Powered by Deep Web Technologies
Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of High Purity Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies August 30, 2010 DOE/NETL-2010/1432 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States (U.S.) government. Neither the U.S., nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

2

Crude Oil Domestic Production  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net...

3

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Milling Capacity (short tons of ore per day) 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby Uranium One Americas, Inc. Shootaring Canyon Uranium Mill Garfield, Utah 750 Changing License To Operational Standby

4

Coal Production 1992  

SciTech Connect

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

Not Available

1993-10-29T23:59:59.000Z

5

Weekly Coal Production Estimation Methodology  

NLE Websites -- All DOE Office Websites (Extended Search)

Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio...

6

Domestic Distribution of U.S. Coal by Destination State,  

U.S. Energy Information Administration (EIA) Indexed Site

2008 2008 Final May 2010 2008 Changes in Coal Distribution Table Format and Data Sources Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin State, destination State, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-exporting State. This Final 2008 Coal Distribution Report - Annual, supersedes the Preliminary 2008 Coal Distribution Report - Annual. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report contains actual annual data instead of imputed data for smaller electric generation plants that are excluded from the

7

Coal combustion products (CCPs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

8

State Support of Domestic Production  

SciTech Connect

This project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under the State Support of Domestic Production DE-FC26-04NT15456. The Interstate Oil and Gas Compact Commission (IOGCC) performed efforts in support of State programs related to the security, reliability and growth if our nation's domestic production of oil and natural gas. The project objectives were to improve the States ability to monitor the security of oil and gas operations; to maximize the production of domestic oil and natural gas thereby minimizing the threat to national security posed by interruptions in energy imports; to assist States in developing and maintaining high standards of environmental protection; to assist in addressing issues that limit the capacity of the industry; to promote the deployment of the appropriate application of technology for regulatory efficiency; and to inform the public about emerging energy issues.

Amy Wright

2007-12-30T23:59:59.000Z

9

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Lost Creek ISR LLC Lost Creek Project Sweetwater, Wyoming 2,000,000 Developing

10

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 Mill Owner Mill Name County, State (existing and planned locations) Milling Capacity (short tons of ore per day) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished Denison White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby

11

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 million pounds U 3 O 8 $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 102.0 Properties Under Development for Production W W W Mines in Production W 21.4 W Mines Closed Temporarily and Closed Permanently W W 133.1 In-Situ Leach Mining W W 128.6 Underground and Open Pit Mining W W 175.4 Arizona, New Mexico and Utah 0 W 164.7 Colorado, Nebraska and Texas W W 40.8 Wyoming W W 98.5 Total 51.8 W 304.0 W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report"

12

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Domestic Uranium Production Report June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | 2012 Domestic Uranium Production Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

13

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Wyoming 134 139 181 195 245 301 308 348 424 512 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W Alaska, Michigan, Nevada, and South Dakota 0 0 0 16 25 30 W W W W California, Montana, North Dakota, Oklahoma, Oregon, and Virginia 0 0 0 0 9 17 W W W W Total 321 420 648 755 1,231 1,563 1,096 1,073 1,191 1,196 Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Table 7. Employment in the U.S. uranium production industry by state, 2003-2012 person-years

14

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

SciTech Connect

This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be economically competitive with current processes, and yet be environmentally friendly as well. The solvent extraction process developed uses mild hydrogenation of low cost oils to create powerful solvents that can dissolve the organic portion of coal. The insoluble portion, consisting mainly of mineral matter and fixed carbon, is removed via centrifugation or filtration, leaving a liquid solution of coal chemicals and solvent. This solution can be further refined via distillation to meet specifications for products such as synthetic pitches, cokes, carbon foam and fibers. The most economical process recycles 85% of the solvent, which itself is obtained as a low-cost byproduct from industrial processes such as coal tar or petroleum refining. Alternatively, processes have been developed that can recycle 100% of the solvent, avoiding any need for products derived from petroleum or coal tar.

Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2004-08-31T23:59:59.000Z

15

Weekly Coal Production by State  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly Coal Production Weekly Coal Production Data for week ended: December 14, 2013 | Release date: December 19, 2013 | Next release date: December 30, 2013 For the week ended December 14, 2013: U.S. coal production totaled approximately 18.9 million short tons (mmst) This production estimate is 3.1% higher than last week's estimate and 2.9% lower than the production estimate in the comparable week in 2012 Coal production east of the Mississippi River totaled 8.2 mmst Coal production west of the Mississippi River totaled 10.8 mmst U.S. year-to-date coal production totaled 957.1 mmst, 1.9% lower than the comparable year-to-date coal production in 2012 EIA revises its weekly estimates of state-level coal production using Mine Safety and Health Administration (MSHA) quarterly coal production data.

16

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Number of Holes Feet (thousand) Number of Holes Feet (thousand) Number of Holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209 4,904 2011 5,441 3,322 5,156 3,003 10,597 6,325 2012 5,112 3,447 5,970 3,709 11,082 7,156 NA = Not available. W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-

17

Domestic Uranium Production Report  

Annual Energy Outlook 2012 (EIA)

6. Employment in the U.S. uranium production industry by category, 2003-13 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18...

18

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

2. U.S. uranium mine production and number of mines and sources, 2003-2012 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W Total Mine Production (thousand pounds U3O8) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Number of Operating Mines Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources1 1 1 2 1 1 1 2 1 1 1

19

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

9. Summary production statistics of the U.S. uranium industry, 1993-2012 9. Summary production statistics of the U.S. uranium industry, 1993-2012 Item 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 E2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Exploration and Development Surface Drilling (million feet) 1.1 0.7 1.3 3.0 4.9 4.6 2.5 1.0 0.7 W W 1.2 1.7 2.7 5.1 5.1 3.7 4.9 6.3 7.2 Drilling Expenditures (million dollars)1 5.7 1.1 2.6 7.2 20.0 18.1 7.9 5.6 2.7 W W 10.6 18.1 40.1 67.5 81.9 35.4 44.6 53.6 66.6 Mine Production of Uranium (million pounds U3O8) 2.1 2.5 3.5 4.7 4.7 4.8 4.5 3.1 2.6 2.4 2.2 2.5 3.0 4.7 4.5 3.9 4.1 4.2 4.1 4.3 Uranium Concentrate Production (million pounds U3O8) 3.1 3.4 6.0 6.3 5.6 4.7 4.6 4.0 2.6 2.3 2.0 2.3 2.7 4.1 4.5 3.9 3.7 4.2 4.0 4.1

20

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

10. Uranium reserve estimates at the end of 2012 10. Uranium reserve estimates at the end of 2012 million pounds U3O8 Forward Cost2 Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s) $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 102.0 Properties Under Development for Production W W W Mines in Production W 21.4 W Mines Closed Temporarily and Closed Permanently W W 133.1 In-Situ Leach Mining W W 128.6 Underground and Open Pit Mining W W 175.4 Arizona, New Mexico and Utah 0 W 164.7 Colorado, Nebraska and Texas W W 40.8 Wyoming W W 98.5 Total 51.8 W 304.0 1 Sixteen respondents reported reserve estimates on 71 mines and properties. These uranium reserve estimates cannot be compared with the much larger historical data set of uranium reserves that were published in the July 2010 report U.S. Uranium Reserves Estimates at http://www.eia.gov/cneaf/nuclear/page/reserves/ures.html. Reserves, as reported here, do not necessarily imply compliance with U.S. or Canadian government definitions for purposes of investment disclosure.

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

8. U.S. uranium expenditures, 2003-2012 8. U.S. uranium expenditures, 2003-2012 million dollars Year Drilling Production Land and Other Total Expenditures Total Land and Other Land Exploration Reclamation 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3 49.3 352.9 Drilling: All expenditures directly associated with exploration and development drilling. Production: All expenditures for mining, milling, processing of uranium, and facility expense.

22

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 In-Situ-Leach Plant Owner In-Situ-Leach Plant Name County, State (existing and planned locations) Production Capacity (pounds U3O8 per year) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources,Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed

23

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 (estimated contained thousand pounds U 3 O 8 ) W W W W W W W W W W (estimated contained thousand pounds U 3 O 8 ) 0 0 0 0 0 0 0 0 0 0 (thousand pounds U 3 O 8 ) W W 2,681 4,259 W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources 1 1 1 2 1 1 1 2 1 1 1 Total Mines and Sources 4 6 10 11 12 17 20 9 11 12 Other 1 Number of Operating Mines Table 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Underground Open Pit In-Situ Leaching Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012).

24

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Activity at U.S. Mills and In-Situ-Leach Plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Ore from Underground Mines and Stockpiles Fed to Mills 1 0 W W W 0 W W W W W Other Feed Materials 2 W W W W W W W W W W Total Mill Feed W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,000 2,282 2,689 4,106 4,534 3,902 3,708 4,228 3,991 4,146 (thousand pounds U 3 O 8 ) E1,600 2,280 2,702 3,838 4,050 4,130 3,620 5,137 4,000 3,911 Deliveries (thousand pounds U 3 O 8 ) W W W 3,786 3,602 3,656 2,044 2,684 2,870 3,630 Weighted-Average Price (dollars per pound U 3 O 8 ) W W W 28.98 42.11 43.81 36.61 37.59 52.36 49.63 Notes: The 2003 annual amounts were estimated by rounding to the nearest 200,000 pounds to avoid disclosure of individual company data. Totals may not equal sum of components

25

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Table 6. Employment in the U.S. uranium production industry by category, 2003-2012 person-years W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. 0 200 400 600 800 1,000 1,200 1,400 1,600 2004 2005 2006 2007 2008

26

Domestic Coal Distribution 2009 Q2 by Origin State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

Q2 by Origin State: Alabama Q2 by Origin State: Alabama (1000 Short Tons) 1 / 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 875 12 33 - 920 Alabama River 855 - - - 855 Alabama Truck 155 84 230 - 469 Alabama Total 1,885 96 263 - 2,244 Florida Railroad - - 8 - 8 Georgia Railroad 118 - - - 118 Georgia Truck s - 15 - 15 Georgia Total 118 - 15 - 133 Indiana Railroad - 83 - - 83 Indiana Truck 17 34 - - 50 Indiana Total 17 116 - - 133 Kentucky Railroad 83 - - - 83 Pennsylvania Railroad 95 - - - 95 Origin State Total 2,197 212 285 - 2,695 Railroad 1,171 95 40 - 1,305 River 855 - - - 855 Truck 171 118 245 - 534 2 / 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alaska

27

Domestic Coal Distribution 2009 Q1 by Destination State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 / 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) Origin State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 950 4 84 - 1,038 Alabama River 1,110 - - - 1,110 Alabama Truck 37 170 249 - 456 Alabama Total 2,096 174 333 - 2,603 Arkansas Railroad - 6 - - 6 Colorado Railroad 279 - - - 279 Illinois Railroad 11 - - - 11 Illinois River 109 - - - 109 Illinois Total 119 - - - 119 Indiana River 197 - - - 197 Kentucky Railroad 442 - 28 - 471 Kentucky Truck - - 2 - 2 Kentucky Total 442 - 31 - 473 Kentucky (East) Railroad 357 - 28 - 385 Kentucky (East) Truck - - 2 - 2 Kentucky (East)

28

Domestic Coal Distribution 2009 Q2 by Destination State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

61 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 / 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) Origin State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 875 12 33 - 920 Alabama River 855 - - - 855 Alabama Truck 155 84 230 - 469 Alabama Total 1,885 96 263 - 2,244 Colorado Railroad 123 - - - 123 Illinois River 145 - - - 145 Indiana River 246 - - - 246 Indiana Truck 37 - - - 37 Indiana Total 283 - - - 283 Kentucky Railroad 426 - 30 - 457 Kentucky (East) Railroad 172 - 30 - 202 Kentucky (West) Railroad 255 - - - 255 Oklahoma Railroad - 6 - - 6 Utah Railroad 30 - - - 30 Virginia Railroad - 14 - - 14 West Virginia Railroad - 75 - -

29

DOE Hydrogen Analysis Repository: Production of Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Hydrogen from Coal Production of Hydrogen from Coal Project Summary Full Title: Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies Project ID: 265 Principal Investigator: Kristin Gerdes Brief Description: This report assesses the improvements in cost and performance of hydrogen production from domestic coal when employing emerging technologies funded by DOE. Keywords: Hydrogen production; Coal Purpose This analysis specifically evaluates replacing conventional acid gas removal (AGR) and hydrogen purification with warm gas cleanup (WGCU) and a high-temperature hydrogen membrane (HTHM) that meets DOE's 2010 and 2015 performance and cost research and development (R&D) targets. Performer Principal Investigator: Kristin Gerdes

30

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Item 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 E2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Surface Drilling (million feet) 1.1 0.7 1.3 3.0 4.9 4.6 2.5 1.0 0.7 W W 1.2 1.7 2.7 5.1 5.1 3.7 4.9 6.3 7.2 Drilling Expenditures (million dollars) 1 5.7 1.1 2.6 7.2 20.0 18.1 7.9 5.6 2.7 W W 10.6 18.1 40.1 67.5 81.9 35.4 44.6 53.6 66.6 (million pounds U 3 O 8 ) 2.1 2.5 3.5 4.7 4.7 4.8 4.5 3.1 2.6 2.4 2.2 2.5 3.0 4.7 4.5 3.9 4.1 4.2 4.1 4.3 (million pounds U 3 O 8 ) 3.1 3.4 6.0 6.3 5.6 4.7 4.6 4.0 2.6 2.3 2.0 2.3 2.7 4.1 4.5 3.9 3.7 4.2 4.0 4.1 (million pounds U 3 O 8 ) 3.4 6.3 5.5 6.0 5.8 4.9 5.5 3.2 2.2 3.8 1.6 2.3 2.7 3.8 4.0 4.1 3.6 5.1 4.0 3.9 (person-years) 871 980 1,107 1,118 1,097 1,120 848 627 423 426 321 420 648 755 1,231 1,563 1,096 1,073 1,191 1,196

31

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

11 11 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Total Land and Other 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3 49.3 352.9 Notes: Expenditures are in nominal U.S. dollars. Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Reclamation Drilling: All expenditures directly associated with exploration and development drilling.

32

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3rd Quarter 2013 Domestic Uranium Production Report 3rd Quarter 2013 Domestic Uranium Production Report 3rd Quarter 2013 Domestic Uranium Production Report Release Date: October 31, 2013 Next Release Date: February 2014 Capacity (short tons of ore per day) 2012 1st Quarter 2013 2nd Quarter 2013 3rd Quarter 2013 EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating-Processing Alternate Feed Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Permitted And Licensed Energy Fuels Wyoming Inc Sheep Mountain Fremont, Wyoming 725 - Undeveloped Undeveloped Undeveloped Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000

33

Consensus Coal Production Forecast for  

E-Print Network (OSTI)

Rate Forecasts 19 5. EIA Forecast: Regional Coal Production 22 6. Wood Mackenzie Forecast: W.V. Steam to data currently published by the Energy Information Administration (EIA), coal production in the state in this report calls for state production to decline by 11.3 percent in 2009 to 140.2 million tons. During

Mohaghegh, Shahab

34

U.S. Domestic and Foreign Coal Distribution by State of Origin  

Gasoline and Diesel Fuel Update (EIA)

Domestic and Foreign Coal Distribution by State of Origin Domestic and Foreign Coal Distribution by State of Origin ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Domestic and foreign distribution of U.S. coal by State of origin, 2010 (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By Brokers & Traders* Total Exports Total Distribution Alabama 10,679.56 9,223.70 408.00 9,631.70 20,311.26 Alaska 920.68 1,080.60 88.05 1,168.65 2,089.33 Arizona 7,761.18 - - - 7,761.18 Arkansas 0.43 - - - 0.43 Colorado 21,831.81 748.98 1,446.25 2,195.23 24,027.04 Illinois 33,176.21 2,505.51

35

Coal production 1984. [USA; 1984  

SciTech Connect

Coal Production 1984 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. The data were collected and published by the Energy Information Administration (EIA), to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (PL 93-275) as amended. All data presented in this report, except the total production table presented in the Highlights section, the demonstrated reserve base data presented in Appendix A, and the 1983 coal preparation and shipments data presented in Appendix C, were obtained from Form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1984. These mining operations accounted for 99.4% of total US coal production and represented 76.3% of all US coal mining operations in 1984. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1984.

Not Available

1984-01-01T23:59:59.000Z

36

Macroeconomic Real Gross Domestic Product  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic Macroeconomic Real Gross Domestic Product (billion chained 2009 dollars - SAAR) ............. 15,584 15,680 15,819 15,886 15,970 16,068 16,173 16,295 16,422 16,557 16,701 16,832 15,742 16,127 16,628 Real Disposable Personal Income (billion chained 2009 dollars - SAAR) ............. 11,502 11,618 11,703 11,757 11,883 11,970 12,057 12,151 12,273 12,363 12,451 12,526 11,645 12,015 12,403 Real Personal Consumption Expend. (billion chained 2009 dollars - SAAR) ............. 10,644 10,692 10,729 10,813 10,884 10,959 11,036 11,114 11,191 11,264 11,343 11,416 10,719 10,998 11,304 Real Fixed Investment (billion chained 2009 dollars - SAAR) ............. 2,420 2,458 2,491 2,508 2,551 2,604 2,655 2,700 2,752 2,816 2,885 2,944 2,469 2,627 2,849 Business Inventory Change (billion chained 2009 dollars - SAAR) .............

37

Process for Low Cost Domestic Production of LIB Cathode Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process for Low Cost Domestic Production of LIB Cathode Materials Process for Low Cost Domestic Production of LIB Cathode Materials 2010 DOE Vehicle Technologies and Hydrogen...

38

3rd Quarter 2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-851A and Form EIA-851Q, ""Domestic Uranium Production Report.""" " U.S. Energy Information Administration 3rd Quarter 2014 Domestic Uranium Production Report...

39

Domestic Coal Distribution 2009 Q1 by Origin State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

Q1 by Origin State: Alabama Q1 by Origin State: Alabama (1000 Short Tons) 1 / 58 Domestic Coal Distribution 2009 Q1 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 950 4 84 - 1,038 Alabama River 1,110 - - - 1,110 Alabama Truck 37 170 249 - 456 Alabama Total 2,096 174 333 - 2,603 Florida Railroad - - 22 - 22 Georgia Railroad 45 - - - 45 Georgia Truck s - 20 - 21 Georgia Total 45 - 20 - 65 Hawaii Ocean Vessel s - - - s Indiana Railroad - 78 - - 78 Indiana Truck - 32 - - 32 Indiana Total - 110 - - 110 South Carolina Truck - - 2 - 2 Tennessee Truck - - 1 - 1 Texas Railroad 72 - - - 72 Origin State Total 2,213 284 378 - 2,875 Ocean Vessel s - - - s Railroad 1,066 82 106 - 1,255 River 1,110 - - - 1,110 Truck 37 202 272 - 511 2 / 58

40

Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation  

SciTech Connect

The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

2007-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Domestic Uranium Production Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report - Annual Domestic Uranium Production Report - Annual With Data for 2012 | Release Date: June 06, 2013 | Next Release Date: May 2014 |full report Previous domestic uranium production reports Year: 2011 2010 2009 2008 2007 2006 2005 2004 Go Drilling Figure 1. U.S. Uranium drilling by number of holes, 2004-2012 U.S. uranium exploration drilling was 5,112 holes covering 3.4 million feet in 2012. Development drilling was 5,970 holes and 3.7 million feet. Combined, total uranium drilling was 11,082 holes covering 7.2 million feet, 5 percent more holes than in 2011. Expenditures for uranium drilling in the United States were $67 million in 2012, an increase of 24 percent compared with 2011. Mining, production, shipments, and sales U.S. uranium mines produced 4.3 million pounds U3O8 in 2012, 5 percent more

42

EIA - Annual Energy Outlook 2008 - Coal Production  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2008 with Projections to 2030 Coal Production Figure 93. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 94. U.S. coal production, 2006, 2015, and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Western Coal Production Continues To Increase Through 2030 In the AEO2008 reference case, increasing coal use for electricity generation at existing plants and construction of a few new coal-fired plants lead to annual production increases that average 0.3 percent per year from 2006 to 2015, when total production is 24.5 quadrillion Btu. In the absence of restrictions on CO2 emissions, the growth in coal production

43

EIA - Annual Energy Outlook 2009 - Coal Production  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2009 with Projections to 2030 Coal Production Figure 78. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 79. U.S. coal production in four cases, 2007, 2015, and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 80. Average minemouth coal prices by regionCoal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Total Coal Production Increases at a Slower Rate Than in the Past In the AEO2009 reference case, increasing coal use for electricity generation at both new and existing plants and the startup of several CTL

44

2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3. U.S. uranium concentrate production, shipments, and sales, 2003-13" "Activity at U.S. Mills and In-Situ-Leach Plants",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013...

45

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

2. U.S. uranium mine production and number of mines and sources, 2003-2012" 2. U.S. uranium mine production and number of mines and sources, 2003-2012" "Production / Mining Method",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 "Underground" "(estimated contained thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W" "Open Pit" "(estimated contained thousand pounds U3O8)",0,0,0,0,0,0,0,0,0,0 "In-Situ Leaching" "(thousand pounds U3O8)","W","W",2681,4259,"W","W","W","W","W","W" "Other1" "(thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W"

46

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

9. Summary production statistics of the U.S. uranium industry, 1993-2012" 9. Summary production statistics of the U.S. uranium industry, 1993-2012" "Item",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,"E2003",2004,2005,2006,2007,2008,2009,2010,2011,2012 "Exploration and Development" "Surface Drilling (million feet)",1.1,0.7,1.3,3,4.9,4.6,2.5,1,0.7,"W","W",1.2,1.7,2.7,5.1,5.1,3.7,4.9,6.3,7.2 "Drilling Expenditures (million dollars)1",5.7,1.1,2.6,7.2,20,18.1,7.9,5.6,2.7,"W","W",10.6,18.1,40.1,67.5,81.9,35.4,44.6,53.6,66.6 "Mine Production of Uranium" "(million pounds U3O8)",2.1,2.5,3.5,4.7,4.7,4.8,4.5,3.1,2.6,2.4,2.2,2.5,3,4.7,4.5,3.9,4.1,4.2,4.1,4.3 "Uranium Concentrate Production" "(million pounds U3O8)",3.1,3.4,6,6.3,5.6,4.7,4.6,4,2.6,2.3,2,2.3,2.7,4.1,4.5,3.9,3.7,4.2,4,4.1

47

Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production and Regional Economic Growth  

E-Print Network (OSTI)

Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production@nmsu.edu #12;Arrowhead Center: Coal Production and Regional Economic Growth i Disclaimer This report States Government or any agency thereof. #12;Arrowhead Center: Coal Production and Regional Economic

Johnson, Eric E.

48

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

10. Uranium reserve estimates at the end of 2012" 10. Uranium reserve estimates at the end of 2012" "million pounds U3O8" "Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s)","Forward Cost 2" ,"$0 to $30 per pound","$0 to $50 per pound","$0 to $100 per pound" "Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work","W","W",101.956759 "Properties Under Development for Production","W","W","W" "Mines in Production","W",21.40601,"W" "Mines Closed Temporarily and Closed Permanently","W","W",133.139239 "In-Situ Leach Mining","W","W",128.576534

49

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7. Employment in the U.S. uranium production industry by state, 2003-2012" 7. Employment in the U.S. uranium production industry by state, 2003-2012" "person-years" "State(s)",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 "Wyoming",134,139,181,195,245,301,308,348,424,512 "Colorado and Texas",48,140,269,263,557,696,340,292,331,248 "Nebraska and New Mexico",92,102,123,160,149,160,159,134,127,"W" "Arizona, Utah, and Washington",47,40,75,120,245,360,273,281,"W","W" "Alaska, Michigan, Nevada, and South Dakota",0,0,0,16,25,30,"W","W","W","W" "California, Montana, North Dakota, Oklahoma, Oregon, and Virginia",0,0,0,0,9,17,"W","W","W","W"

50

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" "In-Situ-Leach Plant Owner","In-Situ-Leach Plant Name","County, State (existing and planned locations)","Production Capacity (pounds U3O8 per year)","Operating Status at End of the Year" ,,,,2008,2009,2010,2011,2012 "Cameco","Crow Butte Operation","Dawes, Nebraska",1000000,"Operating","Operating","Operating","Operating","Operating" "Hydro Resources, Inc.","Church Rock","McKinley, New Mexico",1000000,"Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed"

51

Consensus Coal Production And Price Forecast For  

E-Print Network (OSTI)

Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 © Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

Mohaghegh, Shahab

52

SNG Production from Coal: A Possible Solution to Energy Demand  

Science Journals Connector (OSTI)

Abstract In some areas of the world, natural gas demand cannot be fully satisfied either by domestic sources or foreign imports, while abundant coal resources are available. The conversion of coal to Substitute Natural Gas, SNG, by coal gasification and subsequent syngas methanation is one of the possible solutions to solve the problem. Foster Wheeler has developed a simple process for SNG production, named VESTA, utilizing catalysts from Clariant. The process concept has been proven by laboratory tests, and a demonstration unit will soon be completed. The VESTA process is very flexible and can handle syngas coming from several sources such as coal, biomass, petroleum coke and solid waste. In this paper our overview of the technology and its development status will be outlined.

Letizia Romano; Fabio Ruggeri; Robert Marx

2014-01-01T23:59:59.000Z

53

Central Appalachia: Coal mine productivity and expansion  

SciTech Connect

Coal mine productivity is a key determinant of coal prices and vice versa. This report, focusing on supplies of very low sulfur coal in the eastern United States, presents alternative scenarios of how the price-productivity relationship may evolve in response to growing utility demand. It also documents the next tier of projects where the coal industry is prepared to expand capacity. 19 refs., 14 figs., 6 tabs.

Suboleski, S.C.; Frantz, R.L.; Ramani, R.V.; Rao, G.P. (Pennsylvania State Univ., University Park, PA (United States). Mining Engineering Section); Price, J.P. (Resource Dynamics Corp., Vienna, VA (United States))

1991-09-01T23:59:59.000Z

54

Coal production forecast and low carbon policies in China  

Science Journals Connector (OSTI)

With rapid economic growth and industrial expansion, China consumes more coal than any other nation. Therefore, it is particularly crucial to forecast China's coal production to help managers make strategic decisions concerning China's policies intended to reduce carbon emissions and concerning the country's future needs for domestic and imported coal. Such decisions, which must consider results from forecasts, will have important national and international effects. This article proposes three improved forecasting models based on grey systems theory: the Discrete Grey Model (DGM), the Rolling DGM (RDGM), and the p value RDGM. We use the statistical data of coal production in China from 1949 to 2005 to validate the effectiveness of these improved models to forecast the data from 2006 to 2010. The performance of the models demonstrates that the p value RDGM has the best forecasting behaviour over this historical time period. Furthermore, this paper forecasts coal production from 2011 to 2015 and suggests some policies for reducing carbon and other emissions that accompany the rise in forecasted coal production.

Jianzhou Wang; Yao Dong; Jie Wu; Ren Mu; He Jiang

2011-01-01T23:59:59.000Z

55

Production of Hydrogen from Underground Coal Gasification  

DOE Patents (OSTI)

A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

Upadhye, Ravindra S. (Pleasanton, CA)

2008-10-07T23:59:59.000Z

56

"Table 2. Real Gross Domestic Product Growth Trends, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Real Gross Domestic Product Growth Trends, Projected vs. Actual" "Projected Real GDP Growth Trend" " cumulative average percent growth in projected real GDP from first year shown...

57

Process for Low Cost Domestic Production of LIB Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Process for Low Cost Domestic Production of LIB Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

58

Problems of Expanding Coal Production  

Science Journals Connector (OSTI)

...metallurgical or coking coal marketed widely here and abroad. Appalachian coal generally has a high...are characteristic of Appalachia, al-though there has also been extensive strip mining including destructive...Mid-western bituminous coal has a large market as...

John Walsh

1974-04-19T23:59:59.000Z

59

Domestic Uranium Production Report - Quarterly - Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

All Nuclear Reports All Nuclear Reports Domestic Uranium Production Report - Quarterly Data for 3rd Quarter 2013 | Release Date: October 31, 2013 | Next Release Date: February 2014 | full report Previous Issues Year: 2013-Q2 2013-Q1 2012-Q4 2012-Q3 2012-Q2 2012-Q1 2011-Q4 2011-Q3 2011-Q2 2011-Q1 2010-Q4 2010-Q3 2010-Q2 2010-Q1 2009-Q4 2009-Q3 2009-Q2 2009-Q1 2008-Q4 2008-Q3 2008-Q2 2008-Q1 Go 3rd Quarter 2013 U.S. production of uranium concentrate in the third quarter 2013 was 1,171,278 pounds U3O8, down 16 percent from the previous quarter and up 12 percent from the third quarter 2012. Third quarter 2013 uranium production is at its highest level since 1999. During the third quarter 2013, U.S. uranium was produced at six U.S. uranium facilities. U.S. Uranium Mill in Production (State)

60

Directory of coal production ownership, 1979  

SciTech Connect

Ownership patterns in the coal industry are highly complex. Many producers are diversified into other lines of activity. The pattern and extent of this diversification has varied through time. In the past, steel and nonferrous metals companies had major coal industry involvement. This is still true today. However, other types of enterprises have entered the industry de novo or through merger. Those of greatest significance in recent times have involved petroleum and particularly public utility companies. This report attempts to identify, as accurately as possible, production ownership patterns in the coal industry. The audience for this Directory is anyone who is interested in accurately tracing the ownership of coal companies to parent companies, or who is concerned about the structure of ownership in the US coal industry. This audience includes coal industry specialists, coal industry policy analysts, economists, financial analysts, and members of the investment community.

Thompson, B.

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Coal Production | OpenEI  

Open Energy Info (EERE)

03 03 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279603 Varnish cache server Coal Production Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 140, and contains only the reference case. The unit of measurement in this dataset is million short tons. The data is broken down into northern Appalachia, central Appalachia, southern Appalachia, eastern interior, western interior, gulf, Dakota medium, western montana, Wyoming, Rocky Mountain, Arizona/New Mexico and Washington/Alaska. Source EIA Date Released April 26th, 2011 (3 years ago)

62

Clean coal technology. Coal utilisation by-products  

SciTech Connect

The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

NONE

2006-08-15T23:59:59.000Z

63

Coal Combustion Products Extension Program  

SciTech Connect

This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be expanded at OSU, with support from state and federal agencies, utilities, trade groups, and the university, to focus on the following four specific areas of promise: (a) Expanding use in proven areas (such as use of fly ash in concrete); (b) Removing or reducing regulatory and perceptual barriers to use (by working in collaboration with regulatory agencies); (c) Developing new or under-used large-volume market applications (such as structural fills); and (d) Placing greater emphasis on FGD byproducts utilization.

Tarunjit S. Butalia; William E. Wolfe

2006-01-11T23:59:59.000Z

64

U. S. monthly coal production  

Gasoline and Diesel Fuel Update (EIA)

coal commodity regions (i.e., Central Appalachia (CAPP), Northern Appalachia (NAPP), Illinois Basin (ILB), Powder River Basin (PRB), and Uinta Basin (UIB)) in the United States....

