Sample records for dome carbon storage

  1. Salt dome gas storage solves curtailment threat

    SciTech Connect (OSTI)

    Watts, J.

    1982-04-01T23:59:59.000Z

    In November 1981, Valero Transmission Co. (San Antonio, TX) opened two salt-dome storage caverns with a combined capacity of 5 billion CF (1.5 billion of cushion gas, 3.5 of working gas). The facility's maximum deliverability is 400 million CF/day for 9 days; when two more caverns are finished in late 1982, the $55 million complex will be able to sustain that level for 18 days, making Valero less dependent on linepacking and spot sales to avoid curtailing deliveries to its customers.

  2. Identifying suitable "piercement" salt domes for nuclear waste storage sites

    SciTech Connect (OSTI)

    Kehle, R.

    1980-08-01T23:59:59.000Z

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes.

  3. Field Survey of Cactus Crater Storage Facility (Runit Dome)

    SciTech Connect (OSTI)

    Douglas Miller, Terence Holland

    2008-10-31T23:59:59.000Z

    The US Department of Energy, Office of Health and Safety (DOE/HS-10), requested that National Security Technologies, LLC, Environmental Management directorate (NSTec/EM) perform a field survey of the Cactus Crater Storage Facility (Runit Dome), similar to past surveys conducted at their request. This field survey was conducted in conjunction with a Lawrence Livermore National Laboratory (LLNL) mission on Runit Island in the Enewetak Atoll in the Republic of the Marshall Islands (RMI). The survey was strictly a visual survey, backed up by digital photos and a written description of the current condition.

  4. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Park, Byoung Yoon; Herrick, Courtney Grant

    2010-06-01T23:59:59.000Z

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes in strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of a storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

  5. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    SciTech Connect (OSTI)

    Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon

    2009-03-01T23:59:59.000Z

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

  6. Fractures of the Dammam Dome Carbonate Outcrops: Their Characterization, Development, and Implications for Subsurface Reservoirs.

    E-Print Network [OSTI]

    Al-Fahmi, Mohammed M

    2012-01-01T23:59:59.000Z

    ??The exposed Tertiary carbonates of the Dammam Dome present an opportunity to study fractures in outcrops within the oil-producing region of Eastern Saudi Arabia. The… (more)

  7. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19T23:59:59.000Z

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  8. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  9. Carbon Storage Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Sequestration Partnership MSU . . . . . . . . . . . . . . . . . . . . . . . Montana State University MVA . . . . . . . . . . . . . . . . . . . . . . . Monitoring,...

  10. carbon storage rd index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Storage Publications Patents Awards Partnering With Us About Us Contacts Staff Search Fact Sheet Research Team Members Key Contacts Carbon Storage Carbon capture and storage...

  11. Metal supported carbon nanostructures for hydrogen storage.

    E-Print Network [OSTI]

    Matelloni, Paolo

    2012-01-01T23:59:59.000Z

    ??Carbon nanocones are the fifth equilibrium structure of carbon, first synthesized in 1997. They have been selected for investigating hydrogen storage capacity, because initial temperature… (more)

  12. New Zealand Joins International Carbon Storage Group

    Broader source: Energy.gov [DOE]

    The Carbon Sequestration Leadership Forum today announced that New Zealand has become the newest member of the international carbon storage body.

  13. Carbon dioxide storage professor Martin Blunt

    E-Print Network [OSTI]

    of CCS storage there are over a hundred sites worldwide where Co2 is injected under- ground as partCarbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS and those for injection and storage in deep geological formations. all the individual elements operate today

  14. Cryo-Compressed Hydrogen Storage: Performance and Cost Review

    Broader source: Energy.gov (indexed) [DOE]

    Physical Storage Systems Benedict-Webb-Rubin equation of State: REFPROP coupled to GCtool Carbon Fiber Netting Analysis - Algorithm for optimal dome shape with geodesic winding...

  15. Carbon Aerogels for Hydrogen Storage

    SciTech Connect (OSTI)

    Baumann, T F; Worsley, M; Satcher, J H

    2008-08-11T23:59:59.000Z

    This effort is focused on the design of new nanostructured carbon-based materials that meet the DOE 2010 targets for on-board vehicle hydrogen storage. Carbon aerogels (CAs) are a unique class of porous materials that possess a number of desirable structural features for the storage of hydrogen, including high surface areas (over 3000 m{sup 2}/g), continuous and tunable porosities, and variable densities. In addition, the flexibility associated with CA synthesis allows for the incorporation of modifiers or catalysts into the carbon matrix in order to alter hydrogen sorption enthalpies in these materials. Since the properties of the doped CAs can be systematically modified (i.e. amount/type of dopant, surface area, porosity), novel materials can be fabricated that exhibit enhanced hydrogen storage properties. We are using this approach to design new H{sub 2} sorbent materials that can storage appreciable amounts of hydrogen at room temperature through a process known as hydrogen spillover. The spillover process involves the dissociative chemisorption of molecular hydrogen on a supported metal catalyst surface (e.g. platinum or nickel), followed by the diffusion of atomic hydrogen onto the surface of the support material. Due to the enhanced interaction between atomic hydrogen and the carbon support, hydrogen can be stored in the support material at more reasonable operating temperatures. While the spillover process has been shown to increase the reversible hydrogen storage capacities at room temperature in metal-loaded carbon nanostructures, a number of issues still exist with this approach, including slow kinetics of H{sub 2} uptake and capacities ({approx} 1.2 wt% on carbon) below the DOE targets. The ability to tailor different structural aspects of the spillover system (i.e. the size/shape of the catalyst particle, the catalyst-support interface and the support morphology) should provide valuable mechanistic information regarding the critical aspects of the spillover process (i.e. kinetics of hydrogen dissociation, diffusion and recombination) and allow for optimization of these materials to meet the DOE targets for hydrogen storage. In a parallel effort, we are also designing CA materials as nanoporous scaffolds for metal hydride systems. Recent work by others has demonstrated that nanostructured metal hydrides show enhanced kinetics for reversible hydrogen storage relative to the bulk materials. This effect is diminished, however, after several hydriding/dehydriding cycles, as the material structure coarsens. Incorporation of the metal hydride into a porous scaffolding material can potentially limit coarsening and, therefore, preserve the enhanced kinetics and improved cycling behavior of the nanostructured metal hydride. Success implementation of this approach, however, requires the design of nanoporous solids with large accessible pore volumes (> 4 cm{sup 3}/g) to minimize the gravimetric and volumetric capacity penalties associated with the use of the scaffold. In addition, these scaffold materials should be capable of managing thermal changes associated with the cycling of the incorporated metal hydride. CAs are promising candidates for the design of such porous scaffolds due to the large pore volumes and tunable porosity of aerogel framework. This research is a joint effort with HRL Laboratories, a member of the DOE Metal Hydride Center of Excellence. LLNL's efforts have focused on the design of new CA materials that can meet the scaffolding requirements, while metal hydride incorporation into the scaffold and evaluation of the kinetics and cycling performance of these composites is performed at HRL.

  16. Carbon Allocation in Underground Storage Organs

    E-Print Network [OSTI]

    Carbon Allocation in Underground Storage Organs Studies on Accumulation of Starch, Sugars and Oil Cover: Starch granules in cells of fresh potato tuber visualised by iodine staining. #12;Carbon By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve

  17. Carbon Storage Monitoring, Verification and Accounting Research...

    Energy Savers [EERE]

    Monitoring, Verification and Accounting Research Carbon Storage Monitoring, Verification and Accounting Research Reliable and cost-effective monitoring, verification and accounting...

  18. Mechanical energy storage in carbon nanotube springs

    E-Print Network [OSTI]

    Hill, Frances Ann

    2011-01-01T23:59:59.000Z

    Energy storage in mechanical springs made of carbon nanotubes is a promising new technology. Springs made of dense, ordered arrays of carbon nanotubes have the potential to surpass both the energy density of electrochemical ...

  19. Self-Assembled, Nanostructured Carbon for Energy Storage and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment nanostructuredcarbon.pdf...

  20. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Abstract: Sodium ion (Na+) batteries...

  1. Doped Carbon Nanotubes for Hydrogen Storage

    E-Print Network [OSTI]

    Doped Carbon Nanotubes for Hydrogen Storage U. S. DOE Hydrogen Program Annual Review May, 2003 structure carbon nanotube systems ·Not restricted to physisorption or chemisorption (weak covalent bond structures of doped carbon nanotubes APPROACH Based on C-H bond Dihydrogen bond H H M = + charge = - charge

  2. Preliminary design study of compressed-air energy storage in a salt dome. Volume 4. CAES turbomachinery design. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-06-01T23:59:59.000Z

    A summary is presented of the study undertaken by the Turbomachinery Subcontractor on Task 1, according to instructions received from the Middle South Services (MSS), the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The subject of this study was to investigate the question of whether it would be possible to build an air storage generating plant capable of operating economically and using leached-out salt domes as air reservoirs. In the course of the work performed on Task 1, the Turbomachinery Subcontractors have on various occasions supplied information on the results obtained, in the form of preliminary subreports. The present summary includes all the previous reports, most of which have been revised to a large extent.

  3. Regulating carbon dioxide capture and storage

    E-Print Network [OSTI]

    De Figueiredo, Mark A.

    2007-01-01T23:59:59.000Z

    This essay examines several legal, regulatory and organizational issues that need to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal, regulatory, and organizational ...

  4. On the control of carbon nanostructures for hydrogen storage applications

    E-Print Network [OSTI]

    Rochefort, Alain

    On the control of carbon nanostructures for hydrogen storage applications Patrice Guay a , Barry L April 2004 Available online 25 May 2004 Abstract The storage of hydrogen in different carbon nanofibers, Doped carbon; C. Molecular simulation; D. Gas storage 1. Introduction Hydrogen storage in carbon

  5. Wyoming Carbon Capture and Storage Institute

    SciTech Connect (OSTI)

    Nealon, Teresa

    2014-06-30T23:59:59.000Z

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  6. Preliminary design study of compressed-air energy storage in a salt dome. Volume 1: executive summary. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The preliminary design and cost estimate of a compressed air energy storage (CAES) plant located in the Middle South Utilities (MSU) system are summarized in this report. The 220 MWe CAES plant which stores air in two solution mined salt caverns, is located at the Carmichael salt dome near Jackson, Mississippi. The facility criteria, site selection and the turbomachinery and auxiliaries, are briefly described together with an outline of the proposed procedure for developing the caverns. Using this information and data, the preliminary CAES plant design was prepared; also the capital cost estimate, cash flow and project schedule were developed. The Environmental Assessment did not reveal any major site impediments to the construction of the plant. However, it is believed that an EIS is required primarily because CAES is a new technology without precedent in the United States. Although a final system planning study was not completed because of lack of funds, from preliminary analysis a CAES plant does not appear to be economic in the MSU system before the mid 1990s. This is due to the unique features of the MSU system. For other systems under more favorable conditions, CAES may be economic at an earlier date. The construction of a CAES plant with salt cavern air storage may by considered ready for use as a commercial electric generating plant. The experience at the Huntorf plant in West Germany demonstrates the technical feasibility of the CAES concept. Certain details of the plant defined in this study are different from the Huntorf plant. Design verification by limited testing and analysis would provide added confidence to those considering a CAES plant.

  7. Preliminary design study of compressed-air energy storage in a salt dome. Volume 6. CAES plant design. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    The preliminary plant design for a compressed-air energy storage (CAES) plant located in the Middle South Services, Inc. (MSS), is presented. The design is based upon the facility criteria; the specific site; and the systems, subsystems, and components identified in the other task of this study. The proposed 220-MW(e) plant is located at the Carmichael salt dome near Jackson, Mississippi. The compressed air is stored in two solution-mined caverns in the salt dome. The plant area, exclusive of the remote fuel unloading facility, occupies 20 acres. An equipment list, a plot plan, and general arrangement drawings define the CAES plant. The details concerning the major equipment and the operation of the mechanical systems are described. The capital investment cost (exclusive of owner's cost) of the 220-MW(e) CAES plant is $85.6 million in 1979 dollars or $389/kW. This cost is based on firing the turbines with No. 2 fuel oil. As an alternative, the capital investment cost under the same conditions for a plant firing No. 6 oil is $90.9 million or $413/kW. The project schedule from start of licensing to commercial operation is estimated to be 70 months, with actual construction (including dewatering of the caverns) estimated to be 39 months. Based on the cost estimate developed in this task and the modified financial data and fuel cost projections, the economic introduction of CAES into the MSS system was examined for the No. 2 oil-fired plant. Due to lack of funds, the economic analysis did not extend beyond the year 1988. No system analysis of the No. 6 oil-fired plant was made. The economic introduction of CAES in the MSS system before 1990 is unlikely because the older oil-fired units in the MSS system may be economically used for cycling and peaking, if required. For a system with a different composition of generating units (i.e., low-cost, coal-fired plants), CAES may be economical at an earlier date.

  8. Growth of Dome-Shaped Carbon Nanoislands on Ir(111): The Intermediate between Carbidic Clusters and Quasi-Free-Standing Graphene

    E-Print Network [OSTI]

    AlfĂš, Dario

    of hydrocarbon dissociation on transition metal (TM) sur- faces represents a challenging way to its synthesisGrowth of Dome-Shaped Carbon Nanoislands on Ir(111): The Intermediate between Carbidic Clusters coupled carbidic carbon and a quasi-free-standing graphene layer, can provide information for a rational

  9. Atomistic Modeling of Hydrogen Storage in Nanostructured Carbons.

    E-Print Network [OSTI]

    Peng, Lujian

    2011-01-01T23:59:59.000Z

    ??Nanoporous carbons are among the widely studied and promising materials on hydrogen storage for on-board vehicles. However, the nature of nanoporous carbon structures, as well… (more)

  10. Designing Microporus Carbons for Hydrogen Storage Systems

    SciTech Connect (OSTI)

    Alan C. Cooper

    2012-05-02T23:59:59.000Z

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  11. Reservoir simulation of co2 sequestration and enhanced oil recovery in Tensleep Formation, Teapot Dome field

    E-Print Network [OSTI]

    Gaviria Garcia, Ricardo

    2006-04-12T23:59:59.000Z

    Teapot Dome field is located 35 miles north of Casper, Wyoming in Natrona County. This field has been selected by the U.S. Department of Energy to implement a field-size CO2 storage project. With a projected storage of 2.6 million tons of carbon...

  12. Gas storage carbon with enhanced thermal conductivity

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Rogers, Michael Ray (Knoxville, TN); Judkins, Roddie R. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  13. 22 carbon capture journal -March -April 2008 Transport and Storage

    E-Print Network [OSTI]

    ) to undertake a study to assess the potential for the under- ground storage of CO2 in Western Aus- tralia's Mid22 carbon capture journal - March - April 2008 Transport and Storage Transport and storage research- ing invested into a study into suitable carbon storage sites in Wellsville, Ohio, according to local

  14. The Social Dynamics of Carbon Capture and Storage

    E-Print Network [OSTI]

    The Social Dynamics of Carbon Capture and Storage Understanding CCS Representations, Governance studies. He works as a Research Associate at the Scottish Carbon Capture and Storage research centre at the Scottish Carbon Capture and Storage research centre at the University of Edinburgh. His research focuses

  15. Biomass energy with carbon capture and storage (BECCS): a review

    E-Print Network [OSTI]

    Matthews, Adrian

    Biomass energy with carbon capture and storage (BECCS): a review Claire Gough, Paul Upham December are alternative terms for the coupling of bioenergy with carbon capture and storage (CCS). The paper follows from a workshop held in December 2009, hosted by the Scottish Centre for Carbon Capture and Storage

  16. Sandia National Laboratories: Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRF Researchers answer AlanCarbon Management

  17. Geologic Carbon Storage Archived Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning FunNeuTel2011 Venezia, Italia ResultsGeography ofCarbon

  18. carbon storage | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage Clean Coal Poweroneidensis .Storage3

  19. Carbon Storage in Young Growth Coast Redwood Stands

    E-Print Network [OSTI]

    Standiford, Richard B.

    515 Carbon Storage in Young Growth Coast Redwood Stands Dryw A. Jones1 and Kevin L. O'Hara1 Abstract Carbon sequestration is an emerging forest management objective within California and around the dynamics of carbon sequestration and to accurately measure carbon storage is essential to insure successful

  20. Doped Carbon Nanotubes for Hydrogen Storage Ragaiy Zidan

    E-Print Network [OSTI]

    hydrogen storage system is expected to be simple to engineer and tremendously safer. Carbon nanotubesDoped Carbon Nanotubes for Hydrogen Storage Ragaiy Zidan Savannah River Technology Center Savannah-capacity hydrogen storage material. The final product should have favorable thermodynamics and kinetics

  1. Calcifying Cyanobacteria - The potential of biomineralization for Carbon Capture and Storage

    E-Print Network [OSTI]

    Jansson, Christer G

    2010-01-01T23:59:59.000Z

    Herzog H, Golomb D: Carbon Capture and Storage from Fossil for point-source carbon capture and sequestration. Althoughof renewable biofuels, and carbon capture and storage (CCS).

  2. RESEARCH Open Access Quantifying and understanding carbon storage

    E-Print Network [OSTI]

    RESEARCH Open Access Quantifying and understanding carbon storage and sequestration within: The carbon stored in vegetation varies across tropical landscapes due to a complex mix of climatic: We produce a map of carbon storage across the watershed of the Tanzanian Eastern Arc Mountains (33

  3. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    FEASIBILITY: TEAPOT DOME EOR PILOT L. Chiaramonte, M.TO IDENTIFY OPTIMAL CO 2 EOR STORAGE SITES V. Núńez Lopez,from a carbon dioxide EOR/sequestration project. Energy

  4. 2014 Carbon Storage | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.Carbon Storage R&D Project Review

  5. Carbon Foam Infused with Pentaglycerine for Thermal Energy Storage Applications.

    E-Print Network [OSTI]

    Johnson, Douglas James

    2011-01-01T23:59:59.000Z

    ??A thermal energy storage device that uses pentaglycerine as a phase change material was developed. This solid-state phase change material was embedded in a carbon… (more)

  6. Carbon Capture, Transport and Storage Regulatory Test Exercise...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Capture, Transport and Storage Regulatory Test Exercise: Output Report Focus Area: Clean Fossil Energy Topics:...

  7. Carbon Dioxide Capture and Storage Demonstration in Developing...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers...

  8. Carbon Utilization and Storage | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Assess Carbon Utilization and Storage Technologies PDF Improving Domestic Energy Security and Lowering CO2 Emissions with "Next Generation" CO2-Enhanced Oil Recovery...

  9. Making Carbon Capture and Storage Efficient and Cost Competitive

    Broader source: Energy.gov [DOE]

    Assistant Secretary for Fossil Energy Charles McConnell visited Ohio State University to highlight new Energy Department investments in carbon capture and storage technologies.

  10. Assessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon Capture and Storage

    E-Print Network [OSTI]

    : The Case of Carbon Capture and Storage By Eleanor Ereira Submitted to the Engineering Systems Division on Coal-fired Power Plants with Carbon Capture and Storage (CCS) as a case study of a new high-cost energyAssessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon

  11. Worker safety in a mature carbon capture and storage industry in the United States based upon analog industry experience

    E-Print Network [OSTI]

    Jordan, P.D.

    2014-01-01T23:59:59.000Z

    attributable to carbon capture and storage in 2050.safety in a mature carbon capture and storage industry insafety in a mature carbon capture and storage (CCS) industry

  12. The subsurface fluid mechanics of geologic carbon dioxide storage

    E-Print Network [OSTI]

    Szulczewski, Michael Lawrence

    2013-01-01T23:59:59.000Z

    In carbon capture and storage (CCS), CO? is captured at power plants and then injected into deep geologic reservoirs for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained ...

  13. Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity

    E-Print Network [OSTI]

    McCollum, David L; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    research in the field of carbon capture and storage (CCS)heightened interest in carbon capture and storage (CCS) as areservoirs. To be sure, carbon capture and sequestration is

  14. HYDROGEN STORAGE IN CARBON NANOTUBES JOHN E. FISCHER

    E-Print Network [OSTI]

    HYDROGEN STORAGE IN CARBON NANOTUBES JOHN E. FISCHER UNIVERSITY OF PENNSYLVANIA * SOME BASIC NOTIONS * BINDING SITES AND ENERGIES * PROCESSING TO ENHANCE CAPACITY: EX: ELECTROCHEMICAL Li INSERTION of Li+. AND: van der Waals interaction NANOTUBES CAPILLARITY: metals

  15. Energy storage in carbon nanotube super-springs

    E-Print Network [OSTI]

    Hill, Frances Ann

    2008-01-01T23:59:59.000Z

    A new technology is proposed for lightweight, high density energy storage. The objective of this thesis is to study the potential of storing energy in the elastic deformation of carbon nanotubes (CNTs). Prior experimental ...

  16. BACKGROUND REPORTS FOR THE CALIFORNIA CARBON CAPTURE AND STORAGE REVIEW PANEL

    E-Print Network [OSTI]

    BACKGROUND REPORTS FOR THE CALIFORNIA CARBON CAPTURE AND STORAGE REVIEW PANEL Prepared by the Technical Advisory Team in support of The California Carbon Capture and Storage Review Panel 12 Carbon Capture and Storage Review Panel Contents 1. Overview of the Carbon Capture and Storage Panel

  17. What is stopping Carbon Capture Utilization and Storage from closing the carbon loop?

    E-Print Network [OSTI]

    What is stopping Carbon Capture Utilization and Storage from closing the carbon loop? The social not work to close the loop, but simply maintain the amount of carbon consumed and emitted. Direct Air these sectors, direct air capture could provide a route for closing the carbon loop in the transportation sector

  18. Carbon-based Materials for Energy Storage

    E-Print Network [OSTI]

    Rice, Lynn Margaret

    2012-01-01T23:59:59.000Z

    storage systems, left, and supercapacitor taxonomy, right 34illustrates the taxonomy of supercapacitor systems and theprevalent type of supercapacitor. EDLCs were first conceived

  19. Preliminary design study of compressed-air energy storage in a salt dome. Volume 7. Environmental and safety assessment. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    The construction of a 220 MWe CAES facility by the Middle South Utilities is proposed. The plant consists of two subsurface air storage, coupled to a surface peak-load electric generating station to provide a more efficient utilization of installed base-load generating capacity. The caverns are solutioned-mined in the Carmichael Salt Dome. An investigation was made to assess the environmental feasibility and consequences of the construction and operation of a Compressed Air Energy Storage (CAES) facility for the Middle South Service System. A site evaluation effort was made for 47 sites. The results of these investigations led to the choice of the Carmichael site as the preferred location. The proposed plant will be located in a rural portion of central Mississippi near Carmichael, about 25 miles south of Jackson. The site and transmission facilities will occupy less than 25 acres. The judgment in selecting the preferred transmission line routing and facilities was in minimizing environmental impacts. Environmental information pertaining to several disciplines was accumulated by direct contact with State and Federal agency representatives, Mississippi Natural Heritage Program personnel and experts from the nearby site under consideration. Following the gathering of pertinent data from knowledgeable sources, an intensive one week site survey was conducted by senior environmental scientists and engineers. Based upon the available engineering data and field evidence used in preparing this Environmental Assessment, the conclusion reached is that a full length Environmental Impact Statement should be prepared prior to the construction and operation of the proposed facility, the rationale being: (1) the technologies associated with CAES the facility, and (2) this facility will probably be the first of its kind in the US, and therefore will be closely scrutinized for ts potential impacts.

  20. Carbon-based Materials for Energy Storage

    E-Print Network [OSTI]

    Rice, Lynn Margaret

    2012-01-01T23:59:59.000Z

    G. Luo, W. Qian and F. Wei, Carbon, 18. Q. Zhang, G. Xu, J.Wang, W. Qian and F. Wei, Carbon, 2009, 47, 538 1. Z. Chen,Frackowiak, E. and Béguin, F. Carbon 39, 937-950 (2001) 13.

  1. Project Profile: Carbon Dioxide Shuttling Thermochemical Storage...

    Office of Environmental Management (EM)

    energy generation by driving the cost towards 0.06kWh through the use of thermochemical energy storage (TCES). The project uses inexpensive, safe, and non-corrosive...

  2. Carbon-based Materials for Energy Storage

    E-Print Network [OSTI]

    Rice, Lynn Margaret

    2012-01-01T23:59:59.000Z

    1 Microporous Carbon for Supercapacitors Prepared by thein their application to supercapacitors 27,28 . The main2 High-Performance Supercapacitors Based on Hierarchically

  3. Preliminary design study of compressed-air energy storage in a salt dome. Volume 5. System, subsystem, and component design approach. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    The approach to system, subsystem, and component design for a compressed-air energy storage (CAES) plant located in the Middle South Services, Inc., is presented in this final report. The design approach is based on the facility design criteria described in Volume 2 and the site conditions at the Carmichael salt dome located near Jackson, Mississippi. For the selected weekly cycle, Brown Boveri Corporation selected a single-casing design of fired-high-power and fired-low-power turbines. The high-power (HP) turbine operates at inlet conditions of 609.2 psia (42 bar) and 1021.4/sup 0/F (550/sup 0/C), while the low-power (LP) turbine operates at 159.5 psia (11 bar) and 1633.4/sup 0/F (890/sup 0/C). A tubular design of exhaust gas recuperator heats the incoming air from the storage cavern from 138.4/sup 0/F (60/sup 0/C) to 692/sup 0/F (367/sup 0/C). The compressor design is a single-shaft, tandem-compound arrangement with a 3600-rpm LP compressor and a 6850-rpm HP compressor. The LP compressor is a combination six-stage axial, three-stage radial compressor with an integral cooler and diffuser built into the casing. The HP compressor is a five-stage radial compressor with external intercooler provided after both the second and fourth stages. Fenix and Scisson, Inc., selected two half-size air storage caverns, each capable of delivering full-turbine air mass flow. A solutioning rate of 1750 gpm will allow completion of both caverns without prolonging construction schedule. Fuel is No. 2 distillate, which is delivered on a weekly basis. Rather than construct a rail siding to the plant, a trade-off study showed it more economical to pump the fuel oil to the CAES plant through a seven-mile buried pipeline from the nearest existing rail line. The exhaust gas recuperator, synchronous clutches, and gear case between the HP and LP compressors are key components which require special attention in design and fabrication to ensure reliable CAES plant operation.

  4. Metal-Containing Organic and Carbon Aerogels for Hydrogen Storage

    SciTech Connect (OSTI)

    Satcher, Jr., J H; Baumann, T F; Herberg, J L

    2005-01-10T23:59:59.000Z

    This document and the accompanying manuscript summarize the technical accomplishments of our one-year LDRD-ER effort. Hydrogen storage and hydrogen fuel cells are important components of the 2003 Hydrogen Fuel Initiative focused on the reduction of America's dependence on oil. To compete with oil as an energy source, however, one must be able to transport and utilize hydrogen at or above the target set by DOE (6 wt.% H{sub 2}) for the transportation sector. Other than liquid hydrogen, current technology falls well short of this DOE target. As a result, a variety of materials have recently been investigated to address this issue. Carbon nanostructures have received significant attention as hydrogen storage materials due to their low molecular weight, tunable microporosity and high specific surface areas. For example, the National Renewable Energy Laboratory (NREL) achieved 5 to 10 wt.% H{sub 2} storage using metal-doped carbon nanotubes. That study showed that the intimate mix of metal nanoparticles with graphitic carbon resulted in the unanticipated hydrogen adsorption at near ambient conditions. The focus of our LDRD effort was the investigation of metal-doped carbon aerogels (MDCAs) as hydrogen storage materials. In addition to their low mass densities, continuous porosities and high surface areas, these materials are promising candidates for hydrogen storage because MDCAs contain a nanometric mix of metal nanoparticles and graphitic nanostructures. For FY04, our goals were to: (1) prepare a variety of metal-doped CAs (where the metal is cobalt, nickel or iron) at different densities and carbonization temperatures, (2) characterize the microstructure of these materials and (3) initiate hydrogen adsorption/desorption studies to determine H2 storage properties of these materials. Since the start of this effort, we have successfully prepared and characterized Ni- and Co-doped carbon aerogels at different densities and carbonization temperatures. The bulk of this work is described in the attached manuscript entitled 'Formation of Carbon Nanostructures in Cobalt- and Nickel- Doped Carbon Aerogels'. This one-year effort has lead to our incorporation into the DOE Carbon-based Hydrogen Storage Center of Excellence at NREL, with funding from DOE's Energy Efficiency and Renewable Energy (EERE) Program starting in FY05.

  5. Carbon Capture and Storage | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal6CleanCaithness ShepherdsCapturingStorageStorage

  6. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    SciTech Connect (OSTI)

    Deanna Gilliland; Matthew Usher

    2011-12-31T23:59:59.000Z

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  7. Preliminary design study of compressed-air energy storage in a salt dome. Volume 2. Facility-design criteria. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    The facility design criteria for a compressed-air energy storage (CAES) plant located at the Middle South Services, Inc. (MSS), is presented in this final report. Both engineering criteria and economic criteria are considered. Based on a detailed evaluation of qualifications, Brown Boveri Corporation was selected as the turbomachinery supplier for the CAES plant. After analyzing three power cycles, a high-power-fired/low-power-fired heat cycle with an exhaust gas recuperator was selected as the preferred cycle. A weekly cycle of 5 days per week, 8 hours per day for power generation was chosen for the MSS system. The compression duration is 8 hours per day, 5 days per week, plus 16 hours per weekend. The fuel heat rate is estimated at approximately 4000 Btu/kWh. Capacity of the selected CAES plant is 220 MW(e). Although only a single module is considered in this study, MSS prefers that the selected salt dome site accommodate a four-module plant. The financial data and anticipated fuel costs that apply to the MSS system are identified. Historically, the MSS system has been fueled by natural gas or oil. Proposed new baseload generating capacity is either nuclear or coal fired. Preliminary results indicate a slight economic advantage in an optimized MSS expansion plant without CAES. For the 1986 through 2005 time period studied, existing oil-fired steam plants provide the compression energy for the CAES plant additions. This penalizes CAES operating costs, which would benefit from compression energy supplied by low-cost, coal-fired units, if these units were available. When the final capital cost of the CAES plant is developed in Task V, the MSS fuel costs and financial data will be reexamined and the CAES economics reevaluated.

  8. Carbon Capture and Storage Realising the potential?

    E-Print Network [OSTI]

    Haszeldine, Stuart

    and Storage Realising the potential? Jim Watson (editor), Florian Kern and Matt Gross Sussex Energy Group for Energy Policy and Technology, Imperial College London Stuart Haszeldine, Francisco Ascui, Hannah Chalmers for the whole for the UK research community ­ www.ukerc.ac.uk/support/TheMeetingPlace National Energy Research

  9. Carbon Materials for Chemical Capacitive Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with a short chain reverse block copolymer PO 15 -EO 22 - PO 15 , monolithic carbon aerogels with macro- and micropores were reported. 112 As shown in Figure 12 , hydrolysis...

  10. Blue carbon storage potential of marine carbonate deposits Project reference IAP/13/50. Please quote this reference when applying.

    E-Print Network [OSTI]

    Guo, Zaoyang

    IAPETUS Blue carbon storage potential of marine carbonate deposits Project reference IAP/13 Henrik Stahl, Scottish Association for Marine Science Key Words 1. Blue carbon 2. Carbonate 3. Coralline is referred to as `blue carbon' to differentiate it from terrestrial carbon stores. Known blue carbon sinks

  11. Carbon coated textiles for flexible energy storage

    SciTech Connect (OSTI)

    Jost, Kristy [Drexel University; Perez, Carlos O [ORNL; Mcdonough, John [Drexel University; Presser, Volker [ORNL; Heon, Min [Drexel University; Dion, Genevieve [Drexel University; Gogotsi, Yury [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at 0.25 A$g1 achieved a high gravimetric and areal capacitance, an average of 85 F$g1 on cotton lawn and polyester microfiber, both corresponding to 0.43 F$cm2.

