Powered by Deep Web Technologies
Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NETL: News Release - DOE-Funded Pipeline Robot Revolutionizes Inspection  

NLE Websites -- All DOE Office Websites (Extended Search)

December 04, 2007 December 04, 2007 DOE-Funded Pipeline Robot Revolutionizes Inspection Process Explorer II Demonstrates Huge Potential for Hard-to-Reach Gas Line Inspections The Explorer II robot with remote field eddy current sensor deployed. The Explorer II robot with remote field eddy current sensor deployed. MORGANTOWN, W. Va. - Testing of a new, robotic pipeline inspection tool, developed with funding from the U.S. Department of Energy, has shown that it could revolutionize the pipeline inspection process. The wireless, self-propelled Explorer II proved its worth in September when it was put through its paces in a live 8-inch distribution main pressurized at 100 pound per square inch. The robot was launched and retrieved multiple times as it inspected-with cameras and sensors-a section of the Northwest

2

Applicant Location Requested DOE Funds Project Summary Feasibility Studies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requested Requested DOE Funds Project Summary Feasibility Studies Confederated Salish and Kootenai Tribes Pablo, MT $850,000 This project will evaluate the technical and economic viability of a co-generation biomass fuel power plant. The plant would use fuels from tribal forest management activities to provide between 2.5 to 20 megawatts (MW) of electricity to heat tribal buildings or sell on the wholesale market. Standing Rock Sioux Tribe Fort Yates, ND $430,982 This project will perform a feasibility study over the course of two years on three tribal sites to support the future development of 50 to 100 MW of wind power. Navajo Hopi Land Commission (NHLCO), Navajo Nation Window Rock, AZ $347,090 This project will conduct a feasibility study to explore potential

3

DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Funded Primer Underscores Technology Advances, Challenges of DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas Development DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas Development April 14, 2009 - 1:00pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) announces the release of "Modern Shale Gas Development in the United States: A Primer." The Primer provides regulators, policy makers, and the public with an objective source of information on the technology advances and challenges that accompany deep shale gas development. Natural gas production from hydrocarbon rich deep shale formations, known as "shale gas," is one of the most quickly expanding trends in onshore domestic oil and gas exploration. The lower 48 states have a wide

4

DOE-Funded Research on Bacterial Enzyme Could Lead to Cheaper...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE-Funded Research on Bacterial Enzyme Could Lead to Cheaper Biofuel DOE-Funded Research on Bacterial Enzyme Could Lead to Cheaper Biofuel May 28, 2014 - 12:24pm Addthis A...

5

NETL: News Release - DOE-Funded Project Honored with Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

16 , 2006 16 , 2006 DOE-Funded Project Honored with Environmental Stewardship Award Project Developed Low-Cost Methods, Tools to Remediate Old, Orphaned Oil Sites WASHINGTON, DC - A U.S. Department of Energy-funded project has been honored with a major national award for superior environmental stewardship related to oil and natural gas operations. The Interstate Oil and Gas Compact Commission (IOGCC), the leading authority on State oil and gas regulatory programs, gave its Environmental Partnership Award to the Kansas Corporation Commission (KCC), ALL Consulting LLC, of Tulsa, Okla., and DOE's National Energy Technology Laboratory. The annual award recognizes innovative projects that highlight environmental care in oil and gas operations and are led by non-industry organizations with the cooperation and participation of the petroleum industry. The Environmental Partnership Award is one of the IOGCC's four Chairman's Stewardship Awards, which recognize organizations that have demonstrated a voluntary commitment to excellence in the areas of environmental stewardship and energy education.

6

USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fund Genomics Projects For Bioenergy Fuels Research Fund Genomics Projects For Bioenergy Fuels Research USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research August 9, 2006 - 8:43am Addthis WASHINGTON, DC - Aug. 9, 2006 - Energy Secretary Samuel Bodman and Agriculture Secretary Mike Johanns today announced that the Department of Agriculture and the Department of Energy (DOE) have jointly awarded nine grants totaling $5.7 million for biobased fuels research that will accelerate the development of alternative fuel resources. Bodman commented, "These research projects build upon DOE's strategic investments in genomics, to accelerate scientific discovery and promote the development of alternative energy sources vital to America's energy and economic security." "To be a reliable renewable energy source, farmers and ranchers will need

7

DOE-funded Silicon-Graphene Research Leads to Chicago-based Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-funded Silicon-Graphene Research Leads to Chicago-based Technology Startup Graduate students at Northwestern University are commercializing a silicon (Si)-graphene technology...

8

NETL: News Release - DOE-Funded "Smart" Drilling Prototype On Track for  

NLE Websites -- All DOE Office Websites (Extended Search)

September 13, 2004 September 13, 2004 DOE-Funded "Smart" Drilling Prototype On Track for Commercialization A Department of Energy-sponsored technology that allows natural gas and oil explorers to drill safer, more productive wells by using a high-speed, down-hole communications system has crossed a major milestone: A prototype is being successfully tested in a full-scale commercial well for the first time, putting it on the fast track to commercialization. MORE INFO Read about the June, 2003 IntellipipeTM field test The technology, called Intellipipe(TM), is able to transmit large bits of data to the surface as a well is being drilled. About 1 million bits of information-including temperature, geology, pressure, and rate of penetration-can be transmitted in a single second, which is

9

DOE Funds 15 New Projects to Develop Solar Power Storage and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to 67.6 Million DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer...

10

DOE Funds Demonstration of "Ultrasonic Machining" | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Funds Demonstration of "Ultrasonic Machining" DOE Funds Demonstration of "Ultrasonic Machining" DOE Funds Demonstration of "Ultrasonic Machining" August 5, 2011 - 3:31pm Addthis Lynchburg, VA. - Approximately 50 people attended a demonstration of a technology called "ultrasonic machining" at AREVA's Technical Training Center on June 9, 2011. The technology, originally developed by the Edison Welding Institute (EWI), applies ultrasonic acoustic vibrations to traditional machining processes to reduce friction and improve performance. The demonstration displayed the ultrasonic drilling capability and proved that the technology can cut drill time in half and considerably extend drill bit life. Additionally, the need for drill bit coolant can be eliminated or significantly reduced thereby minimizing environmental

11

DOE Funded Research Projects Win 31 R D 100 Awards for 2007 October 18 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Funded DOE Funded Research Projects Win 31 R D 100 Awards for 2007 October 18 2007 News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 10.18.07 DOE Funded Research Projects Win 31 R D 100 Awards for 2007 October 18 2007 Print Text Size: A A A Subscribe FeedbackShare Page WASHINGTON, DC. - Secretary of Energy Samuel W. Bodman today congratulated researchers at Department of Energy (DOE) laboratories and the DOE complex who have won 31 of the 100 2007 R&D 100 Awards given by R&D Magazine. The awards are presented annually in recognition of the most outstanding technology developments with commercial potential. R&D Magazine

12

DOE Funds Demonstration of "Ultrasonic Machining" | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Funds Demonstration of "Ultrasonic Machining" DOE Funds Demonstration of "Ultrasonic Machining" DOE Funds Demonstration of "Ultrasonic Machining" August 5, 2011 - 3:31pm Addthis Lynchburg, VA. - Approximately 50 people attended a demonstration of a technology called "ultrasonic machining" at AREVA's Technical Training Center on June 9, 2011. The technology, originally developed by the Edison Welding Institute (EWI), applies ultrasonic acoustic vibrations to traditional machining processes to reduce friction and improve performance. The demonstration displayed the ultrasonic drilling capability and proved that the technology can cut drill time in half and considerably extend drill bit life. Additionally, the need for drill bit coolant can be eliminated or significantly reduced thereby minimizing environmental

13

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact August 11, 2011 - 3:55pm Addthis WASHINGTON, DC -- The U.S. Departments of Energy and Agriculture have awarded 10 grants totaling $12.2 million to spur research into improving the efficiency and cost-effectiveness of growing biofuel and bioenergy crops. The investments are part of a broader effort by the Obama administration to develop domestic renewable energy and advanced biofuels, providing a more secure future for America's energy needs and creating new opportunities for the American farming industry. "Biofuels, along with other advanced vehicle technologies, hold the

14

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact August 11, 2011 - 3:55pm Addthis WASHINGTON, DC -- The U.S. Departments of Energy and Agriculture have awarded 10 grants totaling $12.2 million to spur research into improving the efficiency and cost-effectiveness of growing biofuel and bioenergy crops. The investments are part of a broader effort by the Obama administration to develop domestic renewable energy and advanced biofuels, providing a more secure future for America's energy needs and creating new opportunities for the American farming industry. "Biofuels, along with other advanced vehicle technologies, hold the

15

Ohio State Develops Game-Changing CO2 Capture Membranes in DOE-Funded  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio State Develops Game-Changing CO2 Capture Membranes in Ohio State Develops Game-Changing CO2 Capture Membranes in DOE-Funded Project Ohio State Develops Game-Changing CO2 Capture Membranes in DOE-Funded Project November 15, 2012 - 12:00pm Addthis Washington, DC - In a project funded by the U.S. Department of Energy's Office of Fossil Energy (FE), researchers at The Ohio State University have developed a groundbreaking new hybrid membrane that combines the separation performance of inorganic membranes with the cost-effectiveness of polymer membranes. The breakthrough technology has vast commercial potential for use at coal-fired power plants with carbon capture, utilization, and storage (CCUS), a key element in national efforts to mitigate climate change. Before the carbon dioxide (CO2) generated at a power plant can be securely

16

NETL: News Release - Unique DOE-Funded Coal Dryers Meet Goal of Increased  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2007 6, 2007 Unique DOE-Funded Coal Dryers Meet Goal of Increased Efficiency, Reduced Emissions North Dakota Power Station to Expand Use of "Very Successful" Coal-Drying Technology WASHINGTON, DC - A prototype coal dryer demonstrated at Great River Energy's Coal Creek Station has proven so successful that the power company intends not only to install full-size dryers on the station's 546-megawatt Unit 2 as part of the second phase of its cost-shared project with the U.S. Department of Energy, but also to install the award-winning technology on the 546-megawatt Unit 1 - at its own expense. Coal Creek Power Station Aerial view of the Coal Creek Station, Underwood, ND. DOE-funded coal-drying technology installed at the power plant cuts emissions by reducing the amount of coal needed to produce electricity. (Photo courtesy of Great River Energy)

17

DOE-Funded Research Projects Win 41 R&D100 Awards for 2006 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Funded Research Projects Win 41 R&D100 Awards for 2006 DOE-Funded Research Projects Win 41 R&D100 Awards for 2006 DOE-Funded Research Projects Win 41 R&D100 Awards for 2006 October 19, 2006 - 9:08am Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today congratulated researchers at 12 DOE national laboratories who won 41 of the 100 awards given by R&D Magazine. The awards are presented annually in recognition of the most outstanding technology developments with commercial potential. R&D Magazine will make the awards tonight at its 44th annual R&D 100 Awards ceremony in Chicago. Sixteen of the DOE- funded awards are shared with businesses and universities. "DOE's research labs across the country are making discoveries every day that enhance our nation's energy, economic and national security,"

18

DOE-Funded Research Projects Win 39 R&D Awards for 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-Funded Research Projects Win 39 R&D Awards for 2010 DOE-Funded Research Projects Win 39 R&D Awards for 2010 WASHINGTON, DC - U.S. Department of Energy researchers have won 39 of the 100 awards given out this year by R&D Magazine for the most outstanding technology developments with promising commercial potential. The coveted awards are presented annually in recognition of exceptional new products, processes, materials or software developed throughout the world and introduced into the market the previous year. "I want to congratulate all of this year's winners on their awards and thank them for their work," Energy Secretary Steven Chu said. "The large number of winners from the Department of Energy's national labs every year is a clear sign that our labs are doing some of the most innovative research in the world. This work benefits us all by enhancing America's competitiveness, ensuring our security, providing new energy solutions and expanding the frontiers of our knowledge. Our national labs are truly national treasures, and it is wonderful to see their work recognized once again."

19

NETL: News Release - DOE Funds Six New Projects Aimed at Alternate Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

September 7, 2006 September 7, 2006 DOE Funds Six New Projects Aimed at Alternate Hydrogen Production and Utilization WASHINGTON, DC - The Department of Energy today announced the selection of six cost-shared research and development projects that will aid in alternate hydrogen production and greater hydrogen utilization. The selections help to fulfill President Bush's Hydrogen Fuel Initiative which describes a hydrogen economy that minimizes America's dependence on foreign oil, reduces greenhouse gas emissions, and provides funding for hydrogen research and development. Hydrogen is considered a potential energy carrier for the future, and it may be produced from hydrogen-containing materials such as water and fossil fuels. Until other resources are available to produce hydrogen at lower costs, production from coal is the most economical source.

20

DOE Funds 21 Research, Development and Demonstration Projects for up to $78  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funds 21 Research, Development and Demonstration Projects for Funds 21 Research, Development and Demonstration Projects for up to $78 Million to Promote Enhanced Geothermal Systems DOE Funds 21 Research, Development and Demonstration Projects for up to $78 Million to Promote Enhanced Geothermal Systems October 6, 2008 - 4:14pm Addthis RENO, Nev. - Today at the National Geothermal Conference in Reno, Nev., Deputy Assistant Secretary for Renewable Energy Steve Chalk announced the U.S. Department of Energy's (DOE) awards under a Funding Opportunity Announcement (FOA) for research, development and demonstration of Enhanced Geothermal Systems (EGS) for next-generation geothermal energy technologies. Subject to annual appropriations, the Department will provide up to $43.1 million over four years to 21 awardees, including a

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE-Funded Project Shows Promise for Tapping Vast U.S. Oil Shale Resources  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funded Project Shows Promise for Tapping Vast U.S. Oil Shale Funded Project Shows Promise for Tapping Vast U.S. Oil Shale Resources DOE-Funded Project Shows Promise for Tapping Vast U.S. Oil Shale Resources March 31, 2009 - 1:00pm Addthis Washington, DC - A technology as simple as an advanced heater cable may hold the secret for tapping into the nation's largest source of oil, which is contained in vast amounts of shale in the American West. In a recently completed project sponsored by the U.S. Department of Energy (DOE) through the Office of Fossil Energy's Oil and Natural Gas Program, Composite Technology Development (CTD) Inc. successfully demonstrated the application of a ceramic-composite insulated heater cable for oil shale recovery deep underground. The Small Business Innovation Research project provided employment for 25 professionals and resulted in two patent

22

DOE Funded Research Projects Win 30 R&D Awards for 2008 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funded Research Projects Win 30 R&D Awards for 2008 Funded Research Projects Win 30 R&D Awards for 2008 DOE Funded Research Projects Win 30 R&D Awards for 2008 June 22, 2008 - 2:15pm Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman announced today that researchers from the U.S. Department of Energy's (DOE) National Laboratories and Y-12 National Security Complex have won 30 of the 100 awards given out this year by R&D Magazine for the most outstanding technology developments with promising commercial potential. The coveted awards are presented annually in recognition of exceptional new products, processes, materials or software developed throughout the world and introduced into the market the previous year. "I'm very proud that Department of Energy scientists and engineers captured

23

NETL: News Release - DOE Funds Projects Geared Toward Near-Zero Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

27, 2006 27, 2006 DOE Funds Projects Geared Toward Near-Zero Emissions Power Production WASHINGTON, DC - The Department of Energy today announced the selection of five projects totaling nearly $12 million targeting cost-effective technologies to improve the performance and economics of near-zero emission, coal-based power generation systems. Developed for the Office of Fossil Energy's Advanced Research program, the projects focus on identifying technologies that address physical, chemical, biological and thermodynamic constraints in the cross cutting technology areas of instrumentation, sensors and control systems, materials, and computational energy sciences. DOE is providing more than $9.3 million in funding while industry is contributing more than $2.3 million. The projects range from 24 to 36 months in duration.

24

DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funds 15 New Projects to Develop Solar Power Storage and Heat Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to $67.6 Million DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to $67.6 Million September 19, 2008 - 3:43pm Addthis WASHINGTON - U.S. Department of Energy (DOE) today announced selections for negotiations of award under the Funding Opportunity Announcement (FOA), Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for Concentrating Solar Power Generation. These 15 new projects, for up to approximately $67.6 million, will facilitate the development of lower-cost energy storage for concentrating solar power (CSP) technology. These projects support President Bush's Solar America Initiative, which aims to make solar energy cost-competitive with conventional forms of electricity

25

NETL: News Release - DOE-Funded Project Shows Promise for Tapping Vast U.S.  

NLE Websites -- All DOE Office Websites (Extended Search)

March 31, 2009 March 31, 2009 DOE-Funded Project Shows Promise for Tapping Vast U.S. Oil Shale Resources Colorado Company Seeks Patents on Low-Cost, Low-Impact Heater Technology Washington, DC -A technology as simple as an advanced heater cable may hold the secret for tapping into the nation's largest source of oil, which is contained in vast amounts of shale in the American West. In a recently completed project sponsored by the U.S. Department of Energy (DOE) through the Office of Fossil Energy's Oil and Natural Gas Program, Composite Technology Development (CTD) Inc. successfully demonstrated the application of a ceramic-composite insulated heater cable for oil shale recovery deep underground. The Small Business Innovation Research project provided employment for 25 professionals and resulted in two patent applications related to the cable.

26

DOE-Funded Research Wins 26 Awards | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

October 12, 2004 October 12, 2004 DOE-Funded Research Projects Win 36 R&D 100 Awards for 2004 WASHINGTON , DC - Secretary of Energy Spencer Abraham today announced that researchers at Department of Energy (DOE) national laboratories and companies with research funded by DOE have won 36 of the 100 awards given this year by R&D Magazine for the most outstanding technology developments with commercial potential. The R&D 100 Awards recognize the most promising new products, processes, materials, or software developed throughout the world and introduced to the market the previous year. Awards are based on each achievement's technical significance, uniqueness and usefulness compared to competing projects and technologies. "Investments in basic research at the Department of Energy's national

27

NETL: News Release - DOE-Funded Acoustic Monitor Passes Key Field Test  

NLE Websites -- All DOE Office Websites (Extended Search)

March 7, 2005 March 7, 2005 DOE-Funded Acoustic Monitor Passes Key Field Test Detection System Can Help Locate Pipeline Leaks, Damage MORGANTOWN, WV - A new, lightweight device that uses natural gas itself to detect leaks in natural gas pipelines has been successfully tested on a transmission main owned and operated by Dominion Transmission Inc., in Morgantown, W.Va. The test was conducted by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) and West Virginia University, which has worked with NETL for the past 2 years to advance the detection system. The device is one of a suite of technologies being developed by the Energy Department's Office of Fossil Energy to effectively and efficiently monitor the 1.3 million miles of transmission and distribution pipelines which crisscross the United States

28

DOE Funded Research Projects Win 30 R&D Awards for 2008 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funded Research Projects Win 30 R&D Awards for 2008 Funded Research Projects Win 30 R&D Awards for 2008 DOE Funded Research Projects Win 30 R&D Awards for 2008 June 22, 2008 - 2:15pm Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman announced today that researchers from the U.S. Department of Energy's (DOE) National Laboratories and Y-12 National Security Complex have won 30 of the 100 awards given out this year by R&D Magazine for the most outstanding technology developments with promising commercial potential. The coveted awards are presented annually in recognition of exceptional new products, processes, materials or software developed throughout the world and introduced into the market the previous year. "I'm very proud that Department of Energy scientists and engineers captured

29

NETL: News Release - DOE-Funded Technology That 'Looks Ahead' of Drillbit  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2006 6, 2006 DOE-Funded Technology That 'Looks Ahead' of Drillbit Commercialized Revolutionary 'Smart' Drill Pipe Creates Downhole Internet WASHINGTON, DC - A U.S. Department of Energy-funded technology that establishes a "downhole Internet" for drilling oil and natural gas wells is now available for commercial use. The technology turns ordinary drill pipe into a highway for transmitting drilling and geological formation data at blazing speed from the bottom of a well to the surface and vice-versa. The potential benefits of the new technology include decreased drilling costs, improved safety, and reduced environmental impacts of drilling. Grant Prideco's announcement of the commercial launch of its IntelliServ Network and related Intellipipe(tm) capped 5 years of research sponsored by DOE and managed by DOE's National Energy Technology Laboratory.

30

DOE-Funded Researchers Honored by R&D Magazine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Researchers Honored by R&D Magazine Researchers Honored by R&D Magazine DOE-Funded Researchers Honored by R&D Magazine October 20, 2005 - 12:23pm Addthis Leader of the DOE Artificial Retina Project Named "Innovator of the Year;" Scientists and Engineers at 12 DOE Labs Win 29 R&D 100 Awards for 2005 WASHINGTON, DC-Secretary of Energy Samuel W. Bodman today congratulated the leader of the Department of Energy's Artificial Retina Project, who has been honored as R&D Magazine's "Innovator of the Year." Secretary Bodman also congratulated the researchers at DOE national laboratories who won 29 of the 100 awards given this year by the magazine for the most outstanding technology developments with commercial potential. R&D Magazine will present the awards tonight at its 43rd annual R&D 100

31

DOE-Funded Research Projects Win 39 R&D Awards for 2010 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

39 R&D Awards for 2010 39 R&D Awards for 2010 DOE-Funded Research Projects Win 39 R&D Awards for 2010 July 9, 2010 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy researchers have won 39 of the 100 awards given out this year by R&D Magazine for the most outstanding technology developments with promising commercial potential. The coveted awards are presented annually in recognition of exceptional new products, processes, materials or software developed throughout the world and introduced into the market the previous year. "I want to congratulate all of this year's winners on their awards and thank them for their work," Energy Secretary Steven Chu said. "The large number of winners from the Department of Energy's national labs every year

32

DOE-Funded Research Projects Win 41 R&D 100 Awards for 2006 | U.S. DOE  

Office of Science (SC) Website

DOE-Funded DOE-Funded Research Projects Win 41 R&D 100 Awards for 2006 News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 10.19.06 DOE-Funded Research Projects Win 41 R&D 100 Awards for 2006 Print Text Size: A A A Subscribe FeedbackShare Page WASHINGTON , DC - Secretary of Energy Samuel W. Bodman today congratulated researchers at 12 DOE national laboratories who won 41 of the 100 awards given by R&D Magazine. The awards are presented annually in recognition of the most outstanding technology developments with commercial potential. R&D Magazine will make the awards tonight at its 44th annual R&D

33

DOE Funded Research Projects Win 30 R&D 100 Awards for 2008 | U.S. DOE  

Office of Science (SC) Website

DOE Funded DOE Funded Research Projects Win 30 R&D 100 Awards for 2008 News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 07.22.08 DOE Funded Research Projects Win 30 R&D 100 Awards for 2008 Print Text Size: A A A Subscribe FeedbackShare Page WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman announced today that researchers from the U.S. Department of Energy's (DOE) National Laboratories and Y-12 National Security Complex have won 30 of the 100 awards given out this year by R&D Magazine for the most outstanding technology developments with promising commercial potential. The coveted

34

NETL: News Release - DOE-Funded Innovation Promotes Reduced Coal Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

21, 2007 21, 2007 DOE-Funded Innovation Promotes Reduced Coal Plant Emissions Novel Catalyst System Bolsters NOx Control Washington, DC - A catalyst-activity testing tool developed with funding from the U.S. Department of Energy is now commercially available and offers a major breakthrough in managing the selective catalytic reduction systems that are used in power plants to control nitrogen oxides (NOx) emissions. The much-needed innovation will promote both cleaner air and cost savings for electric customers by helping plant operators to more cost-effectively comply with NOx emissions regulations, including the new Clean Air Interstate Rule. Most of America's energy systems rely on combustion processes. A drawback of combustion is the formation of NOx - a group of highly reactive gases that form when fuel is burned at high temperatures and which contribute to smog, acid rain, and global warming. Selective catalytic reduction (SCR) systems control NOx emissions by injecting ammonia or urea into flue gas in the presence of a catalyst, converting NOx into nitrogen and water.