65

Coal Combustion By-Products (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of the Environment is responsible for regulating fugitive air emissions from the transportation of coal combustion by-products and the permissible beneficial uses of these by...

66

Separation of solids from coal liquefaction products using sonic waves  

SciTech Connect

Product streams containing solids are generated in both direct and indirect coal liquefaction processes. This project seeks to improve the effectiveness of coal liquefaction by novel application of sonic and ultrasonic energy to separation of solids from coal liquefaction streams.

Slomka, B.J.

1994-10-01T23:59:59.000Z

67

CONSTRUCTION MATERIALS MADE WITH COAL COMBUSTION BY-PRODUCTS  

E-Print Network (OSTI)

ash and bottom ash are produced as by-products of coal-fired electricity generation. In many countries coal ashes are by-products of the coal combustion, their properties are influenced by the nature of understanding behavior of masonry products made from coal ashes. The objective of this research program

Wisconsin-Milwaukee, University of

68

3rd Quarter 2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

2nd quarter 3rd quarter 4th quarter P Preliminary data. Source: U.S. Energy Information Administration: Form EIA-851A and Form EIA-851Q, "Domestic Uranium Production Report."...

69

Co-Production of Substitute Natural Gas/Electricity Via Catalytic Coal Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Co-ProduCtion of SubStitute natural GaS / eleCtriCity via CatalytiC Coal GaSifiCation Description The United States has vast reserves of low-cost coal, estimated to be sufficient for the next 250 years. Gasification-based technology, such as Integrated Gasification Combined Cycle (IGCC), is the only environmentally friendly technology that provides the flexibility to co-produce hydrogen, substitute natural gas (SNG), premium hydrocarbon liquids including transportation fuels, and electric power in desired combinations from coal and other carbonaceous feedstocks. Rising costs and limited domestic supply of crude oil and natural gas provide a strong incentive for the development of coal gasification-based co-production processes. This project addresses the co-production of SNG and electricity from coal via gasification

70

Estimating coal production peak and trends of coal imports in China  

SciTech Connect

More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

Bo-qiang Lin; Jiang-hua Liu [Xiamen University, Xiamen (China). China Center for Energy Economics Research (CCEER)

2010-01-15T23:59:59.000Z

71

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

SciTech Connect

The purpose of this DOE-funded effort is to develop technologies for carbon products from coal-derived feedstocks. Carbon products can include precursor materials such as solvent extracted carbon ore (SECO) and synthetic pitch (Synpitch). In addition, derived products include carbon composites, fibers, foams and others. Key milestones included producing hydrogenated coal in the Hydrotreating Facility for the first time. The facility is now operational, although digital controls have not yet been completely wired. In addition, ultrasound is being used to investigate enhanced dissolution of coal. Experiments have been carried out.

Dady Dadyburjor; Chong Chen; Elliot B. Kennel; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2006-02-23T23:59:59.000Z

72

STEO November 2012 - coal supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Despite drop in domestic coal production, U.S. coal exports to reach Despite drop in domestic coal production, U.S. coal exports to reach record high in 2012. While U.S. coal production is down 7 percent this year due in part to utilities switching to low-priced natural gas to generate electricity, American coal is still finding plenty of buyers in overseas markets. U.S. coal exports are expected to hit a record 125 million tons in 2012, the U.S. Energy Information Administration says in its new monthly short-term energy outlook. Coal exports are expected to decline in 2013, primarily because of continuing economic weakness in Europe, lower international coal prices, and higher coal production in Asia. However, U.S. coal exports next year are still expected to top 100 million tons for the third year in a row

73

Review of China's Low-Carbon City Initiative and Developments in the Coal Industry  

E-Print Network (OSTI)

the slowing growth in coking coal production after 2005,the relative share of coking coal has continued to declinein domestic production of coking coal can be linked to the

Fridley, David

2014-01-01T23:59:59.000Z

74

Coal combustion products 2007 production and use report  

SciTech Connect

The American Coal Ash Association's 2007 Annual Coal Combustion Products (CCP) are derived from data from more than 170 power plants. The amount of CCPs used was 40.55%, a decrease of 2.88% from 2006, attributed to reduced fuel burn and a decrease in demand in the building industry. Figures are given for the production of fly ash, flue gas desulfurization gypsum, bottom ash, FBC ash and boiler slag. The article summarises results of the survey. 1 ref., 1 tab.

NONE

2009-07-01T23:59:59.000Z

75

Domestic Uranium Production Report 3rd Quarter 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Domestic Uranium Production Report 3rd Quarter 2013 October 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | 3rd Quarter 2013 Domestic Uranium Production Report ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. October 2013

76

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

SciTech Connect

The purpose of this DOE-funded effort is to develop technologies for carbon products from coal-derived feed-stocks. Carbon products can include precursor materials such as solvent extracted carbon ore (SECO) and synthetic pitch (Synpitch). In addition, derived products include carbon composites, fibers, foams and others.

Dady Dadyburjor; Chong Chen; Elliot B. Kennel; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-12-12T23:59:59.000Z

77

Syngas Production from Coal through Microwave Plasma Gasification: Influence of Oxygen, Steam, and Coal Particle Size  

Science Journals Connector (OSTI)

Syngas Production from Coal through Microwave Plasma Gasification: Influence of Oxygen, Steam, and Coal Particle Size ... Plasma gasification is widely applied because of its clean syngas production performance and high chemical reactivity accelerated by the free radicals produced by plasma. ... The syngas composition produced from plasma gasification at same conditions is affected by the physicochemical properties of coals. ...

Sang Jun Yoon; Jae Goo Lee

2011-11-23T23:59:59.000Z

78

The methods of steam coals usage for coke production  

SciTech Connect

Nowadays, high volatile bituminous coals are broadly used for metallurgical coke production in Russia. The share of such coals in the coking blend is variable from 20 to 40% by weight. There are some large coal deposits in Kuznetskii basin which have coals with low caking tendency. The low caking properties of such coals limit of its application in the coking process. At the same time the usage of low caking coals for coke production would allow flexibility of the feedstock for coke production. Preliminary tests, carried out in COAL-C's lab has shown some differences in coal properties with dependence on the size distribution. That is why the separation of the well-caking fraction from petrographically heterogeneous coals and its further usage in coking process may be promising. Another way for low caking coals application in the coke industry is briquettes production from such coals. This method has been known for a very long time. It may be divided into two possible directions. First is a direct coking of briquettes from the low caking coals. Another way is by adding briquettes to coal blends in defined proportion and combined coking. The possibility of application of coal beneficiation methods mentioned above was investigated in present work.

Korobetskii, I.A.; Ismagilov, M.S.; Nazimov, S.A.; Sladkova, I.L.; Shudrikov, E.S.

1998-07-01T23:59:59.000Z

79

Domestic Distribution of U.S. Coal by Origin State, Consumer...  

Gasoline and Diesel Fuel Update (EIA)

category "Industrial Plants" includes coal distributed to synthetic fuel plants that transform coal into synthetic coal and then redistribute to a final end-use sector. The...

80

Table 13. Coal Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production, Projected vs. Actual" Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",999,1021,1041,1051,1056,1066,1073,1081,1087,1098,1107,1122,1121,1128,1143,1173,1201,1223 "AEO 1995",,1006,1010,1011,1016,1017,1021,1027,1033,1040,1051,1066,1076,1083,1090,1108,1122,1137 "AEO 1996",,,1037,1044,1041,1045,1061,1070,1086,1100,1112,1121,1135,1156,1161,1167,1173,1184,1190 "AEO 1997",,,,1028,1052,1072,1088,1105,1110,1115,1123,1133,1146,1171,1182,1190,1193,1201,1209 "AEO 1998",,,,,1088,1122,1127.746338,1144.767212,1175.662598,1176.493652,1182.742065,1191.246948,1206.99585,1229.007202,1238.69043,1248.505981,1260.836914,1265.159424,1284.229736

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. Table 1 provides an overview of the major markets for carbon products. Current sources of materials for these processes generally rely on petroleum distillation products or coal tar distillates obtained as a byproduct of metcoke production facilities. In the former case, the American materials industry, just as the energy industry, is dependent upon foreign sources of petroleum. In the latter case, metcoke production is decreasing every year due to the combined difficulties associated with poor economics and a significant environmental burden. Thus, a significant need exists for an environmentally clean process which can used domestically obtained raw materials and which can still be very competitive economically.

Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-04-13T23:59:59.000Z

82

Domestic production of medical isotope Mo-99 moves a step closer  

NLE Websites -- All DOE Office Websites (Extended Search)

Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 moves a step closer Irradiated uranium fuel has been recycled and reused for molybdenum-99...

83

Land reclamation and strip-mined coal production in appalachia  

Science Journals Connector (OSTI)

This study quantifies the short-run impacts of reclamation on strip mining costs, coal prices, production, and employment in Appalachia. A process analysis model is developed and used to estimate short-run strip-mined coal supply functions under conditions of alternative reclamation requirements. Then, an econometric model is developed and used to estimate coal demand relations. Our results show that full reclamation has rather minor impacts. In 1972, full reclamation would have increased strip-mined coal production costs an average of $0.35 per ton, reduced strip-mined coal production by 10 million tons, and cost approximately 1600 jobs in Appalachia.

William Lin; Robert L Spore; Edmund A Nephew

1976-01-01T23:59:59.000Z

84

EIA - Weekly U.S. Coal Production  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coal Production U.S. Coal Production Report No.: DOE/EIA 0218/50 Report Released: December 19, 2013 Next Release Date: December 30, 2013 Week Ended Year-To-Date1 52 Weeks Ended Coal-Producing Region and State (thousand short tons) 12/14/2013 12/7/2013 12/15/2012 12/14/2013 12/14/2012 Percent Change 12/14/2013 12/15/2012 Percent Change Alabama 355 351 338 17,644 18,754 -5.9 18,343 19,394 -5.4 Alaska 42 41 45 1,675 1,964 -14.7 1,764 2,045 -13.7 Arizona 151 149 141 7,328 7,226 1.4 7,596 7,513 1.1 Arkansas 1 1 3 37 92 -59.3 44 96 -54.6 Colorado 487 473 419 22,198 27,630 -19.7 23,090 28,655 -19.4 Illinois 997 983 890 50,272 46,828 7.4 52,170 48,271 8.1 Indiana 737 728 693 36,141 35,248 2.5 37,590 36,686 2.5

85

Assessing the utility of coals elementary composition in predicting the yield of coking products  

Science Journals Connector (OSTI)

Elementary analysis of the organic mass of coal does not provide sufficient information to predict the yield of coking products, since it does not reflect the...

M. L. Ulanovskii

2012-03-01T23:59:59.000Z

86

Production of Oil from Coal in Germany  

Science Journals Connector (OSTI)

... British Commonwealth there are cheaper supplies of coal than in Great Britain, as well as reserves of brown coal and ... of brown coal and lignite. Dr. Parker stated that bombing attacks between May and September 1944 caused a reduction ...

1947-02-01T23:59:59.000Z

87

Coal Supply Region  

Gasoline and Diesel Fuel Update (EIA)

Implicit Price Deflators for Gross Domestic Product, as published by the U.S. Bureau of Economic Analysis. For the composition of coal basins, refer to the definition of...

88

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 AEO 1997 2362 2307 2245 2197 2143 2091 2055 2033 2015 2004 1997 1989 1982 1975 1967 1949 AEO 1998 2340 2332 2291 2252 2220 2192 2169 2145 2125 2104 2087 2068 2050 2033 2016 AEO 1999 2340 2309 2296 2265 2207 2171 2141 2122 2114 2092 2074 2057 2040 2025 AEO 2000 2193 2181 2122 2063 2016 1980 1957 1939 1920 1904 1894 1889 1889

89

Hydrogen production with coal using a pulverization device  

DOE Patents (OSTI)

A method for producing hydrogen from coal is described wherein high temperature steam is brought into contact with coal in a pulverizer or fluid energy mill for effecting a steam-carbon reaction to provide for the generation of gaseous hydrogen. The high temperature steam is utilized to drive the coal particles into violent particle-to-particle contact for comminuting the particulates and thereby increasing the surface area of the coal particles for enhancing the productivity of the hydrogen.

Paulson, Leland E. (Morgantown, WV)

1989-01-01T23:59:59.000Z

90

Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams  

SciTech Connect

We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

2008-07-01T23:59:59.000Z

91

Method of removal of sulfur from coal and petroleum products  

DOE Patents (OSTI)

A method for the removal of sulfur from sulfur-bearing materials such as coal and petroleum products using organophosphine and organophosphite compounds is provided.

Verkade, John G. (Ames, IA); Mohan, Thyagarajan (Ames, IA); Angelici, Robert J. (Ames, IA)

1995-01-01T23:59:59.000Z

92

NETL: Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

use of our domestic energy resources and infrastructure. Gasification Systems | Advanced Combustion | Coal & Coal-Biomass to Liquids | Solid Oxide Fuel Cells | Turbines CO2...

93

Table 14. Coal Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Coal Production, Projected vs. Actual Coal Production, Projected vs. Actual (million short tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 914 939 963 995 1031 1080 AEO 1983 900 926 947 974 1010 1045 1191 AEO 1984 899 921 948 974 1010 1057 1221 AEO 1985 886 909 930 940 958 985 1015 1041 1072 1094 1116 AEO 1986 890 920 954 962 983 1017 1044 1073 1097 1126 1142 1156 1176 1191 1217 AEO 1987 917 914 932 962 978 996 1020 1043 1068 1149 AEO 1989* 941 946 977 990 1018 1039 1058 1082 1084 1107 1130 1152 1171 AEO 1990 973 987 1085 1178 1379 AEO 1991 1035 1002 1016 1031 1043 1054 1065 1079 1096 1111 1133 1142 1160 1193 1234 1272 1309 1349 1386 1433 AEO 1992 1004 1040 1019 1034 1052 1064 1074 1087 1102 1133 1144 1156 1173 1201 1229 1272 1312 1355 1397 AEO 1993 1039 1043 1054 1065 1076 1086 1094 1102 1125 1136 1148 1161 1178 1204 1237 1269 1302 1327 AEO 1994 999 1021

94

NETL: IEP - Coal Utilization By-Products Current Regulations Governing Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Products Products Current Regulations Governing Coal Combustion By-Products - Database of State Regulations Database of State Regulations Affecting Disposal and Utilization of Coal Combustion By-Products A Summary Provided by the National Energy Technology Laboratory and the American Coal Ash Association Coal Combustion By-Products (CCBs) are generated when coal is used to generate electricity and power industrial processes. Tens of millions of tons of these materials are produced each year. Many uses of these byproducts are possible, but currently most of them wind up in landfills. Previous work at the National Energy Technology Laboratory (NETL) identified regulatory issues as one factor preventing more widespread reuse of CCBs. CCBs are generally regulated by state authorities, and the various states have developed widely differing rules. This web site was developed as one way to help CCB generators, users, and regulators share information across state boundaries.

95

Electricity from coal and utilization of coal combustion by-products  

SciTech Connect

Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

Demirbas, A. [Sila Science, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

96

Coal combustion by-products: State regulatory overview  

SciTech Connect

Coal combustion by-products (CCBs) are generated from the combustion of coal for energy production. Approximately 82 million tons of CCBs are produced each year by electric utilities. (1991 Coal Combustion By-Product Production and Use, American Coal Ash Association, 1992.) There are several common types of CCBs produced by coal combustion--fly ash, bottom ash, boiler slag, flue gas desulfurization material (FGD) and fluidized bed combustion byproducts (FBC). Some CCBs, such as fly ash, have pozzolanic properties and may have cementitious properties, both of which are advantageous for engineering, construction and waste remediation applications. The American Society for Testing Materials (ASTM) in ASTM C-618 has created two classifications of useful and quality coal ash, Class F ash and Class C ash. Each class of coal ash has different pozzolanic and cementitious characteristics. Coal ash can be utilized in many manufacturing, mining, agricultural, engineering, construction and waste remediation applications. This is a review by state of regulations concerning coal combustion by-products.

Jagiella, D. [Howard and Howard Attorneys, Peoria, IL (United States)

1996-11-01T23:59:59.000Z

97

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 3rd Quarter 2013 Domestic Uranium Production Report Release Date: October 31, 2013 Next Release Date: February 2014 Mills - conventional milling 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 Mills - other operations 2 2 3 2 2 2 1 1 0 0 1 1 1 0 1 0 0 0 1 In-Situ-Leach Plants 3 5 6 6 4 3 3 2 2 3 3 5 5 6 3 4 5 5 5 Byproduct Recovery Plants 4 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 9 11 9 7 6 4 3 2 3 4 6 6 7 4 5 6 6 6 End of 2005 End of 2006 End of 2007 End of 2008 End of 2009 3 Not including in-situ-leach plants that only produced uranium concentrate from restoration. 4 Uranium concentrate as a byproduct from phosphate production. Source: U.S. Energy Information Administration: Form EIA-851A and Form EIA-851Q, "Domestic Uranium Production Report." End of 2010 End of 2011 End of 2012 End of 3rd Quarter 2013 1 Milling uranium-bearing ore. 2 Not milling ore, but producing uranium concentrate from other (non-ore) materials.

98

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration / 3rd Quarter 2013 Domestic Uranium Production Report 3rd Quarter 2013 Domestic Uranium Production Report Release Date: October 31, 2013 Next Release Date: February 2014 Table 1. Total production of uranium concentrate in the United States, 1996 - 3rd Quarter 2013 pounds U 3 O 8 Calendar-Year Quarter 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter Calendar-Year Total 1996 1,734,427 1,460,058 1,691,796 1,434,425 6,320,706 1997 1,149,050 1,321,079 1,631,384 1,541,052 5,642,565 1998 1,151,587 1,143,942 1,203,042 1,206,003 4,704,574 1999 1,196,225 1,132,566 1,204,984 1,076,897 4,610,672 2000 1,018,683 983,330 981,948 973,585 3,975,545 2001 709,177 748,298 628,720 553,060 2,639,256 2002 620,952 643,432 579,723 E500,000 E2,344,107 2003 E400,000 E600,000 E400,000 E600,000

99

PRODUCTION OF LOW-ENERGY, 100% BY-PRODUCT CEMENT UTILIZING COAL COMBUSTION PRODUCTS.  

E-Print Network (OSTI)

??The ever-increasing quantity of by-products generated from burning coal in the production of electricity has brought about the need for new areas of utilization. This (more)

Rust, David E.

2008-01-01T23:59:59.000Z

100

Panel data analysis of U.S. coal productivity  

E-Print Network (OSTI)

We analyze labor productivity in coal mining in the United States using indices of productivity change associated with the concepts of panel data modeling. This approach is valuable when there is extensive heterogeneity ...

Stoker, Thomas M.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual" Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2507.55,2372.5,2255.7,2160.8,2087.8,2022.1,1952.75,1890.7,1850.55,1825,1799.45,1781.2,1766.6,1759.3,1777.55,1788.5,1806.75,1861.5 "AEO 1995",,2401.7,2306.8,2204.6,2095.1,2036.7,1967.35,1952.75,1923.55,1916.25,1905.3,1894.35,1883.4,1887.05,1887.05,1919.9,1945.45,1967.35 "AEO 1996",,,2387.1,2310.45,2248.4,2171.75,2113.35,2062.25,2011.15,1978.3,1952.75,1938.15,1916.25,1919.9,1927.2,1949.1,1971,1985.6,2000.2 "AEO 1997",,,,2361.55,2306.8,2244.75,2197.3,2142.55,2091.45,2054.95,2033.05,2014.8,2003.85,1996.55,1989.25,1981.95,1974.65,1967.35,1949.1

102

Coalbed methane production enhancement by underground coal gasification  

SciTech Connect

The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

1997-12-31T23:59:59.000Z

103

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1996 producer  

E-Print Network (OSTI)

and Use: The value of domestic refinery production of germanium, based on the 1996 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, and two base metal mining operations, one in Tennessee and another in Alaska. Both of these mining

104

Coal Supply Basin Destination State  

Annual Energy Outlook 2012 (EIA)

Implicit Price Deflators for Gross Domestic Product, as published by the U.S. Bureau of Economic Analysis. For the composition of coal basins, refer to the definition of...

105

Research needs and data acquisition to apply US technology to foreign coals: Annual report, July 1, 1986-June 30, 1987. [Production and consumption of each indexed country  

SciTech Connect

Extensive data on the coal resources, characteristics, demand and supply, coal production and plans for coal utilization to meet the energy needs in the countries of the Pacific Basin and Asia have been gathered. Two databases have been prepared based on this information which are compatible with the database on domestic coals available at NCTDC, PETC on coal resources and characteristics. Coal technologies and coal preparation methods currently in use in the Pacific Basin and Asia have also been addressed. In the second phase of this project, an assessment of the information obtained will be conducted and, wherever possible, this data will be compared with domestic data on coals and coal conversion practices so as to highlight similarities or differences. High quality and useful data will be enumerated in the form of graphs, tables and matrices for quick review. Conclusions from this data will depict work areas of potential mutual interest and areas of technology transfer. US products and services which can be exported will be emphasized.

Joseph, S.; Kulkarni, A.; Saluja, J.

1987-01-01T23:59:59.000Z

106

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 3rd Quarter 2013 Domestic Uranium Production Report Release Date: October 31, 2013 Next Release Date: February 2014 2012 1st Quarter 2013 2nd Quarter 2013 3rd Quarter 2013 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Hydro Resources, Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Lost Creek ISR, LLC, a subsidiary of Ur- Energy USA Inc. Lost Creek Project Sweetwater, Wyoming 2,000,000 Under Construction Under Construction

107

Beneficial use of coal combustion products continues to grow  

SciTech Connect

In August 2007 the American Coal Ash Association (ACAA) released results of the Coal Combustion Products Production (CCP) and use survey. Production was 124,795,000 tons while beneficial use was 54,203,000 tons, a utilization rate of over 43%, 3% higher than in 2005. The article includes graphs of 40 years of CCP production and use and projected trade of CCP utilization until 2011. It also gives 2006 figures for Production and use of fly ash, bottom ash, boiler slag, FGD gypsum and other FGD products, and FBC ash. 3 refs., 3 figs.

MacDonald, M. [American Coal Ash Association (United States)

2008-07-01T23:59:59.000Z

108

Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Southern Research Institute Project Number: FE0010231 Project Description Fischer-Tropsch (FT) process converts a mixture of carbon monoxide and hydrogen, called syngas, into liquid hydrocarbons. It is a leading technology for converting syngas derived from gasification of coal and coal-biomass mixtures to hydrocarbons in coal to liquids (CTL) and coal-biomass to liquids (CBTL) processes. However, conventional FTS catalysts produce undesirable waxes (C21+) that need to be upgraded to liquids (C5-C20) by hydrotreating. This adds significantly to the cost of FTS. The objectives of this project are (i) to demonstrate potential for CBTL cost reduction by maximizing the production of C5-C20 hydrocarbon liquids using a selective FTS catalyst and (ii) to evaluate the impacts of the addition of biomass to coal on product characteristics, carbon foot print, and economics.

109

ULTRA CLEAN COAL PRODUCTION USING DENSE MEDIUM SEPARATION FOR THE SILICON MARKET.  

E-Print Network (OSTI)

??The production of high quality silicon requires the use of ultraclean coal containing less than 1.5% ash. The magnetite used to clean the coal in (more)

Amini, Seyed Hassan

2014-01-01T23:59:59.000Z

110

Pitch Production Using Solvent Extraction of Coal: Suitability as Carbon Anode Precursor.  

E-Print Network (OSTI)

??Albertan coal has been used to produce extracts as precursor for production of anode coke. Coal extractability was studied using digestion with Tetralin in a (more)

Mohammad Ali Pour, Mehdi

2009-01-01T23:59:59.000Z

111

Create a Consortium and Develop Premium Carbon Products from Coal  

SciTech Connect

The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the projects funded did not meet their original goals, the overall objectives of the CPCPC were completed as many new applications for coal-derived feedstocks have been researched. Future research in many of these areas is necessary before implementation into industry.

Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

2006-01-01T23:59:59.000Z

112

Table 3. Gross Domestic Product, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Gross Domestic Product, Projected vs. Actual Gross Domestic Product, Projected vs. Actual (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 4.3% 3.8% 3.6% 3.3% 3.2% 3.2% AEO 1983 3.3% 3.3% 3.4% 3.3% 3.2% 3.1% 2.7% AEO 1984 2.7% 2.4% 2.9% 3.1% 3.1% 3.1% 2.7% AEO 1985 2.3% 2.2% 2.7% 2.8% 2.9% 3.0% 3.0% 3.0% 2.9% 2.8% 2.8% AEO 1986 2.6% 2.5% 2.7% 2.5% 2.5% 2.6% 2.6% 2.6% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% AEO 1987 2.7% 2.3% 2.4% 2.5% 2.5% 2.6% 2.6% 2.5% 2.4% 2.3% AEO 1989* 4.0% 3.4% 3.1% 3.0% 2.9% 2.8% 2.7% 2.7% 2.7% 2.6% 2.6% 2.6% 2.6% AEO 1990 2.9% 2.3% 2.5% 2.5% 2.4% AEO 1991 0.8% 1.0% 1.7% 1.8% 1.8% 1.9% 2.0% 2.1% 2.1% 2.1% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% AEO 1992 -0.1% 1.6% 2.0% 2.2% 2.3% 2.2% 2.2% 2.2% 2.2% 2.3% 2.3% 2.3% 2.3% 2.2%

113

Table 6. Domestic Crude Oil Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual (million barrels per day) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 8.79 8.85 8.84 8.80 8.66 8.21 AEO 1983 8.67 8.71 8.66 8.72 8.80 8.63 8.11 AEO 1984 8.86 8.70 8.59 8.45 8.28 8.25 7.19 AEO 1985 8.92 8.96 9.01 8.78 8.38 8.05 7.64 7.27 6.89 6.68 6.53 AEO 1986 8.80 8.63 8.30 7.90 7.43 6.95 6.60 6.36 6.20 5.99 5.80 5.66 5.54 5.45 5.43 AEO 1987 8.31 8.18 8.00 7.63 7.34 7.09 6.86 6.64 6.54 6.03 AEO 1989* 8.18 7.97 7.64 7.25 6.87 6.59 6.37 6.17 6.05 6.00 5.94 5.90 5.89 AEO 1990 7.67 7.37 6.40 5.86 5.35 AEO 1991 7.23 6.98 7.10 7.11 7.01 6.79 6.48 6.22 5.92 5.64 5.36 5.11 4.90 4.73 4.62 4.59 4.58 4.53 4.46 4.42 AEO 1992 7.37 7.17 6.99 6.89 6.68 6.45 6.28 6.16 6.06 5.91 5.79 5.71 5.66 5.64 5.62 5.63 5.62 5.55 5.52 AEO 1993 7.20 6.94 6.79 6.52 6.22 6.00 5.84 5.72

114

Table 2. Real Gross Domestic Product, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Real Gross Domestic Product, Projected vs. Actual Real Gross Domestic Product, Projected vs. Actual Projected Real GDP Growth Trend (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 3.1% 3.2% 2.9% 2.8% 2.7% 2.7% 2.6% 2.6% 2.6% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.4% 2.3% 2.3% AEO 1995 3.7% 2.8% 2.5% 2.7% 2.7% 2.6% 2.6% 2.5% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.3% 2.3% 2.2% AEO 1996 2.6% 2.2% 2.5% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.4% 2.4% 2.3% 2.3% 2.2% 2.2% 2.2% 1.6% AEO 1997 2.1% 1.9% 2.0% 2.2% 2.3% 2.3% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.1% 2.1% 1.5% AEO 1998 3.4% 2.9% 2.6% 2.5% 2.4% 2.4% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.2% 1.8% AEO 1999 3.4% 2.5% 2.5% 2.4% 2.4% 2.4% 2.3% 2.4% 2.4% 2.4% 2.4% 2.4% 2.4% 1.8% AEO 2000 3.8% 2.9% 2.7% 2.6% 2.6% 2.6% 2.6% 2.6% 2.5% 2.5%

115

NETL: News Release - DOE Advances Production of Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

6 , 2006 6 , 2006 DOE Advances Production of Hydrogen from Coal Projects Selected to Address Technological Challenges of Hydrogen Production in Large-Scale Facilities WASHINGTON, DC - The Department of Energy today announced the selection of six research and development projects that will promote the production of hydrogen from coal at large-scale facilities. This central approach will combat climate change by allowing for the capture - and subsequent sequestration - of carbon dioxide generated during hydrogen production. The selections support President Bush's Hydrogen Fuel Initiative, which provides funding for research and technology development to realize a future hydrogen economy that minimizes America's dependence on foreign oil and reduces greenhouse gas emissions.

116

EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: NorthStar Medical Technologies LLC, Commercial Domestic 9: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 SUMMARY This EA evaluates the potential environmental impacts of a proposal to use federal funds to support and accelerate Northstar Medical Radioisotopes' project to develop domestic, commercial production capability for the medical isotope Molybdenum-99 without the use of highly enriched uranium. PUBLIC COMMENT OPPORTUNITIES None available this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 24, 2012 EA-1929: Finding of No Significant Impact NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99

117

EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29: NorthStar Medical Technologies LLC, Commercial Domestic 29: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 SUMMARY This EA evaluates the potential environmental impacts of a proposal to use federal funds to support and accelerate Northstar Medical Radioisotopes' project to develop domestic, commercial production capability for the medical isotope Molybdenum-99 without the use of highly enriched uranium. PUBLIC COMMENT OPPORTUNITIES None available this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 24, 2012 EA-1929: Finding of No Significant Impact NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99

118

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production of copper in 2010 declined by about 5% to 1.12 million  

E-Print Network (OSTI)

48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production of copper in 2010 declined by about 5% to 1.12 million tons--Arizona, Utah, Nevada, New Mexico, and Montana--accounted for more than 99% of domestic production; copper also

119

Modeling of coal bed methane (CBM) production and CO2 sequestration in coal seams  

Science Journals Connector (OSTI)

A mathematical model was developed to predict the coal bed methane (CBM) production and carbon dioxide (CO2) sequestration in a coal seam accounting for the coal seam properties. The model predictions showed that, for a CBM production and dewatering process, the pressure could be reduced from 15.17MPa to 1.56MPa and the gas saturation increased up to 50% in 30years for a 5.4נ105m2 of coal formation. For the CO2 sequestration process, the model prediction showed that the CO2 injection rate was first reduced and then slightly recovered over 3 to 13years of injection, which was also evidenced by the actual in seam data. The model predictions indicated that the sweeping of the water in front of the CO2 flood in the cleat porosity could be important on the loss of injectivity. Further model predictions suggested that the injection rate of CO2 could be about 11נ103m3 per day; the injected CO2 would reach the production well, which was separated from the injection well by 826m, in about 30years. During this period, about 160נ106m3 of CO2 could be stored within a 21.4נ105m2 of coal seam with a thickness of 3m.