  12. Species Loss and Aboveground Carbon Storage in a Tropical Forest

    E-Print Network [OSTI]

    Bunker, Daniel E.

    of tropical tree species on carbon storage by simulating 18 possible extinction scenarios within a well-studied 50-hectare tropical forest plot in Panama, which contains 227 tree species. Among extinction as well as the size and longevity of tropical trees. Instead, we simulated species extinctions

  13. Calcifying Cyanobacteria - The potential of biomineralization for Carbon Capture and Storage

    E-Print Network [OSTI]

    Jansson, Christer G

    2010-01-01T23:59:59.000Z

    carbon dioxide (CO 2 ) from fossil fuels, and hence mitigate climate change, include energy savings, development of renewable biofuels, and carbon capture and storage (

  14. E-Print Network 3.0 - activated carbon storage Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity with active carbon nanostructure... are the premier laboratory in carbon aerogels and have explored their use for hydrogen storage and gas separation... . Preliminary...

  15. Doping of carbon foams for use in energy storage devices

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

    1994-10-25T23:59:59.000Z

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

  16. Doping of carbon foams for use in energy storage devices

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Morrison, Robert L. (Modesto, CA); Kaschmitter, James L. (Pleasanton, CA)

    1994-01-01T23:59:59.000Z

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  17. DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE

    SciTech Connect (OSTI)

    Angela D. Lueking; Qixiu Li; John V. Badding; Dania Fonseca; Humerto Gutierrez; Apurba Sakti; Kofi Adu; Michael Schimmel

    2010-03-31T23:59:59.000Z

    Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

  18. Carbon Storage Monitoring, Verification and Accounting Research |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout5 CalendarCarbon

  19. Regulating Carbon Dioxide Capture and Storage 07-003 April 2007

    E-Print Network [OSTI]

    Regulating Carbon Dioxide Capture and Storage by 07-003 April 2007 M.A. de Figueiredo, H.J. Herzog, P.L. Joskow, K.A. Oye, and D.M. Reiner #12;#12;Regulating Carbon Dioxide Capture and Storage M.A. de to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal

  20. Carbon storage and sequestration by trees in urban and community areas of the United States

    E-Print Network [OSTI]

    Carbon storage and sequestration by trees in urban and community areas of the United States David J forestry Tree cover Forest inventory a b s t r a c t Carbon storage and sequestration by urban trees to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole

  1. carbon storage rd index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage Clean Coal Poweroneidensis .Storage

  2. carbon storage r d review | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage Clean Coal Poweroneidensis .

  3. Molecular Dynamics Simulation of Hydrogen Storage with Single Walled Carbon Nanotubes Shigeo MARUYAMA1,2

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Molecular Dynamics Simulation of Hydrogen Storage with Single Walled Carbon Nanotubes * Shigeo-8656 The hydrogen storage mechanism of SWNTs was studied through molecular dynamics simulations. Assuming the simple : Molecular Dynamics Method, Hydrogen Storage, Single Walled Carbon Nanotubes, Lennard-Jones, Adsorption

  4. Mechanics of hydrogen storage in carbon nanotubes Y.L. Chen a

    E-Print Network [OSTI]

    Jiang, Hanqing

    Mechanics of hydrogen storage in carbon nanotubes Y.L. Chen a , B. Liu a,Ă?, J. Wu a , Y. Huang b 17 July 2008 Keywords: Hydrogen storage Carbon nanotube Continuum model Analytical solution Atomistic simulations a b s t r a c t A continuum mechanics model is established for hydrogen storage in single

  5. Regulatory Issues Controlling Carbon Capture and Storage B.S. Environmental Science

    E-Print Network [OSTI]

    Regulatory Issues Controlling Carbon Capture and Storage by Adam Smith B.S. Environmental Science and Astronautics #12;2 Regulatory Issues Controlling Carbon Capture and Storage by Adam Smith Submitted, terrestrial CO2 sequestration, and geologic CO2 capture and storage (CCS) are the major efforts underway

  6. The disappearance of relict permafrost in boreal north America: Effects on peatland carbon storage and fluxes

    E-Print Network [OSTI]

    Turetsky, Merritt

    will partially or even completely offset this enhanced peatland carbon sink for at least 70 years followingThe disappearance of relict permafrost in boreal north America: Effects on peatland carbon storage carbon storage in peatlands. To determine whether differences in substrate quality across permafrost

  7. Actuarial risk assessment of expected fatalities attributable to carbon capture and storage in 2050

    E-Print Network [OSTI]

    Actuarial risk assessment of expected fatalities attributable to carbon capture and storage in 2050-00487175,version2-10Feb2011 #12;1. Introduction Carbon capture and storage (CCS) involves capturing the CO2 is assessed integrating all steps of the CCS chain: additional coal production, coal transportation, carbon

  8. Actuarial risk assessment of expected fatalities attributable to carbon capture and storage in 2050

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Actuarial risk assessment of expected fatalities attributable to carbon capture and storage : 10.1016/j.ijggc.2011.07.004 #12;2 1. Introduction Carbon capture and storage (CCS) involves capturing of carbon and the cost of capture. From the engineering, psychological or climatic point of view, one

  9. Public Awareness of Carbon Capture and Storage: A Survey of Attitudes toward Climate Change Mitigation

    E-Print Network [OSTI]

    Public Awareness of Carbon Capture and Storage: A Survey of Attitudes toward Climate Change, Technology and Policy Program #12;2 #12;3 Public Awareness of Carbon Capture and Storage: A Survey in Technology and Policy Abstract The Carbon Capture and Sequestration Technologies Program in the Laboratory

  10. A roadmap for carbon capture and storage in the UK Clair Gough a,

    E-Print Network [OSTI]

    Haszeldine, Stuart

    A roadmap for carbon capture and storage in the UK Clair Gough a, *, Sarah Mander a , Stuart IPCC 2001 scenario (Raupach et al., 2007). Carbon capture and storage (CCS) technology is endorsed Budget through ``a competition to develop the UK's first full-scale demonstration of carbon capture

  11. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy

    E-Print Network [OSTI]

    Yaghi, Omar M.

    , and carbon dioxide. Introduction Carbon dioxide emissions resulting from the burning of fossil fuels 20 metric tons of carbon dioxide per capita are released annually into the atmosphere.1a,b CarbonStorage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks

  12. Carbon Capture and Storage FutureGen 2.0 Project Moves Forward...

    Broader source: Energy.gov (indexed) [DOE]

    Capture and Storage FutureGen 2.0 Project Moves Forward Into Second Phase Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Second Phase February 4, 2013 - 7:25pm...

  13. contact carbon storage team | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscoveryCompleted

  14. Environmental Responses to Carbon Mitigation through Geological Storage

    SciTech Connect (OSTI)

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30T23:59:59.000Z

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives. ? Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. ? Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  15. Go No-Go Decision: Pure, Undoped, Single Walled Carbon Nanotubes for Vehicular Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document provides information about the go/no-go decision on pure, undoped single walled carbon nanotubes for vehicular hydrogen storage.

  16. Using tracer experiments to determine deep saline aquifers caprocks transport characteristics for carbon dioxide storage

    E-Print Network [OSTI]

    Boyer, Edmond

    for carbon dioxide storage P. Bachaud1,2 , Ph. Berne1 , P. Boulin1,3,4 , F. Renard5,6 , M. Sardin2 , J

  17. A Strategy for Carbon Capture and Storage (CCS) in the United...

    Open Energy Info (EERE)

    to: navigation, search Tool Summary LAUNCH TOOL Name: A Strategy for Carbon Capture and Storage (CCS) in the United Kingdom and Beyond Focus Area: Clean Fossil Energy Topics:...

  18. Potential Urban Forest Carbon Sequestration and Storage Capacities in Burnside Industrial Park, Nova Scotia.

    E-Print Network [OSTI]

    Walsh, Alison

    2012-01-01T23:59:59.000Z

    ??Urban and industrial settings represent potential areas for increased carbon (C) sequestration and storage through intensified tree growth. Consisting of an estimated 1270 ha of… (more)

  19. Carbon capture and storage in the U.S. : a sinking climate solution

    E-Print Network [OSTI]

    Henschel, Rachel Hockfield

    2009-01-01T23:59:59.000Z

    Coal-fired power plants produce half of the United States' electricity and are also the country's largest emitter of carbon dioxide, the greenhouse gas responsible for climate change. Carbon Capture and Storage (CCS) is a ...

  20. DOE Publishes Best Practices Manual for Public Outreach and Education for Carbon Storage Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Regional Carbon Sequestration Partnerships program has released a new manual to recommend best practices for public outreach and education for carbon dioxide storage projects.

  1. EA-1886: Big Sky Regional Carbon Sequestration Partnership- Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA, and Site Closure, Kevin Dome, Toole County, Montana

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal for the Big Sky Carbon Sequestration Regional Partnership to demonstrate the viability and safety of CO2 storage in a regionally significant subsurface formation in Toole County, Montana and to promote the commercialization of future anthropogenic carbon storage in this region.

  2. Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage 5

    E-Print Network [OSTI]

    Pennycook, Steve

    Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage 5 Cristian I carbon fibers (Pd-ACF) were synthesized by melt-spinning, carbonization and activation of an isotropic pitch carbon precursor premixed with an orga- nometallic Pd compound. The hydrogen uptake at 25 °C

  3. Geology of Damon Mound Salt Dome, Texas

    SciTech Connect (OSTI)

    Collins, E.W.

    1989-01-01T23:59:59.000Z

    Geological investigation of the stratigraphy, cap-rock characteristics, deformation and growth history, and growth rate of a shallow coastal diapir. Damon Mound salt dome, located in Brazoria County, has salt less than 600 feet and cap rock less than 100 feet below the surface; a quarry over the dome provides excellent exposures of cap rock as well as overlying Oligocene to Pleistocene strata. These conditions make it ideal as a case study for other coastal diapirs that lack bedrock exposures. Such investigations are important because salt domes are currently being considered by chemical waste disposal companies as possible storage and disposal sites. In this book, the author reviews previous research, presents additional data on the subsurface and surface geology at Damon Mound, and evaluates Oligocene to post-Pleistocene diapir growth.

  4. Metal-assisted hydrogen storage on Pt-decorated single-walled carbon nanohorns

    E-Print Network [OSTI]

    Geohegan, David B.

    Metal-assisted hydrogen storage on Pt-decorated single-walled carbon nanohorns Yun Liu a,b,*, Craig nanoparticles can assist in enhanced hydrogen storage on high-surface area supports are still under debate. Experimental mea- surements of metal-assisted hydrogen storage have been hampered by inaccurate estima- tion

  5. Molecular Dynamics Simulation of Hydrogen Storage with Single Walled Carbon Nanotubes

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Molecular Dynamics Simulation of Hydrogen Storage with Single Walled Carbon Nanotubes Shigeo MARUYAMA #12;The hydrogen storage mechanism of SWNTs was studied through molecular dynamics simulations,12) Fig. 6 Hydrogen storage inside each SWNT #12;Table 1 Potential parameters between SWNTs Tube d0 [Ă?

  6. Lifetime of carbon capture and storage as a climate-change mitigation technology

    E-Print Network [OSTI]

    - logic storage capacities and sustainable injection rates, which has contributed to the absence for long-term storage (4, 5). Compared with other mitigation technologies such as renewable energy, CCSLifetime of carbon capture and storage as a climate-change mitigation technology Michael L

  7. Strategies for Demonstration and Early Deployment of Carbon Capture and Storage: A Technical and Economic Assessment of Capture Percentage

    E-Print Network [OSTI]

    Strategies for Demonstration and Early Deployment of Carbon Capture and Storage: A Technical;2 #12;Strategies for Demonstration and Early Deployment of Carbon Capture and Storage: A Technical and Policy at the Massachusetts Institute of Technology ABSTRACT Carbon capture and storage (CCS

  8. Method of making improved gas storage carbon with enhanced thermal conductivity

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Rogers, Michael R. (Knoxville, TN)

    2002-11-05T23:59:59.000Z

    A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).

  9. Grazing intensity impacts soil carbon and nitrogen storage of continental steppe

    E-Print Network [OSTI]

    Yu, Qiang

    Grazing intensity impacts soil carbon and nitrogen storage of continental steppe N. P. HE,1,2 Y. H. Chen, Q. M. Pan, G. M. Zhang, and X. G. Han. 2011. Grazing intensity impacts soil carbon and nitrogen 100049 China Abstract. Recent studies have underscored the importance of grasslands as potential carbon

  10. Report TKK-ENY-9 Mineral carbonation for long-term storage of CO2

    E-Print Network [OSTI]

    Zevenhoven, Ron

    ://www.entek.chalmers.se/~anly/symp/symp2001.html) "CO2 sequestration by magnesium silicate mineral carbonation in Finland" Ron Zevenhoven of magnesium oxide-based mineral carbonation for CO2 sequestration" Ron Zevenhoven, Jens Kohlmann. underReport TKK-ENY-9 Mineral carbonation for long-term storage of CO2 from flue gases Jens Kohlmann 1

  11. Scaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog

    E-Print Network [OSTI]

    . At present, fossil fuels are the dominant source of global primary energy supply, and they will likely remain Global warming Carbon mitigation Low carbon energy technologies Carbon dioxide capture and storage (CCS so for the rest of the century. Fossil fuels supply over 85% of all primary commercial energy

  12. Effect of a Legume Cover Crop on Carbon Storage and Erosion in an Ultisol under Maize

    E-Print Network [OSTI]

    143 CHAPTER 10 Effect of a Legume Cover Crop on Carbon Storage and Erosion in an Ultisol under...........................................................................................145 10.2.3 Carbon and Nitrogen Determination, and Other Analyses......................................145 10.2.4 Determinations of Runoff, Soil Losses, and Eroded Carbon

  13. R E V I E W Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests

    E-Print Network [OSTI]

    Schnitzer, Stefan

    R E V I E W Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests Geertje for carbon storage and sequestration. Lianas reduce tree growth, survival, and leaf productivity; however liana carbon stocks are unlikely to compensate for liana-induced losses in net carbon sequestration

  14. Geologic Storage of carbon dioxide : risk analyses and implications for public acceptance

    E-Print Network [OSTI]

    Singleton, Gregory R. (Gregory Randall)

    2007-01-01T23:59:59.000Z

    Carbon Capture and Storage (CCS) technology has the potential to enable large reductions in global greenhouse gas emissions, but one of the unanswered questions about CCS is whether it will be accepted by the public. In ...

  15. Hydrogen Storage in Carbon Nanotubes Through Formation of C-H...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil...

  16. Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the...

  17. Responses of primary production and total carbon storage to changes in climate and atmospheric CO? concentration

    E-Print Network [OSTI]

    Xiao, Xiangming.; Kicklighter, David W.; Melillo, Jerry M.; McGuire, A. David.; Stone, Peter H.; Sokolov, Andrei P.

    The authors used the terrestrial ecosystem model (TEM, version 4.0) to estimate global responses of annual net primary production (NPP) and total carbon storage to changes in climate and atmospheric CO2, driven by the ...

  18. Synthesis and Characterization of Rationally Designed Porous Materials for Energy Storage and Carbon Capture

    E-Print Network [OSTI]

    Sculley, Julian Patrick

    2013-04-30T23:59:59.000Z

    Two of the hottest areas in porous materials research in the last decade have been in energy storage, mainly hydrogen and methane, and in carbon capture and sequestration (CCS). Although these topics are intricately linked in terms of our future...

  19. A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage

    E-Print Network [OSTI]

    Mao, Xianwen

    The applications of electrospun carbon fiber webs to the development of energy storages devices, including both supercapacitors and lithium ion batteries (LIB) , are reviewed. Following a brief discussion of the fabrication ...

  20. DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide storage in geologic formations.

  1. Carbon sequestration via wood harvest and storage: An assessment of its harvest potential

    E-Print Network [OSTI]

    Zeng, Ning

    this way on half of the world's forested land, or on a smaller area but with higher harvest intensity. WeCarbon sequestration via wood harvest and storage: An assessment of its harvest potential Ning Zeng Abstract A carbon sequestration strategy has recently been proposed in which a forest is actively managed

  2. Three-Dimensional Coherent Titania-Mesoporous Carbon Nanocomposite and Its Lithium-Ion Storage Properties

    E-Print Network [OSTI]

    Cao, Guozhong

    Three-Dimensional Coherent Titania-Mesoporous Carbon Nanocomposite and Its Lithium-Ion Storage Properties Laifa Shen,, Evan Uchaker, Changzhou Yuan, Ping Nie, Ming Zhang, Xiaogang Zhang,*, and Guozhong into the channels of surface- oxidized mesoporous carbon (CMK-3) by means of electrostatic interaction, followed

  3. CARBON NANOTUBE USED FOR ENERGY STORAGE David S. Lashmore, PhD CTO, co-founder

    E-Print Network [OSTI]

    New Hampshire, University of

    CARBON NANOTUBE USED FOR ENERGY STORAGE David S. Lashmore, PhD CTO, co-founder Nanocomp Technologies 57 Daniel Webster Hwy Merrimack, NH 03054 Carbon nanotubes are now made directly in the form electrodes so that thin high-energy batteries can be made conformal and load bearing. (2) Since the copper

  4. Determination of the Effect of Geological Reservoir Variability on Carbon Dioxide Storage

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Determination of the Effect of Geological Reservoir Variability on Carbon Dioxide Storage Using'expériences -- Dans le contexte de l'étude du stockage géologique du dioxyde de carbone dans les réservoirs al. (2007) Energy Convers. Manage. 48, 1782-1797; Gunter et al. (1999) Appl. Geochem. 4, 1

  5. Strategic Petroleum Reserve (SPR) geological site characterization report, Big Hill Salt Dome

    SciTech Connect (OSTI)

    Hart, R.J.; Ortiz, T.S.; Magorian, T.R.

    1981-09-01T23:59:59.000Z

    Geological and geophysical analyses of the Big Hill Salt Dome were performed to determine the suitability of this site for use in the Strategic Petroleum Reserve (SPR). Development of 140 million barrels (MMB) of storage capacity in the Big Hill Salt Dome is planned as part of the SPR expansion to achieve 750 MMB of storage capacity. Objectives of the study were to: (1) Acquire, evaluate, and interpret existing data pertinent to geological characterization of the Big Hill Dome; (2) Characterize the surface and near-surface geology and hydrology; (3) Characterize the geology and hydrology of the overlying cap rock; (4) Define the geometry and geology of the dome; (5) Determine the feasibility of locating and constructing 14 10-MMB storage caverns in the south portion of the dome; and (6) Assess the effects of natural hazards on the SPR site. Recommendations are included. (DMC)

  6. PUBLISHED ONLINE: 22 DECEMBER 2009 | DOI: 10.1038/NGEO721 Increased tree carbon storage in response to

    E-Print Network [OSTI]

    Berkowitz, Alan R.

    LETTERS PUBLISHED ONLINE: 22 DECEMBER 2009 | DOI: 10.1038/NGEO721 Increased tree carbon storage, survival and carbon storage across the northeastern and north-central USA during the 1980s and 1990s. We than 50%, above-ground biomass increment increased by 61 kg of carbon per kg of nitrogen deposited

  7. Carbon Cycle 2.0: Nitash Balsara: Energy Storage

    ScienceCinema (OSTI)

    Nitash Balsara

    2010-09-01T23:59:59.000Z

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  8. The feasibility of a unitised regenerative fuel cell with a reversible carbon-based hydrogen storage electrode.

    E-Print Network [OSTI]

    Jazaeri, M

    2013-01-01T23:59:59.000Z

    ??This thesis seeks to experimentally demonstrate the possibility of reversible storage of hydrogen directly into a carbon-based electrode of a PEM unitised regenerative fuel cell.… (more)

  9. Strategies for demonstration and early deployment of carbon capture and storage : a technical and economic assessment of capture percentage .

    E-Print Network [OSTI]

    Hildebrand, Ashleigh Nicole

    2009-01-01T23:59:59.000Z

    ??Carbon capture and storage (CCS) is a critical technology for reducing greenhouse gas emissions from electricity production by coal-fired power plants. However, full capture (capture… (more)

  10. Selection and preparation of activated carbon for fuel gas storage

    DOE Patents [OSTI]

    Schwarz, James A. (Fayetteville, NY); Noh, Joong S. (Syracuse, NY); Agarwal, Rajiv K. (Las Vegas, NV)

    1990-10-02T23:59:59.000Z

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  11. Uncovering Role of Symbiotic Fungi in Soil Carbon Storage | U...

    Office of Science (SC) Website

    scarce for other carbon decomposers in the soil and consequently reducing their biomass and rates of decomposition. By contrast, arbuscular mycorrhizal fungi lack many of...

  12. Sorbents and Carbon-Based Materials for Hydrogen Storage R &...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for storing hydrogen in high-surface-area sorbents such as hybrid carbon nanotubes, aerogels, and nanofibers, as well as metal-organic frameworks and conducting polymers. A...

  13. Sorbents and Carbon-Based Materials for Hydrogen Storage Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for storing hydrogen in high-surface-area sorbents such as hybrid carbon nanotubes, aerogels, and nanofibers, as well as metal-organic frameworks and conducting polymers. A...

  14. Overview of Carbon Storage Research | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    groups which promote CCS on a regional, national, and international level: Regional Carbon Sequestration Partnerships (RCSPs) - DOE has created a nationwide network of...

  15. EIS-0464: Lake Charles Carbon Capture and Storage (CCS) Project...

    Broader source: Energy.gov (indexed) [DOE]

    for an award of financial assistance through a competitive process under the Industrial Carbon Capture and Sequestration Program. Public Comment Opportunities None available at...

  16. Uncertainty analysis of capacity estimates and leakage potential for geologic storage of carbon dioxide in saline aquifers

    E-Print Network [OSTI]

    Raza, Yamama

    2009-01-01T23:59:59.000Z

    The need to address climate change has gained political momentum, and Carbon Capture and Storage (CCS) is a technology that is seen as being feasible for the mitigation of carbon dioxide emissions. However, there is ...

  17. Corresponding author: Tel. (617) 253-0688, Fax. (617) 253-8013, Email: hjherzog@mit.edu HOW AWARE IS THE PUBLIC OF CARBON CAPTURE AND STORAGE?

    E-Print Network [OSTI]

    capture and storage or carbon sequestration. It is hoped that results of this survey will be helpful capture and storage or carbon sequestration. Initial versions of the survey included more questions about of public understanding of global warming and carbon dioxide capture and storage (or carbon sequestration

  18. EIS-0010: Strategic Petroleum Reserves, Sulphur Mines Salt Dome, Calcasieu Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Strategic Petroleum Reserves prepared this EIS to assess the environmental impacts of the proposed storage of 24 million barrels of crude oil at the Sulphur Mines salt dome located in Calcasieu Parish, Louisiana, including construction and operation impacts.

  19. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01T23:59:59.000Z

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  20. IMPROVEMENT OF METHANE STORAGE IN ACTIVATED CARBON USING METHANE HYDRATE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and particles. As the natural gas resources are enormous, it represents a good alternative to oil in term natural gas distribution network. Secondly, at low pressure, the tank geometry can adopt various shapes, gas storage INTRODUCTION. With the massive increase of the urban traffic, coupled with its large

  1. New Funding from DOE Boosts Carbon Capture and Storage Research...

    Office of Environmental Management (EM)

    586-54940 Addthis Related Articles Energy Department Awards 66.7 Million for Large-Scale Carbon Sequestration Project Department of Energy Announces More than 8.4 Million for...

  2. 10 Carbon Capture and Storage in the UK Yasmin E. Bushby Scottish Centre for Carbon Storage, School

    E-Print Network [OSTI]

    are the direct result of combustion of fossil fuels and biomass since the industrial revolution of the 1850s stations and industrial facilities. Existing power stations can be retrofitted with carbon capture industrial process, although the amount of carbon captured will need to be much greater for use on power

  3. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    SciTech Connect (OSTI)

    Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

    2014-08-14T23:59:59.000Z

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have demonstrated the predicted increase in binding energy experimentally, currently at ~10 kJ/mol. The synthetic route for incorporation of boron at the outset is to create appropriately designed copoly- mers, with a boron-free and a boron-carrying monomer, followed by pyrolysis of the polymer, yielding a bo- ron-substituted carbon scaffold in which boron atoms are bonded to carbon atoms by synthesis. This is in contrast to a second route (funded by DE-FG36-08GO18142) in which first high-surface area carbon is cre- ated and doped by surface vapor deposition of boron, with incorporation of the boron into the lattice the final step of the fabrication. The challenge in the first route is to create high surface areas without compromising sp2 boron-carbon bonds. The challenge in the second route is to create sp2 boron-carbon bonds without com- promising high surface areas.

  4. s.haszeldine@ed.ac.uk Scottish Centre for Carbon Storage, Petrobras 2008 1 University of Edinburgh (est 1583)

    E-Print Network [OSTI]

    Haszeldine, Stuart

    .haszeldine@ed.ac.uk Scottish Centre for Carbon Storage, Petrobras 2008 5 Connecting CCS companies 2007: Largest CO2 Storage in India Predicting seal in overburden Natural CO2 sites #12;s.haszeldine@ed.ac.uk Scottish Centre://www.geos.ed.ac.uk/sccs/ s.haszeldine@ed.ac.uk Scottish Centre for Carbon Storage, Petrobras 2008 12 7: CO2 Capture from

  5. Nitrogen Addition Increases Carbon Storage in Soils, But Not in Trees, in

    E-Print Network [OSTI]

    Templer, Pamela

    nitrogen (N) species and car- bon dioxide (CO2) in the atmosphere globally. Received 18 August 2012Nitrogen Addition Increases Carbon Storage in Soils, But Not in Trees, in an Eastern U.S. Deciduous regions receive elevated rates of atmospheric nitrogen (N) deposition from air pollution. To evalu- ate

  6. New Roadmap Updates Status of DOE Carbon Capture and Storage RD&D Efforts

    Broader source: Energy.gov [DOE]

    An overview of research, development, and demonstration efforts to supply cost-effective, advanced carbon capture and storage technologies for coal-based power systems is the focus of a new roadmap published by the U.S. Department of Energy.

  7. Carbon Capture and Storage: Sustainability in the UK energy mix yryfasyfrtsayfsaytrsyfysa 1 UK Energy Research Centre

    E-Print Network [OSTI]

    Carbon Capture and Storage: Sustainability in the UK energy mix yryfasyfrtsayfsaytrsyfysa 1 UK information and leadership, on sustainable energy systems. UKERC undertakes world-class research addressing: Sustainability in the UK energy mix yryfasyfrtsayfsaytrsyfysa 3 UK Energy Research Centre Morning Session 1 ) I

  8. A Systems Perspective for Assessing Carbon Dioxide Capture and Storage Opportunities

    E-Print Network [OSTI]

    A Systems Perspective for Assessing Carbon Dioxide Capture and Storage Opportunities by Nisheeth by _________________________________________________________________ Howard Herzog Principal Research Engineer, Lab for Energy & Environment, MIT Thesis Supervisor Accepted. I appreciate the financial support of the U.S. Department of Energy's National Energy Technology

  9. DIVISION S-10--WETLAND SOILS Carbon Accumulation and Storage in Mineral Subsoil beneath Peat

    E-Print Network [OSTI]

    Moore, Tim

    DIVISION S-10--WETLAND SOILS Carbon Accumulation and Storage in Mineral Subsoil beneath Peat Tim R subsoil (Turunen and Moore, 2003). TheyWe showed that sandy subsoils beneath peat near Ramsey Lake conditions beneath the peat. soils beneath the forest, those beneath the peat contained similar In this paper

  10. Woodland development and soil carbon and nitrogen dynamics and storage in a subtropical savanna ecosystem

    E-Print Network [OSTI]

    Liao, Julia Den-Yue

    2005-02-17T23:59:59.000Z

    succession over the past century to subtropical thorn woodlands dominated by C3 trees/shrubs. To elucidate mechanisms of soil organic carbon (SOC) and soil total N (STN) storage and dynamics in this ecosystem, I measured the mass and isotopic composition...

  11. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    SciTech Connect (OSTI)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07T23:59:59.000Z

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

  12. The Subsurface Fluid Mechanics of Geologic Carbon Dioxide Storage

    E-Print Network [OSTI]

    and Environmental Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy for the degree of Doctor of Philosophy in the Field of Civil and Environmental Engineering Abstract In carbon mitigates the risk of CO2 leakage to shallower formations or the surface. We address this question

  13. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    SciTech Connect (OSTI)

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31T23:59:59.000Z

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride) that allow for the easy removal of calcium waste from the well. Physical and chemical analysis of core samples taken from prospective geologic formations for the acid dissolution process confirmed that many of the limestone samples readily dissolved in concentrated hydrochloric acid. Further, some samples contained oily residues that may help to seal the walls of the final cavern structure. These results suggest that there exist carbonate rock formations well suited for the dissolution technology and that the presence of inert impurities had no noticeable effect on the dissolution rate for the carbonate rock. A sensitivity analysis was performed for characteristics of hydraulic fractures induced in carbonate formations to enhance the dissolution process. Multiple fracture simulations were conducted using modeling software that has a fully 3-D fracture geometry package. The simulations, which predict the distribution of fracture geometry and fracture conductivity, show that the stress difference between adjacent beds is the physical property of the formations that has the greatest influence on fracture characteristics by restricting vertical growth. The results indicate that by modifying the fracturing fluid, proppant type, or pumping rate, a fracture can be created with characteristics within a predictable range, which contributes to predicting the geometry of storage caverns created by acid dissolution of carbonate formations. A series of three-dimensional simulations of cavern formation were used to investigate three different configurations of the acid-dissolution process: (a) injection into an open borehole with production from that same borehole and no fracture; (b) injection into an open borehole with production from that same borehole, with an open fracture; and (c) injection into an open borehole connected by a fracture to an adjacent borehole from which the fluids are produced. The two-well configuration maximizes the overall mass transfer from the rock to the fluid, but it results in a complex cavern shape. Numerical simulations were performed to evalua

  14. Carbon Capture and Storage in Southern Africa | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder,Research JumpEnergyEnergyOpenStorage in

  15. Carbon Capture, Transport and Storage Regulatory Test Exercise: Output

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder,Research JumpEnergyEnergyOpenStorage inReport

  16. Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations

    E-Print Network [OSTI]

    Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

    2002-01-01T23:59:59.000Z

    types of potential reservoirs: abandoned and producing oilgeological reservoirs, including abandoned and producing oilreservoir; Salt: Salt dome or bedded salt; Coal: Abandoned

  17. Synthesis, characterization, and modeling of hydrogen storage in carbon aerogels

    SciTech Connect (OSTI)

    Pekala, R.W.; Coronado, P.R.; Calef, D.F.

    1995-04-01T23:59:59.000Z

    Carbon aerogels are a special class of open-cell foams with an ultrafine cell/pore size (<50 nm), high surface area (600-800 m{sup 2}/g), and a solid matrix composed of interconnected colloidal-like particles or fibers with characteristic diameters of 10 nm. These materials are usually synthesized from the sol-gel polymerization of resorcinol-formaldehyde or phenolic-furfural, followed by supercritical extraction of the solvent and pyrolysis in an inert atmosphere. The resultant aerogel has a nanocrystalline structure with micropores (<2 nm diameter) located within the solid matrix. Carbon aerogel monoliths can be prepared at densities ranging from 0.05-1.0 g/cm{sup 3}, leading to volumetric surface areas (> 500 m{sup 2}/cm{sup 3}) that are much larger than commercially available materials. This research program is directed at optimization of the aerogel structure for maximum hydrogen adsorption over a wide range of temperatures and pressures. Computer modeling of hydrogen adsorption at carbon surfaces was also examined.

  18. Equilibrium analysis of masonry domes

    E-Print Network [OSTI]

    Lau, Wanda W

    2006-01-01T23:59:59.000Z

    This thesis developed a new method to analyze the structural behavior of masonry domes: the modified thrust line analysis. This graphical-based method offers several advantages to existing methods. It is the first to account ...

  19. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect (OSTI)

    Bigelow, Erik

    2012-10-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-­?based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­?hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-­?based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-­?hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-­?based cycling within the company as well as throughout the industry.

  20. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model

    SciTech Connect (OSTI)

    Weng, Ensheng [University of Oklahoma, Norman; Luo, Yiqi [University of Oklahoma; Wang, Weile [NASA Ames Research Center; Wang, Han [University of Oklahoma, Norman; Hayes, Daniel J [ORNL; McGuire, A. David [University of Alaska; Hastings, Alan [University of California, Davis; Schimel, David [NEON Inc.

