Sample records for dome storage field

  1. Field Survey of Cactus Crater Storage Facility (Runit Dome)

    SciTech Connect (OSTI)

    Douglas Miller, Terence Holland

    2008-10-31T23:59:59.000Z

    The US Department of Energy, Office of Health and Safety (DOE/HS-10), requested that National Security Technologies, LLC, Environmental Management directorate (NSTec/EM) perform a field survey of the Cactus Crater Storage Facility (Runit Dome), similar to past surveys conducted at their request. This field survey was conducted in conjunction with a Lawrence Livermore National Laboratory (LLNL) mission on Runit Island in the Enewetak Atoll in the Republic of the Marshall Islands (RMI). The survey was strictly a visual survey, backed up by digital photos and a written description of the current condition.

  2. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    SciTech Connect (OSTI)

    Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon

    2009-03-01T23:59:59.000Z

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

  3. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Park, Byoung Yoon; Herrick, Courtney Grant

    2010-06-01T23:59:59.000Z

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes in strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of a storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

  4. Salt dome gas storage solves curtailment threat

    SciTech Connect (OSTI)

    Watts, J.

    1982-04-01T23:59:59.000Z

    In November 1981, Valero Transmission Co. (San Antonio, TX) opened two salt-dome storage caverns with a combined capacity of 5 billion CF (1.5 billion of cushion gas, 3.5 of working gas). The facility's maximum deliverability is 400 million CF/day for 9 days; when two more caverns are finished in late 1982, the $55 million complex will be able to sustain that level for 18 days, making Valero less dependent on linepacking and spot sales to avoid curtailing deliveries to its customers.

  5. Identifying suitable "piercement" salt domes for nuclear waste storage sites

    SciTech Connect (OSTI)

    Kehle, R.

    1980-08-01T23:59:59.000Z

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes.

  6. Reservoir simulation of co2 sequestration and enhanced oil recovery in Tensleep Formation, Teapot Dome field

    E-Print Network [OSTI]

    Gaviria Garcia, Ricardo

    2006-04-12T23:59:59.000Z

    Teapot Dome field is located 35 miles north of Casper, Wyoming in Natrona County. This field has been selected by the U.S. Department of Energy to implement a field-size CO2 storage project. With a projected storage of 2.6 million tons of carbon...

  7. Petroleum storage potential of the Chacahoula salt dome, Louisiana

    SciTech Connect (OSTI)

    Magorian, T.R. (Magorian (Thomas R.), Amherst, NY (USA)); Neal, J.T. (Sandia National Labs., Albuquerque, NM (USA))

    1990-01-01T23:59:59.000Z

    Chacahoula salt dome, eight miles southwest of Thibodaux, LA, could be solution mined to create caverns for storing as much as 500 million barrels (MMB) of crude oil, should the Strategic Petroleum Reserve (SPR) require additional storage volume. The salt mass geometry is confirmed by more than 50 oil wells, and also from previous exploratory drilling for sulphur. Top of salt occurs at {minus}1100 ft, and some 1300 acres exist within the {minus}2000 ft salt contour. Frasch mining of 1.35 million long tons of sulphur caused the surface to subside about one foot on the northeastern part of the dome. Creep-induced subsidence averaging {approximately}2.7 ft over 30 yrs is estimated for a 200 MMB cavern array, which would require perimeter diking to control localized perennial flooding. Earthquakes approaching intensity MM 6 have occurred nearby and are expected to recur on the order of {approximately}100 yrs but would not affect cavern stability. Additional study of brine disposal methods and hurricane surge probabilities are needed to establish design parameters and cost estimates for storage. 11 refs., 8 figs., 2 tabs.

  8. Flattening Scientific CCD Imaging Data with a Dome Flat Field System

    E-Print Network [OSTI]

    J. L. Marshall; D. L. DePoy

    2005-10-07T23:59:59.000Z

    We describe the flattening of scientific CCD imaging data using a dome flat field system. The system uses light emitting diodes (LEDs) to illuminate a carefully constructed dome flat field screen. LEDs have several advantages over more traditional illumination sources: they are available in a wide range of output wavelengths, are inexpensive, have a very long source lifetime, and are straightforward to control digitally. The circular dome screen is made of a material with Lambertian scattering properties that efficiently reflects light of a wide range of wavelengths and incident angles. We compare flat fields obtained using this new system with two types of traditionally-constructed flat fields: twilight sky flats and nighttime sky flats. Using photometric standard stars as illumination sources, we test the quality of each flat field by applying it to a set of standard star observations. We find that the dome flat field system produces flat fields that are superior to twilight or nighttime sky flats, particularly for photometric calibration. We note that a ratio of the twilight sky flat to the nighttime sky flat is flat to within the expected uncertainty; but since both of these flat fields are inferior to the dome flat, this common test is not an appropriate metric for testing a flat field. Rather, the only feasible and correct method for determining the appropriateness of a flat field is to use standard stars to measure the reproducibility of known magnitudes across the detector.

  9. Reservoir simulation of co2 sequestration and enhanced oil recovery in Tensleep Formation, Teapot Dome field 

    E-Print Network [OSTI]

    Gaviria Garcia, Ricardo

    2006-04-12T23:59:59.000Z

    ............................................................................. 58 1 CHAPTER I 2. INTRODUCTION 1.1 Background Teapot Dome field, also known as Naval Petroleum Reserve #3 (NPR-3) is located in the southwest portion of the Powder River Basin, 35 miles north of Casper, Wyoming... through the reservoir, precipitates such as gypsum can form.5 12 CHAPTER III 2. GEOLOGY REVIEW 3.1 Introduction Teapot Dome also known as the Naval Petroleum Reserve No. 3 (NPR-3) is located in central Wyoming, near...

  10. Salt dome discoveries mounting in Mississippi

    SciTech Connect (OSTI)

    Ericksen, R.L. [Mississippi Office of Geology, Jackson, MS (United States)

    1996-06-17T23:59:59.000Z

    Exploratory drilling around piercement salt domes in Mississippi has met with a string of successes in recent months. Exploration of these salt features is reported to have been initiated through the review of non-proprietary, 2D seismic data and subsurface control. This preliminary data and work were then selectively upgraded by the acquisition of additional, generally higher quality, conventional 2D seismic lines. This current flurry of successful exploration and ensuing development drilling by Amerada Hess Corp. on the flanks of salt domes in Mississippi has resulted in a number of significant Hosston discoveries/producers at: Carson salt dome in Jefferson Davis County; Dry Creek salt dome in Covington County, Midway salt dome in lamar County, Monticello salt dome in Lawrence County, and Prentiss salt dome in Jefferson Davis County. The resulting production from these fields is gas and condensate, with wells being completed on 640 acre production units.

  11. Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics

    E-Print Network [OSTI]

    Koledintseva, Marina Y.

    Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics S. K. Patil, M. Y, USA Modeling of electrostatic field distribution and energy storage in diphasic dielectrics containing to the increased energy storage density. For composites with lower volume fractions of high-permittivity inclusions

  12. Geologic technical assessment of the Chacahoula Salt Dome, Louisiana, for potential expansion of the U.S. strategic petroleum reserve.

    SciTech Connect (OSTI)

    Snider, Anna C.; Rautman, Christopher Arthur; Looff, Karl M. (Geologic Consultant, Lovelady, TX)

    2006-03-01T23:59:59.000Z

    The Chacahoula salt dome, located in southern Louisiana, approximately 66 miles southwest of New Orleans, appears to be a suitable site for a 160-million-barrel-capacity expansion facility for the U.S. Strategic Petroleum Reserve, comprising sixteen 10-million barrel underground storage caverns. The overall salt dome appears to cover an area of some 1800 acres, or approximately 2.8 square miles, at a subsea elevation of 2000 ft, which is near the top of the salt stock. The shallowest known salt is present at 1116 ft, subsea. The crest of the salt dome is relatively flatlying, outward to an elevation of -4000 ft. Below this elevation, the flanks of the dome plunge steeply in all directions. The dome appears to comprise two separate spine complexes of quasi-independently moving salt. Two mapped areas of salt overhang, located on the eastern and southeastern flanks of the salt stock, are present below -8000 ft. These regions of overhang should present no particular design issues, as the conceptual design SPR caverns are located in the western portion of the dome. The proposed cavern field may be affected by a boundary shear zone, located between the two salt spines. However, the large size of the Chacahoula salt dome suggests that there is significant design flexibility to deal with such local geologic issues.

  13. Geothermal studies of seven interior salt domes

    SciTech Connect (OSTI)

    Not Available

    1983-06-01T23:59:59.000Z

    This report defines and compares the geothermal environments of eight selected Gulf Coast salt domes. The thermal regimes in and around Gulf Coast salt domes are not well documented. The data base used for this study is an accumulation of bottom-hole temperature readings from oil and gas exploration wells and temperature logs run for the National Waste Terminal Storage (NWTS) program. The bottom-hole tempreatures were corrected in order to estimate the actual geothermal environments. Prior thermal studies and models indicate temperatures in and around salt domes are elevated above the norm by 1/sup 0/F to 25/sup 0/F. Using existing geothermal data and accepted theory, geothermal gradients for the selected domes and surrounding sediments were estimated. This study concludes that salt domes within a given basin have similar geothermal gradients, but that the basins differ in average geothermal gradients. This relationship is probably controlled by deep basement structural trends. No evidence of residual heat of emplacement was found associated with any of the selected domes.

  14. Strategic Petroleum Reserve (SPR) geological site characterization report, Big Hill Salt Dome

    SciTech Connect (OSTI)

    Hart, R.J.; Ortiz, T.S.; Magorian, T.R.

    1981-09-01T23:59:59.000Z

    Geological and geophysical analyses of the Big Hill Salt Dome were performed to determine the suitability of this site for use in the Strategic Petroleum Reserve (SPR). Development of 140 million barrels (MMB) of storage capacity in the Big Hill Salt Dome is planned as part of the SPR expansion to achieve 750 MMB of storage capacity. Objectives of the study were to: (1) Acquire, evaluate, and interpret existing data pertinent to geological characterization of the Big Hill Dome; (2) Characterize the surface and near-surface geology and hydrology; (3) Characterize the geology and hydrology of the overlying cap rock; (4) Define the geometry and geology of the dome; (5) Determine the feasibility of locating and constructing 14 10-MMB storage caverns in the south portion of the dome; and (6) Assess the effects of natural hazards on the SPR site. Recommendations are included. (DMC)

  15. EIS-0010: Strategic Petroleum Reserves, Sulphur Mines Salt Dome, Calcasieu Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Strategic Petroleum Reserves prepared this EIS to assess the environmental impacts of the proposed storage of 24 million barrels of crude oil at the Sulphur Mines salt dome located in Calcasieu Parish, Louisiana, including construction and operation impacts.

  16. DEMONSTRATION OF ENERGY STORAGE INTEGRATED WITH A SOLAR DISH FIELD IN WHYALLA

    E-Print Network [OSTI]

    energy storage into the thermal cycle is a key point of differentiation between solar thermalDEMONSTRATION OF ENERGY STORAGE INTEGRATED WITH A SOLAR DISH FIELD IN WHYALLA Joe Coventry 1-of-a-kind demonstration of an integrated solar dish and molten- salt storage system, using the superheated steam energy

  17. EIS-0029: Strategic Petroleum Reserve, Texoma Group Salt Domes, Cameron and Calcasieu Parishes, Louisiana and Jefferson County, TX

    Broader source: Energy.gov [DOE]

    The Strategic Petroleum Reserves developed this EIS to analyze the environmental impacts which could occur during site preparation and operation of oil storage facilities at each of four proposed candidate sites in the Texoma Group of salt domes.

  18. Potential radiological exposure rates resulting from hypothetical dome failure at Tank W-10

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The main plant area at Oak Ridge National Laboratory (ORNL) contains 12 buried Gunite tanks that were used for the storage and transfer of liquid radioactive waste. Although the tanks are no longer in use, they are known to contain some residual contaminated sludges and liquids. In the event of an accidental tank dome failure, however unlikely, the liquids, sludges, and radioactive contaminants within the tank walls themselves could create radiation fields and result in above-background exposures to workers nearby. This Technical Memorandum documents a series of calculations to estimate potential radiological exposure rates and total exposures to workers in the event of a hypothetical collapse of a Gunite tank dome. Calculations were performed specifically for tank W-10 because it contains the largest radioactivity inventory (approximately half of the total activity) of all the Gunite tanks. These calculations focus only on external, direct gamma exposures for prescribed, hypothetical exposure scenarios and do not address other possible tank failure modes or routes of exposure. The calculations were performed with established, point-kernel gamma ray modeling codes.

  19. SECONDARY NATURAL GAS RECOVERY IN THE APPALACHIAN BASIN: APPLICATION OF ADVANCED TECHNOLOGIES IN A FIELD DEMONSTRATION SITE, HENDERSON DOME, WESTERN PENNSYLVANIA

    SciTech Connect (OSTI)

    Douglas G. Patchen

    2000-12-01T23:59:59.000Z

    Two independent high-resolution aeromagnetic surveys flown by Airmag Surveys, Inc. and interpreted by Pearson, de Ridder and Johnson, Inc were merged, processed and reinterpreted by Pearson, de Ridder and Johnson, Inc for this study. Derived products included depth filtered and reduced to pole maps of total magnetic intensity, vertical and horizontal gradients, interpreted STARMAG structure, lineament analysis and an overall interpretation. The total magnetic intensity patterns of the combined survey conformed reasonably well to those of coarser grid, non-proprietary regional aeromagnetic surveys reviewed. The merged study also helped illustrate regional basement patterns adjacent to and including the northwest edge of the Rome trough. The tectonic grain interpreted is dominantly southwest-northeast with a secondary northwest-southeast component that is consistent with this portion of the Appalachian basin. Magnetic susceptibility appears to be more important locally than basement structure in contributing to the magnetic intensity recorded, based on seismic to aeromagnetic data comparisons made to date. However, significant basement structures cannot be ruled out for this area, and in fact are strongly suspected to be present. The coincidence of the Henderson Dome with a total magnetic intensity low is an intriguing observation that suggests the possibility that structure in the overlying Lower Paleozoic section may be detached from the basement. Rose diagrams of lineament orientations for 2.5 minute unit areas are more practical to use than the full-quadrangle summaries because they focus on smaller areas and involve less averaging. Many of these illustrate a northeast bias. Where orientations abruptly become scattered, there is an indication of intersecting fractures and possible exploration interest. However, the surface lineament study results are less applicable in a practical sense relative to the seismic, subsurface or aeromagnetic control used. Subjectivity in interpretation and uncertainty regarding the upward propagation of deeper faulting through multiple unconformities, salt-bearing zones and possible detachments are problematic. On the other hand, modern day basement-involved earthquakes like the nearby 1998 Pymatuning event have been noted which influenced near-surface, water-bearing fractures. This suggests there is merit in recognizing surface features as possible indicators of deeper fault systems in the area. Suggested future research includes confirmation of the natural mode-conversion of P-waves to down going S-waves at the level of the Onondaga Limestone, acquisition of 3-C, 2-D seismic as an alternative to more expensive 3-D seismic, and drilling one or two test wells in which to collect a variety of reservoir information. Formation Imaging Logs, a Vertical Seismic Profile and sidewall cores would be run or collected in each well, providing direct evidence of the presence of fractures and the calibration of fractured rocks to the seismic response. If the study of these data had indicated the presence of fractures in the well(s), and efforts to calibrate from well bores to VSPs had been successful, then a new seismic survey would have been designed over each well. This would result in a practical application of the naturally mode-converted, multi-component seismic method over a well bore in which microfractures and production-scale fractures had been demonstrated to exist, and where the well-bore stratigraphy had been correlated from well logs to the seismic response.

  20. Geologic technical assessment of the Stratton Ridge salt dome, Texas, for potential expansion of the U.S. strategic petroleum reserve.

    SciTech Connect (OSTI)

    Rautman, Christopher Arthur; Snider, Anna C.; Looff, Karl M. (Geologic Consultant, Lovelady, TX)

    2006-11-01T23:59:59.000Z

    The Stratton Ridge salt dome is a large salt diapir located only some ten miles from the currently active Strategic Petroleum Reserve Site at Bryan Mound, Texas. The dome is approximately 15 miles south-southwest of Houston. The Stratton Ridge salt dome has been intensively developed, in the desirable central portions, with caverns for both brine production and product storage. This geologic technical assessment indicates that the Stratton Ridge salt dome may be considered a viable, if less-than-desirable, candidate site for potential expansion of the Strategic Petroleum Reserve (SPR). Past development of underground caverns significantly limits the potential options for use by the SPR. The current conceptual design layout of proposed caverns for such an expansion facility is based upon a decades-old model of salt geometry, and it is unacceptable, according to this reinterpretation of salt dome geology. The easternmost set of conceptual caverns are located within a 300-ft buffer zone of a very major boundary shear zone, fault, or other structural feature of indeterminate origin. This structure transects the salt stock and subdivides it into an shallow western part and a deeper eastern part. In places, the distance from this structural boundary to the design-basis caverns is as little as 150 ft. A 300-ft distance from this boundary is likely to be the minimum acceptable stand-off, from both a geologic and a regulatory perspective. Repositioning of the proposed cavern field is possible, as sufficient currently undeveloped salt acreage appears to be available. However, such reconfiguration would be subject to limitations related to land-parcel boundaries and other existing infrastructure and topographic constraints. More broadly speaking, the past history of cavern operations at the Stratton Ridge salt dome indicates that operation of potential SPR expansion caverns at this site may be difficult, and correspondingly expensive. Although detailed information is difficult to come by, widely accepted industry rumors are that numerous existing caverns have experienced major operational problems, including salt falls, sheared casings, and unintended releases of stored product(s). Many of these difficulties may be related to on-going differential movement of individual salt spines or to lateral movement at the caprock-salt interface. The history of operational problems, only some of which appear to be a matter of public record, combined with the potential for encountering escaped product from other operations, renders the Stratton Ridge salt dome a less-than-desirable site for SPR purposes.

  1. ,"Underground Natural Gas Storage - Salt Cavern Storage Fields"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9PetroleumSalt Cavern Storage

  2. Gravity and seismic reflection studies over the Ferguson Crossing Salt Dome, Grimes and Brazos Counties, Texas

    E-Print Network [OSTI]

    Cordero Ardila, Vladimir Francisco

    1977-01-01T23:59:59.000Z

    and not com- pletely understood f orm. The study of salt domes is important because: (1) more than four-fift'ns or all oil and gas accumulations in fields in the Gulf Coast province have been geologically affected by the growth of the salt domes (Halbouty... to obtain a Bouguer anomaly map of the Ferguson Crossing Salt Dome, (2) a seismic reflection study in order to obtain a seismic section of the area of investigation, and (3) an analysis and interpretation of these studies to obtain a reasonable model...

  3. EIS-0024: Strategic Petroleum Reserve, Capline Group Salt Domes, Iberia, Napoleonville, Weeks Island Expansion, Bayou Choctaw Expansion, Chacahoula- Iberia, Iberville, and Lafourche Parishes, Louisiana

    Broader source: Energy.gov [DOE]

    The Strategic Petroleum Reserves developed this EIS to analyze the environmental impacts which would occur during site preparation and operation of oil storage facilities at each of five proposed candidate sites in the Capline Group of salt domes.

  4. Lava Dome | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy DevelopmentLaurentian Energy Authority Jump to:Dome

  5. Dome Tech | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling FarmCenter,Dolliver, Iowa:Dome Tech Jump

  6. Variability of bottom water domes and geostrophic currents in the eastern Gulf of Maine

    E-Print Network [OSTI]

    Gottlieb, Erik S

    1987-01-01T23:59:59.000Z

    entering Georges Bas- in, the slope water mixes with the endemic, less-dense bottom water (Hopkins and Gar- field, 1979). The newly formed bottom water accumulates in Georges Basin, resulting in an upward doming of the interface (found between 50 and 200...VARIABILITY OF BOTTOM WATER DOMES AND GEOSTROPHIC CURRENTS IN THE EASTERN GULF OF MAINE A Thesis by ERIK SAUL GQTTLIEB Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree...

  7. An investigation of the subsurface Bouguer anomaly in the vicinity of shallow salt domes

    E-Print Network [OSTI]

    Barnes, William Charles

    1977-01-01T23:59:59.000Z

    'itted to the anomaly data in vertical profiles. Analysis of the anomalous vertical gravity gradients indicates that such gradients are too minute for purposes of salt dome exploration. However, calculations of the Bouguer anomaly reveal data which would be easily... detected in the field and amenable to geological interpretation. The empirical curves are fourd to be useful in estimating the Bouguer anomaly for salt domes not explicitly represented by the models. ACKNONLEDGEMENTS The author wishes to express his...

  8. Gas storage and separation by electric field swing adsorption

    DOE Patents [OSTI]

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28T23:59:59.000Z

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  9. Spin Wave Storage using Chirped Control Fields in Atomic Frequency Comb based Quantum Memory

    E-Print Network [OSTI]

    Ji?í Miná?; Nicolas Sangouard; Mikael Afzelius; Hugues de Riedmatten; Nicolas Gisin

    2010-08-13T23:59:59.000Z

    It has been shown that an inhomogeneously broadened optical transition shaped into an atomic frequency comb can store a large number of temporal modes of the electromagnetic field at the single photon level without the need to increase the optical depth of the storage material. The readout of light modes is made efficient thanks to the rephasing of the optical-wavelength coherence similarly to photon echo-type techniques and the re-emission time is given by the comb structure. For on-demand readout and long storage times, two control fields are used to transfer back and forth the optical coherence into a spin wave. Here, we present a detailed analysis of the spin wave storage based on chirped adiabatic control fields. In particular, we verify that chirped fields require significantly weaker intensities than $\\pi$-pulses. The price to pay is a reduction of the multimode storage capacity that we quantify for realistic material parameters associated with solids doped with rare-earth-metal ions.

  10. An Intelligent Portfolio Management Approach to Gas Storage Field Deliverability Maintenance and

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    ;Outline Introduction Methodology & Software Results Objective Conclusions #12;Energy consumption by fuel Source: Energy Information Administration (EIA) Introduction #12;Introduction Typical gas storage fields operations in the same way. This is an optimization problem. Gaining the highest return with minimum risk

  11. PLANT RESISTANCE Field and Storage Testing Bt Potatoes for Resistance to Potato

    E-Print Network [OSTI]

    Douches, David S.

    PLANT RESISTANCE Field and Storage Testing Bt Potatoes for Resistance to Potato Tuberworm Lansing, MI 48824 J. Econ. Entomol. 97(4): 1425Ð1431 (2004) ABSTRACT Potato tuberworm, Phthorimaea operculella (Zeller), is the most serious insect pest of potatoes worldwide. The introduction of the Bacillus

  12. Improved understanding of geologic CO{sub 2} storage processes requires risk-driven field experiments

    SciTech Connect (OSTI)

    Oldenburg, C.M.

    2011-06-01T23:59:59.000Z

    The need for risk-driven field experiments for CO{sub 2} geologic storage processes to complement ongoing pilot-scale demonstrations is discussed. These risk-driven field experiments would be aimed at understanding the circumstances under which things can go wrong with a CO{sub 2} capture and storage (CCS) project and cause it to fail, as distinguished from accomplishing this end using demonstration and industrial scale sites. Such risk-driven tests would complement risk-assessment efforts that have already been carried out by providing opportunities to validate risk models. In addition to experimenting with high-risk scenarios, these controlled field experiments could help validate monitoring approaches to improve performance assessment and guide development of mitigation strategies.

  13. FIELD-DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect (OSTI)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-09-12T23:59:59.000Z

    Methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of aqueous spent fuel storage basins and determine the oxide thickness on the spent fuel basin materials were developed to assess the corrosion potential of a basin. this assessment can then be used to determine the amount of time fuel has spent in a storage basin to ascertain if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations and assist in evaluating general storage basin operations. The test kit was developed based on the identification of key physical, chemical and microbiological parameters identified using a review of the scientific and basin operations literature. The parameters were used to design bench scale test cells for additional corrosion analyses, and then tools were purchased to analyze the key parameters. The tools were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The sampling kit consisted of a total organic carbon analyzer, an YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization confirmed that the L Area basin is a well operated facility with low corrosion potential.

  14. AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01T23:59:59.000Z

    Auburn University Thermal Energy Storage , LBL No. 10194.Mathematical modeling of thermal energy storage in aquifers,of Current Aquifer Thermal Energy Storage Programs (in

  15. EIS-0021: Strategic Petroleum Reserve, Seaway Group Salt Domes, Brazoria County, Texas (also see EIS-0075-S and EIS-0029)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Strategic Petroleum Reserve Office developed this statement to analyze the environmental impacts which would occur during site preparation and operation of oil storage facilities at each of five proposed candidate sites in the Seaway Group of salt domes.

  16. EIS-0075: Strategic Petroleum Reserve Phase III Development, Texoma and Seaway Group Salt Domes (West Hackberry and Bryan Mound Expansion, Big Hill Development) Cameron Parish, Louisiana, and Brazoria and Jefferson Counties, Texas

    Broader source: Energy.gov [DOE]

    Also see EIS-0021 and EIS-0029. The Strategic Petroleum Reserve (SPR) Office developed this EIS to assess the environmental impacts of expanding the existing SPR storage capacity from 538 million to 750 million barrels of storage and increasing the drawdown capability from 3.5 million to 4.5 million barrels per day. This EIS incorperates two previously issued EISs: DOE/EIS-0021, Seaway Group of Salt Domes, and DOE/EIS-0029, Texoma Group of Salt Domes.

  17. Accurate correction of magnetic field instabilities for high-resolution isochronous mass measurements in storage rings

    E-Print Network [OSTI]

    P. Shuai; H. S. Xu; Y. H. Zhang; Yu. A. Litvinov; M. Wang; X. L. Tu; K. Blaum; X. H. Zhou; Y. J. Yuan; G. Audi; X. L. Yan; X. C. Chen; X. Xu; W. Zhang; B. H. Sun; T. Yamaguchi; R. J. Chen; C. Y. Fu; Z. Ge; W. J. Huang; D. W. Liu; Y. M. Xing; Q. Zeng

    2014-07-13T23:59:59.000Z

    Isochronous mass spectrometry (IMS) in storage rings is a successful technique for accurate mass measurements of short-lived nuclides with relative precision of about $10^{-5}-10^{-7}$. Instabilities of the magnetic fields in storage rings are one of the major contributions limiting the achievable mass resolving power, which is directly related to the precision of the obtained mass values. A new data analysis method is proposed allowing one to minimise the effect of such instabilities. The masses of the previously measured at the CSRe $^{41}$Ti, $^{43}$V, $^{47}$Mn, $^{49}$Fe, $^{53}$Ni and $^{55}$Cu nuclides were re-determined with this method. An improvement of the mass precision by a factor of $\\sim 1.7$ has been achieved for $^{41}$Ti and $^{43}$V. The method can be applied to any isochronous mass experiment irrespective of the accelerator facility. Furthermore, the method can be used as an on-line tool for checking the isochronous conditions of the storage ring.