Ekrem Ozdemir

2009-01-01T23:59:59.000Z

120

Caustic washing for refining of direct coal liquefaction products  

SciTech Connect

Extensive research and development sponsored by the U.S. DOE/PETC over the past two decades has resulted in dramatic improvements in the quality of direct coal liquefaction products. High-quality coal-derived distillates are obtainable from catalytic two-stage liquefaction (TSL) processes, such as those developed at the Wilsonville, AL pilot plant and the Hydrocarbon Technologies Inc. (HTI) pilot plant and bench units. The products of the Wilsonville and HTI TSL operations are suitable as high quality feedstocks for producing transportation fuels in a refinery. These products have important quality advantages over crude petroleum: they are distillates boiling below about 700{degrees}F and are thus virtually free of resid and metals, and they have very low sulfur contents and low nitrogen contents. The coal liquids have carbon and hydrogen contents and Watson characterization factors within the range of crude petroleums. However, relative to crude petroleum, the crude coal products have elevated oxygen contents. This report describes the removal of phenols from coal liquids by caustic washing, and the the recovery of the cresylic acid by-product.

Winschel, R.A.; Burke, F.P.; Robbins, G.A.; Brandes, S.D. [CONSOL, Inc., Library, PA (United States); Zhou, P. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

WA_96_016_AIR_PRODUCTS_AND_CHEMICALS_INC_Waiver_of_Domestic_...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

16AIRPRODUCTSANDCHEMICALSINCWaiverofDomestic.pdf WA96016AIRPRODUCTSANDCHEMICALSINCWaiverofDomestic.pdf WA96016AIRPRODUCTSANDCHEMICALSINCWaiverofDomest...

122

NETL: IEP - Coal Utilization By-Products - Utilization Projects -  

NLE Websites -- All DOE Office Websites (Extended Search)

University of North Dakota, EERC - Table of Contents University of North Dakota, EERC - Table of Contents Coal Ash Resources Research Consortium Stabilizing Feedlots Using Coal Ash Environmental Evaluation for Utilization of Ash in Soil Stabilization Coal Ash Resources Research Consortium Background CAEEC is a cooperation among industry, government, and the research community to work together to solve CCB- related problems and promote the environmentally safe, technically sound, and economically viable utilization and disposal of CCBs. Objectives To improve the technical and economic aspects of coal combustion by-product (CCB) management. Description CARRC tasks fall into three general categories: Member-prioritized research tasks, Technical and administrative tasks, and Special projects that support CARRC objectives and strengthen and increase the availability of sound technical data for CARRC use.

123

SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL  

SciTech Connect

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2008-09-01T23:59:59.000Z

124

System Analysis of Nuclear-Assisted Syngas Production from Coal  

SciTech Connect

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via hightemperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2009-07-01T23:59:59.000Z

125

Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2001  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " "State / Region ","Domestic ","Foreign ","Total "," " "Alabama ",14828,4508,19336," " "Alaska ",825,698,1524," " "Arizona ",13143,"-",13143," " "Arkansas ",13,"-",13," " "Colorado ",32427,894,33321," " "Illinois ",33997,285,34283," " "Indiana ",36714,"-",36714," " "Kansas ",176,"-",176," " "Kentucky Total ",131546,2821,134367," " " East ",107000,2707,109706," " " West ",24547,114,24660," " "Louisiana ",3746,"-",3746," "

126

Fact #564: March 30, 2009 Transportation and the Gross Domestic Product, 2007  

Energy.gov (U.S. Department of Energy (DOE))

Transportation plays a major role in the U.S. economy. About 10% of the U.S. Gross Domestic Product (GDP) in 2007 is related to transportation. Housing, health care, and food are the only...

127

Volcanic ash in feed coal and its influence on coal combustion products  

SciTech Connect

The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the peat-forming mire. Dissolution and alteration of these minerals occurred either in the peat-forming sate or during coalification/diagenesis contributing to the authigenic mineral suite. Additionally, detrital mineral input and epigenetic ground-water flow may have affected the geochemistry of the feed coal.

Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O'Connor, J.T.

2000-07-01T23:59:59.000Z

128

Ash reduction in clean coal spiral product circuits  

SciTech Connect

The article describes the Derrick Corporation's Stack Sizer{trademark} technology for high capacity fine wet cleaning with long-lasting high open-area urethane screen panels. After field trials, a Stack Sizer fitted with a 100-micron urethane panel is currently processing approximately 40 stph of clean coal spiral product having about 20% ash at McCoy-Elkhorn's Bevin Branch coal preparation plant in Kentucky, USA. Product yield is about 32.5 short tons per hour with 10% ash. The material is then fed to screen bowl centrifuges for further processing. At Blue Diamond Coal's Leatherwood preparation plant similar Stacker Sizers are achieving the same results. 2 figs., 3 tabs., 2 photo.

Brodzik, P.

2007-04-15T23:59:59.000Z

129

CREAT A CONSORTIUM AND DEVELOP PREMIUM CARBON PRODUCTS FROM COAL  

SciTech Connect

The Consortium for Premium Carbon Products from Coal, with funding from the U.S. Department of Energy's National Energy Technology Laboratory and matching funds from industry and academic institutions continued to excel in developing innovative technologies to use coal and coal-derived feedstocks to produce premium carbon product. During Budget Period 5, eleven projects were supported and sub-contracted were awarded to seven organizations. The CPCPC held two meetings and one tutorial at various locations during the year. Budget Period 5 was a time of growth for CPCPC in terms of number of proposals and funding requested from members, projects funded and participation during meetings. Although the membership was stable during the first part of Budget Period 5 an increase in new members was registered during the last months of the performance period.

John M. Andresen

2003-08-01T23:59:59.000Z

130

Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2004  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 (Thousand Short Tons) " "State / Region ","Domestic ","Foreign ","Total "," " "Alabama",18367,3744,22111," " "Alaska",957,546,1502," " "Arizona",13041,"-",13041," " "Colorado",37396,1239,38635," " "Illinois ",30611,440,31051," " "Indiana",34630,227,34857," " "Kansas",72,"-",72," " "Kentucky Total ",109413,3004,112417," " " Eastern ",87402,2816,90218," " " Western ",22011,188,22199," " "Louisiana",3889,"-",3889," " "Maryland",4502,1068,5571," "

131

Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 (Thousand Short Tons)" " State / Region"," Domestic"," Foreign"," Total " "Alabama ",15552,3425,18977," " "Alaska ",847,311,1158," " "Arizona ",12971,"-",12971," " "Arkansas ",12,"-",12," " "Colorado ",33904,843,34748," " "Illinois ",32719,21,32740," " "Indiana ",35391,"-",35391," " "Kansas ",205,"-",205," " "Kentucky Total ",123129,791,123920," " " East ",98492,791,99284," " " West ",24636,"-",24636," " "Louisiana ",3810,"-",3810," "

132

Premium distillate products from direct liquefaction of coal  

SciTech Connect

The net liquid products from modern coal liquefaction processes are lower boiling and have much lower end points (mostly under 400{degree}C) than crude petroleum. Coal liquids have very low concentrations of heteroatoms, particularly S, and metals, and are free of resids and asphaltenes. High yields of low-S (0.01--0.03 wt %) naphtha, kerosene, and diesel fuel fractions can be obtained simply by atmospheric distillation, with a total yield of light fuel fractions ranging from 68 to 82 LV% (W260D exclusive). The coal naphtha has a low aromatics content (5--13 LV%), readily meeting projected year-2000 requirements. Its low Reid vapor pressure allows light components from other sources to be blended. The coal light distillate of in appropriate boiling range will be a good low-S blending stock for the light diesel fuel pool. The heavy distillate can be refined into a low-S No. 4 diesel fuel/fuel oil. This fraction, along with the >343{degree}C atmospheric bottoms, can be catalytically cracked or hydrocracked to make light liquid fuels. Thus, modern coal liquids should no longer be envisioned as thick liquids (or even solids) with high concentrations of aromatics and asphaltenes. Products obtained from advanced coal liquefaction technologies are more like light naphthene-base petroleum, but with lower heteroatoms and metals contents, and they are free of resids. Coal liquids are likely to be co-refined in existing petroleum refineries; and hydroprocessing of various severities would be needed for different fractions to produce quality blending stocks for refinery fuel pools.

Zhou, P.Z. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Winschel, R.A. [CONSOL, Inc., Library, PA (United States); Klunder, E.B. [USDOE Pittsburgh Energy Technology Center, PA (United States)]|[USDOE, Washington, DC (United States)

1994-08-01T23:59:59.000Z

133

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

SciTech Connect

The U.S. Department of Energys National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GEs bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

2011-09-30T23:59:59.000Z

134

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

SciTech Connect

The U.S. Department of Energy??s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE??s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Shawn Maghzi; Ramanathan Subramanian; George Rizeq; Surinder Singh; John McDermott; Boris Eiteneer; David Ladd; Arturo Vazquez; Denise Anderson; Noel Bates

2011-09-30T23:59:59.000Z

135

Integrated production/use of ultra low-ash coal, premium liquids and clean char  

SciTech Connect

This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

Kruse, C.W.

1991-01-01T23:59:59.000Z

136

(Data in kilograms of germanium content, unless noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1995  

E-Print Network (OSTI)

: The value of domestic refinery production of germanium, based on the 1995 producer price, was approximately industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, and a mining operation in Tennessee. The company in Tennessee exported germanium-bearing residues generated

137

Central Appalachia: Production potential of low-sulfur coal  

SciTech Connect

The vast preponderance of eastern US low sulfur and 1.2-lbs SO{sub 2}/MMBtu compliance coal comes from a relatively small area composed of 14 counties located in eastern Kentucky, southern West Virginia and western Virginia. These 14 counties accounted for 68% of all Central Appalachian coal production in 1989 as well as 85% of all compliance coal shipped to electric utilities from this region. A property-by-property analysis of total production potential in 10 of the 14 counties (Floyd, Knott, Letcher, Harlan, Martin and Pike in Kentucky and Boone, Kanawha, Logan and Mingo in West Virginia) resulted in the following estimates of active and yet to be developed properties: (1) total salable reserves for all sulfur levels were 5.9 billion tons and (2) 1.2-lbs. SO{sub 2}/MMBtu compliance'' reserves totaled 2.38 billion tons. This potential supply of compliance coal is adequate to meet the expanded utility demand expected under acid rain for the next 20 years. Beyond 2010, compliance supplies will begin to reach depletion levels in some areas of the study region. A review of the cost structure for all active mines was used to categorize the cost structure for developing potential supplies. FOB cash costs for all active mines in the ten counties ranged from $15 per ton to $35 per ton and the median mine cost was about $22 per ton. A total of 47 companies with the ability to produce and ship coal from owned or leased reserves are active in the ten-county region. Identified development and expansion projects controlled by active companies are capable of expanding the region's current production level by over 30 million tons per year over the next twenty years. Beyond this period the issue of reserve depletion for coal of all sulfur levels in the ten county region will become a pressing issue. 11 figs., 12 tabs.

Watkins, J. (Hill and Associates, Inc., Annapolis, MD (United States))

1991-09-01T23:59:59.000Z

138

Imminence of peak in US coal production and overestimation of reserves  

E-Print Network (OSTI)

. The estimated energy ultimate recoverable reserves (URR) from the logistic model is 2750 quadrillion BTU (2900, coal reserves, coal production forecast, peak coal, USA energy, non- linear fitting #12;3 1 reported coal reserves of any nation, containing approximately 28% of the world

Khare, Sanjay V.

139

coking coal  

Science Journals Connector (OSTI)

coking coal [A caking coal suitable for the production of coke for metallurgical use] ? Kokskohle f, verkokbare Kohle

2014-08-01T23:59:59.000Z

140

Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

3 " 3 " "(Thousand Short Tons) " "State / Region ","Domestic","Foreign","Total" "Alabama ",16639,3902,20541 "Alaska ",856,232,1088 "Arizona ",12093,"-",12093 "Arkansas ",6,"-",6 "Colorado ",34997,898,35895 "Illinois ",31751,55,31806 "Indiana ",35350,"-",35350 "Kansas ",154,"-",154 "Kentucky Total ",113241,906,114146 "East ",92391,890,93282 "West ",20849,15,20865 "Louisiana ",3959,"-",3959 "Maryland ",4955,596,5551 "Mississippi ",3739,"-",3739 "Missouri ",345,"-",345 "Montana ",36181,541,36721

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Domestic production of medical isotope Mo-99 moves a step closer  

NLE Websites -- All DOE Office Websites (Extended Search)

Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 moves a step closer Irradiated uranium fuel has been recycled and reused for molybdenum-99 (Mo-99) production, with virtually no losses in Mo-99 yields or uranium recovery. May 13, 2013 From left, Los Alamos scientists Roy Copping, Sean Reilly, and Daniel Rios. Copping examines the Buchi Multivapor P-12 Evaporator, and Reilly and Rios are at the Agilent Technologies Cary 60 UV-Vis Spectrometer. From left, Los Alamos scientists Sean Reilly, Roy Copping, and Daniel Rios. Sean is looking at the Buchi Multivapor P-12 Evaporator, and Roy and Daniel are at the Agilent Technologies Cary 60 UV-Vis Spectrometer. Contact Nancy Ambrosiano Communications Office (505) 667-0471

142

The National Energy Modeling System: An Overview 1998 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

COAL MARKET MODULE COAL MARKET MODULE blueball.gif (205 bytes) Coal Production Submodule blueball.gif (205 bytes) Coal Distribution Submodule blueball.gif (205 bytes) Coal Export Component The coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. The CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply

143

RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS  

SciTech Connect

This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of the extraction products indicated that they had the requisite properties of viable carbon-product precursors.

Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

2002-03-31T23:59:59.000Z

144

Productivity change of coal-fired thermal power plants in India: a Malmquist index approach  

Science Journals Connector (OSTI)

......productivity. Keywords: coal-fired power plants...infrastructure for the socio- economic development of a...Manufacturing industry, Economic and Political Weekly...Performance analysis of coal fired power plants...PRODUCTIVITY CHANGE OF COAL-FIRED THERMAL POWER...Asia Pacific Annual Economic Association (APEA......

S. K. Behera; J. A. Farooquie; A. P. Dash

2011-10-01T23:59:59.000Z

145

Rapid Batch Characterization of Coal Utilization By-Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Batch Characterization Batch Characterization of Coal Utilization By-Products Peter A. Hesbach 1 *, Alexander S. P. Abel 2 Ann G. Kim 3 , and Steven C. Lamey 4 1 U.S. Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507-0880 USA; 2 NETL Site Support Contractor, Parsons, 3610 Collins Ferry Road, Morgantown, WV 26505 USA; 3 U.S. Department of Energy, National Energy Technology Laboratory Post-Doctoral Fellow, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940 USA; 4 retired, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV USA (* author for correspondence, phone: 304-285-4443, fax: 304-285-4487, e-mail: peter.hesbach@netl.doe.gov) KEYWORDS: leaching methods, ash characterization, coal utilization by-products

146

CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CAPITAL AND OPERATING COST OF HYDROGEN CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATION Final Report April 2003 Prepared for: The United States Department of Energy National Energy Technology Laboratory (NETL) under: Contract No. DE-AM26-99FT40465 between the NETL and Concurrent Technologies Corporation (CTC) Subcontract No. 990700362 between CTC and Parsons Infrastructure & Technology Group Inc. Task 50611 DOE Task Managers: James R. Longanbach Gary J. Stiegel Parsons Project Manager: Michael D. Rutkowski Principal Investigators: Thomas L. Buchanan Michael G. Klett Ronald L. Schoff PARSONS Capital and Operating Cost of Hydrogen Production from Coal Gasification Page i April 2003 TABLE OF CONTENTS Section Title Page List of Tables iii List of Figures iii

147

Low-rank coal oil agglomeration product and process  

DOE Patents (OSTI)

A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

1992-11-10T23:59:59.000Z

148

Low-rank coal oil agglomeration product and process  

DOE Patents (OSTI)

A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND); Potas, Todd A. (Plymouth, MN); DeWall, Raymond A. (Grand Forks, ND); Musich, Mark A. (Grand Forks, ND)

1992-01-01T23:59:59.000Z

149

U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Domestic Oil Production Exceeds Imports for First Time in 18 U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years November 15, 2013 - 3:47pm Addthis Source: Energy Information Administration Short Term Energy Outlook Allison Lantero Allison Lantero Public Affairs Specialist, Office of Public Affairs In February 1995, The Brady Bunch Movie and Billy Madison were in movie theaters, "Creep" by TLC was at the top of the Billboard charts, and the Yahoo! search engine had not yet been unveiled. It was also the last month the U.S. produced more oil than it imported. Until last month. During remarks in Cleveland yesterday, President Obama noted this historic milestone: in October, America produced more oil here at home than we imported from overseas.

150

U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Domestic Oil Production Exceeds Imports for First Time in 18 Domestic Oil Production Exceeds Imports for First Time in 18 Years U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years November 15, 2013 - 3:47pm Addthis Source: Energy Information Administration Short Term Energy Outlook Allison Lantero Allison Lantero Public Affairs Specialist, Office of Public Affairs In February 1995, The Brady Bunch Movie and Billy Madison were in movie theaters, "Creep" by TLC was at the top of the Billboard charts, and the Yahoo! search engine had not yet been unveiled. It was also the last month the U.S. produced more oil than it imported. Until last month. During remarks in Cleveland yesterday, President Obama noted this historic milestone: in October, America produced more oil here at home than we imported from overseas.

151

EIA-Revisions to Gross Domestic product and Implications for the  

Gasoline and Diesel Fuel Update (EIA)

Revisions to Gross Domestic Product and Implications for the Comparisons Revisions to Gross Domestic Product and Implications for the Comparisons Annual Energy Outlook Retrospective Review: Evaluation of Projections in Past Editions (1982-2008) Revisions to Gross Domestic Product and Implications for the Comparisons The concept of GDP is a commonly used measure of economic activity. It can be expressed in nominal dollars or, with the use of a matched price index to remove inflation, in "real" terms. Movements in nominal GDP show how the value of goods and services produced by the United States changes over time, while real GDP is a measure of how the physical production of the economy has grown. While simple in concept, the projecting of nominal and real GDP and the interpretation of these projected measures relative to "history" is not simple or straightforward. The Bureau of Economic Analysis (BEA) within the U.S. Department of Commerce continually adjusts the National Income and Product Accounts data, with comprehensive revisions completed every 4 or 5 years. The last four major revisions (1985, 1991, 1995, and 1999) incorporated definitional and statistical changes, as well as emphasizing new ways of presenting the data. Also, prior to AEO1993 aggregate economic activity was measured and projected on the basis of Gross National Product (GNP) as opposed to Gross Domestic Product (GDP). For the period from 1984 through 2004, nominal GNP is on average approximately 0.45 percent above nominal GDP.

152

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

SciTech Connect

High melting temperature synthetic pitches (Synpitches) were created using coal derivatives produced from a solvent extraction technique. Solvent extraction is used to separate hydrocarbons from mineral matter as well as other insolubles. Mild hydrogenation can be used to chemically modify resultant material to produce a true pitch. There are three main techniques which can be used to tailor the softening point of the Synpitch. First, the softening point can be controlled by varying the conditions of hydrogenation, chiefly the temperature, pressure and residence time in a hydrogen overpressure. Second, by selectively distilling light hydrocarbons, the softening point of the remaining pitch can be raised. Third, the Synpitch can be blended with another mutually soluble pitch or hydrocarbon liquid. Through such techniques, spinnable isotropic Synpitches have been created from coal feedstocks. Characteristics of Synpitches include high cross-linking reactivity and high molecular weight, resulting in carbon fibers with excellent mechanical properties. To date, mechanical properties have been achieved which are comparable to the state of the art achievable with conventional coal tar pitch or petroleum pitch.

Dady Dadyburjor; Chong Chen; Elliot B. Kennel; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-12-12T23:59:59.000Z

153

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

12 2.6. International coal prices and18 International coal prices and trade In parallel with the2001, domestic Chinese coal prices moved from stable levels

Aden, Nathaniel

2010-01-01T23:59:59.000Z

154

Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

Conocophillips

2007-09-30T23:59:59.000Z

155

EIA - Weekly and Monthly U.S. Coal Production  

Gasoline and Diesel Fuel Update (EIA)

and Monthly U.S. Coal Production and Monthly U.S. Coal Production Report No.: DOE/EIA 0218/48 Report Released: December 05, 2013 Next Release Date: January 09, 2014 Week Ended Year-To-Date1 Month Ended January - November Coal-Producing Region and State (thousand short tons) 11/30/2013 12/1/2012 11/30/2013 11/30/2012 November 2013 November 2012 2013 2012 Percent Change Alabama 314 339 16,938 18,080 1,450 1,425 16,938 18,080 -6.3 Alaska 37 45 1,592 1,875 171 188 1,592 1,875 -15.1 Arizona 133 142 7,029 6,947 614 586 7,029 6,947 1.2 Arkansas 1 3 35 86 5 12 35 86 -59.4 Colorado 529 551 21,238 26,718 1,985 2,519 21,238 26,718 -20.5 Illinois 882 894 48,292 45,053 4,089 3,729 48,292 45,053 7.2 Indiana 653 696 34,676 33,865 3,022 2,909 34,676 33,865 2.4

156

The National Energy Modeling System: An Overview 2000 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply regions (Figures 19 and 20). coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply regions (Figures 19 and 20). Figure 19. Coal Market Module Demand Regions Figure 20. Coal Market Module Supply Regions

157

Oxidation of Mercury in Products of Coal Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Heng Ban Heng Ban Principal Investigator University of Alabama at Birmingham 1150 10th Avenue South Birmingham, AL 35294-4461 205-934-0011 hban@uab.edu Environmental and Water Resources OxidatiOn Of Mercury in PrOducts Of cOal cOMbustiOn Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. A variety of mercury reduction technologies are under commercial development, but an improved understanding of the fundamental chemical mechanisms that control the transformations and capture of mercury in boilers and pollution control devices is required to achieve necessary performance and cost reduction levels. Oxidized mercury is more easily captured by pollution control devices, such as Selective

158

Process for Low Cost Domestic Production of LIB Cathode Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- EV) Use BASF's existing assets and low cost production process. Validate that cost and quality targets are met via coin cells, pouch cells and 18650 cells. ...

159

Application of SEM Techniques to the Characterization of Coal and Coal Ash Products  

Science Journals Connector (OSTI)

Coal is a major source of fuel for...(1)...The last decade has seen a significant increase in the use of coal for power generation. The increased demand for coal and the tendency to use a variety of coals to meet...

Michael L. Jones; David P. Kalmanovitch

1992-01-01T23:59:59.000Z

160

Chapter 18 - Worldwide Coal Mine Methane and Coalbed Methane Activities  

Science Journals Connector (OSTI)

Abstract The chapter provides an overview of coal bed methane production in all countries (except USA; covered in Chapter 17) around the world where there is a viable coal deposit. Coal deposits are shown in a map and coal bed methane reserves are estimated. All countries can follow the lead provided by USA in CBM production where 10% of total gas consumption (2 TCF/year) comes from coal seams. Exploitation of thick and deep coal seams using the latest technology can create a vast source of domestic energy for many countries around the world.

Charlee Boger; James S. Marshall; Raymond C. Pilcher

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

CATALYTIC CONVERSION OF SOLVENT REFINED COAL TO LIQUID PRODUCTS  

E-Print Network (OSTI)

at 900C. raw Illinois coal, the ash content was quite low.30% from the feed coal on a moisture and ash free basis. In~ Solids (ash, FeSx. , unreacted coal) L . - - - - - - I

Tanner, K.I.

2010-01-01T23:59:59.000Z

162

CATALYTIC CONVERSION OF SOLVENT REFINED COAL TO LIQUID PRODUCTS  

E-Print Network (OSTI)

I. Solvent Refined Coal II. Catalysts III. Purpose andSondreal, E.A. , "Viscosity of Coal Liquids - The Effect ofAnthraxylon - Kinetics of Coal Hydrogenation," Ind. and Eng.

Tanner, K.I.

2010-01-01T23:59:59.000Z

163

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

SciTech Connect

This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-04-23T23:59:59.000Z

164

Coal as Raw Material for Carbon Production: Some New Aspects [and Discussion  

Science Journals Connector (OSTI)

20 March 1981 research-article Coal as Raw Material for Carbon Production...Characteristic changes in the constitution of hard coals (such as the nature and abundance of functional...bearing on the rational utilization of coal in the coke and carbon industries. For...

1981-01-01T23:59:59.000Z

165

A NOVEL MEMBRANE REACTOR FOR DIRECT HYDROGEN PRODUCTION FROM COAL  

SciTech Connect

Gas Technology Institute is developing a novel concept of membrane reactor coupled with a gasifier for high efficiency, clean and low cost production of hydrogen from coal. The concept incorporates a hydrogen-selective membrane within a gasification reactor for direct extraction of hydrogen from coal-derived synthesis gases. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying potential candidate membranes under high temperature, high pressure, and harsh environments of the coal gasification conditions. The best performing membranes will be selected for preliminary reactor design and cost estimates. Hydrogen permeation data for several perovskite membranes BCN (BaCe{sub 0.9}Nd{sub 0.1}O{sub 3-x}), SCE (SrCe{sub 0.9}Eu{sub 0.1}O{sub 3}) and SCTm (SrCe{sub 0.95}Tm{sub 0.05}O{sub 3}) have been successfully obtained for temperatures between 800 and 950 C and pressures from 1 to 12 bar in this project. However, it is known that the cerate-based perovskite materials can react with CO{sub 2}. Therefore, the stability issue of the proton conducting perovskite materials under CO{sub 2} or H{sub 2}S environments was examined. Tests were conducted in the Thermo Gravimetric Analyzer (TGA) unit for powder and disk forms of BCN and SCE. Perovskite materials doped with zirconium (Zr) are known to be resistant to CO{sub 2}. The results from the evaluation of the chemical stability for the Zr doped perovskite membranes are presented. During this reporting period, flowsheet simulation was also performed to calculate material and energy balance based on several hydrogen production processes from coal using high temperature membrane reactor (1000 C), low temperature membrane reactor (250 C), or conventional technologies. The results show that the coal to hydrogen process employing both the high temperature and the low temperature membrane reactors can increase the hydrogen production efficiency (cold gas efficiency) by more than 50% compared to the conventional process. Using either high temperature or low temperature membrane reactor process also results in an increase of the cold gas efficiencies as well as the thermal efficiencies of the overall process.

Shain Doong; Estela Ong; Mike Atroshenko; Francis Lau; Mike Roberts

2005-07-29T23:59:59.000Z

166

Process for Low Cost Domestic Production of LIB Cathode Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Received 472K * FY10 Funding Expected 890K Barriers * Reduce the production cost of Cathode Material * Meet PHEV battery requirements for a 40 mile all-electric range *...

167

Salmonella contamination during production of domestic and imported canaloupe  

E-Print Network (OSTI)

In this study, 8 cantaloupe farms and packing sheds from the United States (U.S.) and Mexico were sampled to evaluate cantaloupe contamination with Salmonella and Escherichia coli during production and processing. Samples collected from external...

Uribe, Imelda Mercado

2002-01-01T23:59:59.000Z

168

NETL: IEP - Coal Utilization By-Products : Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Drivers Regulatory Drivers Since 1993, Federal Regulations have treated the four major large-volume CUB's -- fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) byproducts -- as solid wastes that do not warrant regulation as hazardous wastes under Subtitle C of RCRA, as long as these CUB’s were not co-managed with other waste materials. On May 22, 2000, EPA published a final Regulatory Determination [PDF-320KB] that retained the hazardous waste exemption for coal utilization by-products. EPA has concluded that fossil fuel combustion wastes do not warrant regulation as hazardous under Subtitle C of RCRA and is retaining the hazardous waste exemption for these wastes. However, the Agency has determined that national non-hazardous waste regulations under RCRA Subtitle D are needed for coal combustion wastes disposed in surface impoundments and landfills and used as minefilling. EPA also concluded beneficial uses of these wastes, other than for minefilling, pose no significant risk and no additional national regulations are needed. This determination affects more than 110 million tons of fossil fuel combustion wastes that are generated each year, virtually all from burning coal.

169

Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Mining Productivity by State, Mine Type, and Mine Production Range, 2012 Mining Productivity by State, Mine Type, and Mine Production Range, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Mine Production Range (thousand short tons) Coal-Producing State, Region 1 and Mine Type Above 1,000 Above 500 to 1,000 Above 200 to 500 Above 100 to 200 Above 50 to 100 Above 10 to 50 10 or Under Total 2 Alabama 1.69 2.50 1.95 1.72 1.83 0.69 0.55 1.68 Underground 1.73 - - - 1.08 0.31 - 1.64 Surface 1.36 2.50 1.95 1.72 2.11 1.19 0.55 1.75 Alaska 5.98 - - - - - - 5.98 Surface 5.98 - - - - - - 5.98 Arizona 7.38 - - - - - - 7.38 Surface

170

Microsoft Word - 2012_EIA_Coal_Production_Estimates_Comparison.docx  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 December 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Performance Evaluation of the Weekly Coal Production Report for 2012 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. December 2013

171

Microsoft Word - Coal Production Estimates Evaluation.docx  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 November 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Performance Evaluation of the Weekly Coal Production Report for 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. November 2012

172

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

500000,2344107 500000,2344107 2003,400000,600000,400000,600000,2000000 2004,600000,400000,588738,600000,2282406 2005,709600,630053,663068,686456,2689178 2006,931065,894268,1083808,1196485,4105626 2007,1162737,1119536,1075460,1175845,4533578 2008,810189,1073315,980933,1037946,3902383 2009,880036,982760,956657,888905,3708358 2010,876084,1055102,1150725,1146281,4228192 2011,1063047,1189083,846624,892013,3990767 2012,1078404,1061289,1048018,957936,4145647 "P2013",1147031,1394232,1171278,"NA","--" "E = Estimated data." "P = Preliminary data." "NA = Not available." "-- = Not applicable." "Notes: The reported 4th quarter 2002 production amount was adjusted by rounding to the nearest 100,000 pounds to avoid disclosure of individual company data. This also affects the 2002 annual production. The reported 2003 and 1st, 2nd, and 4th quarter 2004 production amounts were adjusted by rounding to the nearest 200,000 pounds to avoid disclosure of individual company data. The reported 2004 total is the actual production for 2004. Totals may not equal sum of components because of independent rounding."

173

DELAYED COKING OF SOLVENT EXTRACTED COAL FOR PRODUCTION OF ANODE GRADE COKE: CHARACTERIZATION OF SOLID AND LIQUID PRODUCTS.  

E-Print Network (OSTI)

??This study investigates the feasibility of using high temperature solvent extraction of coal to produce feedstock for the production of anode grade coke through delayed (more)

Karri, Vamsi

2011-01-01T23:59:59.000Z

174

Production of catalyst supports for coking and sorbents from brown coal  

Science Journals Connector (OSTI)

Thermal activation of brown coal for production of porous carbon materials in a set-up with fluidized oxidation catalyst has been studied.

