered to extrapolate lessons learned and to identify evolving trends in utility new-construction DSM programs. The ultimate goal of the task is to identify opportunities where states might work collaboratively with utilities to promote the adoption, implementation, and enforcement of energy-efficient building energy codes.

Wise, B.K.; Hughes, K.R.; Danko, S.L.; Gilbride, T.L.

1994-07-01T23:59:59.000Z

435

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

Best Practices Guide. Walla Walla, WA, Cascade Energy Engineering, Inc. , Northwest Energy EfficiencyBest Practices Guide. Walla Walla, WA, Cascade Energy Engineering, Inc. , Northwest Energy EfficiencyBest Practices Guide. Walla Walla, WA, Cascade Energy Engineering, Inc. , Northwest Energy Efficiency

Lekov, Alex

2009-01-01T23:59:59.000Z

436

Energy watchers IV. Energy, economics and environment: Imperatives realities, and balance and Pacific Basin Demand and downstream activities: Is Middle East supply the answer  

SciTech Connect (OSTI)

Since 1974, the International Research Center for Energy and Economic Development (ICEED) has been holding annual international energy conferences that seek to bring together the public and private sectors from the United States and overseas in order to facilitate the exchange of views and information. The nineteenth annual international energy sessions on [open quotes]Energy, Economics, and Environment: Imperatives, Realities, and Balance,[close quotes] opened April 21, 1992. The goal was to look at the complex linkage between energy and the environment that cannot be decoupled in the near to medium future. The thirteenth annual international area conference, held from April 23-24, 1992, reflected appreciation and acknowledgement of the primacy of the Arabian/Persian Gulf in international energy trade. The area theme, [open quotes]Pacific Basin Demand and Downstream Activities: Is Middle East Supply the Answer ,[close quotes] was premised on the solidification of trade blocs globally and on these two regions which represent the major areas of growth in energy demand and petroleum supply, respectively. Issues addressed in the papers presented included the impact on the world oil sector of these demand and supply zones in the direction of upstream and downstream investment, the approaches and instruments that may be initiated or honed in terms of joint ventures and supply arrangements in the 1990s, and the possibility that the former USSR will become an energy land bridge between the Pacific Basin and Europe.

El Mallakh, D.H. (ed.)

1993-01-01T23:59:59.000Z

437

Something to buy paraffin with: an investigation into domestic energy consumption in rural Kenya  

SciTech Connect (OSTI)

Recently, two government agencies have surveyed energy consumption in Kenya. These two studies yielded conflicting results, necessitating that a third, more carefully conducted survey be used as the basis for this study. The survey instrument used was designed by the author and included questions regarding the types and quantities of fuels used, income information, and demographic data; 572 households were surveyed. The results are first aggregated by ecological zone and compared with the responses of the same households from the 1979 energy survey. Two findings emerge. First, wood consumption is lower in the high and medium potential lands. Fuelwood scarcity appears to be caused by high population density, not low ecological potential. Second, consumption of fuelwood and paraffin (i.e., kerosene) has decreased significantly over the past two years, due mainly to the increased price of the latter and the increased scarcity of the former. Next, the survey results are analyzed by way of a farm-type classification system which classifies the respondents into five groups: non-surplus farmers, surplus farmers, cash-surplus farmers, cash crop farmers, and wage workers. Finally, the analysis takes a relational perspective relying upon regression analysis. Income serves as a determinant of kerosene consumption, but not of fuelwood consumption.

Hosier, R.H.

1982-01-01T23:59:59.000Z

438

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

SciTech Connect (OSTI)

With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

Letschert, Virginie; McNeil, Michael A.

2008-05-13T23:59:59.000Z

439

ASHRAE's Guideline 14-2002 for Measurement of Energy and Demand Savings: How to Determine What Was Really Saved by the Retrofit  

E-Print Network [OSTI]

developed standards for the laboratory measurement of temperature, pressure, airflow, liquid flow, power, thermal energy, and the testing standards for chillers, fans, pumps, motors, boilers, and furnaces. Guideline 14 also relied on the previous work... Guideline 14-2002 to fill a need for a standard set of energy (and demand) savings calculation procedures. Guideline 14-2002 is intended to be a guideline that provides a minimum acceptable level of performance in the measurement of energy and demand...