  18. Radar investigation of the Hockley salt dome

    E-Print Network [OSTI]

    Hluchanek, James Andrew

    1973-01-01T23:59:59.000Z

    : Geophysics RADAR INVESTIGATION OF THE HOCKLEY SALT DOME A Thesis by UAMES ANDREW HLUCHANEK A'pproved as to style and content by: (Head of Departme t ? Member) May 1. 973 ABSTRACT Radar investigation of the Hockley Salt Dome. . (Nay, 1973) James... Andrew Hluchanek, B. S. , Texas A&M University Directed by: Dr. Robert R. Unterberger Radar probing through salt was accomplished at 17 radar stations established in the United Salt Company mine at Hockley, Texas. The top of the salt dom is mapped...

  19. Carbon dioxide source development, northeast Jackson Dome, Mississippi

    SciTech Connect (OSTI)

    Studlick, J.R.J.; Shew, R.D.; Basye, G.L.; Ray, J.R.

    1987-05-01T23:59:59.000Z

    A pilot conducted at Little Creek field Mississippi, in the 1970s indicated that the injection of carbon dioxide (CO/sub 2/) could lead to the successful recovery of additional oil reserves even after waterflood operations. It was realized early that a large volume of CO/sub 2/ would be required for enhanced oil recovery operations Little Creek and other prospective fields. Shell's search for CO/sub 2/ in the area began in the early 1970s. Exploratory drilling for hydrocarbons as early as 1950 had indicated high concentrations of CO/sub 2/ present in central Mississippi. These occur in salt-generated structures north and east of the intrusive Jackson igneous dome; the area is therefore termed the N.E. Jackson Dome Source Area. CO/sub 2/ generation is believed to have occurred by the thermal metamorphism associated with the intrusion of Jurassic-age carbonates. The CO/sub 2/ migrated updip and is concentrated in the Buckner, Smackover, and Norphlet Formations at depths of 14,000 to 17,000 ft. The objectives are sandstones and dolomites that are interpreted as dune and sabkha deposits. Reservoir quality is variable (abundant illite locally in the Norphlet and highly compacted sandstones in the Buckner) but generally good. Rates of 20 MMCFGD have been tested from these wells. Many salt-related structures have been defined in the source area by seismic data. Leasing began in 1973 and drilling in 1977. Eight structures have been tested, with all but one encountering commercial CO/sub 2/ accumulations. Shell has drilled 15 wells (13 successful, 1 junked and abandoned, and 1 dry hole) on 640- and 1280-ac spacing. Gas compositions vary: Smackover CO/sub 2/ is sour and will require treatment, whereas the Buckner and Norphlet sands contain sweet and semisweet CO/sub 2/, respectively. Industry reserves in N.E. Jackson Dome exceed 6 tcf of gas.

  20. Borehole locations on seven interior salt domes

    SciTech Connect (OSTI)

    Simcox, A.C.; Wampler, S.L.

    1982-08-01T23:59:59.000Z

    This report is designed as an inventory of all wells known to have been drilled within a five-mile radius of each of seven salt domes within the Interior Salt Basin in east Texas, northern Louisiana and Mississippi. There are 72 boreholes that entered salt above an elevation of -3000 feet mean sea level. For these, details of location, drilling dates, depth of casing and cement, elevation of top of caprock and salt, etc., are given on tables in the appendix. Of the seven domes, Oakwood has the largest number of boreholes, thirty-eight (including two sidetracked wells) that enter the salt stock above -3000 feet mean sea level; another dome in northeast Texas, Keechi, has eight; in northern Louisiana, Rayburn's has four and Vacherie has five; in southern Mississippi, Cypress Creek has seven, Lampton has one, and Richton has nine. In addition, all wells known outside the supra-domal area, but within a five-mile radius of the center of the 7 domes are separately catalogued.

  1. DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect (OSTI)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-06-04T23:59:59.000Z

    This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

  2. Valuation of Energy Storage: An Optimal Switching Mike Ludkovski

    E-Print Network [OSTI]

    Ludkovski, Mike

    Valuation of Energy Storage: An Optimal Switching Approach Mike Ludkovski Department of Mathematics University, Princeton, NJ 08544 rcarmona@princeton.edu, We consider the valuation of energy storage facilities within the framework of stochastic control. Our two main examples are natural gas dome storage

  3. Geological characterization and 3D visualizations of the gas storage reservoir at Hillsboro field, Montgomery County, IL

    SciTech Connect (OSTI)

    Udegbunam, E.O.; Huff, B.G. [Illinois State Geological Survey, Champaign, IL (United States)

    1994-12-31T23:59:59.000Z

    Geological characterizations, modeling and 3-D computer-generated visualizations of the Ordovician St. Peter Sandstone at the Hillsboro Gas Storage field in Montgomery County, Illinois, are discussed. Petrophysical analyses reveal four distinct hydraulic flow units in six cored wells. Furthermore, four lithologies, identified by thin section petrography, are associated with the various hydraulic units. Fieldwide visualizations of 3-D distributions of petrophysically-derived attributes reservoir quality index (RQI) and flow zone indicator (FZI) -- show considerable vertical variability but lateral continuity. This finding explains why it is easier to expand the gas bubble laterally than vertically. Advantages of the 3-D reservoir description of Hillsboro Gas Storage field include (1) improved definition of the spatial porosity distribution which leads to better estimation of reservoir volumetrics; (2) improved definition of reservoir hydraulic flow zones; and (3) development of realistic reservoir model(s) for the simulation and management of the gas storage field.

  4. Geomechanical testing of MRIG-9 core for the potential SPR siting at the Richton salt dome.

    SciTech Connect (OSTI)

    Dunn, Dennis P.; Broome, Scott Thomas; Bronowski, David R.; Bauer, Stephen J.; Hofer, John H.

    2009-02-01T23:59:59.000Z

    A laboratory testing program was developed to examine the mechanical behavior of salt from the Richton salt dome. The resulting information is intended for use in design and evaluation of a proposed Strategic Petroleum Reserve storage facility in that dome. Core obtained from the drill hole MRIG-9 was obtained from the Texas Bureau of Economic Geology. Mechanical properties testing included: (1) acoustic velocity wave measurements; (2) indirect tensile strength tests; (3) unconfined compressive strength tests; (4) ambient temperature quasi-static triaxial compression tests to evaluate dilational stress states at confining pressures of 725, 1450, 2175, and 2900 psi; and (5) confined triaxial creep experiments to evaluate the time-dependent behavior of the salt at axial stress differences of 4000 psi, 3500 psi, 3000 psi, 2175 psi and 2000 psi at 55 C and 4000 psi at 35 C, all at a constant confining pressure of 4000 psi. All comments, inferences, discussions of the Richton characterization and analysis are caveated by the small number of tests. Additional core and testing from a deeper well located at the proposed site is planned. The Richton rock salt is generally inhomogeneous as expressed by the density and velocity measurements with depth. In fact, we treated the salt as two populations, one clean and relatively pure (> 98% halite), the other salt with abundant (at times) anhydrite. The density has been related to the insoluble content. The limited mechanical testing completed has allowed us to conclude that the dilatational criteria are distinct for the halite-rich and other salts, and that the dilation criteria are pressure dependent. The indirect tensile strengths and unconfined compressive strengths determined are consistently lower than other coastal domal salts. The steady-state-only creep model being developed suggests that Richton salt is intermediate in creep resistance when compared to other domal and bedded salts. The results of the study provide only limited information for structural modeling needed to evaluate the integrity and safety of the proposed cavern field. This study should be augmented with more extensive testing. This report documents a series of test methods, philosophies, and empirical relationships, etc., that are used to define and extend our understanding of the mechanical behavior of the Richton salt. This understanding could be used in conjunction with planned further studies or on its own for initial assessments.

  5. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    1975. Underground Storage of Treated Water: A Field Test.1975. "Underground Storage of Treated Water: A Field Test,"

  6. THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests

    SciTech Connect (OSTI)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

    2010-08-31T23:59:59.000Z

    This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

  7. Predicting Well Stimulation Results in a Gas Storage Field in the Absence of Reservoir Data, Using Neural Networks

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 31159 Predicting Well Stimulation Results in a Gas Storage Field in the Absence of Reservoir Data, Using Neural Networks Mohaghegh, S., West Virginia University, McVey, D., National Gas and Oil for presentation by an SPE Program Committee following review of date wells with the highest potential

  8. A mechanical model of early salt dome growth 

    E-Print Network [OSTI]

    Irwin, Frank Albert

    1988-01-01T23:59:59.000Z

    salt and the upper layer representing the overlying sediment, is used to study the mechanics of growth in the early stages of salt dome formation. Three cases of this model, each representing a particular rate of removal of the surface topography..., are examined to determine which case best fits observations of salt domes in East Texas, Northwest Germany, and the North Sea. These observations include the spacing and growth rate of the dome and the amount of deformation of the sediments above the dome...

  9. Radar investigation of the Cote Blanche salt dome

    E-Print Network [OSTI]

    Stewart, Robert Donald

    1974-01-01T23:59:59.000Z

    THE COTE BLANCHE SALT DOME. Geology of the Cote Blanche Salt-Dome Azea. . Economic History of the Cote BLanche Salt-Dome Azea, Salt. . Oil and gas. III. ELECTROMAGNETIC WAVE PROPAGATION. . . Radar Speed in Air and in Salt. . . Velocity...' zznd i'r. mzznz 1959) . The east, south, end west flanks are nearly vertical. However, the north side oi the dome is characterised by a massive overhang. A well drilled by Shell Oil Company, Caffrey No. 1, confirmed the presence of a minimum of 3300...

  10. Inferences On The Hydrothermal System Beneath The Resurgent Dome...

    Open Energy Info (EERE)

    System Beneath The Resurgent Dome In Long Valley Caldera, East-Central California, USA, From Recent Pumping Tests And Geochemical Sampling Jump to: navigation, search OpenEI...

  11. UPWELLING IN THE COSTA RICA DOME BY KLAUS WYRTKI

    E-Print Network [OSTI]

    . This current, the Costa Rica Coastal Current, and parts of the North Equatorial Current form a cyclonic circu'the horizontal circula~ion. The upwelling in the dome is caused by the cyclonic flow around the dome. When survey a deep-reaching" eddy transporting lOX 1018 cm.a/sec. "appeared to be separated and to drift north

  12. Studies into the Initial Conditions, Flow Rate, and Containment System of Oil Field Leaks in Deep Water

    E-Print Network [OSTI]

    Holder, Rachel

    2013-07-22T23:59:59.000Z

    to contain an oil leak in the field. The dome was found to have satisfactory entrapment in the designed position....

  13. The origin of the structural depression above Gulf coast salt domes with particular reference to Clay Creek dome, Washington County, Texas

    E-Print Network [OSTI]

    McDowell, Alfred Norman

    1951-01-01T23:59:59.000Z

    Creek, indioatos that the ~ ouroe layer is at least 17, 000 feet below the surfaoe and is older than F. E. Heath, J. A. Waters, and W. B. Ferguson, op. oit. c p, A3. 8, C. W. Saith, "Gulf Coast Oil Fields", The World Oil, Vol. 130, Eo, 7 {June, 1950... information on salt dome geology published sinoe 1936. However, muoh of the pertinent literature since that date consists of field development data with little to no discussion of struotural prooesses ~ An impsrtant exoeption to this apparently diminished...

  14. Triaxial creep measurements on rock salt from the Jennings dome, Louisiana, borehole LA-1, core {number_sign}8

    SciTech Connect (OSTI)

    Wawersik, W.R.; Zimmerer, D.J.

    1994-05-01T23:59:59.000Z

    Tejas Power Company requested that facilities in the Rock Mechanics Laboratory at Sandia National Laboratories be used to assess the time-dependent properties of rock salt from the Jennings dome in Acadia Parish, Louisiana. Nominally 2.5-inch diameter slat core from borehole LA-1, core 8 (depth 3924.8 to 3837.8 ft; 1196.8--1197.1 m) was provided to accomplish two tasks: (1) Using the smallest possible number of experiments, evaluate the tendency of Jennings salt to undergo time-dependent deformation (creep) under constant applied stresses, and compare the creep of Jennings salt with creep data for rock salt from other locations. (2) Assess the applicability of published laboratory-derived creep properties for rock salt from several bedded and domal sites in finite element analyses concerning the design of new gas storage caverns in the Jennings dome. The characterization of Jennings salt followed the same strategy that was applied in earlier laboratory experiments on core from the Moss Bluff dome near Houston, Texas. This report summarizes the relevant details of five creep experiments on a sample from depth 3927.5 ft, the results obtained, and how these results compared with laboratory creep measurements gathered on rock salt from other locations including the West Hackberry, Bryan Mound and Moss Bluff domes. The report also considers the estimates of specific creep parameters commonly used in numerical engineering design analyses.

  15. AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01T23:59:59.000Z

    C.F. , 1980, "Aquifer Thermal Energy - Parameter Study" (infrom the Auburn University Thermal Energy Storage , LBL No.studies in aquifer thermal energy , Presented at the ~~~~~~~

  16. Field Monitoring and Data Validation for Evaluating the Performance of Cool Storage Systems

    E-Print Network [OSTI]

    Elleson, J.S; Haberl, J.S.; Reddy, T.A.

    of site #t2 showing the configuration of the chillers, storage tank and campus load, and the locationsof the monitoringpoints. Note that a number of essential control valves are not shown in this diagram. In general, three operating modes are used at site... and ..", cooling from storage carry the campus load during on-peak periods. Instrumentation The instrumentation at this site consisted of sensors and data loggers that had been previously installed, and additional sensors that were added to complete the measurement...

  17. Underground storage of oil and gas

    SciTech Connect (OSTI)

    Bergman, S.M.

    1984-09-01T23:59:59.000Z

    The environmental and security advantages of underground storage of oil and gas are well documented. In many cases, underground storage methods such as storage in salt domes, abandoned mines, and mined rock caverns have proven to be cost effective when compared to storage in steel tanks constructed for that purpose on the surface. In good rock conditions, underground storage of large quantities of hydrocarbon products is normally less costly--up to 50-70% of the surface alternative. Under fair or weak rock conditions, economic comparisons between surface tanks and underground caverns must be evaluated on a case to case basis. The key to successful underground storage is enactment of a realistic geotechnical approach. In addition to construction cost, storage of petroleum products underground has operational advantages over similar storage above ground. These advantages include lower maintenance costs, less fire hazards, less land requirements, and a more even storage temperature.

  18. Storage Ring Revised March 1994

    E-Print Network [OSTI]

    Brookhaven National Laboratory - Experiment 821

    Chapter 8. Storage Ring Revised March 1994 8.1. Introduction -- 107 -- #12; 108 Storage Ring 8.2. Magnetic Design and Field Calculations 8.2.1. Conceptual Approach #12; Storage Ring 109 #12; 110 Storage Ring 8.2.2. Computer Aided Refined Pole Designs #12; Storage Ring 111 #12; 112 Storage Ring #12

  19. Geologic technical assessment of the Richton salt dome, Mississippi, for potential expansion of the U.S. strategic petroleum reserve.

    SciTech Connect (OSTI)

    Snider, Anna C.; Rautman, Christopher Arthur; Looff, Karl M. (Geologic Consultant)

    2006-01-01T23:59:59.000Z

    Technical assessment and remodeling of existing data indicates that the Richton salt dome, located in southeastern Mississippi, appears to be a suitable site for expansion of the U.S. Strategic Petroleum Reserve. The maximum area of salt is approximately 7 square miles, at a subsurface elevation of about -2000 ft, near the top of the salt stock. Approximately 5.8 square miles of this appears suitable for cavern development, because of restrictions imposed by modeled shallow salt overhang along several sides of the dome. The detailed geometry of the overhang currently is only poorly understood. However, the large areal extent of the Richton salt mass suggests that significant design flexibility exists for a 160-million-barrel storage facility consisting of 16 ten-million-barrel caverns. The dome itself is prominently elongated from northwest to southeast. The salt stock appears to consist of two major spine features, separated by a likely boundary shear zone trending from southwest to northeast. The dome decreases in areal extent with depth, because of salt flanks that appear to dip inward at 70-80 degrees. Caprock is present at depths as shallow as 274 ft, and the shallowest salt is documented at -425 ft. A large number of existing two-dimensional seismic profiles have been acquired crossing, and in the vicinity of, the Richton salt dome. At least selected seismic profiles should be acquired, examined, potentially reprocessed, and interpreted in an effort to understand the limitations imposed by the apparent salt overhang, should the Richton site be selected for actual expansion of the Reserve.

  20. Anomalous zones in Gulf Coast Salt domes with special reference to Big Hill, TX, and Weeks Island, LA

    SciTech Connect (OSTI)

    Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R. [Magorian (Thomas R.), Amherst, NY (United States); Thoms, R.L. [AGM, Inc., College Station, TX (United States); Autin, W.J.; McCulloh, R.P. [Louisiana Geological Survey, Baton Rouge, LA (United States); Denzler, S.; Byrne, K.O. [Acres International Corp., Amherst, NY (United States)

    1993-07-01T23:59:59.000Z

    Anomalous features in Gulf Coast Salt domes exhibit deviations from normally pure salt and vary widely in form from one dome to the next, ranging considerably in length and width. They have affected both conventional and solution mining in several ways. Gas outbursts, insolubles, and potash (especially carnallite) have led to the breakage of tubing in a number of caverns, and caused irregular shapes of many caverns through preferential leaching. Such anomalous features essentially have limited the lateral extent of conventional mining at several salt mines, and led to accidents and even the closing of several other mines. Such anomalous features, are often aligned in anomalous zones, and appear to be related to diapiric processes of salt dome development. Evidence indicates that anomalous zones are found between salt spines, where the differential salt intrusion accumulates other materials: Anhydrite bands which are relatively strong, and other, weaker impurities. Shear zones and fault displacement detected at Big Hill and Weeks Island domes have not yet had any known adverse impacts on SPR oil storage, but new caverns at these sites conceivably may encounter some potentially adverse conditions. Seismic reflection profiles at Big Hill dome have shown numerous fractures and faults in the caprock, and verified the earlier recognition of a major shear zone transecting the entire salt stock and forming a graben in the overlying caprock. Casing that is placed in such zones can be at risk. Knowledge of these zones should create awareness of possible effects rather than preclude the future emplacement of caverns. To the extent possible, major anomalous zones and salt stock boundaries should be avoided. Shear zones along overhangs may be particularly hazardous, and otherwise unknown valleys in the top of salt may occur along shear zones. These zones often can be mapped geophysically, especially with high-resolution seismic techniques.

  1. DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test

    Broader source: Energy.gov [DOE]

    A U.S. Department of Energy team of regional partners has begun injecting 8,000 tons of carbon dioxide (CO2) to evaluate the carbon storage potential and test the enhanced oil recovery (EOR) potential of the Mississippian-aged Clore Formation in Posey County, Ind.

  2. Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field

    E-Print Network [OSTI]

    Santos, Juan

    ) and coal-bed methane production make CO2 geolog- ical storage cost-effective [e.g., Baines and Worden, describes the seismic properties of the reservoir rock saturated with CO2, methane and brine, and allows us response when injecting carbon dioxide (CO2) in a depleted gas reservoir. The petro-elastical model

  3. Using Big Data and Smart Field Technology for Detecting Leakage in a CO2 Storage Projects

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    sequestration of carbon dioxide is one of the most fascinating developing technologies in order to reduce Leakage Detection System (ILDS). The main concern for geologic CO2 sequestration is the capability of the underground carbon dioxide storage to confine and sustain the injected CO2 for very long time. If a leakage

  4. Internal Geology and Evolution of the Redondo Dome, Valles Caldera...

    Open Energy Info (EERE)

    Geology and Evolution of the Redondo Dome, Valles Caldera, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Internal Geology and...

  5. Production management techniques for water-drive gas reservoirs. Field No. 4; mid-continent aquifer gas storage reservoir. Volume 1. Topical report, January 1994

    SciTech Connect (OSTI)

    Hower, T.L.; Obernyer, S.L.

    1994-01-01T23:59:59.000Z

    A detailed reservoir characterization and numerical simulation study is presented for a mid-continent aquifer gas storage field. It is demonstrated that rate optimization during both injection and withdrawal cycles can significantly improve the performance of the storage reservoir. Performance improvements are realized in the form of a larger working volume of gas, a reduced cushion volume of gas, and decrease in field water production. By utilizing these reservoir management techniques gas storage operators will be able to minimize their base gas requirements, improve their economics, and determine whether the best use for a particular storage field is base loading or meeting peak day requirements. Volume I of this two-volume set contains a detailed technical discussion.

  6. Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, Bayou Choctaw salt dome, Louisiana

    SciTech Connect (OSTI)

    Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R. [Magorian (Thomas R.), Amherst, NY (United States); Byrne, K.O.; Denzler, S. [Acres International Corp., Amherst, NY (United States)

    1993-09-01T23:59:59.000Z

    This report revises and updates the geologic site characterization report that was published in 1980. Revised structure maps and sections show interpretative differences in the dome shape and caprock structural contours, especially a major east-west trending shear zone, not mapped in the 1980 report. Excessive gas influx in Caverns 18 and 20 may be associated with this shear zone. Subsidence values at Bayou Choctaw are among the lowest in the SPR system, averaging only about 10 mm/yr but measurement and interpretation issues persist, as observed values often approximate measurement accuracy. Periodic, temporary flooding is a continuing concern because of the low site elevation (less than 10 ft), and this may intensify as future subsidence lowers the surface even further. Cavern 4 was re-sonared in 1992 and the profiles suggest that significant change has not occurred since 1980, thereby reducing the uncertainty of possible overburden collapse -- as occurred at Cavern 7 in 1954. Other potential integrity issues persist, such as the proximity of Cavern 20 to the dome edge, and the narrow web separating Caverns 15 and 17. Injection wells have been used for the disposal of brine but have been only marginally effective thus far; recompletions into more permeable lower Pleistocene gravels may be a practical way of increasing injection capacity and brinefield efficiency. Cavern storage space is limited on this already crowded dome, but 15 MMBBL could be gained by enlarging Cavern 19 and by constructing a new cavern beneath and slightly north of abandoned Cavern 13. Environmental issues center on the low site elevation: the backswamp environment combined with the potential for periodic flooding create conditions that will require continuing surveillance.

  7. Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, Bryan Mound Salt Dome, Texas

    SciTech Connect (OSTI)

    Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R.; Ahmad, S. [Acres International Corp., Amherst, NY (United States)] [Acres International Corp., Amherst, NY (United States)

    1994-11-01T23:59:59.000Z

    This report revises the original report that was published in 1980. Some of the topics covered in the earlier report were provisional and it is now practicable to reexamine them using new or revised geotechnical data and that obtained from SPR cavern operations, which involves 16 new caverns. Revised structure maps and sections show interpretative differences as compared with the 1980 report and more definition in the dome shape and caprock structural contours, especially a major southeast-northwest trending anomalous zone. The original interpretation was of westward tilt of the dome, this revision shows a tilt to the southeast, consistent with other gravity and seismic data. This interpretation refines the evaluation of additional cavern space, by adding more salt buffer and allowing several more caverns. Additional storage space is constrained on this nearly full dome because of low-lying peripheral wetlands, but 60 MMBBL or more of additional volume could be gained in six or more new caverns. Subsidence values at Bryan Mound are among the lowest in the SPR system, averaging about 11 mm/yr (0.4 in/yr), but measurement and interpretation issues persist, as observed values are about the same as survey measurement accuracy. Periodic flooding is a continuing threat because of the coastal proximity and because peripheral portions of the site are at elevations less than 15 ft. This threat may increase slightly as future subsidence lowers the surface, but the amount is apt to be small. Caprock integrity may be affected by structural features, especially the faulting associated with anomalous zones. Injection wells have not been used extensively at Bryan Mound, but could be a practicable solution to future brine disposal needs. Environmental issues center on the areas of low elevation that are below 15 feet above mean sea level: the coastal proximity and lowland environment combined with the potential for flooding create conditions that require continuing surveillance.

  8. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31T23:59:59.000Z

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  9. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01T23:59:59.000Z

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  10. Compilation and summary of technical and economic assessments in the field of energy storage

    SciTech Connect (OSTI)

    DeVries, J.

    1981-10-01T23:59:59.000Z

    Information is presented which was extracted from various assessments of energy storage technologies conducted during the past four years, primarily under the auspices of the Office of Energy Systems Research and Development (formerly the Division of Energy Storage Systems). A thorough search of the relevant literature was conducted using the DOE/RECON computerized data base and other sources. Only tabular or graphic material was abstracted from the documents. The material has been organized in two ways: by the intended end use, i.e., vehicles, utility load leveling, residential load leveling, industrial, and solar, and within each end use, by technology. The summary tables attempt to compare the results of different studies of the same technology or end use. No attempt is made to summarize the conclusions of each individual study, but rather to point out areas of agreement or disagreement between them. The reader should be aware of the risks in making comparisons between studies conducted by researchers with possibly differing purposes and assumptions. Any conclusions based on the summary sections are more indicative than definitive.

  11. Secondary Storage Management Himanshu Gupta

    E-Print Network [OSTI]

    Gupta, Himanshu

    Secondary Storage Management Himanshu Gupta Storage­1 #12;Outline · Memory Hierarchy · Disk Records/Fields · Deletions and Insertions of Records Himanshu Gupta Storage­2 #12;Himanshu Gupta Storage­3 Memory Hierarchy Cache (1 MB; 1-5 nsec) Main Memory (GBs; 10-100 nsec) Secondary Storage

  12. Dry Creek salt dome, Mississippi Interior Salt basin

    SciTech Connect (OSTI)

    Montgomery, S.L.; Ericksen, R.L.

    1997-03-01T23:59:59.000Z

    Recent drilling of salt dome flanks in the Mississippi Salt basin has resulted in important new discoveries and the opening of a frontier play. This play is focused on gas/condensate reserves in several Cretaceous formations, most notably the Upper Cretaceous Eutaw and lower Tuscaloosa intervals and Lower Cretaceous Paluxy and Hosston formations. As many as eight domes have been drilled thus far; sandstones in the upper Hosston Formation comprise the primary target. Production has been as high as 3-5 Mcf and 500-1200 bbl of condensate per day, with estimated ultimate reserves in the range of 0.2 to 1.5 MBOE (million barrels oil equivalent) per well. As typified by discovery at Dry Creek salt dome, traps are related to faulting, unconformities, and updip loss of permeability. Previous drilling at Dry Creek, and in the basin generally, avoided the flank areas of most domes, due to geologic models that predicted latestage (Tertiary) piercement and breached accumulations. Recent data from Dry Creek and other productive domes suggest that growth was episodic and that piercement of Tertiary strata did not affect deeper reservoirs charged with hydrocarbons in the Late Cretaceous.