35

DOE-Funded Research Projects Win 35 R&D 100 Awards for 2003 | U.S. DOE  

Office of Science (SC) Website

35 R&D 100 Awards for 2003 35 R&D 100 Awards for 2003 About Organization Budget Field Offices Federal Advisory Committees History Scientific and Technical Information Honors & Awards Presidential Early Career Awards for Scientists and Engineers (PECASE) The Enrico Fermi Award The Ernest Orlando Lawrence Award DOE Nobel Laureates Federal Laboratory Consortium Excellence in Technology Transfer Award R&D 100 Awards Jobs Brochures, Logos, & Information Resources Contact Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 R&D 100 Awards DOE-Funded Research Projects Win 35 R&D 100 Awards for 2003 Print Text Size: A A A RSS Feeds FeedbackShare Page Thirty-five research projects funded by the U.S. Department of Energy have

36

DOE-Funded Research Projects Win 46 R&D 100 Awards for 2009 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46 R&D 100 Awards for 2009 46 R&D 100 Awards for 2009 DOE-Funded Research Projects Win 46 R&D 100 Awards for 2009 July 24, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Secretary of Energy Steven Chu announced today that Energy Department-funded researchers have won 46 of the 100 awards given out this year by R&D Magazine for the most outstanding technology developments with promising commercial potential. The coveted awards are presented annually in recognition of exceptional new products, processes, materials or software developed throughout the world and introduced into the market the previous year. "The Department of Energy's national laboratories are incubators of innovation, and I'm proud they are being recognized once again for their remarkable work," said Energy Secretary Steven Chu. "The cutting-edge

37

Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...  

Open Energy Info (EERE)

Exploration Technique Exploratory Boreholes Activity Date 1984 - 1990 Usefulness useful DOE-funding Unknown Exploration Basis This exploration was originally done as part of a...

38

Core Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann...  

Open Energy Info (EERE)

Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Core Holes Activity Date 2002 - 2004 Usefulness useful DOE-funding Unknown Exploration...

39

Flow Test At Chena Geothermal Area (Holdmann, Et Al., 2006) ...  

Open Energy Info (EERE)

Exploration Activity Details Location Chena Geothermal Area Exploration Technique Flow Test Activity Date 2005 - 2007 Usefulness useful DOE-funding Unknown Exploration Basis...

40

Exploratory Boreholes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Exploration Technique Exploratory Boreholes Activity Date 1992 - 2002 Usefulness useful DOE-funding Unknown Exploration Basis Mammoth Pacific LP drilled several...

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Cuttings Analysis At International Geothermal Area, Indonesia...  

Open Energy Info (EERE)

Indonesia Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal...

42

Core Analysis At Jemez Mountain Area (Eichelberger & Koch, 1979...  

Open Energy Info (EERE)

1979) Exploration Activity Details Location Jemez Mountain Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown References John C....

43

Core Holes At Kilauea East Rift Geothermal Area (Bargar, Et Al...  

Open Energy Info (EERE)

Activity Details Location Kilauea East Rift Geothermal Area Exploration Technique Core Holes Activity Date 1989 - 1991 Usefulness useful DOE-funding Unknown Exploration...

44

Core Analysis At Blue Mountain Geothermal Area (U.S. Geological...  

Open Energy Info (EERE)

Area Exploration Technique Core Analysis Activity Date 2008 - 2008 Usefulness useful DOE-funding Unknown Exploration Basis Core sample from the observation wells Deep Blue No....

45

Cuttings Analysis At International Geothermal Area, Philippines...  

Open Energy Info (EERE)

Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal...

46

Production Wells At Lightning Dock Geothermal Area (Cyrq Energy...  

Open Energy Info (EERE)

Area Exploration Technique Production Wells Activity Date 2013 Usefulness useful DOE-funding Unknown Exploration Basis Cyrc Energy bought Lightnign Dock Geothermal Inc. and...

47

Geographic Information System At Chena Geothermal Area (Holdmann...  

Open Energy Info (EERE)

Activity Details Location Chena Geothermal Area Exploration Technique Geographic Information System Activity Date 2005 - 2007 Usefulness useful DOE-funding Unknown Exploration...

48

Geographic Information System (Nash, Et Al., 2002) | Open Energy...  

Open Energy Info (EERE)

Exploration Activity Details Location Unspecified Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown References Gregory D....

49

Flow Test At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Exploration Activity Details Location Jemez Pueblo Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011)...

50

Flow Test At Steamboat Springs Area (Combs, Et Al., 1999) | Open...  

Open Energy Info (EERE)

Exploration Activity Details Location Steamboat Springs Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References Jim Combs, John...

51

Flow Test At Newberry Caldera Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Exploration Activity Details Location Newberry Caldera Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011)...

52

Conceptual Model At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

Area Exploration Technique Conceptual Model Activity Date - 1988 Usefulness useful DOE-funding Unknown Exploration Basis The study reports well log data from five wells...

53

Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell...  

Open Energy Info (EERE)

Area Exploration Technique Well Log Data Activity Date - 1988 Usefulness useful DOE-funding Unknown Exploration Basis The study reports well log data from five wells...

54

Ground Gravity Survey At Fort Bliss Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Exploration Activity Details Location Fort Bliss Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown References (1 January...

55

Water Sampling At Lightning Dock Geothermal Area (Swanberg, 1976...  

Open Energy Info (EERE)

Activity Details Location Lightning Dock Geothermal Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Exploration Basis...

56

Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Zandt...  

Open Energy Info (EERE)

Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1982 Usefulness not indicated DOE-funding Unknown...

57

Data Acquisition-Manipulation At Socorro Mountain Area (Kooten...  

Open Energy Info (EERE)

DOE-funding Unknown Notes Utilization of probability graphs in better analyzing soil-mercury. References Gerald K. Van Kooten (1987) Geothermal Exploration Using Surface Mercury...

58

Reflection Survey At Neal Hot Springs Geothermal Area (Colwell...  

Open Energy Info (EERE)

Activity Date 2011 - 2011 Usefulness useful DOE-funding Unknown Exploration Basis Seismic surveys ware conducted to gain a better understanding of the geology and structure of...

59

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Date 1978 - 1985 Usefulness useful DOE-funding Unknown Exploration Basis Thermal gradient drilling also continued during this period, consisting of several holes including: The...

60

Compound and Elemental Analysis At Fish Lake Valley Area (DOE...  

Open Energy Info (EERE)

Fish Lake Valley Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA...

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Core Analysis At Mcgee Mountain Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mcgee Mountain Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Additional...

62

Static Temperature Survey At Lake City Hot Springs Area (Benoit...  

Open Energy Info (EERE)

Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Two deeper wells encountered temps of 327 and 329 oF References...

63

Petrography Analysis At Fenton Hill HDR Geothermal Area (Laughlin...  

Open Energy Info (EERE)

Area Exploration Technique Petrography Analysis Activity Date - 1983 Usefulness useful DOE-funding Unknown Notes Thin sections were prepared of the different lithologies from...

64

Core Analysis At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

Details Location Valles Caldera - Sulphur Springs Geothermal Area Exploration Technique Core Analysis Activity Date - 1992 Usefulness not indicated DOE-funding Unknown Notes...

65

Compound and Elemental Analysis At International Geothermal Area...  

Open Energy Info (EERE)

Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal...

66

Core Analysis At International Geothermal Area, Indonesia (Boitnott...  

Open Energy Info (EERE)

Area Indonesia Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown References Greg N. Boitnott (2003) Core Analysis For The Development...

67

Core Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et...  

Open Energy Info (EERE)

Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Core Analysis Activity Date - 1983 Usefulness useful DOE-funding Unknown Notes A few cores...

68

Core Analysis At Long Valley Caldera Geothermal Area (Pribnow...  

Open Energy Info (EERE)

Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date - 2003 Usefulness useful DOE-funding Unknown Notes "Here we...

69

Core Analysis At Fenton Hill HDR Geothermal Area (Brookins &...  

Open Energy Info (EERE)

Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Core Analysis Activity Date - 1983 Usefulness useful DOE-funding Unknown Notes See linked...

70

Core Analysis At Lake City Hot Springs Area (Benoit Et Al., 2005...  

Open Energy Info (EERE)

City Hot Springs Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Rock core analyses and mineral assemblage investigations...

71

Geographic Information System At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Details Location Dixie Valley Geothermal Area Exploration Technique Geographic Information System Activity Date 1996 - 1997 Usefulness not indicated DOE-funding Unknown...

72

Flow Test At Crump's Hot Springs Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Details Location Crump's Hot Springs Geothermal Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011)...

73

Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Area Exploration Technique Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Additional...

74

Gas Sampling At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Area Exploration Technique Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Additional...

75

Slim Holes At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Area Exploration Technique Slim Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes 2 slim holes References (1 January 2011) GTP ARRA Spreadsheet...

76

Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP...  

Open Energy Info (EERE)

Details Location Pilgrim Hot Springs Area Exploration Technique Controlled Source Audio MT Activity Date Usefulness not indicated DOE-funding Unknown References (1 January...

77

Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

DOE-funding Unknown Exploration Basis This study reports on results of the Jemez Tomography Experiment (JTEX), a multidisciplinary effort to understand the structure of the...

78

Autonomous Flight in Unknown Indoor Environments  

E-Print Network (OSTI)

This paper presents our solution for enabling a quadrotor helicopter, equipped with a laser rangefinder sensor, to autonomously explore and map unstructured and unknown indoor environments. While these capabilities are ...

Bachrach, Abraham Galton

79

Autonomous Flight in Unstructured and Unknown Indoor Environments  

E-Print Network (OSTI)

This paper presents our solution for enabling a quadrotor helicopter, equipped with a laser rangefinder sensor, to autonomously explore and map unstructured and unknown indoor environments. While these capabilities are ...

Bachrach, Abraham Galton

80

UNKNOWN  

Office of Legacy Management (LM)

DOI: 10.10071~00267-004-0126-6 DOI: 10.10071~00267-004-0126-6 Science, Policy, and Stakeholders: Developing a Consensus Science Plan for Amchitka Island, Aleutians, Alaska JOANNABURGER Division of Life Sciences Consortium for Risk Evaluation with Stakeholder Participation (CRESP) and Environmental and Occupational Health Sciences Institute (EOHSI) Rutgers University Piscataway, New Jersey 08854-8082, USA MICHAEL GOCHFELD CRESP and EOHSI UMDNJ-Robert Wood Johnson Medical School Piscataway, New Jersey 08854, USA DAVID S. KOSSON Department of Civil and Environmental Engineering CRESP and Vanderbilt University Nashville, Tennessee 37235, USA CHARLES W. POWERS BARRY FRIEDLANDER CRESP and EOHSI UMDNJ-Robert Wood Johnson Medical School Piscataway, New Jersey 08854, USA JOHN EICHELBERGER

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

UNKNOWN  

Office of Legacy Management (LM)

JOURNAL OF JOURNAL OF ENVIRONMENTAL Journal of ELSEVIER Environmental Radioactivity 60 (2002) 165-187 RADIOACTIVITY An assessment of the reported leakage of anthropogenic radionuclides from the underground nuclear test sites at Amchitka Island, Alaska, USA to the surface environment Douglas Dashera3*, Wayne ans son^, Stan Reada, Scott FalleS, Dennis Farmerc, Wes ~ f u r d ~ , John Kelleye, Robert patrickf " Aluska Department o f Etz~~ironmental Conservation, 610 Liniversitj Avenue, Fairbanks, AK 99709, U S A ~ a t ~ s o n Environmentul Research Sercice, Inc.,I902 Yew Street Rd., Bellingham, W A 98226, U S A ' U . S . Encironmental Protection Agency Radiation and Indoor Encironments National Laboratory, P.O. Box 98517, La.r P'egrrs, N V 89193, U S A d ~ o s Alatnos Nationnl Laboratorj, Clzemical Science and Technology, M

82

UNKNOWN  

Office of Legacy Management (LM)

glass, while other radionuclides reside outside the glass and are potentially mobile (Smith, 1995). The resulting glass is subject to slow dissolution in groundwater and to...

83

Philips Lumileds Is Exploring the Use of Silicon Substrates to Lower the Cost of LEDs  

Energy.gov (U.S. Department of Energy (DOE))

With the help of DOE funding, Philips Lumileds is exploring the use of nitride epitaxy on 150mm silicon substrates to produce low-cost, warm-white, high-performance general-illumination LEDs. Most LEDs are made with C-plane sapphire substrates, but silicon—at roughly half a penny per square millimeter—is much cheaper, and it's also easier to obtain. Philips Lumileds is attempting to adapt the use of silicon to the manufacture of LEDs, drawing upon the knowledge base and depreciated equipment of the computer industry, which has been using silicon substrates for decades.

84

Search in unknown random environments  

Science Journals Connector (OSTI)

N searchers are sent out by a source in order to locate a fixed object which is at a finite distance D, but the search space is infinite and D would be in general unknown. Each of the searchers has a finite random lifetime, and may be subject to destruction or failures, and it moves independently of other searchers, and at intermediate locations some partial random information may be available about which way to go. When a searcher is destroyed or disabled, or when it “dies naturally,” after some time the source becomes aware of this and it sends out another searcher, which proceeds similarly to the one that it replaces. The search ends when one of the searchers finds the object being sought. We use N coupled Brownian motions to derive a closed form expression for the average search time as a function of D which will depend on the parameters of the problem: the number of searchers, the average lifetime of searchers, the routing uncertainty, and the failure or destruction rate of searchers. We also examine the cost in terms of the total energy that is expended in the search.

Erol Gelenbe

2010-12-07T23:59:59.000Z

85

Adjustable Robust Parameter Design with Unknown Distributions  

E-Print Network (OSTI)

Mar 27, 2013 ... Adjustable Robust Parameter Design with Unknown Distributions. ihsan Yanikoglu(i.yanikoglu ***at*** uvt.nl) Dick den Hertog(d.denhertog ...

ihsan Yanikoglu

2013-03-27T23:59:59.000Z

86

Multispectral Imaging At Long Valley Caldera Area (Martin, Et Al., 2004) |  

Open Energy Info (EERE)

Martin, Et Al., 2004) Martin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Long Valley Caldera Area (Martin, Et Al., 2004) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References B. Martin, E. Silver, W. Pickles, P. Cocks (Unknown) Hyperspectral Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_At_Long_Valley_Caldera_Area_(Martin,_Et_Al.,_2004)&oldid=511009" Categories: Exploration Activities DOE Funded

87

Application of a New Structural Model and Exploration Technologies to  

Open Energy Info (EERE)

New Structural Model and Exploration Technologies to New Structural Model and Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Application of a New Structural Model and Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The structural model is based on the role of subsurface igneous dikes providing a buttressing effect in a regional strain field such that permeability is greatly enhanced. The basic thermal anomaly at McCoy was defined by substantial U.S. Department of Energy-funded temperature gradient drilling and geophysical studies conducted during the period 1978 to 1982. This database will be augmented with modern magnetotelluric, controlled-source audio-magnetotelluric, and 2D/3D reflection seismic surveys to define likely fluid up-flow plumes that will be drilled with slant-hole technology. Two sites for production-capable wells will be drilled in geothermally prospective areas identified in this manner. The uniqueness of this proposal lies in the use of a full suite of modern geophysical tools, use of slant-hole drilling, and the extensive technical database from previous DOE funding.

88

Gas Flux Sampling (Lewicki & Oldenburg) | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling (Lewicki & Oldenburg) Gas Flux Sampling (Lewicki & Oldenburg) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling (Lewicki & Oldenburg) Exploration Activity Details Location Unspecified Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown References Jennifer L. Lewicki, Curtis M. Oldenburg (Unknown) Near-Surface Co2 Monitoring And Analysis To Detect Hidden Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_(Lewicki_%26_Oldenburg)&oldid=508144" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

89

Geothermal Literature Review (Goldstein, 1977) | Open Energy Information  

Open Energy Info (EERE)

Goldstein, 1977) Goldstein, 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review (Goldstein, 1977) Exploration Activity Details Location Unspecified Exploration Technique Geothermal Literature Review Activity Date Usefulness useful DOE-funding Unknown Notes Review of effectiveness of several geothermal exploration tools. References N. E. Goldstein (1977) Northern Nevada Geothermal Exploration Strategy Analysis Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_(Goldstein,_1977)&oldid=510791" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

90

Static Temperature Survey At Medicine Lake Area (Warpinski, Et Al., 2004) |  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Medicine Lake Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Medicine Lake Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Static_Temperature_Survey_At_Medicine_Lake_Area_(Warpinski,_Et_Al.,_2004)&oldid=511156" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version

91

Data Acquisition-Manipulation At Chena Area (Erkan, Et. Al., 2008) | Open  

Open Energy Info (EERE)

Chena Area (Erkan, Et. Al., 2008) Chena Area (Erkan, Et. Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Chena Geothermal Area (Erkan, Et. Al., 2008) Exploration Activity Details Location Chena Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown References Kamil Erkan, Gwen Holdmann, Walter Benoit, David Blackwell (2008) Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Chena_Area_(Erkan,_Et._Al.,_2008)&oldid=400349" Categories: Exploration Activities DOE Funded Activities

92

Underground Exploration  

E-Print Network (OSTI)

Underground Exploration and Testing A Report to Congress and the Secretary of Energy Nuclear Waste Technical Review Board October 1993 Yucca Mountain at #12;Nuclear Waste Technical Review Board Dr. John E and Testing #12;Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Introduction

93

Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell, 2004)  

Open Energy Info (EERE)

Stillwater Area (Wisian & Blackwell, 2004) Stillwater Area (Wisian & Blackwell, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell, 2004) Exploration Activity Details Location Stillwater Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown References Kenneth W. Wisian, David D. Blackwell (2004) Numerical Modeling Of Basin And Range Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Stillwater_Area_(Wisian_%26_Blackwell,_2004)&oldid=387304" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version

94

Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al.,  

Open Energy Info (EERE)

Biasi, Et Al., Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Nw_Basin_%26_Range_Region_(Biasi,_Et_Al.,_2009)&oldid=401461" Categories: Exploration Activities DOE Funded

95

Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky, Et Al.,  

Open Energy Info (EERE)

2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown References Steven Wesnousky, S. John Caskey, John W. Bell (2003) Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Dixie_Valley_Geothermal_Field_Area_(Wesnousky,_Et_Al.,_2003)&oldid=510736" Categories: Exploration Activities DOE Funded Activities What links here

96

Static Temperature Survey At Wister Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Static Temperature Survey At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Wister Area (DOE GTP) Exploration Activity Details Location Wister Area Exploration Technique Static Temperature Survey Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Static_Temperature_Survey_At_Wister_Area_(DOE_GTP)&oldid=511165" Categories: Exploration Activities DOE Funded Activities

97

Gas Sampling At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Gas Sampling At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley Area Exploration Technique Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Gas_Sampling_At_Gabbs_Valley_Area_(DOE_GTP)&oldid=689423" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

98

2011 DOE Funded Offshore Wind Project Updates | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

medium-fidelity wind farm simulations. SOWFA's high-fidelity mode requires a high-performance computing cluster and considerable expertise to run. It allows researchers to examine...

99

Applicant Location Requested DOE Funds Project Summary Feasibility...  

Energy Savers (EERE)

White Earth, MN 247,118 This project will assess the feasibility of deploying a biogasbiomass-fired combined heat and power facility to generate 2.7 MW of electricity for...

100

DOE funds projects on hydrogen storage, fuel cell manufacturing  

Science Journals Connector (OSTI)

Three hydrogen and fuel cell projects in Colorado, California, and New Jersey are to receive funding from the US Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE). The projects are among the recently announced FY 2012 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 3 awards.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DOE Funds 21 Research, Development and Demonstration Projects...  

Energy Savers (EERE)

of UtahEnergy and Geoscience Institute (EGI) (Anchorage, Alaska): to identify open fracture systems by their Fluid Inclusion Stratigraphy (FIS) chemical signature; differences...

102

DOE funds Bio-Inspired Solar Fuel Center at ASU  

NLE Websites -- All DOE Office Websites (Extended Search)

advanced scientific research on solar energy conversion based on the principles of photosynthesis, the process by which plants convert sunlight to energy. All 46 centers are being...

103

Hierarchical Distributed Task Allocation for Multi-Robot Exploration  

E-Print Network (OSTI)

the exploration process via a market-based mechanism. That is, each robot decides for itself whether it is moreHierarchical Distributed Task Allocation for Multi-Robot Exploration John Hawley and Zack Butler Abstract In order to more effectively explore a large unknown area, multiple robots may be employed to work

Butler, Zack

104

Experimental Evaluation of Some Exploration Strategies for Mobile Robots  

E-Print Network (OSTI)

mobile robots. An efficient map building process is based on a good exploration strategy that determines to incrementally map it. More precisely, the process of exploring an unknown environment using a mobile robot the paper. II. A REVIEW OF EXPLORATION STRATEGIES Mapping is an incremental process. Since the ranges

Amigoni, Francesco

105

EXPLORATION ACTIVITY WORKSHEET MAJOR & CAREER EXPLORATION  

E-Print Network (OSTI)

of activity or process you should explore to bring you closer to your academic goals. NameEXPLORATION ACTIVITY WORKSHEET MAJOR & CAREER EXPLORATION Purpose: The exploration activity is designed for students to "explore" opportunities at UM as they relate to student success, majors, careers

Milchberg, Howard

106

Coordinated Multi-Robot Exploration Wolfram Burgard Mark Moors Cyrill Stachniss Frank Schneider  

E-Print Network (OSTI)

1 Coordinated Multi-Robot Exploration Wolfram Burgard Mark Moors Cyrill Stachniss Frank Schneider of exploring an unknown environment with a team of robots. As in single- robot exploration the goal is to minimize the overall exploration time. The key problem to be solved in the context of multiple robots

Burgard, Wolfram

107

Data Exploration at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploration Data Exploration energy16gunther.jpg Highly interactive data exploration is a key component of scientific analytics, often combining multiple analytics technologies,...

108

Property:Plants with Unknown Planned Capacity | Open Energy Information  

Open Energy Info (EERE)

Plants with Unknown Planned Capacity Plants with Unknown Planned Capacity Jump to: navigation, search Property Name Plants with Unknown Planned Capacity Property Type String Description Number of plants with unknown planned capacity per GEA Pages using the property "Plants with Unknown Planned Capacity" Showing 21 pages using this property. A Alaska Geothermal Region + 1 + C Cascades Geothermal Region + 2 + Central Nevada Seismic Zone Geothermal Region + 9 + G Gulf of California Rift Zone Geothermal Region + 4 + H Hawaii Geothermal Region + 0 + Holocene Magmatic Geothermal Region + 0 + I Idaho Batholith Geothermal Region + 1 + N Northern Basin and Range Geothermal Region + 11 + Northern Rockies Geothermal Region + 0 + Northwest Basin and Range Geothermal Region + 9 + R Rio Grande Rift Geothermal Region + 1 +

109

Nonlinear Adaptive Control for Bioreactors with Unknown Kinetics  

E-Print Network (OSTI)

on a real life wastewater treatment plant. Key words: Nonlinear adaptive control, continuous bioprocesses, unknown kinetics, wastewater treatment. 1 Introduction Biological processes have become widely used a pollutant (wastewater treatment...). There- fore, bioreactors require advanced regulation procedures

Bernard, Olivier

110

Method for identifying known materials within a mixture of unknowns  

DOE Patents (OSTI)

One or both of two methods and systems are used to determine concentration of a known material in an unknown mixture on the basis of the measured interaction of electromagnetic waves upon the mixture. One technique is to utilize a multivariate analysis patch technique to develop a library of optimized patches of spectral signatures of known materials containing only those pixels most descriptive of the known materials by an evolutionary algorithm. Identity and concentration of the known materials within the unknown mixture is then determined by minimizing the residuals between the measurements from the library of optimized patches and the measurements from the same pixels from the unknown mixture. Another technique is to train a neural network by the genetic algorithm to determine the identity and concentration of known materials in the unknown mixture. The two techniques may be combined into an expert system providing cross checks for accuracy.

Wagner, John S. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

111

System for identifying known materials within a mixture of unknowns  

DOE Patents (OSTI)

One or both of two methods and systems are used to determine concentration of a known material in an unknown mixture on the basis of the measured interaction of electromagnetic waves upon the mixture. One technique is to utilize a multivariate analysis patch technique to develop a library of optimized patches of spectral signatures of known materials containing only those pixels most descriptive of the known materials by an evolutionary algorithm. Identity and concentration of the known materials within the unknown mixture is then determined by minimizing the residuals between the measurements from the library of optimized patches and the measurements from the same pixels from the unknown mixture. Another technique is to train a neural network by the genetic algorithm to determine the identity and concentration of known materials in the unknown mixture. The two techniques may be combined into an expert system providing cross checks for accuracy.

Wagner, John S. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

112

System for identifying known materials within a mixture of unknowns  

DOE Patents (OSTI)

One or both of two methods and systems are used to determine concentration of a known material in an unknown mixture on the basis of the measured interaction of electromagnetic waves upon the mixture. One technique is to utilize a multivariate analysis patch technique to develop a library of optimized patches of spectral signatures of known materials containing only those pixels most descriptive of the known materials by an evolutionary algorithm. Identity and concentration of the known materials within the unknown mixture is then determined by minimizing the residuals between the measurements from the library of optimized patches and the measurements from the same pixels from the unknown mixture. Another technique is to train a neural network by the genetic algorithm to determine the identity and concentration of known materials in the unknown mixture. The two techniques may be combined into an expert system providing cross checks for accuracy. 37 figs.