    2012-01-01T23:59:59.000Z

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U {center_dot} {tau}{sub E} {center_dot} {lambda}{lambda} + s {tau} 1, where U is ecosystem carbon influx, {tau}{sub E} is ecosystem carbon residence time, and {tau}{sub 1} is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval ({lambda}) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45{sup o} N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  1. Carbon Capture and Storage Research | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout5 Calendar YearAwardCarbonResearch

  2. Carbon Capture, Utilization & Storage | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout5 CalendarCarbon Capture,

  3. Carbon Storage R&D | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout5 CalendarCarbonIllinois |R&D

  4. Simulation and Risk Assessment for Carbon Storage | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergy Data Access Silver SpringCarbon

  5. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    SciTech Connect (OSTI)

    Guy Cerimele

    2011-09-30T23:59:59.000Z

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  6. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors

    SciTech Connect (OSTI)

    Simon, P.; Gogotsi, Y.

    2010-01-01T23:59:59.000Z

    Electrochemical capacitors, also known as supercapacitors, are energy storage devices that fill the gap between batteries and dielectric capacitors. Thanks to their unique features, they have a key role to play in energy storage and harvesting, acting as a complement to or even a replacement of batteries which has already been achieved in various applications. One of the challenges in the supercapacitor area is to increase their energy density. Some recent discoveries regarding ion adsorption in microporous carbon exhibiting pores in the nanometre range can help in designing the next generation of high-energy-density supercapacitors.

  7. Final Scientific/Technical Report Carbon Capture and Storage Training Northwest - CCSTNW

    SciTech Connect (OSTI)

    Workman, James

    2013-09-30T23:59:59.000Z

    This report details the activities of the Carbon Capture and Storage Training Northwest (CCSTNW) program 2009 to 2013. The CCSTNW created, implemented, and provided Carbon Capture and Storage (CCS) training over the period of the program. With the assistance of an expert advisory board, CCSTNW created curriculum and conducted three short courses, more than three lectures, two symposiums, and a final conference. The program was conducted in five phases; 1) organization, gap analysis, and form advisory board; 2) develop list serves, website, and tech alerts; 3) training needs survey; 4) conduct lectures, courses, symposiums, and a conference; 5) evaluation surveys and course evaluations. This program was conducted jointly by Environmental Outreach and Stewardship Alliance (dba. Northwest Environmental Training Center – NWETC) and Pacific Northwest National Laboratories (PNNL).

  8. Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. The database contains more than 260 CCS projects worldwide in more than 30 countries across 6 continents. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.

  9. No geologic evidence that seismicity causes fault leakage that would render large-scale carbon capture and storage unsuccessful

    E-Print Network [OSTI]

    Juanes, Ruben

    In a recent Perspective (1), Zoback and Gorelick argued that carbon capture and storage (CCS) is likely not a viable strategy for reducing CO[subscript 2] emissions to the atmosphere. They argued that maps of earthquake ...

  10. Strategies for demonstration and early deployment of carbon capture and storage : a technical and economic assessment of capture percentage

    E-Print Network [OSTI]

    Hildebrand, Ashleigh Nicole

    2009-01-01T23:59:59.000Z

    Carbon capture and storage (CCS) is a critical technology for reducing greenhouse gas emissions from electricity production by coal-fired power plants. However, full capture (capture of nominally 90% of emissions) has ...

  11. Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors

    SciTech Connect (OSTI)

    Lee, Seul-Yi [Department of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of); Yop Rhee, Kyong [Industrial Liaison Research Institute, Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 446-701 Yongin (Korea, Republic of); Nahm, Seung-Hoon [Center for New and Renewable Energy Measurement, Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2014-02-15T23:59:59.000Z

    In this study, the hydrogen storage behaviors of p-type multi-walled carbon nanotubes (MWNTs) were investigated through the surface modification of MWNTs by immersing them in sulfuric acid (H{sub 2}SO{sub 4}) and hydrogen peroxide (H{sub 2}O{sub 2}) at various ratios. The presence of acceptor-functional groups on the p-type MWNT surfaces was confirmed by X-ray photoelectron spectroscopy. Measurement of the zeta-potential determined the surface charge transfer and dispersion of the p-type MWMTs, and the hydrogen storage capacity was evaluated at 77 K and 1 bar. From the results obtained, it was found that acceptor-functional groups were introduced onto the MWNT surfaces, and the dispersion of MWNTs could be improved depending on the acid-mixed treatment conditions. The hydrogen storage was increased by acid-mixed treatments of up to 0.36 wt% in the p-type MWNTs, compared with 0.18 wt% in the As-received MWNTs. Consequently, the hydrogen storage capacities were greatly influenced by the acceptor-functional groups of p-type MWNT surfaces, resulting in increased electron acceptor–donor interaction at the interfaces. - Graphical abstract: Hydrogen storage behaviors of the p-type MWNTs with the acid-mixed treatments are described. Display Omitted Display Omitted.

  12. EIS-0029: Strategic Petroleum Reserve, Texoma Group Salt Domes, Cameron and Calcasieu Parishes, Louisiana and Jefferson County, TX

    Broader source: Energy.gov [DOE]

    The Strategic Petroleum Reserves developed this EIS to analyze the environmental impacts which could occur during site preparation and operation of oil storage facilities at each of four proposed candidate sites in the Texoma Group of salt domes.

  13. Influence of the pore size in multi-walled carbon nanotubes on the hydrogen storage behaviors

    SciTech Connect (OSTI)

    Lee, Seul-Yi [Department of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of)] [Department of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of)] [Department of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2012-10-15T23:59:59.000Z

    Activated multi-walled carbon nanotubes (A-MWCNTs) were prepared using a chemical activation method to obtain well-developed pore structures for use as hydrogen storage materials. The microstructure and crystallinity of the A-MWCNTs were evaluated by X-ray diffraction and Fourier transform Raman spectroscopy. The textural properties of the A-MWCNTs were investigated by nitrogen gas sorption analysis at 77 K. The hydrogen storage capacity of the A-MWCNTs was evaluated at 77 K and 1 bar. The results showed that the specific surface area of the MWCNTs increased from 327 to 495 m{sup 2}/g as the activation temperature was increased. The highest hydrogen storage capacity was observed in the A-MWCNTs sample activated at 900 Degree-Sign C (0.54 wt%). This was attributed to it having the narrowest microporosity, which is a factor closely related to the hydrogen storage capacity. This shows that the hydrogen storage behaviors depend on the pore volume. Although a high pore volume is desirable for hydrogen storage, it is also severely affected if the pore size in the A-MWCNTs for the hydrogen molecules is suitable for creating the activation process. Highlights: Black-Right-Pointing-Pointer The AT-800 and AT-900 samples were prepared by a chemical activation method at activation temperature of 800 and 900 Degree-Sign C, respectively. Black-Right-Pointing-Pointer The AT-900 sample has the narrowest peak in comparison with the AT-800 sample, resulting from the overlap of the two peaks (Peak I and Peak II). Black-Right-Pointing-Pointer This overlapping effect is due to the newly created micropores or shrinkages of pores in Peak II. So, these determining characteristics are essential for designing materials that are suitable for molecular hydrogen storage.

  14. Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations

    E-Print Network [OSTI]

    Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

    2002-01-01T23:59:59.000Z

    reservoirs: abandoned and producing oil and gas reservoirs,geological reservoirs, including abandoned and producing oiloil and/or gas reservoir; Salt: Salt dome or bedded salt; Coal: Abandoned

  15. Sub-Seafloor Carbon Dioxide Storage Potential on the Juan de Fuca Plate, Western North America

    SciTech Connect (OSTI)

    Jerry Fairley; Robert Podgorney

    2012-11-01T23:59:59.000Z

    The Juan de Fuca plate, off the western coast of North America, has been suggested as a site for geological sequestration of waste carbon dioxide because of its many attractive characteristics (high permeability, large storage capacity, reactive rock types). Here we model CO2 injection into fractured basalts comprising the upper several hundred meters of the sub-seafloor basalt reservoir, overlain with low-permeability sediments and a large saline water column, to examine the feasibility of this reservoir for CO2 storage. Our simulations indicate that the sub-seafloor basalts of the Juan de Fuca plate may be an excellent CO2 storage candidate, as multiple trapping mechanisms (hydrodynamic, density inversions, and mineralization) act to keep the CO2 isolated from terrestrial environments. Questions remain about the lateral extent and connectivity of the high permeability basalts; however, the lack of wells or boreholes and thick sediment cover maximize storage potential while minimizing potential leakage pathways. Although promising, more study is needed to determine the economic viability of this option.

  16. Modeling geologic storage of carbon dioxide: Comparison ofnon-hysteretic chracteristic curves

    SciTech Connect (OSTI)

    Doughty, Christine

    2006-04-28T23:59:59.000Z

    TOUGH2 models of geologic storage of carbon dioxide (CO2) in brine-bearing formations use characteristic curves to represent the interactions of non-wetting-phase CO2 and wetting-phase brine. When a problem includes both injection of CO2 (a drainage process) and its subsequent post-injection evolution (a combination of drainage and wetting), hysteretic characteristic curves are required to correctly capture the behavior of the CO2 plume. In the hysteretic formulation, capillary pressure and relative permeability depend not only on the current grid-block saturation, but also on the history of the saturation in the grid block. For a problem that involves only drainage or only wetting, a nonhysteretic formulation, in which capillary pressure and relative permeability depend only on the current value of the grid-block saturation, is adequate. For the hysteretic formulation to be robust computationally, care must be taken to ensure the differentiability of the characteristic curves both within and beyond the turning-point saturations where transitions between branches of the curves occur. Two example problems involving geologic CO2 storage are simulated using non-hysteretic and hysteretic models, to illustrate the applicability and limitations of non-hysteretic methods: the first considers leakage of CO2 from the storage formation to the ground surface, while the second examines the role of heterogeneity within the storage formation.

  17. Electrochemical energy storage device based on carbon dioxide as electroactive species

    DOE Patents [OSTI]

    Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

    2013-03-05T23:59:59.000Z

    An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

  18. Carbon Capture and Storage in the Permian Basin, a Regional Technology Transfer and Training Program

    SciTech Connect (OSTI)

    Rychel, Dwight

    2013-09-30T23:59:59.000Z

    The Permian Basin Carbon Capture, Utilization and Storage (CCUS) Training Center was one of seven regional centers formed in 2009 under the American Recovery and Reinvestment Act of 2009 and managed by the Department of Energy. Based in the Permian Basin, it is focused on the utilization of CO2 Enhanced Oil Recovery (EOR) projects for the long term storage of CO2 while producing a domestic oil and revenue stream. It delivers training to students, oil and gas professionals, regulators, environmental and academia through a robust web site, newsletter, tech alerts, webinars, self-paced online courses, one day workshops, and two day high level forums. While course material prominently features all aspects of the capture, transportation and EOR utilization of CO2, the audience focus is represented by its high level forums where selected graduate students with an interest in CCUS interact with Industry experts and in-house workshops for the regulatory community.

  19. Consistent quantification of climate impacts due to biogenic carbon storage across a range of bio-product systems

    SciTech Connect (OSTI)

    Guest, Geoffrey, E-mail: geoffrey.guest@ntnu.no; Bright, Ryan M., E-mail: ryan.m.bright@ntnu.no; Cherubini, Francesco, E-mail: francesco.cherubini@ntnu.no; Strűmman, Anders H., E-mail: anders.hammer.stromman@ntnu.no

    2013-11-15T23:59:59.000Z

    Temporary and permanent carbon storage from biogenic sources is seen as a way to mitigate climate change. The aim of this work is to illustrate the need to harmonize the quantification of such mitigation across all possible storage pools in the bio- and anthroposphere. We investigate nine alternative storage cases and a wide array of bio-resource pools: from annual crops, short rotation woody crops, medium rotation temperate forests, and long rotation boreal forests. For each feedstock type and biogenic carbon storage pool, we quantify the carbon cycle climate impact due to the skewed time distribution between emission and sequestration fluxes in the bio- and anthroposphere. Additional consideration of the climate impact from albedo changes in forests is also illustrated for the boreal forest case. When characterizing climate impact with global warming potentials (GWP), we find a large variance in results which is attributed to different combinations of biomass storage and feedstock systems. The storage of biogenic carbon in any storage pool does not always confer climate benefits: even when biogenic carbon is stored long-term in durable product pools, the climate outcome may still be undesirable when the carbon is sourced from slow-growing biomass feedstock. For example, when biogenic carbon from Norway Spruce from Norway is stored in furniture with a mean life time of 43 years, a climate change impact of 0.08 kg CO{sub 2}eq per kg CO{sub 2} stored (100 year time horizon (TH)) would result. It was also found that when biogenic carbon is stored in a pool with negligible leakage to the atmosphere, the resulting GWP factor is not necessarily ? 1 CO{sub 2}eq per kg CO{sub 2} stored. As an example, when biogenic CO{sub 2} from Norway Spruce biomass is stored in geological reservoirs with no leakage, we estimate a GWP of ? 0.56 kg CO{sub 2}eq per kg CO{sub 2} stored (100 year TH) when albedo effects are also included. The large variance in GWPs across the range of resource and carbon storage options considered indicates that more accurate accounting will require case-specific factors derived following the methodological guidelines provided in this and recent manuscripts. -- Highlights: • Climate impacts of stored biogenic carbon (bio-C) are consistently quantified. • Temporary storage of bio-C does not always equate to a climate cooling impact. • 1 unit of bio-C stored over a time horizon does not always equate to ? 1 unit CO{sub 2}eq. • Discrepancies of climate change impact quantification in literature are clarified.

  20. Salt dome discoveries mounting in Mississippi

    SciTech Connect (OSTI)

    Ericksen, R.L. [Mississippi Office of Geology, Jackson, MS (United States)

    1996-06-17T23:59:59.000Z

    Exploratory drilling around piercement salt domes in Mississippi has met with a string of successes in recent months. Exploration of these salt features is reported to have been initiated through the review of non-proprietary, 2D seismic data and subsurface control. This preliminary data and work were then selectively upgraded by the acquisition of additional, generally higher quality, conventional 2D seismic lines. This current flurry of successful exploration and ensuing development drilling by Amerada Hess Corp. on the flanks of salt domes in Mississippi has resulted in a number of significant Hosston discoveries/producers at: Carson salt dome in Jefferson Davis County; Dry Creek salt dome in Covington County, Midway salt dome in lamar County, Monticello salt dome in Lawrence County, and Prentiss salt dome in Jefferson Davis County. The resulting production from these fields is gas and condensate, with wells being completed on 640 acre production units.

  1. Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC HistoryVeteranstoHuubHydrogen Storage in Carbon

  2. Disappearance of Relict Permafrost in Boreal North America: Effects on Peatland Carbon Storage and Fluxes

    SciTech Connect (OSTI)

    Turetsky, M. R.; Wieder, R. K.; Vitt, D. H.; Evans, R. J.; Scott, K. D.

    2007-01-01T23:59:59.000Z

    Boreal peatlands in Canada have harbored relict permafrost since the Little Ice Age due to the strong insulating properties of peat. Ongoing climate change has triggered widespread degradation of localized permafrost in peatlands across continental Canada. Here, we explore the influence of differing permafrost regimes (bogs with no surface permafrost, localized permafrost features with surface permafrost, and internal lawns representing areas of permafrost degradation) on rates of peat accumulation at the southernmost limit of permafrost in continental Canada. Net organic matter accumulation generally was greater in unfrozen bogs and internal lawns than in the permafrost landforms, suggesting that surface permafrost inhibits peat accumulation and that degradation of surface permafrost stimulates net carbon storage in peatlands. To determine whether differences in substrate quality across permafrost regimes control trace gas emissions to the atmosphere, we used a reciprocal transplant study to experimentally evaluate environmental versus substrate controls on carbon emissions from bog, internal lawn, and permafrost peat. Emissions of CO{sub 2} were highest from peat incubated in the localized permafrost feature, suggesting that slow organic matter accumulation rates are due, at least in part, to rapid decomposition in surface permafrost peat. Emissions of CH{sub 4} were greatest from peat incubated in the internal lawn, regardless of peat type. Localized permafrost features in peatlands represent relict surface permafrost in disequilibrium with the current climate of boreal North America, and therefore are extremely sensitive to ongoing and future climate change. Our results suggest that the loss of surface permafrost in peatlands increases net carbon storage as peat, though in terms of radiative forcing, increased CH{sub 4} emissions to the atmosphere will partially or even completely offset this enhanced peatland carbon sink for at least 70 years following permafrost degradation.

  3. Lava Dome | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN)Lauderhill, Florida: EnergyLaurelDome Jump to:

  4. Relevance of underground natural gas storage to geologic sequestration of carbon dioxide

    SciTech Connect (OSTI)

    Lippmann, Marcelo J.; Benson, Sally M.

    2002-07-01T23:59:59.000Z

    The practice of underground natural gas storage (UNGS), which started in the USA in 1916, provides useful insight into the geologic sequestration of carbon dioxide--the dominant anthropogenic greenhouse gas released into the atmosphere. In many ways, UNGS is directly relevant to geologic CO{sub 2} storage because, like CO{sub 2}, natural gas (essentially methane) is less dense than water. Consequently, it will tend to rise to the top of any subsurface storage structure located below the groundwater table. By the end of 2001 in the USA, about 142 million metric tons of natural gas were stored underground in depleted oil and gas reservoirs and brine aquifers. Based on their performance, UNGS projects have shown that there is a safe and effective way of storing large volumes of gases in the subsurface. In the small number of cases where failures did occur (i.e., leakage of the stored gas into neighboring permeable layers), they were mainly related to improper well design, construction, maintenance, and/or incorrect project operation. In spite of differences in the chemical and physical properties of the gases, the risk-assessment, risk-management, and risk-mitigation issues relevant to UNGS projects are also pertinent to geologic CO{sub 2} sequestration.

  5. Automotive hydrogen storage system using cryo-adsorption on activated carbon.

    SciTech Connect (OSTI)

    Ahluwalia, R. K.; Peng, J. K.; Nuclear Engineering Division

    2009-07-01T23:59:59.000Z

    An integrated model of a sorbent-based cryogenic compressed hydrogen system is used to assess the prospect of meeting the near-term targets of 36 kg-H{sub 2}/m{sup 3} volumetric and 4.5 wt% gravimetric capacity for hydrogen-fueled vehicles. The model includes the thermodynamics of H{sub 2} sorption, heat transfer during adsorption and desorption, sorption dynamics, energetics of cryogenic tank cooling, and containment of H{sub 2} in geodesically wound carbon fiber tanks. The results from the model show that recoverable hydrogen, rather than excess or absolute adsorption, is a determining measure of whether a sorbent is a good candidate material for on-board storage of H{sub 2}. A temperature swing is needed to recover >80% of the sorption capacity of the superactivated carbon sorbent at 100 K and 100 bar as the tank is depressurized to 3-8 bar. The storage pressure at which the system needs to operate in order to approach the system capacity targets has been determined and compared with the breakeven pressure above which the storage tank is more compact if H{sub 2} is stored only as a cryo-compressed gas. The amount of liquid N{sub 2} needed to cool the hydrogen dispensed to the vehicle to 100 K and to remove the heat of adsorption during refueling has been estimated. The electrical energy needed to produce the requisite liquid N{sub 2} by air liquefaction is compared with the electrical energy needed to liquefy the same amount of H{sub 2} at a central plant. The alternate option of adiabatically refueling the sorbent tank with liquid H{sub 2} has been evaluated to determine the relationship between the storage temperature and the sustainable temperature swing. Finally, simulations have been run to estimate the increase in specific surface area and bulk density of medium needed to satisfy the system capacity targets with H{sub 2} storage at 100 bar.

  6. Radar investigation of the Hockley salt dome

    E-Print Network [OSTI]

    Hluchanek, James Andrew

    1973-01-01T23:59:59.000Z

    : Geophysics RADAR INVESTIGATION OF THE HOCKLEY SALT DOME A Thesis by UAMES ANDREW HLUCHANEK A'pproved as to style and content by: (Head of Departme t ? Member) May 1. 973 ABSTRACT Radar investigation of the Hockley Salt Dome. . (Nay, 1973) James.... THE PROBLEM. Page A. Probing into Unknown Areas in Salt. . B. Equipment Used. II. BACKGROUND MATERIAL. A. Geology of the Hockley Area. . . B. Economic History of the Hockley Dome Area. . 6 1. Oil 2. Gypsum. 3. Salt C. Geophysical Surveys Over...

  7. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01T23:59:59.000Z

    gas reservoirs for carbon sequestration and enhanced gasproduction and carbon sequestration, Society of Petroleumfeasibiilty of carbon sequestration with enhanced gas

  8. Heavy Water Test Reactor Dome Removal

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    A high speed look at the removal of the Heavy Water Test Reactor Dome Removal. A project sponsored by the Recovery Act on the Savannah River Site.

  9. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    SciTech Connect (OSTI)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25T23:59:59.000Z

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline formation waters. Therefore, they are expected to be representative of saline formation waters at actual and potential future CCS sites. We are using a produced waters database (Breit, 2002) covering most of the United States compiled by the U.S. Geological Survey (USGS). In one instance to date, we have used this database to find a composition corresponding to the brine expected at an actual CCS site (Big Sky CSP, Nugget Formation, Sublette County, Wyoming). We have located other produced waters databases, which are usually of regional scope (e.g., NETL, 2005, Rocky Mountains basins).

  10. RESPONSES OF PRIMARY PRODUCTION AND TOTAL CARBON STORAGE TO CHANGES IN CLIMATE AND ATMOSPHERIC CO2 CONCENTRATION

    E-Print Network [OSTI]

    Model (TEM, version 4.0) to estimate global responses of annual net primary production (NPP) and total. For contemporary climate with 315 ppmv CO2, TEM estimated that global NPP is 47.9 PgC/yr and global total carbon-q climate and +20.6% (9.9 PgC/yr) for the GISS climate. The responses of global total carbon storage are +17

  11. Dome Tech | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1DeringDolgeville, New York: Energy Resources JumpDolton,Dome

  12. Nanopores of carbon nanotubes as practical hydrogen storage media Sang Soo Han, Hyun Seok Kim, Kyu Sung Han, Jai Young Lee,

    E-Print Network [OSTI]

    Goddard III, William A.

    Nanopores of carbon nanotubes as practical hydrogen storage media Sang Soo Han, Hyun Seok Kim, Kyu walls that do not provide sites for hydrogen storage under ambient conditions. However, after treating nanopores in MWCNTs offer a promising route to hydrogen storage media for onboard practical applications

  13. Hydrogen storage in carbon nitride nanobells X. D. Bai, Dingyong Zhong, G. Y. Zhang, X. C. Ma, Shuang Liu, and E. G. Wanga)

    E-Print Network [OSTI]

    Zhang, Guangyu

    Hydrogen storage in carbon nitride nanobells X. D. Bai, Dingyong Zhong, G. Y. Zhang, X. C. Ma as hydrogen adsorbent. A hydrogen storage capacity up to 8 wt % was achieved reproducibly under ambient pressure and at temperature of 300 °C. The high hydrogen storage capacity under the moderate conditions

  14. An Assessment of Geological Carbon Storage Options in the Illinois Basin: Validation Phase

    SciTech Connect (OSTI)

    Robert Finley

    2012-12-01T23:59:59.000Z

    The Midwest Geological Sequestration Consortium (MGSC) assessed the options for geological carbon dioxide (CO{sub 2}) storage in the 155,400 km{sup 2} (60,000 mi{sup 2}) Illinois Basin, which underlies most of Illinois, western Indiana, and western Kentucky. The region has annual CO{sub 2} emissions of about 265 million metric tonnes (292 million tons), primarily from 122 coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year (U.S. Department of Energy, 2010). Validation Phase (Phase II) field tests gathered pilot data to update the Characterization Phase (Phase I) assessment of options for capture, transportation, and storage of CO{sub 2} emissions in three geological sink types: coal seams, oil fields, and saline reservoirs. Four small-scale field tests were conducted to determine the properties of rock units that control injectivity of CO{sub 2}, assess the total storage resources, examine the security of the overlying rock units that act as seals for the reservoirs, and develop ways to control and measure the safety of injection and storage processes. The MGSC designed field test operational plans for pilot sites based on the site screening process, MVA program needs, the selection of equipment related to CO{sub 2} injection, and design of a data acquisition system. Reservoir modeling, computational simulations, and statistical methods assessed and interpreted data gathered from the field tests. Monitoring, Verification, and Accounting (MVA) programs were established to detect leakage of injected CO{sub 2} and ensure public safety. Public outreach and education remained an important part of the project; meetings and presentations informed public and private regional stakeholders of the results and findings. A miscible (liquid) CO{sub 2} flood pilot project was conducted in the Clore Formation sandstone (Mississippian System, Chesterian Series) at Mumford Hills Field in Posey County, southwestern Indiana, and an immiscible CO{sub 2} flood pilot was conducted in the Jackson sandstone (Mississippian System Big Clifty Sandstone Member) at the Sugar Creek Field in Hopkins County, western Kentucky. Up to 12% incremental oil recovery was estimated based on these pilots. A CO{sub 2} huff â??nâ?? puff (HNP) pilot project was conducted in the Cypress Sandstone in the Loudon Field. This pilot was designed to measure and record data that could be used to calibrate a reservoir simulation model. A pilot project at the Tanquary Farms site in Wabash County, southeastern Illinois, tested the potential storage of CO{sub 2} in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} storage and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot results from all four sites showed that CO{sub 2} could be injected into the subsurface without adversely affecting groundwater. Additionally, hydrocarbon production was enhanced, giving further evidence that CO{sub 2} storage in oil reservoirs and coal beds offers an economic advantage. Results from the MVA program at each site indicated that injected CO{sub 2} did not leave the injection zone. Topical reports were completed on the Middle and Late Devonian New Albany Shale and Basin CO{sub 2} emissions. The efficacy of the New Albany Shale as a storage sink could be substantial if low injectivity concerns can be alleviated. CO{sub 2} emissions in the Illinois Basin were projected to be dominated by coal-fired power plants.

  15. Space Geodesy and Geochemistry Applied to the Monitoring, Verification of Carbon Capture and Storage

    SciTech Connect (OSTI)

    Swart, Peter

    2013-11-30T23:59:59.000Z

    This award was a training grant awarded by the U.S. Department of Energy (DOE). The purpose of this award was solely to provide training for two PhD graduate students for three years in the general area of carbon capture and storage (CCS). The training consisted of course work and conducting research in the area of CCS. Attendance at conferences was also encouraged as an activity and positive experience for students to learn the process of sharing research findings with the scientific community, and the peer review process. At the time of this report, both students have approximately two years remaining of their studies, so have not fully completed their scientific research projects.

  16. Nano-sized Lithium Manganese Oxide Dispersed on Carbon Nanotubes for Energy Storage Applications

    SciTech Connect (OSTI)

    Bak, S.B.

    2009-08-01T23:59:59.000Z

    Nano-sized lithium manganese oxide (LMO) dispersed on carbon nanotubes (CNT) has been synthesized successfully via a microwave-assisted hydrothermal reaction at 200 C for 30 min using MnO{sub 2}-coated CNT and an aqueous LiOH solution. The initial specific capacity is 99.4 mAh/g at a 1.6 C-rate, and is maintained at 99.1 mAh/g even at a 16 C-rate. The initial specific capacity is also maintained up to the 50th cycle to give 97% capacity retention. The LMO/CNT nanocomposite shows excellent power performance and good structural reversibility as an electrode material in energy storage systems, such as lithium-ion batteries and electrochemical capacitors. This synthetic strategy opens a new avenue for the effective and facile synthesis of lithium transition metal oxide/CNT nanocomposite.

  17. Final report on decommissioning boreholes and wellsite restoration, Gulf Coast Interior Salt Domes of Mississippi

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    In 1978, eight salt domes in Texas, Louisiana, and Mississippi were identified for study as potential locations for a nuclear waste repository as part of the National Waste Terminal Storage (NWTS) program. Three domes were selected in Mississippi for ``area characterization`` phase study as follows: Lampton Dome near Columbia, Cypress Creek Dome near New Augusta, and Richton Dome near Richton. The purpose of the studies was to acquire geologic and geohydrologic information from shallow and deep drilling investigations to enable selection of sites suitable for more intensive study. Eleven deep well sites were selected for multiple-well installations to acquire information on the lithologic and hydraulic properties of regional aquifers. In 1986, the Gulf Coast salt domes were eliminated from further consideration for repository development by the selection of three candidate sites in other regions of the country. In 1987, well plugging and restoration of these deferred sites became a closeout activity. The primary objectives of this activity are to plug and abandon all wells and boreholes in accordance with state regulations, restore all drilling sites to as near original condition as feasible, and convey to landowners any wells on their property that they choose to maintain. This report describes the activities undertaken to accomplish these objectives, as outlines in Activity Plan 1--2, ``Activity Plan for Well Plugging and Site Restoration of Test Hole Sites in Mississippi.``

  18. Partitioning Behavior of Organic Contaminants in Carbon Storage Environments: A Critical Review

    SciTech Connect (OSTI)

    Burant, Aniela; Lowry, Gregory V.; Karamalidis, Athanasios K.

    2013-01-01T23:59:59.000Z

    Carbon capture and storage is a promising strategy for mitigating the CO{sub 2} contribution to global climate change. The large scale implementation of the technology mandates better understanding of the risks associated with CO{sub 2} injection into geologic formations and the subsequent interactions with groundwater resources. The injected supercritical CO{sub 2} (sc-CO{sub 2}) is a nonpolar solvent that can potentially mobilize organic compounds that exist at residual saturation in the formation. Here, we review the partitioning behavior of selected organic compounds typically found in depleted oil reservoirs in the residual oil–brine–sc-CO{sub 2} system under carbon storage conditions. The solubility of pure phase organic compounds in sc-CO{sub 2} and partitioning of organic compounds between water and sc-CO{sub 2} follow trends predicted based on thermodynamics. Compounds with high volatility and low aqueous solubility have the highest potential to partition to sc-CO{sub 2}. The partitioning of low volatility compounds to sc-CO{sub 2} can be enhanced by co-solvency due to the presence of higher volatility compounds in the sc-CO{sub 2}. The effect of temperature, pressure, salinity, pH, and dissolution of water molecules into sc-CO{sub 2} on the partitioning behavior of organic compounds in the residual oil-brine-sc-CO{sub 2} system is discussed. Data gaps and research needs for models to predict the partitioning of organic compounds in brines and from complex mixtures of oils are presented. Models need to be able to better incorporate the effect of salinity and co-solvency, which will require more experimental data from key classes of organic compounds.

  19. Mechanism for high hydrogen storage capacity on metal-coated carbon nanotubes: A first principle analysis

    SciTech Connect (OSTI)

    Lu, Jinlian; Xiao, Hong [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China); Cao, Juexian, E-mail: jxcao@xtu.edu.cn [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)

    2012-12-15T23:59:59.000Z

    The hydrogen adsorption and binding mechanism on metals (Ca, Sc, Ti and V) decorated single walled carbon nanotubes (SWCNTs) are investigated using first principle calculations. Our results show that those metals coated on SWCNTs can uptake over 8 wt% hydrogen molecules with binding energy range -0.2--0.6 eV, promising potential high density hydrogen storage material. The binding mechanism is originated from the electrostatic Coulomb attraction, which is induced by the electric field due to the charge transfer from metal 4s to 3d. Moreover, we found that the interaction between the H{sub 2}-H{sub 2} further lowers the binding energy. - Graphical abstract: Five hydrogen molecules bound to individual Ca decorated (8, 0) SWCNT : a potential hydrogen-storage material. Highlights: Black-Right-Pointing-Pointer Each transition metal atom can adsorb more than four hydrogen molecules. Black-Right-Pointing-Pointer The interation between metal and hydrogen molecule is electrostatic coulomb attraction. Black-Right-Pointing-Pointer The electric field is induced by the charge transfer from metal 4s to metal 3d. Black-Right-Pointing-Pointer The adsorbed hydrogen molecules which form supermolecule can further lower the binding energy.