  13. C-105 heel pit removed and C-105 dome cut paves way for new retrieval technology

    SciTech Connect (OSTI)

    Mackey, Thomas C.; Sutey, Michael J.

    2013-06-10T23:59:59.000Z

    For just the second time, crews have cut a hole in the top of an active radioactive waste storage tank at Hanford. Workers began cutting a 55-inch hole in the top of Tank C-105 last Tuesday night on graveyard shift, completing the cut early Wednesday. The hole will allow for installation of the Mobile Arm Retrieval System (MARS) Vacuum into the tank. The cut was made through 17 inches of concrete and rebar using the newly developed rotary-core cutting system, which uses a laser-guided steel canister with teeth on the bottom to drill a round hole into the tank dome. The project was completed safely and successfully in a high-rad area without contamination or significant dose to workers.

  14. Characterizing the Weeks Island Salt Dome drilling of and seismic measurements from boreholes

    SciTech Connect (OSTI)

    Sattler, A.R.; Harding, R.S.; Jacobson, R.D.; Finger, J.T.; Keefe, R.; Neal, J.T.

    1996-10-01T23:59:59.000Z

    A sinkhole 36 ft across, 30 ft deep was first observed in the alluvium over the Weeks Island Salt Dome (salt mine converted for oil storage by US Strategic Petroleum Reserve) May 1992. Four vertical, two slanted boreholes were drilled for diagnostics. Crosswell seismic data were generated; the velocity images suggest that the sinkhole collapse is complicated, not a simple vertical structure. The coring operation was moderately difficult; limited core was obtained through the alluvium, and the quality of the salt core from the first two vertical wells was poor. Core quality improved with better bit selection, mud, and drilling method. The drilling fluid program provided fairly stable holes allowing open hole logs to be run. All holes were cemented successfully (although it took 3 attempts in one case).

  15. DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams

    Broader source: Energy.gov [DOE]

    A field test sponsored by the U.S. Department of Energy has demonstrated that opportunities to permanently store carbon in unmineable seams of lignite may be more widespread than previously documented.

  16. Field-driven sense elements for chirality-dependent domain wall detection and storage

    SciTech Connect (OSTI)

    Bowden, S. R. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland Nanocenter, University of Maryland, College Park, Maryland 20742 (United States); Unguris, J. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2013-12-14T23:59:59.000Z

    A method for locally sensing and storing data of transverse domain wall chirality in planar nanowire logic and memory systems is presented. Patterned elements, in close proximity to the nanowires, respond to the asymmetry in the stray field from the domain wall to produce a chirality-dependent response. When a bias field is applied, a stray field-assisted reversal of the element magnetization results in a reversed remanent state, measurable by scanning electron microscopy with polarization analysis (SEMPA). The elements are designed as triangles with tips pointing toward the nanowire, allowing the shape anisotropy to be dominated by the base but having a portion with lower volume and lower energy barrier closest to the domain wall. Micromagnetic modeling assists in the design of the nanowire-triangle systems and experiments using SEMPA confirm the importance of aspect ratio and spacing given a constant bias field magnitude.

  17. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    SciTech Connect (OSTI)

    Harwell,, M. A.; Brandstetter,, A.; Benson,, G. L.; Bradley,, D. J.; Serne,, R. J.; Soldat, J. K; Cole,, C. R.; Deutsch,, W. J.; Gupta,, S. K.; Harwell,, C. C.; Napier,, B. A.; Reisenauer,, A. E.; Prater,, L. S.; Simmons,, C. S.; Strenge,, D. L.; Washburn,, J. F.; Zellmer,, J. T.

    1982-06-01T23:59:59.000Z

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario resulted in the delivery of radionuclidecontaminated brine to the surface, where a portion was diverted to culinary salt for direct ingestion by the existing population. Consequence analyses indicated calculated human doses that would be highly deleterious. Additional analyses indicated that doses well above background would occur from such a scenario t even if it occurred a million years into the future. The way to preclude such an intrusion is for continued control over the repository sitet either through direct institutional control or through the effective passive transfer of information. A secondary aspect of the specific human intrusion scenario involved a breach through the side of the salt dome t through which radionuclides migrated via the ground-water system to the accessible environment. This provided a demonstration of the geotransport methodology that AEGIS can use in actual site evaluations, as well as the WRIT program's capabilities with respect to defining the source term and retardation rates of the radionuclides in the repository. This reference site analysis was initially published as a Working Document in December 1979. That version was distributed for a formal peer review by individuals and organizations not involved in its development. The present report represents a revisiont based in part on the responses received from the external reviewers. Summaries of the comments from the reviewers and responses to these comments by the AEGIS staff are presented. The exercise of the AEGIS methodology was successful in demonstrating the methodologyt and thus t in providing a basis for substantive peer review, in terms of further development of the AEGIS site-applications capability and in terms of providing insight into the potential for consequential human intrusion into a salt dome repository.

  18. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    SciTech Connect (OSTI)

    Harwell,, M. A.; Brandstetter,, A.; Benson,, G. L.; Raymond,, J. R.; Brandley,, D. J.; Serne,, R. J.; Soldat,, J. K.; Cole,, C. R.; Deutsch,, W. J.; Gupta,, S. K.; Harwell,, C. C.; Napier,, B. A.; Reisenauer,, A. E.; Prater,, L. S.; Simmons,, C. S.; Strenge,, D. L.; Washburn,, J. F.; Zellmer,, J. T.

    1982-06-01T23:59:59.000Z

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario resulted in the delivery of radionuclidecontaminated brine to the surface, where a portion was diverted to culinary salt for direct ingestion by the existing population. Consequence analyses indicated calculated human doses that would be highly deleterious. Additional analyses indicated that doses well above background would occur from such a scenario t even if it occurred a million years into the future. The way to preclude such an intrusion is for continued control over the repository sitet either through direct institutional control or through the effective passive transfer of information. A secondary aspect of the specific human intrusion scenario involved a breach through the side of the salt dome t through which radionuclides migrated via the ground-water system to the accessible environment. This provided a demonstration of the geotransport methodology that AEGIS can use in actual site evaluations, as well as the WRIT program's capabilities with respect to defining the source term and retardation rates of the radionuclides in the repository. This reference site analysis was initially published as a Working Document in December 1979. That version was distributed for a formal peer review by individuals and organizations not involved in its development. The present report represents a revisiont based in part on the responses received from the external reviewers. Summaries of the comments from the reviewers and responses to these comments by the AEGIS staff are presented. The exercise of the AEGIS methodology was sUGcessful in demonstrating the methodologyt and thus t in providing a basis for substantive peer review, in terms of further development of the AEGIS site-applications capability and in terms of providing insight into the potential for consequential human intrusion into a salt dome repository.

  19. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    SciTech Connect (OSTI)

    MEACHAM, J.E.

    2003-11-10T23:59:59.000Z

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  20. A mechanical model of early salt dome growth

    E-Print Network [OSTI]

    Irwin, Frank Albert

    1988-01-01T23:59:59.000Z

    of Department) December 1988 A Mechanical Analysis of Early Salt Dome Growth. (December 1988) Frank Albert Irwin, B. S. , Texas A&M University Chair of Advisory Committee: Dr. Raymond C. Fletcher A two-layer superposition model, the lower layer representing... of the sediments results in growth rates much higher than those observed. Analysis of the case with a diffusivity of 104m2/Ka agrees with all observa- tions. A range of diffusivities which will produce a realistic salt dome model is then determined. The lower...

  1. WA_96_004_GE_CORPORATE_RESEARCH_and_DEVELOPMENT_Waiver_of_Dome...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RATERESEARCHandDEVELOPMENTWaiverofDome.pdf More Documents & Publications WA1993012GENERALELECTRICCOMPANY--CORPORATERESEARCHAND.pdf WA1994013GENERALELECTRICCOMPANY...

  2. ON THE NATURE OF RECONNECTION AT A SOLAR CORONAL NULL POINT ABOVE A SEPARATRIX DOME

    SciTech Connect (OSTI)

    Pontin, D. I. [Division of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Priest, E. R. [School of Mathematics and Statistics, University of St Andrews, Fife KY16 9SS (United Kingdom); Galsgaard, K., E-mail: dpontin@maths.dundee.ac.uk [Niels Bohr Institute, Copenhagen DK-2100 (Denmark)

    2013-09-10T23:59:59.000Z

    Three-dimensional magnetic null points are ubiquitous in the solar corona and in any generic mixed-polarity magnetic field. We consider magnetic reconnection at an isolated coronal null point whose fan field lines form a dome structure. Using analytical and computational models, we demonstrate several features of spine-fan reconnection at such a null, including the fact that substantial magnetic flux transfer from one region of field line connectivity to another can occur. The flux transfer occurs across the current sheet that forms around the null point during spine-fan reconnection, and there is no separator present. Also, flipping of magnetic field lines takes place in a manner similar to that observed in the quasi-separatrix layer or slip-running reconnection.

  3. Upper mantle flow beneath the Hangay dome, central Mongolia

    E-Print Network [OSTI]

    Déverchère, Jacques

    Upper mantle flow beneath the Hangay dome, central Mongolia Acknowledgements This work, A., Amarjargal, S. and Déverchère, J., 2003. GPS measurements of crustal deformation in the Baikal-Mongolia., 2002. Mantle structure and rifting processes in the Baikal-Mongolia region: geophysical data

  4. Site testing for submillimetre astronomy at Dome C, Antarctica

    E-Print Network [OSTI]

    Tremblin, P; Schneider, N; Durand, G Al; Ashley, M C B; Lawrence, J S; Luong-Van, D M; Storey, J W V; Durand, G An; Reinert, Y; Veyssiere, C; Walter, C; Ade, P; Calisse, P G; Challita, Z; Fossat, E; Sabbatini, L; Pellegrini, A; Ricaud, P; Urban, J

    2011-01-01T23:59:59.000Z

    Over the past few years a major effort has been put into the exploration of potential sites for the deployment of submillimetre astronomical facilities. Amongst the most important sites are Dome C and Dome A on the Antarctic Plateau, and the Chajnantor area in Chile. In this context, we report on measurements of the sky opacity at 200 um over a period of three years at the French-Italian station, Concordia, at Dome C, Antarctica. We also present some solutions to the challenges of operating in the harsh polar environ- ment. Dome C offers exceptional conditions in terms of absolute atmospheric transmission and stability for submillimetre astron- omy. Over the austral winter the PWV exhibits long periods during which it is stable and at a very low level (0.1 to 0.3 mm). Higher values (0.2 to 0.8 mm) of PWV are observed during the short summer period. Based on observations over three years, a transmission of around 50% at 350 um is achieved for 75% of the time. The 200-um window opens with a typical transmission...

  5. U.S. Natural Gas Underground Storage Depleted Fields Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb(MillionCubic Feet) Depleted Fields

  6. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    SciTech Connect (OSTI)

    none,

    1981-10-01T23:59:59.000Z

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, property ownership, and surface geology, and a geologic cross section were presented for each dome.

  7. Glacier geophysical studies at Taylor Dome: Your three

    SciTech Connect (OSTI)

    Morse, D.L.; Waddington, E.D. (Univ. of Washington, Seattle, WA (United States))

    1993-01-01T23:59:59.000Z

    Taylor Dome is the site of an ongoing ice core/paleoclimate project. The main activities of the 1992-1993 season included surveys by ground-based optical methods, surveys using satellite receivers, radio-echo sounding of bedrock topography, and depositional environment characterization. Monitoring continued of accumulation rate and three cores were sampled to detect the depths of atmospheric nuclear test fallout products. 5 refs., 1 fig.

  8. Revised results for geomechanical testing of MRIG-9 core for the potential SPR siting at the Richton Salt Dome.

    SciTech Connect (OSTI)

    Broome, Scott Thomas; Bauer, Stephen J.

    2010-02-01T23:59:59.000Z

    This report is a revision of SAND2009-0852. SAND2009-0852 was revised because it was discovered that a gage used in the original testing was mis-calibrated. Following the recalibration, all affected raw data were recalculated and re-presented. Most revised data is similar to, but slightly different than, the original data. Following the data re-analysis, none of the inferences or conclusions about the data or site relative to the SAND2009-0852 data have been changed. A laboratory testing program was developed to examine the mechanical behavior of salt from the Richton salt dome. The resulting information is intended for use in design and evaluation of a proposed Strategic Petroleum Reserve storage facility in that dome. Core obtained from the drill hole MRIG-9 was obtained from the Texas Bureau of Economic Geology. Mechanical properties testing included: (1) acoustic velocity wave measurements; (2) indirect tensile strength tests; (3) unconfined compressive strength tests; (4) ambient temperature quasi-static triaxial compression tests to evaluate dilational stress states at confining pressures of 725, 1450, 2175, and 2900 psi; and (5) confined triaxial creep experiments to evaluate the time-dependent behavior of the salt at axial stress differences of 4000 psi, 3500 psi, 3000 psi, 2175 psi and 2000 psi at 55 C and 4000 psi at 35 C, all at a constant confining pressure of 4000 psi. All comments, inferences, discussions of the Richton characterization and analysis are caveated by the small number of tests. Additional core and testing from a deeper well located at the proposed site is planned. The Richton rock salt is generally inhomogeneous as expressed by the density and velocity measurements with depth. In fact, we treated the salt as two populations, one clean and relatively pure (> 98% halite), the other salt with abundant (at times) anhydrite. The density has been related to the insoluble content. The limited mechanical testing completed has allowed us to conclude that the dilatational criteria are distinct for the halite-rich and other salts, and that the dilation criteria are pressure dependent. The indirect tensile strengths and unconfined compressive strengths determined are consistently lower than other coastal domal salts. The steady-state-only creep model being developed suggests that Richton salt is intermediate in creep resistance when compared to other domal and bedded salts. The results of the study provide only limited information for structural modeling needed to evaluate the integrity and safety of the proposed cavern field. This study should be augmented with more extensive testing. This report documents a series of test methods, philosophies, and empirical relationships, etc., that are used to define and extend our understanding of the mechanical behavior of the Richton salt. This understanding could be used in conjunction with planned further studies or on its own for initial assessments.

  9. Development and Calibration of New 3-D Vector VSP Imaging Technology: Vinton Salt Dome, LA

    SciTech Connect (OSTI)

    Kurt J. Marfurt; Hua-Wei Zhou; E. Charlotte Sullivan

    2004-09-01T23:59:59.000Z

    Vinton salt dome is located in Southwestern Louisiana, in Calcasieu Parish. Tectonically, the piercement dome is within the salt dome minibasin province. The field has been in production since 1901, with most of the production coming from Miocene and Oligocene sands. The goal of our project was to develop and calibrate new processing and interpretation technology to fully exploit the information available from a simultaneous 3-D surface seismic survey and 3-C, 3-D vertical seismic profile (VSP) survey over the dome. More specifically the goal was to better image salt dome flanks and small, reservoir-compartmentalizing faults. This new technology has application to mature salt-related fields across the Gulf Coast. The primary focus of our effort was to develop, apply, and assess the limitations of new 3-C, 3-D wavefield separation and imaging technology that could be used to image aliased, limited-aperture, vector VSP data. Through 2-D and 3-D full elastic modeling, we verified that salt flank reflections exist in the horizontally-traveling portion of the wavefield rather than up- and down-going portions of the wavefield, thereby explaining why many commercial VSP processing flow failed. Since the P-wave reflections from the salt flank are measured primarily on the horizontal components while P-wave reflections from deeper sedimentary horizons are measured primarily on the vertical component, a true vector VSP analysis was needed. We developed an antialiased discrete Radon transform filter to accurately model P- and S-wave data components measured by the vector VSP. On-the-fly polarization filtering embedded in our Kirchhoff imaging algorithm was effective in separating PP from PS wave images. By the novel application of semblance-weighted filters, we were able to suppress many of the migration artifacts associated with low fold, sparse VSP acquisition geometries. To provide a better velocity/depth model, we applied 3-D prestack depth migration to the surface data. The reflector dip calculated from these images were used to further constrain the depth images from the less well sampled VSP data. In spite of the above technical success, we were less than pleased with our final VSP images. Since no extra sources are used, simultaneous recording of the surface and VSP data were believed to provide a cost-effective means to acquire 3-D VSP data. However, the subsurface sampling associated with the VSP is quite different from that associated with the surface seismic data. After our analysis, we find that considerable shot infill would result in a better, unaliased subsurface image. We were able to ascertain that the subsurface illuminated by the VSP was extremely small, with the PS image being even smaller than the PP image. One-way wave equation extrapolators do not work well for the VSP geometry, where we wish to extrapolate energy sideways (from the VSP well towards and away from the salt dome) as well as vertically (away from the shots on the earth surface). Merging separately-generated images proved to be both cumbersome and error-prone. Alternative, advanced multiarrival traveltime calculations that we obtained from research colleagues at other institutions could not be easily modified to image rays that had an upgoing component. In the end, we used a simpler first-arrival Eikonal-based traveltime algorithm with its well-known limitations. While the surface acquisition using radial receiver lines and concentric shot lines provided good illumination of the salt dome, this unconventional geometry proved to be particularly difficult to process using commercial software, where the lack of ''shot lines'' and ''receiver lines'' necessary for dip filtering, residual statics, and residual velocity analysis proved to be nearly intractable. We also learned that while commercial software available at UH works well for a bootstrapped velocity model computed from the seismic data alone, it was severely limited in its ability to include the dense well control available at Vinton Dome. To more accurately estimate velocities, we develope

  10. Conceptual model for regional radionuclide transport from a salt dome repository: a technical memorandum

    SciTech Connect (OSTI)

    Kier, R.S.; Showalter, P.A.; Dettinger, M.D.

    1980-05-30T23:59:59.000Z

    Disposal of high-level radioactive wastes is a major environmental problem influencing further development of nuclear energy in this country. Salt domes in the Gulf Coast Basin are being investigated as repository sites. A major concern is geologic and hydrologic stability of candidate domes and potential transport of radionuclides by groundwater to the biosphere prior to their degradation to harmless levels of activity. This report conceptualizes a regional geohydrologic model for transport of radionuclides from a salt dome repository. The model considers transport pathways and the physical and chemical changes that would occur through time prior to the radionuclides reaching the biosphere. Necessary, but unknown inputs to the regional model involve entry and movement of fluids through the repository dome and across the dome-country rock interface and the effect on the dome and surrounding strata of heat generated by the radioactive wastes.

  11. Methyl chloride variability in the Taylor Dome ice core during the Holocene

    E-Print Network [OSTI]

    Verhulst, Kristal R; Aydin, Murat; Saltzman, Eric S

    2013-01-01T23:59:59.000Z

    in the Taylor Dome ice core during the Holocene Kristal R.2005GB002680. Lee-Taylor, J. , and K. R. Redeker (2005),

  12. Draft environmental assessment: Richton Dome site, Mississippi. Nuclear Waste Policy Act (Section 112). [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1984-12-01T23:59:59.000Z

    In February 1983, the US Department of Energy identified the Richton dome site as one of the nine potentially acceptable sites for a mined geo

  13. Salt tectonism and seismic stratigraphy of the Upper Jurassic in the Destin Dome Region, northeastern Gulf of Mexico

    E-Print Network [OSTI]

    MacRae, Grant

    1990-01-01T23:59:59.000Z

    in the Norphlet Formation (Bearden and Mink, 1989). Comprehensive high-quality multifold seismic reflection data have not previously been available for detailed seismic stratigraphic analysis in the Destin Dome region. Establishment of a seismic stratigraphic... DD-2 Destin Dome Exxon 162 17 938 P, V, G, S, SP, R, D DD-3 Destin Dome Sun Oil 166 17 608 P, V, G, S, SP, D DD-4 Destin Dome Gulf 360 20 988 P, V, G, S, SP, R, D DD-5 Destin Dome Chevron 422 22 222 V, G, S, SP, R, D DD-6 Destin Dome Sohio...

  14. Attenuation of acoustic waves in glacial ice and salt domes

    E-Print Network [OSTI]

    P. B. Price

    2005-06-27T23:59:59.000Z

    Two classes of natural solid media (glacial ice and salt domes) are under consideration as media in which to deploy instruments for detection of neutrinos with energy >1e18 eV. Though insensitive to 1e11 to 1e16 eV neutrinos for which observatories (e.g., AMANDA and IceCube) that utilize optical Cherenkov radiation detectors are designed, radio and acoustic methods are suited for searches for the very low fluxes of neutrinos with energies >1017 eV. This is because, due to the very long attenuation lengths of radio and acoustic waves in ice and salt, detection modules can be spaced very far apart. In this paper, I calculate the absorption and scattering coefficients as a function of frequency and grain size for acoustic waves in glacial ice and salt domes and show that experimental measurements on laboratory samples and in glacial ice and salt domes are consistent with theory. For South Pole ice with grain size 0.2 cm at -51 degrees C, scattering lengths are calculated to be 2000 km and 25 km at 10 kHz and 30 kHz, respectively, and the absorption length is calculated to be 9 km at frequencies above 100 Hz. For NaCl (rock salt) with grain size 0.75 cm, scattering lengths are calculated to be 120 km and 1.4 km at 10 kHz and 30 kHz, and absorption lengths are calculated to be 30,000 km and 3300 km at 10 kHz and 30 kHz. Existing measurements are consistent with theory. For ice, absorption is the limiting factor; for salt, scattering is the limiting factor.

  15. Storage Rings

    SciTech Connect (OSTI)

    Fischer, W.

    2011-01-01T23:59:59.000Z

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10{sup -6} eV to 3.5 x 10{sup 12} eV (LHC, 7 x 10{sup 12} eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams. Storage rings have instrumentation to monitor the electrical and mechanical systems, and the beam quality. Computers are used to control the operation. Large storage rings have millions of control points from all systems. The time dependent beam intensity I(t) can often be approximated by an exponential function I(t) = I(0) exp(-t/{tau}) (1) where the decay time {tau} and, correspondingly, the store time ranges from a few turns to 10 days (ISR). {tau} can be dominated by a variety of effects including lattice nonlinearities, beam-beam, space charge, intrabeam and Touschek scattering, interaction with the residual gas or target, or the lifetime of the stored particle. In this case, the beam lifetime measurement itself can be the purpose of a storage ring experiment. The main consideration in the design of a storage ring is the preservation of the beam quality over the store length. The beam size and momentum spread can be reduced through cooling, often leading to an increase in the store time. For long store times vacuum considerations are important since the interaction rate of the stored particles with the residual gas molecules is proportional to the pressure, and an ultra-high vacuum system may be needed. Distributed pumping with warm activated NEG surfaces or cold surfaces in machines with superconducting magnets are ways to provide large pumping speeds and achieve low pressures even under conditions with dynamic gas loads. The largest application of storage rings today are synchrotron light sources, of which about 50 exist world wide. In experiments where the beam collides with an internal target or another beam, a storage ring allows to re-use the accelerated beam many times if the interaction with the target is sufficiently small. In hadron collider and ion storage rings store times of many hours or even days are realized, corresponding to up to 1011 turns and thereby target passages. Ref. [3] is the first proposal for a collider storage ring. A number of storage rings exist where the beam itself or its decay products are the object of s

  16. Cold domes over the warm pool: a study of the properties of cold domes produced by mesoscale convective systems during TOGA COARE

    E-Print Network [OSTI]

    Caesar, Kathy-Ann Lois

    1995-01-01T23:59:59.000Z

    Mesoscale convective systems (MCSs) are known to cool the subcloud layer by the introduction of penetrative downdrafts to the surface, resulting in the formation of cold domes (also known as cold pools). Five MCSs sampled during the Tropical Ocean...

  17. A reservoir management study of a mature oil field

    E-Print Network [OSTI]

    Peruzzi, Tave

    1995-01-01T23:59:59.000Z

    to other mature oil fields to make sound engineering and business decisions. I interpreted the geological structure and stratigaphy of the salt dome oil field. Structure, isopach and cross-sectional maps were constructed. Depositional environments...

  18. Marketing Cool Storage Technology 

    E-Print Network [OSTI]

    McCannon, L.

    1987-01-01T23:59:59.000Z

    in the field. The International Thermal Storage Advisory Council was formed to help meet this perceived need. This paper will review activities of EPRI and ITSAC to achieve widespread acceptance of the technology....

  19. Mesozoic magmatism and granitic dome in the Wugongshan Massif, Jiangxi province and their genetical

    E-Print Network [OSTI]

    Boyer, Edmond

    Mesozoic magmatism and granitic dome in the Wugongshan Massif, Jiangxi province and their genetical,CNRS - Université d'Orleans, 45067 Orleans 2, France Abstract In SE China, a Mesozoic granitic dome coeval and granitic gneisses, and the E­W-trending Late-Paleozoic­Mesozoic Pingxiang and Anfu basins are located along

  20. Upper mantle flow beneath and around the Hangay dome, Central Mongolia Guilhem Barruol a,

    E-Print Network [OSTI]

    Déverchère, Jacques

    Upper mantle flow beneath and around the Hangay dome, Central Mongolia Guilhem Barruol a, , Anne Academy of Sciences (RCAG), P.O. Box 51, Ulaanbaatar, Mongolia a b s t r a c ta r t i c l e i n f o-wave splitting upper mantle Mongolia Hangay dome Siberian craton Bogd fault Mongolia represents the northernmost

  1. Restoration of cross sections above intrusive salt domes

    SciTech Connect (OSTI)

    Brewer, R.C.; Groshong, R.H. Jr. (Univ. of Alabama, Tuscaloosa, AL (United States))

    1993-10-01T23:59:59.000Z

    The applicability of bed-length restoration to the sequence above a vertical intrusion of salt was tested on an experimental model that included deposition of units during uplift. Restoration of the model resulted in an apparently unbalanced cross section due to excess bed length in the pre-growth interval. The excess bed length was due to significant internal strain. For a correct restoration, it is thus important to distinguish between the growth and pre-growth sequences. The thinning index, which quantifies the thinning onto the uplift, aids in making this distinction. A thinning index vs. depth curve has a sharp inflection at the top of the pre-growth sequence. The pre-growth sequence is restored by area balancing. The growth sequence deforms mainly by formation of a crestal graben, with little other strain. Sequential restoration of growth intervals shows the growth history of the dome. When applied to the Pool Creek salt dome from the Mississippi Interior Salt basin, the methods developed for the model served to separate the pre-growth from the growth sequence and to indicate a growth history of vertical intrusion changing through time to vertical intrusion plus regional extension.