M. L. Shchipko; V. B. Fenelonov; E. V. Shevtsov

1994-11-01T23:59:59.000Z

175

Influence of coal quality factors on seam permeability associated with coalbed methane production.  

E-Print Network (OSTI)

??Cleats are natural fractures in coal that serve as permeability avenues for darcy flow of gas and water to the well bore during production. Theoretically, (more)

Wang, Xingjin

2007-01-01T23:59:59.000Z

176

Characterization of Pennsylvania Coal Combustion Products for Beneficial Use in Mine Land Reclamation.  

E-Print Network (OSTI)

??Over 130 million tons of coal combustion products (CCPs) are produced each year in the U.S. Less than half of these CCPs will be utilized (more)

Braun, Gregory

2012-01-01T23:59:59.000Z

177

Production of High-Hydrogen Content Coal-Derived Liquids [Part 2 of 3  

SciTech Connect

The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.

Stephen Bergin

2011-03-30T23:59:59.000Z

178

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Summary Summary The U.S. coal industry rebounded in 2010, with coal exports showing impressive gains and domestic production up over the previous year. Metallurgical coal export prices hit record levels as weather problems continued to plague Australian producers, and steel-hungry China and India continued to import relatively large amounts of metallurgical coal. U.S. domestic coal price increases moderated for the electric power sector and declined for industrial plants and for commercial and institutional users. Positive trends established in 2010 are expected to carry over to 2011. Domestic coal consumption as well as metallurgical coal exports are expected to increase as U.S. and most other industrial economies continue to grow. Coal prices should continue to increase at a moderate pace. As

179

A Novel Membrane Reactor for Direct Hydrogen Production From Coal  

SciTech Connect

Gas Technology Institute has developed a novel concept of a membrane reactor closely coupled with a coal gasifier for direct extraction of hydrogen from coal-derived syngas. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying potential candidate membranes under the coal gasification conditions. The best performing membranes were selected for preliminary reactor design and cost estimate. The overall economics of hydrogen production from this new process was assessed and compared with conventional hydrogen production technologies from coal. Several proton-conducting perovskite membranes based on the formulations of BCN (BaCe{sub 0.8}Nd{sub 0.2}O{sub 3-x}), BCY (BaCe{sub 0.8}Y{sub 0.2}O{sub 3-x}), SCE (Eu-doped SrCeO{sub 3}) and SCTm (SrCe{sub 0.95}Tm{sub 0.05}O{sub 3}) were successfully tested in a new permeation unit at temperatures between 800 and 1040 C and pressures from 1 to 12 bars. The experimental data confirm that the hydrogen flux increases with increasing hydrogen partial pressure at the feed side. The highest hydrogen flux measured was 1.0 cc/min/cm{sup 2} (STP) for the SCTm membrane at 3 bars and 1040 C. The chemical stability of the perovskite membranes with respect to CO{sub 2} and H{sub 2}S can be improved by doping with Zr, as demonstrated from the TGA (Thermal Gravimetric Analysis) tests in this project. A conceptual design, using the measured hydrogen flux data and a modeling approach, for a 1000 tons-per-day (TPD) coal gasifier shows that a membrane module can be configured within a fluidized bed gasifier without a substantial increase of the gasifier dimensions. Flowsheet simulations show that the coal to hydrogen process employing the proposed membrane reactor concept can increase the hydrogen production efficiency by more than 50% compared to the conventional process. Preliminary economic analysis also shows a 30% cost reduction for the proposed membrane reactor process, assuming membrane materials meeting DOE's flux and cost target. Although this study shows that a membrane module can be configured within a fluidized bed gasifier, placing the membrane module outside the gasifier in a closely coupled way in terms of temperature and pressure can still offer the same performance advantage. This could also avoid the complicated fluid dynamics and heat transfer issues when the membrane module is installed inside the gasifier. Future work should be focused on improving the permeability and stability for the proton-conducting membranes, testing the membranes with real syngas from a gasifier and scaling up the membrane size.

Shain Doong; Estela Ong; Mike Atrosphenko; Francis Lau; Mike Roberts

2006-01-20T23:59:59.000Z

180

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. The Hydrotreatment Facility is being prepared for trials with coal liquids. Raw coal tar distillate trials have been carried out by heating coal tar in the holding tank in the Hydrotreatment Facility. The liquids are centrifuged to warm the system up in preparation for the coal liquids. The coal tar distillate is then recycled to keep the centrifuge hot. In this way, the product has been distilled such that a softening point of approximately 110 C is reached. Then an ash test is conducted.

Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-07-13T23:59:59.000Z

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2003 declined to 1.12 million tons and was valued at  

E-Print Network (OSTI)

54 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic% of domestic production; copper was also recovered at mines in three other States. Although copper-electrowinning facilities operated during the year. Refined copper and direct melt scrap were consumed at about 30 brass

182

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1997 was essentially unchanged at 1.9 million metric  

E-Print Network (OSTI)

52 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Mexico, Nevada, and Montana, accounted for 98% of domestic production; copper was also recovered at mines in six other States. While copper was recovered at about 35 mines operating in the United States, 15

183

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2007 declined nominally to 1.19 million tons, but its  

E-Print Network (OSTI)

54 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for 99% of domestic production; copper was also recovered at mines in two other States. Although copper was recovered at 26 mines operating in the United

184

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2009 declined by about 9% to 1.2 million tons and its  

E-Print Network (OSTI)

48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also was recovered at mines in Idaho and Missouri. Although copper was recovered at 29 mines operating in the United

185

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status" 4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status" "In-Situ-Leach Plant Owner","In-Situ-Leach Plant Name","County, State (existing and planned locations)","Production Capacity (pounds U3O8 per year)","Operating Status at End of" ,,,,2012,"1st Quarter 2013","2nd Quarter 2013","3rd Quarter 2013" "Cameco","Crow Butte Operation","Dawes, Nebraska",1000000,"Operating","Operating","Operating","Operating" "Hydro Resources, Inc.","Church Rock","McKinley, New Mexico",1000000,"Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed"

186

Coal precursors for production of carbon and graphite products. Final report  

SciTech Connect

The main goal of this program was to demonstrate the utility of coal extracts from the West Virginia University (WVU) extraction process as suitable base raw materials for the carbon products encompassed by the Carbon Products Consortium (CPC) team. These include binder and impregnation pitches, Coke for graphite electrodes, Cokes for anodes and specialty graphite, matrices for C/C composites and raw material for mesophase pitch fibers. Previous work in this program has shown that the WVU coal extraction process coupled with hydrotreatment, does have the potential for achieving this objective. The current effort involved screening and evaluation of extracts produced by the WVU Group and recommending appropriate materials for scaleup for subsequent evaluation by Consortium Team members. The program involved an initial characterization of small-scale extracts using standard analytical methods and mesophase formation studies. This was followed by feedback to the WVU Group and to the CPC partners with recommendation of material for scaleup. Similar analytical and mesophase studies on some of the scaled-up extracts was performed. The activation of the coal extraction residues for the purpose of producing a useful active carbon was investigated. A further task was to fabricate a small graphite artifact using Coke derived from coal extract as the filler and the coal extract itself as a binder. The results of the studies are summarized in this report.

Lewis, I.C.; Lewis, R.T.; Mayer, H.K. [Ucar Carbon Co., Inc., Parma, OH (United States)

1996-04-08T23:59:59.000Z

187

Solvent extraction of bituminous coals using light cycle oil: characterization of diaromatic products in liquids  

SciTech Connect

Many studies of the pyrolytic degradation of coal-derived and petroleum-derived aviation fuels have demonstrated that the coal-derived fuels show better thermal stability, both with respect to deposition of carbonaceous solids and cracking to gases. Much previous work at our institute has focused on the use of refined chemical oil (RCO), a distillate from the refining of coal tar, blended with light cycle oil (LCO) from catalytic cracking of vacuum gas oil. Hydroprocessing of this blend forms high concentrations of tetralin and decalin derivatives that confer particularly good thermal stability on the fuel. However, possible supply constraints for RCO make it important to consider alternative ways to produce an 'RCO-like' product from coal in an inexpensive process. This study shows the results of coal extraction using LCO as a solvent. At 350{sup o}C at a solvent-to-coal ratio of 10:1, the conversions were 30-50 wt % and extract yields 28-40 wt % when testing five different coals. When using lower LCO/coal ratios, conversions and extract yields were much smaller; lower LCO/coal ratios also caused mechanical issues. LCO is thought to behave similarly to a nonpolar, non-hydrogen donor solvent, which would facilitate heat-induced structural relaxation of the coal followed by solubilization. The main components contributed from the coal to the extract when using Pittsburgh coal are di- and triaromatic compounds. 41 refs., 3 figs., 12 tabs.

Josefa M. Griffith; Caroline E. Burgess Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States). EMS Energy Institute

2009-09-15T23:59:59.000Z

188

Appalachia: the land of coal  

SciTech Connect

The Appalachian region of the United States is an area known worldwide for its long history as a source of coal. If any area of the Unted States is to gain from the projected growth of the coal industry, both domestic and international, it would surely be the coal mining areas of this region, including its biggest coal producing states - Pennsylvania, West Virginia, Kentucky and Ohio. An important facet of the region's coal industry is not only the presence of the giant coal companies but also the small, independent operator. These men are owner-operators and every dollar spent for their operations must bring a return. There is no room for error. WORLD COAL editors have recently traveled to areas in Appalachia and visited mines that are run by these independent operators. One such area was Harlan County, Kentucky. Virtually all mining done in Harlan is underground. Shaft mines are uncommon; most operations have access to exposed seams in the hillsides. Most of the small operations in this region use room and pillar mining and productivity is quite good. It is imperative that the transportation infrastructure be improved so that the expected increased movement of coal out of the region be handled efficiently. Potential domestic consumers of coal from Appalachia are numerous. New England, New York, the mid-Atlantic states, and the South are all looking to this nearby region to help reduce their dependence on oil. Other countries also are looking to the area.

Schneiderman, S.J. (ed.)

1980-12-01T23:59:59.000Z

189

Trace elements in brown coal and its products of combustion  

Science Journals Connector (OSTI)

Concentrations of 38 elements in brown coal, bottom ash and size fractionated ESP coal ash from the Belchatw I Power Plant were determined by INAA. Based on enrichment factors calculated relatively to iron an...

U. Tomza; P. Kaleta

1986-10-20T23:59:59.000Z

190

Oxidation of Mercury in Products of Coal Combustion  

SciTech Connect

Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

2009-09-14T23:59:59.000Z

191

Water effects of the use of western coal for electrical production  

SciTech Connect

Water may be a constraint on the expanded development of coal resources in the semi-arid western United States. Water allocation in the West has been determined by the appropriative rights doctrine which allows perpetual use of water sources by those who first claim it for beneficial purposes. This has had the effect of placing a dominative interest in water allocation in one economic sector: agriculture. New water sources are available to coal producers but political and economic problems must be overcome. Water is required by every phase of coal development. Mines use water for dust control and land reclamation. Coal slurry pipelines would use water as a transport medium. Steam electric power plants use water for cooling, cleaning, and in the boiler. Coal gasification plants would use water for cooling, cleaning, and as a material input. In addition to these direct uses of water by coal development, the people who build and operate the development demand water for domestic and recreational purposes. The quantity of water required for a given element of a coal development is site specific and dependent on many factors. The available literature cites a range of estimates of the amount of water required for each type of development. The width of this range seems related to the stage of development of the particular technology. Estimates of water requirements for various schemes to provide an average electrical load of 9 GWe to a load center 1000 miles from western mines are shown in Table 5.

Rogers, E.A.

1980-02-01T23:59:59.000Z

192

Process for the production of fuel gas from coal  

DOE Patents (OSTI)

An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

Patel, Jitendra G. (Bolingbrook, IL); Sandstrom, William A. (Chicago, IL); Tarman, Paul B. (Elmhurst, IL)

1982-01-01T23:59:59.000Z

193

Coking Plants, Coal-to-gas Plants, Gas Production and Distribution  

Science Journals Connector (OSTI)

This environmental brief covers various coal upgrading technologies, incl. coking and low-temperature carbonization as processes yielding the target products coke and gas plus tar products and diverse...

1995-01-01T23:59:59.000Z

194

Determining coal permeabilities through constant pressure production interference testing  

E-Print Network (OSTI)

Kurt Schubarth, B. S. , Texas A&M Un1versity Chairman of Advisory Committee: Dr. Stephen A. Holditch The determination of format1on propert1es 1s important to the success of any underground coal gasification (UCG) project. There are many ways.... : "Hydrological Site Characterization for In-Situ Coal Gasification, " 6th Underground Coal Conversion Symposium, July 13-17, 1980. Schrider, L. A. and Jennings, J. W. : "An Underground Coal Gasification Experiment, Hanna, Wyoming, " 1974, SPE 4993. 3. van...

Schubarth, Stephen Kurt

2012-06-07T23:59:59.000Z

195

Diffusion Characterization of Coal for Enhanced Coalbed Methane Production.  

E-Print Network (OSTI)

??This thesis explores the concept of displacement of sorbed methane and enhancement of methane recovery by injection of CO2 into coal, while sequestering CO2. The (more)

Chhajed, Pawan

2011-01-01T23:59:59.000Z

196

Electricity production levelized costs for nuclear, gas and coal  

Office of Scientific and Technical Information (OSTI)

Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario. Javier C. Palacios, Gustavo Alonso, Ramn Ramrez, Armando Gmez, Javier Ortiz, Luis C....

197

Coal flow aids reduce coke plant operating costs and improve production rates  

SciTech Connect

Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

2005-06-01T23:59:59.000Z

198

PRODUCTION OF FOAMS, FIBERS AND PITCHES USING A COAL EXTRACTION PROCESS  

SciTech Connect

This Department of Energy National Energy Technology Laboratory sponsored project developed processes for converting coal feedstocks to carbon products, including coal-derived pitch, coke foams and fibers based on solvent extraction processes. A key technology is the use of hydrogenation accomplished at elevated temperatures and pressures to obtain a synthetic coal pitch. Hydrogenation, or partial direct liquefaction of coal, is used to modify the properties of raw coal such that a molten synthetic pitch can be obtained. The amount of hydrogen required to produce a synthetic pitch is about an order of magnitude less than the amount required to produce synthetic crude oil. Hence the conditions for synthetic pitch production consume very little hydrogen and can be accomplished at substantially lower pressure. In the molten state, hot filtration or centrifugation can be used to separate dissolved coal chemicals from mineral matter and insolubles (inertinite), resulting in the production of a purified hydrocarbon pitch. Alternatively, if hydrogenation is not used, aromatic hydrocarbon liquids appropriate for use as precursors to carbon products can obtained by dissolving coal in a solvent. As in the case for partial direct liquefaction pitches, undissolved coal is removed via hot filtration or centrifugation. Excess solvent is boiled off and recovered. The resultant solid material, referred to as Solvent Extracted Carbon Ore or SECO, has been used successfully to produce artificial graphite and carbon foam.

Chong Chen; Elliot B. Kennel; Liviu Magean; Pete G. Stansberry; Alfred H. Stiller; John W. Zondlo

2004-06-20T23:59:59.000Z

199

Coal gasification power generation, and product market study. Topical report, March 1, 1995--March 31, 1996  

SciTech Connect

This Western Research Institute (WRI) project was part of a WRI Energy Resource Utilization Program to stimulate pilot-scale improved technologies projects to add value to coal resources in the Rocky Mountain region. The intent of this program is to assess the application potential of emerging technologies to western resources. The focus of this project is on a coal resource near the Wyoming/Colorado border, in Colorado. Energy Fuels Corporation/Kerr Coal Company operates a coal mine in Jackson County, Colorado. The coal produces 10,500 Btu/lb and has very low sulfur and ash contents. Kerr Coal Company is seeking advanced technology for alternate uses for this coal. This project was to have included a significant cost-share from the Kerr Coal Company ownership for a market survey of potential products and technical alternatives to be studied in the Rocky Mountain Region. The Energy Fuels Corporation/Kerr Coal Company and WRI originally proposed this work on a cost reimbursable basis. The total cost of the project was priced at $117,035. The Kerr Coal Company had scheduled at least $60,000.00 to be spent on market research for the project that never developed because of product market changes for the company. WRI and Kerr explored potential markets and new technologies for this resource. The first phase of this project as a preliminary study had studied fuel and nonfuel technical alternatives. Through related projects conducted at WRI, resource utilization was studied to find high-value materials that can be targeted for fuel and nonfuel use and eventually include other low-sulfur coals in the Rocky Mountain region. The six-month project work was spread over about a three-year period to observe, measure, and confirm over time-any trends in technology development that would lead to economic benefits in northern Colorado and southern Wyoming from coal gasification and power generation.

Sheesley, D.; King, S.B.

1998-12-31T23:59:59.000Z

200

New developments in coal briquetting technology  

SciTech Connect

Briquetting of coal has been with us for well over a century. In the earliest applications of coal briquetting, less valuable fine coal was agglomerated into briquettes using a wide variety of binders, including coal tar, pitch and asphalt. Eventually, roll briquetters came into more widespread use, permitting the process to become a continuous one. Coal briquetting went out of favor during the 1950s in most of the industrialized world. The major reason for this decline in use was the discovery that the coal gas distillates used for binders were harmful to human health. Also, the abundance of cheap petroleum made coal briquettes a less attractive alternative as an industrial or domestic fuel. The re-emergence of coal as a primary industrial fuel and also its increased prominence as a fuel for thermal electric power stations led to a large increase in the annual volume of coal being mined worldwide. Coal preparation technology steadily improved over the years with the general exception of fine coal preparation. The processes available for treating this size range were considerably more expensive per unit mass of coal treated than coarse coal processes. Also, costly dewatering equipment was required after cleaning to remove surface moisture. Even with dewatering, the high surface area per unit mass of fine coal versus coarse coal resulted in high moisture contents. Therefore, little incentive existed to improve the performance of fine coal processes since this would only increase the amount of wet coal fines which would have to be dealt with. With such an ever-increasing volume of coal fines being created each year, there emerged an interest in recovering this valuable product. Several schemes were developed to recover coal fines discarded in abandoned tailings impoundments by previous operations.

Tucker, P.V. [Kilborn Inc., Ontario (Canada); Bosworth, G.B. [Kilborn Engineering Pacific Ltd., Vancouver, British Columbia (Canada); Kalb, G.W. [KKS Systems Inc., Wheeling, WV (United States)

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The recycling of the coal fly ash in glass production  

SciTech Connect

The recycling of fly ash obtained from the combustion of coal in thermal power plant has been studied. Coal fly ash was vitrified by melting at 1773 K for 5 hours without any additives. The properties of glasses produced from coal fly ash were investigated by means of Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. DTA study indicated that there was only one endothermic peak at 1003 K corresponding to the glass transition temperature. XRD analysis showed the amorphous state of the glass sample produced from coal fly ash. SEM investigations revealed that the coal fly ash based glass sample had smooth surface. The mechanical, physical and chemical properties of the glass sample were also determined. Recycling of coal fly ash by using vitrification technique resulted to a glass material that had good mechanical, physical and chemical properties. Toxicity characteristic leaching procedure (TCLP) results showed that the heavy metals of Pb, Cr, Zn and Mn were successfully immobilized into the glass. It can be said that glass sample obtained by the recycling of coal fly ash can be taken as a non-hazardous material. Overall, results indicated that the vitrification technique is an effective way for the stabilization and recycling of coal fly ash.

Erol, M.M.; Kucukbayrak, S.; Ersoy-Mericboyu, A. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

2006-09-15T23:59:59.000Z

202

Clean coal technologies: Research, development, and demonstration program plan  

SciTech Connect

The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

Not Available

1993-12-01T23:59:59.000Z

203

Economics of large-scale thorium oxide production: assessment of domestic resources  

SciTech Connect

The supply curve illustrates that sufficient amounts of thorium exist supply a domestic thorium-reactor economy. Most likely costs of production range from $3 to $60/lb ThO/sub 2/. Near-term thorium oxide resources include the stockpiles in Ohio, Maryland, and Tennessee and the thorite deposits at Hall Mountain, Idaho. Costs are under $10/lb thorium oxide. Longer term economic deposits include Wet Mountain, Colorado; Lemhi Pass, Idaho; and Palmer, Michigan. Most likely costs are under $20/lb thorium oxide. Long-term deposits include Bald Mountain, Wyoming; Bear Lodge, Wyoming; and Conway, New Hampshire. Costs approximately equal or exceed $50/lb thorium oxide.

Young, J.K.; Bloomster, C.H.; Enderlin, W.I.; Morgenstern, M.H.; Ballinger, M.Y.; Drost, M.K.; Weakley, S.A.

1980-02-01T23:59:59.000Z

204

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

205

HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS  

SciTech Connect

As part of the DOEs Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to shift the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal consumption by 66% using electrolysis and nuclear power as the hydrogen source. In addition, nuclear integration decreases CO2 emissions by 84% if sequestration is assumed and 96% without sequestration, when compared to conventional CTL. The preliminary economic assessment indicates that the incorporation of 11 HTGRs and the associated HTSEs impacts the expected return on investment, when compared to conventional CTL with or without sequestration. However, in a carbon constrained scenario, where CO2 emissions are taxed and sequestration is not an option, a reasonable CO2 tax would equate the economics of the nuclear assisted CTL case with the conventional CTL case. The economic results are preliminary, as they do not include economies of scale for multiple HTGRs and are based on an uncertain reactor cost estimate. Refinement of the HTGR cost estimate is currently underway. To reduce well to wheel (WTW) GHG emissions below baseline (U.S. crude mix) or imported crude derived diesel, integration of an HTGR is necessary. WTW GHG emissions decrease 8% below baseline crude with nuclear assisted CTL. Even with CO2 sequestration, conventional CTL WTW GHG emissions are 24% higher than baseline crude emissions. Current efforts are underway to investigate the incorporation of nuclear integrated steam methane reforming for the production of hydrogen, in place of HTSE. This will likely reduce the number of HTGRs required for the process.

Anastasia M Gandrik; Rick A Wood

2010-10-01T23:59:59.000Z

206

Imminence of peak in US coal production and overestimation of reserves Nathan G.F. Reaver a  

E-Print Network (OSTI)

Non-linear fitting Coal is the bulwark of US energy production making up about a third of all energy with US reserves. We forecast future US coal production, in both raw tonnage and energy, using a multi or 44% of all historical carbon dioxide emissions from the US fossil fuel consumption came from US coal

Khare, Sanjay V.

207

A resource and technology assessment of coal utilization in India  

SciTech Connect

Electricity production in India is projected to expand dramatically in the near term to energize new industrial development, while also easing the energy shortages throughout the country. Much of the new growth in electricity production will be fueled by domestic coal resources; however, there is worldwide concern about increased coal use, as greater carbon dioxide emissions from coal combustion will exacerbate climate change. At the same time, there are now a number of different existing and emerging technological options for coal conversion and greenhouse gas (GHG) reduction worldwide that could potentially be useful for the Indian coal-power sector. This paper reviews coal utilization in India and examines current and emerging coal power technologies with near- and long-term potential for reducing greenhouse gas emissions from coal power generation. 107 refs., 8 figs., 6 tabs.

Chikkatur, A.P. [Harvard University, Cambridge, MA (United States). Kennedy School of Government

2008-10-15T23:59:59.000Z

208

NETL: IEP - Coal Utilization By-Products: Consortium Byproducts Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Byproducts Recycling Consortium (CBRC) Combustion Byproducts Recycling Consortium (CBRC) The mission of the Combustion Byproducts Recycling Consortium (CBRC) is to promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing. The overall goals of CBRC are to: Increase the overall national rate of byproduct use by to ~ 50 % by 2010 Increase the number of “allowable” byproduct uses under state regulations by ~ 25% Double of the current rate of FGD byproduct use CBRC is a unique partnership that integrates the electric power industry, State and Federal regulatory agencies, and academia to form a strong, cohesive consortium to guide the national and regional research priorities of the CBRC. CBRC is managed by the West Virginia Water Research Institute at West Virginia University and is administered by regional centers at the University of Kentucky (Eastern Region), Southern Illinois University (Midwest Region) and the University of North Dakota (Western Region). Primary funding for CBRC is provided by the U.S. Department of Energy’s National Energy Technology Laboratory (DOE-NETL).

209

Selection of Coal Gasification Parameters for Injection of Gasification Products Into a Blast Furnace  

Science Journals Connector (OSTI)

An analytical study was performed on the influence of blast parameters on the course of the processes in the volume of a blast furnace and smelting rates by injection of low-grade coal gasification products. It w...

I. G. Tovarovsky; A. E. Merkulov

2014-01-01T23:59:59.000Z

210

Nitrogen bases in the coking products of coal (composition, methods of isolation, and utilization) (Review)  

Science Journals Connector (OSTI)

The compositions and yields of nitrogen bases during thermochemical transformations of the organic mass of coals are presented. The dependence of the distribution ... nitrogen in the products of thermal refining ...

N. D. Rus'yanova; B. E. Kogan; M. A. Kosareva

1976-12-01T23:59:59.000Z

211

Synthesis of super plasticizer NF-30 from coal coking by product washing oil and performance analysis  

Science Journals Connector (OSTI)

Super plasticizer was synthesized by using coal coking by product washing oil and industrial naphthalene....2 in exhaust (20%). Compared with NF, NF-30 have some advantages in lower cost, high water reducing rate...

Zifang Xu ???; Mingxu Zhang; Wenpei Hu

2013-10-01T23:59:59.000Z

212

A global coal production forecast with multi-Hubbert cycle analysis  

Science Journals Connector (OSTI)

Based on economic and policy considerations that appear to be unconstrained by geophysics, the Intergovernmental Panel on Climate Change (IPCC) generated forty carbon production and emissions scenarios. In this paper, we develop a base-case scenario for global coal production based on the physical multi-cycle Hubbert analysis of historical production data. Areas with large resources but little production history, such as Alaska and the Russian Far East, are treated as sensitivities on top of this base-case, producing an additional 125Gt of coal. The value of this approach is that it provides a reality check on the magnitude of carbon emissions in a business-as-usual (BAU) scenario. The resulting base-case is significantly below 36 of the 40 carbon emission scenarios from the IPCC. The global peak of coal production from existing coalfields is predicted to occur close to the year 2011. The peak coal production rate is 160EJ/y, and the peak carbon emissions from coal burning are 4.0GtC (15GtCO2) per year. After 2011, the production rates of coal and CO2 decline, reaching 1990 levels by the year 2037, and reaching 50% of the peak value in the year 2047. It is unlikely that future mines will reverse the trend predicted in this BAU scenario.

Tadeusz W. Patzek; Gregory D. Croft

2010-01-01T23:59:59.000Z

213

Coal-bed methane production in eastern Kansas: Its potential and restraints  

SciTech Connect

In 1921 and again in 1988, workers demonstrated that the high volatile A and B coals of the Pennsylvanian Cherokee Group can be produced economically from vertically drilled holes, and that some of these coals have a gas content as high as 200 ft{sup 3}/ton. Detailed subsurface mapping on a county-by-county basis using geophysical logs shows the Weir coal seam to be the thickest (up to 6 ft thick) and to exist in numerous amoeba-shaped pockets covering several thousand acres. Lateral pinch-out into deltaic sands offers a conventional gas source. New attention to geophysical logging shows most coals have a negative SP response, high resistivities, and densities of 1.6 g/cm{sup 3}. Highly permeable coals cause lost circulation during drilling and thief zones during cementing, and they are the source of abundant unwanted salt water. Low-permeability coals can be recognized by their high fracture gradients, which are difficult to explain but are documented to exceed 2.2. Current successful completions use both limited-entry, small-volume nitrogen stimulations or an open hole below production casing. Subsurface coals are at normal Mid-Continent pressures and may be free of water. Initially, some wells flow naturally without pumping. Saltwater disposal is often helped by the need for water in nearby waterflood projects and the easy availability of state-approved saltwater disposal wells in Mississippi and Arbuckle carbonates. Recent attempts to recomplete coal zones in slim-hole completions are having mixed results. The major restraints to coal-bed methane production are restricted to low permeability of the coals and engineering problems, not to the availability or gas content of the coals.

Stoeckinger, B.T.

1989-08-01T23:59:59.000Z

214

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network (OSTI)

in the manufacture of lubricants and greases and in the production of synthetic rubber. Salient Statistics98 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production from domestic resources, reported production and value of production data cannot be published

215

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network (OSTI)

in the manufacture of lubricants and greases and in the production of synthetic rubber. Salient Statistics96 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production from domestic resources, reported production and value of production data cannot be published

216

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network (OSTI)

in the manufacture of lubricants and greases and in the production of synthetic rubber. Salient Statistics100 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production from domestic resources, reported production and value of production data cannot be published

217

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and  

E-Print Network (OSTI)

%; primary aluminum production, 6%; continuous casting, 4%; rubber and thermoplastics, 4%; pharmaceuticals, 294 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production resources, reported production and value of production were withheld from publication to avoid disclosing

218

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

219

Controls of coal fabric on coalbed gas production and compositional shift in both field production and canister desorption tests  

SciTech Connect

The production rates of coalbed gas wells commonly vary significantly, even in the same field with similar reservoir permeability and gas content. The compositional variation in produced gas is also not everywhere predictable, although in most fields produced gas becomes progressively enriched in CO, through the production life of a reservoir, such as parts of the San Juan basin. In contrast, it is generally observed that the ratio of CO{sub 2}:CH{sub 4} declines with time during field and laboratory desorption testing of coal cores. In this study, we investigate numerically the importance of coal fabric, namely cleat spacing and aperture width, on the performance of coalbed gas wells and gas compositional shifts during production. Because of the cubic relationship between fracture permeability and fracture aperture width (and thus fracture porosity) for a given cleat permeability, the production profile of coal seams varies depending on whether the permeability is distributed among closely spaced fractures (cleat) with narrower apertures or more widely spaced fractures (cleat) with wider apertures. There is a lower fracture porosity for coal with widely spaced fractures than for coal with closely spaced fractures. Therefore, the relative permeability to gas increases more rapidly for coals with more widely spaced cleats as less dewatering from fractures is required, assuming that the fractures are initially water saturated. The enrichment of CO{sub 2} in the production gas with time occurs because of the stronger adsorption of coals for CO{sub 2} than CH{sub 4}. However, during desorption of coal cores, CO{sub 2} desorbs more rapidly than methane because desorption rate is governed more by diffusion than by sorption affinity, and CO{sub 2} has much higher effective diffusivity in microporous coals than CH{sub 4}.

Cui, X.J.; Bustin, R.M. [University of British Columbia, Vancouver, BC (Canada)

2006-03-15T23:59:59.000Z

220

Costs and indices for domestic oil and gas field equipment and production operations, 1992--1995  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1992, 1993, 1994, and 1995. The costs of all equipment and services are those in effect during June of each year. The sum (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measured do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables.