Wagner, J.S.

1999-07-20T23:59:59.000Z

113

Tracers and Exploration Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Below are the project presentations and respective peer review results for Tracers and Exploration Technologies.

114

Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Marysville Mt Area (Blackwell) Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Heat flow analysis. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Marysville_Mt_Area_(Blackwell)&oldid=388982" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs

115

Thermal And-Or Near Infrared At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Marysville Mt Area (Blackwell) Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown Notes No further mention of infrared photography. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Marysville_Mt_Area_(Blackwell)&oldid=386636" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties

116

T-593: Microsoft Internet Explorer unspecified code execution | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

593: Microsoft Internet Explorer unspecified code execution 593: Microsoft Internet Explorer unspecified code execution T-593: Microsoft Internet Explorer unspecified code execution April 1, 2011 - 6:22am Addthis PROBLEM: Microsoft Internet Explorer could allow a remote attacker to execute arbitrary code on the system. A remote attacker could exploit this vulnerability using unknown attack vectors to execute arbitrary code on the system. PLATFORM: Microsoft Internet Explorer 8 ABSTRACT: Unspecified vulnerability in Microsoft Internet Explorer 8 on Windows 7 allows remote attackers to bypass Protected Mode and create arbitrary files by leveraging access to a Low integrity process. reference LINKS: CVE-2011-1347 Update Date : 2011-03-30 Microsoft >> IE: Vulnerability Statistics IMPACT ASSESSMENT: High Discussion: Microsoft Internet Explorer could allow a remote attacker to execute

117

Handling Advertisements of Unknown Quality in Search Advertising  

E-Print Network (OSTI)

Handling Advertisements of Unknown Quality in Search Advertising Sandeep Pandey Christopher Olston@yahoo-inc.com Abstract We consider how a search engine should select advertisements to display with search results well the displayed advertisements appeal to users. The main difficulty stems from new ad- vertisements

Olston, Christopher

118

AUTONOMOUS NAVIGATION TROUP FOR COOPERATIVE MODELLING OF UNKNOWN ENVIRONMENTS  

E-Print Network (OSTI)

AUTONOMOUS NAVIGATION TROUP FOR COOPERATIVE MODELLING OF UNKNOWN ENVIRONMENTS Josep Amat,mantaras@iiia.csic.es} Abstract Based on the information gathered by a set of small autonomous low cost vehicles, the generation, small autonomous vehicles has been developed. These vehicles follow the already classical line of insect

López-Sánchez, Maite

119

Robust Multi-loop Airborne SLAM in Unknown Wind Environments  

E-Print Network (OSTI)

Robust Multi-loop Airborne SLAM in Unknown Wind Environments Jonghyuk Kim Department of Engineering for Autonomous Systems University of Sydney, Australia Email: salah@acfr.usyd.edu.au Abstract-- This paper presents a robust multi-loop airborne SLAM structure which also augments wind information. The air velocity

Kim, Jonghyuk "Jon"

120

Oil and Gas Exploration  

E-Print Network (OSTI)

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Application of Categorical Exclusions (1021.410) Disagree Agree Unknown  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Checklist for Categorical Exclusion Determination, revised Nov. 2011 Application of Categorical Exclusions (1021.410) Disagree Agree Unknown (b)(1) The proposal fits within a class of actions that is listed in appendix A or B to subpart D. X (b)(2) There are no extraordinary circumstances related to the proposal that may affect the significance of the environmental effects of the proposal, including, but not limited to, scientific controversy about the environmental effects of the proposal; uncertain effects or effects involving unique or unknown risks; and unresolved conflicts concerting alternate uses of available resources X (b)(3) The proposal has not been segmented to meet the definition of a categorical exclusion. Segmentation can occur when a proposal is

122

Interferometric distillation and determination of unknown two-qubit entanglement  

E-Print Network (OSTI)

We propose a scheme for both distilling and quantifying entanglement, applicable to individual copies of an arbitrary unknown two-qubit state. It is realized in a usual two-qubit interferometry with local filtering. Proper filtering operation for the maximal distillation of the state is achieved, by erasing single-qubit interference, and then the concurrence of the state is determined directly from the visibilities of two-qubit interference. We compare the scheme with full state tomography.

S. -S. B. Lee; H. -S. Sim

2010-06-08T23:59:59.000Z

123

Interferometric distillation and determination of unknown two-qubit entanglement  

SciTech Connect

We propose a scheme for both distilling and quantifying entanglement, applicable to individual copies of an arbitrary unknown two-qubit state. It is realized in a usual two-qubit interferometry with local filtering. Proper filtering operation for the maximal distillation of the state is achieved by erasing single-qubit interference, and then the concurrence of the state is determined directly from the visibilities of two-qubit interference. We compare the scheme with full state tomography.

Lee, S.-S. B.; Sim, H.-S. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

2009-05-15T23:59:59.000Z

124

Distributed Multi-robot Exploration and Mapping Dieter Fox Jonathan Ko Kurt Konolige Benson Limketkai Dirk Schulz Benjamin Stewart  

E-Print Network (OSTI)

1 Distributed Multi-robot Exploration and Mapping Dieter Fox Jonathan Ko Kurt Konolige Benson of unknown environments is a fundamental problem in mobile robotics. In this paper we present an approach to distributed multi-robot mapping and exploration. Our system enables teams of robots to efficiently explore

Washington at SeattleUniversity of

125

Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2004) | Open Energy  

Open Energy Info (EERE)

Cove Fort Area (Warpinski, Et Al., 2004) Cove Fort Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_At_Cove_Fort_Area_(Warpinski,_Et_Al.,_2004)&oldid=598118" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages

126

Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

(Warpinski, Et Al., (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Cove_Fort_Area_(Warpinski,_Et_Al.,_2004)&oldid=598126" Categories: Exploration Activities DOE Funded Activities What links here

127

Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Cove_Fort_Area_(Warpinski,_Et_Al.,_2004)&oldid=598130" Categories: Exploration Activities DOE Funded Activities

128

Color and perceptual variation revisited: Unknown facts, alien modalities, and perfect psychosemantics  

E-Print Network (OSTI)

Revisited: Unknown Facts, Alien Modalities, and Perfectunwarranted optimism. 7 Alien Modalities A related objection

Cohe, J

2006-01-01T23:59:59.000Z

129

Exploration Best Practices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farm 1 | US DOE Geothermal Program eere.energy.gov Geothermal Technologies Program 2010 Peer Review Exploration Best Practices and Success Rates PI: Katherine Young Presented by:...

130

Data series subtraction with unknown and unmodeled background noise  

E-Print Network (OSTI)

LISA Pathfinder (LPF), ESA's precursor mission to a gravitational wave observatory, will measure the degree to which two test-masses can be put into free-fall, aiming to demonstrate a residual relative acceleration with a power spectral density (PSD) below 30 fm/s$^2$/Hz$^{1/2}$ around 1 mHz. In LPF data analysis, the measured relative acceleration data series must be fit to other various measured time series data. This fitting is required in different experiments, from system identification of the test mass and satellite dynamics to the subtraction of noise contributions from measured known disturbances. In all cases, the background noise, described by the PSD of the fit residuals, is expected to be coloured, requiring that we perform such fits in the frequency domain. This PSD is unknown {\\it a priori}, and a high accuracy estimate of this residual acceleration noise is an essential output of our analysis. In this paper we present a fitting method based on Bayesian parameter estimation with an unknown frequency-dependent background noise. The method uses noise marginalisation in connection with averaged Welch's periodograms to achieve unbiased parameter estimation, together with a consistent, non-parametric estimate of the residual PSD. Additionally, we find that the method is equivalent to some implementations of iteratively re-weighted least-squares fitting. We have tested the method both on simulated data of known PSD, and to analyze differential acceleration from several experiments with the LISA Pathfinder end-to-end mission simulator.

Stefano Vitale; Giuseppe Congedo; Rita Dolesi; Valerio Ferroni; Mauro Hueller; Daniele Vetrugno; William Joseph Weber; Heather Audley; Karsten Danzmann; Ingo Diepholz; Martin Hewitson; Natalia Korsakova; Luigi Ferraioli; Ferran Gibert; Nikolaos Karnesis; Miquel Nofrarias; Henri Inchauspe; Eric Plagnol; Oliver Jennrich; Paul W. McNamara; Michele Armano; James Ira Thorpe; Peter Wass

2014-04-18T23:59:59.000Z

131

Slim Holes At Blue Mountain Area (Warpinski, Et Al., 2004) | Open Energy  

Open Energy Info (EERE)

Blue Mountain Area (Warpinski, Et Al., Blue Mountain Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Blue Mountain Area Exploration Technique Slim Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Slim_Holes_At_Blue_Mountain_Area_(Warpinski,_Et_Al.,_2004)&oldid=387371" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

132

Slim Holes At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Slim Holes At Jemez Pueblo Area (DOE GTP) Slim Holes At Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Jemez Pueblo Area (DOE GTP) Exploration Activity Details Location Jemez Pueblo Area Exploration Technique Slim Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes 1 well References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Slim_Holes_At_Jemez_Pueblo_Area_(DOE_GTP)&oldid=402648" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

133

Static Temperature Survey At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Static Temperature Survey At Maui Area (DOE GTP) Static Temperature Survey At Maui Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Maui Area (DOE GTP) Exploration Activity Details Location Maui Area Exploration Technique Static Temperature Survey Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Static_Temperature_Survey_At_Maui_Area_(DOE_GTP)&oldid=511154" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

134

Gas Sampling At Black Warrior Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Sampling At Black Warrior Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Black Warrior Area (DOE GTP) Exploration Activity Details Location Black Warrior Area Exploration Technique Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Gas_Sampling_At_Black_Warrior_Area_(DOE_GTP)&oldid=689412" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities

135

Slim Holes At Newberry Caldera Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Slim Holes At Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Newberry Caldera Area (DOE GTP) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Slim Holes Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Slim_Holes_At_Newberry_Caldera_Area_(DOE_GTP)&oldid=402651" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities

136

Observation Wells At Mccoy Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

Observation Wells At Mccoy Geothermal Area (DOE GTP) Observation Wells At Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy Geothermal Area Exploration Technique Observation Wells Activity Date Usefulness not indicated DOE-funding Unknown Notes 4 wells References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Observation_Wells_At_Mccoy_Geothermal_Area_(DOE_GTP)&oldid=402599" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

137

Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al.,  

Open Energy Info (EERE)

Of Ten Thousand Smokes Region Area (Keith, Et Al., Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown References T. E. C. Keith, J. M. Thompson, R. A. Hutchinson, L. D. White (1992) Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Valley_Of_Ten_Thousand_Smokes_Region_Area_(Keith,_Et_Al.,_1992)&oldid=386869" Categories: Exploration Activities DOE Funded Activities

138

Ground Magnetics At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Ground Magnetics At Alum Area (DOE GTP) Ground Magnetics At Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Ground Magnetics Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_At_Alum_Area_(DOE_GTP)&oldid=402978" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

139

Slim Holes At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Slim Holes At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley Area Exploration Technique Slim Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes 2 slim holes References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Slim_Holes_At_Gabbs_Valley_Area_(DOE_GTP)&oldid=402645" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities

140

Rock Density At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Rock Density At Alum Area (DOE GTP) Rock Density At Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Density At Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Rock Density Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Rock_Density_At_Alum_Area_(DOE_GTP)&oldid=402985" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Isotopic Analysis At Geyser Bight Area (Motyka, Et Al., 1993) | Open Energy  

Open Energy Info (EERE)

Geyser Bight Area (Motyka, Et Al., 1993) Geyser Bight Area (Motyka, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Geyser Bight Area (Motyka, Et Al., 1993) Exploration Activity Details Location Geyser Bight Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References Roman J. Motyka, Christopher J. Nye, Donald L. Turner, Shirley A. Liss (1993) The Geyser Bight Geothermal Area, Umnak Island, Alaska Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Geyser_Bight_Area_(Motyka,_Et_Al.,_1993)&oldid=687446" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link

142

Pressure Temperature Log At Mccoy Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

Pressure Temperature Log At Mccoy Geothermal Area (DOE GTP) Pressure Temperature Log At Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy Geothermal Area Exploration Technique Pressure Temperature Log Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Pressure_Temperature_Log_At_Mccoy_Geothermal_Area_(DOE_GTP)&oldid=511052" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

143

Stepout-Deepening Wells At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Stepout-Deepening Wells At Colrado Area (DOE GTP) Stepout-Deepening Wells At Colrado Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Step-out Well At Colrado Area (DOE GTP) Exploration Activity Details Location Colado Geothermal Area Exploration Technique Step-out Well Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Stepout-Deepening_Wells_At_Colrado_Area_(DOE_GTP)&oldid=687906" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

144

Flow Test At Pilgrim Hot Springs Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Area (DOE GTP) Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Pilgrim Hot Springs Area (DOE GTP) Exploration Activity Details Location Pilgrim Hot Springs Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Pilgrim_Hot_Springs_Area_(DOE_GTP)&oldid=402456" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863028959 Varnish cache server

145

Micro-Earthquake At Under Steamboat Springs Area (Warpinski, Et Al., 2004)  

Open Energy Info (EERE)

Under Steamboat Springs Area Under Steamboat Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Under Steamboat Springs Area Exploration Technique Micro-Earthquake Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Micro-Earthquake_At_Under_Steamboat_Springs_Area_(Warpinski,_Et_Al.,_2004)&oldid=386654" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

146

Radiometrics At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Radiometrics At Fort Bliss Area (DOE GTP) Radiometrics At Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Radiometrics At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area Exploration Technique Radiometrics Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Radiometrics_At_Fort_Bliss_Area_(DOE_GTP)&oldid=402615" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863747441

147

Gas Flux Sampling At Long Valley Caldera Area (Lewicki, Et Al., 2008) |  

Open Energy Info (EERE)

Lewicki, Et Al., 2008) Lewicki, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Long Valley Caldera Area (Lewicki, Et Al., 2008) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References J. L. Lewicki, M. L. Fischer, G. E. Hilley (2008) Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain, California- Performance Evaluation And Role Of Meteorological Forcing Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_At_Long_Valley_Caldera_Area_(Lewicki,_Et_Al.,_2008)&oldid=508150" Categories: Exploration Activities DOE Funded

148

Field Mapping At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Jemez Pueblo Area (DOE GTP) Field Mapping At Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Jemez Pueblo Area (DOE GTP) Exploration Activity Details Location Jemez Pueblo Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Jemez_Pueblo_Area_(DOE_GTP)&oldid=510743" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863638471

149

Stepout-Deepening Wells At Rye Patch Area (Warpinski, Et Al., 2004) | Open  

Open Energy Info (EERE)

Well Deepening At Rye Patch Area (Warpinski, Et Al., Well Deepening At Rye Patch Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Rye Patch Area Exploration Technique Well Deepening Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Stepout-Deepening_Wells_At_Rye_Patch_Area_(Warpinski,_Et_Al.,_2004)&oldid=687871" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

150

Well Log Techniques At Snake River Plain Region (DOE GTP) | Open Energy  

Open Energy Info (EERE)

Well Log Techniques At Snake River Plain Region (DOE GTP) Well Log Techniques At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Techniques At Snake River Plain Region (DOE GTP) Exploration Activity Details Location Snake River Plain Geothermal Region Exploration Technique Well Log Techniques Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Well_Log_Techniques_At_Snake_River_Plain_Region_(DOE_GTP)&oldid=600470" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

151

Gas Sampling At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Sampling At Maui Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Maui Area (DOE GTP) Exploration Activity Details Location Maui Area Exploration Technique Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Gas_Sampling_At_Maui_Area_(DOE_GTP)&oldid=689419" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages

152

Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Sampling At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area Exploration Technique Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Gas_Sampling_At_Glass_Buttes_Area_(DOE_GTP)&oldid=689421" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities

153

Multispectral Imaging (Monaster And Coolbaugh, 2007) | Open Energy  

Open Energy Info (EERE)

Multispectral Imaging (Monaster And Coolbaugh, 2007) Multispectral Imaging (Monaster And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging (Monaster And Coolbaugh, 2007) Exploration Activity Details Location Unspecified Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown References Francis C. Monastero, Mark F. Coolbaugh (2007) Advances In Geothermal Resource Exploration Circa 2007 Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_(Monaster_And_Coolbaugh,_2007)&oldid=510998" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

154

Electrical Resistivity At Coso Geothermal Area (1972) | Open Energy  

Open Energy Info (EERE)

Electrical Resistivity At Coso Geothermal Area (1972) Electrical Resistivity At Coso Geothermal Area (1972) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electrical Resistivity At Coso Geothermal Area (1972) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1972 Usefulness useful DOE-funding Unknown Exploration Basis Identify drilling sites for exploration Notes Electrical resistivity studies outline areas of anomalously conductive ground that may be associated with geothermal activity and assist in locating drilling sites to test the geothermal potential. References Ferguson, R. B. (1 June 1973) Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California

155

Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy  

Open Energy Info (EERE)

Kooten, 1987) Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration Activity Details Location Medicine Lake Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Gerald K. Van Kooten (1987) Geothermal Exploration Using Surface Mercury Geochemistry Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Medicine_Lake_Area_(Kooten,_1987)&oldid=386431" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

156

Exploration Best Practices  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this project is to provide an overview of currentt geoth thermall explloratiti on bbestt practi tices andd a baseline values for exploration (both non-drilling and drilling) success rates in the U.S.

157

Simulated NMIS Imaging Data for an Unknown Object  

SciTech Connect

This report presents simulated Nuclear Materials Identification System (NMIS) imaging data for an unclassified object, whose characteristics are initially unknown to the reader. This data will be used to test various analysis capabilities and was created with a simple deterministic ray-tracing algorithm. NMIS is a time-dependent coincidence counting system that is used to characterize both fissile and non-fissile materials undergoing nondestructive assay. NMIS characterizes materials by interrogating them with neutrons, either from an associated-particle deuterium-tritium (DT) neutron generator, which produces a time and directionally tagged monoenergetic beam of 14.1 MeV neutrons, or a time-tagged spontaneous fission source in an ionization chamber.

Walker, Mark E [ORNL; Mihalczo, John T [ORNL

2012-04-01T23:59:59.000Z

158

Fluid Inclusion Analysis At Yellowstone Region (Sturchio, Et...  

Open Energy Info (EERE)

Activity Date Usefulness not indicated DOE-funding Unknown References N. C. Sturchio, T. E. C. Keith, K. Muehlenbachs (1990) Oxygen And Carbon Isotope Ratios Of Hydrothermal...

159

Geothermometry At Blackfoot Reservoir Area (Hutsinpiller & Parry...  

Open Energy Info (EERE)

Activity Date Usefulness useful DOE-funding Unknown References Amy Hutsinpiller, W. T. Parry (1985) Geochemistry And Geothermometry Of Spring Water From The Blackfoot...

160

Data Acquisition-Manipulation At U.S. South Region (Negraru,...  

Open Energy Info (EERE)

Activity Date Usefulness not indicated DOE-funding Unknown References Petru T. Negraru, David. D. Blackwell, Kamil Erkan (2008) Heat Flow And Geothermal Potential In...

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Compound and Elemental Analysis At Northern Basin & Range Region...  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown Notes Wstern Utah hot springs: Antelope, Fish (Deadman), Fish (Wilson), Twin Peak, Cudahy, Laverkin, Grantsville, Crystal Prison,...

162

Isotopic Analysis At Northern Basin & Range Region (Kennedy ...  

Open Energy Info (EERE)

useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced...

163

Isotopic Analysis At Nw Basin & Range Region (Kennedy & Van Soest...  

Open Energy Info (EERE)

useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced...

164

Isotopic Analysis At Walker-Lane Transitional Zone Region (Kennedy...  

Open Energy Info (EERE)

useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced...

165

Cuttings Analysis At Long Valley Caldera Geothermal Area (Pribnow...  

Open Energy Info (EERE)

Cuttings Analysis Activity Date - 2003 Usefulness useful DOE-funding Unknown Notes "Here we present a detailed thermal conductivity profile for LVEW (Fig. 5a). Measurements were...

166

Compound and Elemental Analysis At Fenton Hill HDR Geothermal...  

Open Energy Info (EERE)

Technique Compound and Elemental Analysis Activity Date - 1983 Usefulness useful DOE-funding Unknown Notes Thin sections were prepared of the different lithologies from...

167

Core Analysis At Snake River Plain Region (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Additional References Retrieved from "http:en.openei.orgw...

168

Fluid Inclusion Analysis At Valles Caldera - Redondo Geothermal...  

Open Energy Info (EERE)

Technique Fluid Inclusion Analysis Activity Date - 1988 Usefulness not indicated DOE-funding Unknown Notes Abstract does not describe study in explicit detail, need to...

169

Neutron Log At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Neutron Log Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Additional References Retrieved from "http:en.openei.org...

170

Field Mapping At Hot Sulphur Springs Area (Goranson, 2005) |...  

Open Energy Info (EERE)

DOE-funding Unknown References Colin Goranson (2005) Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area...

171

Reflection Survey At Hot Sulphur Springs Area (Goranson, 2005...  

Open Energy Info (EERE)

DOE-funding Unknown References Colin Goranson (2005) Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area...

172

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

reconnaissance DOE-funding Unknown Notes On the regional scale, we investigated the spatial relationship of known geothermal activity with: (1) the regional tendency of...

173

Geographic Information System At Nw Basin & Range Region (Blewitt...  

Open Energy Info (EERE)

reconnaissance DOE-funding Unknown Notes On the regional scale, we investigated the spatial relationship of known geothermal activity with: (1) the regional tendency of...

174

Flow Test At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Additional References Retrieved from "http:en.openei.orgw...

175

Flow Test At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Additional References Retrieved from "http:en.openei.orgw...

176

Observation Wells (Ozkocak, 1985) | Open Energy Information  

Open Energy Info (EERE)

Observation Wells Activity Date Usefulness useful DOE-funding Unknown Notes Reinjection test wells can be used to obtain quite precise measurements of reservoir permeability....

177

Flow Test At Fish Lake Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Additional References Retrieved from "http:en.openei.orgw...

178

Direct-Current Resistivity Survey At Mt Princeton Hot Springs...  

Open Energy Info (EERE)

Survey Activity Date 2010 Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson,...

179

Micro-Earthquake At Geysers Area (Erten & Rial, 1999) | Open...  

Open Energy Info (EERE)

useful DOE-funding Unknown References D. Erten, J. A. Rial (1999) Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir By Shear-Wave Splitting Additional...

180

Teleseismic-Seismic Monitoring At Yellowstone Region (Husen,...  

Open Energy Info (EERE)

Activity Date Usefulness useful DOE-funding Unknown References Stephan Husen, Robert B. Smith, Gregory P. Waite (2004) Evidence For Gas And Magmatic Sources Beneath The Yellowstone...

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Compound and Elemental Analysis At Yellowstone Region (Kennedy...  

Open Energy Info (EERE)

not indicated DOE-funding Unknown References B. M. Kennedy, J. H. Reynolds, S. P. Smith (1988) Noble Gas Geochemistry In Thermal Springs Additional References Retrieved from...

182

Geothermometry At Lassen Volcanic National Park Area (Thompson...  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown References J. Michael Thompson (1985) Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park...

183

Compound and Elemental Analysis At Lassen Volcanic National Park...  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown References J. Michael Thompson (1985) Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park...

184

Compound and Elemental Analysis At Akutan Fumaroles Area (Kolker...  

Open Energy Info (EERE)

and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes The chemistry of the hot springs strongly suggests the existence of a neutral chloride reservoir...

185

Compound and Elemental Analysis At Yellowstone Region (Goff ...  

Open Energy Info (EERE)

not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, andor wells. References Cathy J. Janik, Fraser E. Goff (2002) Gas Geochemistry Of The Valles...

186

Compound and Elemental Analysis At Jemez Springs Area (Goff ...  

Open Energy Info (EERE)

not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, andor wells. References Fraser E. Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles...