  2. EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2011-01-01T23:59:59.000Z

    1971, storage of Solar Energy in a Bandy- Gravel Ground. 2.Aquifer Storage of Heated Water: A Field Experuuent. GroundStorage of Heated Water: Part II - Numerical Simulation of Field Results. Ground

  3. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    SciTech Connect (OSTI)

    Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

    2012-03-30T23:59:59.000Z

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding. As part of the MGSC�������¢����������������s Validation Phase (Phase II) studies, the small injection pilot test was conducted at the Bald Unit site within the Mumford Hills Field in Posey County, southwestern Indiana, which was chosen for the project on the basis of site infrastructure and reservoir conditions. Geologic data on the target formation were extensive. Core analyses, porosity and permeability data, and geophysical logs from 40 wells were used to construct cross sections and structure contour and isopach maps in order to characterize and define the reservoir architecture of the target formation. A geocellular model of the reservoir was constructed to improve understanding of CO2 behavior in the subsurface. At the time of site selection, the Field was under secondary recovery through edge-water injection, but the wells selected for the pilot in the Bald Unit had been temporarily shut-in for several years. The most recently shut-in production well, which was surrounded by four nearby shut-in production wells in a five-spot pattern, was converted to CO2 injection for this pilot. Two additional wells outside the immediate five-spot pattern, one of which was an active producer, were instrumented to measure surface temperature and pressure. The CO2 injection period lasted from September 3, 2009, through December 14, 2010, with one three-month interruption caused by cessation of CO2 deliveries due to winter weather. Water was injected into the CO2 injection well during this period. A total of 6,300 tonnes (6,950 tons) of CO2 were injected into the reservoir at rates that generally ranged from 18 to 32 tonnes (20 to 35 tons) per day. The CO2 injection bottomhole pressure generally remained at 8.3 to 9.0 MPag (1,200 to 1,300 psig). The CO2 injection was followed by continued monitoring for nine months during post-CO2 water injection. A monitoring, verification, and accounting (MVA) program was designed to determine the fate of injected CO2. Extensive periodic sampling and analysis of brine, groundwater, and produced gases began before CO2 injection and continued through the monitored waterflood periods. Samples were gathered from production wells and three newly installed groundwater monitoring wells. Samples underwent geochemical and isotopic analyses to reveal any CO2-related changes. Groundwater and kinetic modeling and mineralogical analysis were also employed to better understand the long-term dynamics of CO2 in the reservoir. No CO2 leakage into groundwater was detected, and analysis of brine and gas chemistry made it possible to track the path of plume migration and infer geochemical reactions and trapping of CO2. Cased-hole logging did not detect any CO2 in the near-wellbore region. An increase in CO2 concentration was first detected in February 2010 from the gas present in the carboy during brine sampling; however, there was no appreciable gas volume associated with the detection of CO2. The first indication of elevated gas rates from the commingled gas of the pilot�������¢����������������s production wells occurred in July 2010 and reached a maximum of 0.36 tonnes/day (0.41 tons/day) in September 2010. An estimated 27 tonnes (30 tons) of CO2 were produced at the surface from the gas separator at the tank battery from September 3, 2009, through September 11, 2011, representing 0.5% of the injected CO2. Consequently, 99.5%

  4. Ice Dome Construction for Large Scale Habitats on Atmosphereless Bodies

    E-Print Network [OSTI]

    Farr, Stefan Harsan

    2013-01-01T23:59:59.000Z

    One of the greatest difficulties that space exploration faces is the lack of technology necessary to establish large volumes of habitable spaces on site. Both transporting the pre-built enclosures or transporting the equipment necessary for building them on site from conventional materials face the same enormous problem: the need to transport huge quantities of material into space, which is technically close to impossible. The current paper, explores the possibility and one approach of building these large spaces from an alternative material, water ice, a material that is a prerequisite for any settlement. The feasibility of dome shaped, pressurized, water ice buildings is analyzed from a structural integrity point of view and the possibility of building them with a technique using water sublimation and deposition onto a thin plastic film, a process which requires extremely little construction equipment with respect to the resulting habitable space.

  5. The effect of the ectoparasitic snail, Boonea impressa, on the growth and health of oysters under field conditions

    E-Print Network [OSTI]

    Wilson, E. A

    1986-01-01T23:59:59.000Z

    of the oysters were placed in semi-enolosed plexiglass domes (see Kendall A(); ml. . ~ 1984 for description) in a tidal oreek near Lydia Ann Channel, Port Aransas, Texas. The domes allowed water to ciroulate over the oysters, replenishing oxygen and food..., while excluding predators suoh as crabs and oyster drills. Two domes contained experimental oysters parasitized by ~EL'mggg at a concentration of 10 snails/oyster. a realistic level of parasitism based on field observations in Texas bays (White 1984...

  6. FIELD LINES TWISTING IN A NOISY CORONA: IMPLICATIONS FOR ENERGY STORAGE AND RELEASE, AND INITIATION OF SOLAR ERUPTIONS

    SciTech Connect (OSTI)

    Rappazzo, A. F. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, DE 19716 (United States); Velli, M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Einaudi, G., E-mail: rappazzo@udel.edu [Berkeley Research Associates, Inc., 6537 Mid Cities Avenue, Beltsville, MD 20705 (United States)

    2013-07-10T23:59:59.000Z

    We present simulations modeling closed regions of the solar corona threaded by a strong magnetic field where localized photospheric vortical motions twist the coronal field lines. The linear and nonlinear dynamics are investigated in the reduced magnetohydrodynamic regime in Cartesian geometry. Initially the magnetic field lines get twisted and the system becomes unstable to the internal kink mode, confirming and extending previous results. As typical in this kind of investigations, where initial conditions implement smooth fields and flux-tubes, we have neglected fluctuations and the fields are laminar until the instability sets in. However, previous investigations indicate that fluctuations, excited by photospheric motions and coronal dynamics, are naturally present at all scales in the coronal fields. Thus, in order to understand the effect of a photospheric vortex on a more realistic corona, we continue the simulations after kink instability sets in, when turbulent fluctuations have already developed in the corona. In the nonlinear stage the system never returns to the simple initial state with ordered twisted field lines, and kink instability does not occur again. Nevertheless, field lines get twisted, although in a disordered way, and energy accumulates at large scales through an inverse cascade. This energy can subsequently be released in micro-flares or larger flares, when interaction with neighboring structures occurs or via other mechanisms. The impact on coronal dynamics and coronal mass ejections initiation is discussed.

  7. Structural constraints on the exhumation of the Tso Morari Dome, NW Himalaya

    E-Print Network [OSTI]

    Clark, Ryan J

    2005-01-01T23:59:59.000Z

    The Tso Morari culmination in the Ladakh region of northwest India is a large (>3,000 km²) structural dome cored by coesite-bearing rocks of Indian continental crustal affinity. As one of only two localities in the Himalaya ...

  8. Three-dimensional representations of salt-dome margins at four active strategic petroleum reserve sites.

    SciTech Connect (OSTI)

    Rautman, Christopher Arthur; Stein, Joshua S.

    2003-01-01T23:59:59.000Z

    Existing paper-based site characterization models of salt domes at the four active U.S. Strategic Petroleum Reserve sites have been converted to digital format and visualized using modern computer software. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jefferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome in Cameron Parish, Louisiana. A new modeling algorithm has been developed to overcome limitations of many standard geological modeling software packages in order to deal with structurally overhanging salt margins that are typical of many salt domes. This algorithm, and the implementing computer program, make use of the existing interpretive modeling conducted manually using professional geological judgement and presented in two dimensions in the original site characterization reports as structure contour maps on the top of salt. The algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the specific implementation of the algorithm described in this report and the resulting output files are tailored to the modeling and visualization software used to construct the figures contained herein, the algorithm itself is generic and other implementations and output formats are possible. The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are believed to be major improvements over the previously available two-dimensional representations of the domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical mesh files produced by this modeling activity are available for import into and display by other software routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple ASCII format is included on a PC-based compact disk.

  9. Percutaneous Ethanol Injection via an Artificially Induced Right Hydrothorax for Hepatocellular Carcinoma in the Hepatic Dome

    SciTech Connect (OSTI)

    Kume, Akimichi, E-mail: kumea@med.nagoya-u.ac.jp; Nimura, Yuji; Kamiya, Junichi; Nagino, Masato; Kito, Yasushi [Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Division of Surgical Oncology, Department of Surgery (Japan)

    2003-11-15T23:59:59.000Z

    To evaluate the efficacy of sonographically (US) guided percutaneous ethanol injection (PEI) via an artificially induced right hydrothorax (transthoracic PEI) to treat US-invisible hepatocellular carcinoma (HCC) in the hepatic dome. Five cirrhotic patients with US-invisible HCC in the hepatic dome, who were poor surgical candidates, underwent transthoracic PEI. An artificial right hydrothorax was created by instilling 500 ml saline, and absolute ethanol was injected transhydrothoracically into the hepatic dome lesion under local anesthesia. The success and complications were assessed radiologically. The patients were followed up serologically and radiologically for 12-44 (mean 28.4) months. Twenty-five hydrothoraces were induced. All hydrothoraces enabled US visualization of the entire hepatic dome. Eight of the nine small lesions were treated successfully by the treatment. Two of the three local recurrences were eradicated by repeat transthoracic PEI. One large lesion was treated by a combination of transthoracic and regular PEI. The only complication was one clinically insignificant pneumothorax. Induction of a right hydrothorax is feasible and safe. The hydrothorax enables US visualization of the entire hepatic dome and permits US-guided PEI for HCC in the hepatic dome that otherwise would not be possible.

  10. A comparison between semi-spheroid- and dome-shaped quantum dots coupled to wetting layer

    SciTech Connect (OSTI)

    Shahzadeh, Mohammadreza; Sabaeian, Mohammad, E-mail: Sabaeian@scu.ac.ir [Physics Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43135 (Iran, Islamic Republic of)

    2014-06-15T23:59:59.000Z

    During the epitaxial growth method, self-assembled semi-spheroid-shaped quantum dots (QDs) are formed on the wetting layer (WL). However for sake of simplicity, researchers sometimes assume semi-spheroid-shaped QDs to be dome-shaped (hemisphere). In this work, a detailed and comprehensive study on the difference between electronic and transition properties of dome- and semi-spheroid-shaped quantum dots is presented. We will explain why the P-to-S intersubband transition behaves the way it does. The calculated results for intersubband P-to-S transition properties of quantum dots show two different trends for dome-shaped and semi-spheroid-shaped quantum dots. The results are interpreted using the probability of finding electron inside the dome/spheroid region, with emphasis on the effects of wetting layer. It is shown that dome-shaped and semi-spheroid-shaped quantum dots feature different electronic and transition properties, arising from the difference in lateral dimensions between dome- and semi-spheroid-shaped QDs. Moreover, an analogy is presented between the bound S-states in the quantum dots and a simple 3D quantum mechanical particle in a box, and effective sizes are calculated. The results of this work will benefit researchers to present more realistic models of coupled QD/WL systems and explain their properties more precisely.

  11. Features of Bayou Choctaw SPR caverns and internal structure of the salt dome.

    SciTech Connect (OSTI)

    Munson, Darrell E.

    2007-07-01T23:59:59.000Z

    The intent of this study is to examine the internal structure of the Bayou Choctaw salt dome utilizing the information obtained from graphical representations of sonar survey data of the internal cavern surfaces. Many of the Bayou Choctaw caverns have been abandoned. Some existing caverns were purchased by the Strategic Petroleum Reserve (SPR) program and have rather convoluted histories and complex cavern geometries. In fact, these caverns are typically poorly documented and are not particularly constructive to this study. Only two Bayou Choctaw caverns, 101 and 102, which were constructed using well-controlled solutioning methods, are well documented. One of these was constructed by the SPR for their use while the other was constructed and traded for another existing cavern. Consequently, compared to the SPR caverns of the West Hackberry and Big Hill domes, it is more difficult to obtain a general impression of the stratigraphy of the dome. Indeed, caverns of Bayou Choctaw show features significantly different than those encountered in the other two SPR facilities. In the number of abandoned caverns, and some of those existing caverns purchased by the SPR, extremely irregular solutioning has occurred. The two SPR constructed caverns suggest that some sections of the caverns may have undergone very regular solutioning to form uniform cylindrical shapes. Although it is not usually productive to speculate, some suggestions that point to the behavior of the Bayou Choctaw dome are examined. Also the primary differences in the Bayou Choctaw dome and the other SPR domes are noted.

  12. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  13. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  14. MULTIPLE WELL VARIABLE RATE WELL TEST ANALYSIS OF DATA FROM THE AUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRAM

    E-Print Network [OSTI]

    Doughty, Christine

    2012-01-01T23:59:59.000Z

    experimental Thermal energy storage in confined aquifers. ©lAUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRM1 Christineseries of aquifer thermal energy storage field experiments.

  15. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    T. E. Reilly, 2002: Flow and storage in groundwater systems.storage ..2013: Global ocean storage of anthropogenic carbon.

  16. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    storage . . . . . . . . . . . . . . . . . . . . . .example system based on log-structured storage 10.1 SystemA storage bottleneck. . . . . . . . . . . . . . . .

  17. Class 1 Permit Modification Notification Addition of Structures within Technical Area 54, Area G, Pad 11, Dome 375 Los Alamos National Laboratory Hazardous Waste Facility Permit, July 2012

    SciTech Connect (OSTI)

    Vigil-Holterman, Luciana R. [Los Alamos National Laboratory; Lechel, Robert A. [Los Alamos National Laboratory

    2012-08-31T23:59:59.000Z

    The purpose of this letter is to notify the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of a Class 1 Permit Modification to the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit issued to the Department of Energy (DOE) and Los Alamos National Security, LLC (LANS) in November 2010. The modification adds structures to the container storage unit at Technical Area (TA) 54 Area G, Pad 11. Permit Section 3.1(3) requires that changes to the location of a structure that does not manage hazardous waste shall be changed within the Permit as a Class 1 modification without prior approval in accordance with Code of Federal Regulations, Title 40 (40 CFR), {section}270.42(a)(1). Structures have been added within Dome 375 located at TA-54, Area G, Pad 11 that will be used in support of waste management operations within Dome 375 and the modular panel containment structure located within Dome 375, but will not be used as waste management structures. The Class 1 Permit Modification revises Figure 36 in Attachment N, Figures; and Figure G.12-1 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Descriptions of the structures have also been added to Section A.4.2.9 in Attachment A, TA - Unit Descriptions; and Section 2.0 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Full description of the permit modification and the necessary changes are included in Enclosure 1. The modification has been prepared in accordance with 40 CFR {section}270.42(a)(l). This package includes this letter and an enclosure containing a description of the permit modification, text edits of the Permit sections, and the revised figures (collectively LA-UR-12-22808). Accordingly, a signed certification page is also enclosed. Three hard copies and one electronic copy of this submittal will be delivered to the NMED-HWB.

  18. Improved manufacturing techniques for RF and laser hardening of missile domes. Phase I. Technical report

    SciTech Connect (OSTI)

    Pawlewicz, W.T.; Mann, I.B.; Martin, P.M.; Hays, D.D.; Graybeal, A.G.

    1982-07-01T23:59:59.000Z

    This report summarizes key results and accomplishements during the first year of a Manufacturing Methods and Technology project to adapt an existing Pacific Northwest Laboratory (PNL) optical coating capability developed for high-power fusion-laser applications to the case of rf and laser hardening of plastic missile domes used by the US Army (MICOM). The primary objective of the first year's work was to demonstrate rf hardening of Hellfire and Copperhead 1.06-micron missile domes by use of transparent conductive Indium Tin Oxide (ITO) coatings. The project thus involved adaptation of a coating material and process developed for flat glass components used in fusion lasers to the case of hemispherical or conical heat-sensitive plastic domes used on laser-guided missiles. Specific ITO coating property goals were an electrical sheet resistance of 10 Ohms/square, a coated-dome transmission of 80% or more at 1.06 micron wavelength (compared to 90% for a bare dome), and good adhesion. The sheet resistance goal of 10 Ohms/square was expected to result in an rf attenuation of 30 dB at the frequencies of importance.

  19. Degradation of dome cutting minerals in Hanford waste

    SciTech Connect (OSTI)

    Reynolds, Jacob G.; Huber, Heinz J.; Cooke, Gary A.

    2013-01-11T23:59:59.000Z

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes of a waste tank is expected to depend on two main parameters: carbonate is expected to slow olivine degradation rates, whereas hydroxide is expected to enhance olivine dissolution rates. Which of these two competing dissolution drivers will have a larger impact on the dissolution rate in the specific environment of a waste tank is currently not identifiable. In general, cancrinite is much smaller and less hard than either olivine or garnet, so would be expected to be less erosive to processing equipment. Complete degradation of either garnet or olivine prior to being processed at the Waste Treatment and Immobilization Plant cannot be confirmed, however.

  20. Degradation of Dome Cutting Minerals in Hanford Waste - 13100

    SciTech Connect (OSTI)

    Reynolds, Jacob G.; Cooke, Gary A.; Huber, Heinz J. [Washington River Protection Solutions, LLC, P.O. Box 850, Richland, WA 99352 (United States)] [Washington River Protection Solutions, LLC, P.O. Box 850, Richland, WA 99352 (United States)

    2013-07-01T23:59:59.000Z

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg. C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes of a waste tank is expected to depend on two main parameters: carbonate is expected to slow olivine degradation rates, whereas hydroxide is expected to enhance olivine dissolution rates. Which of these two competing dissolution drivers will have a larger impact on the dissolution rate in the specific environment of a waste tank is currently not identifiable. In general, cancrinite is much smaller and less hard than either olivine or garnet, so would be expected to be less erosive to processing equipment. Complete degradation of either garnet or olivine prior to being processed at the Waste Treatment and Immobilization Plant cannot be confirmed, however. (authors)

  1. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  2. Submillimetre/TeraHertz Astronomy at Dome C with CEA filled bolometer array

    E-Print Network [OSTI]

    Vincent Minier; Gilles Durand; Pierre-Olivier Lagage; Michel Talvard; Tony Travouillon; Maurizio Busso; Gino Tosti

    2007-02-19T23:59:59.000Z

    Submillimetre/TeraHertz (e.g. 200, 350, 450 microns) astronomy is the prime technique to unveil the birth and early evolution of a broad range of astrophysical objects. A major obstacle to carry out submm observations from ground is the atmosphere. Preliminary site testing and atmospheric transmission models tend to demonstrate that Dome C could offer the best conditions on Earth for submm/THz astronomy. The CAMISTIC project aims to install a filled bolometer-array camera with 16x16 pixels on IRAIT at Dome C and explore the 200-$\\mu$m windows for potential ground-based observations.

  3. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues · Chemical Storage ·Store in compatible containers that are in good condition to store separately. #12;Safety Issues · Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage · Provide

  4. 3-D Finite Element Analyses of the Egan Cavern Field

    SciTech Connect (OSTI)

    Klamerus, E.W.; Ehgartner, B.L.

    1999-02-01T23:59:59.000Z

    Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were moderate to excessive depending on the salt creep properties and operating pressures. However, subsidence above the cavern field was small and should pose no problem, to surface facilities.

  5. Moraine chronosequence of the Donnelly Dome region, Alaska A. Matmon a,

    E-Print Network [OSTI]

    Briner, Jason P.

    GEOLOGIC Inc., PO Box 52, 12021 Middle Bay Drive, Kodiak, AK 99615, USA d Department of Geology and SchoolMoraine chronosequence of the Donnelly Dome region, Alaska A. Matmon a, , J.P. Briner b , G. Carver, Jerusalem 91904, Israel b Department of Geology, University at Buffalo, Buffalo, NY 14260, USA c CARVER

  6. UPb SHRIMP zircon geochronology and Ttd history of the Kampa Dome, southern Tibet

    E-Print Network [OSTI]

    Sandiford, Mike

    U­Pb SHRIMP zircon geochronology and T­t­d history of the Kampa Dome, southern Tibet M.C. Quigley a al., 2004; Aoya et al., 2005, 2006; Quigley et al., 2006; Lee et al., 2006). Several workers have

  7. Ar thermochronology of the Kampa Dome, southern Tibet: Implications for tectonic evolution

    E-Print Network [OSTI]

    Sandiford, Mike

    of the North Himalayan gneiss domes Mark Quigley a,, Yu Liangjun b , Liu Xiaohan b , Christopher J.L. Wilson: +61 3 8344 7761. E-mail address: m.quigley2@pgrad.unimelb.edu.au (M. Quigley). 0040-1951/$ - see front

  8. Architecture is frozen music. Bragdon This publication accompanies the traveling exhibition Pulse Dome Project: Art &

    E-Print Network [OSTI]

    Kunkle, Tom

    a form of sustainable architecture that was in harmony with natural processes--a structure he calledpulse dome #12;Architecture is frozen music. Bragdon #12;This publication accompanies the traveling architecture, wombs, and such natural forms as caves, tunnels, and volcanoes to learn what had been done

  9. Carboniferous tectonic history of the eastern flank of the Ozark dome

    SciTech Connect (OSTI)

    Nelson, W.J. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    Detailed geologic mapping in southwestern Illinois and southeastern Missouri indicates that the eastern flank of the Ozark dome was a low positive area throughout Carboniferous (Mississippian and Pennsylvanian) time. Rock units of this age consistently thin onto the flank of the dome, and are punctuated by numerous disconformities. Effects of shoaling are prominent in Chesterian strata, which change from dominantly subtidal in the proto-Illinois basin to shallow subtidal, intertidal and supratidal on the flank of the dome. Although the dome probably was exposed subaerially for much of Carboniferous time, it contributed little sediment eastward. The exposed rocks were largely carbonates, which weathered by solution. Several long-lived basement structures on the east flank of the Ozarks were active during the Carboniferous. Chief among them were the Lincoln and Waterloo-Dupo anticlines, the Du Quoin monocline, and the Ste. Genevieve fault zone. All are high-angle reverse faults that strike north to northwest, and are overlain by sharp folds in sedimentary cover. Major displacements took place in late Valmeyeran to Atokan time, and addition deformation occurred in Desmoinesian through post-Pennsylvanian time. The compressional deformation probably is a product of the Ouachita orogeny.

  10. Overcoming the Boundary Layer Turbulence at Dome C: Ground-Layer Adaptive Optics versus Tower

    E-Print Network [OSTI]

    Ashley, Michael C. B.

    Overcoming the Boundary Layer Turbulence at Dome C: Ground-Layer Adaptive Optics versus Tower T the boundary layer: mounting a telescope on a tower that physically puts it above the turbulent layer such a goal, two solutions can be proposed. The most intuitive one is to place a telescope on a tower

  11. Supplemental DOME Documentation for Researchers with Bricks Version 1.6

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    , the script /diesel/init.pl is executed. This is DOME's bootstrap script; it configures the brick, starts address so that it can be inherited by a VM. o Start a process to manage the 3G modem (/diesel/bustracker3gx.py). #12;2 o Start the gpsd daemon. o Start a process to install any updates (/diesel

  12. Beryllium-10 in the Taylor Dome ice core: Applications to Antarctic glaciology and paleoclimatology

    SciTech Connect (OSTI)

    Steig, E.J.

    1996-12-31T23:59:59.000Z

    An ice core was drilled at Taylor dome, East Antarctica, reaching to bedrock at 554 meters. Oxygen-isotope measurements reveal climatic fluctuations through the last interglacial period. To facilitate comparison of the Taylor Dome paleoclimate record with geologic data and results from other deep ice cores, several glaciological issues need to be addressed. In particular, accumulation data are necessary as input for numerical ice-flow-models, for determining the flux of chemical constituents from measured concentrations, and for calculation of the offset in age between ice and trapped air in the core. The analysis of cosmogenic beryllium-10 provides a geochemical method for constraining the accumulation-rate history at Taylor Dome. High-resolution measurements were made in shallow firn cores and snow pits to determine the relationship among beryllium-10 concentrations, wet and dry deposition mechanisms, and snow-accumulation rates. Comparison between theoretical and measured variations in deposition over the last 75 years constrains the relationship between beryllium-10 deposition and global average production rates. The results indicate that variations in geomagnetically-modulated production-rate do not strongly influence beryllium-10 deposition at Taylor Dome. Although solar modulation of production rate is important for time scales of years to centuries, snow-accumulation rate is the dominant control on ice-core beryllium-10 concentrations for longer periods. Results show that the Taylor Dome core can be used to provide new constraints on regional climate over the last 130,000 years, complementing the terrestrial and marine geological record from the Dry Valley, Transantarctic Mountains and western Ross Sea.

  13. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  14. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  15. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  16. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  17. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

  18. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    Stasis: Flexible Transactional Storage by Russell C. Sears AR. Larson Fall 2009 Stasis: Flexible Transactional StorageC. Sears Abstract Stasis: Flexible Transactional Storage by

  19. Imaging dipping sediments at a salt dome flank -VSP seismic interferometry and reverse-time Rongrong Lu*, Mark Willis, Xander Campman, Jonathan Ajo-Franklin, M. Nafi Toksz, ERL, MIT

    E-Print Network [OSTI]

    Ajo-Franklin, Jonathan

    Imaging dipping sediments at a salt dome flank - VSP seismic interferometry and reverse We present results of applying seismic interferometry to image dipping sediments abutting a salt dome overhanging salt dome. The sediment reflectors in the model dip up towards the salt dome flank. To process

  20. Cool Storage Performance

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    . This article covers three thermal storage topics. The first section catalogs various thermal storage systems and applications. Included are: load shifting and load leveling, chilled water storage systems, and ice storage systems using Refrigerant 22 or ethylene...

  1. Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations

    E-Print Network [OSTI]

    Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

    2002-01-01T23:59:59.000Z

    in the Yaggy natural gas storage field (a mined salt-cavernnatural gas to leak from a mined salt cavern used for storage.

  2. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    of Discharge Using Ground- Water Storage," Transactions1971. "Storage of Solar Energy in a Sandy-Gravel Ground,"

  3. Hydrate Control for Gas Storage Operations

    SciTech Connect (OSTI)

    Jeffrey Savidge

    2008-10-31T23:59:59.000Z

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  4. Spindletop salt-cavern points way for future natural-gas storage

    SciTech Connect (OSTI)

    Shotts, S.A.; Neal, J.R.; Solis, R.J. (Southwestern Gas Pipeline Inc., The Woodlands, TX (United States)); Oldham, C. (Centana Intrastate Pipeline Co., Beaumont, TX (United States))

    1994-09-12T23:59:59.000Z

    Spindletop underground natural-gas storage complex began operating in 1993, providing 1.7 bcf of working-gas capacity in its first cavern. The cavern and related facilities exemplify the importance and advantages of natural-gas storage in leached salt caverns. Development of a second cavern, along with continued leaching of the initial cavern, target 5 bcf of available working-gas capacity in both caverns by the end of this year. The facilities that currently make up the Spindletop complex include two salt dome gas-storage wells and a 24,000-hp compression and dehydration facility owned by Sabine Gas; two salt dome gas-storage wells and a 15,900-hp compression and dehydration facility owned by Centana; a 7,000-hp leaching plant; and three jointly owned brine-disposal wells. The paper discusses the development of the storage facility, design goals, leaching plant and wells, piping and compressors, dehydration and heaters, control systems, safety and monitoring, construction, first years operation, and customer base.