NONE

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Process for forming coal compacts and product thereof  

DOE Patents (OSTI)

A process for forming durable, mechanically strong compacts from coal particulates without use of a binder is disclosed. The process involves applying a compressive stress to a particulate feed comprising substantially water-saturated coal particles while the feed is heated to a final compaction temperature in excess of about 100.degree. C. The water present in the feed remains substantially in the liquid phase throughout the compact forming process. This is achieved by heating and compressing the particulate feed and cooling the formed compact at a pressure sufficient to prevent water present in the feed from boiling. The compacts produced by the process have a moisture content near their water saturation point. As a result, these compacts absorb little water and retain exceptional mechanical strength when immersed in high pressure water. The process can be used to form large, cylindrically-shaped compacts from coal particles (i.e., "coal logs") so that the coal can be transported in a hydraulic coal log pipeline.

Gunnink, Brett (Columbia, MO); Kanunar, Jayanth (Arlington, MA); Liang, Zhuoxiong (San Francisco, CA)

2002-01-01T23:59:59.000Z

222

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Origin State, Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys

223

WA_99_022_AIR_PRODUCTS_AND_CHEMICAL_Waiver_of_Domestic_and_F...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9022AIRPRODUCTSANDCHEMICALWaiverofDomesticandF.pdf WA99022AIRPRODUCTSANDCHEMICALWaiverofDomesticandF.pdf WA99022AIRPRODUCTSANDCHEMICALWaiverofDomestic...

224

Annual Coal Distribution Report - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

current Coal Distribution Report current Coal Distribution Report Annual Coal Distribution Report Release Date: November 7, 2012 | Next Release Date: November 2013 | full report Archive Domestic coal distribution by origin State, destination State, consumer category, method of transportation; foreign coal distribution by major coal-exporting state and method of transportation; and domestic and foreign coal distribution by origin state. Year Domestic and foreign distribution of U.S. coal by State of origin Foreign distribution of U.S. coal by major coal-exporting States and destination Domestic distribution of U.S. coal by origin State, consumer, destination and method of transportation1 Domestic distribution of U.S. coal by destination State, consumer, destination and method of transportation1

225

(Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: The United States was the largest producer and consumer of lithium minerals and  

E-Print Network (OSTI)

and greases and in the production of synthetic rubber. Salient Statistics--United States: 1992 1993 1994 199598 LITHIUM (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production worldwide. The value of domestic lithium production was estimated to be about $115 million in 1996. Two

226

(Data in metric tons of contained lithium, unless noted) Domestic Production and Use: The United States was the largest producer and consumer of lithium minerals and  

E-Print Network (OSTI)

and greases and synthetic rubber production. Salient Statistics--United States: 1991 1992 1993 1994 1995e96 LITHIUM (Data in metric tons of contained lithium, unless noted) Domestic Production and Use. The value of domestic lithium production was estimated to be about $115 million in 1995. Two companies

227

Comparative Analysis of the Production Costs and Life-Cycle GHG Emissions of FT-Liquid Fuels from Coal and  

E-Print Network (OSTI)

Coal and Natural Gas Figure S1 shows a graphical description of the life cycle of coal-to-liquids (CTL) and gas-to-liquids (GTL). Figure S1: Life Cycle of Coal-Based and Natural Gas-Based Fischer-Tropsch LiquidComparative Analysis of the Production Costs and Life- Cycle GHG Emissions of FT-Liquid Fuels from

Jaramillo, Paulina

228

Estimates of central Appalachian coal reserves by cost of production and sulfur content  

SciTech Connect

This study provides information on the quantity, quality, and production costs for all minable coal reserves in the major coal-producing counties of central Appalachia, a region that contains the large majority of low-sulfur and compliance coal reserves in the eastern US. Presently, the best source of detailed reserve information in the Appalachian region is the estimates produced by the mining and land holding companies that control the reserves. The authors have been able to obtain overall reserve estimates based on the detailed geological and engineering studies conducted by these companies. In areas where this information does not exist, the authors have relied on published estimates of reserves and modified these estimates based on known conditions on surrounding properties. This reserve information has been combined with data on coal quality and mining costs to produce cost curves for all minable coal reserves by sulfur content. Results to date indicate that most of the major coal-producing counties in central Appalachia will be able to increase production levels significantly on a sustainable basis for at least the next 20 years, without major real increases in coal prices.

Watkins, J.

1988-08-01T23:59:59.000Z

229

Thermal-destruction products of coal in the blast-furnace gas-purification system  

SciTech Connect

The lean, poorly clinkering coal and anthracite used to replace coke in blast furnaces has a considerable content of volatile components (low-molecular thermaldestruction products), which enter the water and sludge of the blast-furnace gas-purification system as petroleum products. Therefore, it is important to study the influence of coal on the petroleum-product content in the water and sludge within this system. The liberation of primary thermal-destruction products is investigated for anthracite with around 4 wt % volatiles, using a STA 449C Jupiter thermoanalyzer equipped with a QMC 230 mass spectrometer. The thermoanalyzer determines small changes in mass and thermal effects with high accuracy (weighing accuracy 10{sup -8} g; error in measuring thermal effects 1 mV). This permits experiments with single layers of coal particles, eliminating secondary reactions of its thermal-destruction products.

A.M. Amdur; M.V. Shibanova; E.V. Ental'tsev [Russian Academy of Sciences, Yekaterinburg (Russian Federation). Russia Institute of Metallurgy

2008-10-15T23:59:59.000Z

230

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

SciTech Connect

The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Emissions of carbon dioxide (CO{sub 2}) into the atmosphere are an inherent part of electricity generation, transportation, and industrial processes that rely on fossil fuels. These energy-related activities are responsible for more than 80 percent of the U.S. greenhouse gas emissions, and most of these emissions are CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coalbed methane (CBM) provides a value-added stream, potentially reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy Inc., Research & Development (CONSOL), with support from the US DOE, has embarked on a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through two overlying coal seams. Once completed, all of the wells will be used initially to drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and recovered CBM, the program includes additional monitoring wells to further examine horizontal and vertical migration of CO{sub 2}. This is the fifth Technical Progress report for the project. Progress this period was focused on reclamation of the north access road and north well site, and development of revised drilling methods. This report provides a concise overview of project activities this period and plans for future work.

William A. Williams

2004-03-01T23:59:59.000Z

231

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-04-01T23:59:59.000Z

232

U.S. Domestic  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Domestic and Foreign Coal Distribution by State of Origin ____________________________________________________________________________________________________ U.S. Energy Information Administration | Annual Coal Distribution Report 2012 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2012 (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By Brokers & Traders* Total Exports Total Distribution Alabama 8,597.7 10,332.9 324.6 10,657.6 19,255.3 Alaska 618.2 967.8 - 967.8 1,586.0 Arizona 7,450.2 - - - 7,450.2 Arkansas 105.5 - - - 105.5 Colorado 19,992.7 3,467.7 3,039.6 6,507.3 26,500.0 Illinois 34,350.9 12,340.9 1,434.6 13,775.5 48,126.4 Indiana 34,712.2 375.3 96.7 472.0 35,184.2 Kansas 4.3 - - - 4.3 Kentucky Total 74,483.7 5,668.3 3,170.3 8,838.6 83,322.4

233

Preparation and evaluation of coal extracts as precursors for carbon and graphite products  

SciTech Connect

A coal extraction process coupled with coal hydrotreatment has been shown capable of producing suitable precursors for a variety of commercially important carbon and graphite products. The N-methylpyrolidone (NMP) extracts of hydrotreated coals have been analytically and chemically characterized and shown to have properties acceptable for use as binder and impregnation pitch. Mesophase formation studies have demonstrated their capability for producing both needle and anode grade coke as well as precursors for mesophase pitch fibers. A graphite artifact has been produced using a coal extract as a binder and coke derived from the extract as a filler. Further evaluation of the extract materials is being carried out by industrial members of the Carbon Products Consortium.

Zondlo, J.W.; Stiller, A.W.; Stansberry, P.G. [West Virginia Univ., Morgantown, WV (United States)] [and others

1996-08-01T23:59:59.000Z

234

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

SciTech Connect

The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Carbon dioxide (CO{sub 2}) emissions to the atmosphere are an inherent part of energy-related activities, such as electricity generation, transportation, and building systems. These energy-related activities are responsible for roughly 85% of the U.S. greenhouse gas emissions, and 95% of these emissions are dominated by CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Many scientists believe greenhouse gases, particularly CO{sub 2}, trap heat in the earth's atmosphere. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils, and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coal bed methane (CBM) provides a value-added stream, reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy, with support from the U.S. DOE, is conducting a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through overlying coal seams in the subsurface. Once completed, the wells will be used to initially drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and CBM produced, the program includes a plan to monitor horizontal migration of CO{sub 2} within the lower seam. This is the second Technical Progress report for the project. Progress to date has been focused on pre-construction activities; in particular, attaining site approvals and securing property rights for the project. This report provides a concise overview of project activity this period and plans for future work. This is the second semi-annual Technical Progress report under the subject agreement. During this report period, progress was made in completing the environmental assessment report, securing land and coal rights, and evaluating drilling strategies. These aspects of the project are discussed in detail in this report.

Gary L. Cairns

2002-10-01T23:59:59.000Z

235

Development of Continuous Solvent Extraction Processes for Coal Derived Carbon Products  

SciTech Connect

This DOE NETL-sponsored effort seeks to develop continuous processes for producing carbon products from solvent-extracted coal. A key process step is removal of solids from liquefied coal. Three different processes were compared: gravity separation, centrifugation using a decanter-type Sharples Pennwalt centrifuge, and a Spinner-II centrifuge. The data suggest that extracts can be cleaned to as low as 0.5% ash level and probably lower using a combination of these techniques.

Elliot B. Kennel

2006-12-31T23:59:59.000Z

236

Research needs and data acquisition to apply US technology to foreign coals: Quarterly report, October-December 1986. [Foreign  

SciTech Connect

The National Coal Technology Data Center (NCTDC) at the Pittsburgh Energy Technology Center is currently addressing the recognized need for technical and scientific information on international coal characteristics and coal conversion technologies adopted in foreign countries. At NCTDC, the present database on domestic coals and coal conversion technologies is being supplemented with data on international coals through the development of a comprehensive international database on foreign coals and coal conversion technologies. DOE plans to utilize this information to develop strategic planning and policy options and assist the private sector in determining the utility of its products and services in the international market place. It is hoped, that through the better understanding of their foreign coal resources, advanced US coal preparation, conversion and utilization technologies can be applied to these coals, promoting not only US technology transfer but also addressing the immediate energy needs of the developing countries.

Not Available

1986-01-01T23:59:59.000Z

237

Co-pyrolysis of low rank coals and biomass: Product distributions  

SciTech Connect

Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

2013-10-01T23:59:59.000Z

238

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

239

Coal Liquefaction Product Gas Analysis with an Automated Gas Chromatograph  

Science Journals Connector (OSTI)

......similar gas streams. For example, it has been easily extended for analyzing gases generated in coal gasification and oil shale retorting by other Gulf researchers. Conclusions It is clear from the above discussion that the Carle TCD/FID GC performed......

Ajay Sood; Richard B. Pannell

1982-01-01T23:59:59.000Z

240

Hydrogen Production by Catalytic Gasification of Coal in Supercritical Water  

Science Journals Connector (OSTI)

(2) However, the extensive utilization of coal leads to many problems, such as air pollution and resource waste, because of the inefficient and unclean utilization method. ... Argon would sink to the bottom of the reactor, and air would come up because of the difference in density between these two gases. ...

Rihua Lan; Hui Jin; Liejin Guo; Zhiwei Ge; Simao Guo; Ximin Zhang

2014-10-16T23:59:59.000Z

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

2006-08-01T23:59:59.000Z

242

Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

NONE

1998-03-01T23:59:59.000Z

243

Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993  

SciTech Connect

This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

Not Available

1994-07-08T23:59:59.000Z

244

EFFECTS OF COFIRING LIGNIN AND BIOSOLIDS WITH COAL ON FIRESIDE PERFORMANCE AND COMBUSTION PRODUCTS  

SciTech Connect

Lignin, derived from municipal solid waste and biosolid feedstocks using Masada Resource Group's patented CES OxyNol{trademark} process, and acidified biosolids were evaluated as supplemental fuels with coal for producing steam and electricity. Tests were conducted in a pilot-scale (550,000-Btu/hr [580-MJ/hr]) combustion system to evaluate the effects of coal characteristics, blend mixture (on a dry wt% basis) and furnace exit gas temperature (FEGT) on boiler heat-exchange surface slagging and fouling, NO{sub x} and SO{sub x} production, fly ash characteristics, and combustion efficiency. The effects of blending lignin and acidified biosolids with coal on fuel handling and pulverization characteristics were also addressed. An 80 wt% Colorado--20 wt% subbituminous Powder River Basin coal blend from the Tennessee Valley Authority Colbert Steam Plant, hereafter referred to as the Colbert coal, and a bituminous Pittsburgh No. 8 coal were tested. The lignin and acidified biosolids were characterized by possessing higher moisture content and lower carbon, hydrogen, and heating values relative to the coals. Ash contents of the fuels were similar. The lignin also possessed higher concentrations of TiO{sub 2}, CaO, and SO{sub 3} and lower concentrations of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, K{sub 2}O, and N relative to the coals. The sulfur content of lignin could be reduced through a more thorough washing and drying of the lignin in an efficient commercial-scale dewatering device. Acidified biosolids were distinguished by higher concentrations of P{sub 2}O{sub 5} and MgO and lower SiO{sub 2} and Al{sub 2}O{sub 3} relative to the other fuels. Trace element concentrations, especially for Cr, Pb, Hg, and Ni, were generally greater in the lignin and acidified biosolid fuels relative to the Colbert coal. Maximum trace element emission factors were calculated for 95:5 Colbert coal--lignin and 90:5:5 Colbert coal--lignin--acidified biosolid blends and compared to U.S. Environmental Protection Agency emission factors for pulverized coal-fired units that are unequipped with pollution control devices. Calculated maximum trace element emission factors for the fuel blends were generally less than or within the range of those for the uncontrolled coal-fired units, except for Cr and Pb which were greater.

Kevin C. Galbreath

2002-08-01T23:59:59.000Z

245

COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS  

SciTech Connect

The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

Peter G. Stansberry; John W. Zondlo

2001-07-01T23:59:59.000Z

246

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-06-08T23:59:59.000Z

247

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Madhavi Nallani-Chakravartula; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2006-03-27T23:59:59.000Z

248

Reuse of coal combustion by-products: A new profit center  

SciTech Connect

Coal combustion by-products (CCBs) are generated from the combustion of coal for energy production. Approximately 82 million tons of CCBs are produced each year by electric utilities. There are several common types of CCBs produced by coal combustion--fly ash, bottom ash, boiler slag, flue gas desulfurization material (FGD) and fluidized bed combustion byproducts (FBC). Some CCBs such as fly ash, have pozzolanic properties and may have cementitious properties, both of which are advantageous for engineering, construction and waste remediation applications. The American Society for Testing Materials (ASTM) in ASTM C-618 has created two classifications of useful and quality coal ash, Class F ash and Class C ash. Each class of coal ash has different pozzolanic and cementitious characteristics. Coal ash can be utilized in many manufacturing, mining, agricultural, engineering, construction and waste remediation applications. These potential applications may provide a new revenue source for utilities. The profitability of these applications can, however, be limited by applicable state regulations. Prior to initiating any reuse application, a utility should ensure regulatory approval of the proposed use. Approval may be apparent from a review of state law and regulations. Often times, further regulatory analysis and consultations may be necessary.

Jagiella, D. [Howard and Howard Attorneys, Peoria, IL (United States)

1997-09-01T23:59:59.000Z

249

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-04-01T23:59:59.000Z

250

System analysis of nuclear-assisted syngas production from coal - article no. 042901  

SciTech Connect

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. The results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

Harvego, E.A.; McKellar, M.G.; O'Brien, J.E. [Idaho National Laboratory, Idaho Falls, ID (United States)

2009-07-15T23:59:59.000Z

251

Investigation of benefit of using coal wastes in cement production  

Science Journals Connector (OSTI)

Waste disposal in coal preparation plants leads to serious environmental problems. These wastes usually contain about 20% carbon, and the composition of the remaining ash is similar to clay. Addition of these wastes to cement clinker raw material utilises carbon as a source of energy. In this investigation, the effect of addition of these waste materials to the raw materials used in cement manufacture is studied. Ordinary type II cement and sulphoaluminate cement may be produced from the wastes. Mechanical strength, chemical and phase analysis, setting time and particle size distribution of the cement were studied. The results of the experiments show that an addition of about 3% of the coal wastes to the raw materials used in cement manufacture produces cements with good quality. Further, energy consumption may be reduced by up to 15%.

A. Sarrafi; M.R. Izadpanah; A. Ebrahimi; A.I. Mansouri

2011-01-01T23:59:59.000Z

252

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2012 increased by 4% to about 1.15 million tons,  

E-Print Network (OSTI)

48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2012 increased by 4% to about 1.15 million tons of production--accounted for more than 99% of domestic mine production; copper also was recovered in Alaska

253

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2011 increased slightly to about 1.1 million tons  

E-Print Network (OSTI)

48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2011 increased slightly to about 1.1 million tons order of production--accounted for more than 99% of domestic mine production; copper also was recovered

254

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons,  

E-Print Network (OSTI)

48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons of production--accounted for more than 99% of domestic mine production; copper also was recovered in Idaho

255

Production and screening of carbon products precursors from coal. Quarterly progress report, July 1, 1996--September 30, 1996  

SciTech Connect

This quarterly report covers activities during the period from July 1, 1996 through September 30, 1996 on the development of carbon products precursor materials from coal. The first year of the project ended in February, 1996; however, the WVU research effort continued through August 14, 1997 on a no-cost extension of the original contract. PETC chose to exercise the option for continuation of the projects and $100,000 became available on August 9, 1996. The objective for year two is to focus on development of those carbon products from coal-based solvent extract precursors which have the greatest possibility for commercial success.

Zondlo, J.; Stiller, A.

1996-10-25T23:59:59.000Z

256

NETL: News Release - Innovative Coal-Based Product Bumps Petroleum Out of  

NLE Websites -- All DOE Office Websites (Extended Search)

16, 2008 16, 2008 Innovative Coal-Based Product Bumps Petroleum Out of Equation Synthetic Binder Pitch Uses Hydrocarbons from Coal in Place of Petroleum Feedstocks WASHINGTON, DC - Through a cooperative agreement with the Office of Fossil Energy's National Energy Technology Laboratory (NETL), a team headed by West Virginia University (WVU) has developed and successfully demonstrated a synthetic binder pitch that uses hydrocarbons from coal to supplement or replace petroleum feedstocks. The new binder pitch, and similar coal-derived products, could potentially reduce America's dependence on imported oil. Binder pitch - a carbon-rich, tar-like material - is an important ingredient in making graphite rods used in electric arc furnaces for the manufacture of steel from scrap. Conventional binder pitch usually blends petroleum pitch with standard coal-tar pitch. The new synthetic pitch could replace at least 19,000 tons of conventional pitch needed each year by graphite electrode manufacturers. WVU claims that the same pitch could be used by the aluminum industry; if so, demand for the new product would be close to one million barrels per year.

257

Composition of the ozonolytic degradation products of the organic matter of Barzasskii sapromyxite coal  

SciTech Connect

The ozonization of Barzasskii sapromyxite coal in chloroform and the composition of ozonolytic degradation products were studied. Water-insoluble high-molecular-weight products were predominant among the ozonization products. A half of water-soluble substances consisted of aliphatic C{sub 5}-C{sub 12} dicarboxylic acids and benzenedicarboxylic acid derivatives. Sapromyxite has been suggested as a substitute for crude petroleum in the manufacture of motor fuels.

S.A. Semenova; Y.F.Patrakov [Russian Academy of Sciences, Kemerovo (Russian Federation). Institute of Coal and Coal Chemistry

2009-04-15T23:59:59.000Z

258

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the facility modifications for continuous hydrotreating, as well as developing improved protocols for producing synthetic pitches.

Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-08-11T23:59:59.000Z

259

Petrochemicals from oil, natural gas, coal and biomass: Production costs in 20302050  

Science Journals Connector (OSTI)

Methane, coal and biomass are being considered as alternatives to crude oil for the production of basic petrochemicals, such as light olefins. This paper is a study on the production costs of 24 process routes utilizing these primary energy sources. A wide range of projected energy prices in 20302050 found in the open literature is used. The basis for comparison is the production cost per t of high value chemicals (HVCs or light olefin-value equivalent). A Monte Carlo method was used to estimate the ranking of production costs of all 24 routes with 10,000 trials of varying energy prices and CO2 emissions costs (assumed to be within $0100/tCO2; the total CO2 emissions, or cradle-to-grave CO2 emissions, were considered). High energy prices in the first three quarter of 2008 were tested separately. The main findings are: Production costs: while the production costs of crude oil- and natural gas-based routes are within $500900/tHVCs, those of coal- and biomass-based routes are mostly within $400800/tHVCs. Production costs of coal- and biomass-based routes are in general quite similar while in some cases the difference is significant. Among the top seven most expensive routes, six are oil- and gas-based routes. Among the top seven least expensive routes, six are coal and biomass routes. CO2 emissions costs: the effect of CO2 emissions costs was found to be strong on the coal-based routes and also quite significant on the biomass-based routes. However, the effect on oil- and gas-based routes is found to be small or relatively moderate. Energy prices in 2008: most of the coal-based routes and biomass-based routes (particularly sugar cane) still have much lower production costs than the oil- and gas-based routes (even if international freight costs are included). To ensure the reduction of CO2 emissions in the long-term, we suggest that policies for the petrochemicals industry focus on stimulating the use of biomass as well as carbon capture and storage features for coal-based routes.

Tao Ren; Bert Danils; Martin K. Patel; Kornelis Blok

2009-01-01T23:59:59.000Z

260

Synthesis Gas Production with an Adjustable H2/CO Ratio through the Coal Gasification Process: Effects of Coal Ranks And Methane Addition  

Science Journals Connector (OSTI)

With the decline of oil reserves and production, the gas-to-liquids (GTL) part of FischerTropsch (F-T) synthesis technology has become increasing important. ... The Department of Energy (DOE) Energy Information Administration (EIA) estimates that over 50% of the coal reserve base in the United States (U.S.) is bituminous coal, about 30% is sub-bituminous, and 9% is lignite. ...

Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan

2008-03-25T23:59:59.000Z

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Environmental Analysis of the Coal-based Power Production with Amine-based Carbon Capture  

E-Print Network (OSTI)

Environmental Analysis of the Coal-based Power Production with Amine-based Carbon Capture J. To capture carbon dioxide from fossil fuel power plants and to store it in geological formations (CCS at the beginning. From an electricity generator's perspective the amine based carbon capture offers some advantages

262

Production of Hydrogen and Electricity from Coal with CO2 Capture  

E-Print Network (OSTI)

fuels · H2 (and CO2) distribution · H2 utilization (e.g. fuel cells, combustion) · Princeton energy carriers are needed: electricity and hydrogen. · If CO2 sequestration is viable, fossil fuel1 Production of Hydrogen and Electricity from Coal with CO2 Capture Princeton University: Tom

263

Productivity change of coal-fired thermal power plants in India: a Malmquist index approach  

Science Journals Connector (OSTI)

......coal are taken into consideration and power plants which use lignite as primary fuel are excluded from the study. Power plants...REDDY, Y. V. (2006) Importance of productivity in India. Reserve Bank India Bulletin, 6572. REVIEW OF PERFORMANCE OF THERMAL......

S. K. Behera; J. A. Farooquie; A. P. Dash

2011-10-01T23:59:59.000Z

264

Integrated production/use of ultra low-ash coal, premium liquids and clean char. Technical report, September 1, 1991--November 30, 1991  

SciTech Connect

This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

Kruse, C.W.

1991-12-31T23:59:59.000Z

265

Studies on the production of ultra-clean coal by alkali-acid leaching of low-grade coals  

SciTech Connect

The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents, keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.

Nabeel, A.; Khan, T.A.; Sharma, D.K. [Jamia Millia Islamia, New Delhi (India). Dept. of Chemistry

2009-07-01T23:59:59.000Z

266

Fact #828: July 7, 2014 Japanese Auto Manufacturers Increase Domestic Production for U.S. Sales  

Energy.gov (U.S. Department of Energy (DOE))

In 1980, all Japanese-brand vehicles sold in the U.S. were imported. By 1990, just over one-third of Japanese-brand vehicles sold in the U.S. were produced domestically in North America which...

267

Markets for coal and coal technologies in Asian and Pacific Basin countries  

SciTech Connect

In a new market analysis available from the Utility Data Institute (UDI), Viking Systems International (VSI) of Pittsburgh, PA, argues that the nations in the Pacific Basin and South Asia provide an exciting market opportunity for vendors and suppliers of coal power technology, services, and fuel. Critical market factors for increased coal use include: (1) availability of domestic coal resources; (2) price of competing fuels; (3) infrastructure for mining and transportation; (4) environmental regulations concerning coal use; and (5) the development and application of new coal technologies. An overview is presented of the current energy situation and future development options in thirteen different countries: Afghanistan, Australia, India, Indonesia, Japan, Malaysia, New Zealand, Pakistan, People's Republic of China, Philippines, Republic of China (Taiwan), Republic of Korea (South Korea), and Thailand. More than 150 detailed tables, charts, and maps present analyses of existing coal reserves, coal characteristics, domestic energy production by fuel mix, energy consumption, electric power generation, and regulatory practices in each country. The report was developed by VSI from two computerized data bases---one on coal characteristics and reserves, the other on electric utilities and power plants in Asian countries. A chapter in the report describes the data bases in more detail.

Not Available

1988-01-01T23:59:59.000Z

268

Microbial solubilization of coal  

DOE Patents (OSTI)

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

269

Techno-economic analysis of coal gasification based co-production systems  

Science Journals Connector (OSTI)

Abstract Coal gasification based co-production systems are increasing popular in the world because they are assumed to be advantageous in energy efficiency and economic cost. However, there has been seldom researches on quantifying these advantages. In this paper, the co-prouction systems are analyzed from the technical and ecnomic point of views. During the study, the co-production system, of which the products are electricity and methanol, is modeled and simulated. For analysis, the energy analysis model and the economy analysis model are established. Results show that the co-production system has higher energy efficiency and less capital expenditure than tranditional single production systems.

Siyu Yang; Hengchong Li; Yu Qian

2012-01-01T23:59:59.000Z

270

"Weekly and Monthly U.S. Coal Production Overview"  

U.S. Energy Information Administration (EIA) Indexed Site

48" 48" "Report Released: December 05, 2013" "Next Release Date: January 09, 2014" "Weekly and Monthly U.S. Coal Production Overview" "(thousand short tons)" "Coal-Producing","Week Ended",,"Year-To-Date[1]",,"Month Ended",,"January - November" "Region and State","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","November 2013","November 2012",2013,2012,"% Change" "Alabama",314.49,339.32,16938.35,18080.05,1450.46,1425.29,16938.35,18080.05,-6.3 "Alaska",37.08,45.44,1592.19,1874.56,170.87,187.66,1592.19,1874.56,-15.1

271

Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas  

SciTech Connect

The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and (4) Reduced energy costs. The goals of the Hydrogen from Coal Program are: (1) Prove the feasibility of a 40% efficient, near zero emissions IGCC plant that uses membrane separation technology and other advanced technologies to reduce the cost of electricity by at least 35%; and (2) Develop H{sub 2} production and processing technologies that will contribute {approx}3% in improved efficiency and 12% reduction in cost of electricity.

O.N. Dogan; B.H. Howard; D.E. Alman

2012-02-26T23:59:59.000Z

272

Strategic implications for US - Persian Gulf relations on domestic and worldwide oil production for future US oil demand. Final report  

SciTech Connect

The U.S. dependence on oil imports is examined in light of current U.S. oil production, its potential for future discoveries, and the availability of oil products form Venezuela, Mexico, and other South American countries. There is no geologic reason why the U.S. cannot continue to replace its reserves consumed annually, continue conservation efforts reducing its import dependence, and shift its foreign oil supply closer to home, i.e., Mexico and South America. Increasing the price of oil domestically ensures continued exploration, and shifting the source of imports reduces the length of SLOC'S carrying critical oil products.

Kaplan, S.S.

1987-03-01T23:59:59.000Z

273

Process for the production of ethylene and other hydrocarbons from coal  

SciTech Connect

A process is claimed for the production of substantial amounts of ethylene and other hydrocarbon compounds, such as benzene from coal. Coal is reacted with methane at a temperature in the approximate range of 500/sup 0/C to 1100/sup 0/C at a partial pressure less than about 200 psig for a period of less than 10 seconds, and preferably at a temperature of approximately 850/sup 0/C, and a partial pressure of 50 psig for a period of approximately 2 seconds. Ethylene and other hydrocarbon compounds may be separated from the product stream so produced, and the methane recycled for further production of ethylene. In another embodiment, other compounds produced, such as by-product tars, may be burned to heat the recycled methane.

Steinberg, M.; Fallon, P.

1982-02-16T23:59:59.000Z

274

Technical support for the Ohio Coal Technology Program. Volume 1, Baseline of knowledge concerning by-product characteristics: Final report  

SciTech Connect

This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LRl and comprises two volumes. Volume I presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume II consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L. [Battelle, Columbus, OH (United States)

1989-08-28T23:59:59.000Z

275

E-Print Network 3.0 - advanced multi-product coal Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced... Hydrogen from Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U... 12;Presentation Outline Hydrogen Initiatives Hydrogen from Coal ......

276

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the third report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 30, 2004. This quarter saw progress in five areas. These areas are: (1) External evaluation of coal based methanol and the fuel cell grade baseline fuel, (2) Design, set up and initial testing of the autothermal reactor, (3) Experiments to determine the axial and radial thermal profiles of the steam reformers, (4) Catalyst degradation studies, and (5) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-06-30T23:59:59.000Z

277

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the seventh report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 31, 2005. This quarter saw progress in these areas. These areas are: (1) Steam reformer transient response, (2) Heat transfer enhancement, (3) Catalyst degradation, (4) Catalyst degradation with bluff bodies, and (5) Autothermal reforming of coal-derived methanol. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-06-30T23:59:59.000Z

278

Method for controlling boiling point distribution of coal liquefaction oil product  

DOE Patents (OSTI)

The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships. 3 figs.

Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

1982-12-21T23:59:59.000Z

279

An evaluation of Substitute natural gas production from different coal gasification processes based on modeling  

Science Journals Connector (OSTI)

Coal and lignite will play a significant role in the future energy production. However, the technical options for the reduction of CO2 emissions will define the extent of their share in the future energy mix. The production of synthetic or substitute natural gas (SNG) from solid fossil fuels seems to be a very attractive process: coal and lignite can be upgraded into a methane rich gas which can be transported and further used in high efficient power systems coupled with CO2 sequestration technologies. The aim of this paper is to present a modeling analysis comparison between substitute natural gas production from coal by means of allothermal steam gasification and autothermal oxygen gasification. In order to produce SNG from syngas several unit operations are required such as syngas cooling, cleaning, potential compression and, of course, methanation reactors. Finally the gas which is produced has to be conditioned i.e. removal of unwanted species, such as CO2 etc. The heat recovered from the overall process is utilized by a steam cycle, producing power. These processes were modeled with the computer software IPSEpro. An energetic and exergetic analysis of the coal to SNG processes have been realized and compared.