187

Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploration Drilling Details Activities (0) Areas (0) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling‎ Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole

188

A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration  

Open Energy Info (EERE)

Evaluation Of Electromagnetic Methods In Geothermal Exploration Evaluation Of Electromagnetic Methods In Geothermal Exploration - L Pellerin, J M Johnston & G W Hohmann, Geophysics, 61(1), 1996, Pp 121-130 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration - L Pellerin, J M Johnston & G W Hohmann, Geophysics, 61(1), 1996, Pp 121-130 Details Activities (0) Areas (0) Regions (0) Abstract: Unavailable Author(s): Unknown Published: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996 Document Number: Unavailable DOI: 10.1016/S0148-9062(97)87449-9 Source: View Original Journal Article Retrieved from "http://en.openei.org/w/index.php?title=A_Numerical_Evaluation_Of_Electromagnetic_Methods_In_Geothermal_Exploration_-_L_Pellerin,_J_M_Johnston_%26_G_W_Hohmann,_Geophysics,_61(1),_1996,_Pp_121-130&oldid=3883

189

Hyperspectral Mineral Mapping In Support Of Geothermal Exploration-  

Open Energy Info (EERE)

Mineral Mapping In Support Of Geothermal Exploration- Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Hyperspectral Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Details Activities (2) Areas (2) Regions (0) Abstract: Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic

190

Geodetic Survey At Northern Basin & Range Region (Blewitt Et Al, 2005) |  

Open Energy Info (EERE)

Geodetic Survey At Northern Basin & Range Region Geodetic Survey At Northern Basin & Range Region (Blewitt Et Al, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Geoffrey Blewitt, William C. Hammond, Corne Kreemer (2005) Relating Geothermal Resources To Great Basin Tectonics Using Gps Retrieved from "http://en.openei.org/w/index.php?title=Geodetic_Survey_At_Northern_Basin_%26_Range_Region_(Blewitt_Et_Al,_2005)&oldid=401408" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

191

Magnetotellurics At Truckhaven Area (Layman Energy Associates, 2010) | Open  

Open Energy Info (EERE)

Magnetotellurics At Truckhaven Area (Layman Energy Magnetotellurics At Truckhaven Area (Layman Energy Associates, 2010) Exploration Activity Details Location Truckhaven Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes The area of coverage for the DOE-funded geophysical surveys is shown in Figure 9. The 95 magnetotelluric (MT) soundings cover a central area of about 80 square kilometers. The 126 gravity stations extend over a broader area of about 150 square kilometers, centered on the same area covered by the MT soundings. A detailed description of the instrumentation and data acquisition procedures used for both surveys is provided in GSY-USA, Inc. (2003a). References Layman Energy Associates Inc. (2006) Final Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial

192

Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) | Open Energy  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Mt Ranier Area Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt Ranier Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown Notes Infrared images acquired through joint US. Department of Energy and U.S. Geological Survey efforts (Kieffer et al., 1982) show a representative pattern of heat emission from the summit area (Fig. 5). References David Frank (1995) Surficial Extent And Conceptual Model Of Hydrothermal System At Mount Rainier, Washington Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Mt_Ranier_Area_(Frank,_1995)&oldid=386481" Categories: Exploration Activities DOE Funded Activities What links here Related changes

193

Field Mapping At Nw Basin & Range Region (Blewitt, Et Al., 2003) | Open  

Open Energy Info (EERE)

Nw Basin & Range Region (Blewitt, Et Nw Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Field Mapping Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Nw_Basin_%26_Range_Region_(Blewitt,_Et_Al.,_2003)&oldid=510752" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages

194

Field Mapping At Reese River Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Reese River Area (Henkle, Et Al., Field Mapping At Reese River Area (Henkle, Et Al., 2005) Exploration Activity Details Location Reese River Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown References William R. Henkle Jr., Wayne C. Gundersen, Thomas D. Gundersen (2005) Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Reese_River_Area_(Henkle,_Et_Al.,_2005)&oldid=510756" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

195

Ground Gravity Survey At Truckhaven Area (Layman Energy Associates, 2009) |  

Open Energy Info (EERE)

Truckhaven Area (Layman Energy Associates, 2009) Truckhaven Area (Layman Energy Associates, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Truckhaven Area (Layman Energy Associates, 2009) Exploration Activity Details Location Truckhaven Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The area of coverage for the DOE-funded geophysical surveys is shown in Figure 9. The 95 magnetotelluric (MT) soundings cover a central area of about 80 square kilometers. The 126 gravity stations extend over a broader area of about 150 square kilometers, centered on the same area covered by the MT soundings. A detailed description of the instrumentation and data acquisition procedures used for both surveys is provided in GSY-USA, Inc.

196

Cuttings Analysis At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

6) 6) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Cuttings Analysis Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine the geology of Injection Well 46A-19RD Notes Well 46A-19RD, located in the southwestern portion of this field is currently the focus of a DOE-funded Enhanced Geothermal Systems (EGS) project. Petrologic and petrographic investigations of the well show that quartz diorite and granodiorite are dominant lithologies. Dikes of granophyre, containing phenocrysts of plagioclase, potassium feldspar, and quartz were encountered at approximately 1438-1457 m and 3459.5-3505.2 m. References Kovac, K.M.; Moore, J.N.; Rose, P.E.; McCulloch, J. (1 January 2006) Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems

197

tude des stratgies d'exploration d'un environnement inconnu pour l'apprentissage de cartes cognitives et pour la navigation  

E-Print Network (OSTI)

it was assumed that the exploration followed a random process, more recent studies have observed recurrent�tude des stratégies d'exploration d'un environnement inconnu pour l'apprentissage de cartes Exploration Strategies in unknown environments, learning cognitive maps for spatial navigation. Master Thesis

Arleo, Angelo

198

Cooperative Exploration under Communication Constraints  

E-Print Network (OSTI)

process has not been fully characterized. Existing exploration algorithms do not realistically modelCooperative Exploration under Communication Constraints by Emily M. Craparo Submitted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . David Darmofal Chairman, Department Committee on Graduate Students #12;2 #12;Cooperative Exploration

How, Jonathan P.

199

Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al...  

Open Energy Info (EERE)

Vapor (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding...

200

Flow Test At Rye Patch Area (DOE GTP, 2011) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Compound and Elemental Analysis At Glass Buttes Area (DOE GTP...  

Open Energy Info (EERE)

Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding...

202

Exploration Incentive Tax Credit (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

The Mineral and Coal Exploration Incentive Tax Credit provides tax incentives to entities conducting exploration for minerals and coal. Expenditures related to the following activities are eligible...

203

Exploration for Uranium Ore (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation describes permitting procedures and requirements for exploration activities. For the purpose of this legislation, exploration is defined as the drilling of test holes or...

204

Exploring Autodesk Navisworks 2014  

Science Journals Connector (OSTI)

Exploring Autodesk Navisworks 2014 is a comprehensive textbook that has been written to cater to the needs of the students and the professionals who are involved in the AEC profession. In this textbook, the author has emphasized on various hands on tools ...

Sham Tickoo / CADCIM Technologies

2013-08-01T23:59:59.000Z

205

Exploring Civil and Environmental  

E-Print Network (OSTI)

Engineers % of Total Architectural, Engineering, and Related Services 135,000 53 Federal, State, and Local1 CEE 100 Exploring Civil and Environmental Engineering #12;CEE 100 Schedule--Winter 2010 https Geotechnical Engineering January 27 Steve Muench Construction Engineering February 3 Greg Miller Structural

206

Workshop: Teachers explore electronics  

Science Journals Connector (OSTI)

Workshop: Teachers explore electronics Conference: ASE conference hits Nottingham Teacher training: Videoconferencing discovers asteroids Lecture: Annual education talk gets interactive Award: Britton receives a New Year's honour Multimedia: Multimedia conference 2010 will be held in France Conference series: ICPE travels to Thailand in 2009 Filming: Sixth-formers take physics on location

207

Explorations Cathy Moulder  

E-Print Network (OSTI)

Explorations in Mapping Cathy Moulder Director of Library Services, Maps, Data & GIS Mc � "Professional mapping" � Geographic Information Systems (GIS) � Web 2.0 and NeoGeography � Role of traditional GIS... Neogeography is about people using and creating their own maps, on their own terms

Haykin, Simon

208

Exploring Functional Mellin Transforms  

E-Print Network (OSTI)

We define functional Mellin transforms within a scheme for functional integration proposed in [1]. Functional Mellin transforms can be used to define functional traces, logarithms, and determinants. The associated functional integrals are useful tools for probing function spaces in general and $C^\\ast$-algebras in particular. Several interesting aspects are explored.

J. LaChapelle

2015-01-08T23:59:59.000Z

209

Exploring Mars' Climate History  

E-Print Network (OSTI)

Exploring Mars' Climate History #12;2 Mars Reconnaissance Orbiter ESA Mars Express (NASA: MARSIS by studying the solar wind and other interactions with the Sun. #12;The solar wind is a high-speed stream of electrons and protons released from the Sun. #12;High-energy photons (light) stream constantly from the Sun

210

Core Analysis At Dunes Geothermal Area (1976) | Open Energy Information  

Open Energy Info (EERE)

Dunes Geothermal Area (1976) Dunes Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Dunes Geothermal Area (1976) Exploration Activity Details Location Dunes Geothermal Area Exploration Technique Core Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Fracture analysis to determine if sealing or open fractures exist Notes Core samples show diagenesis superimposed on episodic fracturing and fracture sealing. The minerals that fill fractures show significant temporal variations. Fracture sealing and low fracture porosity imply that only the most recently formed fractures are open to fluids. References Michael L. Batzle; Gene Simmons (1 January 1976) Microfractures in rocks from two geothermal areas

211

Compound and Elemental Analysis At Nw Basin & Range Region (Coolbaugh, Et  

Open Energy Info (EERE)

10) 10) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At NW Basin & Range Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for geothermal exploration, the analysis of lithium and other elements in tufa

212

Modeling-Computer Simulations At Raft River Geothermal Area (1980) | Open  

Open Energy Info (EERE)

80) 80) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis From refined estimates of reservoir coefficients better predictions of interference effects and long-term drawdown in the wells can be made. Notes Analytic methods have been used during reservoir testing to calculate reservoir coefficients. However, anisotropy of the reservoir due to fractures has not been taken into account in these calculations and estimates of these coefficients need to be refined. In conjunction with the

213

Compound and Elemental Analysis At International Geothermal Area, Indonesia  

Open Energy Info (EERE)

Indonesia Indonesia (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At International Geothermal Area Indonesia (Laney, 2005) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal Systems, Allis, Browne, Bruton, Christensen, Hulen, Lutz, Mindenhall, Nemcok, Norman, Powell and Stimac. The approach we are using is to characterize the petrology, geochemistry and fractures in core and cuttings samples and then integrate these data with measured downhole temperatures and pressures and with the compositions of the reservoir fluids. Our investigations represent

214

Compound and Elemental Analysis At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Nevada Nevada Seismic Zone Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for geothermal exploration, the analysis of lithium and other elements in tufa deposits could serve as exploration guides for hot spring lithium

215

Compound and Elemental Analysis At Valles Caldera - Redondo Area (White, Et  

Open Energy Info (EERE)

White, Et White, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Redondo Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System, Valles Caldera, New Mexico

216

Data Acquisition-Manipulation At San Jacinto Fault Geothermal Area (1982) |  

Open Energy Info (EERE)

Fault Geothermal Area (1982) Fault Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At San Jacinto Fault Geothermal Area (1982) Exploration Activity Details Location San Jacinto Fault Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1982 Usefulness useful DOE-funding Unknown Exploration Basis Develop parameters to identify geothermal region Notes Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times.

217

Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas,  

Open Energy Info (EERE)

Hualalai Northwest Rift Area (Thomas, Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A total of seven Schlumberger soundings were performed on Hualalai. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Hualalai_Northwest_Rift_Area_(Thomas,_1986)&oldid=510528" Category: Exploration Activities What links here Related changes

218

Cuttings Analysis At Imperial Valley Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Imperial Valley Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Imperial Valley Geothermal Area (1976) Exploration Activity Details Location Imperial Valley Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters

219

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Biasi, Et Al., 2008) Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Ileana Tibuleac, Leiph Preston (2008) Regional Resource Area Mapping In Nevada Using The Usarray Seismic Network Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2008)&oldid=425638" Category: Exploration Activities What links here

220

Data Acquisition-Manipulation At Coso Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

2) 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Coso Geothermal Area (1982) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1982 Usefulness useful DOE-funding Unknown Exploration Basis Develop parameters to identify geothermal region Notes Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times. From the temporal characteristics of the seismicity associated with these

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Mountain Geothermal Area (1984) Mountain Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be

222

Data Acquisition-Manipulation At Lassen Volcanic National Park Geothermal  

Open Energy Info (EERE)

Volcanic National Park Geothermal Volcanic National Park Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lassen Volcanic National Park Geothermal Area (1982) Exploration Activity Details Location Lassen Volcanic National Park Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1982 Usefulness useful DOE-funding Unknown Exploration Basis Develop parameters to identify geothermal region Notes Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related

223

Multispectral Imaging At The Needles Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Needles Area (Laney, 2005) Needles Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At The Needles Area (Laney, 2005) Exploration Activity Details Location The Needles Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Remote Sensing for Exploration and Mapping of Geothermal Resources, Wendy Calvin, 2005. Task 1: Detailed analysis of hyperspectral imagery obtained in summer of 2003 over Brady's Hot Springs region was completed and validated (Figure 1). This analysis provided a local map of both sinter and tufa deposits surrounding the Ormat plant, identified fault extensions not previously recognized from field mapping and has helped constrain where to

224

Pressure Temperature Log At Silver Peak Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Pressure Temperature Log At Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Silver Peak Area (DOE GTP) Exploration Activity Details Location Silver Peak Area Exploration Technique Pressure Temperature Log Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Pressure_Temperature_Log_At_Silver_Peak_Area_(DOE_GTP)&oldid=511053" Categories: Exploration Activities

225

Compound and Elemental Analysis At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Coolbaugh, Et Al., 2010) Coolbaugh, Et Al., 2010) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for geothermal exploration, the analysis of lithium and other elements in tufa deposits could serve as exploration guides for hot spring lithium deposits." References

226

Geothermometry At Walker-Lane Transitional Zone Region (Shevenell & De  

Open Energy Info (EERE)

Shevenell & De Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Walker-Lane Transitional Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Walker-Lane_Transitional_Zone_Region_(Shevenell_%26_De_Rocher,_2005)&oldid=399607" Category: Exploration Activities What links here Related changes

227

Surface Gas Sampling (Klein, 2007) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling (Klein, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling (Klein, 2007) Exploration Activity Details Location Unspecified Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Christopher W. Klein (1 January 2007) Advances In The Past 20 Years- Geochemistry In Geothermal Exploration Resource Evaluation And Reservoir Management Retrieved from "http://en.openei.org/w/index.php?title=Surface_Gas_Sampling_(Klein,_2007)&oldid=689399"

228

Aerial Photography (Nannini, 1986) | Open Energy Information  

Open Energy Info (EERE)

Aerial Photography (Nannini, 1986) Aerial Photography (Nannini, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration Technique Aerial Photography Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Tectonic studies, through air photointerpretation and subsequent ground surveys of the main features, represent the next step in such an analysis. Photo analysis and ground surveys can identify regional distensive faults that formed after compressive orogenic activity. Quaternary formations and very recent debris intersected by faults are indicative of a neotectonic activity. References Raffaello Nannini (1986) Some Aspects Of Exploration In Non-Volcanic

229

Teleseismic-Seismic Monitoring At Coso Geothermal Area (2011-2012) | Open  

Open Energy Info (EERE)

2012) 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (2011-2012) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 2011 - 2012 Usefulness not indicated DOE-funding Unknown Exploration Basis Map hydraulic structure within the field from seismic data Notes 2011: 16 years of seismicity were analyzed to improve hypocentral locations and simultaneously invert for the seismic velocity structure within the Coso Geothermal Field (CGF). The CGF has been continuously operated since the 1980's. 2012: 14 years of seismicity in the Coso Geothermal Field were relocated using differential travel times and simultaneously invert for

230

Mercury Vapor (Kooten, 1987) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor (Kooten, 1987) Mercury Vapor (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor (Kooten, 1987) Exploration Activity Details Location Unspecified Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Surface soil-mercury surveys are an inexpensive and useful exploration tool for geothermal resources. ---- Surface geochemical surveys for mercury were conducted in 16 areas in 1979-1981 by ARCO Oil and Gas Company as part of its geothermal evaluation program. Three techniques used together have proved satisfactory in evaluating surface mercury data. These are contouring, histograms and cumulative frequency plots of the data. Contouring geochemical data and constructing histograms are standard

231

Micro-Earthquake At Coso Geothermal Area (1993-1994) | Open Energy  

Open Energy Info (EERE)

1994) 1994) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Coso Geothermal Area (1993-1994) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1993 - 1994 Usefulness useful DOE-funding Unknown Exploration Basis Multiplet analysis Notes Instances of microseismicity in seismic doublets which are co-located hypocenters that appear to have nearly identical waveforms were searched for. Using 1085 high-quality events from 1993 to 1994, they identified numerous doublets, some occurring within minutes of each other. The hypocentral data was subdivided into spatial clusters to reduce the computational burden and evaluated multiple cross-correlation pairs,

232

Micro-Earthquake At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

9) 9) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Refraction Survey Notes Interpretation of seismic refraction recordings in the area yielded compressional velocities from near the surface to the crystalline basement at a maximum depth of approximately 1600 m. The results show a complex sequence of sediments and volcanic flows overlying basement. Velocities in the sedimentary section vary laterally. Correlation with well data suggests that zones of higher velocities may correspond to zones where sediments are

233

Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) | Open  

Open Energy Info (EERE)

Nash, Et Al., 2002) Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes An example, shown in Figure 1, shows results from the classification of big sagebrush (Artimesia tridentata) spectra, acquired over the Cove Fort-Sulphurdale, Utah thermal anomaly, in relation to geology References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And

234

Ground Magnetics (Nannini, 1986) | Open Energy Information  

Open Energy Info (EERE)

Ground Magnetics (Nannini, 1986) Ground Magnetics (Nannini, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration Technique Ground Magnetics Activity Date Usefulness not indicated DOE-funding Unknown Notes Detection and quantitative assessment of such intrusive events can be facilitated by magnetic surveys (ground or aerial magnetic field measurements). These surveys are based on the magnetic susceptibility contrast between magmatic rocks at depth and the sedimentary formations above. References Raffaello Nannini (1986) Some Aspects Of Exploration In Non-Volcanic Areas Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_(Nannini,_1986)&oldid=388291

235

Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lake City site, which is located in far northeastern California, consists of a previously identified geothermal site that has been explored with both geophysics and drilling (Hedel, 1981), but has not been characterized adequately to allow accurate siting or drilling of production wells. Some deep wells, several seismic lines, limited gravity surveys, and geochemical and geological studies have suggested that the geothermal

236

Compound and Elemental Analysis At Jemez Springs Area (Goff & Janik, 2002)  

Open Energy Info (EERE)

Janik, 2002) Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Jemez Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Jemez Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Jemez_Springs_Area_(Goff_%26_Janik,_2002)&oldid=510418" Categories: Exploration Activities

237

Magnetotellurics At International Geothermal Area, Indonesia (Laney, 2005)  

Open Energy Info (EERE)

(Laney, 2005) (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At International Geothermal Area Indonesia (Laney, 2005) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal Systems, Allis, Browne, Bruton, Christensen, Hulen, Lutz, Mindenhall, Nemcok, Norman, Powell and Stimac. The approach we are using is to characterize the petrology, geochemistry and fractures in core and cuttings samples and then integrate these data with measured downhole temperatures and pressures and with the compositions of the reservoir fluids. Our investigations represent

238

Geographic Information System At Cove Fort Area - Vapor (Nash, Et Al.,  

Open Energy Info (EERE)

Nash, Et Al., Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes An example, shown in Figure 1, shows results from the classification of big sagebrush (Artimesia tridentata) spectra, acquired over the Cove Fort-Sulphurdale, Utah thermal anomaly, in relation to geology References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management

239

Compound and Elemental Analysis At Salt Wells Area (Shevenell & Garside,  

Open Energy Info (EERE)

Shevenell & Garside, Shevenell & Garside, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date 2002 - 2002 Usefulness not useful DOE-funding Unknown Exploration Basis The objective of the study was to expand knowledge of Nevada's geothermal resource potential by providing new geochemical data from springs in less studied geothermal areas and to refine geochemical data from springs for which only incomplete data were available. This work fills in gaps in publicly available geochemical data, thereby enabling comprehensive evaluation of Nevada's geothermal resource potential.

240

Micro-Earthquake At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop a background seismicity before power production begins Notes Local seismic networks were established to monitor the background seismicity prior to initiation of geothermal power production. The Raft River study area is currently seismically quiet down to the level of approximately magnitude one. References Zandt, G.; Mcpherson, L.; Schaff, S.; Olsen, S. (1 May 1982) Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Direct-Current Resistivity Survey At Cove Fort Area - Liquid (Combs 2006) |  

Open Energy Info (EERE)

- Liquid (Combs 2006) - Liquid (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Combs 2006) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, dipole-dipole resistivity, CSAMT; sufficient electrical data are available. Reservoir model?" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Cove_Fort_Area_-_Liquid_(Combs_2006)&oldid=598127"

242

Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

1992) 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System, Valles Caldera, New Mexico

243

Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Exploration Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical

244

Modeling-Computer Simulations At Raft River Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Raft River Geothermal Area (1977) Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Simulate reservoir performance Notes Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each

245

Cuttings Analysis At Coso Geothermal Area (1985-1987) | Open Energy  

Open Energy Info (EERE)

5-1987) 5-1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Coso Geothermal Area (1985-1987) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1985 - 1987 Usefulness useful DOE-funding Unknown Exploration Basis Analyze an indicator of high permeability zones within a geothermal field Notes Petrographic and geochemical analyses of cuttings from six wells in the Coso Hot Springs geothermal field show a systematic variation in the occurrence, texture, and composition of sericite that can be correlated with high permeability production zones and temperature. The wells studied intersect rhyolitic dikes and sills in the fractured granitic and dioritic

246

Geothermal Literature Review At San Francisco Volcanic Field Area (Morgan,  

Open Energy Info (EERE)

Morgan, Morgan, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At San Francisco Volcanic Field Area (Morgan, Et Al., 2003) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown References Paul Morgan, Wendell Duffield, John Sass, Tracey Felger (2003) Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_San_Francisco_Volcanic_Field_Area_(Morgan,_Et_Al.,_2003)&oldid=510822" Category: Exploration Activities What links here

247

Conceptual Model At Raft River Geothermal Area (1988) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Conceptual Model At Raft River Geothermal Area (1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1988) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1988 Usefulness not indicated DOE-funding Unknown Exploration Basis Use geophysical logs to determine the reservoir transmissivity Notes Seven fracture orientation sets are recognized in the sedimentary and metamorphic rock units. Although the conventional geophysical logs showed

248

Micro-Earthquake At Coso Geothermal Area (2011) | Open Energy Information  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Coso Geothermal Area (2011) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis To analyze temporal velocity variations Notes Microseismic data recorded between 1996 and 2008 was used to determine the temporally varying seismic velocity of the Coso geothermal field. In this study, the double difference tomography method was applied to simultaneously locate a suite of microseismic events and determine the compressional and shear wave velocity as well as their ratio. References Seher, T.; Zhang, H.; Fehler, M.; Yu, H.; Soukhovitskaya, V.;

249

Teleseismic-Seismic Monitoring At Coso Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis Analyze seismic data to develop reservoir models that characterize the geothermal system Notes Large-amplitude, secondary arrivals are modeled as scattering anomalies. Polarization and ray tracing methods determine the orientation and location of the scattering body. Two models are proposed for the scatterer: (1) a point scatterer located anywhere in a one-dimensional (1-D), layered velocity model; and (2) a dipping interface between two homogeneous half

250

Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De  

Open Energy Info (EERE)

Region (Shevenell & De Region (Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Central_Nevada_Seismic_Zone_Region_(Shevenell_%26_De_Rocher,_2005)&oldid=401374" Category: Exploration Activities What links here

251

Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) |  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank & Neggemann, 2004) Blue Mountain Area (Fairbank & Neggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Exploration Activity Details Location Blue Mountain Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown References Brian D. Fairbank, Kim V. Niggemann (2004) Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Blue_Mountain_Area_(Fairbank_%26_Neggemann,_2004)&oldid=386709" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link

252

Geothermometry At Coso Geothermal Area (1978) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Coso Geothermal Area (1978) Geothermometry At Coso Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Coso Geothermal Area (1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermometry Activity Date 1978 Usefulness useful DOE-funding Unknown Exploration Basis Determine fluid origin in two exploratory wells Notes Collected water from original coso hot springs well (1967) and CGEH No. 1. and completed chemical analysis to determine fluid origin. The surface expression of fumarole and acid sulfate pools and shallow steam wells gives a false indication of an extensive vapor dominated system because upward convecting, boiling alkaline-chloride waters do not reach the surface.

253

Data Acquisition-Manipulation At Coso Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

9) 9) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Coso Geothermal Area (1979) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the potential electrical power in the area Notes The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the resulting constraints on potentially developable electrical power in each geothermal resource area. References Sakaguchi, J. L. (19 March 1979) Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii).