  5. Storage System and IBM System Storage

    E-Print Network [OSTI]

    IBM® XIV® Storage System and IBM System Storage® SAN Volume Controller deliver high performance and smart management for SAP® landscapes IBM SAP International Competence Center #12;"The combination of the XIV Storage System and SAN Volume Controller gives us a smarter way to manage our storage. If we need

  6. Confirmatory Survey Results for the Reactor Building Dome Upper Surfaces, Rancho Saco Nuclear Generating Station

    SciTech Connect (OSTI)

    Wade C. Adams

    2006-10-25T23:59:59.000Z

    Results from a confirmatory survey of the upper structural surfaces of the Reactor Building Dome at the Rancho Seco Nuclear Generating Station (RSNGS) performed by the Oak Ridge Institute for Science and Education for the NRC. Also includes results of interlaboratory comparison analyses on several archived soil samples that would be provided by RSNGS personnel. The confirmatory surveys were performed on June 7 and 8, 2006.

  7. Silo Storage Preconceptual Design

    SciTech Connect (OSTI)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01T23:59:59.000Z

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  8. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  9. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  10. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01T23:59:59.000Z

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  11. Energy Dense, Lighweight, Durable, Systems for Storage and Delivery of Hydrogen

    SciTech Connect (OSTI)

    Jacky Pruez; Samir Shoukry; Gergis William; Thomas Evans; Hermann Alcazar

    2008-12-31T23:59:59.000Z

    The work presented in this report summarizes the current state-of-the-art in on-board storage on compressed gaseous hydrogen as well as the development of analysis tools, methods, and theoretical data for devising high performance design configurations for hydrogen storage. The state-of-the-art in the area of compressed hydrogen storage reveals that the current configuration of the hydrogen storage tank is a seamless cylindrical part with two end domes. The tank is composed of an aluminum liner overwrapped with carbon fibers. Such a configuration was proved to sustain internal pressures up to 350 bars (5,000 psi). Finite-element stress analyses were performed on filament-wound hydrogen storage cylindrical tanks under the effect of internal pressure of 700 bars (10,000 psi). Tank deformations, stress fields, and intensities induced at the tank wall were examined. The results indicated that the aluminum liner can not sustain such a high pressure and initiate the tank failure. Thus, hydrogen tanks ought to be built entirely out of composite materials based on carbon fibers or other innovative composite materials. A spherical hydrogen storage tank was suggested within the scope of this project. A stress reduction was achieved by this change of the tank geometry, which allows for increasing the amount of the stored hydrogen and storage energy density. The finite element modeling of both cylindrical and spherical tank design configurations indicate that the formation of stress concentration zones in the vicinity of the valve inlet as well as the presence of high shear stresses in this area. Therefore, it is highly recommended to tailor the tank wall design to be thicker in this region and tapered to the required thickness in the rest of the tank shell. Innovative layout configurations of multiple tanks for enhanced conformability in limited space have been proposed and theoretically modeled using 3D finite element analysis. Optimum tailoring of fiber orientations and lay-ups are needed to relieve the high stress in regions of high stress concentrations between intersecting tanks/ tank sections. Filament winding process is the most suitable way for producing both cylindrical and spherical hydrogen storage tanks with high industrial quality. However, due to the unavailability of such equipment at West Virginia University and limited funding, the composite structures within this work were produced by hand layup and bag molding techniques. More advanced manufacturing processes can significantly increase the structural strength of the tank and enhances its performance and also further increase weight saving capabilities. The concept of using a carbon composite liner seems to be promising in overcoming the low strength of the aluminum liner at internal high pressures. This could be further enhanced by using MetPreg filament winding to produce such a liner. Innovative designs for the polar boss of the storage tanks and the valve connections are still needed to reduce the high stress formed in these zones to allow for the tank to accommodate higher internal pressures. The Continuum Damage Mechanics (CDM) approach was applied for fault-tolerant design and efficient maintenance of lightweight automotive structures made of composite materials. Potential effects of damage initiation and accumulation are formulated for various design configurations, with emphasis on lightweight fiber-reinforced composites. The CDM model considers damage associated with plasticity and fatigue.

  12. Let's Try That Again: Selling the Teapot Dome Oil Field | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of EnergyLearningMarch 2015Keep Talking: Women in

  13. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

  14. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration, Infrastructure Security, News,...

  15. Sandia National Laboratories: hydrogen storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    storage Energy Department Awards 7M to Advance Hydrogen Storage Systems On June 12, 2014, in CRF, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure...

  16. Photon Storage Cavities

    E-Print Network [OSTI]

    Kim, K.-J.

    2008-01-01T23:59:59.000Z

    Sessler, "Analysis of Photon Storage Cavities for a Free-configuration of coupled storage cavity and PEL cavity. TheFig. 2. A ring resonator storage cavity coupled through a

  17. Seasonal thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01T23:59:59.000Z

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  18. Storage and IO Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burst Buffer User Defined Images Archive Home R & D Storage and IO Technologies Storage and IO Technologies Burst Buffer NVRAM and Burst Buffer Use Cases In collaboration...

  19. NERSC HPSS Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Trends and Summaries Storage by Scientific Discipline Troubleshooting IO Resources for Scientific Applications at NERSC Optimizing IO performance on the Lustre file...

  20. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

  1. The Thermal Environment of the Fiber Glass Dome for the New Solar Telescope at Big Bear Solar Observatory

    E-Print Network [OSTI]

    A. P. Verdoni; C. Denker; J. R. Varsik; S. Shumko; J. Nenow; R. Coulter

    2007-08-04T23:59:59.000Z

    The New Solar Telescope (NST) is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount and an open optical support structure. To mitigate the temperature fluctuations along the exposed optical path, the effects of local/dome-related seeing have to be minimized. To accomplish this, NST will be housed in a 5/8-sphere fiberglass dome that is outfitted with 14 active vents evenly spaced around its perimeter. The 14 vents house louvers that open and close independently of one another to regulate and direct the passage of air through the dome. In January 2006, 16 thermal probes were installed throughout the dome and the temperature distribution was measured. The measurements confirmed the existence of a strong thermal gradient on the order of 5 degree Celsius inside the dome. In December 2006, a second set of temperature measurements were made using different louver configurations. In this study, we present the results of these measurements along with their integration into the thermal control system (ThCS) and the overall telescope control system (TCS).

  2. Hydrothermal alteration at the Panorama Formation, North Pole Dome, Pilbara Craton, Western Australia

    E-Print Network [OSTI]

    Brown, Adrian J; Walter, Malcolm R

    2014-01-01T23:59:59.000Z

    An airborne hyperspectral remote sensing dataset was obtained of the North Pole Dome region of the Pilbara Craton in October 2002. It has been analyzed for indications of hydrothermal minerals. Here we report on the identification and mapping of hydrothermal minerals in the 3.459 Ga Panorama Formation and surrounding strata. The spatial distribution of a pattern of subvertical pyrophyllite rich veins connected to a pyrophyllite rich palaeohorizontal layer is interpreted to represent the base of an acid-sulfate epithermal system that is unconformably overlain by the stromatolitic 3.42 Ga Strelley Pool Chert.

  3. Structural analysis of underground gunite storage tanks. Environmental Restoration Program

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This report documents the structural analysis of the 50-ft diameter underground gunite storage tanks constructed in 1943 and located in the Oak Ridge National Laboratory (ORNL) South Tank Farm, known as Facility 3507 in the 3500-3999 area. The six gunite tanks (W-5 through W-10) are spaced in a 2 {times} 3 matrix at 60 ft on centers with 6 ft of soil cover. Each tank (Figures 1, 2, and 3) has an inside diameter of 50 ft, a 12-ft vertical sidewall having a thickness of 6 in. (there is an additional 1.5-in. inner liner for much of the height), and a spherical domed roof (nominal thickness is 10 in.) rising another 6 ft, 3 in. at the center of the tank. The thickness of both the sidewall and the domed roof increases to 30 in. near their juncture. The tank floor is nominally 3-in. thick, except at the juncture with the wall where the thickness increases to 9 in. The tanks are constructed of gunite (a mixture of Portland cement, sand, and water in the form of a mortar) sprayed from the nozzle of a cement gun against a form or a solid surface. The floor and the dome are reinforced with one layer of welded wire mesh and reinforcing rods placed in the radial direction. The sidewall is reinforced with three layers of welded wire mesh, vertical {1/2}-in. rods, and 21 horizontal rebar hoops (attached to the vertical rods) post-tensioned to 35,000 psi stress. The haunch at the sidewall/roof junction is reinforced with 17 horizontal rebar hoops post-tensioned with 35,000 to 40,000 psi stress. The yield strength of the post-tensioning steel rods is specified to be 60,000 psi, and all other steel is 40,000 psi steel. The specified 28-day design strength of the gunite is 5,000 psi.

  4. Original article Effect of desiccation during cold storage on planting

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Effect of desiccation during cold storage on planting stock quality and field, 1.4°C, 87% RH). An additional treatment consisted in a cold storage for 4 weeks in sealed polythene exhibited lower survival and RGP (except in pine) than those lifted in January and March. Cold storage

  5. SWEDISH-AMERICAN COOPERATIVE PROGRAM ON RADIOACTIVE WASTE STORAGE IN MINED CAVERNS. PROGRAM SUMMARY

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2011-01-01T23:59:59.000Z

    field investigations on the general problem of underground waste storage.field work will be carried out aimed at the general nroblen of underground radioacti\\'e waste storage.

  6. An analysis of research procedures used during the restoration of the dome of the Texas State Capitol, Austin, 1989 to 1995

    E-Print Network [OSTI]

    Hocker, Emma Elizabeth

    1997-01-01T23:59:59.000Z

    on the exterior of the building. One of the least accessible areas proved to be the dome. This thesis examines the archival and physical research procedures undertaken to determine the condition of the dome, how this information was used, and what discrepancies...

  7. Dome takes a 20% interest in the Arctic pilot project to move LNG

    SciTech Connect (OSTI)

    Richards, B.; Bell, J.

    1980-05-05T23:59:59.000Z

    According to B. Richards of Dome Petroleum Ltd., Dome's interest will be shared with its partially owned subsidiary, Trans-Canada Pipe Lines Ltd. According to J. Bell of Petro-Canada, the operator for the Arctic project, negotiations are under way with Tenneco Inc. for gas sales of up to 225 million cu ft/day to begin in 1985-86. At first, two tankers would ship LNG to a delivery terminal at an as yet unselected site on Canada's east coast, but by 1992, nine ships capable of delivering 1.23 billion cu ft/day of LNG, could be in service. The U.S. and European potential LNG markets amounts to 3-4 trillion cu ft/yr and 3.5-4 trillion cu ft/yr, respectively. Petro-Canada also supports the Polar Gas Ltd. project to lay a gas pipeline from the Arctic Islands and Mackenzie Delta to the south; the projects are not considered to be in competition.

  8. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30T23:59:59.000Z

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  9. Conductive incubation and the origin of dome-and-keel structure in Archean granite-greenstone terrains

    E-Print Network [OSTI]

    Sandiford, Mike

    Conductive incubation and the origin of dome-and-keel structure in Archean granite August 2003; accepted 24 October 2003; published 27 January 2004. [1] The Archean East Pilbara Granite duration, following the burial of radiogenic granitic crust beneath the accumulated greenstone pile

  10. Distributed storage with communication costs

    E-Print Network [OSTI]

    Armstrong, Craig Kenneth

    2011-01-01T23:59:59.000Z

    5 Introduction to Coding for Distributed Storage The Repairflow graph for 1 repair with varying storage capac- itythe Capacity of Storage Nodes . . . 4.1 Characterizing

  11. Storage Space Request Aurora Facility

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Storage Space Request Aurora Facility (1855 Marika) Department and Division: _______________________________________________________ Storage Contact: ____________________________________________________________ Name Phone and fax Fiscal Footage required: ______________ Brief Description of storage items

  12. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage The challenge of creating new advanced batteries and energy storage technologies is one of Argonne's key initiatives. By creating a multidisciplinary...

  13. Sandia National Laboratories: Energy Storage Multimedia Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageEnergy Storage Multimedia Gallery Energy Storage Multimedia Gallery Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory...

  14. Dome-like variation of the superconducting gap anisotropy in Fe-based superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prozorov, Ruslan; Cho, Kyuil; Kim, Hyong June; Tanatar, Makariy

    2013-07-17T23:59:59.000Z

    Experiments performed on different iron-based superconductors suggest a variety of possible structures of the superconducting energy gap, both nodeless and nodal. To understand the pairing mechanisms, it is important to identify common features in the behavior of different materials. Measurements of the temperature - dependent London penetration depth provide important information on the structure of the superconducting gap. We show that despite significant differences between different iron - based superconductors, there is a universal trend: the gap is least anisotropic at the optimal doping and its anisotropy increases upon the departure towards underdoped and overdoped ends of the ''superconducting dome''.more »This trend is not related to the presence of the long-range magnetic order in the underdoped state.« less

  15. Dome-like variation of the superconducting gap anisotropy in Fe-based superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prozorov, Ruslan [Ames Lab., Ames, IA (United States); Cho, Kyuil [Ames Lab., Ames, IA (United States); Kim, Hyong June [Ames Lab., Ames, IA (United States); Tanatar, Makariy [Ames Lab., Ames, IA (United States)

    2013-07-17T23:59:59.000Z

    Experiments performed on different iron-based superconductors suggest a variety of possible structures of the superconducting energy gap, both nodeless and nodal. To understand the pairing mechanisms, it is important to identify common features in the behavior of different materials. Measurements of the temperature - dependent London penetration depth provide important information on the structure of the superconducting gap. We show that despite significant differences between different iron - based superconductors, there is a universal trend: the gap is least anisotropic at the optimal doping and its anisotropy increases upon the departure towards underdoped and overdoped ends of the ''superconducting dome''. This trend is not related to the presence of the long-range magnetic order in the underdoped state.

  16. Model NOx storage systems: Storage capacity and thermal aging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3NiAl(100). Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3...

  17. Storage Ring Operation Modes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Longitudinal bunch profile and Up: APS Storage Ring Parameters Previous: Source Parameter Table Storage Ring Operation Modes Standard Operating Mode, top-up Fill pattern: 102 mA in...

  18. Underground Storage Tank Regulations

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

  19. Cool Storage Performance 

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

  20. Safe Home Food Storage

    E-Print Network [OSTI]

    Van Laanen, Peggy

    2002-08-22T23:59:59.000Z

    Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

  1. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01T23:59:59.000Z

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  2. Natural gas storage in bedded salt formations

    SciTech Connect (OSTI)

    Macha, G.

    1996-09-01T23:59:59.000Z

    In 1990 Western Resources Inc. (WRI) identified the need for additional natural gas storage capacity for its intrastate natural gas system operated in the state of Kansas. Western Resources primary need was identified as peak day deliverability with annual storage balancing a secondary objective. Consequently, an underground bedded salt storage facility, Yaggy Storage Field, was developed and placed in operation in November 1993. The current working capacity of the new field is 2.1 BCF. Seventy individual caverns are in service on the 300 acre site. The caverns vary in size from 310,000 CF to 2,600,000 CF. Additional capacity can be added on the existing acreage by increasing the size of some of the smaller existing caverns by further solution mining and by development of an additional 30 potential well sites on the property.

  3. FOREST CENTRE STORAGE BUILDING

    E-Print Network [OSTI]

    deYoung, Brad

    FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI PURPOSE COURT STUDENT RESIDENCES GREEN HOUSE STUDENT RESIDENCES STUDENT RESIDENCES RECPLEX STORAGE BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE

  4. Underground gas storage in New York State: A historical perspective

    SciTech Connect (OSTI)

    Friedman, G.M.; Sarwar, G.; Bass, J.P. [Brooklyn College of the City Univ., Troy, NY (United States)] [and others

    1995-09-01T23:59:59.000Z

    New York State has a long history of underground gas storage activity that began with conversion of the Zoar gas field into a storage reservoir in 1916, the first in the United States. By 1961 another fourteen storage fields were developed and seven more were added between 1970 and 1991. All twenty-two operating storage reservoirs of New York were converted from depleted gas fields and are of low-deliverability, base-load type. Nineteen of these are in sandstone reservoirs of the Lower Silurian Medina Group and the Lower Devonian Oriskany Formation and three in limestone reservoirs are located in the gas producing areas of southwestern New York and are linked to the major interstate transmission lines. Recent developments in underground gas storage in New York involve mainly carbonate-reef and bedded salt-cavern storage facilities, one in Stuben County and the other in Cayuga County, are expected to begin operation by the 1996-1997 heating season.

  5. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Infrastructure Research and Innovation (CIRI), Concentrating Solar Power, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure Security, Materials...

  6. Groundwater and Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01T23:59:59.000Z

    T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..

  7. Storage : DAS / SAN / NAS Dploiement

    E-Print Network [OSTI]

    Collette. Sébastien

    CH8 Divers Agenda · Storage : DAS / SAN / NAS · Déploiement · VLAN ­ 802.1Q · Gestion d · Sécurisation de Windows · Sécurisation de UNIX · Qu'est-ce que... ­ Firewall, VPN, IDS/IPS, PKI Storage : DAS, NAS, SAN #12;Storage : DAS, NAS, SAN · Direct Attached Storage · Network Attached Storage · Storage

  8. Depositional environment of the "stringer sand" member, Lower Tuscaloosa Formation (Cretaceous), Mallalieu field, Mississippi

    E-Print Network [OSTI]

    Cook, Billy Charles

    1968-01-01T23:59:59.000Z

    resi- due deposits are found around a number of these domes, indicating that at one time there were accumulations of oil. The cause of the volatile material escaping and leaving these "fossil oil fields" has not been definitely established... showing the location of Mallalieu field and other nearby oil fields . 14 Structure ma. p of Mallalieu field Mallalieu field electric log correlation secrion. Legend for grain size and lithology logs. 40 49 Quartz grain size, electric log...

  9. Key word:Daylight Factor Window Wall Ratio Pendentive dome Lighting design Tropical region Architecture and Interior design

    E-Print Network [OSTI]

    Mehrdad Mazloomi

    Abstract: Daylighting design plays important role in architecture of religious buildings such as churches and mosques where pendentive dome construction is frequently used. In daylighting design, many designers face difficulty in estimating the interior share of light which is usually expressed by daylight factor due to complexity of interior form. This study aims to provide designers with a rather high precision rule of thumb for average daylight factor in pendentive dome building. Thus, it investigates the Daylight Factor [DF] distribution of such buildings with reference to the tropics. It takes the Window Wall Ratio [WWR] into account and seeks its influence on daylight factor. By a 12 X 12 points grid, it examines five different ratios including 0.1, 0.2, 0.3, 0.4 and 0.5 on DF of the floor beneath the dome. The results endorse the direct relation of WWR and DF. The least WWR equal to 0.1 yields an average DF of 0.55 % while the greatest WWR of 0.5 yields in average DF of 2.56%. The intermediate WWR in steps of 0.2, 0.3 and 0.4 correspond to 1.04, 1.56 and 2.07 percent respectively. As a relatively precise rule of thumb, any increment in consequent steps of WWR with 0.1 intervals results in 0.5 % increase in DF. This can be employed by architects and interior designers for lighting design of pendentive dome buildings in tropical region.

  10. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  11. Energy Storage Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers HEV & PHEV Technology Roadmaps R&D Timeline Overview 3 Develop electrochemical energy storage technologies which support the commercialization of hybrid and electric...

  12. Hydrogen Storage Related Links

    Broader source: Energy.gov [DOE]

    The following resources provide details about DOE-funded hydrogen storage activities, research plans and roadmaps, models and tools, and additional related links.

  13. Culex quinquefasciatus Storage Proteins

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    and hemolymph proteins of Cx. quinquefasciatus . A and B:of typical storage proteins in Cx. quinquefasciatus.Fourth-instar Cx. quinquefasciatus larvae and early pupae

  14. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  15. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

  16. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Design of the BPA Superconducting 30-MJ Energy Storagefor a Utility Scale Superconducting Magnetic Energy Storagefor a Lnrge Scale Superconducting Magnetic Energy Storage

  17. In situ radioglaciological measurements near Taylor Dome, Antarctica and implications for UHE neutrino astronomy

    E-Print Network [OSTI]

    D. Besson; J. Jenkins; S. Matsuno; J. Nam; M. Smith; S. W. Barwick; J. J. Beatty; W. R. Binns; C. Chen; P. Chen; J. M. Clem; A. Connolly; P. F. Dowkontt; M. A. DuVernois; R. C. Field; D. Goldstein; P. W. Gorham; A. Goodhue; C. Hast; C. L. Hebert; S. Hoover; M. H. Israel; J. Kowalski; J. G. Learned; K. M. Liewer; J. T. Link; E. Lusczek; B. Mercurio; C. Miki; P. Miocinovic; C. J. Naudet; J. Ng; R. Nichol; K. Palladino; K. Reil; A. Romero-Wolf; M. Rosen; L. Ruckman; D. Saltzberg; D. Seckel; G. S. Varner; D. Walz; F. Wu

    2008-10-07T23:59:59.000Z

    Radiowave detection of the Cherenkov radiation produced by neutrino-ice collisions requires an understanding of the radiofrequency (RF) response of cold polar ice. We herein report on a series of radioglaciological measurements performed approximately 10 km north of Taylor Dome Station, Antarctica from Dec. 6, 2006 - Dec. 16, 2006. Using RF signals broadcast from: a) an englacial discone, submerged to a depth of 100 meters and broadcasting to a surface dual polarization horn receiver, and b) a dual-polarization horn antenna on the surface transmitting signals which reflect off the underlying bed and back up to the surface receiver, we have made time-domain estimates of both the real (index-of-refraction) and imaginary (attenuation length) components of the complex ice dielectric constant. We have also measured the uniformity of ice response along two orthogonal axes in the horizontal plane. We observe a wavespeed asymmetry of order 0.1%, projected onto the vertical propagation axis, consistent with some previous measurements, but somewhat lower than others.

  18. In situ radioglaciological measurements near Taylor Dome, Antarctica and implications for UHE neutrino astronomy

    E-Print Network [OSTI]

    Besson, D; Matsuno, S; Nam, J; Smith, M

    2007-01-01T23:59:59.000Z

    Radiowave detection of the Cherenkov radiation produced by neutrino-ice collisions requires an understanding of the radiofrequency (RF) response of cold polar ice. We herein report on a series of radioglaciological measurements performed approximately 10 km north of Taylor Dome Station, Antarctica from Dec. 6, 2006 - Dec. 16, 2006. Using RF signals broadcast from: a) an englacial discone, submerged to a depth of 100 meters and broadcasting to a surface dual polarization horn receiver, and b) a dual-polarization horn antenna on the surface transmitting signals which reflect off the underlying bed and back up to the surface receiver, we have made time-domain estimates of both the real (index-of-refraction) and imaginary (attenuation length) components of the complex ice dielectric constant. We have also measured the uniformity of ice response along two orthogonal axes in the horizontal plane. We observe a wavespeed asymmetry of order 0.1%, projected onto the vertical propagation axis, consistent with some previ...

  19. Threat of a sinkhole: A reevaluation of Cavern 4, Bayou Choctaw salt dome, Louisiana

    SciTech Connect (OSTI)

    Neal, J.T.; Todd, J.L.; Linn, J.K. [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R. [Magorian (Thomas R.), Amherst, NY (United States)

    1993-09-01T23:59:59.000Z

    Cavern Lake at Bayou Choctaw salt dome resulted from the failure of Cavern 7 in 1954. Uncontrolled solutioning of this cavern through the thin caprock had set the stage for overburden to collapse into the cavern below. A similar situation developed with nearby Cavern 4, but with less dissolutioning of the caprock. Because pressure loss was already a problem and because another 800 ft diameter lake would have endangered surface operations, solutioning of Cavern 4 was stopped and the cavern abandoned in 1957 in order to protect the already-small site. In 1978 the Strategic Petroleum Reserve (SPR) acquired a number of caverns at Bayou Choctaw, including Cavern 4, and the possible repeat of the Cavern 7 failure and formation of another lake thus became an issue. The cavern dimensions were re-sonared in 1980 for comparison with 1963 and 1977 surveys. Annual surface leveling between 1982--1992 showed less subsidence occurring than the site average, and a cavern monitoring system, installed in 1984, has revealed no anomalous motion. Repeat sonar surveys in 1992 showed very little, if any, change occurred since 1980 although a small amount of uncertainty exists as a result of changing sonar techniques. We conclude that significant additional solutioning or erosion of the caprock has not occurred and that there is no increased threat to SPR operations.

  20. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect (OSTI)

    Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

    1999-11-01T23:59:59.000Z

    The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

  1. Optimal Storage Allocation for Serial

    E-Print Network [OSTI]

    Yechiali, Uri

    Optimal Storage Allocation for Serial Haim Mendelson, Joseph S. Pliskin, and Uri Yechiali Tel Aviv reside on a direct-access storage device in which storage space is limited. Records are added allocating storage space to the files. Key Words and Phrases: serial files, storage allocation

  2. Sandia National Laboratories: implement energy storage projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    implement energy storage projects Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration,...

  3. Sandia National Laboratories: Stationary Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageStationary Energy Storage Stationary Energy Storage The 1 MW Energy Storage Test Pad integrated with renewable energy generation at Sandia's Distributed Energy Technology...

  4. Sandia National Laboratories: Batteries & Energy Storage Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

  5. Sandia National Laboratories: evaluate energy storage opportunity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage opportunity Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration,...

  6. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    The Legalization of Ground Water Storage," Water Resourcesprocedure to above ground storage of heat in huge insulatedthis project is heat storage in ground-water regions storage

  7. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  8. Energy storage capacitors

    SciTech Connect (OSTI)

    Sarjeant, W.J.

    1984-01-01T23:59:59.000Z

    The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

  9. Optimal Commodity Trading with a Capacitated Storage Asset

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    reservoir · 4% Salt caverns Wild Goose Storage, Northern California (depleted Wild Goose natural gas field storage facilities as real options on natural gas prices In principle, the idea is simple: Buy low, inject CMU Tepper School 3 Physical Control Commercial Trading ... mainly in the context of natural gas (NG

  10. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

  11. Natural Gas Depleted Fields Storage Capacity

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through 1996)through6,805,490

  12. AB Levitator and Electricity Storage

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-03-01T23:59:59.000Z

    The author researched this new idea - support of flight by any aerial vehicles at significant altitude solely by the magnetic field of the planet. It is shown that current technology allows humans to create a light propulsion (AB engine) which does not depend on air, water or ground terrain. Simultaniosly, this revolutionary thruster is a device for the storage of electricity which is extracted and is replenished (during braking) from/into the storage with 100 percent efficiency. The relative weight ratio of this engine is 0.01 - 0.1 (from thrust). For some types of AB engine (toroidal form) the thrust easily may be changed in any direction without turning of engine. The author computed many projects using different versions of offered AB engine: small device for levitation-flight of a human (including flight from Earth to Outer Space), fly VTOL car (track), big VTOL aircrat, suspended low altitude stationary satellite, powerful Space Shuttle-like booster for travel to the Moon and Mars without spending energy (spended energy is replenished in braking when ship returns from other planet to its point of origin), using AB-devices in military, in sea-going ships (submarimes), in energy industry (for example. as small storage of electric energy) and so on. The vehicles equipped with AB propulsion can take flight for days and cover distances of tens thousands of kilometers at hypersonic or extra-atmosphere space speeds. The work contains tens of inventions and innovations which solves problems and breaks limitations which appear in solution of these very complex revolutionary ideas. Key word: AB levitator, levitation, non-rocket outer space flight, electric energy storage, AB propulsion, AB engine, Bolonkin.