  20. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    SciTech Connect (OSTI)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30T23:59:59.000Z

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  1. Hydrogen Storage in Metal-Modified Single-Walled Carbon Nanotubes Channing C. Ahn, John J. Vajoa

    E-Print Network [OSTI]

    Hydrogen Storage in Metal-Modified Single-Walled Carbon Nanotubes Channing C. Ahn, John J. Vajoa structure of single-walled nanotubes (SWNTs). The intercalation of SWNTs opens up the possibility of the rope structure. Our previous work on SWNTs has also shown that the cohesive energy responsible for rope

  2. EIS-0024: Strategic Petroleum Reserve, Capline Group Salt Domes, Iberia, Napoleonville, Weeks Island Expansion, Bayou Choctaw Expansion, Chacahoula- Iberia, Iberville, and Lafourche Parishes, Louisiana

    Broader source: Energy.gov [DOE]

    The Strategic Petroleum Reserves developed this EIS to analyze the environmental impacts which would occur during site preparation and operation of oil storage facilities at each of five proposed candidate sites in the Capline Group of salt domes.

  3. Relevance of underground natural gas storage to geologic sequestration of carbon dioxide

    E-Print Network [OSTI]

    Lippmann, Marcelo J.; Benson, Sally M.

    2002-01-01T23:59:59.000Z

    Underground Storage of Natural Gas in the United States andEnergy Information Agency (2002). U.S. Natural Gas Storage.www.eia.doe.gov/oil_gas/natural_gas/info_glance/storage.html

  4. Modeling geologic storage of carbon dioxide: Comparison of non-hysteretic and hysteretic characteristic curves

    E-Print Network [OSTI]

    Doughty, Christine

    2006-01-01T23:59:59.000Z

    CO 2 from the storage formation to the ground surface, whileCO 2 from the storage formation to the ground surface, whilebetween the storage formation and the ground surface (

  5. Modeling geologic storage of carbon dioxide: Comparison of non-hysteretic chracteristic curves

    E-Print Network [OSTI]

    Doughty, Christine

    2006-01-01T23:59:59.000Z

    CO 2 from the storage formation to the ground surface, whilebetween the storage formation and the ground surface for theCO 2 from the storage formation to the ground surface, while

  6. CONTROLLED GROWTH OF CARBON NANOTUBES ON CONDUCTIVE METAL SUBSTRATES FOR ENERGY STORAGE APPLICATIONS

    SciTech Connect (OSTI)

    Brown, P.; Engtrakul, C.

    2009-01-01T23:59:59.000Z

    The impressive mechanical and electronic properties of carbon nanotubes (CNTs) make them ideally suited for use in a variety of nanostructured devices, especially in the realm of energy production and storage. In particular, vertically-aligned CNT “forests” have been the focus of increasing investigation for use in supercapacitor electrodes and as hydrogen adsorption substrates. Vertically-aligned CNT growth was attempted on metal substrates by waterassisted chemical vapor deposition (CVD). CNT growth was catalyzed by iron-molybdenum (FeMo) nanoparticle catalysts synthesized by a colloidal method, which were then spin-coated onto Inconelź foils. The substrates were loaded into a custom-built CVD apparatus, where CNT growth was initiated by heating the substrates to 750 °C under the fl ow of He, H2, C2H4 and a controlled amount of water vapor. The resultant CNTs were characterized by a variety of methods including Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and the growth parameters were varied in an attempt to optimize the purity and growth yield of the CNTs. The surface area and hydrogen adsorption characteristics of the CNTs were quantifi ed by the Brunauer- Emmett-Teller (BET) and Sieverts methods, and their capacitance was measured via cyclic voltammetry. While vertically-aligned CNT growth could not be verifi ed, TEM and SEM analysis indicated that CNT growth was still obtained, resulting in multiwalled CNTs of a wide range in diameter along with some amorphous carbon impurities. These microscopy fi ndings were reinforced by Raman spectroscopy, which resulted in a G/D ratio ranging from 1.5 to 3 across different samples, suggestive of multiwalled CNTs. Changes in gas fl ow rates and water concentration during CNT growth were not found to have a discernable effect on the purity of the CNTs. The specifi c capacitance of a CNT/FeMo/Inconelź electrode was found to be 3.2 F/g, and the BET surface area of a characteristic CNT sample was measured to be 232 m2/g with a cryogenic (77K) hydrogen storage of 0.85 wt%. This level of hydrogen adsorption is slightly higher than that predicted by the Chahine rule, indicating that these CNTs may bind hydrogen more strongly than other carbonaceous materials. More work is needed to confi rm and determine the reason for increased hydrogen adsorption in these CNTs, and to test them for use as catalyst support networks. This study demonstrates the feasibility of producing CNTs for energy storage applications using water-assisted CVD.

  7. Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations

    E-Print Network [OSTI]

    Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

    2002-01-01T23:59:59.000Z

    in the Yaggy natural gas storage field (a mined salt-cavernnatural gas to leak from a mined salt cavern used for storage.

  8. 10 Carbon Capture and Storage in the UK Bushby Y.E., Gilfillan S.M.V. and Haszeldine R.S.

    E-Print Network [OSTI]

    Haszeldine, Stuart

    10 Carbon Capture and Storage in the UK Bushby Y.E., Gilfillan S.M.V. and Haszeldine R.S. Scottish carbon capture sites. Bushby, Y.E., Gilfillan, S.M.V. & Haszeldine R.S. (2007). Carbon Capture and Storage in the UK. In Energy and the Natural Heritage, ed. by C.A. Galbraith and J.M. Baxter. TSO Scotland

  9. Report of the Interagency Task Force on Carbon Capture and Storage

    SciTech Connect (OSTI)

    None

    2010-08-01T23:59:59.000Z

    Carbon capture and storage (CCS) refers to a set of technologies that can greatly reduce carbon dioxide (CO{sub 2}) emissions from new and existing coal- and gas-fired power plants, industrial processes, and other stationary sources of CO{sub 2}. In its application to electricity generation, CCS could play an important role in achieving national and global greenhouse gas (GHG) reduction goals. However, widespread cost-effective deployment of CCS will occur only if the technology is commercially available and a supportive national policy framework is in place. In keeping with that objective, on February 3, 2010, President Obama established an Interagency Task Force on Carbon Capture and Storage composed of 14 Executive Departments and Federal Agencies. The Task Force, co-chaired by the Department of Energy (DOE) and the Environmental Protection Agency (EPA), was charged with proposing a plan to overcome the barriers to the widespread, cost-effective deployment of CCS within ten years, with a goal of bringing five to ten commercial demonstration projects online by 2016. Composed of more than 100 Federal employees, the Task Force examined challenges facing early CCS projects as well as factors that could inhibit widespread commercial deployment of CCS. In developing the findings and recommendations outlined in this report, the Task Force relied on published literature and individual input from more than 100 experts and stakeholders, as well as public comments submitted to the Task Force. The Task Force also held a large public meeting and several targeted stakeholder briefings. While CCS can be applied to a variety of stationary sources of CO{sub 2}, its application to coal-fired power plant emissions offers the greatest potential for GHG reductions. Coal has served as an important domestic source of reliable, affordable energy for decades, and the coal industry has provided stable and quality high-paying jobs for American workers. At the same time, coal-fired power plants are the largest contributor to U.S. greenhouse gas (GHG) emissions, and coal combustion accounts for 40 percent of global carbon dioxide (CO{sub 2}) emissions from the consumption of energy. EPA and Energy Information Administration (EIA) assessments of recent climate and energy legislative proposals show that, if available on a cost-effective basis, CCS can over time play a large role in reducing the overall cost of meeting domestic emissions reduction targets. By playing a leadership role in efforts to develop and deploy CCS technologies to reduce GHG emissions, the United States can preserve the option of using an affordable, abundant, and domestic energy resource, help improve national security, help to maximize production from existing oil fields through enhanced oil recovery (EOR), and assist in the creation of new technologies for export. While there are no insurmountable technological, legal, institutional, regulatory or other barriers that prevent CCS from playing a role in reducing GHG emissions, early CCS projects face economic challenges related to climate policy uncertainty, first-of-a-kind technology risks, and the current high cost of CCS relative to other technologies. Administration analyses of proposed climate change legislation suggest that CCS technologies will not be widely deployed in the next two decades absent financial incentives that supplement projected carbon prices. In addition to the challenges associated with cost, these projects will need to meet regulatory requirements that are currently under development. Long-standing regulatory programs are being adapted to meet the circumstances of CCS, but limited experience and institutional capacity at the Federal and State level may hinder implementation of CCS-specific requirements. Key legal issues, such as long-term liability and property rights, also need resolution. A climate policy designed to reduce our Nation's GHG emissions is the most important step for commercial deployment of low-carbon technologies such as CCS, because it will create a stable, long-term framework for p

  10. Evaluation of lead/carbon devices for utility applications : a study for the DOE Energy Storage Program.

    SciTech Connect (OSTI)

    Walmet, Paula S. (MeadWestvaco Corporation,North Charleston, SC)

    2009-06-01T23:59:59.000Z

    This report describes the results of a three-phase project that evaluated lead-based energy storage technologies for utility-scale applications and developed carbon materials to improve the performance of lead-based energy storage technologies. In Phase I, lead/carbon asymmetric capacitors were compared to other technologies that used the same or similar materials. At the end of Phase I (in 2005) it was found that lead/carbon asymmetric capacitors were not yet fully developed and optimized (cost/performance) to be a viable option for utility-scale applications. It was, however, determined that adding carbon to the negative electrode of a standard lead-acid battery showed promise for performance improvements that could be beneficial for use in utility-scale applications. In Phase II various carbon types were developed and evaluated in lead-acid batteries. Overall it was found that mesoporous activated carbon at low loadings and graphite at high loadings gave the best cycle performance in shallow PSoC cycling. Phase III studied cost/performance benefits for a specific utility application (frequency regulation) and the full details of this analysis are included as an appendix to this report.

  11. Proceedings of the 17th Central Hardwood Forest Conference GTR-NRS-P-78 (2011) 134 MAXIMIZING CARBON STORAGE IN THE APPALACHIANS

    E-Print Network [OSTI]

    may also provide a baseline for a full accounting of forestry carbon offset projects. The ability CARBON STORAGE IN THE APPALACHIANS: A METHOD FOR CONSIDERING THE RISK OF DISTURBANCE EVENTS Michael R to disturbance events can influence the prediction of carbon flux over a planning horizon, and can affect

  12. HYDROGEN STORAGE IN CARBON SINGLE-WALL NANOTUBES A.C. Dillon, K.E.H. Gilbert, P.A. Parilla, J.L. Alleman,

    E-Print Network [OSTI]

    HYDROGEN STORAGE IN CARBON SINGLE-WALL NANOTUBES A.C. Dillon, K.E.H. Gilbert, P.A. Parilla, J.L. Alleman, G.L. Hornyak, K.M. Jones, and M.J. Heben National Renewable Energy Laboratory Golden, CO 80401-3393 Abstract Carbon single-wall nanotubes (SWNTs) and other nanostructured carbon materials have attracted

  13. Geologic technical assessment of the Chacahoula Salt Dome, Louisiana, for potential expansion of the U.S. strategic petroleum reserve.

    SciTech Connect (OSTI)

    Snider, Anna C.; Rautman, Christopher Arthur; Looff, Karl M. (Geologic Consultant, Lovelady, TX)

    2006-03-01T23:59:59.000Z

    The Chacahoula salt dome, located in southern Louisiana, approximately 66 miles southwest of New Orleans, appears to be a suitable site for a 160-million-barrel-capacity expansion facility for the U.S. Strategic Petroleum Reserve, comprising sixteen 10-million barrel underground storage caverns. The overall salt dome appears to cover an area of some 1800 acres, or approximately 2.8 square miles, at a subsea elevation of 2000 ft, which is near the top of the salt stock. The shallowest known salt is present at 1116 ft, subsea. The crest of the salt dome is relatively flatlying, outward to an elevation of -4000 ft. Below this elevation, the flanks of the dome plunge steeply in all directions. The dome appears to comprise two separate spine complexes of quasi-independently moving salt. Two mapped areas of salt overhang, located on the eastern and southeastern flanks of the salt stock, are present below -8000 ft. These regions of overhang should present no particular design issues, as the conceptual design SPR caverns are located in the western portion of the dome. The proposed cavern field may be affected by a boundary shear zone, located between the two salt spines. However, the large size of the Chacahoula salt dome suggests that there is significant design flexibility to deal with such local geologic issues.

  14. Sealing off a carbon nanotube with a self-assembled aqueous valve for the storage of hydrogen in GPa pressure

    E-Print Network [OSTI]

    Chen, H Y; Gong, X G; Liu, Zhi-Feng

    2012-01-01T23:59:59.000Z

    The end section of a carbon nanotube, cut by acid treatment, contains hydrophillic oxygen groups. Water molecules can self-assemble around these groups to seal off a carbon nanotube and form an "aqueous valve". Molecular dynamics simulations on single-wall (12,12) and (15,15) tubes with dangling carboxyl groups show that the formation of aqueous valves can be achieved both in the absence of and in the presence of high pressure hydrogen. Furthermore, significant diffusion barriers through aqueous valves are identified. It indicates that such valves could hold hydrogen inside the tube with GPa pressure. Releasing hydrogen is easily achieved by melting the "aqueous valve". Such a design provides a recyclable and non- destructive way to store hydrogen in GPa pressure. Under the storage conditions dictated by sealing off the container in liquid water, the hydrogen density inside the container is higher than that for solid hydrogen, which promises excellent weight storage efficiency.

  15. Summary of Carbon Storage Project Public Information Meeting and Open House, Hawesville, Kentucky, October 28, 2010

    SciTech Connect (OSTI)

    David Harris; David Williams; J. Richard Bowersox; Hannes Leetaru

    2012-06-01T23:59:59.000Z

    The Kentucky Geological Survey (KGS) completed a second phase of carbon dioxide (CO{sub 2}) injection and seismic imaging in the Knox Group, a Cambrianâ?Ordovician dolomite and sandstone sequence in September 2010. This work completed 2 years of activity at the KGS No. 1 Marvin Blan well in Hancock County, Kentucky. The well was drilled in 2009 by a consortium of State and industry partners (Kentucky Consortium for Carbon Storage). An initial phase of CO{sub 2} injection occurred immediately after completion of the well in 2009. The second phase of injection and seismic work was completed in September 2010 as part of a U.S. DOEâ??funded project, after which the Blan well was plugged and abandoned. Following completion of research at the Blan well, a final public meeting and open house was held in Hancock County on October 28, 2010. This meeting followed one public meeting held prior to drilling of the well, and two onâ?site visits during drilling (one for news media, and one for school teachers). The goal of the final public meeting was to present the results of the project to the public, answer questions, and address any concerns. Despite diligent efforts to publicize the final meeting, it was poorly attended by the general public. Several local county officials and members of the news media attended, but only one person from the general public showed up. We attribute the lack of interest in the results of the project to several factors. First, the project went as planned, with no problems or incidents that affected the local residents. The fact that KGS fulfilled the promises it made at the beginning of the project satisfied residents, and they felt no need to attend the meeting. Second, Hancock County is largely rural, and the technical details of carbon sequestration were not of interest to many people. The county officials attending were an exception; they clearly realized the importance of the project in future economic development for the county.

  16. Natural CO2 Analogs for Carbon Sequestration

    SciTech Connect (OSTI)

    Scott H. Stevens; B. Scott Tye

    2005-07-31T23:59:59.000Z

    The report summarizes research conducted at three naturally occurring geologic CO{sub 2} fields in the US. The fields are natural analogs useful for the design of engineered long-term storage of anthropogenic CO{sub 2} in geologic formations. Geologic, engineering, and operational databases were developed for McElmo Dome in Colorado; St. Johns Dome in Arizona and New Mexico; and Jackson Dome in Mississippi. The three study sites stored a total of 2.4 billion t (46 Tcf) of CO{sub 2} equivalent to 1.5 years of power plant emissions in the US and comparable in size with the largest proposed sequestration projects. The three CO{sub 2} fields offer a scientifically useful range of contrasting geologic settings (carbonate vs. sandstone reservoir; supercritical vs. free gas state; normally pressured vs. overpressured), as well as different stages of commercial development (mostly undeveloped to mature). The current study relied mainly on existing data provided by the CO{sub 2} field operator partners, augmented with new geochemical data. Additional study at these unique natural CO{sub 2} accumulations could further help guide the development of safe and cost-effective design and operation methods for engineered CO{sub 2} storage sites.

  17. Findings and Recommendations by the California Carbon Capture and Storage Review Panel

    E-Print Network [OSTI]

    ............................................................13 Standards and Reporting Requirements for Geological CO2 Storage Projects ...........................................15 Ownership and Use of Pore Space for CO2 Storage Commission ­ California Energy Commission EOR ­ enhanced oil recovery EPS ­ Emissions Performance Standard

  18. Carbon Trading Protocols for Geologic Sequestration

    E-Print Network [OSTI]

    Hoversten, Shanna

    2009-01-01T23:59:59.000Z

    H. , 2005, IPCC: Carbon Capture and Storage: Technical05CH11231. INTRODUCTION Carbon capture and storage (CCS)Development Mechanism CCS: Carbon Capture and Storage C02e:

  19. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01T23:59:59.000Z

    and Solar-Energy - Progress, Promise and Problems. J.energy storage problem. Solar fuels are concentrated energy

  20. New Alkali Doped Pillared Carbon Materials Designed to Achieve Practical Reversible Hydrogen Storage for Transportation

    E-Print Network [OSTI]

    Goddard III, William A.

    and room temperature. This satisfies the DOE (Department of Energy) target of hydrogen-storage materials single-wall nanotubes can lead to a hydrogen-storage capacity of 6.0 mass% and 61:7 kg=m3 at 50 bars of roughly 1­20 bars and ambient temperature. Chen et al. reported remarkable hydrogen-storage capacities

  1. E-Print Network 3.0 - aboveground carbon storage Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    soil carbon... crops Short-rotation woody crops Tree plantations Hybrid poplar Soil carbon sequestration a b s t r a c... t The potential for soil carbon (C) sequestration...

  2. Can reductions in logging damage increase carbon storage over time? Evaluation of a simulation model for a pilot carbon offset project in Malaysia

    SciTech Connect (OSTI)

    Pinard, M.A. [Univ. of Florida, Gainesville, FL (United States)

    1995-09-01T23:59:59.000Z

    Selective timber harvesting operations, if uncontrolled, can severely degrade a forest. Although techniques for reducing logging damage are well-known and inexpensive to apply, incentives to adopt these techniques are generally lacking. Power companies and other emitters of {open_quotes}greenhouse{close_quotes} gases soon may be forced to reduce or otherwise offset their net emissions; one offset option is to fund programs aimed at reducing logging damage. To investigate the consequences of reductions in logging damage for ecosystem carbon storage, I constructed a model to simulate changes in biomass and carbon pools following logging of primary dipterocarp forests in southeast Asia. I adapted a physiologically-driven, tree-based model of natural forest gap dynamics (FORMIX) to simulate forest recovery following logging. Input variables included stand structure, volume extracted, stand damage (% stems), and soil disturbance (% area compacted). Output variables included total biomass, tree density, and total carbon storage over time. Assumptions of the model included the following: (1) areas with soil disturbances have elevated probabilities of vine colonization and reduced rates of tree establishment, (2) areas with broken canopy but no soil disturbance are colonized initially by pioneer tree species and 20 yr later by persistent forest species, (3) damaged trees have reduced growth and increased mortality rates. Simulation results for two logging techniques, conventional and reduced-impact logging, are compared with data from field studies conducted within a pilot carbon offset project in Sabah, Malaysia.

  3. E-Print Network 3.0 - aquifer-pressured carbon storage Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will look at another carbon sink - the ocean. William... By William H. Schlesinger Carbon sequestration is a hot topic among policy ... Source: Jones, Clive G. - Cary...

  4. Thermal Characterization of Graphitic Carbon Foams for Use in Thermal Storage Applications.

    E-Print Network [OSTI]

    Drummond, Kevin P.

    2012-01-01T23:59:59.000Z

    ?? Highly conductive graphitic foams are currently being studied for use as thermal conductivity enhancers (TCEs) in thermal energy storage (TES) systems. TES systems store… (more)

  5. An Economic Study of Carbon Capture and Storage System Design and Policy

    E-Print Network [OSTI]

    Prasodjo, Darmawan

    2012-10-19T23:59:59.000Z

    . This dissertation develops a model, OptimaCCS, that combines economic and spatial optimization for the integration of CCS transport, storage and injection infrastructure to minimize costs. The model solves for the lowest-cost set of pipeline routes and storage...

  6. Fabrication of hollow core carbon spheres with hierarchical nanoarchitecture for ultrahigh electrical charge storage

    E-Print Network [OSTI]

    Pedersen, Tom

    and filtration,2 photonic crystals,3 catalyst supports for low temperature fuel cells,4­6 sensors, electrode sorbents,1 hydrogen storage,18 fuel cells,5,19,33 solar cells,13,35,36 and so on. However, traditional materials for electrochemical capacitors,7­9 lithium ion batteries,10­12 solar cells,13,14 hydrogen storage

  7. India's challenge of improving the living standards of its growing population through a low-emission development calls for early adaptation of carbon capture and storage (CCS) though the available

    E-Print Network [OSTI]

    -emission development calls for early adaptation of carbon capture and storage (CCS) though the available storage, sequestration or overseas shipment of CO .2 Rudra Kapila and Jon Gibbins getting India ready for carbon capture to become clearer, and the only way to contain it is, if fossil fuels are used, to employ carbon capture

  8. Application of carbonized nanostructured polyaniline in electrocatalysis and electrical energy storage.

    E-Print Network [OSTI]

    Gavrilov Nemanja

    2013-01-01T23:59:59.000Z

    ??The aim of this doctoral dissertation is to study nitrogen-containing nanostructured carbon materials, denoted as C-PANI, C-PANI.DNSA and C-PANI.SSA, prepared by the carbonization of nanostructured… (more)

  9. A Framework for Environmental Assessment of CO2 Capture and Storage Systems

    E-Print Network [OSTI]

    Sathre, Roger

    2013-01-01T23:59:59.000Z

    Aaron DS, Williams KA. Is carbon capture and storage reallyal. Comparison of carbon capture and storage with renewablefuel power plants with carbon capture and storage. Energy

  10. Energy Storage: Breakthrough in Battery Technologies (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Balsara, Nitash

    2011-06-03T23:59:59.000Z

    Nitash Balsara speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  11. AN ISSUE OF PERMANENCE: ASSESSING THE EFFECTIVENESS OF TEMPORARY CARBON STORAGE

    E-Print Network [OSTI]

    with a `leaky' carbon sequestration reservoir, we argue that this is an issue that applies to just about all that the value of relatively deep ocean carbon sequestration can be nearly equivalent to permanent sequestration gases using carbon sequestration technologies (Herzog et al., 2000; Herzog, 2001) is being proposed

  12. EIS-0021: Strategic Petroleum Reserve, Seaway Group Salt Domes, Brazoria County, Texas (also see EIS-0075-S and EIS-0029)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Strategic Petroleum Reserve Office developed this statement to analyze the environmental impacts which would occur during site preparation and operation of oil storage facilities at each of five proposed candidate sites in the Seaway Group of salt domes.

  13. Hydrogen Storage in metal-modified single-walled carbon nanotubes

    SciTech Connect (OSTI)

    Dr. Ahn

    2004-04-30T23:59:59.000Z

    It has been known for over thirty years that potassium-intercalated graphites can readily adsorb and desorb hydrogen at {approx}1 wt% at 77 K. These levels are much higher than can be attained in pure graphite, owing to a larger thermodynamic enthalpy of adsorption. This increased enthalpy may allow hydrogen sorption at higher temperatures. Potassium has other beneficial effects that enable the design of a new material: (a) Increased adsorption enthalpy in potassium-intercalated graphite compared to pure graphite reduces the pressure and increases the temperature required for a given fractional coverage of hydrogen adsorption. We expect the same effects in potassium-intercalated SWNTs. (b) As an intercalant, potassium separates c-axis planes in graphite. Potassium also separates the individual tubes of SWNTs ropes producing swelling and increased surface area. Increased surface area provides more adsorption sites, giving a proportionately higher capacity. The temperature of adsorption depends on the enthalpy of adsorption. The characteristic temperature is roughly the adsorption enthalpy divided by Boltzmann's constant, k{sub B}. For the high hydrogen storage capacity of SWNTs to be achieved at room temperature, it is necessary to increase the enthalpy of adsorption. Our goal for this project was to use metal modifications to the carbon surface of SWNTs in order to address both enhanced adsorption and surface area. For instance, the enthalpy of sorption of hydrogen on KC8 is 450 meV/H{sub 2}, whereas it is 38 meV/H{sub 2} for unmodified SWNTs. By adsorption thermodynamics we expect approximately that the same performance of SWNTs at 77 K will be achieved at a temperature of [450/38] 77 K = 900 K. This is a high temperature, so we expect that adsorption on nearly all the available sites for hydrogen will occur at room temperature under a much lower pressure. This pressure can be estimated conveniently, since the chemical potential of hydrogen is approximately proportional to the logarithm of the pressure. Using 300 K for room temperature, the 100 bar pressure requirement is reduced to exp(-900/300) 100 bar = 5 bar at room temperature. This is in the pressure range used for prior experimental work such as that of Colin and Herold in the late 1960's and early 1970's.

  14. An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009

    SciTech Connect (OSTI)

    Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

    2009-06-26T23:59:59.000Z

    Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects – Sleipner, Snűhvit, In Salah and Weyburn – are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the public’s willingness to incur costs to avoid dangerous anthropogenic interference with the Earth’s climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport, injection, monitoring, management and verification for most large CO2 source types and in most CO2 storage formation types, exist.

  15. EIS-0075: Strategic Petroleum Reserve Phase III Development, Texoma and Seaway Group Salt Domes (West Hackberry and Bryan Mound Expansion, Big Hill Development) Cameron Parish, Louisiana, and Brazoria and Jefferson Counties, Texas

    Broader source: Energy.gov [DOE]

    Also see EIS-0021 and EIS-0029. The Strategic Petroleum Reserve (SPR) Office developed this EIS to assess the environmental impacts of expanding the existing SPR storage capacity from 538 million to 750 million barrels of storage and increasing the drawdown capability from 3.5 million to 4.5 million barrels per day. This EIS incorperates two previously issued EISs: DOE/EIS-0021, Seaway Group of Salt Domes, and DOE/EIS-0029, Texoma Group of Salt Domes.

  16. User-Defined Experiments for DOME Version 1.6

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    ). Furthermore, buses often come within WiFi proximity of each other. The DOME testbed is designed to allow for distributing the experiments to each of the buses. The DOME #12;2 portal provides a service to schedule when1 User-Defined Experiments for DOME Version 1.6 University of Massachusetts, Amherst June 2010

  17. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    onto carbon nanotubes for energy-storage applications.and Carbon Nanotubes, Advanced Energy Materials, 2011, 1,Energy Storage Architectures from Carbon Nanotubes and

  18. Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Bachu, Stefan

    2007-03-05T23:59:59.000Z

    Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the region’s deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the region’s large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

  19. E-Print Network 3.0 - asia carbon storage Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy ? Massimo Tavoni1... ., and Dev. Economics, Ohio State University While carbon sequestration was included in the Kyoto Protocol Source: Ris National Laboratory...

  20. DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands

    Broader source: Energy.gov [DOE]

    As a complementary document to the U.S. Department of Energy's Carbon Sequestration Atlas of the United States and Canada issued in November 2008, the Office of Fossil Energy's National Energy Technology Laboratory has now released a report that provides an initial estimate of the potential to store carbon dioxide underneath millions of acres of Federal lands.

  1. EIS-0445: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia

    Broader source: Energy.gov [DOE]

    DOE evaluates the potential environmental impacts of providing financial assistance for the construction and operation of a project proposed by American Electric Power Service Corporation (AEP). DOE selected tbis project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative (CCPI) Program. AEP's Mountaineer Commercial Scale Carbon Capture and Storage Project (Mountaineer CCS II Project) would construct a commercial scale carbon dioxide (C02l capture and storage (CCS) system at AEP's existing Mountaineer Power Plant and other AEP owned properties located near New Haven, West Virginia.

  2. Introduction! Carbon capture and storage (CCS) may be a key option

    E-Print Network [OSTI]

    Boyer, Edmond

    with a network for higher storage goals? SimCCS model A cost surface, i.e. a raster grid of the cost to lay a pipeline across each grid cell, was estimated using geographical datasets including protected areas is in the East (Lorraine region), another is in the North (Nord­Pas de Calais region). Also, scenarios

  3. Potential for storage of carbon dioxide in the rocks beneath the East Irish Sea

    E-Print Network [OSTI]

    Watson, Andrew

    to store CO2, particularly in its oil and gas fields. Its storage capacity was evaluated because it is well capacity in the oil and gas fields of the East Irish Sea Basin is approximately 1047 million tonnes, the fact that they do not contain hydrocarbons suggests the possibility that they may not be gas- tight

  4. Carbon Capture and Storage from Fossil Fuel Use 1 Howard Herzog and Dan Golomb

    E-Print Network [OSTI]

    , and a natural gas combined cycle power plant about one half of that. Second, several industrial processes manufacturing, ammonia production, iron and non-ferrous metal smelters, industrial boilers, refineries, natural, and their efficiencies, cost and energy penalties are estimated. Storage capacities and effectiveness are estimated

  5. Design of electrode for electrochemical energy storage and conversion devices using multiwall carbon nanotubes

    E-Print Network [OSTI]

    Lee, Seung Woo, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    All-multiwall carbon nanotube (MWNT) thin films are created by layer-by-layer (LbL) assembly of surface functionalized MWNTs. Negatively and positively charged MWNTs were prepared by surface functionalization, allowing the ...

  6. An issue of permanence: assessing the effectiveness of temporary carbon storage

    E-Print Network [OSTI]

    Herzog, Howard J.

    In this paper, we present a method to quantify the effectiveness of carbon mitigation options taking into account the "permanence" of the emissions reduction. While the issue of permanence is most commonly associated with ...

  7. Public awareness of carbon capture and storage : a survey of attitudes toward climate change mitigation

    E-Print Network [OSTI]

    Curry, Thomas Edward, 1977-

    2004-01-01T23:59:59.000Z

    The Carbon Capture and Sequestration Technologies Program in the Laboratory for Energy and the Environment at MIT conducted a survey of public attitudes on energy use and environmental concerns. Over 1,200 people, representing ...

  8. Changes in soil organic carbon storage predicted by Earth system models during the 21st century

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    carbon changes in Earth system models K. E. O. Todd-Brown etcarbon changes in Earth system models K. E. O. Todd-Brown etcarbon changes in Earth system models K. E. O. Todd-Brown et

  9. Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage...

    Open Energy Info (EERE)

    eight oil and gas companies and two associate members that are working together to reduce carbon capture and sequestration (CCS) costs. During Phase 2, between 2005 and 2009, the...

  10. Valuation of Energy Storage: An Optimal Switching Mike Ludkovski

    E-Print Network [OSTI]

    Ludkovski, Mike

    Valuation of Energy Storage: An Optimal Switching Approach Mike Ludkovski Department of Mathematics University, Princeton, NJ 08544 rcarmona@princeton.edu, We consider the valuation of energy storage facilities within the framework of stochastic control. Our two main examples are natural gas dome storage

  11. Toward New Candidates for Hydrogen Storage: High Surface Area Carbon Aerogels

    SciTech Connect (OSTI)

    Kabbour, H; Baumann, T F; Satcher, J H; Saulnier, A; Ahn, C C

    2007-02-05T23:59:59.000Z

    We report the hydrogen surface excess sorption saturation value of 5.3 wt% at 30 bar pressure at 77 K, from an activated carbon aerogel with a surface area of 3200 m{sup 2}/g as measured by Brunauer-Emmett-Teller (BET) analysis. This sorption value is one of the highest we have measured in a material of this type, comparable to values obtained in high surface area activated carbons. We also report, for the first time, the surface area dependence of hydrogen surface excess sorption isotherms of carbon aerogels at 77 K. Activated carbon aerogels with surface areas ranging from 1460 to 3200 m{sup 2}/g are evaluated and we find a linear dependence of the saturation of the gravimetric density with BET surface area for carbon aerogels up to 2550 m{sup 2}/g, in agreement with data from other types of carbons reported in the literature. Our measurements show these materials to have a differential enthalpy of adsorption at zero coverage of {approx}5 to 7 kJ/mole. We also show that the introduction of metal nanoparticles of nickel improves the sorption capacity while cobalt additions have no effect.