S. Karellas; K.D. Panopoulos; G. Panousis; A. Rigas; J. Karl; E. Kakaras

2012-01-01T23:59:59.000Z

280

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

AEO2011: Coal Production and Minemouth Prices by Region | OpenEI  

Open Energy Info (EERE)

and Minemouth Prices by Region and Minemouth Prices by Region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 139, and contains only the reference case. The dataset uses million short tons and the US Dollar. The data is broken down into production and minemouth prices. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal Production EIA Minemouth Prices Data application/vnd.ms-excel icon AEO2011: Coal Production and Minemouth Prices by Region- Reference Case (xls, 41.5 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

282

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

Albert Tsang

2003-03-14T23:59:59.000Z

283

Production of low ash coal by thermal extraction with N-methyl-2-pyrrolidinone  

Science Journals Connector (OSTI)

Present study was conducted for the purpose of producing low ash coal from LRC (low rank coals) such as lignite and sub-bituminous coal through thermal extraction using polar solvent. Extraction from bituminous coal

Sang Do Kim; Kwang Jae Woo; Soon Kwan Jeong

2008-07-01T23:59:59.000Z

284

Stable isotope geochemistry of coal bed and shale gas and related production waters: A review  

Science Journals Connector (OSTI)

Abstract Coal bed and shale gas can be of thermogenic, microbial or of mixed origin with the distinction made primarily on the basis of the molecular and stable isotope compositions of the gases and production waters. Methane, ethane, carbon dioxide and nitrogen are the main constituents of coal bed and shale gases, with a general lack of C2+ hydrocarbon species in gases produced from shallow levels and more mature coals and shales. Evidence for the presence of microbial gas include ?13CCH4 values less than ?50, covariation of the isotope compositions of gases and production water, carbon and hydrogen isotope fractionations consistent with microbial processes, and positive ?13C values of dissolved inorganic carbon in production waters. The CO2-reduction pathway is distinguished from acetate/methyl-type fermentation by somewhat lower ?13CCH4 and higher ?DCH4, but can also have overlapping values depending on the openness of the microbial system and the extent of substrate depletion. Crossplots of ?13CCH4 versus ?13CCO2 and ?DCH4 versus ?13CH2O may provide a better indication of the origin of the gases and the dominant metabolic pathway than the absolute carbon and hydrogen isotope compositions of methane. In the majority of cases, microbial coal bed and shale gases have carbon and hydrogen isotope fractionations close to those expected for CO2 reduction. Primary thermogenic gases have ?13CCH4 values greater than ?50, and ?13C values that systematically increase from C1 to C4 and define a relatively straight line when plotted against reciprocal carbon number. Although coals and disseminated organic matter in shales represent a continuum as hydrocarbon source rocks, current data suggest a divergence between these two rock types at the high maturity end. In deep basin shale gas, reversals or rollovers in molecular and isotopic compositions are increasingly reported in what is effectively a closed shale system as opposed to the relative openness in coal measure environments. Detailed geochemical studies of coal bed and shale gas and related production waters are essential to determine not only gas origins but also the dominant methanogenic pathway in the case of microbial gases.

Suzanne D. Golding; Chris J. Boreham; Joan S. Esterle

2013-01-01T23:59:59.000Z

285

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

SciTech Connect

This is the sixth semi-annual Technical Progress report under the subject agreement. During this report period, progress was made on drilling the north, center, and south well sites. Water production commenced at the center and south well sites. New drilling plans were formulated for the last remaining well, which is in the Upper Freeport Seam at the north site. Core samples were submitted to laboratories for analytical testing. These aspects of the project are discussed in detail in this report.

William A. Williams

2004-10-01T23:59:59.000Z

286

Coal industry annual 1993  

SciTech Connect

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

287

EIA -Quarterly Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Distribution Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: June 27, 2013 Next Release Date: September 2013 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf October-December pdf xls pdf 2010 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf xls

288

Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels  

SciTech Connect

This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

Steven Markovich

2010-06-30T23:59:59.000Z

289

ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT  

SciTech Connect

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

Robert Jewell; Thomas Robl; John Groppo

2005-03-01T23:59:59.000Z

290

domestic | OpenEI  

Open Energy Info (EERE)

domestic domestic Dataset Summary Description The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following sectors: transport, domestic, industrial and service. Each of the five spreadsheets contains a page of commentary and interpretation. Source UK Department of Energy and Climate Change (DECC) Date Released July 31st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption coal Coke domestic Electricity Electricity Consumption energy data Industrial Natural Gas Petroleum service sector transportation UK Data application/zip icon Five Excel spreadsheets with UK Energy Consumption data (zip, 2.6 MiB) Quality Metrics Level of Review Peer Reviewed Comment The data in ECUK are classified as National Statistics

291

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

SciTech Connect

The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i.e. Florida) are oversupplied as well. While the total US demand for ultrafine pozzolan is currently equal to demand, there is no reason to expect a significant increase in demand. Despite the technical merits identified in the pilot plant work with regard to beneficiating the entire pond ash stream, market developments in the Ohio River Valley area during 2006-2007 were not conducive to demonstrating the project at the scale proposed in the Cooperative Agreement. As a result, Cemex withdrew from the project in 2006 citing unfavorable local market conditions in the foreseeable future at the demonstration site. During the Budget Period 1 extensions provided by the DOE, CAER has contacted several other companies, including cement producers and ash marketing concerns for private cost share. Based on the prevailing demand-supply situation, these companies had expressed interest only in limited product lines, rather than the entire ash beneficiation product stream. Although CAER had generated interest in the technology, a financial commitment to proceed to Budget Period 2 could not be obtained from private companies. Furthermore, the prospects of any decisions being reached within a reasonable time frame were dim. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007. The activities presented in this report were carried out during the Cooperative Agreement period 08 November 2004 through 31 March 2007.

Thomas Robl; John Groppo

2009-06-30T23:59:59.000Z

292

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. A process has been developed which results in high quality binder pitch suitable for use in graphite electrodes or carbon anodes. A detailed description of the protocol is given by Clendenin. Briefly, aromatic heavy oils are hydro-treated under mild conditions in order to increase their ability to dissolve coal. An example of an aromatic heavy oil is Koppers Carbon Black Base (CBB) oil. CBB oil has been found to be an effective solvent and acceptably low cost (i.e., significantly below the market price for binder pitch, or about $280 per ton at the time of this writing). It is also possible to use solvents derived from hydrotreated coal and avoid reliance on coke oven recovery products completely if so desired.

Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-04-13T23:59:59.000Z

293

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Thomas Lynch

2004-01-07T23:59:59.000Z

294

Coal liquefaction and hydrogenation  

DOE Patents (OSTI)

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

295

AEO2011: Coal Production by Region and Type | OpenEI  

Open Energy Info (EERE)

by Region and Type by Region and Type Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 140, and contains only the reference case. The unit of measurement in this dataset is million short tons. The data is broken down into northern Appalachia, central Appalachia, southern Appalachia, eastern interior, western interior, gulf, Dakota medium, western montana, Wyoming, Rocky Mountain, Arizona/New Mexico and Washington/Alaska. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal Production EIA Data application/vnd.ms-excel icon AE2011: Coal Production by Region and Type- Reference Case (xls, 122.3 KiB)

296

From coal to wood thermoelectric energy production: a review and discussion of potential socio-economic impacts with implications for Northwestern Ontario, Canada  

Science Journals Connector (OSTI)

The province of Ontario in Canada is the first North American jurisdiction with legislation in place to eliminate coal-fired thermoelectric production by the end of 2014. Ontario Power Generation (OPG) operates coal

Jason Ernest Elvin Dampier; Chander Shahi

2013-05-01T23:59:59.000Z

297

Coal fly ashcarbide lime bricks: An environment friendly building product  

Science Journals Connector (OSTI)

Abstract Coal fly ash and carbide lime are industrial by-products of coal combustion in thermal power plants and of manufacture of acetylene gas, respectively, available in profusion in southern Brazil. Research has been carried out to search for possible use of such materials to produce environmental friendly bricks that have high compressive strength. This study aims to evaluate strength controlling parameters of coal fly ashcarbide lime mixtures, as well as to show that porosity/carbide lime (?/Lv) ratio (corresponding to porosity divided by the volumetric carbide lime content) can be used to predict compressive strength (qu). The controlling parameters evaluated here are carbide lime content, porosity, curing temperature, curing time and porosity/carbide lime ratio. A number of unconfined compression tests were carried out. The results show that a power function adapts better the relation qu versus ?/Lv, in which Lv is adjusted by an exponent (in this case 0.11) for all coal fly ashcarbide lime mixtures studied. Equations that control the compressive strength for each curing period and curing temperature examined can be formulated using this unique ratio. Preferred strategies for varying ranges of qu are also proposed based on the energy required for heating, considering distinct curing periods and temperatures.

Nilo Cesar Consoli; Ceclia Gravina da Rocha; Rodrigo Beck Saldanha

2014-01-01T23:59:59.000Z

298

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the first such report that will be submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1--December 31, 2003. This quarter saw progress in three areas. These areas are: (1) Evaluations of coal based methanol and the fuel cell grade baseline fuel, (2) Design and set up of the autothermal reactor, as well as (3) Set up and data collection of baseline performance using the steam reformer. All of the projects are proceeding on schedule. During this quarter one conference paper was written that will be presented at the ASME Power 2004 conference in March 2004, which outlines the research direction and basis for looking at the coal to hydrogen pathway.

Paul A. Erickson

2004-04-01T23:59:59.000Z

299

DOE/NETL's R&D Response to Emerging Coal By-Product and Water Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Response to Emerging R&D Response to Emerging Coal By-Product and Water Issues Clean Coal and Power Conference in conjunction with 2 nd Joint U.S.-People's Republic of China Conference on Clean Energy Washington, DC November 17-19, 2003 Thomas J. Feeley, III National Energy Technology Laboratory Feeley_CC&P Conf. 11/03 Electric Power Using Coal Clean Liquid Fuels Natural Gas Coal Production Environmental Control V21 Next Generation Carbon Sequestration Exploration & Production Refining & Delivery Alternative Fuels Exploration & Production Pipelines & Storage Fuel Cells Combustion Turbines NETL Plays Key Role in Fossil Energy Supply, Delivery, and Use Technologies Future Fuels Photo of hydrogen fueled car: Warren Gretz, NREL Feeley_CC&P Conf. 11/03 Innovations for Existing Plants Program

300

The potential utilization of nuclear hydrogen for synthetic fuels production at a coaltoliquid facility / Steven Chiuta.  

E-Print Network (OSTI)

??The production of synthetic fuels (synfuels) in coaltoliquids (CTL) facilities has contributed to global warming due to the huge CO2 emissions of the process. This (more)

Chiuta, Steven

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Simulating Carbon Dioxide Sequestration/ECBM Production in Coal Seams: Effects of Permeability Anisotropies and Other Coal Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics for Sequestering CO Economics for Sequestering CO 2 in Coal Seams with Horizontal Wells Grant S. Bromhal, NETL/US DOE W. Neal Sams, NETL/EG&G Sinisha A. Jikich, NETL/Parsons Turgay Ertekin, Penn State Duane H. Smith, NETL/US DOE 3 rd Annual Sequestration Conference May 3-6, 2004 Alexandria, VA Descriptor - include initials, /org#/date Problem: How do economics change the optimal design of coal seam sequestration in Eastern coal seams? * Eastern coal seams tend to be thin with relatively high methane content and sequestration capacity per mass of coal. * Horizontal wells have shown promise for improved methane recovery and CO 2 injectivity. * Many studies have been performed to optimize design for total volume of CO 2 sequestered, but economics have not been included. Descriptor - include initials, /org#/date

302

Prevention of trace and major element leaching from coal combustion products by hydrothermally-treated coal ash  

SciTech Connect

The most important structural components of coal ash obtained by coal combustion in 'Nikola Tesla A' power plant located near Belgrade (Serbia) are amorphous alumosilicate, alpha-quartz, and mullite. The phase composition of coal ash can be altered to obtain zeolite type NaA that crystallizes in a narrow crystallization field (SiO{sub 2}/Al{sub 2}O{sub 3}; Na{sub 2}O/SiO{sub 2}; H{sub 2}O/Na{sub 2}O ratios). Basic properties (crystallization degree, chemical composition, the energy of activation) of obtained zeolites were established. Coal ash extracts treated with obtained ion-exchange material showed that zeolites obtained from coal ash were able to reduce the amounts of iron, chromium, nickel, zinc, copper, lead, and manganese in ash extracts, thus proving its potential in preventing pollution from dump effluent waters.

Adnadjevic, B.; Popovic, A.; Mikasinovic, B. [University of Belgrade, Belgrade (Serbia). Dept. of Chemistry

2009-07-01T23:59:59.000Z

303

Matrix Shrinkage and Swelling Effects on Economics of Enhanced Coalbed Methane Production and CO2 Sequestration in Coal  

SciTech Connect

Increases in CO2 levels in the atmosphere and their contributions to global climate change have been a major concern. It has been shown that CO2 injection can enhance the methane recovery from coal. Accordingly, sequestration costs can be partially offset by the value added product. Indeed, coal seam sequestration may be profitable, particularly with the introduction of incentives for CO2 sequestration. Hence, carbon dioxide sequestration in unmineable coals is a very attractive option, not only for environmental reasons, but also for possible economic benefits. Darcy flow through cleats is an important transport mechanism in coal. Cleat compression and permeability changes due to gas sorption desorption, changes of effective stress, and matrix swelling and shrinkage introduce a high level of complexity into the feasibility of a coal sequestration project. The economic effects of carbon dioxide-induced swelling on permeabilities and injectivities has received little (if any) detailed attention. Carbon dioxide and methane have different swelling effects on coal. In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was re-written to also account for coal swelling caused by carbon dioxide sorption. The generalized model was added to PSU-COALCOMP, a dual porosity reservoir simulator for primary and enhanced coalbed methane production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals were used.[1] Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Youngs modulus, Poissons ratio, the cleat porosity, and the injection pressure. The economic variables included CH4 price, CO2 cost, CO2 credit, water disposal cost, and interest rate. Net present value analyses of the simulation results included profits due to methane production, and potential incentives for CO2 sequestered. This work shows that for some coal-property values, the compressibility and cleat porosity of coal may be more important than more purely economic criteria.

Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

2005-09-01T23:59:59.000Z

304

Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams  

SciTech Connect

For deep coal seams, significant reservoir pressure drawdown is required to promote gas desorption because of the Langmuir-type isotherm that typifies coals. Hence, a large permeability decline may occur because of pressure drawdown and the resulting increase in effective stress, depending on coal properties and the stress field during production. However, the permeability decline can potentially be offset by the permeability enhancement caused by the matrix shrinkage associated with methane desorption. The predictability of varying permeability is critical for coalbed gas exploration and production-well management. We have investigated quantitatively the effects of reservoir pressure and sorption-induced volumetric strain on coal-seam permeability with constraints from the adsorption isotherm and associated volumetric strain measured on a Cretaceous Mesaverde Group coal (Piceance basin) and derived a stress-dependent permeability model. Our results suggest that the favorable coal properties that can result in less permeability reduction during earlier production and an earlier strong permeability rebound (increase in permeability caused by coal shrinkage) with methane desorption include (1) large bulk or Young's modulus; (2) large adsorption or Langmuir volume; (3) high Langmuir pressure; (4) high initial permeability and dense cleat spacing; and (5) low initial reservoir pressure and high in-situ gas content. Permeability variation with gas production is further dependent on the orientation of the coal seam, the reservoir stress field, and the cleat structure. Well completion with injection of N2 and displacement of CH{sub 4} only results in short-term enhancement of permeability and does not promote the overall gas production for the coal studied.

Cui, X.J.; Bustin, R.M. [University of British Columbia, Vancouver, BC (Canada). Dept. of Earth & Ocean Science

2005-09-01T23:59:59.000Z

305

(Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world, followed by China, the  

E-Print Network (OSTI)

and greases and in the production of synthetic rubber. Salient Statistics--United States: 1995 1996 1997 1998100 LITHIUM (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production States, Russia, and Argentina, in descending order of production. Australia and Canada were major

306

(Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world, followed by China,  

E-Print Network (OSTI)

and greases and in the production of synthetic rubber. Salient Statistics--United States: 1994 1995 1996 1997102 LITHIUM (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production, the United States, and Argentina, in descending order of production. Australia and Canada were major

307

UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS  

SciTech Connect

Potomac Electric Power Company (PEPCo) Class F fly ash is the first material to be worked on in this project. A head sample was taken and a screen analysis performed. Each size fraction was evaluated for LOI content. Table 1 shows the distribution of the as-received material by size and LOI content. From the data, 80% of the as-received material is finer than 400 mesh and the LOI content goes from high at coarse fractions and decreases to a low at the finest size fraction. SEM chemical analysis identified the as-received fly ash to mainly consist of silica (46%), aluminum oxide (21%), and iron in various forms (16%). The high iron content presents an extreme case as compared to other fly ash samples we have evaluated previously. Its effect on product testing applications could identify physical and chemical limitations as product testing progresses. Because of the high iron content, it was realized that magnetic separation would be incorporated into the early part of the pilot plant flowsheet to remove magnetic iron and, hopefully, reduce the total iron content. More analytical data will be presented in the next reporting period.

A.M. HEIN; J.Y. HWANG; M.G. MCKIMPSON; R.C. GREENLUND; X. HUANG

1998-10-01T23:59:59.000Z

308

Split and collectorless flotation to medium coking coal fines for multi-product zero waste concept  

Science Journals Connector (OSTI)

The medium coking coal fines of ?0.5mm from Jharia coal field were taken for this investigation. The release analysis of the composite coal reveals that yield is very low at 10.0% ash, about 25% at 14% ash and 50% at 17% ash level. The low yield is caused by the presence of high ash finer fraction. The size-wise ash analysis of ?0.5mm coal indicated that ?0.5+0.15mm fraction contains less ash than ?0.15mm fraction. Thus, the composite feed was split into ?0.5+0.15mm and ?0.15mm fractions and subjected to flotation separately. The low ash bearing fraction (?0.5+0.15mm) was subjected to two stages collectorless flotation to achieve the concentrate with 10% ash. The cleaner concentrate (18.9%) with 10% ash was recovered which has an application in metallurgical industries. The concentrate of 30.2% yield with 12.5% ash could be achieved in one stage collectorless flotation which is suitable for use in coke making as sweetener. As the ?0.15mm fraction contains relatively high ash, collector aided flotation using sodium silicate was performed to get a concentrate of 23.6% yield with about 17% ash. The blending of this product with cleaner tail obtained from ?0.5+0.15mm produces about 35.0% yield with 17% ash and that can be utilized for coke making. The reject from the two fractions can be used for conventional thermal power plant or cement industries using a 23.5% ash after one stage collector aided flotation and the final tailings produced content ash of 61.6% can be used for fluidization combustion bed (FBC). This eventually leads to complete utilization of coal.

Shobhana Dey; K.K. Bhattacharyya

2007-01-01T23:59:59.000Z

309

Production of cements from Illinois coal ash. Technical report, September 1, 1995--November 30, 1995  

SciTech Connect

The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. Currently only about 30% of the 5 million tons of these coal combustion residues generated in Illinois each year are utilized, mainly as aggregate. These residues are composed largely Of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. The process being developed in this program will use the residues directly in the manufacture of cement products. Therefore, a much larger amount of residues can be utilized. To achieve the above objective, in the first phase (current year) samples of coal combustion residues will be blended and mixed, as needed, with a lime or cement kiln dust (CKD) to adjust the CaO composition. Six mixtures will be melted in a laboratory-scale furnace at CTL. The resulting products will then be tested for cementitious properties. Two preliminary blends have been tested. One blend used fly ash with limestone, while the other used fly ash with CKD. Each blend was melted and then quenched, and the resulting product samples were ground to a specific surface area similar to portland cement. Cementitious properties of these product samples were evaluated by compression testing of 1-inch cube specimens. The specimens were formed out of cement paste where a certain percentage of the cement paste is displaced by one of the sample products. The specimens were cured for 24 hours at 55{degrees}C and 100% relative humidity. The specimens made with the product samples obtained 84 and 89% of the strength of a pure portland cement control cube. For comparison, similar (pozzolanic) materials in standard concrete practice are required to have a compressive strength of at least 75% of that of the control.

Wagner, J.C. [Institute of Gas Technology, Chicago, IL (United States); Bhatty, J.I.; Mishulovich, A. [Construction Technology Labs., Inc., Washington, DC (United States)

1995-12-31T23:59:59.000Z

310

Development of a coal combustion product (CCP) database system. Final report  

SciTech Connect

Nearly 90 million tons of coal combustion products (CCPs) are produced annually in the United States. The value of CCPs is well established by research and commercial practice; however, only 25% of these products are utilized. The objective of this project was to develop a computer program containing a database of advanced analytical and comprehensive engineering information on CCPs, accessible through a user-friendly interface. Version 1.0 of the ACAA CCP Data Manager was specifically designed to: perform multiple-criteria queries to produce a set of sample for in-depth study; view and print standard test reports, such as C618 reports; compare and contrast analytical results in graphs and tables; graph utilization information by application and region; and save data to a file for use in other computer applications, such as spreadsheet programs. The program was designed to contain descriptive information about a given CCP sample, including sample formation data (material type, sample location, fuel type, collection device etc.), combustion system design data (steam generator type, furnace type, SO{sub 2} and NO{sub x} control information, ash-handling configurations), test data (chemical, mineralogical, and physical characterization data), and utilization potential of the CCP. The location of the plant is identified by region. The database has been initially populated with information on over 800 CCP samples, taken from the Coal Ash Resources Research Consortium (CARRC). An installation package and user`s guide was developed for unlimited distribution by the American Coal Ash Association (ACAA).

O`Leary, E.M.; Pflughoeft-Hassett, D.F.

1997-09-01T23:59:59.000Z

311

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

This NETL sponsored effort seeks to develop continuous technologies for the production of carbon products, which may be thought of as the heavier products currently produced from refining of crude petroleum and coal tars obtained from metallurgical grade coke ovens. This effort took binder grade pitch, produced from liquefaction of West Virginia bituminous grade coal, all the way to commercial demonstration in a state of the art arc furnace. Other products, such as crude oil, anode grade coke and metallurgical grade coke were demonstrated successfully at the bench scale. The technology developed herein diverged from the previous state of the art in direct liquefaction (also referred to as the Bergius process), in two major respects. First, direct liquefaction was accomplished with less than a percent of hydrogen per unit mass of product, or about 3 pound per barrel or less. By contrast, other variants of the Bergius process require the use of 15 pounds or more of hydrogen per barrel, resulting in an inherent materials cost. Second, the conventional Bergius process requires high pressure, in the range of 1500 psig to 3000 psig. The WVU process variant has been carried out at pressures below 400 psig, a significant difference. Thanks mainly to DOE sponsorship, the WVU process has been licensed to a Canadian Company, Quantex Energy Inc, with a commercial demonstration unit plant scheduled to be erected in 2011.

Elliot Kennel; Chong Chen; Dady Dadyburjor; Mark Heavner; Manoj Katakdaunde; Liviu Magean; James Mayberry; Alfred Stiller; Joseph Stoffa; Christopher Yurchick; John Zondlo

2009-12-31T23:59:59.000Z

312

(Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: For the first time in history, Chile surpassed the United States as the largest producer  

E-Print Network (OSTI)

of synthetic rubber. Salient Statistics--United States: 1993 1994 1995 1996 1997e Production W W W W W Imports98 LITHIUM (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production for domestic consumption as well as for export to other countries; reported production and value of production

313

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

Gary Harmond; Albert Tsang

2003-03-14T23:59:59.000Z

314

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

2006-03-07T23:59:59.000Z

315

Coal combustion products in Europe - sustainable raw materials for the construction industry  

Science Journals Connector (OSTI)

The production of coal combustion products (CCPs) in all the European member states is estimated to be about 100 million tonnes. The utilisation of CCPs is well established in some European countries, based on long term experience and technical as well as environmental benefits. The CCPs are mainly utilised in the building material and construction industry as a replacement for natural resources. By their utilisation, they help to reduce energy demand and greenhouse gas emissions to atmosphere for mining and production of products which are replaced and to save natural resources. By this, the use of CCPs contributes to the sustainability of construction materials. Furthermore, the majority of the CCPs is produced to meet certain requirements of standards or other specifications with respect to utilisation in certain areas. The standards and specifications are subject to regular revision by CEN or national authorities.

Hans-Joachim Feuerborn

2012-01-01T23:59:59.000Z

316

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/this operational mode, the gasifiers and other parts of the

Phadke, Amol

2008-01-01T23:59:59.000Z

317

Resource Assessment & Production Testing for Coal Bed Methane in the Illinois Basin  

SciTech Connect

In order to assess the economic coal bed methane potential of the Illinois Basin, the geological surveys of Illinois, Indiana and Kentucky performed a geological assessment of their respective parts of the Illinois Basin. A considerable effort went into generating cumulative coal thickness and bed structure maps to identify target areas for exploratory drilling. Following this, the first project well was drilled in White County, Illinois in October 2003. Eight additional wells were subsequently drilled in Indiana (3) and Kentucky (5) during 2004 and 2005. In addition, a five spot pilot completion program was started with three wells being completed. Gas contents were found to be variable, but generally higher than indicated by historical data. Gas contents of more than 300 scf/ton were recovered from one of the bore holes in Kentucky. Collectively, our findings indicate that the Illinois Basin represents a potentially large source of economic coal bed methane. Additional exploration will be required to refine gas contents and the economics of potential production.

Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

2005-11-01T23:59:59.000Z

318

Novel, Magnetically Fluidized-Bed Reactor Development for the Looping Process: Coal to Hydrogen Production Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel, Magnetically Fluidized-Bed Novel, Magnetically Fluidized-Bed Reactor Development for the Looping Process: Coal to Hydrogen Production Research and Development Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is committed to improving methods for co-producing power and chemicals, fuels, and hydrogen (H2). Gasification is a process by which fuels such as coal can be used to produce synthesis gas (syngas), a mixture of H2, carbon monoxide (CO), and carbon

319

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the GEC and an Industrial Consortia are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Doug Strickland; Albert Tsang

2002-10-14T23:59:59.000Z

320

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1996, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode  

E-Print Network (OSTI)

46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use% kiln furniture, 6% fiberglass, 4% paint, and 3% rubber; ball clay--25% floor and wall tile, 21 Statistics--United States: 1992 1993 1994 1995 19961 e Production, mine: Kaolin 8,740 8,830 8,770 9,480 9

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 1997, based on contained zinc recoverable from  

E-Print Network (OSTI)

190 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining and smelting: 1993 1994 1995 1996 1997e Production: Mine, recoverable 488 570 614 600 6071 Primary slab zinc 240 217

322

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2001, based on contained zinc recoverable from  

E-Print Network (OSTI)

188 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production-fourths of production. Three primary and 12 large- and medium-sized secondary smelters refined zinc metal of commercial principally by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining

323

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2002, based on contained zinc recoverable from  

E-Print Network (OSTI)

190 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production% of production. Two primary and 13 large- and medium-sized secondary smelters refined zinc metal of commercial principally by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining

324

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2000, based on contained zinc recoverable from  

E-Print Network (OSTI)

186 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production three-fourths of production. Three primary and 12 large- and medium-sized secondary smelters refined compounds and dust were used principally by the agriculture, chemical, paint, and rubber industries. Major

325

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 1999, based on contained zinc recoverable from  

E-Print Network (OSTI)

190 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining and smelting: 1995 1996 1997 1998 1999e Production: Mine, recoverable1 614 600 605 722 775 Primary slab zinc 232 226

326

(Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2006, based on contained zinc recoverable from  

E-Print Network (OSTI)

186 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production accounted for about 80% of total U.S. production. Two primary and 12 large- and medium-sized secondary, and rubber industries. Major coproducts of zinc mining and smelting, in order of decreasing tonnage, were

327

(Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2004, based on contained zinc recoverable from  

E-Print Network (OSTI)

188 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production% of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters refined zinc metal were used principally by the agriculture, chemical, paint, and rubber industries. Major coproducts

328

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2003, based on contained zinc recoverable from  

E-Print Network (OSTI)

188 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production three-fourths of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters uses. Zinc compounds and dust were used principally by the agriculture, chemical, paint, and rubber

329

(Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2005, based on contained zinc recoverable from  

E-Print Network (OSTI)

190 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production accounted for 86% of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters uses. Zinc compounds and dust were used principally by the agriculture, chemical, paint, and rubber

330

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 1998, based on contained zinc recoverable from  

E-Print Network (OSTI)

192 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production principally by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining--United States: 1994 1995 1996 1997 1998e Production: Mine, recoverable 570 614 598 605 6551 Primary slab zinc

331

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters  

E-Print Network (OSTI)

16 ALUMINUM1 (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters were closed on published market prices, the value of primary metal production was $3.99 billion. Aluminum consumption

332

Task 1.13 - Data Collection and Database Development for Clean Coal Technology By-Product Characteristics and Management Practices  

SciTech Connect

U.S. Department of Energy Federal Energy Technology Center-Morgantown (DOE FETC) efforts in the areas of fossil fuels and clean coal technology (CCT) have included involvement with both conventional and advanced process coal conversion by-products. In 1993, DOE submitted a Report to Congress on "Barriers to the Increased Utilization of Coal Combustion Desulfurization Byproducts by Governmental and Commercial Sectors" that provided an outline of activities to remove the barriers identified in the report. DOE charged itself with participation in this process, and the work proposed in this document facilitates DOE's response to its own recommendations for action. The work reflects DOE's commitment to the coal combustion by-product (CCB) industry, to the advancement of clean coal technology, and to cooperation with other government agencies. Information from DOE projects and commercial endeavors in fluidized-bed combustion (FBC) and coal gasification is the focus of this task. The primary goal is to provide an easily accessible compilation of characterization information on the by-products from these processes to government agencies and industry to facilitate sound regulatory and management decisions. Additional written documentation will facilitate the preparation of an updated final version of background information collected for DOE in preparation of the Report to Congress on barriers to CCB utilization.

Debra F. Pflughoeft-Hassett

1998-02-01T23:59:59.000Z

333

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

334

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

335

Automated apparatus for solvent separation of a coal liquefaction product stream  

SciTech Connect

An automated apparatus for the solvent separation of a coal liquefaction product stream that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In use of the apparatus, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control means. The mixture in the filter is agitated by means of ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

Schweighardt, F.K.