  13. The Utility Battery Storage Systems Program Overview

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

  14. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Electric Car Challenge Sparks Students' STEM Interest On January 9, 2015, in Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy Aspiring...

  15. Improving energy storage devices | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage devices Improving energy storage devices Released: April 15, 2014 Lithium-sulfur batteries last longer with nanomaterial-packed cathode A new PNNL-developed...

  16. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture & Storage, Center for Infrastructure Research and Innovation (CIRI), Energy, Energy Storage, Facilities, Livermore Valley Open Campus (LVOC), Materials Science, News,...

  17. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Facilities, Grid Integration,...

  18. EIS-0001: Strategic Petroleum Reserve, Bryan Mound Salt Dome, Brazoria County, Texas

    Broader source: Energy.gov [DOE]

    The Strategic Petroleum Reserve prepared this SEIS to address the environmental impacts of construction and operation of two types of brine disposal systems and a new water supply system. This EIS supplements FES 76/77-6, Bryan Mound Storage Site.

  19. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13T23:59:59.000Z

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  20. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  1. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  2. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  3. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison

    2005-09-14T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  4. Groundwater Chemistry Changes as a Result of CO2 Injection at the ZERT Field Site in Bozeman, Montana

    E-Print Network [OSTI]

    Apps, J.A.

    2010-01-01T23:59:59.000Z

    field program to evaluate phenomena associated with the atmospheric leakage of CO 2 from underground storage

  5. Storage Exchange: A Global Trading Platform for Storage Services

    E-Print Network [OSTI]

    Melbourne, University of

    Storage Exchange: A Global Trading Platform for Storage Services Martin Placek and Rajkumar Buyya,raj}@csse.unimelb.edu.au Abstract. The Storage Exchange (SX) is a new platform allowing stor- age to be treated as a tradeable resource. Organisations with varying storage requirements can use the SX platform to trade and exchange

  6. Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage

    E-Print Network [OSTI]

    Minnesota, University of

    Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher Yongdae Kim are witnessing a revival of Storage Service Providers (SSP) in the form of new vendors as well as traditional players. While storage outsourcing is cost-effective, many companies are hesitating to outsource

  7. Hyperspectral imaging spectroscopy of a Mars analogue environment at the North Pole Dome, Pilbara Craton, Western Australia

    E-Print Network [OSTI]

    Brown, Adrian J; Cudahy, Thomas

    2014-01-01T23:59:59.000Z

    A visible and near infrared (VNIR) to shortwave infrared (SWIR) hyperspectral dataset of the Early Archaean North Pole Dome, Pilbara Craton, Western Australia, has been analysed for indications of hydrothermal alteration. Occurrence maps of hydrothermal alteration minerals were produced. It was found that using a spatial resolution on the ground of approximately 5 m and spectral coverage from 0.4 to 2.5 mm was sufficient to delineate several hydrothermal alteration zones and associated veins, including phyllic, serpentinitic and chloritic alteration. These results suggest this level of spectral and spatial resolution would be ideal for localising shallow epithermal activity, should such activity have existed, on the surface of Mars.

  8. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Encrgy Storage Plant" , EPRI Report EM-3457, April 1984. [4521st century. REFERENCES The EPRI Regional Systems preparedby J. J. Mulvaney, EPRI Report EPRI P-19S0SR, (1981). [2J O.

  9. Hydrogen storage compositions

    SciTech Connect (OSTI)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH4- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH4- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  10. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  11. APS Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Main Parameters APS Storage Ring Parameters M. Borland, G. Decker, L. Emery, W. Guo, K. Harkay, V. Sajaev, C.-Y. Yao Advanced Photon Source September 8, 2010 This document list the...

  12. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    He and Bowei Du implemented Oasys, and helped with my firstwas built on top of a C++ object persistence library, Oasys.Oasys uses plug-in storage modules that implement persistent

  13. Gas Storage Act (Illinois)

    Broader source: Energy.gov [DOE]

    Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

  14. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    World's First 290 MW Gas Turbine Air Storage Peaking Plant",hydro e lectric plants and gas turbines, are less effectedelectricity. For a gas turbine the conversion efficiency may

  15. Storage Tanks (Arkansas)

    Broader source: Energy.gov [DOE]

    The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters...

  16. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05T23:59:59.000Z

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  17. Energy Storage 101

    Broader source: Energy.gov (indexed) [DOE]

    the storage of heat or cold between opposing seasons in deep aquifers or bedrock. A wind-up clock stores potential energy, in this case mechanical, in the spring tension. ...

  18. Energy Storage & Delivery The goal of this project is to deliver measurement methods specific to

    E-Print Network [OSTI]

    Energy Storage & Delivery Materials The goal of this project is to deliver measurement methods specific to polymeric and organic materials needed in next generation energy storage and delivery. · The NIST team is works closely with leaders in the energy storage and delivery field, including General

  19. Large Scale Distribution of Stochastic Control Algorithms for Gas Storage Constantinos Makassikis, Stephane Vialle

    E-Print Network [OSTI]

    Vialle, Stéphane

    Large Scale Distribution of Stochastic Control Algorithms for Gas Storage Valuation Constantinos algorithm which is applied to gas storage valuation, and presents its experimental performances on two PC achieved in the field of gas storage valuation (see [2, 3] for example). As a result, many different price

  20. Light storage protocols in Tm:YAG

    E-Print Network [OSTI]

    T. Chanelière; R. Lauro; J. Ruggiero; J. -L. Le Gouët

    2009-11-17T23:59:59.000Z

    We present two quantum memory protocols for solids: A stopped light approach based on spectral hole burning and the storage in an atomic frequency comb. These procedures are well adapted to the rare-earth ion doped crystals. We carefully clarify the critical steps of both. On one side, we show that the slowing-down due to hole-burning is sufficient to produce a complete mapping of field into the atomic system. On the other side, we explain the storage and retrieval mechanism of the Atomic Frequency Comb protocol. This two important stages are implemented experimentally in Tm$^{3+}$- doped yttrium-aluminum-garnet crystal.

  1. Efficiency optimization for Atomic Frequency Comb storage

    E-Print Network [OSTI]

    M. Bonarota; J. Ruggiero; J. -L. Le Gouët; T. Chanelière

    2009-11-23T23:59:59.000Z

    We study the efficiency of the Atomic Frequency Comb storage protocol. We show that for a given optical depth, the preparation procedure can be optimize to significantly improve the retrieval. Our prediction is well supported by the experimental implementation of the protocol in a \\TMYAG crystal. We observe a net gain in efficiency from 10% to 17% by applying the optimized preparation procedure. In the perspective of high bandwidth storage, we investigate the protocol under different magnetic fields. We analyze the effect of the Zeeman and superhyperfine interaction.

  2. Storage management solutions Buyer's guide: purchasing criteria

    E-Print Network [OSTI]

    Storage management solutions Buyer's guide: purchasing criteria Manage your storage to meet service storage environment cohesively As new guidelines or regulations surface, storage administrators receive increasing numbers of requests for change (RFCs) in storage provisioning. Simultaneously, routine changes

  3. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program defines a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  4. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program deÞnes a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  5. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  6. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-09-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

  7. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-17T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

  8. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    CONSTRAIN CO2 INJECTION FEASIBILITY: TEAPOT DOME EOR PILOTEOR, and coupled process modeling will investigate the total system including preliminary estimates of CO2

  9. Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity

    E-Print Network [OSTI]

    McCollum, David L; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    research in the field of carbon capture and storage (CCS)heightened interest in carbon capture and storage (CCS) as areservoirs. To be sure, carbon capture and sequestration is

  10. Aquifer thermal energy storage: a survey

    SciTech Connect (OSTI)

    Tsang, C.F.; Hopkins, D.; Hellstroem, G.

    1980-01-01T23:59:59.000Z

    The disparity between energy production and demand in many power plants has led to increased research on the long-term, large-scale storage of thermal energy in aquifers. Field experiments have been conducted in Switzerland, France, the United States, Japan, and the People's Republic of China to study various technical aspects of aquifer storage of both hot and cold water. Furthermore, feasibility studies now in progress include technical, economic, and environmental analyses, regional exploration to locate favorable storage sites, and evaluation and design of pilot plants. Several theoretical and modeling studies are also under way. Among the topics being studied using numerical models are fluid and heat flow, dispersion, land subsidence or uplift, the efficiency of different injection/withdrawal schemes, buoyancy tilting, numerical dispersion, the use of compensation wells to counter regional flow, steam injection, and storage in narrow glacial deposits of high permeability. Experiments to date illustrate the need for further research and development to ensure successful implementation of an aquifer storage system. Some of the areas identified for further research include shape and location of the hydrodynamic and thermal fronts, choice of appropriate aquifers, thermal dispersion, possibility of land subsidence or uplift, thermal pollution, water chemistry, wellbore plugging and heat exchange efficiency, and control of corrosion.

  11. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect (OSTI)

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01T23:59:59.000Z

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  12. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-10-18T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing negotiations of the four sub-awards working toward signed contracts with the various organizations involved. Second, an Executive Council meeting was held at Penn State September 9, 2004. And third, the GSTC participated in the SPE Eastern Regional Meeting in Charleston, West Virginia, on September 16th and 17th. We hosted a display booth with the Stripper Well Consortium.

  13. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

  14. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03T23:59:59.000Z

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  15. CHEMICAL STORAGE: MYTHS VERSUS REALITY

    SciTech Connect (OSTI)

    Simmons, F

    2007-03-19T23:59:59.000Z

    A large number of resources explaining proper chemical storage are available. These resources include books, databases/tables, and articles that explain various aspects of chemical storage including compatible chemical storage, signage, and regulatory requirements. Another source is the chemical manufacturer or distributor who provides storage information in the form of icons or color coding schemes on container labels. Despite the availability of these resources, chemical accidents stemming from improper storage, according to recent reports (1) (2), make up almost 25% of all chemical accidents. This relatively high percentage of chemical storage accidents suggests that these publications and color coding schemes although helpful, still provide incomplete information that may not completely mitigate storage risks. This manuscript will explore some ways published storage information may be incomplete, examine the associated risks, and suggest methods to help further eliminate chemical storage risks.

  16. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354 217,814 218,494StorageStorage

  17. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  18. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration, Infrastructure Security, News, News &...

  19. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  20. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge

  1. Sandia National Laboratories: DOE International Energy Storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Energy Storage Database Has Logged 420 Energy Storage Projects Worldwide with 123 GW of Installed Capacity DOE International Energy Storage Database Has Logged 420...

  2. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    tiles for thermal energy storage,” working paper, Colorado1991). Wallboard with latent heat storage for passive solarR. (2000). Thermal energy storage for space cooling, Pacific

  3. Sandia National Laboratories: Electricity Storage Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

  4. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    for Electrochemical Energy Storage Nanostructured ElectrodesCells for Energy Storage and Generation . . . . . . . . . .batteries and their energy storage efficiency. vii Contents

  5. NERSC Frontiers in Advanced Storage Technology Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to...

  6. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withAnnual Thermal Energy Storage Contractors' InformationLarge-Scale Thermal Energy Storage for Cogeneration and

  7. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    of new energy generation and storage technologies arenew energy generation and storage technologies is importantBased Energy Storage and Generation Technologies The world

  8. Water Heaters (Storage Oil) | Department of Energy

    Energy Savers [EERE]

    Oil) Water Heaters (Storage Oil) Water Heater, Storage Oil - v1.0.xlsx More Documents & Publications Water Heaters (Tankless Electric) Water Heaters (Storage Electric)...

  9. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  10. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30T23:59:59.000Z

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  11. Soluble and insoluble lithium dust in the EPICA DomeC ice core--Implications for changes of the East Antarctic dust

    E-Print Network [OSTI]

    Fischer, Hubertus

    Soluble and insoluble lithium dust in the EPICA DomeC ice core--Implications for changes Editor: G.D. Price Available online 16 March 2007 Abstract Continental dust impurities in Antarctic ice with special emphasis on the lithium (Li) content of dust. We obtained two complementary Li-records using a new

  12. Transport Processes in a Salt-Dome Environment We consider coupled subsurface flow and transport within a vertical cross section of a

    E-Print Network [OSTI]

    Kornhuber, Ralf

    Transport Processes in a Salt-Dome Environment ­ B ­ We consider coupled subsurface flow). (1) How is the conductive temperature distribution affected by the thermal conductivity of the salt in the simulation? In particular, compare the flow direction along the salt flanks. #12;Model domain No vertical

  13. Gas storage plays critical role in deregulated U. S. marketplace

    SciTech Connect (OSTI)

    True, W.R.

    1994-09-12T23:59:59.000Z

    Oil Gas Journal for the first time has compiled a county-by-county list of underground natural-gas storage operating in the US on Sept. 1. Nearly 3.1 tcf of working gas in storage is currently operated. As will be discussed, several projects to add capacity are under way or planned before 2000. To collect the data, OGJ contacted every company reported by the American Gas Association, U.S. Federal Energy Regulatory Commission, or the US Department of Energy to have operated storage in the past 2 years. The results were combined with other published information to form Table 1 which provides base, working, and total gas capacities for storage fields, types of reservoirs used, and daily design injection and withdrawal rates. The paper also discusses deregulation, what's ahead, and salt cavern storage.

  14. NGLW RCRA Storage Study

    SciTech Connect (OSTI)

    R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

    2000-06-01T23:59:59.000Z

    The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

  15. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01T23:59:59.000Z

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  16. Hydrogen Storage CODES & STANDARDS

    E-Print Network [OSTI]

    automotive start-up. · Air/Thermal/Water Management ­ improved air systems, high temperature membranes, heat to pump Hydrogen Fuel/ Storage/ Infrastructure $45/kW (2010) $30kW (2015) 325 W/kg 220 W/L 60% (hydrogen system Component Air management, sensors, MEA's, membranes, Bipolar Plates, fuel processor reactor zones

  17. Horizontal natural gas storage caverns and methods for producing same

    DOE Patents [OSTI]

    Russo, Anthony (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    The invention provides caverns and methods for producing caverns in bedded salt deposits for the storage of materials that are not solvents for salt. The contemplated salt deposits are of the bedded, non-domed variety, more particularly salt found in layered formations that are sufficiently thick to enable the production of commercially usefully sized caverns completely encompassed by walls of salt of the formation. In a preferred method, a first bore hole is drilled into the salt formation and a cavity for receiving insolubles is leached from the salt formation. Thereafter, at a predetermined distance away from the first bore hole, a second bore hole is drilled towards the salt formation. As this drill approaches the salt, the drill assumes a slant approach and enters the salt and drills through it in a horizontal direction until it intersects the cavity for receiving insolubles. This produces a substantially horizontal conduit from which solvent is controlledly supplied to the surrounding salt formation, leaching the salt and producing a concentrated brine which is removed through the first bore hole. Insolubles are collected in the cavity for receiving insolubles. By controlledly supplying solvent, a horizontal cavern is produced with two bore holes extending therefrom.

  18. Storage Ring | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electron Storage Ring The 7-GeV electrons are injected into the 1104-m-circumference storage ring, a circle of more than 1,000 electromagnets and associated equipment, located...

  19. Chit-based Remote Storage

    E-Print Network [OSTI]

    Paluska, Justin Mazzola

    We propose a model for reliable remote storage founded on contract law. Consumers submit their bits to storage providers in exchange for a chit. A chit is a cryptographically secure, verifiable contract between a consumer ...

  20. Gaseous and Liquid Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

  1. Self-Induced Harmonic Generation in a Storage-Ring Free-Electron Laser

    SciTech Connect (OSTI)

    De Ninno, G. [University of Nova Gorica (Slovenia); Sincrotrone Trieste, Basovizza (Trieste) (Italy); Allaria, E.; Danailov, M. B.; Diviacco, B.; Ferianis, M.; Karantzoulis, E.; Spezzani, C.; Trovo, M. [Sincrotrone Trieste, Basovizza (Trieste) (Italy); Coreno, M. [TASC-INFM National Laboratory, Basovizza (Trieste) (Italy); Chowdhury, S. [Xerox Research Center, Webster, New York (United States); Curbis, F. [Sincrotrone Trieste, Basovizza (Trieste) (Italy); University of Trieste (Italy); Longhi, E. C. [Diamond Light Source, Oxfordshire (United Kingdom); Pinayev, I. V.; Litvinenko, V. N. [Brookhaven National Laboratory, Upton, New York (United States)

    2008-03-14T23:59:59.000Z

    Coherent radiation from a relativistic electron beam is a valuable way to overcome the present limitations of conventional lasers and synchrotron radiation light sources. The typical scheme has electrons, directly from a linac, in a single-pass interaction with a laser pulse in the presence of a static undulator magnetic field. We demonstrate that a storage-ring free-electron laser can also achieve harmonic generation (down to 36.5 nm), presenting both experimental and theoretical results, and offer a reliable interpretation of the peculiar underlying physical processes involved.

  2. Webinar: Hydrogen Storage Materials Requirements

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

  3. The Power of Energy Storage

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

  4. HIERARCHICAL STORAGE SYSTEMS FOR INTERACTIVE

    E-Print Network [OSTI]

    Tobagi, Fouad

    HIERARCHICAL STORAGE SYSTEMS FOR INTERACTIVE VIDEO­ON­DEMAND Shueng­Han Gary Chan and Fouad A; Hierarchical Storage Systems for Interactive Video­On­Demand Shueng­Han Gary Chan and Fouad A. Tobagi Technical­9040 pubs@shasta.stanford.edu Abstract On­demand video servers based on hierarchical storage systems

  5. GETTING CARBON CAPTURE AND STORAGE

    E-Print Network [OSTI]

    Haszeldine, Stuart

    GETTING CARBON CAPTURE AND STORAGE TECHNOLOGIES TO MARKET BREAKING THE DEADLOCK Report of a Science: Carbon Capture and Storage © OECD/IEA 2009, fig. 1, p. 6 Figures 2 and 3 reprinted with permission from `UK Carbon storage and capture, where is it?' by Stuart Haszeldine, Professor of Carbon Capture

  6. Normal matter storage of antiprotons

    SciTech Connect (OSTI)

    Campbell, L.J.

    1987-01-01T23:59:59.000Z

    Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

  7. Above Ground Storage Tank (AST) Inspection Form

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Above Ground Storage Tank (AST) Inspection Form Petroleum Bulk Storage Form Facility Name.ehs.cornell.edu/env/bulk-material-storage/petroleum-bulk-storage/Documents/AST_Inspection_Form.pdf #12;

  8. Panel 4, Hydrogen Energy Storage Policy Considerations

    Broader source: Energy.gov (indexed) [DOE]

    Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern California Gas Company May 15, 2014 0 Methane is a Great Storage Medium 1 SoCalGas' storage...

  9. Central Storage for Unsealed Radioactive Materials

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Central Storage for Unsealed Radioactive Materials Radiation Safety Form PERMIT HOLDER NAME:______________________________ PHONE #: ____________________________ ADDRESS/DEPT.: _______________________________ Storage Location: Refrigerator Freezer Dry Storage List each item being transferred to storage separately: EH&S LAB WIPE SURVEY

  10. Renewable generation and storage project industry and laboratory recommendations

    SciTech Connect (OSTI)

    Clark, N.H.; Butler, P.C.; Cameron, C.P.

    1998-03-01T23:59:59.000Z

    The US Department of Energy Office of Utility Technologies is planning a series of related projects that will seek to improve the integration of renewable energy generation with energy storage in modular systems. The Energy Storage Systems Program and the Photovoltaics Program at Sandia National Laboratories conducted meetings to solicit industry guidance and to create a set of recommendations for the proposed projects. Five possible projects were identified and a three pronged approach was recommended. The recommended approach includes preparing a storage technology handbook, analyzing data from currently fielded systems, and defining future user needs and application requirements.

  11. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reserve University On January 28, 2014, in Computational Modeling & Simulation, Energy, Energy Storage, Energy Storage Systems, Infrastructure Security, Materials Science,...

  12. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Center for Infrastructure Research and Innovation (CIRI), Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Facilities, Infrastructure Security, Materials...

  13. Project Profile: Thermochemical Storage with Anhydrous Ammonia...

    Office of Environmental Management (EM)

    Storage with Anhydrous Ammonia: Optimizing the Synthesis Reactor for Direct Production of Supercritical Steam Project Profile: Thermochemical Storage with Anhydrous...

  14. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional...

  15. Combinatorial Approaches for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

  16. Quantum storage of high-dimensional entanglement

    E-Print Network [OSTI]

    Dong-Sheng Ding; Wei Zhang; Shuai Shi; Zhi-Yuan Zhou; Yan Li; Bao-Sen Shi; Guang-Can Guo

    2014-12-19T23:59:59.000Z

    Quantum entanglement is a fundamental aspect in quantum mechanics, plays a vital role in field of quantum information science. Entangled states in high-dimensional space show many advantages compared with the states entangled in two-dimensional space: enabling communication with higher channel capacity, affording the more secure quantum key distribution, etc. Quantum memory for the high-dimensional entanglement is essential for realizing long-distance high capacity quantum communication, it can reduce the sensitivity to memory coherence time, lead to significant improvements in storage capacity. However, to date, there is a vacancy in storing high-dimensional entanglement although many people are attracted in preparing such a genuine high-dimensional entangled state. Here, we experimentally realize the storage of a high-dimensional photonic entangled state encoded in orbital angular momentum space, establishing the high-dimensional entanglement between two 1-meter separated atomic ensembles. We reconstruct the density matrix of a three-dimensional entanglement, obtain the storage fidelity of 83.9%+/-2.9%. Most importantly, we experimentally perform the storage of an 8-dimensional entanglement, the retrieved state shows the 7-dimensional entanglement by using entanglement witness. This experiment makes a significant step for achieving the high-dimensional quantum network.

  17. Nanoscale data storage

    E-Print Network [OSTI]

    J. C. Li

    2007-01-29T23:59:59.000Z

    The object of this article is to review the development of ultrahigh-density, nanoscale data storage, i.e., nanostorage. As a fundamentally new type of storage system, the recording mechanisms of nanostorage may be completely different to those of the traditional devices. Currently, two types of molecules are being studied for potential application in nanostorage. One is molecular electronic elements including molecular wires, rectifiers, switches, and transistors. The other approach employs nanostructured materials such as nanotubes, nanowires, and nanoparticles. The challenges for nanostorage are not only the materials, ultrahigh data-densities, fabrication-costs, device operating temperatures and large-scale integration, but also the development of the physical principles and models. There are already some breakthroughs obtained, but it is still unclear what kind of nanostorage systems can ultimately replace the current silicon based transistors. A promising candidate may be a molecular-nanostructure hybrid device with sub-5 nm dimensions.

  18. HYDROGEN USAGE AND STORAGE

    E-Print Network [OSTI]

    It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a “technical note”. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogen’s production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

  19. Vacuum gaps with small tunnel currents at large electric field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacuum gaps with small tunnel currents at large electric field and its potential applications for energy storage, charge storage and power supplies. Friday, May 27, 2011 - 4:00pm...

  20. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01T23:59:59.000Z

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  1. Two Closely Related Species of Desert Carpenter Ant Differ in Individual-Level Allocation to Fat Storage

    E-Print Network [OSTI]

    Hahn, Dan

    to Fat Storage Daniel A. Hahn* Department of Entomology and Nematology, University of Florida, P.O. Box to fat storage. Newly mated queens were collected in the field, and colonies were reared under common conditions in the laboratory for 2 yr before sampling. I show that the two species differ in fat storage

  2. Time of growth of Opelika Dome, Henderson and Van Zandt counties, Texas

    E-Print Network [OSTI]

    Peterson, Thomas Lowe

    1958-01-01T23:59:59.000Z

    have crevented the entrapment of oil and gas in beds of the Gul" series within the limits of the Opelika field. e -li lo:: . 'ii , rtit". F. r r ' J -!:e l' r i!. 1 e! l, el 'i 1 ~ . . C I . f . e' ' '. I'. re J, ' I Ie !. Ce!' li... &ril Company un. '. t? e "eaboard Qil Company, encoura! ec by ths results c'f seismic studies, uc:, . irerr leases over the Gpelika nome. 'I'heir field discovery well~ rlo, 1 ci lreuth and Suggettr I'ound oil in the ur p&r part of t!. s Glen Bose...

  3. Water storage key factor in coalbed methane production

    SciTech Connect (OSTI)

    Luckianow, B.J. (Taurus Exploration Inc., Birmingham, AL (US)); Hall, W.L. (Dames and Moore, Atlanta, GA (US))

    1991-03-11T23:59:59.000Z

    Storage ponds provide a cost-effective means to temporarily retain water produced with coalbed methane and permit gas production during times when stream flow rates drop. Normally, water produced with the gas is run into nearby streams, with the dilution rate closely monitored and controlled by environmental agencies. During low stream flow in the Black Warrior basin, Ala., large volumes of produced water must be stored to prevent shut-in of coalbed methane fields. The authors discuss how they constructed such production water facilities for the Cedar Cove field to eliminate periodic field shut-ins as a result of excess water production. The effectiveness of such a storage approach is governed by receiving stream flow variability, production water flow characteristics, and the economics of storage pond construction.

  4. Neutrino signals in electron-capture storage-ring experiments

    E-Print Network [OSTI]

    Avraham Gal

    2015-05-26T23:59:59.000Z

    Neutrino signals in electron-capture storage-ring experiments at GSI are reconsidered, with special emphasis placed on the quasi-circular motion of the daughter ions in two-body decays. Whereas parent-ion decay rates cannot exhibit modulation with the several-second period reported in these experiments, the time evolution of the detected daughter ions is shown to produce oscillations that under certain conditions may provide resolution of the `GSI Oscillations' puzzle. New dedicated storage-ring or trap experiments could look up for these oscillations.

  5. Re-evaluation of monitored retrievable storage concepts

    SciTech Connect (OSTI)

    Fletcher, J.F.; Smith, R.I.

    1989-04-01T23:59:59.000Z

    In 1983, as a prelude to the monitored retrievable storage (MRS) facility conceptual design, the Pacific Northwest Laboratory (PNL) conducted an evaluation for the US Department of Energy (DOE) that examined alternative concepts for storing spent LWR fuel and high- level wastes from fuel reprocessing. The evaluation was made considering nine concepts for dry away-from-reactor storage. The nine concepts evaluated were: concrete storage cask, tunnel drywell, concrete cask-in-trench, open-cycle vault, metal casks (transportable and stationary), closed-cycle vault, field drywell, and tunnel-rack vault. The purpose and scope of the re-evaluation did not require a repetition of the expert-based examinations used earlier. Instead, it was based on more detailed technical review by a small group, focusing on changes that had occurred since the initial evaluation was made. Two additional storage concepts--the water pool and the horizontal modular storage vault (NUHOMS system)--were ranked along with the original nine. The original nine concepts and the added two conceptual designs were modified as appropriate for a scenario with storage capacity for 15,000 MTU of spent fuel. Costs, area requirements, and technical and historical data pertaining to MRS storage were updated for each concept.