  12. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    SciTech Connect (OSTI)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07T23:59:59.000Z

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR). Although models that simulate the fracturing process exist, they can be significantly improved by extending the models to account for nonsymmetric, nonplanar fractures, coupling the models to more realistic reservoir simulators, and implementing advanced multiphase flow models for the transport of proppant. Third, it may be possible to deviate from current hydraulic fracturing technology by using different proppants (possibly waste materials that need to be disposed of, e.g., asbestos) combined with different hydraulic fracturing carrier fluids (possibly supercritical CO2 itself). Because current technology is mainly aimed at enhanced oil recovery, it may not be ideally suited for the injection and storage of CO2. Finally, advanced concepts such as increasing the injectivity of the fractured geologic formations through acidization with carbonated water will be investigated. Saline formations are located through most of the continental United States. Generally, where saline formations are scarce, oil and gas reservoirs and coal beds abound. By developing the technology outlined here, it will be possible to remove CO2 at the source (power plants, industry) and inject it directly into nearby geological formations, without releasing it into the atmosphere. The goal of the proposed research is to develop a technology capable of sequestering CO2 in geologic formations at a cost of US $10 per ton.

  13. Comparative assessment of status and opportunities for carbon Dioxide Capture and storage and Radioactive Waste Disposal In North America

    SciTech Connect (OSTI)

    Oldenburg, C.; Birkholzer, J.T.

    2011-07-22T23:59:59.000Z

    Aside from the target storage regions being underground, geologic carbon sequestration (GCS) and radioactive waste disposal (RWD) share little in common in North America. The large volume of carbon dioxide (CO{sub 2}) needed to be sequestered along with its relatively benign health effects present a sharp contrast to the limited volumes and hazardous nature of high-level radioactive waste (RW). There is well-documented capacity in North America for 100 years or more of sequestration of CO{sub 2} from coal-fired power plants. Aside from economics, the challenges of GCS include lack of fully established legal and regulatory framework for ownership of injected CO{sub 2}, the need for an expanded pipeline infrastructure, and public acceptance of the technology. As for RW, the USA had proposed the unsaturated tuffs of Yucca Mountain, Nevada, as the region's first high-level RWD site before removing it from consideration in early 2009. The Canadian RW program is currently evolving with options that range from geologic disposal to both decentralized and centralized permanent storage in surface facilities. Both the USA and Canada have established legal and regulatory frameworks for RWD. The most challenging technical issue for RWD is the need to predict repository performance on extremely long time scales (10{sup 4}-10{sup 6} years). While attitudes toward nuclear power are rapidly changing as fossil-fuel costs soar and changes in climate occur, public perception remains the most serious challenge to opening RW repositories. Because of the many significant differences between RWD and GCS, there is little that can be shared between them from regulatory, legal, transportation, or economic perspectives. As for public perception, there is currently an opportunity to engage the public on the benefits and risks of both GCS and RWD as they learn more about the urgent energy-climate crisis created by greenhouse gas emissions from current fossil-fuel combustion practices.

  14. Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness

    SciTech Connect (OSTI)

    Peters, Catherine; Fitts, Jeffrey; Wilson, Elizabeth; Pollak, Melisa; Bielicki, Jeffrey; Bhatt, Vatsal

    2013-03-13T23:59:59.000Z

    This three-year project, performed by Princeton University in partnership with the University of Minnesota and Brookhaven National Laboratory, examined geologic carbon sequestration in regard to CO{sub 2} leakage and potential subsurface liabilities. The research resulted in basin-scale analyses of CO{sub 2} and brine leakage in light of uncertainties in the characteristics of leakage processes, and generated frameworks to monetize the risks of leakage interference with competing subsurface resources. The geographic focus was the Michigan sedimentary basin, for which a 3D topographical model was constructed to represent the hydrostratigraphy. Specifically for Ottawa County, a statistical analysis of the hydraulic properties of underlying sedimentary formations was conducted. For plausible scenarios of injection into the Mt. Simon sandstone, leakage rates were estimated and fluxes into shallow drinking-water aquifers were found to be less than natural analogs of CO{sub 2} fluxes. We developed the Leakage Impact Valuation (LIV) model in which we identified stakeholders and estimated costs associated with leakage events. It was found that costs could be incurred even in the absence of legal action or other subsurface interference because there are substantial costs of finding and fixing the leak and from injection interruption. We developed a model framework called RISCS, which can be used to predict monetized risk of interference with subsurface resources by combining basin-scale leakage predictions with the LIV method. The project has also developed a cost calculator called the Economic and Policy Drivers Module (EPDM), which comprehensively calculates the costs of carbon sequestration and leakage, and can be used to examine major drivers for subsurface leakage liabilities in relation to specific injection scenarios and leakage events. Finally, we examined the competiveness of CCS in the energy market. This analysis, though qualitative, shows that financial incentives, such as a carbon tax, are needed for coal combustion with CCS to gain market share. In another part of the project we studied the role of geochemical reactions in affecting the probability of CO{sub 2} leakage. A basin-scale simulation tool was modified to account for changes in leakage rates due to permeability alterations, based on simplified mathematical rules for the important geochemical reactions between acidified brines and caprock minerals. In studies of reactive flows in fractured caprocks, we examined the potential for permeability increases, and the extent to which existing reactive transport models would or would not be able to predict it. Using caprock specimens from the Eau Claire and Amherstburg, we found that substantial increases in permeability are possible for caprocks that have significant carbonate content, but minimal alteration is expected otherwise. We also found that while the permeability increase may be substantial, it is much less than what would be predicted from hydrodynamic models based on mechanical aperture alone because the roughness that is generated tends to inhibit flow.

  15. Savannah River Hydrogen Storage Technology

    Broader source: Energy.gov (indexed) [DOE]

    Member of DOE Carbon Working Group - Developed novel method for forming doped carbon nanotubes as part of DOE Storage Program (patent pending) - Collaborated with universities and...

  16. Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metalorganic framework (Fe-BTT) discovered via high-throughput methods

    E-Print Network [OSTI]

    Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal­organic framework the compound in methanol and heating at 135 C for 24 h under dynamic vacuum, most of the solvent is removed and open Fe2+ coordination sites. Hydrogen adsorption data collected at 77 K show a steep rise

  17. Hydrogen Storage in Carbon Nanotubes A.C. Dillon, P.A. Parilla, K.E.H. Gilbert, J.L. Alleman, T. Gennett*,

    E-Print Network [OSTI]

    Hydrogen Storage in Carbon Nanotubes A.C. Dillon, P.A. Parilla, K.E.H. Gilbert, J.L. Alleman, T. Gennett*, and M.J. Heben National Renewable Energy Laboratory *Rochester Institute of Technology 2003 DOE HFCIT Program Review Meeting DOE Office of Energy Efficiency and Renewable Energy DOE Office of Science

  18. California Carbon Capture and Storage Panel Members Carl Bauer was appointed NETL Director in August

    E-Print Network [OSTI]

    role as the key national laboratory addressing the challenges of producing and using fossil energy, Associate Laboratory Director for Energy Sciences, and Deputy Director for Operations. A ground water technologies and energy systems for a low- carbon future, groundwater quality and remediation, biogeochemistry

  19. EIS-0464: Lake Charles Carbon Capture and Storage (CCS) Project in Calcasieu Parish, Louisiana

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of providing financial assistance for the construction and operation of a project proposed by Leucadia Energy, LLC. DOE selected this project for an award of financial assistance through a competitive process under the Industrial Carbon Capture and Sequestration Program.

  20. Role of large scale storage in a UK low carbon energy future Philipp Grunewalda

    E-Print Network [OSTI]

    ) and enable demand side management (DSM) of electric appliances, including ground source heat pumps, air, 311 Mechanical Engineering Building, London SW7 2AZ, UK bLow Carbon Research Institute, Cardiff University, Welsh School of Architecture, Bute Building, King Edward VII Avenue, Cardiff, CF10 3NB Abstract

  1. Tagging CO2 to Enable Quantitative Inventories of Geological Carbon Storage

    SciTech Connect (OSTI)

    Lackner, Klaus; Matter, Juerg; Park, Ah-Hyung; Stute, Martin; Carson, Cantwell; Ji, Yinghuang

    2014-06-30T23:59:59.000Z

    In the wake of concerns about the long term integrity and containment of sub-surface CO2 sequestration reservoirs, many efforts have been made to improve the monitoring, verification, and accounting methods for geo-sequestered CO2. Our project aimed to demonstrate the feasibility of a system designed to tag CO2 with carbon isotope 14C immediately prior to sequestration to a level that is normal on the surface (one part per trillion). Because carbon found at depth is naturally free of 14C, this tag would easily differentiate pre-existing carbon from anthropogenic injected carbon and provide an excellent handle for monitoring its whereabouts in the subsurface. It also creates an excellent handle for adding up anthropogenic carbon inventories. Future inventories in effect count 14C atoms. Accordingly, we have developed a 14C tagging system suitable for use at the part-per-trillion level. This system consists of a gas-exchange apparatus to make disposable cartridges ready for controlled injection into a fast flowing stream of pressurized CO2. We built a high-pressure injection and tagging system, and a 14C detection system. The disposable cartridge and injection system have been successfully demonstrated in the lab with a high-pressure flow reactor, as well as in the field at the CarbFix CO2 sequestration site in Iceland. The laser-based 14C detection system originally conceived has been shown to possess inadequate sensitivity for ambient levels. Alternative methods for detecting 14C, such as saturated cavity absorption ringdown spectroscopy and scintillation counting, may still be suitable. KEYWORDS

  2. Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program:

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder,Research JumpEnergyEnergyOpenStorage

  3. Radar investigation of the Cote Blanche salt dome

    E-Print Network [OSTI]

    Stewart, Robert Donald

    1974-01-01T23:59:59.000Z

    THE COTE BLANCHE SALT DOME. Geology of the Cote Blanche Salt-Dome Azea. . Economic History of the Cote BLanche Salt-Dome Azea, Salt. . Oil and gas. III. ELECTROMAGNETIC WAVE PROPAGATION. . . Radar Speed in Air and in Salt. . . Velocity...' zznd i'r. mzznz 1959) . The east, south, end west flanks are nearly vertical. However, the north side oi the dome is characterised by a massive overhang. A well drilled by Shell Oil Company, Caffrey No. 1, confirmed the presence of a minimum of 3300...

  4. TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS

    SciTech Connect (OSTI)

    Lawrence J. Pekot; Ron Himes

    2004-05-31T23:59:59.000Z

    Core specimens and several material samples were collected from two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

  5. Carbon Storage Partner Completes First Year of CO2 Injection Operations in

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout5 CalendarCarbonIllinois |

  6. Increased Atmospheric Carbon Dioxide Limits Soil Storage | U.S. DOE Office

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJuneDocumentingFermiGeorgeHerbert J.Impactof Science

  7. Carbon Capture and Storage Forum Round-Up | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins in IllinoisWindowCanadian CouncilCarbon

  8. The role of optimality in characterizing CO2 seepage from geological carbon sequestration sites

    E-Print Network [OSTI]

    Cortis, Andrea

    2009-01-01T23:59:59.000Z

    Clim. Change 2002. Workshop carbon capture storage. Proc.this concern, various Carbon Capture and Storage (CCS)Special Report on carbon dioxide capture and storage, ISBN

  9. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect (OSTI)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16T23:59:59.000Z

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  10. Calcium Carbonate Storage in Amorphous Form and Its Template-Induced Crystallization

    SciTech Connect (OSTI)

    Han, T Y; Aizenberg, J

    2007-08-31T23:59:59.000Z

    Calcium carbonate crystallization in organisms often occurs through the transformation from the amorphous precursor. It is believed that the amorphous phase could be temporarily stabilized and stored, until its templated transition to the crystalline form is induced. Here we develop a bio-inspired crystallization strategy that is based on the above mechanism. Amorphous calcium carbonate (ACC) spherulitic particles are formed and stabilized on a self-assembled monolayer (SAM) of hydroxy-terminated alkanethiols on Au surface. The ACC is stored as a reservoir for ions and is induced to crystallize on command by introducing a secondary surface that is functionalized with carboxylic acid-terminated SAM. This secondary surface acts as a template for oriented and patterned nucleation. Various oriented crystalline arrays and micropatterned films are formed. We also show that the ACC phase can be doped with foreign ions (e.g. Mg) and organic molecules (e.g. dyes) and that these dopants later function as growth modifiers of calcite crystals and become incorporated into the crystals during the transformation process of ACC to calcite. We believe that our strategy opens the way of using a stabilized amorphous phase as a versatile reservoir system that can be converted in a highly controlled fashion to a crystalline form upon contacting the nucleating template.

  11. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    SciTech Connect (OSTI)

    Griswold, G. B.

    1981-02-01T23:59:59.000Z

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  12. Information Sheet 2011/1/29 DOT Folddown Protective Domes

    E-Print Network [OSTI]

    Rutten, Rob

    to protect solar telescopes by providing a dome that can be folded down flat to minimize temperature and wind effects, this concept can also be used for other situations. The two solar telescope domes that were built are located on top of towers at an altitude of approximately 2300 m on mountains

  13. UPWELLING IN THE COSTA RICA DOME BY KLAUS WYRTKI

    E-Print Network [OSTI]

    . This current, the Costa Rica Coastal Current, and parts of the North Equatorial Current form a cyclonic circu'the horizontal circula~ion. The upwelling in the dome is caused by the cyclonic flow around the dome. When survey a deep-reaching" eddy transporting lOX 1018 cm.a/sec. "appeared to be separated and to drift north

  14. CO2 Capture and Storage Project, Education and Training Center...

    Energy Savers [EERE]

    Industrial Carbon Capture and Storage (ICCS) Project is one of the nation's largest carbon capture and storage endeavors. Part of the project includes the National...

  15. Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage

    SciTech Connect (OSTI)

    Widder, Sarah H.; Butner, R. Scott; Elliott, Michael L.; Freeman, Charles J.

    2011-11-30T23:59:59.000Z

    Carbon capture and sequestration (CCS) has the ability to dramatically reduce carbon dioxide (CO2) emissions from power production. Most studies find the potential for 70 to 80 percent reductions in CO2 emissions on a life-cycle basis, depending on the technology. Because of this potential, utilities and policymakers are considering the wide-spread implementation of CCS technology on new and existing coal plants to dramatically curb greenhouse gas (GHG) emissions from the power generation sector. However, the implementation of CCS systems will have many other social, economic, and environmental impacts beyond curbing GHG emissions that must be considered to achieve sustainable energy generation. For example, emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) are also important environmental concerns for coal-fired power plants. For example, several studies have shown that eutrophication is expected to double and acidification would increase due to increases in NOx emissions for a coal plant with CCS provided by monoethanolamine (MEA) scrubbing. Potential for human health risks is also expected to increase due to increased heavy metals in water from increased coal mining and MEA hazardous waste, although there is currently not enough information to relate this potential to actual realized health impacts. In addition to environmental and human health impacts, supply chain impacts and other social, economic, or strategic impacts will be important to consider. A thorough review of the literature for life-cycle analyses of power generation processes using CCS technology via the MEA absorption process, and other energy generation technologies as applicable, yielded large variability in methods and core metrics. Nonetheless, a few key areas of impact for CCS were developed from the studies that we reviewed. These are: the impact of MEA generation on increased eutrophication and acidification from ammonia emissions and increased toxicity from MEA production and the impact of increased coal use including the increased generation of NOx from combustion and transportation, impacts of increased mining of coal and limestone, and the disposal of toxic fly ash and boiler ash waste streams. Overall, the implementing CCS technology could contribute to a dramatic decrease in global GHG emissions, while most other environmental and human health impact categories increase only slightly on a global scale. However, the impacts on human toxicity and ecotoxicity have not been studied as extensively and could have more severe impacts on a regional or local scale. More research is needed to draw strong conclusions with respect to the specific relative impact of different CCS technologies. Specifically, a more robust data set that disaggregates data in terms of component processes and treats a more comprehensive set of environmental impacts categories from a life-cycle perspective is needed. In addition, the current LCA framework lacks the required temporal and spatial scales to determine the risk of environmental impact from carbon sequestration. Appropriate factors to use when assessing the risk of water acidification (groundwater/oceans/aquifers depending on sequestration site), risk of increased human toxicity impact from large accidental releases from pipeline or wells, and the legal and public policy risk associated with licensing CO2 sequestration sites are also not currently addressed. In addition to identifying potential environmental, social, or risk-related issues that could impede the large-scale deployment of CCS, performing LCA-based studies on energy generation technologies can suggest places to focus our efforts to achieve technically feasible, economically viable, and environmentally conscious energy generation technologies for maximum impact.

  16. Combining geothermal energy with CO2 storage Feasibility study of low temperature geothermal electricity production using carbon dioxide as working and storage fluid.

    E-Print Network [OSTI]

    Janse, D.H.M.

    2010-01-01T23:59:59.000Z

    ??Abstract One of the emerging solutions for today’s excess of carbon dioxide emissions, which is one of the major causes of global warming, is the… (more)

  17. Triaxial creep measurements on rock salt from the Jennings dome, Louisiana, borehole LA-1, core {number_sign}8

    SciTech Connect (OSTI)

    Wawersik, W.R.; Zimmerer, D.J.

    1994-05-01T23:59:59.000Z

    Tejas Power Company requested that facilities in the Rock Mechanics Laboratory at Sandia National Laboratories be used to assess the time-dependent properties of rock salt from the Jennings dome in Acadia Parish, Louisiana. Nominally 2.5-inch diameter slat core from borehole LA-1, core 8 (depth 3924.8 to 3837.8 ft; 1196.8--1197.1 m) was provided to accomplish two tasks: (1) Using the smallest possible number of experiments, evaluate the tendency of Jennings salt to undergo time-dependent deformation (creep) under constant applied stresses, and compare the creep of Jennings salt with creep data for rock salt from other locations. (2) Assess the applicability of published laboratory-derived creep properties for rock salt from several bedded and domal sites in finite element analyses concerning the design of new gas storage caverns in the Jennings dome. The characterization of Jennings salt followed the same strategy that was applied in earlier laboratory experiments on core from the Moss Bluff dome near Houston, Texas. This report summarizes the relevant details of five creep experiments on a sample from depth 3927.5 ft, the results obtained, and how these results compared with laboratory creep measurements gathered on rock salt from other locations including the West Hackberry, Bryan Mound and Moss Bluff domes. The report also considers the estimates of specific creep parameters commonly used in numerical engineering design analyses.

  18. Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide

    SciTech Connect (OSTI)

    Spangler, Lee; Cunningham, Alfred; Barnhart, Elliot; Lageson, David; Nall, Anita; Dobeck, Laura; Repasky, Kevin; Shaw, Joseph; Nugent, Paul; Johnson, Jennifer; Hogan, Justin; Codd, Sarah; Bray, Joshua; Prather, Cody; McGrail, B.; Oldenburg, Curtis; Wagoner, Jeff; Pawar, Rajesh

    2014-09-30T23:59:59.000Z

    The Zero Emissions Research and Technology (ZERT) collaborative was formed to address basic science and engineering knowledge gaps relevant to geologic carbon sequestration. The original funding round of ZERT (ZERT I) identified and addressed many of these gaps. ZERT II has focused on specific science and technology areas identified in ZERT I that showed strong promise and needed greater effort to fully develop. Specific focal areas of ZERT II included: ? Continued use of the unique ZERT field site to test and prove detection technologies and methods developed by Montana State University, Stanford, University of Texas, several private sector companies, and others. Additionally, transport in the near surface was modelled. ? Further development of near-surface detection technologies that cover moderate area at relatively low cost (fiber sensors and compact infrared imagers). ? Investigation of analogs for escape mechanisms including characterization of impact of CO2 and deeper brine on groundwater quality at a natural analog site in Chimayo, NM and characterization of fracture systems exposed in outcrops in the northern Rockies. ? Further investigation of biofilms and biomineralization for mitigation of small aperture leaks focusing on fundamental studies of rates that would allow engineered control of deposition in the subsurface. ? Development of magnetic resonance techniques to perform muti-phase fluid measurements in rock cores. ? Laboratory investigation of hysteretic relative permeability and its effect on residual gas trapping in large-scale reservoir simulations. ? Further development of computational tools including a new version (V2) of the LBNL reactive geochemical transport simulator, TOUGHREACT, extension of the coupled flow and stress simulation capabilities in LANL’s FEHM simulator and an online gas-mixtureproperty estimation tool, WebGasEOS Many of these efforts have resulted in technologies that are being utilized in other field tests or demonstration projects.

  19. Underground storage of oil and gas

    SciTech Connect (OSTI)

    Bergman, S.M.

    1984-09-01T23:59:59.000Z

    The environmental and security advantages of underground storage of oil and gas are well documented. In many cases, underground storage methods such as storage in salt domes, abandoned mines, and mined rock caverns have proven to be cost effective when compared to storage in steel tanks constructed for that purpose on the surface. In good rock conditions, underground storage of large quantities of hydrocarbon products is normally less costly--up to 50-70% of the surface alternative. Under fair or weak rock conditions, economic comparisons between surface tanks and underground caverns must be evaluated on a case to case basis. The key to successful underground storage is enactment of a realistic geotechnical approach. In addition to construction cost, storage of petroleum products underground has operational advantages over similar storage above ground. These advantages include lower maintenance costs, less fire hazards, less land requirements, and a more even storage temperature.

  20. CO2-Brine Surface Dissolution and Injection: CO2 Storage Enhancement Paul Emeka Eke, SPE, Mark Naylor, Stuart Haszeldine and Andrew Curtis, Scottish Centre for Carbon Storage,

    E-Print Network [OSTI]

    are population increase, per capita GDP (also known as ``affluence level''), the energy intensity of the economy by the gross domestic product, GDP), energy production, E, carbon-based fuels used for energy production, C (E/GDP) and the carbon intensity of the energy system (C/E). The term E/GDP reflects the sectorial

  1. New Carbon-Based Porous Materials with Increased Heats of Adsorption for Hydrogen Storage

    SciTech Connect (OSTI)

    Snurr, Randall Q.; Hupp, Joseph T.; Kanatzidis, Mercouri G.; Nguyen, SonBinh T.

    2014-11-03T23:59:59.000Z

    Hydrogen fuel cell vehicles are a promising alternative to internal combustion engines that burn gasoline. A significant challenge in developing fuel cell vehicles is to store enough hydrogen on-board to allow the same driving range as current vehicles. One option for storing hydrogen on vehicles is to use tanks filled with porous materials that act as “sponges” to take up large quantities of hydrogen without the need for extremely high pressures. The materials must meet many requirements to make this possible. This project aimed to develop two related classes of porous materials to meet these requirements. All materials were synthesized from molecular constituents in a building-block approach, which allows for the creation of an incredibly wide variety of materials in a tailorable fashion. The materials have extremely high surface areas, to provide many locations for hydrogen to adsorb. In addition, they were designed to contain cations that create large electric fields to bind hydrogen strongly but not too strongly. Molecular modeling played a key role as a guide to experiment throughout the project. A major accomplishment of the project was the development of a material with record hydrogen uptake at cryogenic temperatures. Although the ultimate goal was materials that adsorb large quantities of hydrogen at room temperature, this achievement at cryogenic temperatures is an important step in the right direction. In addition, there is significant interest in applications at these temperatures. The hydrogen uptake, measured independently at NREL was 8.0 wt %. This is, to the best of our knowledge, the highest validated excess hydrogen uptake reported to date at 77 K. This material was originally sketched on paper based on a hypothesis that extended framework struts would yield materials with excellent hydrogen storage properties. However, before starting the synthesis, we used molecular modeling to assess the performance of the material for hydrogen uptake. Only after modeling suggested record-breaking hydrogen uptake at 77 K did we proceed to synthesize, characterize, and test the material, ultimately yielding experimental results that agreed closely with predictions that were made before the material was synthesized. We also synthesized, characterized, and computationally simulated the behavior of two new materials displaying the highest experimental Brunauer?Emmett?Teller (BET) surface areas of any porous materials reported to date (?7000 m2/g). Key to evacuating the initially solvent-filled materials without pore collapse, and thereby accessing the ultrahigh areas, was the use of a supercritical CO2 activation technique developed by our team. In our efforts to increase the hydrogen binding energy, we developed the first examples of “zwitterionic” metal-organic frameworks (MOFs). The two structures feature zwitterionic characteristics arising from N-heterocyclic azolium groups in the linkers and negatively charged Zn2(CO2)5 nodes. These groups interact strongly with the H2 quadrupole. High initial isosteric heats of adsorption for hydrogen were measured at low H2 loading. Simulations were used to determine the H2 binding sites, and results were compared with inelastic neutron scattering. In addition to MOFs, the project produced a variety of related materials known as porous organic frameworks (POFs), including robust catechol-functionalized POFs with tunable porosities and degrees of functionalization. Post-synthesis metalation was readily carried out with a wide range of metal precursors (CuII, MgII, and MnII salts and complexes), resulting in metalated POFs with enhanced heats of hydrogen adsorption compared to the starting nonmetalated materials. Isosteric heats of adsorption as high as 9.6 kJ/mol were observed, compared to typical values around 5 kJ/mol in unfunctionalized MOFs and POFs. Modeling played an important role throughout the project. For example, we used molecular simulations to determine that the optimal isosteric heat of adsorption (Qst) for maximum hydrogen delivery using MOFs is appro

  2. R.H. Williams, Decarbonized fossil energy carriers and their energy technological competitors, prepared for the IPCC Workshop on Carbon Capture and Storage, Regina, Saskatchewan, Canada, 18-21 November 2002 (1/22/03).

    E-Print Network [OSTI]

    = higher heating value NGCC = natural gas combined cycle CAES = compressed air energy storage ICER.H. Williams, Decarbonized fossil energy carriers and their energy technological competitors, prepared for the IPCC Workshop on Carbon Capture and Storage, Regina, Saskatchewan, Canada, 18-21 November

  3. Geologic technical assessment of the Richton salt dome, Mississippi, for potential expansion of the U.S. strategic petroleum reserve.

    SciTech Connect (OSTI)

    Snider, Anna C.; Rautman, Christopher Arthur; Looff, Karl M. (Geologic Consultant)

    2006-01-01T23:59:59.000Z

    Technical assessment and remodeling of existing data indicates that the Richton salt dome, located in southeastern Mississippi, appears to be a suitable site for expansion of the U.S. Strategic Petroleum Reserve. The maximum area of salt is approximately 7 square miles, at a subsurface elevation of about -2000 ft, near the top of the salt stock. Approximately 5.8 square miles of this appears suitable for cavern development, because of restrictions imposed by modeled shallow salt overhang along several sides of the dome. The detailed geometry of the overhang currently is only poorly understood. However, the large areal extent of the Richton salt mass suggests that significant design flexibility exists for a 160-million-barrel storage facility consisting of 16 ten-million-barrel caverns. The dome itself is prominently elongated from northwest to southeast. The salt stock appears to consist of two major spine features, separated by a likely boundary shear zone trending from southwest to northeast. The dome decreases in areal extent with depth, because of salt flanks that appear to dip inward at 70-80 degrees. Caprock is present at depths as shallow as 274 ft, and the shallowest salt is documented at -425 ft. A large number of existing two-dimensional seismic profiles have been acquired crossing, and in the vicinity of, the Richton salt dome. At least selected seismic profiles should be acquired, examined, potentially reprocessed, and interpreted in an effort to understand the limitations imposed by the apparent salt overhang, should the Richton site be selected for actual expansion of the Reserve.

  4. Anomalous zones in Gulf Coast Salt domes with special reference to Big Hill, TX, and Weeks Island, LA

    SciTech Connect (OSTI)

    Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R. [Magorian (Thomas R.), Amherst, NY (United States); Thoms, R.L. [AGM, Inc., College Station, TX (United States); Autin, W.J.; McCulloh, R.P. [Louisiana Geological Survey, Baton Rouge, LA (United States); Denzler, S.; Byrne, K.O. [Acres International Corp., Amherst, NY (United States)

    1993-07-01T23:59:59.000Z

    Anomalous features in Gulf Coast Salt domes exhibit deviations from normally pure salt and vary widely in form from one dome to the next, ranging considerably in length and width. They have affected both conventional and solution mining in several ways. Gas outbursts, insolubles, and potash (especially carnallite) have led to the breakage of tubing in a number of caverns, and caused irregular shapes of many caverns through preferential leaching. Such anomalous features essentially have limited the lateral extent of conventional mining at several salt mines, and led to accidents and even the closing of several other mines. Such anomalous features, are often aligned in anomalous zones, and appear to be related to diapiric processes of salt dome development. Evidence indicates that anomalous zones are found between salt spines, where the differential salt intrusion accumulates other materials: Anhydrite bands which are relatively strong, and other, weaker impurities. Shear zones and fault displacement detected at Big Hill and Weeks Island domes have not yet had any known adverse impacts on SPR oil storage, but new caverns at these sites conceivably may encounter some potentially adverse conditions. Seismic reflection profiles at Big Hill dome have shown numerous fractures and faults in the caprock, and verified the earlier recognition of a major shear zone transecting the entire salt stock and forming a graben in the overlying caprock. Casing that is placed in such zones can be at risk. Knowledge of these zones should create awareness of possible effects rather than preclude the future emplacement of caverns. To the extent possible, major anomalous zones and salt stock boundaries should be avoided. Shear zones along overhangs may be particularly hazardous, and otherwise unknown valleys in the top of salt may occur along shear zones. These zones often can be mapped geophysically, especially with high-resolution seismic techniques.

  5. Internal Geology and Evolution of the Redondo Dome, Valles Caldera...

    Open Energy Info (EERE)

    Geology and Evolution of the Redondo Dome, Valles Caldera, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Internal Geology and...

  6. Understanding the ocean carbon and sulfur cycles in the context of a variable ocean : a study of anthropogenic carbon storage and dimethylsulfide production in the Atlantic Ocean

    E-Print Network [OSTI]

    Levine, Naomi Marcil

    2010-01-01T23:59:59.000Z

    Anthropogenic activity is rapidly changing the global climate through the emission of carbon dioxide. Ocean carbon and sulfur cycles have the potential to impact global climate directly and through feedback loops. Numerical ...

  7. Icosadeltahedral geometry of fullerenes, viruses and geodesic domes

    E-Print Network [OSTI]

    Antonio Siber

    2007-11-22T23:59:59.000Z

    I discuss the symmetry of fullerenes, viruses and geodesic domes within a unified framework of icosadeltahedral representation of these objects. The icosadeltahedral symmetry is explained in details by examination of all of these structures. Using Euler's theorem on polyhedra, it is shown how to calculate the number of vertices, edges, and faces in domes, and number of atoms, bonds and pentagonal and hexagonal rings in fullerenes. Caspar-Klug classification of viruses is elaborated as a specific case of icosadeltahedral geometry.

  8. Carbon Storage Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed RouteNanotube Templated Asembly ofIllinois |

  9. Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, Bayou Choctaw salt dome, Louisiana

    SciTech Connect (OSTI)

    Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R. [Magorian (Thomas R.), Amherst, NY (United States); Byrne, K.O.; Denzler, S. [Acres International Corp., Amherst, NY (United States)

    1993-09-01T23:59:59.000Z

    This report revises and updates the geologic site characterization report that was published in 1980. Revised structure maps and sections show interpretative differences in the dome shape and caprock structural contours, especially a major east-west trending shear zone, not mapped in the 1980 report. Excessive gas influx in Caverns 18 and 20 may be associated with this shear zone. Subsidence values at Bayou Choctaw are among the lowest in the SPR system, averaging only about 10 mm/yr but measurement and interpretation issues persist, as observed values often approximate measurement accuracy. Periodic, temporary flooding is a continuing concern because of the low site elevation (less than 10 ft), and this may intensify as future subsidence lowers the surface even further. Cavern 4 was re-sonared in 1992 and the profiles suggest that significant change has not occurred since 1980, thereby reducing the uncertainty of possible overburden collapse -- as occurred at Cavern 7 in 1954. Other potential integrity issues persist, such as the proximity of Cavern 20 to the dome edge, and the narrow web separating Caverns 15 and 17. Injection wells have been used for the disposal of brine but have been only marginally effective thus far; recompletions into more permeable lower Pleistocene gravels may be a practical way of increasing injection capacity and brinefield efficiency. Cavern storage space is limited on this already crowded dome, but 15 MMBBL could be gained by enlarging Cavern 19 and by constructing a new cavern beneath and slightly north of abandoned Cavern 13. Environmental issues center on the low site elevation: the backswamp environment combined with the potential for periodic flooding create conditions that will require continuing surveillance.