254

Geographic Information System At U.S. West Region (Williams & Deangelo,  

Open Energy Info (EERE)

Williams & Deangelo, Williams & Deangelo, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At U.S. West Region (Williams & Deangelo, 2008) Exploration Activity Details Location U.S. West Region Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown References Colin F. Williams, Jacob DeAngelo (2008) Mapping Geothermal Potential In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_U.S._West_Region_(Williams_%26_Deangelo,_2008)&oldid=390068" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

255

Earth Tidal Analysis At Salton Sea Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

80) 80) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Salton Sea Geothermal Area (1980) Exploration Activity Details Location Salton Sea Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters.

256

Ground Magnetics At San Francisco Volcanic Field Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

Warpinski, Et Al., Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Ground Magnetics Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration data, geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling targets and sites. Further work may occur in 2004 or 2005. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J.

257

Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan, Et Al.,  

Open Energy Info (EERE)

Morgan, Et Al., Morgan, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan, Et Al., 2010) Exploration Activity Details Location Rio Grande Rift Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes San Luis Basin (south-central CO) regional study. References Paul Morgan, Peter Barkmann, Charles Kluth, Matthew Sares (2010) Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Rio_Grande_Rift_Region_(Morgan,_Et_Al.,_2010)&oldid=401472" Category: Exploration

258

Water Sampling At Salt Wells Area (Shevenell & Garside, 2003) | Open Energy  

Open Energy Info (EERE)

Shevenell & Garside, 2003) Shevenell & Garside, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Water Sampling Activity Date 2002 - 2002 Usefulness not useful DOE-funding Unknown Exploration Basis The objective of the study was to expand knowledge of Nevada's geothermal resource potential by providing new geochemical data from springs in less studied geothermal areas and to refine geochemical data from springs for which only incomplete data were available. This work fills in gaps in publicly available geochemical data, thereby enabling comprehensive evaluation of Nevada's geothermal resource potential.

259

Micro-Earthquake At Newberry Caldera Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Area (2011) Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Newberry Caldera Geothermal Area (2011) Exploration Activity Details Location Newberry Caldera Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine seismicity before and after reservoir stimulation for EGS Notes The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments (as necessary in available boreholes) to provide high quality seismic data for improved processing and interpretation methodologies. This will allow the development and testing

260

Data Acquisition-Manipulation At U.S. West Region (Williams & Deangelo,  

Open Energy Info (EERE)

Williams & Deangelo, Williams & Deangelo, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At U.S. West Region (Williams & Deangelo, 2008) Exploration Activity Details Location U.S. West Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown References Colin F. Williams, Jacob DeAngelo (2008) Mapping Geothermal Potential In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_U.S._West_Region_(Williams_%26_Deangelo,_2008)&oldid=387276" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Data Acquisition-Manipulation At Geysers Geothermal Area (1982) | Open  

Open Energy Info (EERE)

2) 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Geysers Geothermal Area (1982) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1982 Usefulness useful DOE-funding Unknown Exploration Basis Develop parameters to identify geothermal region Notes Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times. from the temporal characteristics of the seismicity associated with these

262

Geographic Information System At International Geothermal Area, Indonesia  

Open Energy Info (EERE)

International Geothermal Area, Indonesia International Geothermal Area, Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area Indonesia (Nash, Et Al., 2002) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes GIs also facilitates grid data (raster) analysis and visualization. For example, a raster GIs layer, derived from an enhanced Landsat 7 Thematic Mapper (TM) image of the Karaha-Telaga Bodas area, Indonesia, is shown in Figure 2. References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers

263

Aeromagnetic Survey At Lightning Dock Area (Cunniff & Bowers, 2005) | Open  

Open Energy Info (EERE)

Cunniff & Bowers, 2005) Cunniff & Bowers, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Lightning Dock Area (Cunniff & Bowers, 2005) Exploration Activity Details Location Lightning Dock Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes In October 2001, TerraCon, Inc. (2001) of Arlington, Texas conducted the highresolution aeromagnetic survey that was designed to explore the known, shallow geothermal resource and surrounding area. Shallow-subsurface Tertiary volcanic rocks were used as a magnetic basis for mapping structures References Roy A. Cunniff, Roger L. Bowers (2005) Final Technical Report, Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I, Ii,

264

NETL: News Release - DOE-Funded Research Opens Way to 218 Billion Barrels  

NLE Websites -- All DOE Office Websites (Extended Search)

10, 2007 10, 2007 DOE Releases 2007 Carbon Sequestration Technology Roadmap, Marks Tenth Year of Carbon Sequestration Program WASHINGTON, DC - The 2007 Carbon Sequestration Technology Roadmap and Program Plan was released today by the U.S. Department of Energy's Carbon Sequestration Program. The roadmap contains details about technology development in carbon capture and storage, an overview of major accomplishments from the program's first 10 years, and the plan that will guide the program in 2007 and beyond. MORE INFO Link to the 2007 Carbon Sequestration Roadmap The Carbon Sequestration Program is a true government success story. Since its start as a small-scale research effort 10 years ago, the program has grown into a multi-faceted research, development, and deployment initiative

265

Solid-State Lighting Patents Resulting from DOE-Funded Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OFFICE OFFICE Primary Research Organization Titles of Patent Applications (Bold indicates patents that were granted) Agiltron, Inc. * Optoelectronic Device With Nanoparticle Embedded Hole Injection/Transport Layer * One other patent application filed Applied Materials, Inc. * Method and Apparatus for Inducing Turbulent Flow of a Processing Chamber Cleaning Gas * Methods for Improved Growth of Group III Nitride Semiconductors * Methods for Improved Growth of Group III Nitride Buffer Layers * One other patent application filed

266

DOE-Funded Researchers Honored by R&D Magazine: Leader of DOE...  

Office of Science (SC) Website

External link Brookhaven National Laboratory (Upton, N.Y.) An X-ray and gamma-ray detector that is less bulky and expensive and more flexible and efficient than current...

267

DOE-Funded Research on Bacterial Enzyme Could Lead to Cheaper Biofuel  

Office of Energy Efficiency and Renewable Energy (EERE)

A microorganism found in heated freshwater pools may hold the key to more efficient, cost-effective biofuel production.

268

The Modern Grid Initiative is a DOE-funded project managed by...  

NLE Websites -- All DOE Office Websites (Extended Search)

renewable portfolio standard (RPS) in the future. While we know that the benefits of renewables will be an important part of our future energy security picture, we choose not to...

269

DOE-Funded Research at Stanford Sees Results in Reservoir Characterization  

Energy.gov (U.S. Department of Energy (DOE))

The Stanford Geothermal Program had a noteworthy result this week, having achieved a proof of concept in the use of tiny particles called nanoparticles as tracers to characterize fractured rocks.

270

WC_2000_007_CLASS_WAIVER_Under_a_DOE_Funding_Agreement_Relat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0007CLASSWAIVERUnderaDOEFundingAgreementRelat.pdf WC2000007CLASSWAIVERUnderaDOEFundingAgreementRelat.pdf WC2000007CLASSWAIVERUnderaDOEFundingAgreementR...

271

DOE-Funded Research Projects Win 46 R&D 100 Awards for 2009 ...  

Office of Science (SC) Website

and engineers from 12 of the 17 DOE National Laboratories as well as the Nevada Test Site received awards. Since 1962, when R&D Magazine's annual competition began, DOE has...

272

Public Access to the Results of DOE-Funded Scientific Research  

Directives, Delegations, and Requirements

In a February 22, 2013, memorandum "Increasing Access to the Results of Federally Funded Scientific Research," John Holdren, Director of the White House Office of Science and Technology Policy (OSTP), directed Federal agencies to develop and implement plans for increasing public access to the full-text version of final, peer-reviewed publications and digital research data resulting from agency funded research.

2013-02-22T23:59:59.000Z

273

DOE-Funded Research at Stanford Sees Results in Reservoir Characteriza...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Systems (EGS). This research will help developers learn more about the fracture systems in geothermal reservoirs, so that they may better predict the results of...

274

Solid-State Lighting Patents Resulting from DOE-Funded Projects  

Energy.gov (U.S. Department of Energy (DOE))

Lists the primary research organizations and patent applications both submitted to and granted by DOE. (January 2015)

275

A DOE-Funded Design Study for Pioneer Baseload Application Of...  

Open Energy Info (EERE)

testing effort to determine the feasibility of applying anadvanced high-efficiency binary heat recovery cycle - the KalinaCycleTM - to recover energy from 171' C silica-rich...

276

Solid-State Lighting Patents Resulting from DOE-Funded Projects  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electroluminescent Material and Photoluminescent Materials NP * Lighting System with Heat Distribution Face Plate NP, PCT * Lighting System with Thermal Management System NP,...

277

U.S. Department of Energy Increases Access to Results of DOE-funded Scientific Research  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy has launched PAGES, an online resource to increase access to scholarly publications and digital data resulting from Department-funded research.

278

DOE-Funded Research Wins 26 Awards | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

WASHINGTON, D.C. -- Secretary of Energy Spencer Abraham today announced WASHINGTON, D.C. -- Secretary of Energy Spencer Abraham today announced that Department of Energy-funded researchers have won 26 of the 100 awards given this year by R&D Magazine for the most outstanding technology developments with commercial potential.Examples of their work include: a tough, sprayed-on metal coating with extreme wear and abrasion resistance; a heat pump water heater that uses one-third the electricity of a conventional water heater; a way to recharge lead-acid batteries that extends their life by 3-4 times; and a method for processing computer chips using supercritical carbon dioxide with the potential of saving the semiconductor manufacturing industry tens of millions of gallons of water per day. "I'm proud of the award-winning work done at DOE national laboratories and

279

RMOTC - Testing - Exploration  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploration Helicopter flying over RMOTC testing facility for leak detection survey test Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC's extensive exploration-related data sets, including 3D and 2D seismic, wells and logging data, and cores - both physical core samples, stored in Casper, and core analysis data and reports - provide a great

280

An asteroseismology explorer  

SciTech Connect

In response to a NASA opportunity, a proposal has been made to study the concept of an Asteroseismology Explorer (ASE). The goal of the ASE would be to measure solar-like oscillations on many (perhaps hundreds) of stars during a 1-year mission, including many members of open clusters. We describe this proposal's observational goals, a strawman technical approach, and likely scientific rewards. 5 refs.

Brown, T.M.; Cox, A.N.

1986-08-11T23:59:59.000Z

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Switzerland exploration may resume  

SciTech Connect

Since 1912, 35 wells have been drilled for oil and gas, 19 of them in the last 38 years. Eighty percent of these 19 wells had oil and/or gas shows, but only one was placed on production. The only gas discovery, Entlebuch-1, produced about 2.6 bcf of a high quality gas in 10 years. It was abandoned in 1994. This paper discusses why exploration waned. A second look at the data suggests Switzerland has a high potential for gas production.

Lahusen, P.H. [SEAG, Geneva (Switzerland)

1997-06-23T23:59:59.000Z

282

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process  

E-Print Network (OSTI)

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process Adam M. Ross in Tradespace Exploration · Question-guided TSE· Question-guided TSE · Discussion · Conclusion seari.mit.edu © 2010 Massachusetts Institute of Technology 2 #12;Introduction · Early design process is high leverage

de Weck, Olivier L.

283

Tree Exploration with Little Memory Krzysztof Diks Pierre Fraigniaud y Evangelos Kranakis z Andrzej Pelc x  

E-Print Network (OSTI)

;epartement d'Informatique, Universit#19;e du Qu#19;ebec #18;a Hull, Hull, Qu#19;ebec J8X 3X7, Canada. pelc labels of nodes and without the possibility of putting marks #3; Instytut Informatyki, Uniwersytet@uqah.uquebec.ca. on them, it is clearly impossible to explore a cycle of unknown size and stop. If marking of nodes (e

Fondements et Applications, Université Paris 7

284

Rogue Waves and Explorations of Coastal Wave Characteristics Primary Investigator: Paul C. Liu -NOAA GLERL (Emeritus)  

E-Print Network (OSTI)

Rogue Waves and Explorations of Coastal Wave Characteristics Primary Investigator: Paul C. Liu engineering, University of Wisconsin Overview Freak waves are unusually large waves. They have been observed. As the cause of freak waves is still unknown, measurements and analysis of this phenomena are extremely rare

285

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

286

Geothermometry At Akutan Fumaroles Area (Kolker, Et Al., 2010) | Open  

Open Energy Info (EERE)

Akutan Fumaroles Area (Kolker, Et Al., 2010) Akutan Fumaroles Area (Kolker, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Akutan Fumaroles Area (Kolker, Et Al., 2010) Exploration Activity Details Location Akutan Fumaroles Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes The chemistry of the hot springs strongly suggests the existence of a neutral chloride reservoir with economically developable temperature. The fluid geothermometry tells a consistent story, with cation geothermometry detecting a >210degrees C reservoir temperature, probably near the fumarole, and silica geothermometry and presence of sinter suggesting that 160 to 180degrees C exists close to hot spring B. References

287

Geothermometry At Honokowai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Honokowai Area (Thomas, 1986) Geothermometry At Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Honokowai Area (Thomas, 1986) Exploration Activity Details Location Honokowai Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Temperature and groundwater chemistry analyses were performed on three wells along the alluvial fan above Honokowai. Water temperatures were approximately 20degrees C and normal basal aquifer water chemistry was observed (Table 4). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Honokowai_Area_(Thomas,_1986)&oldid=387033"

288

Conceptual Model At Coso Geothermal Area (1990) | Open Energy Information  

Open Energy Info (EERE)

Conceptual Model At Coso Geothermal Area (1990) Conceptual Model At Coso Geothermal Area (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Conceptual Model Activity Date 1990 Usefulness useful DOE-funding Unknown Exploration Basis To develop an understanding of the fracture hydrology of the Coso Mountains crystalline terrain and its hydrologic connection to regional groundwater and thermal source Notes An interpreted, conceptually balanced regional cross section that extends from the Sierra Nevada through the geothermal reservoir to the Panamint Mountains is presented. The cross section is constrained by new reflection and refraction seismic data, gravity and magnetic modeling, drilling data from the geothermal reservoir, and published regional geologic mapping. The

289

Geothermal Literature Review At Medicine Lake Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location Medicine Lake Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

290

Fluid Inclusion Analysis At Valles Caldera Geothermal Region (1990) | Open  

Open Energy Info (EERE)

Geothermal Region (1990) Geothermal Region (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera Geothermal Region (1990) Exploration Activity Details Location Valles Caldera Geothermal Region Exploration Technique Fluid Inclusion Analysis Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first 7 months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. References Mckibben, M. A. (25 April 1990) Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active

291

Compound and Elemental Analysis At Northern Basin & Range Region (Cole,  

Open Energy Info (EERE)

Cole, Cole, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Northern Basin & Range Region (Cole, 1983) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Wstern Utah hot springs: Antelope, Fish (Deadman), Fish (Wilson), Twin Peak, Cudahy, Laverkin, Grantsville, Crystal Prison, Arrowhead, Red Hill, Monroe, Joseph, Castilla, Saratoga, Thermo, Crater, Wasatch, Beck, Deseret, Big Spring, Blue Warm, Crystal Madsen, Udy, Cutler, Garland, Utah, Ogden, Hooper, Newcastle Area References David R. Cole (1983) Chemical And Isotopic Investigation Of Warm

292

Isotopic Analysis At Yellowstone Region (Sturchio, Et Al., 1990) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis At Yellowstone Region (Sturchio, Et Al., 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Yellowstone Region (Sturchio, Et Al., 1990) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes There are two possible explanations for the inferred presence of relatively 18O-enriched thermal water at Yellowstone in the past: (1) meteoric

293

Direct-Current Resistivity Survey At Lightning Dock Area (Warpinski, Et  

Open Energy Info (EERE)

Et Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Lightning Dock Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Lightning Dock Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes As a foundation for successful siting and drilling a deep test well, additional geophysical work has been completed including gravity, resistivity, and airborne magnetic surveys. Several new seismic profiles are planned to provide more focused siting and drilling plans. These new geophysical surveys are being integrated into the combined thermal, hydrologic, and subsurface stratigraphic information data sets to provide a

294

Geothermometry At Lahaina-Kaanapali Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Lahaina-Kaanapali Area (Thomas, 1986) Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater temperature and chemistry surveys were similarly unable to identify any detectable thermal influence on the basal groundwaters. Silica concentrations and water temperatures (Table 4) were within the normal range expected for basal groundwaters receiving a limited amount of irrigation return water; chloride/magnesium ratios ranged downward from normal seawater values. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

295

Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) | Open  

Open Energy Info (EERE)

2005) 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

296

Geothermal Literature Review At International Geothermal Area, Iceland  

Open Energy Info (EERE)

Geothermal Literature Review At International Geothermal Area, Iceland Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Iceland Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Iceland_(Ranalli_%26_Rybach,_2005)&oldid=510812

297

Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Exploration Activity Details Location Blue Mountain Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

298

Reflection Survey (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey (Laney, 2005) Exploration Activity Details Location Unspecified Exploration Technique Reflection Survey Activity Date Usefulness useful DOE-funding Unknown Notes Seismic Imaging, Majer, Gritto and Daley. The project objective includes the development and application of active seismic methods for improved understanding of the subsurface structure, faults, fractures lithology, and fluid paths in geothermal reservoirs. While the objective of the work previous to FY2003 was concerned with the detection and location of faults and fractures based on an existing 3-D seismic data set collected at the Rye Patch geothermal reservoir, the current work was aimed at investigating

299

Compound and Elemental Analysis At Kilauea Southwest Rift And South Flank  

Open Energy Info (EERE)

Flank Flank Area (Coombs, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Kilauea Southwest Rift And South Flank Area (Coombs, Et Al., 2006) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown References Michelle L. Coombs, Thomas W. Sisson, Peter W. Lipman (2006) Growth History Of Kilauea Inferred From Volatile Concentrations In Submarine-Collected Basalts Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Kilauea_Southwest_Rift_And_South_Flank_Area_(Coombs,_Et_Al.,_2006)&oldid=510423"

300

Geothermal Literature Review At Lake City Hot Springs Area (Benoit, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal Literature Review At Lake City Hot Springs Area (Benoit, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lake City Hot Springs Area (Benoit, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown References Walter R. Benoit, Colin Goranson, Steven Wesnousky, David Blackwell (2004) Overview Of The Lake City, California Geothermal System Retrieved from

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

302

Geothermal Literature Review At Salton Trough Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Trough Geothermal Area (1984) Trough Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salton Trough Geothermal Area (1984) Exploration Activity Details Location Salton Trough Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

303

Fluid Inclusion Analysis At Salton Sea Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

90) 90) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Salton Sea Geothermal Area (1990) Exploration Activity Details Location Salton Sea Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first 7 months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. References Mckibben, M. A. (25 April 1990) Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems

304

Tracer Testing At Raft River Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

3) 3) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Tracer Testing Activity Date 1983 Usefulness not indicated DOE-funding Unknown Exploration Basis To develop chemical tracing procedures for geothermal areas. Notes Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection volume at both East Mesa and Raft River suggests that, for both reservoirs, permeability remained uniform with increasing distance from the well bore. Increased mixing during quiescent periods, between injection and

305

Geothermal Literature Review At International Geothermal Area, New Zealand  

Open Energy Info (EERE)

Area, New Zealand Area, New Zealand (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area New Zealand (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area New Zealand Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Lake Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_New_Zealand_(Ranalli_%26_Rybach,_2005)&oldid=510814

306

Reflection Survey (Nannini, 1986) | Open Energy Information  

Open Energy Info (EERE)

Reflection Survey (Nannini, 1986) Reflection Survey (Nannini, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration Technique Reflection Survey Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes "seismic analyses" - no indication of active/passive, reflection/refraction, etc. ---> "On the contrary, in areas with little or no volcanic activity, assumptions on the nature, size and characteristics of the source of the thermal anomaly are generally much more difficult and hypothetical. In these circumstances, some useful data can be obtained from accurate seismic analyses, together with a seismotectonic and geodynamic

307

Aeromagnetic Survey At Lightning Dock Area (Warpinski, Et Al., 2002) | Open  

Open Energy Info (EERE)

2) 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Lightning Dock Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Lightning Dock Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes As a foundation for successful siting and drilling a deep test well, additional geophysical work has been completed including gravity, resistivity, and airborne magnetic surveys. Several new seismic profiles are planned to provide more focused siting and drilling plans. These new geophysical surveys are being integrated into the combined thermal, hydrologic, and subsurface stratigraphic information data sets to provide a comprehensive integrated geothermal model. From all of this information,

308

Data Acquisition-Manipulation At Truckhaven Area (Layman Energy Associates,  

Open Energy Info (EERE)

2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Truckhaven Area (Layman Energy Associates, 2007) Exploration Activity Details Location Truckhaven Area Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps) Existing public domain wellbore and seismic data were reviewed to help delineate the subsurface structure in the Truckhaven area. Well data also provided a preliminary indication of the subsurface temperature regime. References Layman Energy Associates Inc. (2006) Final Scientific - Technical

309

Direct-Current Resistivity Survey At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Pritchett, 2004) Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Walker-Lane Transitional Zone Region (Pritchett, 2004) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

310

Compound and Elemental Analysis At International Geothermal Area, Mexico  

Open Energy Info (EERE)

Mexico Mexico (Norman & Moore, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At International Geothermal Area Mexico (Norman & Moore, 2004) Exploration Activity Details Location International Geothermal Area Mexico Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Our examination of Cerro Prieto gas analyses indicates that the geothermal system structure is changing with time. Gas data routinely measured in most geothermal fields; hence fluid-flow plots as presented here can be accomplished with little cost. Gas analytical data, therefore, are useful in developing management procedures for geothermal fields characterized by

311

Magnetotellurics At Akutan Fumaroles Area (Kolker, Et Al., 2010) | Open  

Open Energy Info (EERE)

Akutan Fumaroles Area (Kolker, Et Al., 2010) Akutan Fumaroles Area (Kolker, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Akutan Fumaroles Area (Kolker, Et Al., 2010) Exploration Activity Details Location Akutan Fumaroles Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes "The 2009 MT survey detects a resistivity pattern typical of most economically viable geothermal reservoirs where a low resistivity, low permeability hydrothermal smectite alteration layer caps a higher temperature, permeable geothermal reservoir. The MT resistivity pattern indicates that a hydrothermally altered clay cap exists near the fumarole and probably overlies an outflow connection from the fumarole to the

312

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown References Hisatoshi Ito, Kazuhiro Tanaka (1995) Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence From Zircon

313

Geothermal Literature Review (Mcnitt, 1978) | Open Energy Information  

Open Energy Info (EERE)

Mcnitt, 1978) Mcnitt, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review (Mcnitt, 1978) Exploration Activity Details Location Unspecified Exploration Technique Geothermal Literature Review Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes "A literature search found 46 geothermal fields for which reservoir temperatures in excess of 180degrees C have been proven by drilling and for which there is either drilling or geophysical data on which to base an estimate of field area. These fields are ranked according to area in Table 1 and their frequency distribution is shown in Fig. 2." "Sufficient information was found in the literature search to calculate an empirical

314

Isotopic Analysis At Central Nevada Seismic Zone Region (Kennedy & Van  

Open Energy Info (EERE)

Isotopic Analysis At Central Nevada Seismic Zone Region (Kennedy & Van Isotopic Analysis At Central Nevada Seismic Zone Region (Kennedy & Van Soest, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Central Nevada Seismic Zone Region (Kennedy & Van Soest, 2007) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where there is no substantial magmatism. Superimposed on the regional trend are local,

315

Compound and Elemental Analysis At Northern Basin & Range Region  

Open Energy Info (EERE)

(Coolbaugh, Et Al., 2010) (Coolbaugh, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Northern Basin & Range Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for

316

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2009)&oldid=425640"

317

Core Analysis At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

6) 6) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Fracture analysis to determine if sealing or open fractures exist Notes Core samples show diagenesis superimposed on episodic fracturing and fracture sealing. The minerals that fill fractures show significant temporal variations. Fracture sealing and low fracture porosity imply that only the most recently formed fractures are open to fluids. References Michael L. Batzle; Gene Simmons (1 January 1976) Microfractures in rocks from two geothermal areas Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Raft_River_Geothermal_Area_(1976)&oldid=47383

318

Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes AVIRIS airborne hyperspectral imaging. References Melanie J. Hellman, Michael S. Ramsey (2004) Analysis Of Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http://en.openei.org/w/index.php?title=Hyperspectral_Imaging_At_Yellowstone_Region_(Hellman_%26_Ramsey,_2004)&oldid=400435"

319

Surface Gas Sampling At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

320

Modeling-Computer Simulations (Ozkocak, 1985) | Open Energy Information  

Open Energy Info (EERE)

Ozkocak, 1985) Ozkocak, 1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations (Ozkocak, 1985) Exploration Activity Details Location Unspecified Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes CONTRIBUTION OF THE LATEST ADVANCES IN GEOLOGY, GEOCHEMISTRY AND GEOPHYSICS TO GEOTHERMAL PROSPECTING. Twenty-five papers were received on this topic, 14 of them concerning geology, four geochemistry and seven geophysics. The papers dealing with geology describe attempts to build models of underground geothermal activity and study the factors that control the formation of reservoir and cap rocks (regional plate tectonics, local tectonics, stratigraphy, geochemistry and volcanism) and the relations

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Geographic Information System At Nw Basin & Range Region (Blewitt, Et Al.,  

Open Energy Info (EERE)

2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes On the regional scale, we investigated the spatial relationship of known geothermal activity with: (1) the regional tendency of Quaternary fault orientations; (2) the direction of extensional strain; and (3) the magnitudoef fault-normal extensional strain. Item (1) is purely a structural analysis based on documented Quatemary faulting. Item (2) is purely an empirical strain-rate analysis, based on GPS station velocity

322

Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Lualualei Valley Area (Thomas, 1986) Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Three Schlumberger resistivity soundings were performed in Lualualei Valley (Mattice and Kauahikaua, 1979). K840 Interpretation of the resistivity soundings suggests that the source of the warm water layer within the valley was the dense dike complex associated with the ancient magma chamber of Waianae volcano. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from

323

Geothermal Literature Review At International Geothermal Area, Italy  

Open Energy Info (EERE)

International Geothermal Area, Italy International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Italy Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Italy_(Ranalli_%26_Rybach,_2005)&oldid=510813

324

Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding support from the DOE's Office of Geothermal Technology (DOE/OGT).