  6. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R.J.

    1981-08-01T23:59:59.000Z

    During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

  7. Entanglement Storage Units

    E-Print Network [OSTI]

    T. Caneva; T. Calarco; S. Montangero

    2012-09-27T23:59:59.000Z

    We introduce a protocol based on optimal control to drive many body quantum systems into long-lived entangled states, protected from decoherence by big energy gaps, without requiring any apriori knowledge of the system. With this approach it is possible to implement scalable entanglement-storage units. We test the protocol in the Lipkin-Meshkov-Glick model, a prototype many-body quantum system that describes different experimental setups, and in the ordered Ising chain, a model representing a possible implementation of a quantum bus.

  8. Interim storage study report

    SciTech Connect (OSTI)

    Rawlins, J.K.

    1998-02-01T23:59:59.000Z

    High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

  9. Multiported storage devices

    E-Print Network [OSTI]

    Grande, Marcus Bryan

    2000-01-01T23:59:59.000Z

    of niultiported storage device 3 Linux file I/O subsystem 4 Windows NT layered I/O driver model 10 15 5 Location of multiported module in I/O stack 17 6 The bulfer cache . . . 20 7 Queuing of I/O requests 8 Processing of I/O requests by smart blkfiltcr 9... Registering of filter applet via Linux stacked module mechanism . 21 22 . . 26 10 Table of registered filter applets (functions) . . 27 11 Overhead due to presence of smart blkfilter alone . 12 Overhead of smart blkfilter using rot13 filter port 31 33...

  10. Storage | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews & Solar Solar How much doStorage

  11. Warehouse and Storage Buildings

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810 0 0349,980Warehouse and Storage

  12. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochastic Weekly DownloadRegionalStorage Ring

  13. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council ExecutivegeochemStorage

  14. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354 217,814 218,494Storage Ring

  15. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354 217,814 218,494Storage

  16. NERSC HPSS Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVA Portal: Submit2014ftp ftp Storage Trends

  17. Magnetic-field-dosimetry system

    DOE Patents [OSTI]

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21T23:59:59.000Z

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  18. Toroidal constant-tension superconducting magnetic energy storage units

    DOE Patents [OSTI]

    Herring, J.S.

    1992-11-03T23:59:59.000Z

    A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant channel in the magnet. 6 figs.

  19. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27T23:59:59.000Z

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  20. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12T23:59:59.000Z

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  1. Underground caverns for hydrocarbon storage

    SciTech Connect (OSTI)

    Barron, T.F. [Exeter Energy Services, Houston, TX (United States)

    1998-12-31T23:59:59.000Z

    Large, international gas processing projects and growing LPG imports in developing countries are driving the need to store large quantities of hydrocarbon liquids. Even though underground storage is common in the US, many people outside the domestic industry are not familiar with the technology and the benefits underground storage can offer. The latter include lower construction and operating costs than surface storage, added safety, security and greater environmental acceptance.

  2. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  3. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulations Reveal Ion Dynamics in Polymer Electrolyte On November 13, 2012, in Energy Storage, News, News & Events Improving battery electrolytes is highly desirable, particularly...

  4. Holographic Storage of Biphoton Entanglement

    E-Print Network [OSTI]

    Han-Ning Dai; Han Zhang; Sheng-Jun Yang; Tian-Ming Zhao; Jun Rui; You-Jin Deng; Li Li; Nai-Le Liu; Shuai Chen; Xiao-Hui Bao; Xian-Min Jin; Bo Zhao; Jian-Wei Pan

    2012-04-06T23:59:59.000Z

    Coherent and reversible storage of multi-photon entanglement with a multimode quantum memory is essential for scalable all-optical quantum information processing. Although single photon has been successfully stored in different quantum systems, storage of multi-photon entanglement remains challenging because of the critical requirement for coherent control of photonic entanglement source, multimode quantum memory, and quantum interface between them. Here we demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory. The retrieved biphoton entanglement violates Bell's inequality for 1 microsecond storage time and a memory-process fidelity of 98% is demonstrated by quantum state tomography.

  5. Sandia National Laboratories: Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Joint SandiaUniversity of...

  6. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Recent Sandia Secure,...

  7. Underground Storage Tanks (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install,...

  8. The Petascale Data Storage Institute

    SciTech Connect (OSTI)

    Gibson, Garth [Carnegie Mellon University; Long, Darrell [The Regents of the University of California, Santa Cruz; Honeyman, Peter [University of Michigan at Ann Arbor; Grider, Gary [Los Alamos National Laboratory; Kramer, William [National Energy Research Scientific Computing Center; Shalf, John [National Energy Research Scientific Computing Center; Roth, Philip [Oak Ridge National Laboratory; Felix, Evan [Pacific Northwest National Laboratory; Ward, Lee [Sandia National Laboratory

    2013-07-01T23:59:59.000Z

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability. The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools. The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz.

  9. CO2 Geologic Storage (Kentucky)

    Broader source: Energy.gov [DOE]

    Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon...

  10. Underground Storage Tanks (New Jersey)

    Broader source: Energy.gov [DOE]

    This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and...

  11. Underground Storage Tank Program (Vermont)

    Broader source: Energy.gov [DOE]

    These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

  12. Flywheel energy storage workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Carmack, J. [comps.

    1995-12-31T23:59:59.000Z

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  13. A Comparison of Storage Ring Modeling with COSY INFINITY, ZGOUBI, and MAD8

    E-Print Network [OSTI]

    Hipple, Robert

    2015-01-01T23:59:59.000Z

    Currently there is significant interest in the use of storage rings to search for an electric dipole moment (EDM) in hadrons. This requires utilizing the storage ring as a precision measuring device. Part of understanding the detailed behavior of storage rings comes from careful analysis of fringe fields, but the various tracking codes available differ in their ability to model such behavior. It is the purpose of this paper to investigate these differences.

  14. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09T23:59:59.000Z

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  15. Chemical Hydrogen Storage Center Center of Excellence

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Chemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY Barriers Addressed #12;3 Chemical Hydrogen Storage Center Chemical Hydrogen Storage Center National

  16. Bike Storage on McMaster University BIKE STORAGE ON CAMPUS

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Bike Storage on Campus McMaster University BIKE STORAGE ON CAMPUS Secure Bike Storage on Campus Located on the west side of Chester New Hall, the Secure Bike Storage facility features video surveillance

  17. Sandia National Laboratories: Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Test Pad (ESTP) Evaluating Powerful Batteries for Modular Electric Grid Energy Storage On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems,...

  18. Sandia National Laboratories: DOE Energy Storage Systems program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Energy Storage Systems program 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

  19. Sandia National Laboratories: NM Renewable Energy Storage Task...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Storage Task Force New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage Systems, Infrastructure Security,...

  20. Sandia National Laboratories: incentivize renewable-energy storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    incentivize renewable-energy storage infrastructure development New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage...

  1. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    trates a design load profile for a partial storage system.load management / full storage / ice storage / partialfor partial storage) because part of the cooling load is

  2. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04T23:59:59.000Z

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  3. COLD STORAGE DESIGN REFRIGERATION EQUIPMENT

    E-Print Network [OSTI]

    COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I Fishery Leaflet 427 Washington 25, D. C. June 1956 REFRIGERATION OF FISH - PART em; COlD STORAGE DESIGN AND REFRIGERATION EQUIPMENT By Charles Butler (Section 1), Joseph W. Slavin (Sections 1, 2, and 3), Max Patashnik

  4. Catalytically Enhanced Hydrogen Storage Systems

    E-Print Network [OSTI]

    with the Freedom CAR hydrogen storage system targets (Key parameters: cost, specific energy, and energy density). #12;Objectives I. Determination of the chemical nature of the titanium species responsible that are compatible with the Freedom CAR hydrogen storage system targets. Key parameters: cost, specific energy

  5. MATERIAL HANDLING, STORAGE, AND DISPOSAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Materials shall be stored in a manner that allows easy identification and access to labels, identification entering storage areas. All persons shall be in a safe position while materials are being loadedEM 385-1-1 XX Jun 13 14-1 SECTION 14 MATERIAL HANDLING, STORAGE, AND DISPOSAL 14.A MATERIAL

  6. Spall formation in solution mined storage caverns based on a creep and fracture analysis

    SciTech Connect (OSTI)

    MUNSON,DARRELL E.

    2000-02-02T23:59:59.000Z

    Because of limited direct observation, understanding of the interior conditions of the massive storage caverns constructed in Gulf Coast salt domes is realizable only through predictions of salt response. Determination of the potential for formation of salt spans, leading to eventual salt falls, is based on salt creep and fracture using the Multimechanism-Deformation Coupled Fracture (MCDF) model. This is a continuum model for creep, coupled to continuum damage evolution. The model has been successfully tested against underground results of damage around several test rooms at the Waste Isolation Pilot Plant (WIPP). Model simulations, here, evaluate observations made in the Strategic Petroleum Reserve (SPR) storage caverns, namely, the accumulation of material on cavern floors and evidence of salt falls. A simulation of a smooth cavern wall indicates damage is maximum at the surface but diminishes monotonically into the salt, which suggests the source of salt accumulation is surface sluffing. If a protuberance occurs on the wall, fracture damage can form beneath the protuberance, which will eventually cause fracture, and lead to a salt fall.

  7. Storage and Retrieval of Thermal Light in Warm Atomic Vapor

    E-Print Network [OSTI]

    Young-Wook Cho; Yoon-Ho Kim

    2010-07-12T23:59:59.000Z

    We report slowed propagation and storage and retrieval of thermal light in warm rubidium vapor using the effect of electromagnetically-induced transparency (EIT). We first demonstrate slowed-propagation of the probe thermal light beam through an EIT medium by measuring the second-order correlation function of the light field using the Hanbury-Brown$-$Twiss interferometer. We also report an experimental study on the effect of the EIT slow-light medium on the temporal coherence of thermal light. Finally, we demonstrate the storage and retrieval of thermal light beam in the EIT medium. The direct measurement of the photon number statistics of the retrieved light field shows that the photon number statistics is preserved during the storage and retrieval process.

  8. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10T23:59:59.000Z

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  9. Superconducting energy storage

    SciTech Connect (OSTI)

    Giese, R.F.

    1993-10-01T23:59:59.000Z

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  10. March 29, 2008 OS: Mass Storage Structure 1 Mass-Storage Structure

    E-Print Network [OSTI]

    Adam, Salah

    March 29, 2008 OS: Mass Storage Structure 1 Mass-Storage Structure Chapter 12 #12;March 29, 2008 OS: Mass Storage Structure 2 Objectives Describe the physical structure of secondary and tertiary storage of mass-storage devices Discuss operating-system services provided for mass storage, including RAID

  11. Cooperative Repair with Minimum-Storage Regenerating Codes for Distributed Storage

    E-Print Network [OSTI]

    Li, Baochun

    Cooperative Repair with Minimum-Storage Regenerating Codes for Distributed Storage Jun Li, Baochun--Distributed storage systems store redundant data to tolerate failures of storage nodes and lost data should be repaired when storage nodes fail. A class of MDS codes, called minimum- storage regenerating (MSR) codes

  12. March 24, 2008 ADBS: Storage 1 Disk Storage, Basic File Structures, and

    E-Print Network [OSTI]

    Adam, Salah

    March 24, 2008 ADBS: Storage 1 Disk Storage, Basic File Structures, and Hashing. #12;March 24, 2008 ADBS: Storage 2 Chapter Outline The Storage Hierarchy How Far is Your Data Disk Storage Devices Records Blocking Files of Records Unordered Files Ordered Files Hashed Files RAID Technology Storage Area Network

  13. Fujifilm_NERSC_StorageOutlook.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy ForrestalPrincetonF2: Jet Fuel8:FuelingA Storage

  14. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R. J.

    1980-08-01T23:59:59.000Z

    During FY80 analyses were conducted on thermal storage concepts for solar thermal applications. These studies include both estimates of the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, promising thermal storage concepts are being identified. A preliminary screening was completed in FY80 and a more in-depth study was initiated. Value studies are being conducted to establish cost goals. A ranking of storage concepts based on value in solar thermal electric plants was conducted for both diurnal and long duration applications. Ground mounted thermal storage concepts for a parabolic dish/Stirling systtem are also being evaluated.

  15. An Integrated Assessment of Carbon Dioxide Capture and Storage in the UK

    E-Print Network [OSTI]

    Watson, Andrew

    avoiding the CO2 emissions currently associated with fossil fuel use. This project has explored some placed to exploit CCS with a large offshore storage capacity, both in disused oil and gas fields frameworks to enable us to address broader implications of implementing CCS, such as the concept of storage

  16. Structure Optimization of FePt Nanoparticles of Various Sizes for Magnetic Data Storage

    E-Print Network [OSTI]

    Laughlin, David E.

    to a modified reaction route based on Sun et al.[1] Hexane dispersions of nanoparticles were dried increases with particle size and with the temperature in the range 600 °C to 650 °C, being close to unity-assembly over large areas, and a narrow distribution of switching fields. The long storage time and high storage

  17. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    solid-fluid heat storage systems in the ground; extractions0 Thermal storage of cold water in ground water aquifers forA. 8 1971, Storage of solar energy in a sandy-gravel ground:

  18. On Storage Rings for Short Wavelength FELs

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01T23:59:59.000Z

    for a hypothetical 144 m long storage ring optimized for FELin the Proceedings On Storage Rings for Short WavelengthLBL-28483 ESG Note-92 ON STORAGE RINGS FOR SHORT WAVELENGTH

  19. Storage Viability and Optimization Web Service

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    of Heat and Electricity Storage and Reliability on MicrogridEPRI-DOE Handbook of Energy Storage for Transmission andLong- vs. Short-Term Energy Storage Technologies Analysis, A

  20. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

  1. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    in floor tiles for thermal energy storage,” working paper,D. R. (2000). Thermal energy storage for space cooling,A simple model of thermal energy storage is developed as a

  2. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

  3. NATURAL GAS STORAGE ENGINEERING Kashy Aminian

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    NATURAL GAS STORAGE ENGINEERING Kashy Aminian Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Shahab D. Mohaghegh Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Keywords: Gas Storage, Natural Gas, Storage, Deliverability, Inventory

  4. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    must be if mal energy storage technologies as means for con-Robert Thorne. Energy Storage is more technology-orientedEnergy with Heat Storage Wells," Environmental Science and Technology,

  5. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersB. Quale. Seasonal storage of thermal energy in water in theSecond Annual Thermal Energy Storage Contractors'

  6. IMPROVED NATURAL GAS STORAGE WELL REMEDIATION

    SciTech Connect (OSTI)

    James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

    2001-12-01T23:59:59.000Z

    This report summarizes the research conducted during Budget Period One on the project ''Improved Natural Gas Storage Well Remediation''. The project team consisted of Furness-Newburge, Inc., the technology developer; TechSavants, Inc., the technology validator; and Nicor Technologies, Inc., the technology user. The overall objectives for the project were: (1) To develop, fabricate and test prototype laboratory devices using sonication and underwater plasma to remove scale from natural gas storage well piping and perforations; (2) To modify the laboratory devices into units capable of being used downhole; (3) To test the capability of the downhole units to remove scale in an observation well at a natural gas storage field; (4) To modify (if necessary) and field harden the units and then test the units in two pressurized injection/withdrawal gas storage wells; and (5) To prepare the project's final report. This report covers activities addressing objectives 1-3. Prototype laboratory units were developed, fabricated, and tested. Laboratory testing of the sonication technology indicated that low-frequency sonication was more effective than high-frequency (ultrasonication) at removing scale and rust from pipe sections and tubing. Use of a finned horn instead of a smooth horn improves energy dispersal and increases the efficiency of removal. The chemical data confirmed that rust and scale were removed from the pipe. The sonication technology showed significant potential and technical maturity to warrant a field test. The underwater plasma technology showed a potential for more effective scale and rust removal than the sonication technology. Chemical data from these tests also confirmed the removal of rust and scale from pipe sections and tubing. Focusing of the underwater plasma's energy field through the design and fabrication of a parabolic shield will increase the technology's efficiency. Power delivered to the underwater plasma unit by a sparkplug repeatedly was interrupted by sparkplug failure. The lifecycle for the plugs was less than 10 hours. An electrode feed system for delivering continuous power needs to be designed and developed. As a result, further work on the underwater plasma technology was terminated. It needs development of a new sparking system and a redesign of the pulsed power supply system to enable the unit to operate within a well diameter of less than three inches. Both of these needs were beyond the scope of the project. Meanwhile, the laboratory sonication unit was waterproofed and hardened, enabling the unit to be used as a field prototype, operating at temperatures to 350 F and depths of 15,000 feet. The field prototype was extensively tested at a field service company's test facility before taking it to the field site. The field test was run in August 2001 in a Nicor Gas storage field observation well at Pontiac, Illinois. Segmented bond logs, gamma ray neutron logs, water level measurements and water chemistry samples were obtained before and after the downhole demonstration. Fifteen tests were completed in the field. Results from the water chemistry analysis showed an increase in the range of calcium from 1755-1984 mg/l before testing to 3400-4028 mg/l after testing. For magnesium, the range increased from 285-296 mg/l to 461-480 mg/l. The change in pH from a range of 3.11-3.25 to 8.23-8.45 indicated a buffering of the acidic well water, probably due to the increased calcium available for buffering. The segmented bond logs showed no damage to the cement bond in the well and the gamma ray neutron log showed no increase in the amount of hydrocarbons present in the formation where the testing took place. Thus, the gas storage bubble in the aquifer was not compromised. A review of all the field test data collected documents the fact that the application of low-frequency sonication technology definitely removes scale from well pipe. Phase One of this project took sonication technology from the concept stage through a successful ''proof-of-concept'' downhole application in a natural gas storage field

  7. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    that do not modify primary key fields avoid this finalinsert share the same primary key and snapshot number, sotuple that matches on primary key and has the same snapshot

  8. Low energy proton storage ring with longitudinal magnetic

    E-Print Network [OSTI]

    Low energy proton storage ring with longitudinal magnetic field and electron cooling M.I. Bryzgunov energy protons. In this particular case it is reaction for production of resonant gamma-quant (9.17 Me Electron cooling: compensates heating effects on internal target compensates energy losses on target

  9. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Energy Savers [EERE]

    flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems, visit the Energy Storage page. Fact Sheet: Energy...

  10. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

  11. Sandia National Laboratories: energy storage resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Outages With New 'Smart Grid' System On June 20, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

  12. Sandia National Laboratories: energy storage requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accomplishments On March 3, 2015, in Capabilities, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

  13. JCESR | Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    want. More Sandia: High Density Storage JCESR Partner Sandia discusses high density energy storage for electric vehicles and the grid More JCESR and NASA team up JCESR and...

  14. Sandia National Laboratories: solar thermal energy storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

  15. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Address Flooding, Water, and Power Systems On June 11, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Infrastructure Security, Microgrid,...

  16. Webinar Presentation: Energy Storage Solutions for Microgrids...

    Office of Environmental Management (EM)

    Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012, Clean...

  17. Carbon Storage Atlas, Employee Newsletter Earn International...

    Broader source: Energy.gov (indexed) [DOE]

    NETL's Carbon Storage Atlas IV and FE's internal employee newsletter, inTouch, earned 2013 National Association of Government Communicators awards. NETL's Carbon Storage Atlas IV...

  18. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM...

  19. Energy Storage Systems 2010 Update Conference Presentations ...

    Energy Savers [EERE]

    Systems 2010 Update Conference Presentations - Day 1, Session 1 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 The U.S. DOE Energy Storage Systems...

  20. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Poster Session Energy Storage Systems 2010 Update Conference Presentations - Day 3: Poster Session The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking...

  1. Hydrogen Storage Materials Workshop Proceedings Workshop, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings Workshop, October 16th, 2002 Hydrogen Storage Materials Workshop Proceedings Workshop, October 16th, 2002 A workshop on compressed and liquefied hydrogen storage was a...

  2. Station Footprint: Separation Distances, Storage Options, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station Footprint: Separation Distances, Storage Options, and Pre-Cooling Station Footprint: Separation Distances, Storage Options, and Pre-Cooling This presentation by Aaron...

  3. Combinatorial Approach for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center of Excellence Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials High ThroughputCombinatorial Screening of...

  4. BNL Gas Storage Achievements, Research Capabilities, Interests...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Hydride Center of Excellence Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials EA-1321: Final Environmental Assessment...

  5. Hydrogen Storage Materials Requirements (Text Version) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Requirements (Text Version) Hydrogen Storage Materials Requirements (Text Version) Below is the text version of the webinar titled "Hydrogen Storage Materials Requirements,"...

  6. Underground Storage Tank Act (West Virginia)

    Broader source: Energy.gov [DOE]

    New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored...

  7. Georgia Underground Storage Tank Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks (“USTs”) of “regulated substances” other than...

  8. Agenda: Natural Gas: Transmission, Storage and Distribution ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas: Transmission, Storage and Distribution Agenda: Natural Gas: Transmission, Storage and Distribution A Public Meeting on the Quadrennial Energy Review, Hosted by the...

  9. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01T23:59:59.000Z

    2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

  10. Parameters controlling hydrocarbon distribution at Tatums Camp Field, Lamar County, Mississippi

    SciTech Connect (OSTI)

    Jackson, P. (Stephen F. Austin State Univ., Nacogdoches, TX (USA))

    1990-09-01T23:59:59.000Z

    Structural setting, stratigraphy, diagenesis, and hydraulic pathways all have played an important role in the development of reservoir at Tatums Camp field in Lamar County, Mississippi. The field is a domal anticline located on the southern flank of Midway Salt Dome within the confines of the Mississippi Salt basin. Production is from the Booth Sandstone of the Lower Cretaceous Hosston Formation. The Booth Sandstone contains productive mouth bar sands that pinch out across the northeast half of the dome, and nonproductive channel sands on the west. The mouth bars appear to have been deposited in a marginal marine, perhaps, estuarine environment. Porosity is secondary in origin, the result of leaching of framework constituents. Diagenetic studies indicate that hydrocarbons migrated into the sands when they were at or close to their present depth of 15,700 15,800 ft (4,785-4,815 m). Hydraulic head estimates within the upper Hosston Formation decrease from north to south. This pattern suggests that fluid movement is to the south away from Midway Salt Dome. It is probable that these hydraulic pathways were established at the time of hydrocarbon migration. The reservoir at Tatums Camp field appears to be the result of hydrocarbon migration from the north into a stratigraphic pinchout lying across a structurally positive feature.

  11. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  12. Storage containers for radioactive material

    DOE Patents [OSTI]

    Groh, E.F.; Cassidy, D.A.; Dates, L.R.

    1980-07-31T23:59:59.000Z

    A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

  13. Drying Rough Rice in Storage.

    E-Print Network [OSTI]

    Sorenson, J. W. Jr.; Crane, L. E.

    1960-01-01T23:59:59.000Z

    Drying. Rough Rice in Storage Ih AGRf""' TURP YPERIMENT STAT10 I. TEXAS SUMMARY Research was conducted at the Rice-Pasture Experiment Station near Beaumont during 7 crop years (1952-53 through 1958-59) to determine the engineering problems... and the practicability of dry- ing rough rice in storage in Texas. Drying rice in storage means drying rice in the same bin in which it is to be stored. Rough rice, with initial moisture contents of 15.0 to 23.0 percent, was dried at depths of 4 to 10 feet...

  14. Impact of Fractures on CO2 Storage Monitoring: Keys for an Integrated Approach

    E-Print Network [OSTI]

    Boyer, Edmond

    storage in fractured reservoirs (depleted hydrocarbon fields or brine aquifers) requires the study fluids, connected and/or non-connected fractures, the presence of Oil & Gas Science and Technology ­ Rev

  15. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T; Andersson, Anna M

    2014-10-07T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z, or (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries.

  16. Recombinant electric storage battery

    SciTech Connect (OSTI)

    Flicker, R.P.; Fenstermacher, S.

    1989-10-10T23:59:59.000Z

    This patent describes a recombinant storage battery. It comprises: a plurality of positive plates containing about 2 to 4 percent of antimony based upon the total weight of the alloy and positive active material, and essentially antimony free negative plates in a closed case; a fibrous sheet plate separator between adjacent ones of the plates, and a body of an electrolyte to which the sheet separators are inert absorbed by each of the separators and maintained in contact with each of the adjacent ones of the plates. Each of the separator sheets comprising first fibers which impart to the sheet a given absorbency greater than 90 percent relative to the electrolyte and second fibers which impart to the sheet a different absorbency less than 80 percent relative to the electrolyte. The first and second fibers being present in such proportions that each of the sheet separators has an absorbency with respect to the electrolyte of from 75 to 95 percent and the second fibers being present in such proportions that the battery has a recombination rate adequate to compensate for gassing.

  17. SNL/VNIIEF Storage Monitoring Collaboration

    SciTech Connect (OSTI)

    Barkanov, Boris P.; Bartberger, Jack C.; Blagin, Sergei V.; Croessmann, C. Dennis; Gruda, Jeffrey D.; Lupsha, Vitali A.; Moroskin, Dimitri V.; Nilsen, Curt A.

    1999-07-12T23:59:59.000Z

    Sandia National Laboratories (SNL) and the Russian Federal Nuclear Center-All Russian Research Institute for Experimental Physics (VNIIEF)(also know as Arzamas-16) are collaborating on ways to assure the highest standards on safety, security, and international accountability of fissile material. This includes systems used to reduce the need for human access to fissile material, reduce radiation exposure, and provide prompt safety-related information, and provide continuous international accountability information while reducing the need for intrusive, on-site visits. This paper will report on the ongoing SNL/VNIIEF efforts to develop technologies and monitoring systems to meet these goals. Specific topics covered will include: the Smart Bolt tag/seal development, development and testing of electronic sensor platforms (U.S. T-1 ESP and VNIIEF Radio Tag) for monitoring and transportation applications, the ''Magazine-to-Magazine'' remote monitoring system field test, and the ''Facility-to-Facility'' storage monitoring system field trial.

  18. Integrated Building Energy Systems Design Considering Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    electric storage, energy efficiency, heat storage, micro-generation systems, photovoltaic, software, solar thermal

  19. Extending dry storage of spent LWR fuel for 100 years.

    SciTech Connect (OSTI)

    Einziger, R. E.