  10. Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, Bryan Mound Salt Dome, Texas

    SciTech Connect (OSTI)

    Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R.; Ahmad, S. [Acres International Corp., Amherst, NY (United States)] [Acres International Corp., Amherst, NY (United States)

    1994-11-01T23:59:59.000Z

    This report revises the original report that was published in 1980. Some of the topics covered in the earlier report were provisional and it is now practicable to reexamine them using new or revised geotechnical data and that obtained from SPR cavern operations, which involves 16 new caverns. Revised structure maps and sections show interpretative differences as compared with the 1980 report and more definition in the dome shape and caprock structural contours, especially a major southeast-northwest trending anomalous zone. The original interpretation was of westward tilt of the dome, this revision shows a tilt to the southeast, consistent with other gravity and seismic data. This interpretation refines the evaluation of additional cavern space, by adding more salt buffer and allowing several more caverns. Additional storage space is constrained on this nearly full dome because of low-lying peripheral wetlands, but 60 MMBBL or more of additional volume could be gained in six or more new caverns. Subsidence values at Bryan Mound are among the lowest in the SPR system, averaging about 11 mm/yr (0.4 in/yr), but measurement and interpretation issues persist, as observed values are about the same as survey measurement accuracy. Periodic flooding is a continuing threat because of the coastal proximity and because peripheral portions of the site are at elevations less than 15 ft. This threat may increase slightly as future subsidence lowers the surface, but the amount is apt to be small. Caprock integrity may be affected by structural features, especially the faulting associated with anomalous zones. Injection wells have not been used extensively at Bryan Mound, but could be a practicable solution to future brine disposal needs. Environmental issues center on the areas of low elevation that are below 15 feet above mean sea level: the coastal proximity and lowland environment combined with the potential for flooding create conditions that require continuing surveillance.

  11. CO2 Geologic Storage (Kentucky)

    Broader source: Energy.gov [DOE]

    Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon...

  12. The development of self aligning geodesic dome geometries and their application at Chernobyl

    SciTech Connect (OSTI)

    Hoelzen, E.C.

    1995-12-31T23:59:59.000Z

    William M. Hardy and the author have been actively working towards the goal of establishing a non-profit engineering firm to provide remedial answers to environmental crises. Their immediate concerns are nuclear waste. Their first project has been to provide a design for the second sarcophagus planned at the Chernobyl nuclear power plant in the Ukraine. The sarcophagus will provide a habitat in which to robotically dismantle the power plant and dispose of the radioactive material over a 100+ year period. The Chernobyl Ukritiye Dome structure will `float` on a sufficiently wide, concentrically ``toothed`` footing, supported on a bed of crushed rock so that a minimum of vibrational site disturbance is achieved during construction. This will eliminate the need for a conventional poured concrete foundation and the associated excavating. The Chernobyl Ukritiye Dome will potentially be the single largest structure ever erected in the world. A goal and benefit of this project will be a minimum of exposure to radioactivity for the labor pool because of extensive off site fabrication and as much of the construction as possible will be done robotically. Not only will this structure provide superior long term encapsulation, but once completed, it will become the premiere storage location for the entire region during the next several hundred years.

  13. Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.

    2008-11-18T23:59:59.000Z

    This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

  14. 2005: Future effects of ozone on carbon sequestration and climate change policy using a global

    E-Print Network [OSTI]

    B. Felzer; J. Reilly; J. Melillo; D. Kicklighter; M. Sarofim; C. Wang; R. Prinn; Q. Zhuang

    production and carbon sequestration. The reduced carbon storage would then require further reductions in

  15. DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs

    Broader source: Energy.gov [DOE]

    A field test conducted by a U.S. Department of Energy team of regional partners has demonstrated that using carbon dioxide in an enhanced oil recovery method dubbed "huff-and-puff" can help assess the carbon sequestration potential of geologic formations while tapping America's valuable oil resources.

  16. Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment of Carbon Capture and Storage Technologies

    E-Print Network [OSTI]

    Haszeldine, Stuart

    of sedimentary basins. 1. Introduction #12;In recent years emissions of carbon dioxide from the UK electricity of these measures for deployment in 2020 depends entirely on final UK carbon emission targets and the abilityScope for Future CO2 Emission Reductions from Electricity Generation through the Deployment

  17. C-105 heel pit removed and C-105 dome cut paves way for new retrieval technology

    SciTech Connect (OSTI)

    Mackey, Thomas C.; Sutey, Michael J.

    2013-06-10T23:59:59.000Z

    For just the second time, crews have cut a hole in the top of an active radioactive waste storage tank at Hanford. Workers began cutting a 55-inch hole in the top of Tank C-105 last Tuesday night on graveyard shift, completing the cut early Wednesday. The hole will allow for installation of the Mobile Arm Retrieval System (MARS) Vacuum into the tank. The cut was made through 17 inches of concrete and rebar using the newly developed rotary-core cutting system, which uses a laser-guided steel canister with teeth on the bottom to drill a round hole into the tank dome. The project was completed safely and successfully in a high-rad area without contamination or significant dose to workers.

  18. Characterizing the Weeks Island Salt Dome drilling of and seismic measurements from boreholes

    SciTech Connect (OSTI)

    Sattler, A.R.; Harding, R.S.; Jacobson, R.D.; Finger, J.T.; Keefe, R.; Neal, J.T.

    1996-10-01T23:59:59.000Z

    A sinkhole 36 ft across, 30 ft deep was first observed in the alluvium over the Weeks Island Salt Dome (salt mine converted for oil storage by US Strategic Petroleum Reserve) May 1992. Four vertical, two slanted boreholes were drilled for diagnostics. Crosswell seismic data were generated; the velocity images suggest that the sinkhole collapse is complicated, not a simple vertical structure. The coring operation was moderately difficult; limited core was obtained through the alluvium, and the quality of the salt core from the first two vertical wells was poor. Core quality improved with better bit selection, mud, and drilling method. The drilling fluid program provided fairly stable holes allowing open hole logs to be run. All holes were cemented successfully (although it took 3 attempts in one case).

  19. A mechanical model of early salt dome growth

    E-Print Network [OSTI]

    Irwin, Frank Albert

    1988-01-01T23:59:59.000Z

    of Department) December 1988 A Mechanical Analysis of Early Salt Dome Growth. (December 1988) Frank Albert Irwin, B. S. , Texas A&M University Chair of Advisory Committee: Dr. Raymond C. Fletcher A two-layer superposition model, the lower layer representing... of the sediments results in growth rates much higher than those observed. Analysis of the case with a diffusivity of 104m2/Ka agrees with all observa- tions. A range of diffusivities which will produce a realistic salt dome model is then determined. The lower...

  20. Mathematical models as tools for probing long-term safety of CO2 storage

    E-Print Network [OSTI]

    Pruess, Karsten

    2010-01-01T23:59:59.000Z

    Storage of Carbon Dioxide in Aquifers in The Netherlands, EnergyStorage of Carbon Dioxide: Comparison of Non-hysteretic and Hysteretic Characteristic Curves, Energy

  1. Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications

    E-Print Network [OSTI]

    Burke, Andy; Gardiner, Monterey

    2005-01-01T23:59:59.000Z

    Uhlemann, M. , etals. , Hydrogen Storage in Different CarbonEckert, J. , etals. , Hydrogen Storage in Microporous Metal-16, 2003 40. Smalley,E. , Hydrogen Storage Eased, Technology

  2. Final Technical Report Interannual Variations in the Rate of Carbon Storage by a Mid-Latitude Forest

    SciTech Connect (OSTI)

    Wofsy, Steven; Munger, J W

    2012-07-31T23:59:59.000Z

    The time series of Net Ecosystem Exchange (NEE) of carbon by an entire forest ecosystem on time scales from hourly to decadal was measured by eddy-covariance supplemented with plot-level measurements of biomass and tree demography. The results demonstrate the response of forest carbon fluxes and long-term budgets to climatic factors and to successional change. The data from this project have been extensively used worldwide by the carbon cycle science community in support of model development and validation of remote sensing observations.

  3. LUCI: A facility at DUSEL for large-scale experimental study of geologic carbon sequestration

    E-Print Network [OSTI]

    Peters, C. A.

    2011-01-01T23:59:59.000Z

    Wilson, Gerard, editors. Carbon Capture and SequestrationSpecial Report on carbon dioxide capture and storage, Metzof cement. In: Carbon Dioxide Capture for Storage in Deep

  4. Perspectives on Carbon Capture and Sequestration in the United States

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle

    2011-01-01T23:59:59.000Z

    acceptance of carbon dioxide storage Energy Policy 35 2780–carbon dioxide capture and storage RD&D roadmap; National EnergyEnergy 2006 Sequestration test to demonstrate carbon dioxide storage

  5. PHYSICAL REVIEW B 88, 245402 (2013) Limits of mechanical energy storage and structural changes in twisted carbon nanotube ropes

    E-Print Network [OSTI]

    TomĂĄnek, David

    include gravitational potential energy in water reservoirs, electrical potential energy in capacitors and batteries, nuclear potential energy in unsta- ble isotopes, chemical potential energy in fossil fuels and explosives, and thermal energy in steam. Mechanical energy storage, used in wind-up watches and flywheels

  6. Methodology, morphology, and optimization of carbon nanotube growth for improved energy storage in a double layer capacitor

    E-Print Network [OSTI]

    Ku, Daniel C. (Daniel Chung-Ming), 1985-

    2009-01-01T23:59:59.000Z

    The goal of this thesis is to optimize the growth of carbon nanotubes (CNTs) on a conducting substrate for use as an electrode to improve energy density in a double-layer capacitor. The focus has been on several areas, ...

  7. How Carbon Capture Works | Department of Energy

    Energy Savers [EERE]

    past two decades. Carbon capture, utilization and storage (CCUS) -- also referred to as carbon capture, utilization and sequestration -- is a process that captures carbon dioxide...

  8. Degradation of dome cutting minerals in Hanford waste

    SciTech Connect (OSTI)

    Reynolds, Jacob G.; Huber, Heinz J.; Cooke, Gary A.

    2013-01-11T23:59:59.000Z

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes of a waste tank is expected to depend on two main parameters: carbonate is expected to slow olivine degradation rates, whereas hydroxide is expected to enhance olivine dissolution rates. Which of these two competing dissolution drivers will have a larger impact on the dissolution rate in the specific environment of a waste tank is currently not identifiable. In general, cancrinite is much smaller and less hard than either olivine or garnet, so would be expected to be less erosive to processing equipment. Complete degradation of either garnet or olivine prior to being processed at the Waste Treatment and Immobilization Plant cannot be confirmed, however.

  9. Degradation of Dome Cutting Minerals in Hanford Waste - 13100

    SciTech Connect (OSTI)

    Reynolds, Jacob G.; Cooke, Gary A.; Huber, Heinz J. [Washington River Protection Solutions, LLC, P.O. Box 850, Richland, WA 99352 (United States)] [Washington River Protection Solutions, LLC, P.O. Box 850, Richland, WA 99352 (United States)

    2013-07-01T23:59:59.000Z

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg. C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes of a waste tank is expected to depend on two main parameters: carbonate is expected to slow olivine degradation rates, whereas hydroxide is expected to enhance olivine dissolution rates. Which of these two competing dissolution drivers will have a larger impact on the dissolution rate in the specific environment of a waste tank is currently not identifiable. In general, cancrinite is much smaller and less hard than either olivine or garnet, so would be expected to be less erosive to processing equipment. Complete degradation of either garnet or olivine prior to being processed at the Waste Treatment and Immobilization Plant cannot be confirmed, however. (authors)

  10. Site testing for submillimetre astronomy at Dome C, Antarctica

    E-Print Network [OSTI]

    Tremblin, P; Schneider, N; Durand, G Al; Ashley, M C B; Lawrence, J S; Luong-Van, D M; Storey, J W V; Durand, G An; Reinert, Y; Veyssiere, C; Walter, C; Ade, P; Calisse, P G; Challita, Z; Fossat, E; Sabbatini, L; Pellegrini, A; Ricaud, P; Urban, J

    2011-01-01T23:59:59.000Z

    Over the past few years a major effort has been put into the exploration of potential sites for the deployment of submillimetre astronomical facilities. Amongst the most important sites are Dome C and Dome A on the Antarctic Plateau, and the Chajnantor area in Chile. In this context, we report on measurements of the sky opacity at 200 um over a period of three years at the French-Italian station, Concordia, at Dome C, Antarctica. We also present some solutions to the challenges of operating in the harsh polar environ- ment. Dome C offers exceptional conditions in terms of absolute atmospheric transmission and stability for submillimetre astron- omy. Over the austral winter the PWV exhibits long periods during which it is stable and at a very low level (0.1 to 0.3 mm). Higher values (0.2 to 0.8 mm) of PWV are observed during the short summer period. Based on observations over three years, a transmission of around 50% at 350 um is achieved for 75% of the time. The 200-um window opens with a typical transmission...

  11. Hydrogen Storage Systems Analysis Meeting: Summary Report, March...

    Broader source: Energy.gov (indexed) [DOE]

    (W. Luo, SNL), chemical hydrogen storage (C. Aardahl, PNNL), and carbon-based materials and sorbents (M. Ringer, NREL) approaches for hydrogen storage. These discussions...

  12. Coherent Carbon Cryogel-Ammonia Borane Nanocomposites for Improved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Cryogel-Ammonia Borane Nanocomposites for Improved Hydrogen Storage. Coherent Carbon Cryogel-Ammonia Borane Nanocomposites for Improved Hydrogen Storage. Abstract: Ammonia...

  13. UKERC ENERGY RESEARCH ATLAS: CARBON CAPTURE AND STORAGE (version 10 February 2008) Section 1: An overview which includes a broad characterisation of research activity in the sector and the key research challenges

    E-Print Network [OSTI]

    Haszeldine, Stuart

    UKERC ENERGY RESEARCH ATLAS: CARBON CAPTURE AND STORAGE (version 10 February 2008) Section 1 Research and Technology Development (RTD) Programmes. Section 8: UK participation in energy-related EU international initiatives, including those supported by the International Energy Agency. Version 1.2 published

  14. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    SciTech Connect (OSTI)

    none,

    1981-10-01T23:59:59.000Z

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, property ownership, and surface geology, and a geologic cross section were presented for each dome.

  15. Curvature effects on carbon nanomaterials: Exohedral versus endhohedra...

    Office of Scientific and Technical Information (OSTI)

    Curvature effects on carbon nanomaterials: Exohedral versus endhohedral supercapacitors Re-direct Destination: Capacitive energy storage mechanisms in nanoporous carbon...

  16. Leakage Risk Assessment for a Potential CO2 Storage Project in Saskatchewan, Canada

    E-Print Network [OSTI]

    Houseworth, J.E.

    2012-01-01T23:59:59.000Z

    Storage of Carbon Dioxide: Comparison of Non- Hysteretic and Hysteretic Characteristic Curves, Energy

  17. Geologic technical assessment of the Stratton Ridge salt dome, Texas, for potential expansion of the U.S. strategic petroleum reserve.

    SciTech Connect (OSTI)

    Rautman, Christopher Arthur; Snider, Anna C.; Looff, Karl M. (Geologic Consultant, Lovelady, TX)

    2006-11-01T23:59:59.000Z

    The Stratton Ridge salt dome is a large salt diapir located only some ten miles from the currently active Strategic Petroleum Reserve Site at Bryan Mound, Texas. The dome is approximately 15 miles south-southwest of Houston. The Stratton Ridge salt dome has been intensively developed, in the desirable central portions, with caverns for both brine production and product storage. This geologic technical assessment indicates that the Stratton Ridge salt dome may be considered a viable, if less-than-desirable, candidate site for potential expansion of the Strategic Petroleum Reserve (SPR). Past development of underground caverns significantly limits the potential options for use by the SPR. The current conceptual design layout of proposed caverns for such an expansion facility is based upon a decades-old model of salt geometry, and it is unacceptable, according to this reinterpretation of salt dome geology. The easternmost set of conceptual caverns are located within a 300-ft buffer zone of a very major boundary shear zone, fault, or other structural feature of indeterminate origin. This structure transects the salt stock and subdivides it into an shallow western part and a deeper eastern part. In places, the distance from this structural boundary to the design-basis caverns is as little as 150 ft. A 300-ft distance from this boundary is likely to be the minimum acceptable stand-off, from both a geologic and a regulatory perspective. Repositioning of the proposed cavern field is possible, as sufficient currently undeveloped salt acreage appears to be available. However, such reconfiguration would be subject to limitations related to land-parcel boundaries and other existing infrastructure and topographic constraints. More broadly speaking, the past history of cavern operations at the Stratton Ridge salt dome indicates that operation of potential SPR expansion caverns at this site may be difficult, and correspondingly expensive. Although detailed information is difficult to come by, widely accepted industry rumors are that numerous existing caverns have experienced major operational problems, including salt falls, sheared casings, and unintended releases of stored product(s). Many of these difficulties may be related to on-going differential movement of individual salt spines or to lateral movement at the caprock-salt interface. The history of operational problems, only some of which appear to be a matter of public record, combined with the potential for encountering escaped product from other operations, renders the Stratton Ridge salt dome a less-than-desirable site for SPR purposes.

  18. Virtual Center of Excellence for Hydrogen Storage - Chemical...

    Broader source: Energy.gov (indexed) [DOE]

    funded) * Advanced carbon materials (LDRD) - (we propose a support role in the carbon materials virtual center) * Electrochemically active barrier liner for composite storage tanks...

  19. aboveground storage tank: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Storage in a Tropical Forest Daniel E. Bunker,1 * Fabrice De services, such as carbon storage and sequestration, remain unknown. We assessed the influence of the loss of...

  20. On-Board Storage Systems Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Storage Determining whether activated carbons at low T & high P can meet DOE's 2007 storage targets Cryo-Compressed Hydrogen Determining combinations of P & T to achieve 4.5...

  1. Conceptual model for regional radionuclide transport from a salt dome repository: a technical memorandum

    SciTech Connect (OSTI)

    Kier, R.S.; Showalter, P.A.; Dettinger, M.D.

    1980-05-30T23:59:59.000Z

    Disposal of high-level radioactive wastes is a major environmental problem influencing further development of nuclear energy in this country. Salt domes in the Gulf Coast Basin are being investigated as repository sites. A major concern is geologic and hydrologic stability of candidate domes and potential transport of radionuclides by groundwater to the biosphere prior to their degradation to harmless levels of activity. This report conceptualizes a regional geohydrologic model for transport of radionuclides from a salt dome repository. The model considers transport pathways and the physical and chemical changes that would occur through time prior to the radionuclides reaching the biosphere. Necessary, but unknown inputs to the regional model involve entry and movement of fluids through the repository dome and across the dome-country rock interface and the effect on the dome and surrounding strata of heat generated by the radioactive wastes.

  2. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01T23:59:59.000Z

    Chapter 31 in Carbon Dioxide Capture for Storage in DeepChapter 14 in Carbon Dioxide Capture for Storage in DeepSummary. Chapter 25 in Carbon Dioxide Capture for Storage in

  3. Real-World Carbon Dioxide Impacts of Traffic Congestion

    E-Print Network [OSTI]

    Barth, Matthew; Boriboonsomsin, Kanok

    2010-01-01T23:59:59.000Z

    biodiesel) and synthetic fuels (coupled with carbon capture and storage). Center for Environmental Research and Technology,

  4. Draft environmental assessment: Richton Dome site, Mississippi. Nuclear Waste Policy Act (Section 112). [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1984-12-01T23:59:59.000Z

    In February 1983, the US Department of Energy identified the Richton dome site as one of the nine potentially acceptable sites for a mined geo

  5. Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2012-01-01T23:59:59.000Z

    and Co. (2008) Carbon capture and storage: Assessing theof Carbon Dioxide, in Carbon Capture and SequestrationWilson and Gerard, editors, Carbon Capture and Sequestration

  6. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 2: January through March 2011).

    SciTech Connect (OSTI)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01T23:59:59.000Z

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 2 Milestone was completed on time. The milestone entails an ex situ analysis of the four carbons that have been added to the negative active material of valve-regulated lead-acid (VRLA) batteries for the purposes of this study. The four carbons selected for this study were a graphitic carbon, a carbon black, an activated carbon, and acetylene black. The morphology, crystallinity, and impurity contents of each of the four carbons were analyzed; results were consistent with previous data. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown.

  7. Salt tectonism and seismic stratigraphy of the Upper Jurassic in the Destin Dome Region, northeastern Gulf of Mexico

    E-Print Network [OSTI]

    MacRae, Grant

    1990-01-01T23:59:59.000Z

    in the Norphlet Formation (Bearden and Mink, 1989). Comprehensive high-quality multifold seismic reflection data have not previously been available for detailed seismic stratigraphic analysis in the Destin Dome region. Establishment of a seismic stratigraphic... DD-2 Destin Dome Exxon 162 17 938 P, V, G, S, SP, R, D DD-3 Destin Dome Sun Oil 166 17 608 P, V, G, S, SP, D DD-4 Destin Dome Gulf 360 20 988 P, V, G, S, SP, R, D DD-5 Destin Dome Chevron 422 22 222 V, G, S, SP, R, D DD-6 Destin Dome Sohio...

  8. Perspectives on Carbon Capture and Sequestration in the United States

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle

    2011-01-01T23:59:59.000Z

    Community acceptance of carbon capture and sequestrationand realities of carbon capture and storage; www.eenews.net/Howard. What Future for Carbon Capture and Sequestration?

  9. Cold domes over the warm pool: a study of the properties of cold domes produced by mesoscale convective systems during TOGA COARE

    E-Print Network [OSTI]

    Caesar, Kathy-Ann Lois

    1995-01-01T23:59:59.000Z

    Mesoscale convective systems (MCSs) are known to cool the subcloud layer by the introduction of penetrative downdrafts to the surface, resulting in the formation of cold domes (also known as cold pools). Five MCSs sampled during the Tropical Ocean...

  10. Synthesis and Functionalization of Carbon and Boron Nitride Nanomaterials and Their Applications

    E-Print Network [OSTI]

    Erickson, Kristopher John

    2012-01-01T23:59:59.000Z

    Carbon Nitrides for Hydrogen Storage. Adv. Funct. Mater.N compounds for chemical hydrogen storage. Chemical SocietyT. , High-Pressure Hydrogen Storage in Zeolite-Templated

  11. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05T23:59:59.000Z

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  12. Mesozoic magmatism and granitic dome in the Wugongshan Massif, Jiangxi province and their genetical

    E-Print Network [OSTI]

    Boyer, Edmond

    Mesozoic magmatism and granitic dome in the Wugongshan Massif, Jiangxi province and their genetical,CNRS - Université d'Orleans, 45067 Orleans 2, France Abstract In SE China, a Mesozoic granitic dome coeval and granitic gneisses, and the E­W-trending Late-Paleozoic­Mesozoic Pingxiang and Anfu basins are located along

  13. Fast foldable tent domes Aswin P.L. Jgers a,b

    E-Print Network [OSTI]

    Rutten, Rob

    -gust accelerations around large obstacles. This applies also to future large solar telescopes. At present two over the whole dome size. Simultaneously, a variety of wind-speed and -direction sensors measure the wind field around the dome. In addition, fast sensitive air- pressure sensors placed on the supporting

  14. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE energy storage systems program (FY11 Quarter 3: April through June 2011).

    SciTech Connect (OSTI)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-09-01T23:59:59.000Z

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 3 Milestone was completed on time. The milestone entails an ex situ analysis of a control as well as three carbon-containing negative plates in the raw, as cast form as well as after formation. The morphology, porosity, and porosity distribution within each plate was evaluated. In addition, baseline electrochemical measurements were performed on each battery to establish their initial performance. These measurements included capacity, internal resistance, and float current. The results obtained for the electrochemical testing were in agreement with previous evaluations performed at East Penn manufacturing. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated.

  15. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 1: October through December 2010).

    SciTech Connect (OSTI)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01T23:59:59.000Z

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 1 Milestone was completed on time. The milestone entails conducting a thorough literature review to establish the current level of understanding of the mechanisms through which carbon additions to the negative active material improve valve-regulated lead-acid (VRLA) batteries. Most studies have entailed phenomenological research observing that the carbon additions prevent/reduce sulfation of the negative electrode; however, no understanding is available to provide insight into why certain carbons are successful while others are not. Impurities were implicated in one recent review of the electrochemical behavior of carbon additions. Four carbon samples have been received from East Penn Manufacturing and impurity contents have been analyzed. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown in the graph.

  16. Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America

    E-Print Network [OSTI]

    Oldenburg, C.

    2010-01-01T23:59:59.000Z

    and liability for carbon capture and sequestration, Environ.Wilson and Gerard, editors, Carbon Capture and SequestrationSpecial Report on carbon dioxide capture and storage, ISBN

  17. Geomechanical testing of MRIG-9 core for the potential SPR siting at the Richton salt dome.

    SciTech Connect (OSTI)

    Dunn, Dennis P.; Broome, Scott Thomas; Bronowski, David R.; Bauer, Stephen J.; Hofer, John H.

    2009-02-01T23:59:59.000Z

    A laboratory testing program was developed to examine the mechanical behavior of salt from the Richton salt dome. The resulting information is intended for use in design and evaluation of a proposed Strategic Petroleum Reserve storage facility in that dome. Core obtained from the drill hole MRIG-9 was obtained from the Texas Bureau of Economic Geology. Mechanical properties testing included: (1) acoustic velocity wave measurements; (2) indirect tensile strength tests; (3) unconfined compressive strength tests; (4) ambient temperature quasi-static triaxial compression tests to evaluate dilational stress states at confining pressures of 725, 1450, 2175, and 2900 psi; and (5) confined triaxial creep experiments to evaluate the time-dependent behavior of the salt at axial stress differences of 4000 psi, 3500 psi, 3000 psi, 2175 psi and 2000 psi at 55 C and 4000 psi at 35 C, all at a constant confining pressure of 4000 psi. All comments, inferences, discussions of the Richton characterization and analysis are caveated by the small number of tests. Additional core and testing from a deeper well located at the proposed site is planned. The Richton rock salt is generally inhomogeneous as expressed by the density and velocity measurements with depth. In fact, we treated the salt as two populations, one clean and relatively pure (> 98% halite), the other salt with abundant (at times) anhydrite. The density has been related to the insoluble content. The limited mechanical testing completed has allowed us to conclude that the dilatational criteria are distinct for the halite-rich and other salts, and that the dilation criteria are pressure dependent. The indirect tensile strengths and unconfined compressive strengths determined are consistently lower than other coastal domal salts. The steady-state-only creep model being developed suggests that Richton salt is intermediate in creep resistance when compared to other domal and bedded salts. The results of the study provide only limited information for structural modeling needed to evaluate the integrity and safety of the proposed cavern field. This study should be augmented with more extensive testing. This report documents a series of test methods, philosophies, and empirical relationships, etc., that are used to define and extend our understanding of the mechanical behavior of the Richton salt. This understanding could be used in conjunction with planned further studies or on its own for initial assessments.

  18. Recovery Act: 'Carbonsheds' as a Framework for Optimizing United States Carbon Capture and Storage (CCS) Pipeline Transport on a Regional to National Scale

    SciTech Connect (OSTI)

    Pratson, Lincoln

    2012-11-30T23:59:59.000Z

    Carbonsheds are regions in which the estimated cost of transporting CO{sub 2} from any (plant) location in the region to the storage site it encompasses is cheaper than piping the CO{sub 2} to a storage site outside the region. We use carbonsheds to analyze the cost of transport and storage of CO{sub 2} in deploying CCS on land and offshore of the continental U.S. We find that onshore the average cost of transport and storage within carbonsheds is roughly $10/t when sources cooperate to reduce transport costs, with the costs increasing as storage options are depleted over time. Offshore transport and storage costs by comparison are found to be roughly twice as expensive but t may still be attractive because of easier access to property rights for sub-seafloor storage as well as a simpler regulatory system, and possibly lower MMV requirements, at least in the deep-ocean where pressures and temperatures would keep the CO{sub 2} negatively buoyant. Agent-based modeling of CCS deployment within carbonsheds under various policy scenarios suggests that the most cost-effective strategy at this point in time is to focus detailed geology characterization of storage potential on only the largest onshore reservoirs where the potential for mitigating emissions is greatest and the cost of storage appears that it will be among the cheapest.

  19. Carbon/Ternary Alloy/Carbon Optical Stack on Mylar as an Optical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CarbonTernary AlloyCarbon Optical Stack on Mylar as an Optical Data Storage Medium to Potentially Replace Magnetic Tape. CarbonTernary AlloyCarbon Optical Stack on Mylar as an...

  20. E-Print Network 3.0 - ab5-type hydrogen storage Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    understanding of storage mechanisms... are the premier laboratory in carbon aerogels and have explored their use for hydrogen storage and gas separation... . Preliminary...

  1. Experience in testing of a solution mined storage cavern

    SciTech Connect (OSTI)

    Goin, K.L.

    1982-01-01T23:59:59.000Z

    Recertification tests were made of the U.S. Department of Energy/Strategic Petroleum Reserve oil storage cavern No. 6 in the West Hackberry, LA, salt dome. The cavern has a volume of 8,600,000 bbl. Tests included hydrostatic tests of the brine filled cavern and nitrogen leak tests of the 3 wells entering the cavern. Test procedures are described and test results are discussed.

  2. GETTING CARBON CAPTURE AND STORAGE

    E-Print Network [OSTI]

    Haszeldine, Stuart

    .sciencebusiness.net At the fourth in a series of high-level academic policy debates on the energy R&D challenge, The Energy in a series of high-level academic policy symposia focused on the energy innovation challenge, entitled in countries leading the drive to commercialise CCS ­ the UK, the Netherlands and Norway ­ and explored policy

  3. Area of Interest 1, CO2 at the Interface: Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance

    SciTech Connect (OSTI)

    Mozley, Peter; Evans, James; Dewers, Thomas

    2014-10-31T23:59:59.000Z

    We examined the influence of geologic features present at the reservoir/caprock interface on the transmission of supercritical CO2 into and through caprock. We focused on the case of deformation-band faults in reservoir lithologies that intersect the interface and transition to opening-mode fractures in caprock lithologies. Deformation-band faults are exceeding common in potential CO2 injection units and our fieldwork in Utah indicates that this sort of transition is common. To quantify the impact of these interface features on flow and transport we first described the sedimentology and permeability characteristics of selected sites along the Navajo Sandstone (reservoir lithology) and Carmel Formation (caprock lithology) interface, and along the Slickrock Member (reservoir lithology) and Earthy Member (caprock lithology) of the Entrada Sandstone interface, and used this information to construct conceptual permeability models for numerical analysis. We then examined the impact of these structures on flow using single-phase and multiphase numerical flow models for these study sites. Key findings include: (1) Deformation-band faults strongly compartmentalize the reservoir and largely block cross-fault flow of supercritical CO2. (2) Significant flow of CO2 through the fractures is possible, however, the magnitude is dependent on the small-scale geometry of the contact between the opening-mode fracture and the deformation band fault. (3) Due to the presence of permeable units in the caprock, caprock units are capable of storing significant volumes of CO2, particularly when the fracture network does not extend all the way through the caprock. The large-scale distribution of these deformation-bandfault- to-opening-mode-fractures is related to the curvature of the beds, with greater densities of fractures in high curvature regions. We also examined core and outcrops from the Mount Simon Sandstone and Eau Claire Formation reservoir/caprock interface in order to extend our work to a reservoir/caprock pair this is currently being assessed for long-term carbon storage. These analyses indicate that interface features similar to those observed at the Utah sites 3 were not observed. Although not directly related to our main study topic, one byproduct of our investigation is documentation of exceptionally high degrees of heterogeneity in the pore-size distribution of the Mount Simon Sandstone. This suggests that the unit has a greater-than-normal potential for residual trapping of supercritical CO2.