Haberl, J. S.; Claridge, D. E.; Culp, C.

2005-01-01T23:59:59.000Z

440

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

430 million tonnes coal-equivalent energy use by 2025. More187 kilograms of coal equivalent primary energy use for eachof usable acquired energy from coal, oil and natural over

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

urban and rural total energy consumption per square meter ofas % Industry Total Energy Consumption Source: NBS 1.3.2its share of total primary energy consumption surged even

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

442

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

Agency. 2008. ?2008 World Energy Outlook. ? Japan Petroleumbelow the 2008 World Energy Outlooks projection (FigureSource: IEA, 2008 World Energy Outlook; LBNL CLU Model. 4.2

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

443

Energy Demand and Emissions in Building in China: Scenarios and Policy Options  

E-Print Network [OSTI]

Recent rapid growth of energy use in China exerts great pressure on the energy supply and environment. This study provides scenarios of future energy development in buildings, including urban residential, rural residential and service sectors (not...

Kejun, J.; Xiulian, H.

2006-01-01T23:59:59.000Z

444

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

List of Tables Table 1: Rural Energy Shares Table 2: UrbanLikewise, the urban-rural energy disparity is also readilyimply that all the rural energy services provided by biomass

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

445

Demand Side Energy Saving though Proper Construction Practices and Materials Selection  

E-Print Network [OSTI]

Energy consumed during the construction of buildings and structures, including the embodied energy of the concrete and other construction materials, represent a considerable percentage that may reach 40% of the total energy consumed during the whole...

El-Hawary, M.

2010-01-01T23:59:59.000Z

446

Identification of Changes Needed in Supermarket Design for Energy Demand Reduction  

E-Print Network [OSTI]

Supermarkets use 3 percent of UK energy. To satisfy building regulations supermarket buildings are modeled in considerable detail. Lighting, occupancy, and small electrical energy impacts are included in this modeling. However, refrigeration energy...

Hill, F.; Edwards, R.; Levermore, G.

2012-01-01T23:59:59.000Z

447

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

Figure 9: Per Capita Carbon Emissions for Residential Energy9: Per Capita Carbon Emissions for Residential Energy Useenergy content for each fuel, the estimated per capita carbon emissions

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

448

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

of declining energy use per unit GDP. Within this reform-and the energy use in agriculture per unit of GDP (economic

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

449

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

Factors behind declining demand for oil include a shift fromfuel. In the industrial sector, oil demand will decrease dueto a falling demand for oil for chemical materials. In the

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

450

Demand-based Optimal Control to Save Energy: A Case-Study in a Medical Center  

E-Print Network [OSTI]

the conditioned air through two parallel air ducts. Terminal boxes modulate either the hot ESL-HH-08-12-16 Proceedings of the Sixteenth Symposium on Improving Building Systems in Hot and Humid Climates, Plano, TX, December 15-17, 2008 airflow or the cold... and pressure required for the ESL-HH-08-12-16 Proceedings of the Sixteenth Symposium on Improving Building Systems in Hot and Humid Climates, Plano, TX, December 15-17, 2008 unit. Therefore, there are many ways to read the demand of equipment and buildings...

Joo, I. S.; Song, L.; Liu, M.; Carico, M.