325

Direct-Current Resistivity At Lightning Dock Area (Warpinski, Et Al., 2002)  

Open Energy Info (EERE)

2) 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Lightning Dock Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Lightning Dock Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes As a foundation for successful siting and drilling a deep test well, additional geophysical work has been completed including gravity, resistivity, and airborne magnetic surveys. Several new seismic profiles are planned to provide more focused siting and drilling plans. These new geophysical surveys are being integrated into the combined thermal, hydrologic, and subsurface stratigraphic information data sets to provide a

326

Fluid Inclusion Analysis At International Geothermal Area Mexico (Norman &  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Fluid Inclusion Analysis At International Geothermal Area Mexico (Norman & Moore, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At International Geothermal Area Mexico (Norman & Moore, 2004) Exploration Activity Details Location International Geothermal Area Mexico Exploration Technique Fluid Inclusion Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Our examination of Cerro Prieto gas analyses indicates that the geothermal system structure is changing with time. Gas data routinely measured in most geothermal fields; hence fluid-flow plots as presented here can be accomplished with little cost. Gas analytical data, therefore, are useful

327

Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas, 1986) |  

Open Energy Info (EERE)

Lualualei Valley Area (Thomas, 1986) Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Three Schlumberger resistivity soundings were performed in Lualualei Valley (Mattice and Kauahikaua, 1979). K840 Interpretation of the resistivity soundings suggests that the source of the warm water layer within the valley was the dense dike complex associated with the ancient magma chamber of Waianae volcano. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii

328

Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Earth Tidal Analysis At Raft River Geothermal Area(1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters. References Hanson, J. M. (29 May 1980) Reservoir response to tidal and barometric effects

329

Isotopic Analysis At Walker-Lane Transitional Zone Region (Kennedy & Van  

Open Energy Info (EERE)

Kennedy & Van Kennedy & Van Soest, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Walker-Lane Transitional Zone Region (Kennedy & Van Soest, 2007) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where there is no substantial magmatism. Superimposed on the regional trend are local, high 3He/4He anomalies indicating hidden magmatic activity and/or deep

330

Cuttings Analysis At International Geothermal Area, Philippines (Laney,  

Open Energy Info (EERE)

Cuttings Analysis At International Geothermal Area Cuttings Analysis At International Geothermal Area Philippines (Laney, 2005) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal Systems, Allis, Browne, Bruton, Christensen, Hulen, Lutz, Mindenhall, Nemcok, Norman, Powell and Stimac. The approach we are using is to characterize the petrology, geochemistry and fractures in core and cuttings samples and then integrate these data with measured downhole temperatures and pressures and with the compositions of the reservoir fluids. Our investigations represent cooperative efforts with the Karaha-Bodas Co. LLC (a subsidiary of

331

Fluid Inclusion Analysis At Coso Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

0) 0) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first seven months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. References Mckibben, M. A. (25 April 1990) Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems

332

Rock Sampling At Socorro Mountain Area (Armstrong, Et Al., 1995) | Open  

Open Energy Info (EERE)

Armstrong, Et Al., 1995) Armstrong, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Socorro Mountain Area (Armstrong, Et Al., 1995) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Corresponding Socorro caldera Carboniferous rocks were studied in the field in 1988-1992-Renault later completed geochemistry and silica-crystallite geothermometry, Armstrong petrographic analysis and cathodoluminescence, Oscarson SEM studies, and John Repetski (USGS, Reston, Virgina) conodont stratigraphy and color and textural alteration as guides to the carbonate rocks' thermal history. The carbonate-rock classification used in this

333

Direct-Current Resistivity Survey At Northern Basin & Range Region  

Open Energy Info (EERE)

Region Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

334

Fluid Inclusion Analysis At Coso Geothermal Area (1996) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (1996) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 1996 Usefulness not indicated DOE-funding Unknown Notes Fluid inclusion homogenization temperatures and salinities demonstrate that cool, low salinity ground waters were present when the thermal plume was emplaced. Dilution of the thermal waters occurred above and below the plume producing strong gradients in their compositions. Comparison of mineral and fluid inclusion based temperatures demonstrates that cooling has occurred along the margins of the thermal system but that the interior of the system

335

Numerical Modeling At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

2006) 2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 2006 Usefulness useful DOE-funding Unknown Exploration Basis Determine areas of high permeability using isotope transport and exchange analysis Notes Finite element models of single-phase, variable-density fluid flow, conductive- convective heat transfer, fluid-rock isotope exchange, and groundwater residence times were developed. Using detailed seismic reflection data and geologic mapping, a regional cross-sectional model was constructed that extends laterally from the Sierra Nevada to Wildhorse Mesa, west of the Argus Range. The findings suggest that active faults and seismogenic zones in and around the Coso geothermal area have much higher

336

Geothermometry At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Haleakala Volcano Area (Thomas, 1986) Geothermometry At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

337

Two algorithms for the sorting of unknown train vibration signals into freight and passenger train  

E-Print Network (OSTI)

Two algorithms for the sorting of unknown train vibration signals into freight and passenger train in particular. To facilitate this, two algorithms have been constructed with the aim of sorting unknown train vibration signals into freight and passenger train categories so that they can be further analysed. 307

Paris-Sud XI, Université de

338

The Multi-robot Coverage Problem for Optimal Coordinated Search with an Unknown Number of Robots  

E-Print Network (OSTI)

The Multi-robot Coverage Problem for Optimal Coordinated Search with an Unknown Number of Robots of Minnesota Minneapolis, MN 55455 Email: {hjmin|npapas}@cs.umn.edu Abstract-- This work presents a novel multi-robot coverage scheme for an unknown number of robots; it focuses on optimizing the number of robots and each

Minnesota, University of

339

ShieldGen: Automatic Data Patch Generation for Unknown Vulnerabilities with Informed Probing  

E-Print Network (OSTI)

ShieldGen: Automatic Data Patch Generation for Unknown Vulnerabilities with Informed Probing generating a data patch or a vulnerability signature for an unknown vulnerability, given a zero-day attack. In this paper, we aim to automate this process and enable fast, patch-level pro- tection generation

Locasto, Michael E.

340

Lean and Steering Motorcycle Dynamics Reconstruction : An Unknown Input HOSMO Approach  

E-Print Network (OSTI)

Lean and Steering Motorcycle Dynamics Reconstruction : An Unknown Input HOSMO Approach L. Nehaoua1. For this purpose, we consider a unknown input high order sliding mode observer (UIHOSMO). First, a motorcycle- flected by an important increase of motorcycle's fatalities. Recent statistics confirm this fact

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Relevance of Massively Distributed Explorations  

E-Print Network (OSTI)

that this exploration process gives a partial and biased view of the real topology, which leads to the idea links) and may be biased by the exploration process (some properties of the obtained map may be induced induced by the exploration process. In order to improve these maps, several re- searchers and groups now

Paris-Sud XI, Université de

342

Relevance of Massively Distributed Explorations  

E-Print Network (OSTI)

that this exploration process gives a partial and biased view of the real topology, which leads to the idea links) and may be biased by the exploration process (some properties of the obtained map may be induced induced by the exploration process. In order to improve these maps, several re- searchers and groups no

Paris-Sud XI, Université de

343

Polar Explorer References Raold Amundsen  

E-Print Network (OSTI)

-15, 2003, 1 h 19 min. * National Geographic May 2009, concerning claims of Arctic Ocean oil and gasPolar Explorer References Raold Amundsen My Life as an Explorer, Raold Amundsen The Red Tent.L. Berens [This book includes other historic polar explorers] * National Geographic Jan. 2009 (2 articles

Fabrikant, Sara Irina

344

DOE Data Explorer  

Office of Scientific and Technical Information (OSTI)

DDE DDE Discovering data and non-text information in the Department of Energy DOE Data Explorer What's New About DDE DOE Data Centers OSTI's Data ID Service Featured Collection Featured Data Collection Visit CEDR View the archive Search Find Advanced Search Options × Full Text: Bibliographic Data: Creator/Author: Title: Subject: Identifier Numbers: Host Website: Research Org: Sponsor/Funding Org: Contributing Orgs: Type: Select Type Publication Date: from Date: to to Date: Sort: By Relevance By Title Limit to: Matches with DOI only Collections only (no DOIs) Clear Find Advanced Search Basic Search Browse DDE Content All Titles (alphabetically) Sponsor/Funding Organizations Types of Data and Non-text Other Related Organizations Subject Categories Some links on this page may take you to non-federal websites. Their

345

Success Stories: Carbon Explorer  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL Device Monitors Ocean Carbon LBNL Device Monitors Ocean Carbon Imagine waking up each morning and discovering that twenty percent of all plants in your garden had disappeared over night. They had been eaten. Equally astonishing would be the discovery in the afternoon that new plants had taken their place. This is the norm of life in the ocean. Without the ability to accurately observe these daily changes in ocean life cycles, over vast spatial scales, we lack the ability to predict how the ocean will respond to rising CO2 levels, crippling our ability to develop accurate models of global warming or devise strategies to prevent it. The Carbon Explorer, conceived by Berkeley Lab's James K. Bishop in collaboration with Scripps Institution of Oceanography (La Jolla, California) and WET labs, Inc. (Philomath, Oregon), bridges this

346

The Extreme Physics Explorer  

E-Print Network (OSTI)

Some tests of fundamental physics - the equation of state at supra-nuclear densities, the metric in strong gravity, the effect of magnetic fields above the quantum critical value - can only be measured using compact astrophysical objects: neutron stars and black holes. The Extreme Physics Explorer is a modest sized (~500 kg) mission that would carry a high resolution (R ~300) X-ray spectrometer and a sensitive X-ray polarimeter, both with high time resolution (~5 ?s) capability, at the focus of a large area (~5 sq.m), low resolution (HPD~1 arcmin) X-ray mirror. This instrumentation would enable new classes of tests of fundamental physics using neutron stars and black holes as cosmic laboratories.

Martin Elvis

2006-08-25T23:59:59.000Z

347

Exploration Technologies Technology Needs Assessment  

Energy.gov (U.S. Department of Energy (DOE))

The Exploration Technologies Needs Assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the program's research and development.

348

Radioisotopes: Energy for Space Exploration  

SciTech Connect

Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration.

Carpenter, Bob; Green, James; Bechtel, Ryan

2011-01-01T23:59:59.000Z

349

Radioisotopes: Energy for Space Exploration  

ScienceCinema (OSTI)

Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration.

Carpenter, Bob; Green, James; Bechtel, Ryan

2013-05-29T23:59:59.000Z

350

First all-sky search for continuous gravitational waves from unknown sources in binary systems  

E-Print Network (OSTI)

We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect ...

Aggarwal, Nancy

351

Vision-based guidance and control of a hovering vehicle in unknown environments  

E-Print Network (OSTI)

This thesis presents a methodology, architecture, hardware implementation, and results of a system capable of controlling and guiding a hovering vehicle in unknown environments, emphasizing cluttered indoor spaces. Six-axis ...

Ahrens, Spencer Greg

2008-01-01T23:59:59.000Z

352

INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP  

E-Print Network (OSTI)

exploration coordination tool to enhance the implementation of the coordination process At the 1st ISECG1 INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP WORKPLAN Update following 3rd ISECG Meeting broader future participation in the planning and coordination process; - assessment of the requirements

353

unknown title  

E-Print Network (OSTI)

(DOI: will be inserted by hand later) HD 172189: An eclipsing and spectroscopic binary with a ? Sct-type pulsating component in an open cluster

S. Martín-ruiz; P. J. Amado; J. C. Suárez; A. Moya; A. Arellano Ferro; I. Ribas; E. Poretti

2005-01-01T23:59:59.000Z

354

unknown title  

E-Print Network (OSTI)

Analytic expressions for the single particle energies with a quadrupole-quadrupole interaction and the relation to Elliott’s SU(3) model

E. Moya De Guerra; P. Sarriguren; L. Zamick; Typeset Using Revtex

2008-01-01T23:59:59.000Z

355

unknown title  

E-Print Network (OSTI)

A. Evidence for carcinogenicity to hum ans (sufficient) There have been a number of case reports of skin cancer in patients who used tar ointments for a variety of skin diseasesl,2. A mortality analysis in the UK from 1946 showed a greatly increased scrotal cancer risk for patent-fuel workers. Furthermore, a large number of case reports describe the development of skin (including the scrotum) cancer in workers exposed to coal-tars or coal-tar pitches (see p. 174)1. Several epidemiological studies have shown an excess of lung cancer among workers exposed to coal-tar fumes in coal gasification and coke production3.. One study showed a small excess of bladder cancer in tar distillers and in patent-fuel workers. An elevated risk of cancer of the renal pelvis was seen in workers exposed to 'petroleum or tar or pitch'l. One study of milwrights and welders exposed to coal-tars and coal-tar pitch in a stamping plant showed significant excesses of leukaemia and of cancers of the lung and digestive organs5. B. Evidence for carcinogenicity to animaIs (suffcient) Coal-tars from blast furnaces, coke ovens and co al gasification plants, as well as

unknown authors

356

Unknown significance  

Science Journals Connector (OSTI)

...positive. Another, TP53, confers a nearly 100% chance of cancer in women and a 73% chance in men; TP53 cancers include brain cancers and sarcomas. When it comes to two of the genes on the panel, BRCA1 and BRCA2, there's little doubt that in cancer-prone...

Jennifer Couzin-Frankel

2014-12-05T23:59:59.000Z

357

unknown title  

E-Print Network (OSTI)

THE GOAL OF PROJECT APOLLO, to place a man on the surfaceof the Moon and return him safely to Earth, was a task for engineering and technology. The resultant transportation system was so robust in its capability that a rich scientific harvest also was gathered in the process. The visibility and magnitude of the Apollo program left the impression, even within the scientific community,that the major lunar scientific questions had been answered. Since the Surveyor project, NASA's unmanned planetary program has ignored the Moon, preferring to concentrate its admittedly limited resources on other bodies in the solar system. In 1972,lunar scientists proposed launching a remote-sensing satellite into lunar polar orbit. Carrying a small number of geochemical and geophysical sensors,the Lunar Polar Orbiter (LBO)was designed to expand to global coverage the limited Apollo orbital science data set. Remote-sensing information from the orbiting Service Modules of Apollos 15, 16,and 17 had been invaluable in revealing the scale and extent of the planetary processes whose nature and timing were decoded in analyses of the returned samples. Low orbital inclination and limited time at the Moon resulted in tantalizingly

unknown authors

358

unknown title  

E-Print Network (OSTI)

is a schematic of the fission theory for formation of planets and major moons. The left column is the

unknown authors

2008-01-01T23:59:59.000Z

359

unknown title  

E-Print Network (OSTI)

Abstract—The problem of wastewater treatment in Egypt is a two-fold problem; the first part concerning the existing rural areas, the second one dealing with new industrial/domestic areas. In Egypt several agricultural projects have been initiated by the government and the private sector as well, in order to change its infrastructure. As a reliable energy source, photovoltaic pumping systems have contributed to supply water for local rural communities worldwide; they can also be implemented to solve the problem “wastewater environment pollution”. The solution of this problem can be categorised as recycle process. In addition, because of regional conditions past technologies are being reexamined to select a smallscale treatment system requiring low construction and maintenance costs. This paper gives the design guidelines of a Photovoltaic Small-Scale Wastewater Treatment Plant (PVSSWTP) based on technologies that can be transferred. Keywords—Renewable energy sources, Photovoltaic, small-scale projects, wastewater treatment. I I.

Photovoltaic Small-scale; Wastewater Treatment; Fadia M. A. Ghali

360

unknown title  

E-Print Network (OSTI)

L. L e i n emann und H. H. Ha t t eme r Genetic variation and mating pattern in a stand of yew (Taxus baccata L.)................................ 217 (Genetische Variation und Paarungssystem in einem Eiben-bestand (Taxus baccata)

C Mann; Unter Mitwirkung Der

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

unknown title  

E-Print Network (OSTI)

Transcription of the gene encoding melanomaassociated antigen gp100 in tissues and cell lines other than those of the melanocytic lineage

unknown authors

362

unknown title  

E-Print Network (OSTI)

Tyrosinase expression in the peripheral blood of stage III melanoma patients is associated with a poor prognosis: a clinical follow-up study of 110 patients

S Osella-abate; P Savoia; P Quaglino; Mt Fierro; C Leporati; M Ortoncelli; Mg Bernengo

363

unknown title  

E-Print Network (OSTI)

Quantitative methylation analyses of resection margins predict local recurrences and disease-specific deaths in patients with head and neck squamous cell carcinomas

Hk Tan; P Saulnier; A Auperin; L Lacroix; O Casiraghi; F Janot; P Fouret; S Temam

364

unknown title  

E-Print Network (OSTI)

www.elsevier.com/locate/envpol Heavy metal pollution disturbs immune response in wild ant populations

Jouni Sorvari A; Liisa M. Rantala B; Markus J. Rantala A; Harri Hakkarainen A; Tapio Eeva A

2006-01-01T23:59:59.000Z

365

unknown title  

E-Print Network (OSTI)

“The steam engine, then, we may just look upon as the noblest machine invented by man – the pride of the machinist, the admiration of the philosopher....”

unknown authors

366

unknown title  

E-Print Network (OSTI)

rs ch un g s-sc hw er p un kt Fa ku ltä t 1 0 Fa ku ltä t 0 9 Fa ku ltä t 0 6 Fa ku ltä t 0 5 Fa ku ltä t 0 4 Fa ku ltä t 0 3 Fa ku ltä t 0 2 Fa ku ltä

unknown authors

367

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process  

E-Print Network (OSTI)

A number of case applications of tradespace exploration have further extended the types of analyses and knowledge insights that can be gained about tradeoffs between design choices and perceived utility and cost of ...

Ross, Adam Michael

368

Geothermal Exploration Cost and Time  

SciTech Connect

The Department of Energy’s Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.

Scott Jenne

2013-02-13T23:59:59.000Z

369

SFU Library Ask. Explore. Discover.  

E-Print Network (OSTI)

SFU Library Ask. Explore. Discover. SFU Library Annual Report 2007-08 #12;SFU Library Annual Report..................................................................................................... 8 WAC BENNETT LIBRARY................................................................................... 9 SAMUEL AND FRANCES BELZBERG LIBRARY............................................... 10 FRASER

370

Laboratories to Explore, Explain VLBACHANDRA  

E-Print Network (OSTI)

Institute of Technology Idaho National Engineering Laboratory Lawrence Livermore National Laboratory, at least, be one that allows the scientific exploration of burning plasmas" and if Japan and Europe do

371

Silver Peak Innovative Exploration Project  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Reduce the high level of risk during the early stages of geothermal project development by conducting a multi-faceted and innovative exploration and drilling program at Silver Peak. Determine the combination of techniques that are most useful and cost-effective in identifying the geothermal resource through a detailed, post-project evaluation of the exploration and drilling program.

372

Tree Exploration with Little Memory Krzysztof Diks y Pierre Fraigniaud z Evangelos Kranakis x Andrzej Pelc {  

E-Print Network (OSTI)

;ebec #18;a Hull, Qu#19;ebec J8X 3X7, Canada. pelc@uqah.uquebec.ca. 1 #12; 1 Introduction A robot of a cycle: without any labels of nodes and without the possibility of putting marks on them, it is clearly impossible to explore a cycle of unknown size and stop. If marking of nodes (e.g., by dropping and removing

Fondements et Applications, Université Paris 7

373

Tree Exploration with Little Memory Krzysztof Diks y Pierre Fraigniaud z Evangelos Kranakis x Andrzej Pelc {  

E-Print Network (OSTI)

@scs.carleton.ca. { D#19;epartement d'Informatique, Universit#19;e du Qu#19;ebec #18;a Hull, Qu#19;ebec J8X 3X7, Canada the possibility of putting marks on them, it is clearly impossible to explore a cycle of unknown size and stop. If marking of nodes (e.g., by dropping and removing pebbles) is available then the problem can be solved even

Fondements et Applications, Université Paris 7

374

A Case Study For Geothermal Exploration In The Ne German Basin- Integrated  

Open Energy Info (EERE)

Geothermal Exploration In The Ne German Basin- Integrated Geothermal Exploration In The Ne German Basin- Integrated Interpretation Of Seismic Tomography, Litho-Stratigraphy, Salt Tectonics, And Thermal Structure Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: A Case Study For Geothermal Exploration In The Ne German Basin- Integrated Interpretation Of Seismic Tomography, Litho-Stratigraphy, Salt Tectonics, And Thermal Structure Details Activities (0) Areas (0) Regions (0) Abstract: Unavailable Author(s): K. Bauer, I. Moeck, B. Norden, A. Schulze, M. H. Weber Published: Publisher Unknown, 2009 Document Number: Unavailable DOI: Unavailable Retrieved from "http://en.openei.org/w/index.php?title=A_Case_Study_For_Geothermal_Exploration_In_The_Ne_German_Basin-_Integrated_Interpretation_Of_Seismic_Tomography,_Litho-Stratigraphy,_Salt_Tectonics,_And_Thermal_Structure&oldid=390106"

375

Genability Explorer | Open Energy Information  

Open Energy Info (EERE)

Genability Explorer Genability Explorer Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Genability Explorer Agency/Company /Organization: Genability Sector: Energy Focus Area: Energy Efficiency Resource Type: Software/modeling tools User Interface: Website Website: www.genability.com Country: United States Web Application Link: explorer.genability.com/explorer/index.jsp Cost: Paid OpenEI Keyword(s): Green Button Apps Northern America Coordinates: 37.790383°, -122.393054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.790383,"lon":-122.393054,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

2-D TOMOGRAPHY FROM NOISY PROJECTIONS TAKEN AT UNKNOWN RANDOM DIRECTIONS  

E-Print Network (OSTI)

to the Fourier-projection slice theorem that relates the 1-D Fourier transform R(f) of the Radon transform2-D TOMOGRAPHY FROM NOISY PROJECTIONS TAKEN AT UNKNOWN RANDOM DIRECTIONS A. SINGER AND H.-T. WU Abstract. Computerized Tomography (CT) is a standard method for obtaining internal struc- ture of objects

Singer, Amit

377

Exploration de r eseaux par un robot  

E-Print Network (OSTI)

â??eseau, ni mâ??eme sur sa taille. Sa tâ??ache consiste â?? a traverser chacun des liens du râ??eseau. Nous montrons nodes is fundamental in searching for data stored at unknown nodes of a network, and traversing all.g., by depth­first search). However, in some navigation problems in unknown environments, such unique labeling

Ilcinkas, David

378

Host suppression and bioinformatics for sequence-based characterization of unknown pathogens.  