  4. Gravity and seismic reflection studies over the Ferguson Crossing Salt Dome, Grimes and Brazos Counties, Texas

    E-Print Network [OSTI]

    Cordero Ardila, Vladimir Francisco

    1977-01-01T23:59:59.000Z

    and not com- pletely understood f orm. The study of salt domes is important because: (1) more than four-fift'ns or all oil and gas accumulations in fields in the Gulf Coast province have been geologically affected by the growth of the salt domes (Halbouty... to obtain a Bouguer anomaly map of the Ferguson Crossing Salt Dome, (2) a seismic reflection study in order to obtain a seismic section of the area of investigation, and (3) an analysis and interpretation of these studies to obtain a reasonable model...

  5. Structural constraints on the exhumation of the Tso Morari Dome, NW Himalaya

    E-Print Network [OSTI]

    Clark, Ryan J

    2005-01-01T23:59:59.000Z

    The Tso Morari culmination in the Ladakh region of northwest India is a large (>3,000 kmČ) structural dome cored by coesite-bearing rocks of Indian continental crustal affinity. As one of only two localities in the Himalaya ...

  6. Integrated modeling of CO2 storage and leakage scenarios including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO2

    E-Print Network [OSTI]

    Pruess, K.

    2012-01-01T23:59:59.000Z

    Storage of Carbon Dioxide: Comparison of Non-hysteretic and Hysteretic Characteristic Curves, Energy

  7. Characterizing fault-plume intersection probability for geologic carbon sequestration risk assessment

    E-Print Network [OSTI]

    Jordan, Preston D.

    2009-01-01T23:59:59.000Z

    storage of carbon dioxide: comparison of hysteretic and non-hysteretic characteristic curves, Energy

  8. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-09-08T23:59:59.000Z

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  9. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08T23:59:59.000Z

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  10. Carbon Sequestration Atlas IV Video

    SciTech Connect (OSTI)

    Rodosta, Traci

    2013-04-19T23:59:59.000Z

    The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

  11. Carbon Sequestration Atlas IV Video

    ScienceCinema (OSTI)

    Rodosta, Traci

    2014-06-27T23:59:59.000Z

    The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

  12. Three-dimensional representations of salt-dome margins at four active strategic petroleum reserve sites.

    SciTech Connect (OSTI)

    Rautman, Christopher Arthur; Stein, Joshua S.

    2003-01-01T23:59:59.000Z

    Existing paper-based site characterization models of salt domes at the four active U.S. Strategic Petroleum Reserve sites have been converted to digital format and visualized using modern computer software. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jefferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome in Cameron Parish, Louisiana. A new modeling algorithm has been developed to overcome limitations of many standard geological modeling software packages in order to deal with structurally overhanging salt margins that are typical of many salt domes. This algorithm, and the implementing computer program, make use of the existing interpretive modeling conducted manually using professional geological judgement and presented in two dimensions in the original site characterization reports as structure contour maps on the top of salt. The algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the specific implementation of the algorithm described in this report and the resulting output files are tailored to the modeling and visualization software used to construct the figures contained herein, the algorithm itself is generic and other implementations and output formats are possible. The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are believed to be major improvements over the previously available two-dimensional representations of the domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical mesh files produced by this modeling activity are available for import into and display by other software routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple ASCII format is included on a PC-based compact disk.

  13. Variability of bottom water domes and geostrophic currents in the eastern Gulf of Maine

    E-Print Network [OSTI]

    Gottlieb, Erik S

    1987-01-01T23:59:59.000Z

    entering Georges Bas- in, the slope water mixes with the endemic, less-dense bottom water (Hopkins and Gar- field, 1979). The newly formed bottom water accumulates in Georges Basin, resulting in an upward doming of the interface (found between 50 and 200...VARIABILITY OF BOTTOM WATER DOMES AND GEOSTROPHIC CURRENTS IN THE EASTERN GULF OF MAINE A Thesis by ERIK SAUL GQTTLIEB Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree...

  14. An investigation of the subsurface Bouguer anomaly in the vicinity of shallow salt domes

    E-Print Network [OSTI]

    Barnes, William Charles

    1977-01-01T23:59:59.000Z

    'itted to the anomaly data in vertical profiles. Analysis of the anomalous vertical gravity gradients indicates that such gradients are too minute for purposes of salt dome exploration. However, calculations of the Bouguer anomaly reveal data which would be easily... detected in the field and amenable to geological interpretation. The empirical curves are fourd to be useful in estimating the Bouguer anomaly for salt domes not explicitly represented by the models. ACKNONLEDGEMENTS The author wishes to express his...

  15. Silo Storage Preconceptual Design

    SciTech Connect (OSTI)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01T23:59:59.000Z

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  16. Physical and chemical effects of CO2 storage in saline aquifers of the southern North Sea 

    E-Print Network [OSTI]

    Heinemann, Niklas

    2013-07-01T23:59:59.000Z

    One of the most promising mitigation strategies for greenhouse gas accumulation in the atmosphere is carbon capture and storage (CCS). Deep saline aquifers are seen as the most efficient carbon dioxide (CO2) storage sites, ...

  17. Carbon Dioxide Storage in Coal Seams with Enhanced Coalbed Methane Recovery: Geologic Evaluation, Capacity Assessment and Field Validation of the Central Appalachian Basin.

    E-Print Network [OSTI]

    Ripepi, Nino Samuel

    2009-01-01T23:59:59.000Z

    ??The mitigation of greenhouse gas emissions and enhanced recovery of coalbed methane are benefits to sequestering carbon dioxide in coal seams. This is possible because… (more)

  18. Nuclear Energy for Simultaneous Low-Carbon Heavy-Oil Recovery and Gigawatt-Year Heat Storage for Peak Electricity Production

    E-Print Network [OSTI]

    Forsberg, Charles W.

    In a carbon-constrained world or a world of high natural gas prices, the use of fossil-fueled power

  19. A comparison between semi-spheroid- and dome-shaped quantum dots coupled to wetting layer

    SciTech Connect (OSTI)

    Shahzadeh, Mohammadreza; Sabaeian, Mohammad, E-mail: Sabaeian@scu.ac.ir [Physics Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43135 (Iran, Islamic Republic of)

    2014-06-15T23:59:59.000Z

    During the epitaxial growth method, self-assembled semi-spheroid-shaped quantum dots (QDs) are formed on the wetting layer (WL). However for sake of simplicity, researchers sometimes assume semi-spheroid-shaped QDs to be dome-shaped (hemisphere). In this work, a detailed and comprehensive study on the difference between electronic and transition properties of dome- and semi-spheroid-shaped quantum dots is presented. We will explain why the P-to-S intersubband transition behaves the way it does. The calculated results for intersubband P-to-S transition properties of quantum dots show two different trends for dome-shaped and semi-spheroid-shaped quantum dots. The results are interpreted using the probability of finding electron inside the dome/spheroid region, with emphasis on the effects of wetting layer. It is shown that dome-shaped and semi-spheroid-shaped quantum dots feature different electronic and transition properties, arising from the difference in lateral dimensions between dome- and semi-spheroid-shaped QDs. Moreover, an analogy is presented between the bound S-states in the quantum dots and a simple 3D quantum mechanical particle in a box, and effective sizes are calculated. The results of this work will benefit researchers to present more realistic models of coupled QD/WL systems and explain their properties more precisely.

  20. Percutaneous Ethanol Injection via an Artificially Induced Right Hydrothorax for Hepatocellular Carcinoma in the Hepatic Dome

    SciTech Connect (OSTI)

    Kume, Akimichi, E-mail: kumea@med.nagoya-u.ac.jp; Nimura, Yuji; Kamiya, Junichi; Nagino, Masato; Kito, Yasushi [Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Division of Surgical Oncology, Department of Surgery (Japan)

    2003-11-15T23:59:59.000Z

    To evaluate the efficacy of sonographically (US) guided percutaneous ethanol injection (PEI) via an artificially induced right hydrothorax (transthoracic PEI) to treat US-invisible hepatocellular carcinoma (HCC) in the hepatic dome. Five cirrhotic patients with US-invisible HCC in the hepatic dome, who were poor surgical candidates, underwent transthoracic PEI. An artificial right hydrothorax was created by instilling 500 ml saline, and absolute ethanol was injected transhydrothoracically into the hepatic dome lesion under local anesthesia. The success and complications were assessed radiologically. The patients were followed up serologically and radiologically for 12-44 (mean 28.4) months. Twenty-five hydrothoraces were induced. All hydrothoraces enabled US visualization of the entire hepatic dome. Eight of the nine small lesions were treated successfully by the treatment. Two of the three local recurrences were eradicated by repeat transthoracic PEI. One large lesion was treated by a combination of transthoracic and regular PEI. The only complication was one clinically insignificant pneumothorax. Induction of a right hydrothorax is feasible and safe. The hydrothorax enables US visualization of the entire hepatic dome and permits US-guided PEI for HCC in the hepatic dome that otherwise would not be possible.

  1. Features of Bayou Choctaw SPR caverns and internal structure of the salt dome.

    SciTech Connect (OSTI)

    Munson, Darrell E.

    2007-07-01T23:59:59.000Z

    The intent of this study is to examine the internal structure of the Bayou Choctaw salt dome utilizing the information obtained from graphical representations of sonar survey data of the internal cavern surfaces. Many of the Bayou Choctaw caverns have been abandoned. Some existing caverns were purchased by the Strategic Petroleum Reserve (SPR) program and have rather convoluted histories and complex cavern geometries. In fact, these caverns are typically poorly documented and are not particularly constructive to this study. Only two Bayou Choctaw caverns, 101 and 102, which were constructed using well-controlled solutioning methods, are well documented. One of these was constructed by the SPR for their use while the other was constructed and traded for another existing cavern. Consequently, compared to the SPR caverns of the West Hackberry and Big Hill domes, it is more difficult to obtain a general impression of the stratigraphy of the dome. Indeed, caverns of Bayou Choctaw show features significantly different than those encountered in the other two SPR facilities. In the number of abandoned caverns, and some of those existing caverns purchased by the SPR, extremely irregular solutioning has occurred. The two SPR constructed caverns suggest that some sections of the caverns may have undergone very regular solutioning to form uniform cylindrical shapes. Although it is not usually productive to speculate, some suggestions that point to the behavior of the Bayou Choctaw dome are examined. Also the primary differences in the Bayou Choctaw dome and the other SPR domes are noted.

  2. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Sperling, Daniel; Farrell, Alexander

    2007-01-01T23:59:59.000Z

    61 4.3 Carbon capture andPart II: Policy Analysis Page 5 R12: Carbon capture andstorage If carbon capture and storage (CCS) technologies

  3. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    61 4.3 Carbon capture andPart II: Policy Analysis Page 5 R12: Carbon capture andstorage If carbon capture and storage (CCS) technologies

  4. E-Print Network 3.0 - atmospheric carbon diooxide Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it in a form unable to influence the climate. Carbon storage in trees... is a form of carbon sequestration. During photosynthesis, trees remove carbon dioxide from the...

  5. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  6. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  7. Energy Dense, Lighweight, Durable, Systems for Storage and Delivery of Hydrogen

    SciTech Connect (OSTI)

    Jacky Pruez; Samir Shoukry; Gergis William; Thomas Evans; Hermann Alcazar

    2008-12-31T23:59:59.000Z

    The work presented in this report summarizes the current state-of-the-art in on-board storage on compressed gaseous hydrogen as well as the development of analysis tools, methods, and theoretical data for devising high performance design configurations for hydrogen storage. The state-of-the-art in the area of compressed hydrogen storage reveals that the current configuration of the hydrogen storage tank is a seamless cylindrical part with two end domes. The tank is composed of an aluminum liner overwrapped with carbon fibers. Such a configuration was proved to sustain internal pressures up to 350 bars (5,000 psi). Finite-element stress analyses were performed on filament-wound hydrogen storage cylindrical tanks under the effect of internal pressure of 700 bars (10,000 psi). Tank deformations, stress fields, and intensities induced at the tank wall were examined. The results indicated that the aluminum liner can not sustain such a high pressure and initiate the tank failure. Thus, hydrogen tanks ought to be built entirely out of composite materials based on carbon fibers or other innovative composite materials. A spherical hydrogen storage tank was suggested within the scope of this project. A stress reduction was achieved by this change of the tank geometry, which allows for increasing the amount of the stored hydrogen and storage energy density. The finite element modeling of both cylindrical and spherical tank design configurations indicate that the formation of stress concentration zones in the vicinity of the valve inlet as well as the presence of high shear stresses in this area. Therefore, it is highly recommended to tailor the tank wall design to be thicker in this region and tapered to the required thickness in the rest of the tank shell. Innovative layout configurations of multiple tanks for enhanced conformability in limited space have been proposed and theoretically modeled using 3D finite element analysis. Optimum tailoring of fiber orientations and lay-ups are needed to relieve the high stress in regions of high stress concentrations between intersecting tanks/ tank sections. Filament winding process is the most suitable way for producing both cylindrical and spherical hydrogen storage tanks with high industrial quality. However, due to the unavailability of such equipment at West Virginia University and limited funding, the composite structures within this work were produced by hand layup and bag molding techniques. More advanced manufacturing processes can significantly increase the structural strength of the tank and enhances its performance and also further increase weight saving capabilities. The concept of using a carbon composite liner seems to be promising in overcoming the low strength of the aluminum liner at internal high pressures. This could be further enhanced by using MetPreg filament winding to produce such a liner. Innovative designs for the polar boss of the storage tanks and the valve connections are still needed to reduce the high stress formed in these zones to allow for the tank to accommodate higher internal pressures. The Continuum Damage Mechanics (CDM) approach was applied for fault-tolerant design and efficient maintenance of lightweight automotive structures made of composite materials. Potential effects of damage initiation and accumulation are formulated for various design configurations, with emphasis on lightweight fiber-reinforced composites. The CDM model considers damage associated with plasticity and fatigue.

  8. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  9. Compressed air energy storage technology program. Annual report for 1979

    SciTech Connect (OSTI)

    Loscutoff, W.V.

    1980-06-01T23:59:59.000Z

    The objectives of the Compressed Air Energy Storage (CAES) program are to establish stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications, and to develop second-generation CAES technologies that have minimal or no dependence on petroleum fuels. During the year reported reports have been issued on field studies on CAES on aquifers and in salt, stability, and design criteria for CAES and for pumped hydro-storage caverns, laboratory studies of CAES in porous rock reservoris have continued. Research has continued on combined CAES/Thermal Energy Storage, CAES/Solar systems, coal-fired fluidized bed combustors for CAES, and two-reservoir advanced CAES concepts. (LCL)

  10. Seismic modeling to monitor CO2 geological storage: The Atzbach ...

    E-Print Network [OSTI]

    2012-05-30T23:59:59.000Z

    Jun 8, 2012 ... greenhouse effect. In order to avoid these emissions, one of the options is the geological storage of carbon dioxide in depleted hydrocarbon ...

  11. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    110 Table 4-14: WESTCARB carbon capture and sequestrationThat $25 charge might make carbon capture and storage (CCS)combined cycle with carbon capture and storage Natural gas

  12. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    110 Table 4-14: WESTCARB carbon capture and sequestrationThat $25 charge might make carbon capture and storage (CCS)combined cycle with carbon capture and storage Natural gas

  13. Class 1 Permit Modification Notification Addition of Structures within Technical Area 54, Area G, Pad 11, Dome 375 Los Alamos National Laboratory Hazardous Waste Facility Permit, July 2012

    SciTech Connect (OSTI)

    Vigil-Holterman, Luciana R. [Los Alamos National Laboratory; Lechel, Robert A. [Los Alamos National Laboratory

    2012-08-31T23:59:59.000Z

    The purpose of this letter is to notify the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of a Class 1 Permit Modification to the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit issued to the Department of Energy (DOE) and Los Alamos National Security, LLC (LANS) in November 2010. The modification adds structures to the container storage unit at Technical Area (TA) 54 Area G, Pad 11. Permit Section 3.1(3) requires that changes to the location of a structure that does not manage hazardous waste shall be changed within the Permit as a Class 1 modification without prior approval in accordance with Code of Federal Regulations, Title 40 (40 CFR), {section}270.42(a)(1). Structures have been added within Dome 375 located at TA-54, Area G, Pad 11 that will be used in support of waste management operations within Dome 375 and the modular panel containment structure located within Dome 375, but will not be used as waste management structures. The Class 1 Permit Modification revises Figure 36 in Attachment N, Figures; and Figure G.12-1 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Descriptions of the structures have also been added to Section A.4.2.9 in Attachment A, TA - Unit Descriptions; and Section 2.0 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Full description of the permit modification and the necessary changes are included in Enclosure 1. The modification has been prepared in accordance with 40 CFR {section}270.42(a)(l). This package includes this letter and an enclosure containing a description of the permit modification, text edits of the Permit sections, and the revised figures (collectively LA-UR-12-22808). Accordingly, a signed certification page is also enclosed. Three hard copies and one electronic copy of this submittal will be delivered to the NMED-HWB.

  14. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  15. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06T23:59:59.000Z

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  16. Storage and turnover of organic matter in soil

    E-Print Network [OSTI]

    Torn, M.S.

    2009-01-01T23:59:59.000Z

    of organic carbon from peat soils. Nature 412 , 785. Fried,Plant Litter. Standard Soil Methods for Long-Term Ecological2007). Role of proteins in soil carbon and nitrogen storage:

  17. Soil load above Hanford waste storage tanks (2 volumes)

    SciTech Connect (OSTI)

    Pianka, E.W. [Advent Engineering Services, Inc., San Ramon, CA (United States)

    1995-01-25T23:59:59.000Z

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.

  18. Flattening Scientific CCD Imaging Data with a Dome Flat Field System

    E-Print Network [OSTI]

    J. L. Marshall; D. L. DePoy

    2005-10-07T23:59:59.000Z

    We describe the flattening of scientific CCD imaging data using a dome flat field system. The system uses light emitting diodes (LEDs) to illuminate a carefully constructed dome flat field screen. LEDs have several advantages over more traditional illumination sources: they are available in a wide range of output wavelengths, are inexpensive, have a very long source lifetime, and are straightforward to control digitally. The circular dome screen is made of a material with Lambertian scattering properties that efficiently reflects light of a wide range of wavelengths and incident angles. We compare flat fields obtained using this new system with two types of traditionally-constructed flat fields: twilight sky flats and nighttime sky flats. Using photometric standard stars as illumination sources, we test the quality of each flat field by applying it to a set of standard star observations. We find that the dome flat field system produces flat fields that are superior to twilight or nighttime sky flats, particularly for photometric calibration. We note that a ratio of the twilight sky flat to the nighttime sky flat is flat to within the expected uncertainty; but since both of these flat fields are inferior to the dome flat, this common test is not an appropriate metric for testing a flat field. Rather, the only feasible and correct method for determining the appropriateness of a flat field is to use standard stars to measure the reproducibility of known magnitudes across the detector.

  19. Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30N, MAR)

    E-Print Network [OSTI]

    Gilli, Adrian

    Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30°N, MAR) Ade May 2008 Abstract The carbon geochemistry of serpentinized peridotites and gabbroic rocks recovered at the Lost City Hydrothermal Field (LCHF) and drilled at IODP Hole 1309D at the central dome of the Atlantis

  20. Regional Carbon Sequestration Partnerships

    Broader source: Energy.gov [DOE]

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  1. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01T23:59:59.000Z

    clean CO 2 for storage and a hydrogen stream to be recycledand storage ? Flexibility to make CO 2 -free hydrogen forand storage computational fluid dynamics carbon monoxide carbon dioxide direct reduced iron electric arc furnace gram gigajoules hour diatomic hydrogen

  2. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems Program (FY11 Quarter 4: July through September 2011).

    SciTech Connect (OSTI)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-10-01T23:59:59.000Z

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 4 Milestone was completed on time. The milestone entails the initiation of high rate, partial state of charge (HRPSoC) cycling of the carbon enhanced batteries. The morphology, porosity, and porosity distribution within the plates after 1k and 10k cycles were documented, illustrating the changes which take place in the early life of the carbon containing batteries, and as the battery approaches failure due to hard sulfation for the control battery. Longer term cycling on a subset of the received East Penn cells containing different carbons (and a control) continues, and will progress into FY12. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO2) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown in a graph. In addition to the aforementioned hybrid device, carbon has also been added directly to traditional VRLA batteries as an admixture in both the positive and negative plates, the latter of which has been found to result in similar improvements to battery performance under high-rate partial-state-of-charge (HRPSoC) operation. It is this latter construction, where carbon is added directly to the negative active material (NAM) that is the specific incarnation being evaluated through this program. Thus, the carbon-modified (or Pb-C) battery (termed the 'Advanced' VRLA battery by East Penn Manufacturing) is a traditional VRLA battery where an additional component has been added to the negative electrode during production of the negative plate. The addition of select carbon materials to the NAM of VRLA batteries has been demonstrated to increase cycle life by an order of magnitude or more under (HRPSoC) operation. Additionally, battery capacity increases on cycling and, in fact, exceeds the performance of the batteries when new.

  3. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  4. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    SciTech Connect (OSTI)

    Jordan, Preston; Jordan, Preston D.; Benson, Sally M.

    2008-05-15T23:59:59.000Z

    Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.

  5. Submillimetre/TeraHertz Astronomy at Dome C with CEA filled bolometer array

    E-Print Network [OSTI]

    Vincent Minier; Gilles Durand; Pierre-Olivier Lagage; Michel Talvard; Tony Travouillon; Maurizio Busso; Gino Tosti

    2007-02-19T23:59:59.000Z

    Submillimetre/TeraHertz (e.g. 200, 350, 450 microns) astronomy is the prime technique to unveil the birth and early evolution of a broad range of astrophysical objects. A major obstacle to carry out submm observations from ground is the atmosphere. Preliminary site testing and atmospheric transmission models tend to demonstrate that Dome C could offer the best conditions on Earth for submm/THz astronomy. The CAMISTIC project aims to install a filled bolometer-array camera with 16x16 pixels on IRAIT at Dome C and explore the 200-$\\mu$m windows for potential ground-based observations.

  6. Leakage risk assessment of the In Salah CO2 storage project: Applying the Certification Framework in a dynamic context.

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2011-01-01T23:59:59.000Z

    oil and gas district 4 from 1991 to 2005: implications for geological storage of carbon dioxide, Environmental Geology. [

  7. Experience in testing of a solution mined storage cavern. [Strategic Petroleum Reserve

    SciTech Connect (OSTI)

    Goin, K.L.

    1982-01-01T23:59:59.000Z

    Recertification tests were made of the Department of Energy/Strategic Petroleum Reserve oil storage cavern number 6 in the West Hackberry, Louisiana Salt Dome. The cavern has a volume of 8,600,000 barrels. Tests included hydrostatic tests of the brine filled cavern and nitrogen leak tests of the three wells entering the cavern. Test procedures are described and test results are discussed.

  8. Dome-shaped microresonators and the Born-Oppenheimer Jens U. Nockela and David H. Fosterb

    E-Print Network [OSTI]

    Nöckelm, Jens

    Dome-shaped microresonators and the Born-Oppenheimer method Jens U. Nšockela and David H. Fosterb a explore the Born-Oppenheimer method as an alternative to the paraxial approximation. The conditions the major results of paraxial theory can also be derived from the Born-Oppenheimer method. We discuss how

  9. Architecture is frozen music. Bragdon This publication accompanies the traveling exhibition Pulse Dome Project: Art &

    E-Print Network [OSTI]

    Kunkle, Tom

    a form of sustainable architecture that was in harmony with natural processes--a structure he calledpulse dome #12;Architecture is frozen music. Bragdon #12;This publication accompanies the traveling architecture, wombs, and such natural forms as caves, tunnels, and volcanoes to learn what had been done

  10. Pinch-the-Sky Dome: Freehand Multi-Point Interactions with

    E-Print Network [OSTI]

    Benko, Hrvoje

    simple gestures and without on-body trackers. We also aimed to highlight the increasing availability around the Solar system, visit the outskirts of the known universe, and observe the incredible imagery different applications shown in the dome: a) World Wide Telescope (e.g., Solar System visualization), b

  11. Supplemental DOME Documentation for Researchers with Bricks Version 1.6

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    , the script /diesel/init.pl is executed. This is DOME's bootstrap script; it configures the brick, starts address so that it can be inherited by a VM. o Start a process to manage the 3G modem (/diesel/bustracker3gx.py). #12;2 o Start the gpsd daemon. o Start a process to install any updates (/diesel

  12. UPb SHRIMP zircon geochronology and Ttd history of the Kampa Dome, southern Tibet

    E-Print Network [OSTI]

    Sandiford, Mike

    U­Pb SHRIMP zircon geochronology and T­t­d history of the Kampa Dome, southern Tibet M.C. Quigley a al., 2004; Aoya et al., 2005, 2006; Quigley et al., 2006; Lee et al., 2006). Several workers have

  13. Ar thermochronology of the Kampa Dome, southern Tibet: Implications for tectonic evolution

    E-Print Network [OSTI]

    Sandiford, Mike

    of the North Himalayan gneiss domes Mark Quigley a,, Yu Liangjun b , Liu Xiaohan b , Christopher J.L. Wilson: +61 3 8344 7761. E-mail address: m.quigley2@pgrad.unimelb.edu.au (M. Quigley). 0040-1951/$ - see front

  14. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  15. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  16. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  17. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

  18. Theorizing the carbon economy: introduction to the special issue The term `carbon economy'often has an adjective placed nearby: the `new'carbon economy,

    E-Print Network [OSTI]

    of carbon capture and storage and nuclear technologies. These dimensionsöand surface-level to deeperTheorizing the carbon economy: introduction to the special issue The term `carbon economy'often has an adjective placed nearby: the `new'carbon economy, the `low' carbon economy, the carbon `neutral' economy

  19. SISGR: Improved Electrical Energy Storage with Electrochemical Double Layer Capacitance Based on Novel Carbon Electrodes, New Electrolytes, and Thorough Development of a Strong Science Base

    SciTech Connect (OSTI)

    Ruoff, Rodney S. [PI; Alam, Todd M. [co-PI; Bielawski, Christopher W. [co-PI; Chabal, Yves [co-PI; Hwang, Gyeong [co-PI; Ishii, Yoshitaka [co-PI; Rogers, Robin [co-PI

    2014-07-23T23:59:59.000Z

    The broad objective of the SISGR program is to advance the fundamental scientific understanding of electrochemical double layer capacitance (EDLC) and thus of ultracapacitor systems composed of a new type of electrode based on chemically modified graphene (CMG) and (primarily) with ionic liquids (ILs) as the electrolyte. Our team has studied the interplay between graphene-based and graphene-derived carbons as the electrode materials in electrochemical double layer capacitors (EDLC) systems on the one hand, and electrolytes including novel ionic liquids (ILs), on the other, based on prior work on the subject.

  20. DOE Manual Studies Terrestrial Carbon Sequestration

    Broader source: Energy.gov [DOE]

    There is considerable opportunity and growing technical sophistication to make terrestrial carbon sequestration both practical and effective, according to the latest carbon capture and storage "best practices" manual issued by the U.S. Department of Energy.

  1. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    of Discharge Using Ground- Water Storage," Transactions1971. "Storage of Solar Energy in a Sandy-Gravel Ground,"

  2. The origin of the structural depression above Gulf coast salt domes with particular reference to Clay Creek dome, Washington County, Texas

    E-Print Network [OSTI]

    McDowell, Alfred Norman

    1951-01-01T23:59:59.000Z

    Creek, indioatos that the ~ ouroe layer is at least 17, 000 feet below the surfaoe and is older than F. E. Heath, J. A. Waters, and W. B. Ferguson, op. oit. c p, A3. 8, C. W. Saith, "Gulf Coast Oil Fields", The World Oil, Vol. 130, Eo, 7 {June, 1950... information on salt dome geology published sinoe 1936. However, muoh of the pertinent literature since that date consists of field development data with little to no discussion of struotural prooesses ~ An impsrtant exoeption to this apparently diminished...

  3. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    on carbon and energy ?uxes; the effects on tree mortality,energy ?uxes, net carbon storage, soil moisture, and albedo. Results Loggers cut 3.6 trees

  4. E-Print Network 3.0 - actinidevi carbonate speciation Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in several areas of metal hydride and carbon... are the premier laboratory in carbon aerogels and have explored their use for hydrogen storage and gas separation Source: DOE...

  5. Basic Engineering Research for D and D of R Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation

    SciTech Connect (OSTI)

    Michael A. Matthews; David A. Bruce,; Thomas A. Davis; Mark C. Thies; John W. Weidner; Ralph E. White

    2002-04-01T23:59:59.000Z

    Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.

  6. Quasi-static rock mechanics data for rocksalt from three Strategic Petroleum Reserve domes

    SciTech Connect (OSTI)

    Price, R.H.; Wawersik, W.R.; Hannum, D.W.; Zirzow, J.A.

    1981-12-01T23:59:59.000Z

    Triaxial compression and extension experiments have been run on rocksalt samples from three Strategic Petroleum Reserve (SPR) domes. Seventeen quasi-static tests were loaded at mean stress rates of .66 to 1.04 psi/sec (4.5 to 7.2 kPa/sec), confining pressures of 14.5 to 2000 psi (0.1 to 13.8 MPa) and temperatures of 22 to 100/sup 0/C. Eleven of the test specimens were from Bryan Mound, Texas, and three each were from Bayou Choctaw, Louisiana, and West Hackberry, Louisiana. In general, the resulting mechanical data from the three domes are similar, and they are consistent with previously published data. Ultimate sample strengths are directly related to confining pressure (least principal stress) and indirectly related to temperature, while ductility increases with both pressure and temperature.

  7. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  8. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  9. Porous Metal-Organic Frameworks for Energy Storage Applications: Design, Synthesis and Mechanism Studies

    E-Print Network [OSTI]

    Liu, Yangyang

    2014-05-05T23:59:59.000Z

    The self-assembly of metal ions and organic linkers could afford 3-dimensional (3D) porous metal-organic frameworks (MOFs). They are promising materials for clean energy applications including carbon capture, hydrogen storage and methane storage...

  10. Spindletop salt-cavern points way for future natural-gas storage

    SciTech Connect (OSTI)

    Shotts, S.A.; Neal, J.R.; Solis, R.J. (Southwestern Gas Pipeline Inc., The Woodlands, TX (United States)); Oldham, C. (Centana Intrastate Pipeline Co., Beaumont, TX (United States))

    1994-09-12T23:59:59.000Z

    Spindletop underground natural-gas storage complex began operating in 1993, providing 1.7 bcf of working-gas capacity in its first cavern. The cavern and related facilities exemplify the importance and advantages of natural-gas storage in leached salt caverns. Development of a second cavern, along with continued leaching of the initial cavern, target 5 bcf of available working-gas capacity in both caverns by the end of this year. The facilities that currently make up the Spindletop complex include two salt dome gas-storage wells and a 24,000-hp compression and dehydration facility owned by Sabine Gas; two salt dome gas-storage wells and a 15,900-hp compression and dehydration facility owned by Centana; a 7,000-hp leaching plant; and three jointly owned brine-disposal wells. The paper discusses the development of the storage facility, design goals, leaching plant and wells, piping and compressors, dehydration and heaters, control systems, safety and monitoring, construction, first years operation, and customer base.

  11. Confirmatory Survey Results for the Reactor Building Dome Upper Surfaces, Rancho Saco Nuclear Generating Station

    SciTech Connect (OSTI)

    Wade C. Adams

    2006-10-25T23:59:59.000Z

    Results from a confirmatory survey of the upper structural surfaces of the Reactor Building Dome at the Rancho Seco Nuclear Generating Station (RSNGS) performed by the Oak Ridge Institute for Science and Education for the NRC. Also includes results of interlaboratory comparison analyses on several archived soil samples that would be provided by RSNGS personnel. The confirmatory surveys were performed on June 7 and 8, 2006.