451

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

E-Print Network [OSTI]

Domestic Electric Storage Water Heater (DESWH) Test Methodsby products 5 , and water heaters. Appliance diffusion isor endorsement levels. Water Heaters The share of electric

Letschert, Virginie

2010-01-01T23:59:59.000Z

452

Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building  

E-Print Network [OSTI]

water supplied by thermal energy storage in the centralchilled water thermal energy storage (TES) tank provides

Dudley, Junqiao Han

2010-01-01T23:59:59.000Z

453

Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building  

E-Print Network [OSTI]

We have studied a low energy building on a campus of theEnergyPlus Model in a Low Energy Campus Building Junqiao HanEnergyPlus Model in a Low Energy Campus Building Junqiao Han

Dudley, Junqiao Han

2010-01-01T23:59:59.000Z

454

Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)  

Reports and Publications (EIA)

Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40% of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, the Energy Information Administration has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. The Annual Energy Outlook 2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

2008-01-01T23:59:59.000Z

455

Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike  

SciTech Connect (OSTI)

In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

2013-06-02T23:59:59.000Z

456

Phase-Change Frame Walls (PCFWs) for On-Peak Demand Reduction and Energy Conservation in Residential Buildings: Development, Construction and Evaluation  

E-Print Network [OSTI]

The main purpose of this work was to develop a thermally enhanced frame wall that would reduce peak load air conditioning demand, shift a portion of the thermal load, and conserve energy in residential buildings. A frame wall containing...

Zhang, M.; Medina, M. A.; King, J. B.

2004-01-01T23:59:59.000Z

457

ASHRAE's Proposed Guideline 14P for Measurement of Energy and Demand Savings: How to Determine What Was Really Saved by the Retrofit  

E-Print Network [OSTI]

ASHRAE has recently completed the development of Guideline 14 to fill a need for a standard set of energy (and demand) savings calculation procedures. Guideline 14 is intended to be a guideline that provides a minimum acceptable level of performance...

Haberl, J. S.; Reeves, G.; Gillespie, K.; Claridge, D. E.; Cowan, J.; Culp, C.; Frazell, W.; Heinemeier, K.; Kromer, S.; Kummer, J.; Mazzucchi, R.; Reddy, A.; Schiller, S.; Sud, I.; Wolpert, J.; Wutka, T.

2001-01-01T23:59:59.000Z

458

Impacts of High Resolution Extreme Events on U.S. Energy Demand and CO{sub 2} Emissions in the 21st Century  

SciTech Connect (OSTI)

Progress is reported in these areas: Validation of temperature and precipitation extremes; Time of emergence of severe heat stress in the United States; Quantifying the effects of temperature extremes on energy demand and carbon dioxide emissions.

Diffenbaugh, Noah [Stanford University

2013-06-21T23:59:59.000Z

459

State Support of Domestic Production  

SciTech Connect (OSTI)

This project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under the State Support of Domestic Production DE-FC26-04NT15456. The Interstate Oil and Gas Compact Commission (IOGCC) performed efforts in support of State programs related to the security, reliability and growth if our nation's domestic production of oil and natural gas. The project objectives were to improve the States ability to monitor the security of oil and gas operations; to maximize the production of domestic oil and natural gas thereby minimizing the threat to national security posed by interruptions in energy imports; to assist States in developing and maintaining high standards of environmental protection; to assist in addressing issues that limit the capacity of the industry; to promote the deployment of the appropriate application of technology for regulatory efficiency; and to inform the public about emerging energy issues.

Amy Wright

2007-12-30T23:59:59.000Z

460

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 Gorin Principal Authors Lynn Marshall Project Manager Kae C. Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Elements of Energy Upgrade California Program One-stop clearinghouse for alternative financing; pooled demand, competitive  

E-Print Network [OSTI]

California Energy Audit and install all of the following measures that have not already been done (meet, AND 2. Install other measures found by the HERS II energy audit to be more cost effective than PVs up to 10% savings Provide rebates/financing for HERS II Energy Audit · Multi-family ­ Collaborate

462

The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners  

E-Print Network [OSTI]

and Renewable Energy Technology and Policy. Washington,Owns Renewable Energy Certificates? An Exploration of Policypolicies and supporting DR programs. Interest in renewable energy (

Vine, Edward

2007-01-01T23:59:59.000Z

463

Demand Response: Load Management Programs  

E-Print Network [OSTI]

CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

Simon, J.