SciTech Connect

Bioweapons and emerging infectious diseases pose formidable and growing threats to our national security. Rapid advances in biotechnology and the increasing efficiency of global transportation networks virtually guarantee that the United States will face potentially devastating infectious disease outbreaks caused by novel ('unknown') pathogens either intentionally or accidentally introduced into the population. Unfortunately, our nation's biodefense and public health infrastructure is primarily designed to handle previously characterized ('known') pathogens. While modern DNA assays can identify known pathogens quickly, identifying unknown pathogens currently depends upon slow, classical microbiological methods of isolation and culture that can take weeks to produce actionable information. In many scenarios that delay would be costly, in terms of casualties and economic damage; indeed, it can mean the difference between a manageable public health incident and a full-blown epidemic. To close this gap in our nation's biodefense capability, we will develop, validate, and optimize a system to extract nucleic acids from unknown pathogens present in clinical samples drawn from infected patients. This system will extract nucleic acids from a clinical sample, amplify pathogen and specific host response nucleic acid sequences. These sequences will then be suitable for ultra-high-throughput sequencing (UHTS) carried out by a third party. The data generated from UHTS will then be processed through a new data assimilation and Bioinformatic analysis pipeline that will allow us to characterize an unknown pathogen in hours to days instead of weeks to months. Our methods will require no a priori knowledge of the pathogen, and no isolation or culturing; therefore it will circumvent many of the major roadblocks confronting a clinical microbiologist or virologist when presented with an unknown or engineered pathogen.

Branda, Steven S.; Lane, Todd W.; Misra, Milind; Meagher, Robert J.; Patel, Kamlesh D.; Kaiser, Julia N.

2009-11-01T23:59:59.000Z

379

Thermal And-Or Near Infrared At Coso Geothermal Area (2007) | Open Energy  

Open Energy Info (EERE)

2007) 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis Analyze if coupling remote sensing and field data is effective for determining geothermal areas Notes Thermal infrared (TIR) data from the spaceborne ASTER instrument was used to detect surface temperature anomalies in the Coso geothermal field in eastern California. The identification of such anomalies in a known geothermal area serves as an incentive to apply similar markers and techniques to areas of unknown geothermal potential. Field measurements

380

Field Mapping At Marysville Mt Area (Blackwell) | Open Energy Information  

Open Energy Info (EERE)

Mt Area (Blackwell) Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown Notes Geologic mapping has outlined a structure which may be a partial control on the high heat flow. The Cretaceous intrusive (outlined by the magnetic data) and the heat flow anomaly occupy a broad dome in the Precambrian rocks, the stock outcropping in the northwest portion of the dome, and the heat flow anomaly restricted to the southwest portion of the dome. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A dipole-dipole resistivity survey of the area was carried out with estimated penetration up to 700 meters and no indication of low values of resistivity were found associated with the thermal anomaly. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Marysville_Mt_Area_(Blackwell)&oldid=510539

382

Ground Magnetics At Marysville Mt Area (Blackwell) | Open Energy  

Open Energy Info (EERE)

Ground Magnetics At Marysville Mt Area (Blackwell) Ground Magnetics At Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Ground Magnetics Activity Date Usefulness not useful DOE-funding Unknown Notes A ground magnetic survey located no anomaly with an amplitude of more than 20 or 30 gammas that could be associated with the thermal anomaly, however the magnetic data did outline the Cretaceous stock in great detail and allow the removal from the gravity field of the effect of the stock. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_At_Marysville_Mt_Area_(Blackwell)&oldid=389390"

383

Transitioning the Transportation Sector: Exploring the Intersection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection...

384

Geothermal Exploration Best Practices Webinar Presentation Now...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exploration Best Practices Webinar Presentation Now Available Geothermal Exploration Best Practices Webinar Presentation Now Available April 12, 2012 - 3:08pm Addthis Presentation...

385

Edinburgh Research Explorer Money Cycles  

E-Print Network (OSTI)

Edinburgh Research Explorer Money Cycles Citation for published version: Clausen, A & Strub, C 2014 'Money Cycles' Edinburgh School of Economics Discussion Paper Series. Link: Link to publication record date: 11. Dec. 2014 #12;Edinburgh School of Economics Discussion Paper Series Number 249 Money Cycles

Millar, Andrew J.

386

7 Efficient Exploration 7.1 Overview  

E-Print Network (OSTI)

Methods: Here a more global view of the process is taken, and the schemes are directly designed to explore7 Efficient Exploration 7.1 Overview Efficient exploration of the action and state space is a crucial factor in the convergence rate of a learning scheme. An early survey of early exploration methods

Shimkin, Nahum

387

Draft Innovative Exploration Technologies Needs Assessment  

Energy.gov (U.S. Department of Energy (DOE))

A draft needs assessment for the Geothermal Technologies Programs Innovative Exploration Technologies Subprogram.

388

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

389

Geothermometry At Salt Wells Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Salt Wells Area (Henkle, Et Al., 2005) Geothermometry At Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Geothermometry Activity Date 2004 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Adsorbed mercury soil geochemical surveys and radiometric geophysical surveys were carried out in conjunction with geologic mapping to test the application of these ground-based techniques to geothermal exploration at three prospects in Nevada by Henkle Jr. et al. in 2005. Mercury soil vapor surveys were not widely used in geothermal exploration in the western US at the time, although the association of mercury vapors with geothermal

390

Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) |  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) (Redirected from Water-Gas Samples At Coso Geothermal Area (2004)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 Usefulness useful DOE-funding Unknown Exploration Basis To determine effectiveness of FIS for geothermal exploration Notes In order to test FIS for geothermal exploration, drill chips were analyzed from Coso well 83-16, which were selected at 1000 ft intervals by Joseph Moore. Sequential crushes done by our CFS (crushfast-scan) method (Norman

391

Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009)  

Open Energy Info (EERE)

Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes

392

Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details Location Salt Wells Area Exploration Technique Mercury Vapor Activity Date - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Adsorbed mercury soil geochemical surveys and radiometric geophysical surveys were carried out in conjunction with geologic mapping to test the application of these ground-based techniques to geothermal exploration at three prospects in Nevada by Henkle Jr. et al. in 2005. Mercury soil vapor surveys were not widely used in geothermal exploration in the western US at the time, although the association of mercury vapors with geothermal

393

Magnetotellurics At Salt Wells Area (Bureau of Land Management, 2009) |  

Open Energy Info (EERE)

Salt Wells Area (Bureau of Land Management, 2009) Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Magnetotellurics Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes Data from these wells is proprietary, and so were unavailable for inclusion

394

Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002) | Open  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal Resource Exploration And Definition Project

395

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land  

Open Energy Info (EERE)

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Single-Well And Cross-Well Seismic Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary

396

Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Salt Wells Area (Henkle, Et Al., 2005) Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details Location Salt Wells Area Exploration Technique Soil Sampling Activity Date - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Adsorbed mercury soil geochemical surveys and radiometric geophysical surveys were carried out in conjunction with geologic mapping to test the application of these ground-based techniques to geothermal exploration at three prospects in Nevada by Henkle Jr. et al. in 2005. Mercury soil vapor surveys were not widely used in geothermal exploration in the western US at the time, although the association of mercury vapors with geothermal

397

Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) |  

Open Energy Info (EERE)

Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Exploratory Well Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes Data from these wells is proprietary, and so were unavailable for inclusion

398

Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) | Open  

Open Energy Info (EERE)

Vapor (Warpinski, Et Al., 2002) Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal Resource Exploration And Definition Project

399

Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2002) | Open Energy  

Open Energy Info (EERE)

Warpinski, Et Al., 2002) Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal Resource Exploration And Definition Project

400

Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Henkle, Et Al., 2005) Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details Location Salt Wells Area Exploration Technique Water Sampling Activity Date - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Adsorbed mercury soil geochemical surveys and radiometric geophysical surveys were carried out in conjunction with geologic mapping to test the application of these ground-based techniques to geothermal exploration at three prospects in Nevada by Henkle Jr. et al. in 2005. Mercury soil vapor surveys were not widely used in geothermal exploration in the western US at the time, although the association of mercury vapors with geothermal

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) |  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 Usefulness useful DOE-funding Unknown Exploration Basis To determine effectiveness of FIS for geothermal exploration Notes In order to test FIS for geothermal exploration, drill chips were analyzed from Coso well 83-16, which were selected at 1000 ft intervals by Joseph Moore. Sequential crushes done by our CFS (crushfast-scan) method (Norman 1996) show that chips have a high density of homogeneous fluid inclusions.

402

Ground Gravity Survey At Salt Wells Area (Bureau of Land Management, 2009)  

Open Energy Info (EERE)

Salt Wells Area (Bureau of Land Management, 2009) Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes Data from these wells is proprietary, and so were unavailable for inclusion

403

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) |  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 1974 - 1976 Usefulness useful DOE-funding Unknown Exploration Basis Reconnaissance geothermal exploration Notes A TIR survey of the Raft River geothermal area prospect in Idaho where thermal waters move laterally in an alluvial plain and have no visible surface manifestations was undertaken as part of geothermal exploration. References K. Watson (1974) Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery

404

Tunisia's production peaks, exploration busy  

SciTech Connect

This paper reports on the oil and gas exploration industry in Tunisia which is continuing to experience an almost unprecedented boom as the effects of the favorable fiscal and legislative regime work through the recent discoveries come on stream. Perhaps the most significant of the new discoveries is 1 Belli on Cap Bon, which Marathon tested at a rate of 6,800 b/d of oil with reported potential of as much as 15,000 b/d.

Mrad, R.; M'Rabet, A.; Chine, N. (Enterprise Tunisienne d'Activites Petrolieres (TN)); Davies, W.C.

1991-12-23T23:59:59.000Z

405

The Modern Grid Initiative is a DOE-funded project managed by the National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

McAdams Theory of grid modernization. This is final in a series of discussions McAdams Theory of grid modernization. This is final in a series of discussions on how different mindsets look at grid modernization. With four generation "X" and "Y" children growing up in our house over the last 25 years, we had the opportunity to begin to understand how this next generation of consumers, leaders, designers, and builders view the electric system. Briefly, generation X (GenX) are those who have grown up in the shadow of the Baby Boomers and are roughly 25 to 45 years old. Generation Y (GenY) are those who follow GenX. I would be the first to say that we do not completely understand where these next generations will take the grid. But, the Modern Grid team does have some interesting insights into the future possibilities.

406

The Modern Grid Initiative is a DOE-funded project managed by the National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Rainsuit Theory of grid modernization. This is third in a series of discussions on Rainsuit Theory of grid modernization. This is third in a series of discussions on how different mindsets look at grid modernization. One of my past bosses used to share humorous theories of organizational change management from a college professor, McAdams, worthy of the great philosopher, Yogi Berra. The McAdams Theory of Grid Modernization While this column normally focuses on grid issues, generation counts. The grid is after all an energy system which includes generation, delivery, and load. So, a modern grid has a substantial partnership role with the future generation portfolio of the nation. The grid, generation, and load are not separable variables in the modern electric system. McAdams Theorem #1: Once things change, everything will be different afterwards. This theorem reflects both

407

Webinar: DOE Funding Opportunity for the Deployment of Clean Energy and Energy Efficiency on Indian Lands (DE-FOA-0001021)  

Energy.gov (U.S. Department of Energy (DOE))

The intent of this webinar is to provide information for potential applicants to the Energy Departments Funding Opportunity for the Deployment of Clean Energy and Energy Efficiency on Indian Lands ...

408

Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

409

Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

410

DOE Funds 21 Research, Development and Demonstration Projects for up to $78 Million to Promote Enhanced Geothermal Systems  

Energy.gov (U.S. Department of Energy (DOE))

Today at the National Geothermal Conference in Reno, Nev., Deputy Assistant Secretary for Renewable Energy Steve Chalk announced the U.S. Department of Energy's (DOE) awards under a Funding Opportunity Announcement (FOA) for research, development and demonstration of Enhanced Geothermal Systems (EGS) for next-generation geothermal energy technologies.

411

DOE Funds 21 Research, Development and Demonstration Projects for up to $78 Million to Promote Enhanced Geothermal Systems  

Energy.gov (U.S. Department of Energy (DOE))

RENO, Nev.  - Today at the National Geothermal Conference in Reno, Nev., Deputy Assistant Secretary for Renewable Energy Steve Chalk announced the U.S. Department of Energy's (DOE) awards under a...

412

Exploring Venus by solar airplane  

Science Journals Connector (OSTI)

A solar-powered airplane is proposed to explore the atmospheric environment of Venus. Venus has several advantages for a solar airplane. At the top of the cloud level the solar intensity is comparable to or greater than terrestrial solar intensities. The Earthlike atmospheric pressure means that the power required for flight is lower for Venus than that of Mars and the slow rotation of Venus allows an airplane to be designed for continuous sunlight with no energy storage needed for night-time flight. These factors mean that Venus is perhaps the easiest planet in the solar system for flight of a long-duration solar airplane.

Geoffrey A. Landis

2001-01-01T23:59:59.000Z

413

Geophysical Exploration (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geophysical Exploration (Montana) Geophysical Exploration (Montana) Geophysical Exploration (Montana) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Fuel Distributor Savings Category Buying & Making Electricity Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Natural Resources and Conservation An exploration permit is required for any entity conducting geophysical exploration within the state of Montana. Such entities are also required to follow rules adopted by the Board of Oil and Gas Conservation, including those pertaining to: (a) Adequate identification of seismic exploration crews operating in this

414

Property:ExplorationGroup | Open Energy Information  

Open Energy Info (EERE)

ExplorationGroup ExplorationGroup Jump to: navigation, search Property Name ExplorationGroup Property Type Page Description Exploration Group for Exploration Activities Pages using the property "ExplorationGroup" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey + Field Techniques + A Acoustic Logs + Downhole Techniques + Active Seismic Methods + Geophysical Techniques + Active Seismic Techniques + Geophysical Techniques + Active Sensors + Remote Sensing Techniques +, Remote Sensing Techniques + Aerial Photography + Remote Sensing Techniques + Aeromagnetic Survey + Geophysical Techniques + Airborne Electromagnetic Survey + Geophysical Techniques + Airborne Gravity Survey + Geophysical Techniques + Analytical Modeling + Data and Modeling Techniques +

415

Memory difference control of unknown unstable fixed points: Drifting parameter conditions and delayed measurement  

E-Print Network (OSTI)

Difference control schemes for controlling unstable fixed points become important if the exact position of the fixed point is unavailable or moving due to drifting parameters. We propose a memory difference control method for stabilization of a priori unknown unstable fixed points by introducing a memory term. If the amplitude of the control applied in the previous time step is added to the present control signal, fixed points with arbitrary Lyapunov numbers can be controlled. This method is also extended to compensate arbitrary time steps of measurement delay. We show that our method stabilizes orbits of the Chua circuit where ordinary difference control fails.

Jens Christian Claussen; Thorsten Mausbach; Alexander Piel; Heinz Georg Schuster

2006-09-20T23:59:59.000Z

416

EXPLORATION ACTIVITY WORKSHEET Purpose: The exploration activity is designed for students to "explore" opportunities at UM as they  

E-Print Network (OSTI)

EXPLORATION ACTIVITY WORKSHEET Purpose: The exploration activity is designed for students to "explore" opportunities at UM as they relate to student success, majors, careers of interest and other of their academic development and thus, you and your advisor will determine what type of activity or process you

Hill, Wendell T.

417

Exploratory Well At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

7) 7) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Raft River Geothermal Exploratory Hole No. 4, RRGE-4 drilled. During this time Raft River geothermal exploration well sidetrack-C also completed. References Kunze, J. F.; Stoker, R. C.; Allen, C. A. (14 December 1977) Update on the Raft River Geothermal Reservoir Covington, H.R. (1 January 1978) Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Retrieved from "http://en.openei.org/w/index.php?title=Exploratory_Well_At_Raft_River_Geothermal_Area_(1977)&oldid=473847"

418

Radiometrics At Salt Wells Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Salt Wells Area (Henkle, Et Al., 2005) Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Radiometrics At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details Location Salt Wells Area Exploration Technique Radiometrics Activity Date - 2005 Usefulness could be useful with more improvements DOE-funding Unknown Exploration Basis Adsorbed mercury soil geochemical surveys and radiometric geophysical surveys were carried out in conjunction with geologic mapping to test the application of these ground-based techniques to geothermal exploration at three prospects in Nevada by Henkle Jr. et al. in 2005. Notes Soil sampling and geophysical surveys were conducted at 26 stations along an approximately 1981-m-long line oriented perpendicular to known major

419

Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

(Redirected from Direct-Current Resistivity At Cove Fort Area - Vapor (Redirected from Direct-Current Resistivity At Cove Fort Area - Vapor (Warpinski, Et Al., 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location.

420

Data Acquisition-Manipulation At Nw Basin & Range Region (Blackwell, Et  

Open Energy Info (EERE)

Blackwell, Et Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Nw Basin & Range Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Determining heat loss is one more tool to use in geothermal exploration. It is relatively easy to calculate if the thermal aureole has been mapped with thermal gradient well measurements. With the heat loss information, predicted production capacity can be used to help review the system being explored. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geographic Information System At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Geographic Information System At Walker-Lane Geographic Information System At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

422

Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al., 2002) | Open  

Open Energy Info (EERE)

Et Al., 2002) Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. Drilling of the test well was completed in the fall of 2001 and results are currently being evaluated. The total depth of the well is 598 m with a

423

Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

Cove Fort Area (Warpinski, Et Al., Cove Fort Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal

424

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Exploration Activity Details Location Blue Mountain Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Using a precision thermistor probe, EGI, University of Utah, obtained detailed temperature logs of eleven new mineral exploration holes drilled at Blue Mountain. The holes, ranging in depth from 99 to 244 meters (325 to 800 feet), were drilled in areas to the northeast, northwest and southwest of, and up to distances of two kilometers from, the earlier mineral exploration drill holes that encountered hot artesian flows. Unfortunately,

425

Multispectral Imaging At Cove Fort Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Cove Fort Area (Laney, 2005) Cove Fort Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Cove Fort Area (Laney, 2005) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. Vegetalspectral analysis at Cove Fort-Sulphurdale, Utah was tested as a method of detecting hidden faults in exploration efforts. This effort proved to be successful and resulted in the Following published paper: Nash, G. D., J. N. Moore, and T. Sperry, 2003. "Vegetal-spectral anomaly detection at the Cove Fort-Sulphurdale thermal anomaly, Utah, USA: implications for use in geothermal exploration." Geothermics, v. 32, p.

426

Data Acquisition-Manipulation At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Blackwell, Et Al., 2003) Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Walker-Lane Transitional Zone Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Determining heat loss is one more tool to use in geothermal exploration. It is relatively easy to calculate if the thermal aureole has been mapped with thermal gradient well measurements. With the heat loss information, predicted production capacity can be used to help review the system being explored. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard

427

Flow Test At Chena Area (Benoit, Et Al., 2007) | Open Energy Information  

Open Energy Info (EERE)

Chena Area (Benoit, Et Al., 2007) Chena Area (Benoit, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Chena Area (Benoit, Et Al., 2007) Exploration Activity Details Location Chena Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References Dick Benoit, Gwen Holdmann, David Blackwell (2007) Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Chena_Area_(Benoit,_Et_Al.,_2007)&oldid=387083" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

428

Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski, Et Al.,  

Open Energy Info (EERE)

Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski, Et Al., Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_At_Cove_Fort_Area_-_Liquid_(Warpinski,_Et_Al.,_2004)&oldid=598125" Categories: Exploration Activities

429

Data Acquisition-Manipulation At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Data Acquisition-Manipulation At Central Nevada Seismic Zone Region Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Determining heat loss is one more tool to use in geothermal exploration. It is relatively easy to calculate if the thermal aureole has been mapped with thermal gradient well measurements. With the heat loss information, predicted production capacity can be used to help review the system being explored.

430

Slim Holes At Salt Wells Area (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

Slim Holes At Salt Wells Area (Combs, Et Al., 1999) Slim Holes At Salt Wells Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Salt Wells Area (Combs, Et Al., 1999) Exploration Activity Details Location Salt Wells Area Exploration Technique Slim Holes Activity Date 1980 - 1980 Usefulness useful DOE-funding Unknown Exploration Basis The blind Salt Wells geothermal system was first identified when Anadarko Petroleum Corporation drilled slim hole and geothermal exploration wells at the site in 1980. Two reports detail the results of this drilling activity. This report details the well completion practices applied to the initial slim hole discovery well. Notes In 1980, Anadarko Petroleum Corporation drilled a slim hole discovery well near Simpson Pass. The hole was initially rotary-drilled to 161.5 m for

431

Time-Domain Electromagnetics At Dixie Hot Springs Area (Combs 2006) | Open  

Open Energy Info (EERE)

Hot Springs Area (Combs 2006) Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Dixie Hot Springs Area (Combs 2006) Exploration Activity Details Location Dixie Hot Springs Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness not indicated DOE-funding Unknown Notes "MT, EM sounding, SP?; SP data and reservoir model may be proprietary" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Time-Domain_Electromagnetics_At_Dixie_Hot_Springs_Area_(Combs_2006)&oldid=388997" Category: Exploration

432

Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski, Et  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration data, geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling targets and sites. Further work may occur in 2004 or 2005. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects

433

Field Mapping At San Francisco Volcanic Field Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration data, geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling targets and sites. Further work may occur in 2004 or 2005. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects

434

Magnetotellurics At U.S. West Region (Aiken & Ander, 1981) | Open Energy  

Open Energy Info (EERE)

Aiken & Ander, 1981) Aiken & Ander, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At U.S. West Region (Aiken & Ander, 1981) Exploration Activity Details Location U.S. West Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Arizona, New Mexico, and southern Colorado References Carlos L.V. Aiken, Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_U.S._West_Region_(Aiken_%26_Ander,_1981)&oldid=389969" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties

435

Geographic Information System At Northern Basin & Range Region (Laney,  

Open Energy Info (EERE)

Geographic Information System At Northern Basin & Geographic Information System At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

436

Geographic Information System At Nw Basin & Range Region (Laney, 2005) |  

Open Energy Info (EERE)

Geographic Information System At Nw Basin & Range Geographic Information System At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

437

Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location.

438

Field Mapping At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

Exploration Activity: Field Mapping At Raft River Geothermal Area (1993) Exploration Activity: Field Mapping At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1993 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine the importance of Early to Middle Miocene period in the northern Basin and Range region. Notes New apatite fission track cooling age and track length data, supplemented by other information, point to the Early to Middle Miocene as an additional time of very significant extension-induced uplift and range formation. Many ranges in a 700-km-long north-south corridor from the Utah-Nevada-Idaho border to southernmost Nevada experience extension and major exhumation in Early to Middle Miocene time. Reconnaissance apatite ages from the Toiyabe

439

Geographic Information System At Central Nevada Seismic Zone Region (Laney,  

Open Energy Info (EERE)

Geographic Information System At Central Nevada Seismic Zone Region (Laney, Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital

440

Exploratory Well At Salt Wells Area (Edmiston & Benoit, 1984) | Open Energy  

Open Energy Info (EERE)

Edmiston & Benoit, 1984) Edmiston & Benoit, 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Edmiston & Benoit, 1984) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Exploratory Well Activity Date 1980 - 1980 Usefulness useful DOE-funding Unknown Exploration Basis The blind Salt Wells geothermal system was first identified when Anadarko Petroleum Corporation drilled slim hole and geothermal exploration wells at the site in 1980. Two reports detail the results of this drilling activity. This paper seeks to (1) describe several moderate-temperature (150-200°C) geothermal systems discovered and drilled during the early 1980s that had not been documented previously in the literature, (2) summarize and compare

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) |  

Open Energy Info (EERE)

Rio Grande Rift Region (Aiken & Ander, 1981) Rio Grande Rift Region (Aiken & Ander, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) Exploration Activity Details Location Rio Grande Rift Geothermal Region Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown References Carlos L.V. Aiken, Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Rio_Grande_Rift_Region_(Aiken_%26_Ander,_1981)&oldid=401473" Category: Exploration Activities What links here Related changes Special pages Printable version

442

Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal

443

Airborne Electromagnetic Survey At Raft River Geothermal Area (1979) | Open  

Open Energy Info (EERE)

Electromagnetic Survey At Raft River Electromagnetic Survey At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Airborne Electromagnetic Survey Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis To show that AEM methods can be useful in exploration for and defining geothermal systems Notes Extensive audio-magnetotelluric (AMT) work by the USGS in KGRA's showed that many geothermal systems do have a near-surface electrical signature which should be detectable by an AEM system. References Christopherson, K.R.; Long, C.L.; Hoover, D.B. (1 September 1980) Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Retrieved from "http://en.openei.org/w/index.php?title=Airborne_Electromagnetic_Survey_At_Raft_River_Geothermal_Area_(1979)&oldid=510231

444

Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal

445

Static Temperature Survey (Cull, 1981) | Open Energy Information  

Open Energy Info (EERE)

(Cull, 1981) (Cull, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey (Cull, 1981) Exploration Activity Details Location Unspecified Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Although absolute values of heat flow may not be accurately determined with conventional techniques even at depths of 1000 m, data useful for exploration can be obtained in shallower holes at a suitably chosen standard depth; constant corrections are then applicable but they need not be specified for relative heat flow. These values can then be used in modeling the local thermal structure which may then indicate a geothermal resource. For geothermal exploration it is preferable to measure heat flow

446

Petrography Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Petrography Analysis At Raft River Geothermal Area (2011) Petrography Analysis At Raft River Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Petrography Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes X-ray diffraction and thin section analyses are being conducted on samples from 5 deep wells, RRG- 1, 2, 3, 7 and 9, to determine the characteristics of the rock types and hydrothermal alteration within the geothermal system. Thin section analyses of samples from RRG-9 document the presence of strong alteration and brecciation at the contact between the Tertiary and basement

447

Template:ExplorationTechnique | Open Energy Information  

Open Energy Info (EERE)

'ExplorationTechnique' template. To define a new Exploration 'ExplorationTechnique' template. To define a new Exploration Technique, please use the Exploration Technique Form. Parameters Definition - A link to the OpenEI definition of the technique (optional) ExplorationGroup - ExplorationSubGroup - ParentExplorationTechnique - parent technique for relationship tree LithologyInfo - the type of lithology information this technique could provide StratInfo - the type of stratigraphic and/or structural information this technique could provide HydroInfo - the type of hydrogeology information this technique could provide ThermalInfo - the type of temperature information this technique could provide EstimatedCostLowUSD - the estimated value only of the low end of the cost range (units described in CostUnit) EstimatedCostMedianUSD - the estimated value only of the median cost

448

Oil exploration and production in Scotland  

Science Journals Connector (OSTI)

...production, 34 oil production platforms are in operation...FARROW FIG. 4. The semi-submersible exploration rig...EXPLORATION AND PRODUCTION 559 3 E Area shows...through four steel production platforms, in a water depth...