    1998-12-16T23:59:59.000Z

    Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72 [1]. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and excessive creep and mechanical property changes. Postulated accident scenarios would be the same for 20-year or 100-year storage, because they are mostly governed by operational or outside events, and not by the cask or fuel. Analyses of accident scenarios during extended dry storage could be impacted by fuel and cask changes that would result from the extended period of storage. Overall, the results of this work indicate that, based on fuel behavior, spent fuel at burnups below {approximately}45 GWd/MTU can be dry stored for 100 years. Long-term storage of higher burnup fuel or fuels with newer cladding will require the determination of temperature limits based on evaluation of stress-driven degradation mechanisms of the cladding.

  20. Production, Storage, and FC Analysis

    Broader source: Energy.gov [DOE]

    Presentation on Production, Storage, and FC Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  1. A Successful Cool Storage Rate 

    E-Print Network [OSTI]

    Ahrens, A. C.; Sobey, T. M.

    1994-01-01T23:59:59.000Z

    Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's ...

  2. Forecourt Storage and Compression Options

    E-Print Network [OSTI]

    pressure, capacity ­ Compressor output, power, electric demand ­ Station and dispenser load profiles Pro > Station demand profiles > Operational analysis results ­ Compressor-storage relationships ­ Vehicle fueling times ­ Temperature effects > Cost profiles > Considerations for 70 MPa > Next steps #12

  3. CFES RESEARCH THRUSTS: Energy Storage

    E-Print Network [OSTI]

    Lü, James Jian-Qiang

    CFES RESEARCH THRUSTS: Energy Storage Wind Energy Solar Energy Smart Grids Smart Buildings For our with the student to finalize the project plan. To sponsor an Energy Scholar, a company agrees to: · Assign

  4. A Successful Cool Storage Rate

    E-Print Network [OSTI]

    Ahrens, A. C.; Sobey, T. M.

    1994-01-01T23:59:59.000Z

    Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's extensive commercial air...

  5. Device-transparent personal storage

    E-Print Network [OSTI]

    Strauss, Jacob A. (Jacob Alo), 1979-

    2010-01-01T23:59:59.000Z

    Users increasingly store data collections such as digital photographs on multiple personal devices, each of which typically presents the user with a storage management interface isolated from the contents of all other ...

  6. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

    1981-01-01T23:59:59.000Z

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  7. The Storage of Shelled Pecans.

    E-Print Network [OSTI]

    Brison, Fred R. (Fred Robert)

    1945-01-01T23:59:59.000Z

    AGRIC - KPERIA .. -. STATIC t,4L EI rlENT ! C. H. MCUOSELL, Act~ng mrector Collegz Station. Texas 'LLETIN NO. 667 MARCH, THE STORAGE OF SHELLED PEC-4NS FRED R. BRISON Division of Horticulture . AGRICULTURAL AND MECHANICAL COLLEGE OF TE... Gibb Gilchrist, President [Blank Page in Original Bulletin] Shelled pecans may change in flavor, texture, and color, while in storage. They may also change as a result of insect or disease damage. Kernels change in flavor by becoming progressively...

  8. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  9. FAFCO Ice Storage test report

    SciTech Connect (OSTI)

    Stovall, T.K.

    1993-11-01T23:59:59.000Z

    The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. FAFCO provided a storage tank equipped with coils designed for use with a secondary fluid system. The FAFCO ice storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank fully, storing from 150 to 200 ton-h. However, the charging rate showed significant variations during the latter portion of the charge cycle. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate and tank state of charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend on both charge and discharge conditions. This report describes FAFCO system performance fully under both charging and discharging conditions. While the test results reported here are accurate for the prototype 1990 FAFCO Model 200, currently available FAFCO models incorporate significant design enhancements beyond the Model 200. At least one major modification was instituted as a direct result of the ISTF tests. Such design improvements were one of EPRI`s primary goals in founding the ISTF.

  10. The High Performance Storage System

    SciTech Connect (OSTI)

    Coyne, R.A.; Hulen, H. [IBM Federal Systems Co., Houston, TX (United States); Watson, R. [Lawrence Livermore National Lab., CA (United States)

    1993-09-01T23:59:59.000Z

    The National Storage Laboratory (NSL) was organized to develop, demonstrate and commercialize technology for the storage system that will be the future repositories for our national information assets. Within the NSL four Department of Energy laboratories and IBM Federal System Company have pooled their resources to develop an entirely new High Performance Storage System (HPSS). The HPSS project concentrates on scalable parallel storage system for highly parallel computers as well as traditional supercomputers and workstation clusters. Concentrating on meeting the high end of storage system and data management requirements, HPSS is designed using network-connected storage devices to transfer data at rates of 100 million bytes per second and beyond. The resulting products will be portable to many vendor`s platforms. The three year project is targeted to be complete in 1995. This paper provides an overview of the requirements, design issues, and architecture of HPSS, as well as a description of the distributed, multi-organization industry and national laboratory HPSS project.

  11. Thermal storage module for solar dynamic receivers

    DOE Patents [OSTI]

    Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

    1991-01-01T23:59:59.000Z

    A thermal energy storage system comprising a germanium phase change material and a graphite container.

  12. Presented by Robust Storage Management in the

    E-Print Network [OSTI]

    Vazhkudai, Sudharshan

    , intermediate checkpoint storage or a staging ground ­ Job's own allocated nodes can contribute storage spacePresented by Robust Storage Management in the Machine Room and Beyond Sudharshan Vazhkudai Computer Problem space: HPC storage crisis · Data checkpointing, staging, and offloading are all affected by data

  13. Bulk Storage Program Compliance Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Bulk Storage Program Compliance Written Program Cornell University 5/8/2013 #12;Bulk Storage.......................................................... 5 4.2.2 Aboveground Petroleum Storage Tanks­ University activities/operations designed to prevent releases of oil from Aboveground Petroleum Storage Tanks (ASTs) required to comply with following

  14. New York's Energy Storage System Gets Recharged

    Broader source: Energy.gov [DOE]

    Jonathan Silver and Matt Rogers on a major breakthrough for New York state's energy storage capacity.

  15. Optimize Storage Placement in Sensor Networks

    E-Print Network [OSTI]

    Li, Qun

    of limited storage, communication capacity, and battery power is ameliorated. Placing storage nodesOptimize Storage Placement in Sensor Networks Bo Sheng, Member, IEEE, Qun Li, Member, IEEE, and Weizhen Mao Abstract--Data storage has become an important issue in sensor networks as a large amount

  16. Hydrogen Storage Technologies Roadmap, November 2005

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing plan for research into and development of hydrogen storage technology for transportation applications.

  17. Energy Storage Management for VG Integration (Presentation)

    SciTech Connect (OSTI)

    Kirby, B.

    2011-10-01T23:59:59.000Z

    This presentation describes how you economically manage integration costs of storage and variable generation.

  18. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01T23:59:59.000Z

    microgrid can be fuel cells, PV, solar thermal, stationary storage, absorption cooling, combined heat and power,

  19. ONLINE STORAGE ON COMPUTERS AS DISTRIBUTED LONG-TERM STORAGE SYSTEM

    E-Print Network [OSTI]

    Keller, Jörg

    ONLINE STORAGE ON COMPUTERS AS DISTRIBUTED LONG-TERM STORAGE SYSTEM Ralf Naues, Jörg Keller Dept.naues@fernuni-hagen.de joerg.keller@fernuni-hagen.de Keywords Long term storage, Distributed storage, preservation of data Abstract Long-term storage is a widely discussed problem. The amount of digital data is growing faster

  20. SPEK: A Storage Performance Evaluation Kernel Module for Block Level Storage Systems

    E-Print Network [OSTI]

    He, Xubin "Ben"

    SPEK: A Storage Performance Evaluation Kernel Module for Block Level Storage Systems Ming Zhang Cookeville, TN 38505, USA hexb@tntech.edu Abstract In this paper we introduce SPEK (Storage Performance storage systems at block level. It can be used for both DAS (Direct Attached Storage) and block level

  1. Using MEMS-Based Storage in Computer Systems --MEMS Storage Architectures

    E-Print Network [OSTI]

    Miller, Ethan L.

    Using MEMS-Based Storage in Computer Systems -- MEMS Storage Architectures Bo Hong Feng Wang. E. Schwarz, S. J. Santa Clara University As an emerging non-volatile secondary storage technology, MEMS-based storage exhibits sev- eral desirable properties including high performance, high storage

  2. Photometric Variability in the CSTAR Field: Results From the 2008 Data Set

    E-Print Network [OSTI]

    Wang, Songhu; Zhou, Xu; Zhou, Ji-Lin; Fu, Jian-Ning; Yang, Ming; Liu, Huigen; Xie, Jiwei; Wang, Lifan; Wang, Lingzhi; Wittenmyer, R A; Ashley, M C B; Feng, Long-Long; Gong, Xuefei; Lawrence, J S; Liu, Qiang; Luong-Van, D M; Ma, Jun; Peng, Xiyan; Storey, J W V; Wu, Zhenyu; Yan, Jun; Yang, Huigen; Yang, Ji; Yuan, Xiangyan; Zhang, Tianmeng; Zhang, Xiaojia; Zhu, Zhenxi; Zou, Hu

    2015-01-01T23:59:59.000Z

    The Chinese Small Telescope ARray (CSTAR) is the first telescope facility built at Dome A, Antarctica. During the 2008 observing season, the installation provided long-baseline and high-cadence photometric observations in the i-band for 18,145 targets within 20 deg2 CSTAR field around the South Celestial Pole for the purpose of monitoring the astronomical observing quality of Dome A and detecting various types of photometric variability. Using sensitive and robust detection methods, we discover 274 potential variables from this data set, 83 of which are new discoveries. We characterize most of them, providing the periods, amplitudes and classes of variability. The catalog of all these variables is presented along with the discussion of their statistical properties.

  3. Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations

    E-Print Network [OSTI]

    Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

    2002-01-01T23:59:59.000Z

    types of potential reservoirs: abandoned and producing oilgeological reservoirs, including abandoned and producing oilreservoir; Salt: Salt dome or bedded salt; Coal: Abandoned

  4. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

    2008-03-18T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  5. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

    2012-04-03T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  6. Surface-enhanced raman optical data storage system

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level.

  7. Surface-Enhanced Raman Optical Data Storage system

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1994-06-28T23:59:59.000Z

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level. 18 figures.

  8. Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II

    SciTech Connect (OSTI)

    George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

    2009-06-01T23:59:59.000Z

    This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

  9. Final Report: Metal Perhydrides for Hydrogen Storage

    SciTech Connect (OSTI)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26T23:59:59.000Z

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One LiH molecule contains one hydrogen atom because the valence of a Li ion is +1. One MgH2 molecule contains two hydrogen atoms because the valence of a Mg ion is +2. In metal perhydrides, a molecule could contain more hydrogen atoms than expected based on the metal valance, i.e. LiH1+n and MgH2+n (n is equal to or greater than 1). When n is sufficiently high, there will be plenty of hydrogen storage capacity to meet future requirements. The existence of hydrogen clusters, Hn+ (n = 5, 7, 9, 11, 13, 15) and transition metal ion-hydrogen clusters, M+(H2)n (n = 1-6), such as Sc(H2)n+, Co(H2)n+, etc., have assisted the development of this concept. Clusters are not stable species. However, their existence stimulates our approach on using electric charges to enhance the hydrogen adsorption in a hydrogen storage system in this study. The experimental and modeling work to verify it are reported here. Experimental work included the generation of cold hydrogen plasma through a microwave approach, synthesis of sorbent materials, design and construction of lab devices, and the determination of hydrogen adsorption capacities on various sorbent materials under various electric field potentials and various temperatures. The results consistently show that electric potential enhances the adsorption of hydrogen on sorbents. NiO, MgO, activated carbon, MOF, and MOF and platinum coated activated carbon are some of the materials studied. Enhancements up to a few hundred percents have been found. In general, the enhancement increases with the electrical potential, the pressure applied, and the temperature lowered. Theoretical modeling of the hydrogen adsorption on the sorbents under the electric potential has been investigated with the density functional theory (DFT) approach. It was found that the interaction energy between hydrogen and sorbent is increased remarkably when an electric field is applied. This increase of binding energy offers a potential solution for DOE when looking for a compromise between chemisorption and physisorption for hydrogen storage. Bonding of chemisorption is too

  10. Marketing Cool Storage Technology

    E-Print Network [OSTI]

    McCannon, L.

    ~nized for a means to provide for technology transfer and dissemination of current information in the field. The International Thermal Stora~e Advisorv Council was formed to help meet this perceived need. This paper will review activities of EPRI... of cool stora~e. At the same time, +n educational effort was needed to infotm en~ineers and end-users on the use of t~e technol02V. and of the ener~v cost savin~s th t could result. The EPRI "Commercialization of Cool Stora e Technolo~v" project (RP...

  11. Electric Storage Water Heaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4:Administration

  12. Second thermal storage applications workshop

    SciTech Connect (OSTI)

    Wyman, C.E.; Larson, R.W.

    1980-06-01T23:59:59.000Z

    On February 7 and 8, 1980, approximately 20 persons representing the management of both the Solar Thermal Power Systems Program (TPS) of the US Department of Energy (DOE) Division of Central Solar Technology (CST) and the Thermal Energy Storage Program (TES) of the DOE Division of Energy Storage Systems (STOR) met in San Antonio, Texas, for the Second Thermal Storage Applications Workshop. The purpose of the workshop was to review the joint Thermal Energy Storage for Solar Thermal Applications (TESSTA) Program between CST and STOR and to discuss important issues in implementing it. The meeting began with summaries of the seven major elements of the joint program (six receiver-related, storage development elements, and one advanced technology element). Then, a brief description along with supporting data was given of several issues related to the recent joint multiyear program plan (MYPP). Following this session, the participants were divided into three smaller groups representing the program elements that mainly supported large power, small power, and advanced technology activities. During the afternoon of the first day, each group prioritized the program elements through program budgets and discussed the issues defined as well as others of concern. On the morning of the second day, representatives of each group presented the group's results to the other participants. Major conclusions arising from the workshop are presented regarding program and budget. (LEW)

  13. Light storage in a magnetically-dressed optical lattice

    E-Print Network [OSTI]

    Y. O. Dudin; R. Zhao; T. A. B. Kennedy; A. Kuzmich

    2010-04-21T23:59:59.000Z

    Differential Stark shift compensation for ground state $^{87}$Rb atoms trapped in an elliptically polarized optical lattice and "magic" magnetic field, was recently proposed and demonstrated experimentally by N. Lundblad {\\it et al.}, arXiv:0912.1528 and analyzed theoretically by A. Derevianko, arXiv:0912.3233. Here we demonstrate for the first time enhanced hyperfine coherence times using the magic field technique. We observe coherent light storage with a 0.32 s lifetime in an atomic Rb gas confined in a one dimensional optical lattice and magnetic field.

  14. Materials Physics Applications: The National High Magnetic Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pulsed Magnetic Field Laboratory of the NHMFL in the form of a 1.4 GVA inertial storage motor-generator for high field pulsed magnets. In addition to the 60 Tesla Long Pulse Magnet...

  15. Catalyzed borohydrides for hydrogen storage

    DOE Patents [OSTI]

    Au, Ming (Augusta, GA)

    2012-02-28T23:59:59.000Z

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  16. Image Storage in Hot Vapors

    E-Print Network [OSTI]

    L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

    2007-10-22T23:59:59.000Z

    We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

  17. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  18. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19T23:59:59.000Z

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  19. Prestressed elastomer for energy storage

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI); Speranza, Donald (Canton, MI)

    1982-01-01T23:59:59.000Z

    Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

  20. Advanced research in solar-energy storage

    SciTech Connect (OSTI)

    Luft, W.

    1983-01-01T23:59:59.000Z

    The Solar Energy Storage Program at the Solar Energy Research Institute is reviewed. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800/sup 0/C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

  1. EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2011-01-01T23:59:59.000Z

    Department of Energy, Energy Storage Division through thegeneration and energy storage, Presented at Frontiers ofIn Proceed- ings of Thermal Energy Storage in Aquifers Work-

  2. Sandia National Laboratories: incentivize renewable-energy storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage Systems, Infrastructure Security, News, News & Events,...

  3. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc....

  4. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," SeminarTHERMAL FOR COOLING ENERGY STORAGE BUILDINGS OF COMMERCIAL

  5. Modeling and simulations of electrical energy storage in electrochemical capacitors

    E-Print Network [OSTI]

    Wang, Hainan

    2013-01-01T23:59:59.000Z

    3D nanoarchitec- tures for energy storage and conversion,”functionality in energy storage materials and devices byto electrochemical energy storage in TiO 2 (anatase)

  6. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    for electrochemical energy storage. Adv. Funct. Mater. 2009,electrochemical capacitive energy storage. Angew. Chem. Int.for Electrochemical Energy Storage. Adv. Funct. Mater. 2009,

  7. Estimating the Value of Electricity Storage Resources in Electricity...

    Broader source: Energy.gov (indexed) [DOE]

    for understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a...

  8. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Energy Savers [EERE]

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  9. Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S. Pumped Storage Hydropower...

  10. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    in Electrochemical Energy Storage. Science 334, (6058), 917-with supercapacitors storage energy system. Electr. Pow.energy conversion and storage devices. Nat. Mater. 2005,

  11. FY06 DOE Energy Storage Program PEER Review

    Broader source: Energy.gov (indexed) [DOE]

    7 DOE Energy Storage Program PEER Review FY07 DOE Energy Storage Program PEER Review John D. Boyes Sandia National Laboratories Mission Mission Develop advanced electricity storage...

  12. US DRIVE Electrochemical Energy Storage Technical Team Roadmap...

    Office of Environmental Management (EM)

    Electrochemical Energy Storage Technical Team Roadmap US DRIVE Electrochemical Energy Storage Technical Team Roadmap This U.S. DRIVE electrochemical energy storage roadmap...

  13. Covered Product Category: Residential Gas Storage Water Heaters...

    Energy Savers [EERE]

    Gas Storage Water Heaters Covered Product Category: Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for gas storage...

  14. Recommended Best Practices for the Characterization of Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials Recommended Best Practices for the Characterization of Storage Properties of...

  15. ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01T23:59:59.000Z

    temperature underground thermal energy storage. In Proc. Th~al modeling of thermal energy storage in aquifers. In ~~-Mathematical modeling; thermal energy storage; aquifers;

  16. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

  17. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    ADVANCED THERMAL ENERGY STORAGE CONCEPT DEFINITION STUDY FORSchilling. F. E. , Thermal Energy Storage Using PrestressedNo ~cumulate thermal energy storage. Estimate ESTrof2(

  18. Agenda for the Hydrogen Delivery and Onboard Storage Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage...

  19. Grand Challenge for Basic and Applied Research in Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Grand Challenge for Basic and Applied Research in Hydrogen Storage Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC....

  20. The U.S. National Hydrogen Storage Project Overview (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. National Hydrogen Storage Project Overview (presentation) The U.S. National Hydrogen Storage Project Overview (presentation) Status of Hydrogen Storage Materials R&D...

  1. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    and their cryogenic hydrogen storage capacities. J. Phys.Hydrogen Spillover for Hydrogen Storage J. Am. Chem. Soc.electrostatic energy storage, hydrogen (H 2 )-based chemical

  2. Explorations of Novel Energy Conversion and Storage Systems

    E-Print Network [OSTI]

    Duffin, Andrew Mark

    2010-01-01T23:59:59.000Z

    Vehicular Hydrogen Storage http://www.hydrogen.energy.gov/et al. , Reversible hydrogen storage in calcium borohydridereversible hydrogen storage. Chemical Communications, 2010.

  3. Virtual Center of Excellence for Hydrogen Storage - Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Presentation from the Hydrogen Storage...

  4. Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012...

    Broader source: Energy.gov (indexed) [DOE]

    Tehachapi Wind Energy Storage Project (October 2012) Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy...

  5. assembly storage facility: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page Last Page Topic Index 1 Temporary (mobile) storage testing facilities Renewable Energy Websites Summary: Temporary (mobile) storage testing facilities Permanent storage...

  6. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," Seminar25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF COMMERCIAL

  7. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    in Electrochemical Energy Storage. Science 334, (6058), 917-for electrochemical energy storage. Adv. Funct. Mater. 2009,electrochemical capacitive energy storage. Angew. Chem. Int.

  8. Modeling and simulations of electrical energy storage in electrochemical capacitors

    E-Print Network [OSTI]

    Wang, Hainan

    2013-01-01T23:59:59.000Z

    electrochemical capacitor energy storage systems. 1.2 Energyto electrochemical energy storage in TiO 2 (anatase)3D nanoarchitec- tures for energy storage and conversion,”

  9. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    1.2 Energy Storage Technologies………………………………………..… 1.3Among all energy storage technologies, electrochemicalsociety. 1.2 Energy Storage Technologies Our ancestors used

  10. Recommended Best Practices for the Characterization of Storage...

    Energy Savers [EERE]

    Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials - Section 6 Thermal Properties of Hydrogen Storage Materials Recommended...

  11. High-numerical aperture holographic data storage Floris M. H. Crompvoets, Frank Schuurmans, Marcello Balistreri, Teus Tukker, Gert 't Hoofi,

    E-Print Network [OSTI]

    Stallinga, Sjoerd

    ,4 this technology has gained a lot of attention by the optical storage industry. The promise of HDS-layer Blu-ray Disc (ML-BD)5 and 'Near Field' (NF) recording6. The applications aimed at by the next generation optical storage are for instance professional and personal archiving. A comparison of the overall

  12. Breakthrough materials for energy storage

    E-Print Network [OSTI]

    Breakthrough materials for energy storage November 4, 2009 #12;#12;This revolution is happening;Electronics: our early market 5 hours #12;Progress on energy density... #12;Has reached a limit #12;Battery basics Anode Cathode #12;Battery basics Anode Cathode #12;Silicon leads in energy density

  13. Flashing up the storage hierarchy 

    E-Print Network [OSTI]

    Koltsidas, Ioannis

    2010-01-01T23:59:59.000Z

    The focus of this thesis is on systems that employ both flash and magnetic disks as storage media. Considering the widely disparate I/O costs of flash disks currently on the market, our approach is a cost-aware one: we ...

  14. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12T23:59:59.000Z

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  15. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

    2011-05-31T23:59:59.000Z

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  16. Hydrogen Storage Technologies Hydrogen Delivery

    E-Print Network [OSTI]

    Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission and clean advanced lightduty vehicles, as well as related energy infrastructure. For more information about

  17. November 2007 USING STORAGE ENCRYPTION

    E-Print Network [OSTI]

    user devices, such as personal computers, portable electronic devices, and removable storage media in disruption, identity theft, and other fraud. End user devices, such as personal computers, portable the confidentiality of the information stored on the devices and enable unauthorized persons to gain access

  18. Cloud-integrated Storage What & Why 2StoreSimple White Pages: Shoring Up Infrastructure Weaknesses with Cloud Storage

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Cloud-integrated Storage ­ What & Why #12;2StoreSimple White Pages: Shoring Up Infrastructure Weaknesses with Cloud Storage Overview..........................................................................................................3 Enterprise-class storage platform

  19. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  20. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  1. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  2. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Environmental Management (EM)

    1 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  3. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Environmental Management (EM)

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  4. Short seed extractors against quantum storage

    E-Print Network [OSTI]

    Amnon Ta-Shma

    2008-10-10T23:59:59.000Z

    Some, but not all, extractors resist adversaries with limited quantum storage. In this paper we show that Trevisan's extractor has this property, thereby showing an extractor against quantum storage with logarithmic seed length.

  5. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Environmental Management (EM)

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  6. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Environmental Management (EM)

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  7. NERSC HPSS Storage Trends and Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summaries Storage Trends and Summaries Total Bytes Utilized The growth in NERSC's storage systems amounts to roughly 1.7x per year. Total Bytes Utilized Number of Files Stored The...

  8. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    chaired by DOE's Imre Gyuk, are below. ESS 2010 Update Conference - UltraBattery Grid Storage - John Wood, Ecoult.pdf ESS 2010 Update Conference - PV Plus Storage for Simultaneous...

  9. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  10. Hydrogen Storage Engineering Center of Excellence

    Broader source: Energy.gov [DOE]

    The collaborative Hydrogen Storage Engineering Center of Excellence (HSECoE) conducts engineering research, development, and demonstration (RD&D) activities to address the engineering challenges posed by various storage technologies.

  11. Thermal Storage with Ice Harvesting Systems

    E-Print Network [OSTI]

    Knebel, D. E.

    1986-01-01T23:59:59.000Z

    Application of Harvesting Ice Storage Systems. Thermal storage systems are becoming widely accepted techniques for utility load management. This paper discusses the principles of ice harvesting equipment and their application to the multi...

  12. Underground Storage Tanks: New Fuels and Compatibility

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

  13. Prince George's County Underground Storage Act (Maryland)

    Broader source: Energy.gov [DOE]

    A gas storage company may invoke eminent domain to acquire property in Prince George's County for underground gas storage purposes. The area acquired must lie not less than 800 feet below the...

  14. Post regulation circuit with energy storage

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    A charge regulation circuit provides regulation of an unregulated voltage supply and provides energy storage. The charge regulation circuit according to the present invention provides energy storage without unnecessary dissipation of energy through a resistor as in prior art approaches.

  15. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    HAUSZ, W. , 1977. "Seasonal Storage in District Heating,"District Heating, July-August-September, 1977, pp. 5-11.aquifer storage for district heating and cooling. C. W.

  16. Cost Analysis of Hydrogen Storage Systems

    Broader source: Energy.gov (indexed) [DOE]

    Cost Analysis of Hydrogen Cost Analysis of Hydrogen Storage Systems Storage Systems TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 Tel. 617- 498-5000 Fax 617-498-7200...

  17. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Key to Large-Scale Cogeneration?" Public Power, v, 35, no.Thermal Energy Storage for Cogeneration and Solar Systems,"Energy Storage for Cogeneration and Solar Systems, tion from

  18. SDI: Solar Dome Instrument for Solar Irradiance Monitoring Tao Liu1, Ankur U. Kamthe1, Varick L. Erickson1, Carlos F. M. Coimbra2 and Alberto E. Cerpa1

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    SDI: Solar Dome Instrument for Solar Irradiance Monitoring Tao Liu1, Ankur U. Kamthe1, Varick L data for ground solar irradiance (direct normal and global irradiance) is a major obstacle for the de- velopment of adequate policies to promote and take advan- tage of existing solar technologies. Although

  19. Thermal Storage Options for HVAC Systems

    E-Print Network [OSTI]

    Weston, R. F.; Gidwani, B. N.

    THERMAL STORAGE OPTIONS FOR HVAC SYSTEMS B. N. Gidwani, P.E. Roy F. Weston, Inc. West Chester, Pennsylvania ABSTRACT With the ever-increasing cost of electricity and the high demand charges levied by utility compa nies, thermal storage... for cooling is rapidly becom ing a widely recognized method to lower cooling costs. There are three maior types of thermal stor age systems: ? Ice Storage: This utilizes the latent heat of fusion of ice for thermal storage. During off Deak periods...

  20. Webinar: Hydrogen Storage Materials Database Demonstration

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar, Hydrogen Storage Materials Database Demonstration, originally presented on December 13, 2011.