1985-01-08T23:59:59.000Z

336

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

Albert Tsang

2003-03-14T23:59:59.000Z

337

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

2006-05-12T23:59:59.000Z

338

Improving process performances in coal gasification for power and synfuel production  

SciTech Connect

This paper is aimed at developing process alternatives of conventional coal gasification. A number of possibilities are presented, simulated, and discussed in order to improve the process performances, to avoid the use of pure oxygen, and to reduce the overall CO{sub 2} emissions. The different process configurations considered include both power production, by means of an integrated gasification combined cycle (IGCC) plant, and synfuel production, by means of Fischer-Tropsch (FT) synthesis. The basic idea is to thermally couple a gasifier, fed with coal and steam, and a combustor where coal is burnt with air, thus overcoming the need of expensive pure oxygen as a feedstock. As a result, no or little nitrogen is present in the syngas produced by the gasifier; the required heat is transferred by using an inert solid as the carrier, which is circulated between the two modules. First, a thermodynamic study of the dual-bed gasification is carried out. Then a dual-bed gasification process is simulated by Aspen Plus, and the efficiency and overall CO{sub 2} emissions of the process are calculated and compared with a conventional gasification with oxygen. Eventually, the scheme with two reactors (gasifier-combustor) is coupled with an IGCC process. The simulation of this plant is compared with that of a conventional IGCC, where the gasifier is fed by high purity oxygen. According to the newly proposed configuration, the global plant efficiency increases by 27.9% and the CO{sub 2} emissions decrease by 21.8%, with respect to the performances of a conventional IGCC process. 29 refs., 7 figs., 5 tabs.

M. Sudiro; A. Bertucco; F. Ruggeri; M. Fontana [University of Padova, Milan (Italy). Italy and Foster Wheeler Italiana Spa

2008-11-15T23:59:59.000Z

339

Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eighth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) Organize and host the 2006 Spring Meeting in State College, PA to review and select projects for SWC co-funding; (2) Participation in the 2006 PA CleanEnergy Expo Energy Theater to air the DVD on ''Independent Oil: Rediscovering American's Forgotten Wells''; (3) New member additions; (4) Improving communications; and (5) Planning of the fall technology meetings.

Joel L. Morrison; Sharon L. Elder

2006-05-01T23:59:59.000Z

340

Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) has established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the seventh quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) Nomination and election of the Executive Council members for the 2006-07 term, (2) Finalize and release the 2006 Request for Proposals (RFP), (3) Invoice and recruit members, (4) Plan for the spring meeting, (5) Improving communication efforts, and (6) Continue distribution of the DVD entitled: ''Independent Oil: Rediscovering American's Forgotten Wells''.

Joel L. Morrison; Sharon L. Elder

2006-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the first quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) hosting the SWC spring proposal meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruiting the SWC base membership.

Joel L. Morrison

2004-12-28T23:59:59.000Z

342

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the fifteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) hosting the SWC spring proposal meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruiting the SWC base membership.

Joel L. Morrison

2004-12-23T23:59:59.000Z

343

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eighth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) issuing subcontracts, (2) SWC membership class expansion, (3) planning SWC technology transfer meetings, and (4) extending selected 2001 project periods of performance. In addition, a literature search that focuses on the use of lasers, microwaves, and acoustics for potential stripper well applications continued.

Joel L. Morrison

2002-09-27T23:59:59.000Z

344

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the ninth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing and hosting two fall technology transfer meetings, (2) SWC membership class expansion, and (3) planning the SWC 2003 Spring meeting. In addition, a literature search that focuses on the use of lasers, microwaves, and acoustics for potential stripper well applications continued.

Joel L. Morrison

2003-04-08T23:59:59.000Z

345

Production and screening of carbon products precursors from coal. Quarterly technical progress report and key personnel staffing report No. 6, April 1, 1996--June 30, 1996  

SciTech Connect

The main goal of this program is to demonstrate the utility of coal extracts from the West Virginia University (WVU) extraction process as suitable base raw materials for the carbon products encompassed by the Carbon Products Consortium (CPC) team. This quarterly report covers activities during the period from April 1, 1996 through June 30, 1996. The first year of the project ended in February, 1996; however, the WVU research effort has continued on a no-cost extension of the original contract. Samples have been supplied to CPC participants so they could conduct their portions of the project as contracted through ORNL. Progress reports are presented for the following tasks: project planning and administration; consortium administration and reporting; coal extraction; technical/economic evaluation of WVU extraction process; and technology transfer. Previous work has shown that the WVU coal extraction process coupled with hydrotreatment, does have the potential for producing suitable base raw materials for carbon products. Current effort, therefore, involved the screening and evaluation of extracts produced by the WVU Group and recommending appropriate materials for scaleup for subsequent evaluation by Consortium Team members. As part of this program, the activation of the coal extraction residues was investigated for the purpose of producing a useful active carbon. A further task, which was started towards the end of the program, was to fabricate a small graphite artifact using Coke derived from coal extract as the filler and the coal extract itself as a binder. The results of these studies are summarized in this report.

NONE

1996-07-01T23:59:59.000Z

346

WABASH RIVER IMPPCCT, INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES  

SciTech Connect

In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the Gasification Engineering Corporation and an Industrial Consortium are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an Early Entrance Coproduction Plant located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, financial, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility Study and conceptual design for an integrated demonstration facility and for fence-line commercial plants operated at The Dow Chemical Company or Dow Corning Corporation chemical plant locations (i.e. the Commercial Embodiment Plant or CEP) (2) Research, development, and testing to address any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Ltd., plant in West Terre Haute, Indiana. During the reporting period work was furthered to support the development of capital and operating cost estimates associated with the installation of liquid or gas phase methanol synthesis technology in a Commercial Embodiment Plant (CEP) utilizing the six cases previously defined. In addition, continued development of the plant economic model was accomplished by providing combined cycle performance data. Performance and emission estimates for gas turbine combined cycles was based on revised methanol purge gas information. The economic model was used to evaluate project returns with various market conditions and plant configurations and was refined to correct earlier flaws. Updated power price projections were obtained and incorporated in the model. Sensitivity studies show that break-even methanol prices which provide a 12% return are 47-54 cents/gallon for plant scenarios using $1.25/MM Btu coal, and about 40 cents/gallon for most of the scenarios with $0.50/MM Btu petroleum coke as the fuel source. One exception is a high power price and production case which could be economically attractive at 30 cents/gallon methanol. This case was explored in more detail, but includes power costs predicated on natural gas prices at the 95th percentile of expected price distributions. In this case, the breakeven methanol price is highly sensitive to the required project return rate, payback period, and plant on-line time. These sensitivities result mainly from the high capital investment required for the CEP facility ({approx}$500MM for a single train IGCC-methanol synthesis plant). Finally, during the reporting period the Defense Contractor Audit Agency successfully executed an accounting audit of Global Energy Inc. for data accumulated over the first year of the IMPPCCT project under the Cooperative Agreement.

Doug Strickland

2001-09-28T23:59:59.000Z

347

Coal preparation: The essential clean coal technology  

SciTech Connect

This chapter is a brief introduction to a broad topic which has many highly specialized areas. The aim is to summarize the essential elements of coal preparation and illustrate its important role in facilitating the clean use of coal. Conventional coal preparation is the essential first step in ensuring the economic and environmentally acceptable use of coal. The aim of coal preparation is to produce saleable products of consistent, specified quality which satisfy customer requirements while optimizing the utilization of the coal resource. Coal preparation covers all aspects of preparing coal for the market. It includes size reduction, blending and homogenization and, most importantly, the process of physical beneficiation or washing, which involves separation of undesirable mineral matter from the coal substance itself. Coal preparation can be performed at different levels of sophistication and cost. The degree of coal preparation required is decided by considering the quality of the raw coal, transport costs and, in particular, the coal quality specified by the consumer. However, the cost of coal beneficiation rises rapidly with the complexity of the process and some coal is lost with the waste matter because of process inefficiencies, therefore each situation requires individual study to determine the optimum coal preparation strategy. The necessary expertise is available within APEC countries such as Australia. Coals destined for iron making are almost always highly beneficiated. Physical beneficiation is mostly confined to the higher rank, hard coals, but all other aspects of coal preparation can be applied to subbituminous and lignitic coals to improve their utilization. Also, there are some interesting developments aimed specifically at reducing the water content of lower rank coals.

Cain, D.

1993-12-31T23:59:59.000Z

348

Coal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. A small Mississippi town is making history with the largest carbon capture

349

Strontium Isotope Study of Coal Untilization By-products Interacting with Environmental Waters  

SciTech Connect

Sequential leaching experiments on coal utilization by-products (CUB) were coupled with chemical and strontium (Sr) isotopic analyses to better understand the influence of coal type and combustion processes on CUB properties and the release of elements during interaction with environmental waters during disposal. Class C fly ash tended to release the highest quantity of minor and trace elementsincluding alkaline earth elements, sodium, chromium, copper, manganese, lead, titanium, and zincduring sequential extraction, with bottom ash yielding the lowest. Strontium isotope ratios ({sup 87}Sr/{sup 86}Sr) in bulk-CUB samples (total dissolution of CUB) are generally higher in class F ash than in class C ash. Bulk-CUB ratios appear to be controlled by the geologic source of the mineral matter in the feed coal, and by Sr added during desulfurization treatments. Leachates of the CUB generally have Sr isotope ratios that are different than the bulk value, demonstrating that Sr was not isotopically homogenized during combustion. Variations in the Sr isotopic composition of CUB leachates were correlated with mobility of several major and trace elements; the data suggest that arsenic and lead are held in phases that contain the more radiogenic (high-{sup 87}Sr/{sup 86}Sr) component. A changing Sr isotope ratio of CUB-interacting waters in a disposal environment could forecast the release of certain strongly bound elements of environmental concern. This study lays the groundwork for the application of Sr isotopes as an environmental tracer for CUBwater interaction.

Spivak-Birndorf, Lev J; Stewart, Brian W; Capo, Rosemary C; Chapman, Elizabeth C; Schroeder, Karl T; Brubaker, Tonya M

2011-09-01T23:59:59.000Z

350

Production of cements from Illinois coal ash. Final technical report, September 1, 1995--August 31, 1996  

SciTech Connect

The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. These residues are composed largely of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. Since the residues are used as an integral component of the cement and not just as additives to concrete, larger amounts of the residues can be utilized. The process uses submerged combustion to melt blends of coal combustion residues with lime, clay, and/or sand. The submerged combustion melter utilizes natural gas-oxidant firing directly into a molten bath to provide efficient melting of mineral-like materials. Use of this melter for cement production has many advantages over rotary kilns including very little, if any, grinding of the feed material, very low emissions, and compact size. During the first year of the program, samples of coal combustion residues were blended and mixed, as needed; with lime, clay, and/or sand to adjust the composition. Six mixtures, three with fly ash and three with bottom ash, were melted in a laboratory-scale furnace. The resultant products were used in mortar cubes and bars which were subjected to ASTM standard tests of cementitious properties. In the hydraulic activity test, mortar cubes were found to have a strength comparable to standard mortar cements. In the compressive strength test, mortar cubes were found to have strengths that exceeded ASTM blended cement performance specifications. In the ASR expansion test, mortar bars were subjected to alkali-silica reaction-induced expansion, which is a problem for siliceous aggregate-based concretes that are exposed to moisture. The mortar bars made with the products inhibited 85 to 97% of this expansion. These results show that residue-based products have an excellent potential as ASR-preventing additions in concretes.

Wagner, J.C.; Bhatty, J.L.; Mishulovich, A.

1997-05-01T23:59:59.000Z

351

Projections of the impact of expansion of domestic heavy oil production on the U.S. refining industry from 1990 to 2010. Topical report  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil (10{degrees} to 20{degrees} API gravity) production. This report provides a compendium of the United States refining industry and analyzes the industry by Petroleum Administration for Defense District (PADD) and by ten smaller refining areas. The refining capacity, oil source and oil quality are analyzed, and projections are made for the U.S. refining industry for the years 1990 to 2010. The study used publicly available data as background. A linear program model of the U.S. refining industry was constructed and validated using 1990 U.S. refinery performance. Projections of domestic oil production (decline) and import of crude oil (increases) were balanced to meet anticipated demand to establish a base case for years 1990 through 2010. The impact of additional domestic heavy oil production, (300 MB/D to 900 MB/D, originating in select areas of the U.S.) on the U.S. refining complex was evaluated. This heavy oil could reduce the import rate and the balance of payments by displacing some imported, principally Mid-east, medium crude. The construction cost for refining units to accommodate this additional domestic heavy oil production in both the low and high volume scenarios is about 7 billion dollars for bottoms conversion capacity (delayed coking) with about 50% of the cost attributed to compliance with the Clean Air Act Amendment of 1990.

Olsen, D.K.; Ramzel, E.B.; Strycker, A.R. [National Institute for Petroleum and Energy Research, Bartlesville, OK (United States). ITT Research Institute] [National Institute for Petroleum and Energy Research, Bartlesville, OK (United States). ITT Research Institute; Guariguata, G.; Salmen, F.G. [Bonner and Moore Management Science, Houston, TX (United States)] [Bonner and Moore Management Science, Houston, TX (United States)

1994-12-01T23:59:59.000Z

352

(Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2003. Two companies,  

E-Print Network (OSTI)

with the curtailment of primary refining capacity have added an extra incentive to the recovery of secondary indium be compared with Japan where the decline in domestic zinc refining has stimulated an aggressive recycling in the world economy. The report of reduced production from mines that produce byproduct indium had a negative

353

Production of high-energy fuel with low volatile content from 3B and D coal  

Science Journals Connector (OSTI)

Experiments on the carbonization of coal show that high-energy fuel with satisfactory piece strength (?8 MPa in compression) may be produced in the nonoxidative heating of 3B and D coal, with gradual increase ...

M. V. Kulesh; S. R. Islamov

2012-08-01T23:59:59.000Z

354

Syngas Production from Coal Gasification with CO2 Rich Gas Mixtures  

Science Journals Connector (OSTI)

Coal gasification with CO2 rich gas mixture is one of several promising new technologies associated with CO2 reduction in the atmosphere. Coal gasification with high CO2 concentration is suitable for producing la...

M. S. Alam; A. T. Wijayanta; K. Nakaso

2013-01-01T23:59:59.000Z

355

(Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2000. Domestically  

E-Print Network (OSTI)

Statistics--United States: 1996 1997 1998 1999 2000e Production, refinery -- -- -- -- -- Imports fluctuations. World Refinery Production, Reserves, and Reserve Base: Refinery productione Reserves2 Reserve

356

Removing petroleum products from coke-plant wastewater by means of coal concentrates and coking products  

Science Journals Connector (OSTI)

The use of raw materials and products at OAO Moskoks in absorbing petroleum products is explored. These materials are compared with mass-produced carbon absorbers. The possibility of producing carbon adsorbent...

N. P. Zubakhin; V. N. Klushin; D. A. Dmitrieva; E. V. Zenkova

2011-04-01T23:59:59.000Z

357

Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption  

SciTech Connect

Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

Ghate, Madhav R. (Morgantown, WV); Yang, Ralph T. (Williamsville, NY)

1987-01-01T23:59:59.000Z

358

Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption  

SciTech Connect

Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

Ghate, M.R.; Yang, R.T.

1985-10-03T23:59:59.000Z

359

Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption  

SciTech Connect

This patent describes the method for bulk separation of multi-component gases generated in a coal gasification process wherein coal is gasified in a gasifier to produce gasification products including a mixture of gases comprising hydrogen, carbon monoxide, methane, and acid gas components carbon dioxide and hydrogen sulfide. It consists of the steps of conveying a stream comprising the mixture of gases into one end of an elongated column containing a solid adsorbent for each of the gases forming the mixture of gases and pressurizing the charge of gases within the column to a pressure within a range sufficient to effect the adsorption by the adsorbent of the conveyed gases including the hydrogen defining the least absorbable gas in the mixture of gases. Then, decreasing the partial pressure of the charge of gases in the column to effect the sequential desorption of the gases hydrogen, carbon monoxide, and methane from the adsorbent in the column, and conveying the adsorbed gases from the column upon desorption thereof from the adsorbent.

Ghate, M.H.; Yang, R.T.

1987-09-29T23:59:59.000Z

360

GIS BASED ANALYSIS OF LANDCOVER CHANGES ARISING FROM COAL PRODUCTION WASTES IN ZONGULDAK  

E-Print Network (OSTI)

mining has been made since 1848 and, based on the records kept since 1865, 328 million tons pit run coal

H. Ak?n A; S. Karak? A; G. Byksalih A; M. Oru A

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Improving Process Performances in Coal Gasification for Power and Synfuel Production  

Science Journals Connector (OSTI)

The basic idea is to thermally couple a gasifier, fed with coal and steam, and a combustor where coal is burnt with air, thus overcoming the need of expensive pure oxygen as a feedstock. ... Considering the worlds insatiable appetite for energy and oil, the only reasonable large-scale conventional source left in the medium term will have to be coal. ...

M. Sudiro; A. Bertucco; F. Ruggeri; M. Fontana

2008-09-17T23:59:59.000Z

362

LOW-COST, HIGH-PERFORMANCE MATERIALS USING ILLINOIS COAL COMBUSTION BY-PRODUCTS  

E-Print Network (OSTI)

conventional and clean coal technologies. This project was primarily directed toward developing concrete, mineralogical, and microstructural properties. A clean coal ash is defined as the ash derived from SO2 control technologies. Based on these properties, two sources of both conventional and clean coal ashes were selected

Wisconsin-Milwaukee, University of

363

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. There are a number of parameters which are important for the production of acceptable cokes, including purity, structure, density, electrical resistivity, thermal conductivity etc. From the standpoint of a manufacturer of graphite electrodes such as GrafTech, one of the most important parameters is coefficient of thermal expansion (CTE). Because GrafTech material is usually fully graphitized (i.e., heat treated at 3100 C), very high purity is automatically achieved. The degree of graphitization controls properties such as CTE, electrical resistivity, thermal conductivity, and density. Thus it is usually possible to correlate these properties using a single parameter. CTE has proven to be a useful index for the quality of coke. Pure graphite actually has a slightly negative coefficient of thermal expansion, whereas more disordered carbon has a positive coefficient.

Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-06-23T23:59:59.000Z

364

Environmental chamber measurements of mercury flux from coal utilization by-products  

SciTech Connect

An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7-day experiment averages ranging from -6.8 to 73 ng/m2 h for the fly ash samples and -5.2 to 335 ng/m2 h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.

Pekney, N.J.; Martello, D.V.; Schroeder, K.T.; Granite, E.J.

2009-05-01T23:59:59.000Z

365

Economical production of transportation fuels from coal, natural gas, and other carbonaceous feedstocks  

SciTech Connect

The Nation`s economy and security will continue to be vitally linked to an efficient transportation system of air, rail, and highway vehicles that depend on a continuous supply of liquid fuels at a reasonable price and with characteristics that can help the vehicle manufacturers meet increasingly strict environmental regulations. However, an analysis of US oil production and demand shows that, between now and 2015, a significant increase in imported oil will be needed to meet transportation fuel requirements. One element of an overall Department of Energy`s (DOE) strategy to address this energy security issue while helping meet emissions requirements is to produce premium transportation fuels from non-petroleum feedstocks, such as coal, natural gas, and biomass, via Fischer-Tropsch (F-T) and other synthesis gas conversion technologies.

Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Winslow, J.C.; Venkataraman, V.K.; Driscoll, D.J. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

1998-12-31T23:59:59.000Z

366

Washability of trace elements in product coals from Illinois mines. Technical report, September 1--November 30, 1993  

SciTech Connect

The existing trace element washability data on Illinois coals are based on float-sink methods, and these data are not applicable to modern froth flotation or column flotation processes. Particularly, there is a lack of washability data on samples from modern preparation plants, as well as other product (as-shipped) coals. The goal of this project is to provide the needed trace element washability data on as-shipped coals that were collected during 1992--1993 from Illinois mines. The results generated by this project will promote Illinois coals for such prospective new markets as feed materials for advanced gasification processes, for synthetic organic chemicals, and to meet new environmental requirements for their use in utility steam generation. During the first quarter, each of 34 project samples were ground to about {approximately}100 mesh size and cleaned by use of a special froth flotation technique (release analysis). The flotation products were analyzed for ash, moisture, and heating value (BTU). The data were then used to construct a series of different-washability curves. For example, these curves can show variation in BTU or combustible recovery as a function of the amount of ash or S rejected, or as a function of the weight of the flotation products. From the relationship between %cumulative BTU and %cumulative weight, nine composite samples each having 80% of the total BTU were prepared from the individual flotation products and submitted for trace element analysis.

Demir, I.; Ruch, R.R.; Harvey, R.D.; Steele, J.D. [Illinois Dept. of Energy and Natural Resources, Springfield, IL (United States). Geological Survey

1993-12-31T23:59:59.000Z

367

(Data in metric tons, unless otherwise noted) Domestic Production and Use: No indium was recovered from ores in the United States in 1997. Domestically  

E-Print Network (OSTI)

--United States: 1993 1994 1995 1996 1997e Production, refinery -- -- -- -- -- Imports for consumption 73.4 70 for the indium market remains promising. World Refinery Production, Reserves, and Reserve Base: Refinery

368

Characterization of the Products of the Clay Mineral Thermal Reactions during Pulverization Coal Combustion in Order to Study the Coal Slagging Propensity  

Science Journals Connector (OSTI)

Slagging is well-known as one problem threatening safe, economic operation of coal-fired boilers. ... (1-4) Today, more and more power plants use new coals or coal blends because of the low availability of the original design fuels, which has increased the demand for predictions of coal slagging characteristics. ...

Sida Tian; Yuqun Zhuo; Changhe Chen

2011-09-12T23:59:59.000Z

369

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 1  

SciTech Connect

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

Miller, Bruce; Winton, Shea

2010-12-31T23:59:59.000Z

370

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 4  

SciTech Connect

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

Miller, Bruce; Shea, Winton

2010-12-31T23:59:59.000Z

371

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 3  

SciTech Connect

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

Miller, Bruce; Shea, Winton

2010-12-31T23:59:59.000Z

372

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 5  

SciTech Connect

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

Miller, Bruce; Shea, Winton

2010-12-31T23:59:59.000Z

373

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 2  

SciTech Connect

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

Miller, Bruce; Winton, Shea

2010-12-31T23:59:59.000Z

374

U.S. Domestic  

Gasoline and Diesel Fuel Update (EIA)

1 1 Domestic and foreign distribution of U.S. coal by State of origin, 2011 (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By Brokers & Traders* Total Exports Total Distribution Alabama 9,222.6 9,030.7 1,127.4 10,158.1 19,380.7 Alaska 1,015.6 1,203.2 - 1,203.2 2,218.8 Arizona 7,872.5 - - - 7,872.5 Arkansas 7.2 - - - 7.2 Colorado 22,949.4 1,713.8 1,286.4 3,000.2 25,949.6 Illinois 31,679.5 4,641.9 830.4 5,472.4 37,151.9 Indiana 36,633.9 120.0 522.2 642.2 37,276.1 Kansas 31.1 - - - 31.1 Kentucky Total 96,148.9 3,533.7 3,610.7 7,144.4 103,293.3 East 56,548.9 2,328.7 3,186.2 5,514.9 62,063.7 West 39,600.1 1,205.0 424.5 1,629.5 41,229.6 Louisiana 3,854.7 - - - 3,854.7 Maryland 2,203.8 171.3 327.8 499.1 2,702.9 Mississippi 2,701.2 - - - 2,701.2 Missouri 350.3 - - - 350.3 Montana 25,346.4

375

Coal gasification: Belgian first  

Science Journals Connector (OSTI)

... hope for Europe's coal production came with the announcement this month that the first gasification of coal at depths of nearly 1,000 metres would take place this May in ... of energy.

Jasper Becker

1982-03-04T23:59:59.000Z

376

DOE's Coal Research and Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 25, 2013 - 10:32am July 25, 2013 - 10:32am Addthis Statement of Christopher Smith, Acting Assistant Secretary for Fossil Energy before the House Committee on Science, Space and Technology Subcommittee on Energy Thank you Chairman Lummis, Ranking Member Swalwell, and members of the Subcommittee. I appreciate the opportunity to discuss the Department of Energy's (DOE) coal research and development (R&D) activities. Coal fuels approximately 40 percent of our domestic electricity production. As the Energy Information Administration (EIA) recently pointed out in the Annual Energy Outlook 2013 reference case, coal is projected to remain the largest energy source for electricity generation through 2040. Because it is abundant, the clean and efficient use of coal is a key part of President Obama's all-of-the-above energy strategy.

377

Economic analysis of coal-based polygeneration system for methanol and power production  

Science Journals Connector (OSTI)

Polygeneration system for chemical and power co-production has been regarded as one of promising technologies to use fossil fuel more efficiently and cleanly. In this paper the thermodynamic and economic performances of three types of coal-based polygeneration system were investigated and the influence of energy saving of oxygenation systems on system economic performance was revealed. The primary cost saving ratio (PCS) is presented as a criterion, which represents the cost saving of polygeneration system compared with the single-product systems with the same products outputs, to evaluate economic advantages of polygeneration system. As a result, the system, adopting un-reacted syngas partly recycled to the methanol synthesis reactor and without the shift process, can get the optimal PCS of 11.8%, which results from the trade-off between the installed capital cost saving and the energy saving effects on the cost saving, and represents the optimal coupling relationship among chemical conversion, energy utilization and economic performance. And both of fuel price and the level of equipment capital cost affect on PCS faintly. This paper provides an evaluation method for polygeneration systems based on both technical and economic viewpoints.

Hu Lin; Hongguang Jin; Lin Gao; Wei Han

2010-01-01T23:59:59.000Z

378

Bio-coal briquette  

SciTech Connect

Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

Honda, Hiroshi

1993-12-31T23:59:59.000Z

379

Use of resin-bearing wastes from coke and coal chemicals production at the Novokuznetsk Metallurgical Combine  

SciTech Connect

The coke and coal chemicals plant at the Novokuznetsk Metallurgical Combine is making trial use of a technology that recycles waste products in 'tar ponds.' Specialists from the Ekomash company have installed a recycling unit in one area of the plant's dump, the unit including an inclined conveyor with a steam heater and a receiving hopper The coal preparation shop receives the wastes in a heated bin, where a screw mixes the wastes with pail of the charge for the coking ovens. The mixture subsequently travels along a moving conveyor belt together with the rest of the charge materials. The addition of up to 2% resin-bearing waste materials to the coal charge has not had any significant effect on the strength properties of the coke.

Kul'kova, T.N.; Yablochkin, N.V.; Gal'chenko, A.I.; Karyakina, E.A.; Litvinova, V.A.; Gorbach, D.A.

2007-03-15T23:59:59.000Z

380

Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton  

SciTech Connect

The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury being sorbed onto the CCB when exposed to ambient-temperature air. The environmental performance of the mercury captured on AC used as a sorbent for mercury emission control technologies indicated that current CCB management options will continue to be sufficiently protective of the environment, with the potential exception of exposure to elevated temperatures. The environmental performance of the other ATEs investigated indicated that current management options will be appropriate to the CCBs produced using AC in mercury emission controls.

David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

2007-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the tenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) release of the 2003 request-for-proposal (RFP), (2) planning the spring SWC meeting in Pearl River New York, and (3) tentatively plan the SWC 2003 fall technology transfer meetings. During this reporting period, the efforts were focused primarily on the organizing and hosting the fall technology transfer meetings. Simultaneously, administrative issues such as modifying the SWC Constitution and By-Laws and creating a block membership tier to promote further industrial involvement were areas of concentration. The SWC is poised to enter its third year with a growing, diversifying membership.

Joel L. Morrison

2004-05-10T23:59:59.000Z

382

Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the ninth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) Develop and process subcontract awards for the nine projects selected at the 2006 Spring meeting; (2) Continue distribution of the DVD on ''Independent Oil: Rediscovering American's Forgotten Wells''; (3) Improving communications; (4) New member recruitment; (5) Identify SWC projects to be showcased for booth exhibition, preparing an exhibit, promoting and marketing for the 2006 Oklahoma Oil and Gas Trade Expo organized by the OK Marginal Well Commission, Oklahoma City, OK; and (6) Identify projects and draft agenda for the fall technical workshop in Pittsburgh, PA.

Joel L. Morrison; Sharon L. Elder

2006-06-30T23:59:59.000Z

383

The economical production of alcohol fuels from coal-derived synthesis gas: Case studies, design, and economics  

SciTech Connect

This project is a combination of process simulation and catalyst development aimed at identifying the most economical method for converting coal to syngas to linear higher alcohols to be used as oxygenated fuel additives. There are two tasks. The goal of Task 1 is to discover, study, and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas, and to explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. The goal of Task 2 is to simulate, by computer, energy efficient and economically efficient processes for converting coal to energy (fuel alcohols and/or power). The primary focus is to convert syngas to fuel alcohols. This report contains results from Task 2. The first step for Task 2 was to develop computer simulations of alternative coal to syngas to linear higher alcohol processes, to evaluate and compare the economics and energy efficiency of these alternative processes, and to make a preliminary determination as to the most attractive process configuration. A benefit of this approach is that simulations will be debugged and available for use when Task 1 results are available. Seven cases were developed using different gasifier technologies, different methods for altering the H{sub 2}/CO ratio of the syngas to the desired 1.1/1, and with the higher alcohol fuel additives as primary products and as by-products of a power generation facility. Texaco, Shell, and Lurgi gasifier designs were used to test gasifying coal. Steam reforming of natural gas, sour gas shift conversion, or pressure swing adsorption were used to alter the H{sub 2}/CO ratio of the syngas. In addition, a case using only natural gas was prepared to compare coal and natural gas as a source of syngas.

NONE

1995-10-01T23:59:59.000Z

384

Hydrogen production by high-temperature steam gasification of biomass and coal  

SciTech Connect

High-temperature steam gasification of paper, yellow pine woodchips, and Pittsburgh bituminous coal was investigated in a batch-type flow reactor at temperatures in the range of 700 to 1,200{sup o}C at two different ratios of steam to feedstock molar ratios. Hydrogen yield of 54.7% for paper, 60.2% for woodchips, and 57.8% for coal was achieved on a dry basis, with a steam flow rate of 6.3 g/min at steam temperature of 1,200{sup o}C. Yield of both the hydrogen and carbon monoxide increased while carbon dioxide and methane decreased with the increase in gasification temperature. A 10-fold reduction in tar residue was obtained at high-temperature steam gasification, compared to low temperatures. Steam and gasification temperature affects the composition of the syngas produced. Higher steam-to-feedstock molar ratio had negligible effect on the amount of hydrogen produced in the syngas in the fixed-batch type of reactor. Gasification temperature can be used to control the amounts of hydrogen or methane produced from the gasification process. This also provides mean to control the ratio of hydrogen to CO in the syngas, which can then be processed to produce liquid hydrocarbon fuel since the liquid fuel production requires an optimum ratio between hydrogen and CO. The syngas produced can be further processed to produce pure hydrogen. Biomass fuels are good source of renewable fuels to produce hydrogen or liquid fuels using controlled steam gasification.