D. Hallett; G. P. Durant; G. E. Farrow

449

Property:ExplorationTechnique | Open Energy Information  

Open Energy Info (EERE)

ExplorationTechnique ExplorationTechnique Jump to: navigation, search Property Name ExplorationTechnique Property Type Page Description The ExplorationTechnique used in the Exploration Activity. Use the form ExplorationTechnique to create new exploration technique pages. Subproperties This property has the following 1 subproperty: A Aeromagnetic Survey At Crump's Hot Springs Area (DOE GTP) Pages using the property "ExplorationTechnique" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe At Alum Area (Kratt, Et Al., 2010) + 2-M Probe Survey + 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) + 2-M Probe Survey + 2-M Probe At Black Warrior Area (DOE GTP) + 2-M Probe Survey + 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) + 2-M Probe Survey +

450

Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Fluid Activity Date 1983 - 1986 Usefulness useful DOE-funding Unknown Notes Fumarolic CO2 sampled at Casa Diablo reportedly contained deltaC13 values of -5.6 to -5.7 (Taylor and...

451

Tracer Testing At Raft River Geothermal Area (1984) | Open Energy...  

Open Energy Info (EERE)

84 Usefulness not indicated DOE-funding Unknown Notes Tracer testing was undertaken at Raft River geothermal area. References Kroneman, R. L.; Yorgason, K. R.; Moore, J. N. (1...

452

Compound and Elemental Analysis At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

DOE-funding Unknown References T. E. C. Keith, J. M. Thompson, R. A. Hutchinson, L. D. White (1992) Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska...

453

Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki...  

Open Energy Info (EERE)

Flux Sampling Activity Date - 2008 Usefulness useful DOE-funding Unknown Notes "CO2 and heat fluxes were measured over a six-week period (09082006 to 10242006) by the eddy...

454

Compound and Elemental Analysis At Yellowstone Region (Kennedy...  

Open Energy Info (EERE)

DOE-funding Unknown References B. M. Kennedy, M. A. Lynch, J. H. Reynolds, S. P. Smith (1985) Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Overview...

455

Object Exploration By Purposive, Dynamic Viewpoint Adjustment  

E-Print Network (OSTI)

. Unlike previous approaches where exploration is cast as a discrete process (i.e., asking where to look on the object surface that are occluded when the exploration process is initiated. Our goal is to designObject Exploration By Purposive, Dynamic Viewpoint Adjustment Kiriakos N. Kutulakos Charles R. Dyer

Dyer, Charles R.

456

Power options for lunar exploration  

SciTech Connect

This paper presents an overview of the types of power systems available for providing power on the moon. Lunar missions of exploration, in situ resource utilization, and colonization will be constrained by availability of adequate power. The length of the lunar night places severe limitations on solar power system designs, because a large portion of the system mass is devoted to energy storage. The selection of the ideal power source hardware will require compatibility with not only the lunar base power requirements and environment, but also with the conversion, storage, and transmission equipment. In addition, further analysis to determine the optimum operating parameters for a given power system should be conducted so that critical technologies can be identified in the early stages of base development. This paper describes the various concepts proposed for providing power on the lunar surface and compare their ranges of applicability. The importance of a systems approach to the integration of these components will also be discussed.

Bamberger, J.A.; Gaustad, K.L.

1992-01-01T23:59:59.000Z

457

ACTIVE VISION FOR NAVIGATING UNKNOWN ENVIRONMENTS: AN EVOLUTIONARY ROBOTICS APPROACH FOR SPACE RESEARCH  

E-Print Network (OSTI)

, below the solar panel in front. Another pair is looking backward, below the solar panel in the back future, autonomous robots are expected to be the principal actors in the exploration of Solar System of the time. Nowadays, the time delay that affects the communication between the Earth and other Solar System

Cangelosi, Angelo

458

Template:ExplorationActivity | Open Energy Information  

Open Energy Info (EERE)

ExplorationActivity ExplorationActivity Jump to: navigation, search This is the 'ExplorationActivity' template. To define a new Exploration Activity, please use the Exploration Activity Form. Parameters Name - The name of the activity (typically a combination of the techniques and location, ex. Water Sampling at McCredie Hot Springs) Technique - The exploration technique used in this activity SpectralSensor - The spectral imaging sensor used in this activity Place - The name of the exploration field or location of the activity Notes - General notes about the activity (optional) Outcome - A short description of the benefit or usefulness of the activity Reference_material - The reference material documenting the activity ExpActivityDate - Date or year activity started ExpActivityDateEnd - Date or year activity ended

459

Property:ExplorationBasis | Open Energy Information  

Open Energy Info (EERE)

ExplorationBasis ExplorationBasis Jump to: navigation, search Property Name ExplorationBasis Property Type Text Description Exploration Basis Why was exploration work conducted in this area (e.g., USGS report of a geothermal resource, hot springs with geothemmetry indicating electrical generation capacity, etc.) Subproperties This property has the following 1 subproperty: M Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Pages using the property "ExplorationBasis" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey At Coso Geothermal Area (1977) + Compare directly shallow temperature results with standard geothermal exploration techniques. 2-M Probe Survey At Coso Geothermal Area (1979) + Correct previously analyzed 2-m probe data

460

Template:ExplorationGroup | Open Energy Information  

Open Energy Info (EERE)

ExplorationGroup ExplorationGroup Jump to: navigation, search This is the 'ExplorationGroup' template. To define a new Exploration Technique, please use the Exploration Group Form. Parameters Definition - A link to the OpenEI definition of the technique (optional) ExplorationGroup - ExplorationSubGroup - LithologyInfo - the type of lithology information this technique could provide StratInfo - the type of stratigraphic and/or structural information this technique could provide HydroInfo - the type of hydrogeology information this technique could provide ThermalInfo - the type of temperature information this technique could provide EstimatedCostLowUSD - the estimated value only of the low end of the cost range (units described in CostUnit) EstimatedCostMedianUSD - the estimated value only of the median cost

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration Techniques) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

462

SURFACE GEOPHYSICAL EXPLORATION - COMPENDIUM DOCUMENT  

SciTech Connect

This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

RUCKER DF; MYERS DA

2011-10-04T23:59:59.000Z

463

Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Exploration Activity Details Location Sierra Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of

464

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

465

Isotopic Analysis- Fluid At Coso Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Analysis- Fluid At Coso Geothermal Area (1982) Analysis- Fluid At Coso Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (1982) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine recharge for the system Notes Thirty-nine water samples were collected from the Coso geothermal system and vicinity and were analyzed for major chemical constituents and deltaD and delta18O. Non-thermal ground waters from the Coso Range were found to be isotopically heavier than non-thermal ground waters from the Sierra Nevada to the west. The deltaD value for the deep thermal water at Coso is

466

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1983-1985) | Open  

Open Energy Info (EERE)

Coso Geothermal Area (1983-1985) Coso Geothermal Area (1983-1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (1983-1985) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1983 - 1985 Usefulness not indicated DOE-funding Unknown Exploration Basis To study anomalous shear wave attenuation in the shallow crust Notes V s and V p wave amplitudes were measured from vertical component seismograms of earthquakes that occurred in the Coso-southern Sierra Nevada region from July 1983 to 1985. Seismograms of 16 small earthquakes show SV amplitudes which are greatly diminished at some azimuths and takeoff angles, indicating strong lateral variations in S wave attenuation in the

467

Image Logs At Coso Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Logs At Coso Geothermal Area (2004) Logs At Coso Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Image Logs At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Image Logs Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis EGS potential of Coso Geothermal Region Notes During the second year of this project, wellbore logs and stress data were acquired in a new production well drilled in the Coso Geothermal Field, 38C-9. The image analysis results include the discrimination of natural from drilling induced fractures in wellbore image data, natural fracture characterization, and wellbore failure analysis References Sheridan, J.; Hickman, S.H. (1 January 2004) IN SITU STRESS,

468

Modeling-Computer Simulations At Obsidian Cliff Area (Hulen, Et Al., 2003)  

Open Energy Info (EERE)

Obsidian Cliff Area (Hulen, Et Al., 2003) Obsidian Cliff Area (Hulen, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Obsidian Cliff Area (Hulen, Et Al., 2003) Exploration Activity Details Location Obsidian Cliff Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown References Jeff Hulen, Denis Norton, Dennis Kaspereit, Larry Murray, Todd van de Putte, Melinda Wright (2003) Geology And A Working Conceptual Model Of The Obsidian Butte (Unit 6) Sector Of The Salton Sea Geothermal Field, California Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Obsidian_Cliff_Area_(Hulen,_Et_Al.,_2003)&oldid=388945" Category: Exploration

469

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1975-1976) | Open  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1975-1976) Teleseismic-Seismic Monitoring At Coso Geothermal Area (1975-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (1975-1976) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1975 - 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate thermal regime and potential of the system Notes Three-dimensional Q -1 model of the Coso Hot Springs known geothermal resource area was conducted. To complete the model a regional telemetered network of sixteen stations was operated by the U.S. Geological Survey; deployed a portable Centipede array of 26 three-component stations near the

470

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown Notes Useful for age determinations - not indicated is useful for exploration. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal

471

Teleseismic-Seismic Monitoring At Coso Geothermal Area (2005) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (2005) Coso Geothermal Area (2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (2005) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 2005 Usefulness not indicated DOE-funding Unknown Exploration Basis More detailed analysis of microearthquakes over a longer period of time Notes The permanent 18-station network of three-component digital seismometers at the seismically active Coso geothermal area, California, provides high-quality microearthquake (MEQ) data that are well suited to investigating temporal variations in structure related to processes within the geothermal reservoir. A preliminary study (Julian, et al. 2003; Julian

472

Stress Test At Coso Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Stress Test At Coso Geothermal Area (2004) Stress Test At Coso Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Stress Test At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Stress Test Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis EGS potential of Coso Geothermal Region Notes A hydraulic fracturing stress test at 3,703 feet TVD was used to constrain a normal faulting and strike-slip faulting stress tensor for this reservoir. The shear and normal stresses resolved on the fracture and fault planes were calculated and used to identify the subset of critically stressed planes that act to maintain permeability within the Coso Geothermal Field. References

473

LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown Notes Recent exploration includes a high resolution aerial Li-DAR survey flown over the project areas, securing over 177,000 square kilometers of <30cm accuracy digital elevation data. LiDAR data were analyzed to characterize the active tectonic environment, and identify Holocene structures, which are common conduits for upwelling geothermal fluids. References Steve Alm, S. Bjornstad, M. Lazaro, A. Sabin1, D. Meade, J. Shoffner, W. C. Huang, J. Unruh, M. Strane, H. Ross (2010) Geothermal

474

Field Mapping At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Coso Geothermal Area (2006) Field Mapping At Coso Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine impact of brittle faulting and seismogenic deformation on permeability in geothermal reservoir Notes New mapping documents a series of late Quaternary NNE-striking normal faults in the central Coso Range that dip northwest, toward and into the main production area of the Coso geothermal field. The faults exhibit geomorphic features characteristic of Holocene activity, and locally are associated with fumaroles and hydothermal alteration. The active faults

475

Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al.,  

Open Energy Info (EERE)

Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes "Shallow temperature gradient drilling began at the CMAGR in January of 2010. 13 temperature gradient holes were completed to a depth of 500' below ground surface. Sites were selected based on the compilation of previous exploration and resulting data is being integrated into the most recent geologic model. This model will form the basis for the selection of a

476

Exploratory Well At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis First exploratory well Notes Raft River Geothermal Exploratory Hole No. 1 (RRGE-1) is drilled. References Reynolds Electrical and Engineering Co., Inc., Las Vegas, Nev. (USA) (1 October 1975) Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Kunze, J.F. (1 May 1977) Geothermal R and D project report, October 1, 1976--March 31, 1977 Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. (1 January 1978) Deep drilling data Raft River geothermal

477

Tracer Testing At Coso Geothermal Area (1993) | Open Energy Information  

Open Energy Info (EERE)

Tracer Testing At Coso Geothermal Area (1993) Tracer Testing At Coso Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Coso Geothermal Area (1993) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis To determine the steam and water mass flow rate Notes The method involves precisely metered injection of liquid and vapor phase tracers into the two-phase production pipeline and concurrent sampling of each phase downstream of the injection point. Subsequent chemical analysis of the steam and water samples for tracer content enables the calculation of mass flowrate for each phase given the known mass injection rates of

478

Core Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

2011) 2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes Core was obtained from RRG-3C. The sample is a brecciated and altered siltstone from the base of the Tertiary sequence and is similar to rocks at the base of the Tertiary deposits in RRG-9. The results of thermal and quasi-static mechanical property measurements that were conducted on the core sample are presented. References Jones, C.; Moore, J.; Teplow, W.; Craig, S. (1 January 2011) GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Raft_River_Geothermal_Area_(2011)&oldid=473834

479

Paleomagnetic Measurements At Coso Geothermal Area (2006) | Open Energy  

Open Energy Info (EERE)

Paleomagnetic Measurements At Coso Geothermal Area (2006) Paleomagnetic Measurements At Coso Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Paleomagnetic Measurements At Coso Geothermal Area (2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Paleomagnetic Measurements Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis Analyze fault block kinematics at a releasing stepover of the Eastern California shear zone to determine the partitioning of rotation style Notes Rotations paleomagnetically relative to two different reference frames were measured. At two localities, the secular variation were averaged through sedimentary sections to reveal rotation or its absence relative to paleogeographic north. Where sediments are lacking, a really-extensive lava

480

Tracer Testing At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Tracer Testing At Coso Geothermal Area (2006) Tracer Testing At Coso Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Coso Geothermal Area (2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 2006 Usefulness useful DOE-funding Unknown Exploration Basis To characterize the flow patterns of fluid injected into well 68-20RD. Notes A conservative liquid phase tracer, 2-naphthalene sulfonate, and a two-phase tracer, ethanol, were injected into well 68-20RD. Surrounding production wells were sampled over the subsequent 125 days and analyzed for the two tracers. The results demonstrate the efficacy of the simultaneous use of liquid-phase and two-phase tracers in fluid-depleted geothermal

Note: This page contains sample records for the topic "doe-funding unknown exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Reflection Survey At Rye Patch Area (Deangelo, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

Deangelo, Et Al., 1999) Deangelo, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Rye Patch Area (Deangelo, Et Al., 1999) Exploration Activity Details Location Rye Patch Area Exploration Technique Reflection Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A 3-D seismic survey was recorded over Rye Patch geothermal field in northwest Nevada by Subsurface Exploration Company (SECO) of Pasadena, California, in 1998 (Fig. 27). This 3-D seismic data acquisition was done under the auspices of a research effort d References M. DeAngelo, B.A. Hardage, J. L. Simmons Jr. (1999) Development Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Retrieved from "http://en.openei.org/w/index.php?title=Reflection_Survey_At_Rye_Patch_Area_(Deangelo,_Et_Al.,_1999)&oldid=388047"

482

Surface Gas Sampling At Lightning Dock Area (Norman & Moore, 2004) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Lightning Dock Area (Norman & Moore, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lightning Dock Area (Norman & Moore, 2004) Exploration Activity Details Location Lightning Dock Area Exploration Technique Surface Gas Sampling Activity Date Usefulness useful DOE-funding Unknown References David I. Norman, Joseph Moore (2004) Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For Geothermal Exploration Retrieved from "http://en.openei.org/w/index.php?title=Surface_Gas_Sampling_At_Lightning_Dock_Area_(Norman_%26_Moore,_2004)&oldid=689367"

483

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System,

484

InSAR At Salton Sea Area (Eneva And Adams, 2010) | Open Energy Information  

Open Energy Info (EERE)

Eneva And Adams, 2010) Eneva And Adams, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: InSAR At Salton Sea Area (Eneva And Adams, 2010) Exploration Activity Details Location Salton Sea Area Exploration Technique InSAR Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mariana Eneva, David Adams (2010) Modeling Of Surface Deformation From Satellite Radar Interferometry In The Salton Sea Geothermal Field, California Retrieved from "http://en.openei.org/w/index.php?title=InSAR_At_Salton_Sea_Area_(Eneva_And_Adams,_2010)&oldid=400447" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

485

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al.,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al., Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System,

486

Gas Flux Sampling At Steamboat Springs Area (Lechler And Coolbaugh, 2007) |  

Open Energy Info (EERE)

Steamboat Springs Area (Lechler And Coolbaugh, 2007) Steamboat Springs Area (Lechler And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Steamboat Springs Area (Lechler And Coolbaugh, 2007) Exploration Activity Details Location Steamboat Springs Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Gaseous geochemical signatures vary from system to system and utilization of a multi-gas analytical approach to exploration or characterization should enhance the survey's clarity. This paper describes differences in the gaseous geochemical signatures between the Steamboat Springs and Brady's Hot Springs geothermal systems and illustrates the usefulness of Hg vapor in soils at Desert Peak for mapping the trends of concealed geologic

487

InSAR At Coso Geothermal Area (2000) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » InSAR At Coso Geothermal Area (2000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: InSAR At Coso Geothermal Area (2000) Exploration Activity Details Location Coso Geothermal Area Exploration Technique InSAR Activity Date 2000 Usefulness useful DOE-funding Unknown Exploration Basis To determine ground subsidence using satellite radar interferometry Notes Interferometric synthetic aperture radar (InSAR) data collected in the Coso geothermal area, eastern California, during 1993-1999 indicate ground subsidence over a approximately 50 km 2 region that approximately coincides

488

Ground Gravity Survey At Lake City Hot Springs Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

Lake City Hot Springs Area (Warpinski, Et Al., Lake City Hot Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lake City site, which is located in far northeastern California, consists of a previously identified geothermal site that has been explored with both geophysics and drilling (Hedel, 1981), but has not been characterized adequately to allow accurate siting or drilling of production wells. Some deep wells, several seismic lines, limited gravity surveys, and geochemical and geological studies have suggested that the geothermal

489

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) |  

Open Energy Info (EERE)

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. References Dick Benoit, David Blackwell (2006) Exploration Of The Upper Hot

490

Conceptual Model At Raft River Geothermal Area (1987) | Open Energy  

Open Energy Info (EERE)

Exploration Activity Details Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1987 Usefulness not indicated DOE-funding Unknown Exploration Basis To model the kinematics of compressional and extensional ductile shearing deformation Notes Analysis of shear criteria enables the kinematics of two main ductile-shearing events (D1 and D2) to be established in the Raft River, Grouse Creek and Albion 'metamorphic core complex'. The first event (D1) is a NNE-thrusting and corresponds to Mesozoic shortening. A well developed non-coaxial ductile deformation (D2), of Cenozoic age, is marked by the occurrence of opposing eastward (in Raft River) and westward shear criteria (in Albion-Grouse Creek). These characterize an arch structure

491

Rock Sampling At San Francisco Volcanic Field Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

San Francisco Volcanic Field Area (Warpinski, Et Al., San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration data, geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling targets and sites. Further work may occur in 2004 or 2005. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J.

492

Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Pre-existing evidence includes heat gradients of upwards of 490mW/m2 from thermal-gradient wells, tepid spring waters (32oC) and silica geochemistry indicating thermal waters with a minimum of 82oC at depth References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A Gred Iii Project Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Socorro_Mountain_Area_(Owens,_Et_Al.,_2005)&oldid=389518

493

Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005) | Open  

Open Energy Info (EERE)

Owens, Et Al., 2005) Owens, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes magneto-telluric surveys are pending for the near future when geochemical and surface geophysical surveys are complete. Results of this survey should verify the occurrence of low-resisitivity fluids and alteration at depth. References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A Gred Iii Project Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_Socorro_Mountain_Area_(Owens,_Et_Al.,_2005)&oldid=388765

494

Geothermal Literature Review At Coso Geothermal Area (1985) | Open Energy  

Open Energy Info (EERE)

5) 5) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1985 Usefulness not indicated DOE-funding Unknown Exploration Basis Need to develop a reservoir model for Coso Notes Analysis of complex geothermal system was done by looking at the available data on the Coso Geothermal Field References Austin, C.F.; Durbin, W.F. (1 September 1985) Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1985)&oldid=510801" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers

495

Modeling-Computer Simulations At Coso Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Modeling-Computer Simulations At Coso Geothermal Area (1980) Modeling-Computer Simulations At Coso Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1980 Usefulness useful DOE-funding Unknown Exploration Basis Estimate thermal regime and potential of the system Notes A three-dimensional generalized linear inversion of the delta t* observations was performed using a three-layer model. A shallow zone of high attenuation exists within the upper 5 km in a region bounded by Coso Hot Springs, Devils Kitchen, and Sugarloaf Mountain probably corresponding to a shallow vapor liquid mixture or "lossy" near surface lithology.

496

Multispectral Imaging At Teels Marsh Area (Kratt, Et Al., 2006) | Open  

Open Energy Info (EERE)

Multispectral Imaging At Teels Marsh Area (Kratt, Et Al., 2006) Multispectral Imaging At Teels Marsh Area (Kratt, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Teels Marsh Area (Kratt, Et Al., 2006) Exploration Activity Details Location Teels Marsh Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Mapped present-day borate evaporites in Teels and Rhodes Marsh with ASTER satellite imagery References C. Kratt, M. Coolbaugh, Wendy Calvin (2006) Remote Detection Of Quaternary Borate Deposits With Aster Satellite Imagery As A Geothermal Exploration Tool Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_At_Teels_Marsh_Area_(Kratt,_Et_Al.,_2006)&oldid=511018"

497

Geothermometry At Salt Wells Area (Edmiston & Benoit, 1984) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Salt Wells Area (Edmiston & Benoit, Geothermometry At Salt Wells Area (Edmiston & Benoit, 1984) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Geothermometry Activity Date 1980 - 1984 Usefulness useful DOE-funding Unknown Exploration Basis The blind Salt Wells geothermal system was first identified when Anadarko Petroleum Corporation drilled slim hole and geothermal exploration wells at the site in 1980. Two reports detail the results of this drilling activity. This paper seeks to (1) describe several moderate-temperature (150-200°C) geothermal systems discovered and drilled during the early 1980's that had not been documented previously in the literature, (2) summarize and compare chemical and temperature data from known moderate- to high-temperature (>200°C) in the region, and (3) to comment on the

498

Direct-Current Resistivity Survey At Coso Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1977 Usefulness useful regional reconnaissance DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes DC resistivity geophysical surveys determined that the secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5--30 ohm m) interpreted to be

499

Geothermal Literature Review (Majer, 2003) | Open Energy Information  

Open Energy Info (EERE)

Geothermal Literature Review (Majer, 2003) Geothermal Literature Review (Majer, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review (Majer, 2003) Exploration Activity Details Location Unspecified Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new geothermal resources and/or improve assessment of current ones.

500

Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Flow Test Activity Date Usefulness useful DOE-funding Unknown Notes Core holes enabled injection and flow testing up to 70 gpm. References Dick Benoit, Joe Moore, Colin Goranson, David Blackwell (2005) Core Hole Drilling And Testing At The Lake City, California Geothermal Field Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Lake_City_Hot_Springs_Area_(Benoit_Et_Al.,_2005)&oldid=386872" Category: Exploration Activities What links here Related changes