2012-01-01T23:59:59.000Z

464

Yield Comparison for Domestic Photovoltaic Installation across the UK Scottish Institute for Solar Energy Research, May 2014  

E-Print Network [OSTI]

was conducted using Polysun simulation software. The software was validated using data recorded at a domestic to simulate the potential yield for a range of solar technologies. The software is preinstalled with global and the simulation is 4%, taken as validation that the Polysun Software accurately predicts the output of PV

Painter, Kevin

465

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network [OSTI]

of Carbon Tax on Combined Heat and Power Adoption by ain energy-efficient combined heat and power equipment, whilegeneration with combined heat and power (CHP) applications

Stadler, Michael

2009-01-01T23:59:59.000Z

466

Scenarios of Building Energy Demand for China with a Detailed Regional Representation  

SciTech Connect (OSTI)

Building energy consumption currently accounts for 28% of Chinas total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures.

Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon E.

2014-02-07T23:59:59.000Z

467

Demand Response and Smart Metering Policy Actions Since the Energy Policy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. DepartmenttoJuneEnergy This documentAct of 2005: A

468

Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &ofDepartment of Energy On NovemberofGlobal Environmental

469

Monthly energy review  

SciTech Connect (OSTI)

This issue of the Monthly Energy Review contains preliminary energy summary data for 1982. A 4.3% decline in total energy consumption marked the third year in a row that domestic energy consumption fell. Decreases in the consumption of petroleum, natural gas, and coal contributed to the decline but were offset somewhat by increased use of hydroelectric and nuclear power. Because demand for energy was down, a lower level of imports was sufficient to meet US energy needs.

Not Available

1983-02-01T23:59:59.000Z

470

Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume II. Industry profiles  

SciTech Connect (OSTI)

Econoimc profiles of the industries most affected by the construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) powerplants are presented. Six industries which will contribute materials and/or components to the construction of OTEC plants have been identified and are profiled here. These industries are: steel industry, concrete industry, titanium metal industry, fabricated structural metals industry, fiber glass-reinforced plastics industry, and electrical transmission cable industry. The economic profiles for these industries detail the industry's history, its financial and economic characteristics, its technological and production traits, resource constraints that might impede its operation, and its relation to OTEC. Some of the historical data collected and described in the profile include output, value of shipments, number of firms, prices, employment, imports and exports, and supply-demand forecasts. For most of the profiled industries, data from 1958 through 1980 were examined. In addition, profiles are included on the sectors of the economy which will actualy construct, deploy, and supply the OTEC platforms.

None

1981-12-22T23:59:59.000Z

471

Table 23. Domestic Crude Oil First Purchase Prices by API Gravity  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-182, "Domestic Crude Oil First Purchase Report." 23. Domestic Crude Oil First Purchase Prices by API Gravity Energy Information Administration Petroleum...

472

What Is the Right Rate? Loan Rates and Demand | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy WhileTanklessLES'Neighborhood Program Financing Peer

473

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

attract foreign investment." Oil and Gas Journal 102 (1):attract foreign investment." Oil and Gas Journal 102 (1):Investment (EROEI) ratio, or the quotient of usable acquired energy from coal, oil and

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

474

reduced demand for power by nearly 1,500 megawatts through investments in energy  

E-Print Network [OSTI]

are in energy-efficient water heaters, lighting, windows and equipment for heating, ventilation and air and state water laws, as well as with recommendations in the biological opinions. The amendments describe

475

U.S. Domestic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0SalesDrilled (Number of1 Domestic

476

U.S. Domestic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0SalesDrilled (Number of1 Domestic2

477

Property:OpenEI/UtilityRate/DemandRateStructure/Tier6Max | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms JumpEnergy Information

478

Property:OpenEI/UtilityRate/DemandReactivePowerCharge | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms JumpEnergy

479

Energy Policy, Volume 38: Issue 11. November 2010 Overview of Current Energy Efficiency Policies in China  

E-Print Network [OSTI]