  12. TWELFTH ANNUAL CONFERENCE ON CARBON CAPTURE, UTILIZATION AND SEQUESTRATION MAY 1316, 2013 DAVID L. Lawrence Convention Center Pittsburgh, Pennsylvania Page1

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    TWELFTH ANNUAL CONFERENCE ON CARBON CAPTURE, UTILIZATION AND SEQUESTRATION MAY 1316 approaches of CCS. The main concern for a geologic carbon dioxide (CO2) sequestration is sustained of CO2 Sequestration in Deep Saline Reservoir, Citronelle Dome, USA S.Alireza Haghighat1 , Shahab D

  13. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

  14. Lawrence Livermore National Laboratory Proposal to Participate in the Carbon and

    E-Print Network [OSTI]

    for hydrogen storage. These materials have intrinsic high storage capacity with active carbon nanostructureLawrence Livermore National Laboratory Proposal to Participate in the Carbon and Metal Hydride storage Tanks are the "ace in the hole" storage technology Vacuum Shell Insulation Composite Overwrap

  15. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    SciTech Connect (OSTI)

    Harwell,, M. A.; Brandstetter,, A.; Benson,, G. L.; Raymond,, J. R.; Brandley,, D. J.; Serne,, R. J.; Soldat,, J. K.; Cole,, C. R.; Deutsch,, W. J.; Gupta,, S. K.; Harwell,, C. C.; Napier,, B. A.; Reisenauer,, A. E.; Prater,, L. S.; Simmons,, C. S.; Strenge,, D. L.; Washburn,, J. F.; Zellmer,, J. T.

    1982-06-01T23:59:59.000Z

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario resulted in the delivery of radionuclidecontaminated brine to the surface, where a portion was diverted to culinary salt for direct ingestion by the existing population. Consequence analyses indicated calculated human doses that would be highly deleterious. Additional analyses indicated that doses well above background would occur from such a scenario t even if it occurred a million years into the future. The way to preclude such an intrusion is for continued control over the repository sitet either through direct institutional control or through the effective passive transfer of information. A secondary aspect of the specific human intrusion scenario involved a breach through the side of the salt dome t through which radionuclides migrated via the ground-water system to the accessible environment. This provided a demonstration of the geotransport methodology that AEGIS can use in actual site evaluations, as well as the WRIT program's capabilities with respect to defining the source term and retardation rates of the radionuclides in the repository. This reference site analysis was initially published as a Working Document in December 1979. That version was distributed for a formal peer review by individuals and organizations not involved in its development. The present report represents a revisiont based in part on the responses received from the external reviewers. Summaries of the comments from the reviewers and responses to these comments by the AEGIS staff are presented. The exercise of the AEGIS methodology was sUGcessful in demonstrating the methodologyt and thus t in providing a basis for substantive peer review, in terms of further development of the AEGIS site-applications capability and in terms of providing insight into the potential for consequential human intrusion into a salt dome repository.

  16. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    SciTech Connect (OSTI)

    Harwell,, M. A.; Brandstetter,, A.; Benson,, G. L.; Bradley,, D. J.; Serne,, R. J.; Soldat, J. K; Cole,, C. R.; Deutsch,, W. J.; Gupta,, S. K.; Harwell,, C. C.; Napier,, B. A.; Reisenauer,, A. E.; Prater,, L. S.; Simmons,, C. S.; Strenge,, D. L.; Washburn,, J. F.; Zellmer,, J. T.

    1982-06-01T23:59:59.000Z

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario resulted in the delivery of radionuclidecontaminated brine to the surface, where a portion was diverted to culinary salt for direct ingestion by the existing population. Consequence analyses indicated calculated human doses that would be highly deleterious. Additional analyses indicated that doses well above background would occur from such a scenario t even if it occurred a million years into the future. The way to preclude such an intrusion is for continued control over the repository sitet either through direct institutional control or through the effective passive transfer of information. A secondary aspect of the specific human intrusion scenario involved a breach through the side of the salt dome t through which radionuclides migrated via the ground-water system to the accessible environment. This provided a demonstration of the geotransport methodology that AEGIS can use in actual site evaluations, as well as the WRIT program's capabilities with respect to defining the source term and retardation rates of the radionuclides in the repository. This reference site analysis was initially published as a Working Document in December 1979. That version was distributed for a formal peer review by individuals and organizations not involved in its development. The present report represents a revisiont based in part on the responses received from the external reviewers. Summaries of the comments from the reviewers and responses to these comments by the AEGIS staff are presented. The exercise of the AEGIS methodology was successful in demonstrating the methodologyt and thus t in providing a basis for substantive peer review, in terms of further development of the AEGIS site-applications capability and in terms of providing insight into the potential for consequential human intrusion into a salt dome repository.

  17. Hydrogen-based electrochemical energy storage

    DOE Patents [OSTI]

    Simpson, Lin Jay

    2013-08-06T23:59:59.000Z

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  18. Seasonal thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01T23:59:59.000Z

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  19. EA-1898: Southwest Regional Partnership on Carbon Sequestration Phase III Gordon Creek Project near Price, Utah in Carbon County

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal for Phase III field deployment to demonstrate commercial-scale carbon storage technologies.This Phase III large-scale carbon dioxide injection project will combine science and engineering from many disciplines to successfully sequester and monitor carbon storage. [NOTE: This EA has been cancelled].

  20. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

  1. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

  2. Template Synthesis of Tubular Sn-Based Nanostructures for Lithium Ion Storage

    E-Print Network [OSTI]

    Wang, Yong

    We report herewith the preparation of SnO? nanotubes with very good shape and size control, and with and without a carbon nanotube overlayer, The SnO?-core/carbon-shell nanotubes are excellent reversible Li ion storage ...

  3. System-level modeling for geological storage of CO2

    E-Print Network [OSTI]

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01T23:59:59.000Z

    of Geologic Storage of CO2, in Carbon Dioxide Capture forFormations - Results from the CO2 Capture Project: GeologicBenson, Process Modeling of CO2 Injection into Natural Gas

  4. DOE Manual Studies 11 Major CO2 Geologic Storage Formations

    Broader source: Energy.gov [DOE]

    A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy.

  5. The Thermal Environment of the Fiber Glass Dome for the New Solar Telescope at Big Bear Solar Observatory

    E-Print Network [OSTI]

    A. P. Verdoni; C. Denker; J. R. Varsik; S. Shumko; J. Nenow; R. Coulter

    2007-08-04T23:59:59.000Z

    The New Solar Telescope (NST) is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount and an open optical support structure. To mitigate the temperature fluctuations along the exposed optical path, the effects of local/dome-related seeing have to be minimized. To accomplish this, NST will be housed in a 5/8-sphere fiberglass dome that is outfitted with 14 active vents evenly spaced around its perimeter. The 14 vents house louvers that open and close independently of one another to regulate and direct the passage of air through the dome. In January 2006, 16 thermal probes were installed throughout the dome and the temperature distribution was measured. The measurements confirmed the existence of a strong thermal gradient on the order of 5 degree Celsius inside the dome. In December 2006, a second set of temperature measurements were made using different louver configurations. In this study, we present the results of these measurements along with their integration into the thermal control system (ThCS) and the overall telescope control system (TCS).

  6. Measurement of carbon capture efficiency and stored carbon leakage

    DOE Patents [OSTI]

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29T23:59:59.000Z

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  7. Methods for extending the storage life of fresh beef

    E-Print Network [OSTI]

    Motycka, Robert Ray

    1973-01-01T23:59:59.000Z

    dioxide chilling and vac- uum packaging systems or bacterial decontamination procedures when combined with carbon dioxide chill or vacuum packaging systems on the storage life and subsequent retail caselife of beef wholesale cuts. In the initial phase... to maintain satisfactory vacuum during storage. Never- theless, comparisons of wholesale ribs stored for 10 days revealed that ribs chilled with carbon dioxide had more desirable wholesale product quality attributes. However, comparisons of retail caselife...

  8. Hydrothermal alteration at the Panorama Formation, North Pole Dome, Pilbara Craton, Western Australia

    E-Print Network [OSTI]

    Brown, Adrian J; Walter, Malcolm R

    2014-01-01T23:59:59.000Z

    An airborne hyperspectral remote sensing dataset was obtained of the North Pole Dome region of the Pilbara Craton in October 2002. It has been analyzed for indications of hydrothermal minerals. Here we report on the identification and mapping of hydrothermal minerals in the 3.459 Ga Panorama Formation and surrounding strata. The spatial distribution of a pattern of subvertical pyrophyllite rich veins connected to a pyrophyllite rich palaeohorizontal layer is interpreted to represent the base of an acid-sulfate epithermal system that is unconformably overlain by the stromatolitic 3.42 Ga Strelley Pool Chert.

  9. Preliminary design study of compressed-air energy storage in a salt dome. Volume 3. Design of the air-storage cavern in salt. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    This report was prepared as a result of a contract between Middle South Services, Inc. and Fenix and Scisson, Inc. The conceptual design was prepared for two sites, Hazlehurst and Prothro as two known possible sites. It was later expanded to include a third site, Carmichael as the first two sites were not then available. This required the design and costing at various depths, 670 m (2200 ft), 488 m (1600 ft) and 1067 m (3500 ft) to the top of the cavern. It also involves variation in the size of the caverns for various weekly cycles of required air pressure to supply the turbine during peak load periods. The air is released from the caverns at 310 Kg/sec for eight hours per day, five days per week and the caverns replenished through compressors eight hours per day seven days per week. The pressure ranges from a maximum of 70 bars at the beginning of the week to 50 bars at the end of the generating period on Friday. The temperature of the input and outlet air is assumed to be 140/sup 0/C. This agrees with the estimated temperature of the cavern at Carmichael which allows for an isothermal operation. During preparation of the report no technical or environmental barriers were found.

  10. Structural analysis of underground gunite storage tanks. Environmental Restoration Program

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This report documents the structural analysis of the 50-ft diameter underground gunite storage tanks constructed in 1943 and located in the Oak Ridge National Laboratory (ORNL) South Tank Farm, known as Facility 3507 in the 3500-3999 area. The six gunite tanks (W-5 through W-10) are spaced in a 2 {times} 3 matrix at 60 ft on centers with 6 ft of soil cover. Each tank (Figures 1, 2, and 3) has an inside diameter of 50 ft, a 12-ft vertical sidewall having a thickness of 6 in. (there is an additional 1.5-in. inner liner for much of the height), and a spherical domed roof (nominal thickness is 10 in.) rising another 6 ft, 3 in. at the center of the tank. The thickness of both the sidewall and the domed roof increases to 30 in. near their juncture. The tank floor is nominally 3-in. thick, except at the juncture with the wall where the thickness increases to 9 in. The tanks are constructed of gunite (a mixture of Portland cement, sand, and water in the form of a mortar) sprayed from the nozzle of a cement gun against a form or a solid surface. The floor and the dome are reinforced with one layer of welded wire mesh and reinforcing rods placed in the radial direction. The sidewall is reinforced with three layers of welded wire mesh, vertical {1/2}-in. rods, and 21 horizontal rebar hoops (attached to the vertical rods) post-tensioned to 35,000 psi stress. The haunch at the sidewall/roof junction is reinforced with 17 horizontal rebar hoops post-tensioned with 35,000 to 40,000 psi stress. The yield strength of the post-tensioning steel rods is specified to be 60,000 psi, and all other steel is 40,000 psi steel. The specified 28-day design strength of the gunite is 5,000 psi.

  11. ABSTRACT: The effect of the cotton storage trisaccharide raf-finose and cottonseed storage protein (CSP) in combination on

    E-Print Network [OSTI]

    Cotty, Peter J.

    ABSTRACT: The effect of the cotton storage trisaccharide raf- finose and cottonseed storage protein of ground whole cottonseed and water-extracted cotton- seed meal to support fungal biosynthesis of aflatoxin in raffinose refer- ence media. Results with ground whole cottonseed as a sole carbon/nitrogen source

  12. The Economic Impacts of Technical Change in Carbon Capture.

    E-Print Network [OSTI]

    Rasmussen, Peter G.

    2012-01-01T23:59:59.000Z

    ??There is a general consensus in the literature that carbon capture and storage (CCS), a technology that controls CO2 emissions from fossil fuel power plants,… (more)

  13. Strategic Analysis of the Global Status of Carbon Capture and...

    Open Energy Info (EERE)

    Summary LAUNCH TOOL Name: Strategic Analysis of the Global Status of Carbon Capture and Storage (CCS): Country Studies, United Arab Emirates Focus Area: Clean Fossil Energy...

  14. arterial carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 generated in energy production processes. ? Global and national assessments of carbon sequestration potential show vast storage capacity. unknown authors 8 Optimize...

  15. Bacterial Carbon Storage to Value Added Products

    E-Print Network [OSTI]

    Brigham, Christopher J.

    PhaR from Paracoccus denitrificans functions as a repressor or autoregulator of the expression of genes encoding phasin protein (PhaP) and PhaR itself, both of which are components of polyhydroxyalkanoate (PHA) granules ...

  16. Carbon-based Materials for Energy Storage

    E-Print Network [OSTI]

    Rice, Lynn Margaret

    2012-01-01T23:59:59.000Z

    K. and Beguin, F. et. al Materials Science and Engineering BF. Advanced Functional Materials 17, 11, 1828-1836 (2007)and Silicone- Modified Materials ch7, 82-99 (2007) 3. Gädda,

  17. Controls on black carbon storage in soils

    E-Print Network [OSTI]

    Czimczik, Claudia I; Masiello, Caroline A

    2007-01-01T23:59:59.000Z

    BC degradation (microorgan- isms, fire, ozone, UV radiation)UV-oxidation plays an important role in organic matter degradation [

  18. Geological Carbon Storage: The Roles of Government

    E-Print Network [OSTI]

    (CO2) would be captured from large point sources that burn fossil fuels such as power plants, hydrogen production plants, and industrial facilities. It would then be compressed and transported by pipeline or ship

  19. Carbon-based Materials for Energy Storage

    E-Print Network [OSTI]

    Rice, Lynn Margaret

    2012-01-01T23:59:59.000Z

    by chemical crosslinking and aerogel fabrication. Theseunder exploration, including aerogels, xerogels, fibers,activating cresol-formaldehyde aerogels, Zhu et. al created

  20. Carbon-based Materials for Energy Storage

    E-Print Network [OSTI]

    Rice, Lynn Margaret

    2012-01-01T23:59:59.000Z

    China National Program (2011CB932602) and the Center for Molecularly Assembled Material Architectures for Solar

  1. Technologies for Carbon Capture and Storage

    E-Print Network [OSTI]

    energy efficient - Affordable (competitive with other energy options) - Industrial Ecology (waste into by Energy Tomorrow's Hydrogen Why is Hydrogen from Coal Important? · 95% of U.S. hydrogen comes from natural-03 Slide 5 Office of Fossil Energy Tomorrow's Energy Plant Converting Coal into Gas is Key Oxygen

  2. Regulatory issues controlling carbon capture and storage

    E-Print Network [OSTI]

    Smith, Adam (Adam M.), 1978-

    2004-01-01T23:59:59.000Z

    Climate change is increasingly being recognized by governments, industry, the scientific community, and the public as an issue that must be dealt with. Parties are pursuing various strategies to reduce CO? emissions. ...

  3. Breakthrough Industrial Carbon Capture, Utilization and Storage...

    Energy Savers [EERE]

    - The Energy Department's Acting Assistant Secretary for Fossil Energy Christopher Smith today attended a dedication ceremony at the Air Products and Chemicals hydrogen...

  4. Carbon Storage Atlas, Employee Newsletter Earn International...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Technology Laboratory (NETL) recently walked away with two prestigious 2013 Blue Pencil & Gold Screen Awards presented by the National Association of Government...

  5. Carbon Storage Newsletter | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed RouteNanotube Templated Asembly of

  6. Sandia National Laboratories: Carbon Capture & Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRF Researchers answer Alan

  7. FE Carbon Capture and Storage News

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of Energy memoCity ofAugust 31, 2012 Methane hydrates

  8. Carbon Capture and Storage (CCS) Studies

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins in IllinoisWindowCanadian Council

  9. Sandia National Laboratories: carbon capture and storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wavearc-faultbest paperbiomarineblendingthecarbon

  10. Sandia National Laboratories: Carbon Capture & Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergy Commission Linde,Capabilities What We

  11. CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite

    E-Print Network [OSTI]

    Rollins, Andrew M.

    materials. MATERIALS AND DESIRED DATA Carbon-Carbon Composites(T300 & SWB): Crush Resistance, Bend StrengthCARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite · C-C supplied in two forms · T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine

  12. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, DŽe, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

  13. Optimize carbon dioxide sequestration, enhance oil recovery

    E-Print Network [OSTI]

    - 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

  14. Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture mechanisms

    E-Print Network [OSTI]

    Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture element modelling of a hypothetical underground carbon dioxide (CO2) storage operation. The hydro

  15. Author's personal copy Risks to forest carbon offset projects in a changing climate

    E-Print Network [OSTI]

    Jackson, Robert B.

    Author's personal copy Review Risks to forest carbon offset projects in a changing climate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2212 4.2. Management techniques to maximize carbon storage 1 December 2008 Received in revised form 9 March 2009 Accepted 10 March 2009 Keywords: Carbon

  16. An analysis of research procedures used during the restoration of the dome of the Texas State Capitol, Austin, 1989 to 1995

    E-Print Network [OSTI]

    Hocker, Emma Elizabeth

    1997-01-01T23:59:59.000Z

    on the exterior of the building. One of the least accessible areas proved to be the dome. This thesis examines the archival and physical research procedures undertaken to determine the condition of the dome, how this information was used, and what discrepancies...

  17. Marine transportation for Carbon Capture and Sequestration (CCS)

    E-Print Network [OSTI]

    Alexandrakis, Mary-Irene

    2010-01-01T23:59:59.000Z

    The objective of this report is to determine whether opportunities to use liquefied carbon dioxide carriers as part of a carbon capture and storage system will exist over the next twenty years. Factors that encourage or ...

  18. Louisiana Geologic Sequestration of Carbon Dioxide Act (Louisiana)

    Broader source: Energy.gov [DOE]

    This law establishes that carbon dioxide and sequestration is a valuable commodity to the citizens of the state. Geologic storage of carbon dioxide may allow for the orderly withdrawal as...

  19. A Molecular Dynamics Simulation of Hydrogen Storage by SWNTs Tatsuto Kimuraa

    E-Print Network [OSTI]

    Maruyama, Shigeo

    A Molecular Dynamics Simulation of Hydrogen Storage by SWNTs Tatsuto Kimuraa and Shigeo Maruyamab of efficient hydrogen storage [1] with SWNTs [2,3] was studied through classical molecular dynamics simulations adsorbed hydrogen molecules was almost proportional to the number of carbon atoms, and the storage amount

  20. POTENTIAL ROLE FOR STORAGE PROTEINS AND SUGARS IN COTTONSEED

    E-Print Network [OSTI]

    Cotty, Peter J.

    Cottonseed storage protein (CSP) and several otherproteins (bovine serum albumin [BSA], collagen and zein. With protein as the sole carbon and nitrogen source, collagen, but not BSA, CSP or zein, produced aflatoxin levels comparable to defined medium controls. A dose response study using CSP as the sole carbon

  1. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T; Andersson, Anna M

    2014-10-07T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z, or (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries.

  2. Conductive incubation and the origin of dome-and-keel structure in Archean granite-greenstone terrains

    E-Print Network [OSTI]

    Sandiford, Mike

    Conductive incubation and the origin of dome-and-keel structure in Archean granite August 2003; accepted 24 October 2003; published 27 January 2004. [1] The Archean East Pilbara Granite duration, following the burial of radiogenic granitic crust beneath the accumulated greenstone pile

  3. Sandia National Laboratories: Energy Storage Multimedia Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageEnergy Storage Multimedia Gallery Energy Storage Multimedia Gallery Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory...

  4. Cool Storage Performance

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

  5. Underground Storage Tank Regulations

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

  6. Safe Home Food Storage

    E-Print Network [OSTI]

    Van Laanen, Peggy

    2002-08-22T23:59:59.000Z

    Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

  7. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01T23:59:59.000Z

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  8. PHOTOMETRY OF VARIABLE STARS FROM DOME A, ANTARCTICA: RESULTS FROM THE 2010 OBSERVING SEASON

    SciTech Connect (OSTI)

    Wang, Lingzhi; Zhu, Zonghong [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Macri, Lucas M.; Wang, Lifan [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Ashley, Michael C. B.; Lawrence, Jon S.; Luong-Van, Daniel; Storey, John W. V. [School of Physics, University of New South Wales, NSW 2052 (Australia); Cui, Xiangqun; Feng, Long-Long; Gong, Xuefei; Liu, Qiang; Shang, Zhaohui; Yang, Huigen; Yang, Ji; Yuan, Xiangyan; Zhou, Xu; Zhu, Zhenxi [Chinese Center for Antarctic Astronomy, Nanjing 210008 (China); Pennypacker, Carl R. [Center for Astrophysics, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); York, Donald G., E-mail: wanglingzhi@bao.ac.cn [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States)

    2013-12-01T23:59:59.000Z

    We present results from a season of observations with the Chinese Small Telescope ARray, obtained over 183 days of the 2010 Antarctic winter. We carried out high-cadence time-series aperture photometry of 9125 stars with i ?< 15.3 mag located in a 23 deg{sup 2} region centered on the south celestial pole. We identified 188 variable stars, including 67 new objects relative to our 2008 observations, thanks to broader synoptic coverage, a deeper magnitude limit, and a larger field of view. We used the photometric data set to derive site statistics from Dome A. Based on two years of observations, we find that extinction due to clouds at this site is less than 0.1 and 0.4 mag during 45% and 75% of the dark time, respectively.

  9. Working with Carbon Tetrachloride According to the Material Safety Data Sheet (MSDS) for Carbon tetrachloride (CCl4) special precautions

    E-Print Network [OSTI]

    Cui, Yan

    Working with Carbon Tetrachloride According to the Material Safety Data Sheet (MSDS) for Carbon effects are amplified OSHA PEL is 10 ppm LD50 (oral, rat) is 2800 mg/kg Carbon tetrachloride is classified #12;Working with Carbon Tetrachloride Handling and storage instructions: Preparing CCl4 solutions

  10. Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon

    E-Print Network [OSTI]

    Zeng, Ning

    the Coupled Carbon Cycle Climate Model Intercomparison Project model projections H A I F E N G Q I A N *, R E Carbon Cycle Climate Model Intercomparison Project. Our analysis suggests that the NHL will be a carbon the intense warming there enhances SOM decomposition, soil organic carbon (SOC) storage continues to increase

  11. FOREST CENTRE STORAGE BUILDING

    E-Print Network [OSTI]

    deYoung, Brad

    FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI PURPOSE COURT STUDENT RESIDENCES GREEN HOUSE STUDENT RESIDENCES STUDENT RESIDENCES RECPLEX STORAGE BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE

  12. WESTCARB Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The West Coast Regional Carbon Sequestration Partnership (known as WESTCARB) was established in Fall 2003. It is one of seven research partnerships co-funded by DOE to characterize regional carbon sequestration opportunities and conduct pilot-scale validation tests. The California Energy Commission manages WESTCARB and is a major co-funder. WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas, NATCARB

  13. Method for fabricating composite carbon foam

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    2001-01-01T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  14. Capacitor with a composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  15. Capacitor with a composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  16. LiH thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, M.; Morris, D.G.

    1994-06-28T23:59:59.000Z

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  17. completed-storage | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscovery ofDevelopmentProjectsStorage

  18. Worldwide organic soil carbon and nitrogen data

    SciTech Connect (OSTI)

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

    1986-09-01T23:59:59.000Z

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  19. Option values of low carbon technology policies

    E-Print Network [OSTI]

    Finon, Dominique; Meunier, Guy

    2012-06-19T23:59:59.000Z

    are: carbon capture and storage (CCS), the new nuclear, solar thermal plants, and offshore windpower farms. These technologies require high upfront capital investments and long construction lead?times. Such new large...

  20. Underground gas storage in New York State: A historical perspective

    SciTech Connect (OSTI)

    Friedman, G.M.; Sarwar, G.; Bass, J.P. [Brooklyn College of the City Univ., Troy, NY (United States)] [and others

    1995-09-01T23:59:59.000Z

    New York State has a long history of underground gas storage activity that began with conversion of the Zoar gas field into a storage reservoir in 1916, the first in the United States. By 1961 another fourteen storage fields were developed and seven more were added between 1970 and 1991. All twenty-two operating storage reservoirs of New York were converted from depleted gas fields and are of low-deliverability, base-load type. Nineteen of these are in sandstone reservoirs of the Lower Silurian Medina Group and the Lower Devonian Oriskany Formation and three in limestone reservoirs are located in the gas producing areas of southwestern New York and are linked to the major interstate transmission lines. Recent developments in underground gas storage in New York involve mainly carbonate-reef and bedded salt-cavern storage facilities, one in Stuben County and the other in Cayuga County, are expected to begin operation by the 1996-1997 heating season.

  1. Storage Ring Revised March 1994

    E-Print Network [OSTI]

    Brookhaven National Laboratory - Experiment 821

    .5.4.3. Ground Plane Epoxy #12; 136 Storage Ring #12; Storage Ring 137 8.5.5. Coil Winding Process #12; 138Chapter 8. Storage Ring Revised March 1994 8.1. Introduction -- 107 -- #12; 108 Storage Ring 8.2. Magnetic Design and Field Calculations 8.2.1. Conceptual Approach #12; Storage Ring 109 #12; 110 Storage

  2. Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs among land-use

    E-Print Network [OSTI]

    Rissman, Adena

    Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs and services, including timber production, carbon sequestration and storage, scenic amenities, and wildlife habitat. International efforts to mitigate climate change through forest carbon sequestration

  3. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  4. Strategic Petroleum Reserve (SPR) oil storage cavern sulfur mines 7. Certification tests and analysis

    SciTech Connect (OSTI)

    Beasley, R.R.

    1982-05-01T23:59:59.000Z

    Cavern 7 at the Sulphur Mines, Louisiana SPR oil storage site was certified for oil storage on December 17, 1977. The Dowell Sonar caliper survey taken November 29, 1977, indicated a total cavern volume of 5.60 x 10/sup 6/ bbls. The surveys taken December 19, 1979, and June 10, 1981, indicated a total cavern volume of 6.33 x 10/sup 6/ and 6.36 x 10/sup 6/ bbls respectively. This volume increase was a result of continued brining, prior to June 10, 1981, to get brine enrichment for PPG. A well leak test in May 1981 indicated some well leakage. Well workover actions to repair well and wellhead leaks were taken by Texas Brine Corp/Dravo Utility Constructors, Inc. (TBC/DUCI). Testing was restarted in June 1981 using test procedures which were developed in conjunction with the procedures and testing of West Hackberry cavern 6. This report includes a general history of the cavern and a description of the certification testing, analyses, conclusions, and recommendations. The data from cavern 7 and 6 indicate no fluid communication between caverns. Cavern 7 is about 160 ft from the dome edge. The pressure data at maximum operating pressure is comparable to the data from both West Hackberry cavern 6 and Sulphur Mines cavern 6. Therefore, it is considered unlikely that there is a leak to the dome edge. The well test data indicates leaks in the well casing seat area are approximately 100 bbls/yr.

  5. Activated carbon to the rescue

    SciTech Connect (OSTI)

    Sen, S. [Calgon Carbon Corp., Pittsburgh, PA (United States)

    1996-03-01T23:59:59.000Z

    This article describes the response to pipeline spill of ethylene dichloride (EDC) on the property of an oil company. Activated carbon cleanup proceedure was used. During delivery, changeout, transport, storage, thermal reactivation, and return delivery to the site, the carbon never came into direct contact with operating personnel or the atmosphere. More than 10,000 tones of dredge soil and 50 million gallons of surface water were processed during the emergency response.

  6. Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage

    E-Print Network [OSTI]

    Minnesota, University of

    Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher Yongdae Kim players. While storage outsourcing is cost-effective, many companies are hesitating to outsource their storage due to security concerns. The success of storage outsourcing is highly dependent on how well

  7. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

  8. Energy Storage and Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage and Transportation INL Logo Search Skip Navigation Links Home Newsroom About INL Careers Research Programs Energy and Environment National and Homeland Security New Energy...

  9. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  10. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Design of the BPA Superconducting 30-MJ Energy Storagefor a Utility Scale Superconducting Magnetic Energy Storagefor a Lnrge Scale Superconducting Magnetic Energy Storage

  11. Key word:Daylight Factor Window Wall Ratio Pendentive dome Lighting design Tropical region Architecture and Interior design

    E-Print Network [OSTI]

    Mehrdad Mazloomi

    Abstract: Daylighting design plays important role in architecture of religious buildings such as churches and mosques where pendentive dome construction is frequently used. In daylighting design, many designers face difficulty in estimating the interior share of light which is usually expressed by daylight factor due to complexity of interior form. This study aims to provide designers with a rather high precision rule of thumb for average daylight factor in pendentive dome building. Thus, it investigates the Daylight Factor [DF] distribution of such buildings with reference to the tropics. It takes the Window Wall Ratio [WWR] into account and seeks its influence on daylight factor. By a 12 X 12 points grid, it examines five different ratios including 0.1, 0.2, 0.3, 0.4 and 0.5 on DF of the floor beneath the dome. The results endorse the direct relation of WWR and DF. The least WWR equal to 0.1 yields an average DF of 0.55 % while the greatest WWR of 0.5 yields in average DF of 2.56%. The intermediate WWR in steps of 0.2, 0.3 and 0.4 correspond to 1.04, 1.56 and 2.07 percent respectively. As a relatively precise rule of thumb, any increment in consequent steps of WWR with 0.1 intervals results in 0.5 % increase in DF. This can be employed by architects and interior designers for lighting design of pendentive dome buildings in tropical region.

  12. 1 BASEMENT STORAGE 3 MICROSCOPE LAB

    E-Print Network [OSTI]

    Boonstra, Rudy

    MECHANICAL ROOM 13 SHOWER ROOMSAIR COMPRESSOR 14 NITROGEN STORAGE 15 DIESEL FUEL STORAGE 16 ACID NEUT. TANK 17a ACID STORAGE 17b INERT GAS STORAGE 17c BASE STORAGE 17d SHELVES STORAGE * KNOCK-OUT PANEL

  13. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect (OSTI)

    Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

    1999-11-01T23:59:59.000Z

    The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

  14. Threat of a sinkhole: A reevaluation of Cavern 4, Bayou Choctaw salt dome, Louisiana

    SciTech Connect (OSTI)

    Neal, J.T.; Todd, J.L.; Linn, J.K. [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R. [Magorian (Thomas R.), Amherst, NY (United States)

    1993-09-01T23:59:59.000Z

    Cavern Lake at Bayou Choctaw salt dome resulted from the failure of Cavern 7 in 1954. Uncontrolled solutioning of this cavern through the thin caprock had set the stage for overburden to collapse into the cavern below. A similar situation developed with nearby Cavern 4, but with less dissolutioning of the caprock. Because pressure loss was already a problem and because another 800 ft diameter lake would have endangered surface operations, solutioning of Cavern 4 was stopped and the cavern abandoned in 1957 in order to protect the already-small site. In 1978 the Strategic Petroleum Reserve (SPR) acquired a number of caverns at Bayou Choctaw, including Cavern 4, and the possible repeat of the Cavern 7 failure and formation of another lake thus became an issue. The cavern dimensions were re-sonared in 1980 for comparison with 1963 and 1977 surveys. Annual surface leveling between 1982--1992 showed less subsidence occurring than the site average, and a cavern monitoring system, installed in 1984, has revealed no anomalous motion. Repeat sonar surveys in 1992 showed very little, if any, change occurred since 1980 although a small amount of uncertainty exists as a result of changing sonar techniques. We conclude that significant additional solutioning or erosion of the caprock has not occurred and that there is no increased threat to SPR operations.

  15. A study of carbon-14 of paleoatmospheric methane for the last glacial termination from ancient glacial ice

    E-Print Network [OSTI]

    Petrenko, Vasilii Victorovich

    2008-01-01T23:59:59.000Z

    radiocarbon in Law Dome ice and firn. Nuclear Instruments &radiocarbon in Law Dome ice and firn. Nuclear Instruments &

  16. Charging Graphene for Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2014-10-06T23:59:59.000Z

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  17. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    The Legalization of Ground Water Storage," Water Resourcesprocedure to above ground storage of heat in huge insulatedthis project is heat storage in ground-water regions storage

  18. Sandia National Laboratories: Batteries & Energy Storage Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

  19. Energy storage capacitors

    SciTech Connect (OSTI)

    Sarjeant, W.J.

    1984-01-01T23:59:59.000Z

    The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

  20. Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte

    DOE Patents [OSTI]

    Johnsen, Richard (Waterbury, CT); Yuh, Chao-Yi (New Milford, CT); Farooque, Mohammad (Danbury, CT)

    2011-05-10T23:59:59.000Z

    An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.