Kriengsak, S.N.; Buczynski, R.; Gmurczyk, J.; Gupta, A.K. [University of Maryland, College Park, MD (United States). Dept. of Mechanical Engineering

2009-04-15T23:59:59.000Z

385

domestic refuse landfill  

Science Journals Connector (OSTI)

domestic refuse landfill, domestic waste landfill, house waste landfill, house refuse landfill ? Hausmllaufschttung f

2014-08-01T23:59:59.000Z

386

COAL LOGISTICS. Tracking U.S. Coal Exports  

SciTech Connect

COAL LOGISTICS has the capability to track coal from a U. S. mine or mining area to a foreign consumer`s receiving dock. The system contains substantial quantities of information about the types of coal available in different U. S. coalfields, present and potential inland transportation routes to tidewater piers, and shipping routes to and port capabilities in Italy, Japan, South Korea, Taiwan, and Thailand. It is designed to facilitate comparisons of coal quality and price at several stages of the export process, including delivered prices at a wide range of destinations. COAL LOGISTICS can be used to examine coal quality within or between any of 18 U. S. coalfields, including three in Alaska, or to compare alternative routes and associated service prices between coal-producing regions and ports-of-exit. It may be used to explore the possibilities of different ship sizes, marine routes, and foreign receiving terminals for coal exports. The system contains three types of information: records of coal quality, domestic coal transportation options, and descriptions of marine shipment routes. COAL LOGISTICS contains over 3100 proximate analyses of U. S. steam coals, usually supplemented by data for ash softening temperature and Hardgrove grindability; over 1100 proximate analyses for coals with metallurgical potential, usually including free swelling index values; 87 domestic coal transportation options: rail, barge, truck, and multi-mode routes that connect 18 coal regions with 15 U. S. ports and two Canadian terminals; and data on 22 Italian receiving ports for thermal and metallurgical coal and 24 coal receiving ports along the Asian Pacific Rim. An auxiliary program, CLINDEX, is included which is used to index the database files.

Sall, G.W. [US Department of Energy, Office of Fossil Energy, Washington, DC (United States)

1988-06-28T23:59:59.000Z

387

Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels  

SciTech Connect

For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

1995-12-31T23:59:59.000Z

388

Conditioner for flotation of coal  

SciTech Connect

A method for recovering coal is described which comprises the steps of floating coal in an aqueous frothing medium containing an amount of a condensation product of an alkanolamine and naphthenic acid sufficient to increase the recovery of coal as compared to the recovery of coal in an identical process using none of the condensation product.

Nimerick, K.H.

1988-03-22T23:59:59.000Z

389

Production of Middle Caloric Fuel Gas from Coal by Dual-Bed Gasification Technology  

Science Journals Connector (OSTI)

This work demonstrated the dual-bed gasification technology on a pilot plant (1000 tons of coal/a) mainly consisting of a fluidized-bed gasifier and a pneumatic combustor using the coal with a particle size of less than 20 mm. ... It can be seen in Table 1 that the mass fraction of the coal with sizes less than 2.0 mm was about 45 wt %. ... Coal was continuously fed in the gasifier, and meanwhile, air or gas mixture (air and steam) as the fluidizing medium and gasifying reagent was introduced from the bottom of the gasifier. ...

Yin Wang; Wen Dong; Li Dong; Junrong Yue; Shiqiu Gao; Toshiyuki Suda; Guangwen Xu

2010-04-23T23:59:59.000Z

390

Evaluation of factors that influence microbial communities and methane production in coal microcosms.  

E-Print Network (OSTI)

??Vast reserves of coal represent a largely untapped resource that can be used to produce methane gas, a cleaner energy alternative compared to burning oil (more)

Gallagher, Lisa K.

2014-01-01T23:59:59.000Z

391

Trends in U.S. Recoverable Coal Supply Estimates and Future Production Outlooks  

Science Journals Connector (OSTI)

are naturally occurring concentrations or deposits of coal in the Earths crust, in such forms and amounts that economic extraction is currently or potentially feasible.

Mikael Hk; Kjell Aleklett

2010-09-01T23:59:59.000Z

392

Investigation of Effects of Coal and Biomass Contaminants on the Performance of Water-Gas-Shift and Fischer-Tropsch Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Coal Effects of Coal and Biomass Contaminants on the Performance of Water-Gas-Shift and Fischer-Tropsch Catalysts Background Coal-Biomass-to-Liquids (CBTL) processes gasify coal, biomass, and mixtures of coal/ biomass to produce synthesis gas (syngas) that can be converted to liquid hydrocarbon fuels. Positive benefits of these processes include the use of feedstocks from domestic sources and lower greenhouse gas production than can be achieved from using conventional petroleum-based fuels. However, syngas generated by coal and biomass co-gasification contains a myriad of trace contaminants that may poison the water- gas-shift (WGS) and Fischer-Tropsch (FT) catalysts used in the gas-to-liquid processes. While the effect of coal contaminants on FT processes is well studied, more research

393

Advanced coal technology by-products: Long-term results from landfill test cells and their implications for reuse or disposal applications  

SciTech Connect

New air pollution regulations under the 1991 Clean Air Act and other legislation are motivating continued development and implementation, of cleaner, more efficient processes for converting coal to electrical power. These clean coal processes produce solid by-products which differ in important respects from conventional pulverized coal combustion ash. Clean coal by-products` contain both residual sorbent and captured SO{sub 2} control products, as well as the mineral component of the coal. The Department of Energy/Morgantown Energy Technology Center has contracted Radian Corporation to construct and monitor landfill test cells with a several different advanced coal combustion by-products at three locations around the US; data from these sites provide a unique picture of the long-term field behavior of clean coal combustion by-products. The field testing sites were located in western Colorado, northern Ohio, and central Illinois. Fluidized bed combustion and lime injection residues are characterized by high lime and calcium sulfate contents` contributed by reacted and unreacted sorbent materials, and produce an leachate, when wetted. Compared with conventional coal fly ash, the clean coal technology ashes have been noted for potential difficulties when wetted, including corrosivity, heat generation, cementation, and swelling on hydration. On the other hand, the high lime content and chemical reactivity of clean coal residues offer potential benefits in reuse as a cementitious material.The results of three years of data collection suggest a fairly consistent pattern of behavior for the calcium-based dry sorbent systems involved in the project, despite differences in the initial of the by-products, differences in the methods of placement, and differences in climate at the test sites.

Weinberg, A. [Radian Corp., Austin, TX (United States); Harness, J.L. [USDOE, Washington, DC (United States)

1994-06-01T23:59:59.000Z

394

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

SciTech Connect

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. Filter media candidates were evaluated for dewatering the ultrafine ash (UFA) product. Media candidates were selected based on manufacturer recommendations and evaluated using standard batch filtration techniques. A final media was selected; 901F, a multifilament polypropylene. While this media would provide adequate solids capture and cake moisture, the use of flocculants would be necessary to enable adequate filter throughput. Several flocculant chemistries were also evaluated and it was determined that polyethylene oxide (PEO) at a dosage of 5 ppm (slurry basis) would be the most suitable in terms of both settling rate and clarity. PEO was evaluated on a continuous vacuum filter using 901F media. The optimum cycle time was found to be 1.25 minutes which provided a 305% moisture cake, 85% solids capture with a throughput of 115 lbs dry solids per hour and a dry cake rate of 25 lb/ft2/hr. Increasing cycle time not did not reduce cake moisture or increase throughput. A mobile demonstration unit has been designed and constructed for field demonstration. The continuous test unit will be operated at the Ghent site and will evaluate three processing configurations while producing sufficient products to facilitate thorough product testing. The test unit incorporates all of the unit processes that will be used in the commercial design and is self sufficient with respect to water, electricity and processing capabilities.

John Groppo; Thomas Robl

2005-06-01T23:59:59.000Z

395

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

SciTech Connect

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. A mobile demonstration unit has been designed and constructed for field demonstration. The demonstration unit was hauled to the test site on trailers that were place on a test pad located adjacent to the ash pond and re-assembled. The continuous test unit will be operated at the Ghent site and will evaluate three processing configurations while producing sufficient products to facilitate thorough product testing. The test unit incorporates all of the unit processes that will be used in the commercial design and is self sufficient with respect to water, electricity and processing capabilities. Representative feed ash for the operation of the filed testing unit was excavated from a location within the lower ash pond determined from coring activities. Approximately 150 tons of ash was excavated and pre-screened to remove +3/8 inch material that could cause plugging problems during operation of the demonstration unit.

Thomas Robl; John Groppo

2005-09-01T23:59:59.000Z

396

Powder River Basin coalbed methane: The USGS role in investigating this ultimate clean coal by-product  

SciTech Connect

For the past few decades, the Fort Union Formation in the Powder River Basin has supplied the Nation with comparatively clean low ash and low sulfur coal. However, within the past few years, coalbed methane from the same Fort Union coal has become an important energy by-product. The recently completed US Geological Survey coal resource assessment of the Fort Union coal beds and zones in the northern Rocky Mountains and Great Plains (Fort Union Coal Assessment Team, 1999) has added useful information to coalbed methane exploration and development in the Powder River Basin in Wyoming and Montana. Coalbed methane exploration and development in the Powder River Basin has rapidly accelerated in the past three years. During this time more than 800 wells have been drilled and recent operator forecasts projected more than 5,000 additional wells to be drilled over the next few years. Development of shallow (less than 1,000 ft. deep) Fort Union coal-bed methane is confined to Campbell and Sheridan Counties, Wyoming, and Big Horn County, Montana. The purpose of this paper is to report on the US Geological Survey's role on a cooperative coalbed methane project with the US Bureau of Land Management (BLM), Wyoming Reservoir Management Group and several gas operators. This paper will also discuss the methodology that the USGS and the BLM will be utilizing for analysis and evaluation of coalbed methane reservoirs in the Powder River Basin. The USGS and BLM need additional information of coalbed methane reservoirs to accomplish their respective resource evaluation and management missions.

Stricker, G.D.; Flores, R.M.; Ochs, A.M.; Stanton, R.W.

2000-07-01T23:59:59.000Z

397

Comparing solar PV (photovoltaic) with coal-fired electricity production in the centralized network of South Africa  

Science Journals Connector (OSTI)

Abstract South Africa has a highly centralized network, in which almost all electricity is produced in Mpumalanga and transmitted throughout South Africa. In the case of the Western Cape, electricity has to be transmitted over 8001370km. This generates losses and entails high transmission costs. Investments in additional production and transmission capacity are needed to cope with the growing demand. Although there is a large potential for solar energy in South Africa, investments are lacking while large investments in new coal-fired power plants are being executed. These coal power plants do not only increase the need for heavier transmission infrastructure, but also have a higher CO2 emission level and a higher pressure on water reserves. This paper performs a more comprehensive cost-analysis between solar energy production and coal production facilities, to make a more elaborate picture of which technologies are more plausible to foresee in the growing demand of electricity. The current centralized electricity infrastructure makes the investment in large production facilities more likely. However, it should be questioned if the investment in large centralized solar parks will be more beneficial than the investments by consumers in smaller solar PV facilities on site.

R.A.F. de Groot; V.G. van der Veen; A.B. Sebitosi

2013-01-01T23:59:59.000Z

398

RESOURCE ASSESSMENT & PRODUCTION TESTING FOR COAL BED METHANE IN THE ILLINOIS BASIN  

SciTech Connect

The geological surveys of Illinois, Indiana and Kentucky have completed the initial geologic assessment of their respective parts of the Illinois Basin. Cumulative thickness maps have been generated and target areas for drilling have been selected. The first well in the Illinois area of the Illinois Basin coal bed methane project was drilled in White County, Illinois in October 2003. This well was cored in the major coal interval from the Danville to the Davis Coals and provided a broad spectrum of samples for further analyses. Sixteen coal samples and three black shale samples were taken from these cores for canister desorption tests and were the subject of analyses that were completed over the following months, including desorbed gas volume, gas chemical and isotope composition, coal proximate, calorific content and sulfur analyses. Drilling programs in Indiana and Kentucky are expected to begin shortly.

Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

2004-06-01T23:59:59.000Z

399

Refined methods for the evaluation of coal resources, quantum leaps in productivity  

SciTech Connect

Studies of coal resource evaluations have been constantly refined since the inception of the Joint Coal Availability Project between the Kentucky Geological Survey and the U.S. Geological Survey in the mid 1980's. Originally geological, environmental, social and technical data was collected and analyzed on individual 7.5 minute quadrangles (areas of 50 to 60 square miles). Mineable coal beds were correlated using the best available data and map and mining information accuracy were closely scrutinized. Advancements in Geographical Information Systems (GIS) and the development of regional databases have allowed the US GS to model the geology and mining restrictions in the same detail, but, for much larger areas coal fields and basins, than in the past. This paper will discuss the GIS programs, methodologies, and computer hardware used in the coal evaluations, and results of Illinois, Powder River, and San Juan Basins and Wasatch Plateau studies.

Devereux Carter, M; Rohrbacher, T.; Molnia, C.L.; Osmonson, L.; Treworgy, C.G.; Weisenfluh, G.

1999-07-01T23:59:59.000Z

400

DURABILITY EVALUATION AND PRODUCTION OF MANUFACTURED AGGREGATES FROM COAL COMBUSTION BY-PRODUCTS  

SciTech Connect

Under the cooperative agreement with DOE, the Research and Development Department of CONSOL Energy (CONSOL R&D), teamed with Universal Aggregates, LLC, to conduct a systematic study of the durability of aggregates manufactured using a variety of flue gas desulfurization (FGD), fluidized-bed combustion (FBC) and fly ash specimens with different chemical and physical properties and under different freeze/thaw, wet/dry and long-term natural weathering conditions. The objectives of the study are to establish the relationships among the durability and characteristics of FGD material, FBC ash and fly ash, and to identify the causes of durability problems, and, ultimately, to increase the utilization of FGD material, FBC ash and fly ash as a construction material. Manufactured aggregates made from FGD material, FBC ash and fly ash, and products made from those manufactured aggregates were used in the study. The project is divided into the following activities: sample collection and characterization; characterization and preparation of manufactured aggregates; determination of durability characteristics of manufactured aggregates; preparation and determination of durability characteristics of manufactured aggregate products; and data evaluation and reporting.

M. M. Wu

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Effects of matrix shrinkage and swelling on the economics of enhanced-coalbed-methane production and CO{sub 2} sequestration in coal  

SciTech Connect

In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was rewritten to also account for coal swelling caused by CO{sub 2} sorption. The generalized model was added to a compositional, dual porosity coalbed-methane reservoir simulator for primary (CBM) and ECBM production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals was used. Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young's modulus, Poisson's ratio, cleat porosity, and injection pressure. The economic variables included CH{sub 4}, price, Col Cost, CO{sub 2} credit, water disposal cost, and interest rate. Net-present value (NPV) analyses of the simulation results included profits resulting from CH{sub 4}, production and potential incentives for sequestered CO{sub 2}, This work shows that for some coal seams, the combination of compressibility, cleat porosity, and shrinkage/swelling of the coal may have a significant impact on project economics.

Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H. [Penn State University, University Park, PA (United States)

2007-08-15T23:59:59.000Z

402

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Colorado Railroad 575 - - - 575 Illinois River 99 - - - 99 Indiana River 241 - - - 241 Kentucky Railroad 827 - 12 - 839 Kentucky (East) Railroad 76 - - - 76 Kentucky (West) Railroad

403

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 839 11 83 - 933 Alabama River 1,347 - - - 1,347 Alabama Truck 118 216 236 - 571 Alabama Total 2,304 227 320 - 2,850 Colorado Railroad 514 - - - 514 Illinois River 99 - - - 99 Indiana River 172 - - - 172 Kentucky Railroad 635 - 11 - 647 Kentucky (East) Railroad 45 - - - 45 Kentucky (West)

404

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 944 16 77 - 1,037 Alabama River 781 - - - 781 Alabama Truck 77 224 220 - 521 Alabama Total 1,802 240 298 - 2,340 Colorado Railroad 385 - - - 385 Illinois River 15 - - - 15 Indiana Railroad 1 - - - 1 Indiana River 350 - - - 350 Indiana Total 351 - - - 351 Kentucky Railroad 682 - 2 - 685 Kentucky (East)

405

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 907 10 59 - 975 Alabama River 903 - - - 903 Alabama Truck 150 144 253 - 546 Alabama Total 1,960 153 311 - 2,424 Colorado Railroad 640 - - - 640 Illinois River 123 - - - 123 Indiana River 312 - - - 312 Kentucky Railroad 622 - 36 - 658 Kentucky (East) Railroad 96 - 36 - 132 Kentucky (West)

406

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Colorado Total 468 - - - 468 Colorado Railroad 468 - - - 468 Illinois Total 90 - 26 - 116 Illinois River 90 - 26 - 116 Indiana Total 181 - - - 181 Indiana River 181 -

407

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Colorado Total 82 - - - 82 Colorado Railroad 82 - - - 82 Illinois Total 149 - 14 - 163 Illinois Railroad 44 - - - 44 Illinois River 105 - 14 - 119 Indiana Total 99 - - - 99

408

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Georgia Railroad 23 - - - 23 Georgia Truck s - - - s Georgia Total 23 - - - 23 Indiana Railroad - 115 - - 115 Indiana Truck - 71 - - 71 Indiana Total - 186 - - 186 Tennessee Railroad - - 1 - 1 Tennessee Truck

409

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 1,040 18 80 - 1,138 Alabama River 668 - - - 668 Alabama Truck 52 164 223 - 438 Alabama Total 1,760 181 303 - 2,244 Colorado Railroad 600 - - - 600 Illinois River 203 - 13 - 217 Indiana River 180 - - - 180 Kentucky Railroad 465 - 10 - 475 Kentucky (West) Railroad 465 - 10 - 475 Utah Railroad 18 - - -

410

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,486 155 328 - 1,970 Alabama Railroad 1,020 - 75 - 1,095 Alabama River 417 - - - 417 Alabama Truck 49 155 253 - 458 Colorado Total 195 - - - 195 Colorado Railroad 195 - - - 195 Illinois Total 127 - 18 - 145 Illinois Railroad 20 - - - 20 Illinois River 107 - 18 - 125 Indiana Total

411

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Georgia Total s - s - s Georgia Truck s - s - s Indiana Total - 98 - - 98 Indiana Railroad - 98 - - 98 Kentucky Total - - 12 - 12 Kentucky Truck - - 12 - 12 Ohio Total - 30 - - 30 Ohio

412

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,942 160 335 - 2,437 Alabama Railroad 1,149 - 57 - 1,206 Alabama River 741 - - - 741 Alabama Truck 52 160 278 - 490 Colorado Total 621 2 - - 623 Colorado Railroad 621 2 - - 623 Illinois Total 113 - 11 - 123 Illinois River 113 - 11 - 123 Indiana Total 265 - - - 265 Indiana Railroad

413

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Georgia Total s - - - s Georgia Truck s - - - s Indiana Total - 72 - - 72 Indiana Railroad - 72 - - 72 Tennessee Total - - 7 - 7 Tennessee Truck - - 7 - 7 Origin State Total 1,896

414

Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

415

Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production  

SciTech Connect

Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330oC when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted MgO-based sorbent. Under model feed conditions both the sorbent and catalyst exhibited favorable stability after multiple test cycles. The cleanup for warm gas cleanup of inorganics was broken down into three major steps: chloride removal, sulfur removal, and the removal for a multitude of trace metal contaminants. Na2CO3 was found to optimally remove chlorides at an operating temperature of 450C. For sulfur removal two regenerable ZnO beds are used for bulk H2S removal at 450C (<5 ppm S) and a non-regenerable ZnO bed for H2S polishing at 300C (<40 ppb S). It was also found that sulfur from COS could be adsorbed (to levels below our detection limit of 40 ppb) in the presence of water that leads to no detectable slip of H2S. Finally, a sorbent material comprising of Cu and Ni was found to be effective in removing trace metal impurities such as AsH3 and PH3 when operating at 300C. Proof-of-concept of the integrated cleanup process was demonstrated with gasifier-generated syngas produced at the Western Research Institute using Wyoming Decker Coal. When operating with a ~1 SLPM feed, multiple inorganic contaminant removal sorbents and a tar-reforming bed was able to remove the vast majority of contaminants from the raw syngas. A tar-reforming catalyst was employed due to the production of tars generated from the gasifier used in this particular study. It is envisioned that in a real application a commercial scale gasifier operating at a higher temperature would produce lesser amount of tar. Continuous operation of a poison-sensitive copper-based WGS catalyst located downstream from the cleanup steps resulted in successful demonstration. ?

Dagle, Robert A.; King, David L.; Li, Xiaohong S.; Xing, Rong; Spies, Kurt A.; Zhu, Yunhua; Rainbolt, James E.; Li, Liyu; Braunberger, B.

2014-10-31T23:59:59.000Z

416

(Data in metric tons, unless noted) Domestic Production and Use: No indium was recovered from ores in the United States in 1995. Domestic indium  

E-Print Network (OSTI)

, refinery NA NA NA NA -- Imports for consumption 36.3 36.3 73.4 70.2 73.0 Exports NA NA NA NA NA marketed through a U.S. company. World Refinery Production, Reserves, and Reserve Base: Refinery

417

Domestic Chickens  

NLE Websites -- All DOE Office Websites (Extended Search)

Chickens Chickens Nature Bulletin No. 396-A November 21, 1970 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation DOMESTIC CHICKENS The domestic chicken belongs to a family of hen-like ground-dwelling birds which includes the quail, grouse, partridge, pheasant, turkey, guineafowl and peafowl. Because of their anatomy and relatively small brains, some scientists think that they, -- rather than the ostrich, emu, cassowary and other flightless kinds -- are the most primitive birds. Chickens, undoubtedly, are the silliest of all domestic animals. There is an old riddle: "Why does a chicken cross the road?" Anyone who has seen a squawking hen try to run or fly just ahead of an automobile, will answer: "No brains ".

418

Development of Continuous Solvent Extraction Processes For Coal Derived Carbon Products  

SciTech Connect

In this reporting period, tonnage quantities of coal extract were produced but solid separation was not accomplished in a timely manner. It became clear that the originally selected filtration process would not be effective enough for a serious commercial process. Accordingly, centrifugation was investigated as a superior means for removing solids from the extract. Results show acceptable performance. Petrographic analysis of filtered solids was carried out by R and D Carbon Petrography under the auspices of Koppers and consultant Ken Krupinski. The general conclusion is that the material appears to be amenable to centrifugation. Filtered solids shows a substantial pitch component as well as some mesophase, resulting in increased viscosity. This is likely a contributing reason for the difficulty in filtering the material. Cost estimates were made for the hydotreatment and digestion reactors that would be needed for a 20,000 ton per year demonstration plants, with the aid of ChemTech Inc. The estimates show that the costs of scaling up the existing tank reactors are acceptable. However, a strong recommendation was made to consider pipe reactors, which are thought to be more cost effective and potentially higher performance in large scale systems. The alternate feedstocks for coke and carbon products were used to fabricate carbon electrodes as described in the last quarterly report. Gregory Hackett successfully defended his MS Thesis on the use of these electrodes in Direct Carbon Fuel Cell (DCFC), which is excerpted in Section 2.4 of this quarterly report.

Elliot B. Kennel; Dady B. Dadyburjor; Gregory W. Hackett; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; Robert C. Svensson; John W. Zondlo

2006-09-30T23:59:59.000Z

419

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect

Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

James T. Cobb, Jr.

2003-09-12T23:59:59.000Z

420

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

2 W W W W W W W W W W W Total Mill Feed W W W W W W W W W W W Uranium Concentrate Produced at U.S. Mills (thousand pounds U3O8) W W W W W W W W W W W Uranium Concentrate...

Note: This page contains sample records for the topic "domestic coal production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

By Coal Destination State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Colorado Total 2,113 - - - 2,113 Colorado Railroad 2,113 - - - 2,113 Illinois Total 336 - - - 336 Illinois River 336 - - - 336 Indiana Total 1,076

422

By Coal Origin State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Florida Total - - 15 - 15 Florida Railroad - - 11 - 11 Florida Truck - - 3 - 3 Georgia Total 196 - 15 - 211 Georgia Railroad 189 - 1 - 190 Georgia Truck

423

Quarterly Coal Distribution Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Quarterly Coal Distribution Report Quarterly Coal Distribution Report Release Date: October 01, 2013 | Next Release Date: January 3, 2014 | full report The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of transportation, and consuming sector. Quarterly data for all years are preliminary and will be superseded by the release of the corresponding "Annual Coal Distribution Report." Highlights for the second quarter 2013: Total domestic coal distribution was an estimated 205.8 million short tons (mmst) in the second quarter 2013. This value is 0.7 mmst (i.e. 0.3 percent) higher than the previous quarter and 6.3 mmst (i.e. 3.1 percent) higher than the second quarter of 2012 estimates.

424

Annual Coal Distribution Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Distribution Report Annual Coal Distribution Report Release Date: December 19, 2013 | Next Release Date: November 2014 | full report | Revision/Correction The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for 2012 are final, and this report supersedes the 2012 quarterly coal distribution reports. Highlights for 2012: Total coal distributions for 2012 were 1,003.1 million short tons (mmst), a decrease of 7.9% compared to 2011. Distributions to domestic destinations were 877.3 mmst, a decrease of 104.1 mmst (i.e. 10.6% decrease) compared to 2011. Distributions to

425

Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996  

SciTech Connect

The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

NONE

1998-12-31T23:59:59.000Z

426

Cast-Concrete Products Made with FBC Ash and Wet-Collected Coal-Ash  

E-Print Network (OSTI)

. DOI: 10.1061/ ASCE 0899-1561 2005 17:6 659 CE Database subject headings: Recycling; Ashes; Concrete et al. 1991 . Fluidized bed combustion FBC ash is the ash produced by an FBC boiler in which the coal

Wisconsin-Milwaukee, University of

427

Study of methanol-to-gasoline process for production of gasoline from coal  

Science Journals Connector (OSTI)

The methanol-to-gasoline (MTG) process is an efficient way to produce liquid ... The academic basis of the coal-to-liquid process is described and two different synthesis processes are focused on: Fixed MTG process

Tian-cai He; Xiao-han Cheng; Ling Li

2009-03-01T23:59:59.000Z

428

Simulation of CO2 Sequestration and Enhanced Coalbed Methane Production in Multiple Appalachian Basin Coal Seams  

SciTech Connect

A DOE-funded field injection of carbon dioxide is to be performed in an Appalachian Basin coal seam by CONSOL Energy and CNX Gas later this year. A preliminary analysis of the migration of CO2 within the Upper Freeport coal seam and the resulting ground movements has been performed on the basis of assumed material and geometric parameters. Preliminary results show that ground movements at the field site may be in a range that are measurable by tiltmeter technology.

Bromhal, G.S.; Siriwardane, H.J.; Gondle, R.K.

2007-11-01T23:59:59.000Z

429

Coal market momentum converts skeptics  

SciTech Connect

Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

Fiscor, S.

2006-01-15T23:59:59.000Z

430

Stable isotope and water quality analysis of coal bed methane production waters and gases from the Bowen Basin, Australia  

Science Journals Connector (OSTI)

Coal bed methane (CBM) is a significant growing industry in Queensland's energy sector. It is, however, a relatively new industry with little local water quality data and stable isotope compositions of production waters and gases available in the public domain. This study aims to determine whether water quality and stable isotope data can be correlated with gas and groundwater production and flow pathways, and identify zones of recharge and water mixing. Stable isotope analysis and accessory water quality tests were conducted on CBM production gas and water samples collected from two CBM producing bituminous coal seams within a single field in the Bowen Basin. In the production field, the reservoir seams are gently folded with eastwardly dipping fold axes, and compartmentalised by an ENE normal fault on the flank of a broad central anticline that contains minor faults. For one seam, splitting and a change in coal quality parallels the fault and fold axes. Although virgin reservoir conditions were similar, differing production performance north and south of the main fault suggests it acts as a barrier to water and gas flow along strike. The stable isotope analysis on the production water showed that waters with more positive ?D and ?18O compositions were associated with areas of higher water production and shallower depths, whereas more negative ?D and ?18O compositions were associated with lower water production and high gas production. The gas isotope analysis showed that production gases had both biogenic and thermogenic origins and that secondary biogenic gas generated through CO2 reduction comprises a significant portion of the CBM produced from this field. More negative CH4 ?13C values characterize the zones of meteoric recharge in shallow, up-dip areas. Gas production data and CO2 ?13C values suggest that this may result from 13CH4 stripping by the recharge waters and/or increased biogenic activity in this area. Smaller CO2CH4 carbon isotopic fractionation values characterized zones of meteoric recharge, whereas higher isotopic fractionation values characterized the high gas production domain.

E.C.P. Kinnon; S.D. Golding; C.J. Boreham; K.A. Baublys; J.S. Esterle

2010-01-01T23:59:59.000Z

431

Coal: the cornerstone of America's energy future  

SciTech Connect

In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

Beck, R.A. [National Coal Council (United Kingdom)

2006-06-15T23:59:59.000Z

432

The Asia-Pacific coal technology conference  

SciTech Connect

The Asia-Pacific coal technology conference was held in Honolulu, Hawaii, November 14--16, 1989. Topics discussed included the following: Expanded Horizons for US Coal Technology and Coal Trade; Future Coal-Fired Generation and Capacity Requirements of the Philippines; Taiwan Presentation; Korean Presentation; Hong Kong Future Coal Requirements; Indonesian Presentation; Electric Power System in Thailand; Coal in Malaysia -- A Position Paper; The US and Asia: Pacific Partners in Coal and Coal Technology; US Coal Production and Export; US Clean Coal Technologies; Developments in Coal Transport and Utilization; Alternative/Innovative Transport; Electricity Generation in Asia and the Pacific: Power Sector Demand for Coal, Oil and Natural Gas; Role of Clean Coal Technology in the Energy Future of the World; Global Climate Change: A Fossil Energy Perspective; Speaker: The Role of Coal in Meeting Hawaii's Power Needs; and Workshops on Critical Issues Associated with Coal Usage. Individual topics are processed separately for the data bases.

Not Available

1990-02-01T23:59:59.000Z

433

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

Aden, Nathaniel

2010-01-01T23:59:59.000Z

434

Coal Transportation Issues (released in AEO2007)  

Reports and Publications (EIA)

Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

2007-01-01T23:59:59.000Z

435

Coal Gasification  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically via the process of coal gasification with sequestration. DOE anticipates that coal...

436

Reaction Mechanism of Coal Chemical Looping Process for Syngas Production with CaSO4 Oxygen Carrier in the CO2 Atmosphere  

Science Journals Connector (OSTI)

Reaction Mechanism of Coal Chemical Looping Process for Syngas Production with CaSO4 Oxygen Carrier in the CO2 Atmosphere ... (5) One is to carry out first coal gasification and subsequently to introduce the syngas produced in the CLC system,(6) while the other is to feed the solid fuel directly to the fuel reactor in a CLC process. ... When oxygen supported by oxygen carrier is enough for converting the coal into CO2 and H2O, a considerable amount of heat will produce for electricity generation. ...

Yongzhuo Liu; Qingjie Guo; Yu Cheng; Ho-Jung Ryu

2012-07-13T23:59:59.000Z

437

Coal recovery process  

DOE Patents (OSTI)

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

438