, the period 2002-2005 saw energy use per unit of GDP increase an average of 3.8% per year. To stem this out to significantly limit energy demand growth through aggressive energy efficiency programs. Energy use per unit of gross domestic product (GDP) declined by approximately 5% per year during this period. However

480

STATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW)  

E-Print Network [OSTI]

STATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW) CEC- CF-6R-MECH-02 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-02 Solar Domestic Hot Water Systems (SDHW OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW) CEC- CF-6R-MECH-02 (Revised 08/09) CALIFORNIA ENERGY

Note: This page contains sample records for the topic "domestic energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The U.S. Department of Energy and the Federal Energy Regulatory Commission (FERC) jointly submitted to Congress a required Implementation Proposal for The National Action Plan on Demand Response.  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy and the Federal Energy Regulatory Commission (FERC) jointly submitted to Congress a required Implementation Proposal for The National Action Plan on Demand Response.

482

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network [OSTI]

Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

Cappers, Peter

2009-01-01T23:59:59.000Z

483

Direct versus Facility Centric Load Control for Automated Demand Response  

E-Print Network [OSTI]

Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

Piette, Mary Ann

2010-01-01T23:59:59.000Z

484

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007 INTEGRATED Table of Contents General Instructions for Demand Forecast Submittals.............................................................................. 4 Protocols for Submitted Demand Forecasts

485

LEED Demand Response Credit: A Plan for Research towards Implementation  

E-Print Network [OSTI]

in California. DEMAND RESPONSE AND COMMERCIAL BUILDINGSload and demand response against other buildings and alsoDemand Response and Energy Efficiency in Commercial Buildings",

Kiliccote, Sila

2014-01-01T23:59:59.000Z

486

Scenarios for Consuming Standardized Automated Demand Response Signals  

E-Print Network [OSTI]

Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

Koch, Ed

2009-01-01T23:59:59.000Z

487

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network [OSTI]

for Automated Demand Response in Commercial Buildings. Inbased demand response information to building controlDemand Response Standard for the Residential Sector. California Energy Commission, PIER Buildings

Ghatikar, Girish

2010-01-01T23:59:59.000Z

488

Direct versus Facility Centric Load Control for Automated Demand Response  

E-Print Network [OSTI]

Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

Piette, Mary Ann

2010-01-01T23:59:59.000Z

489

U.S. Coal Supply and Demand: 2010 Year in Review - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1EnergyU O P

490

Property:OpenEI/UtilityRate/DemandRateStructure/Tier1Max | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI JumpEnergy

491

Property:OpenEI/UtilityRate/DemandRateStructure/Tier1Rate | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI JumpEnergyInformation Rate

492

Property:OpenEI/UtilityRate/DemandRateStructure/Tier6Rate | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms JumpEnergy InformationInformation

493

Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York  

E-Print Network [OSTI]

Demand-Side Management Framework for Commercial BuildingsTimes (NYT) Building and Its Demand-Side Management Lawrencedemand-side management (DSM) framework presented in Table 1 provides three major areas for changing electric loads in buildings:

Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

2006-01-01T23:59:59.000Z

494

Page 1 of 23 Decreasing Demand: Attempting to Facilitate Energy Conservation by  

E-Print Network [OSTI]

gas emissions, 82% are carbon dioxide emissions related to energy consumption (EIA, 2006).The average-report. Introduction Anthropogenic carbon dioxide emissions are contributing to global climate change (Hansen et al (Stern, 2006). To decrease carbon dioxide emissions per capita, many scientists have addressed supply

Attari, Shahzeen Z.

495

Property:OpenEI/UtilityRate/DemandChargePeriod1FAdj | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump to:

496

Property:OpenEI/UtilityRate/DemandChargePeriod3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump

497

Property:OpenEI/UtilityRate/DemandChargePeriod9FAdj | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name:

498

Property:OpenEI/UtilityRate/DemandRateStructure/Period | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump

499

Property:OpenEI/UtilityRate/DemandRateStructure/Tier2Max | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI

500

Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Rate | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URIInformation Rate