Sample records for doe wind vision

  1. WINDExchange Webinar: The DOE Wind Vision

    Broader source: Energy.gov [DOE]

    DOE's WINDExchange initiative will host a webinar presenting the Wind Program's Wind Vision, an effort to update and expand the 2008 DOE 20% Wind Energy by 2030 report. Given the huge changes...

  2. DOE Announces New Wind Vision Initiative at AWEA WINDPOWER Conference...

    Office of Environmental Management (EM)

    speech, Zayas said that the reason for revitalizing the vision now is threefold. First, wind power has seen significant improvements in both costs and technologies. Second, the...

  3. Wind Vision: Updating the DOE 20% Wind Energy by 2030 Report (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2014-04-01T23:59:59.000Z

    The 20% Wind Energy by 2030 report was developed as part of the Advanced Energy Initiative. Published in 2008, the report was largely based on information collected and analyzed in 2006. Much has changed since then, including shifts in technology, markets, and policy. The industry needs a new, clear, vision for wind power that is shared among stakeholders from the U.S. government, industry, academia, and NGO communities. At WINDPOWER 2013, the U.S. Department of Energy, in partnership with the American Wind Energy Association and the Wind Energy Foundation, launched a project to update the 20% report with new objectives. This conference poster outlines the elements of the new Wind Vision.

  4. Draft Industry Preview- Wind Vision Brochure

    Broader source: Energy.gov [DOE]

    This brochure contains highlights from DOEís Wind Vision study. Facts, figures, and projections are subject to change pending the release of the full Wind Vision report in early 2015.

  5. DOE Wind Vision Community | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind JumpCuttings

  6. Wind Vision Testimonials (Text Version) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind Vision Testimonials (Text Version) Wind Vision Testimonials (Text Version) Below is the text version for the Wind Vision Testimonials video. The video opens with the "Wind...

  7. DOE Wind Vision Community - Q & A | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind JumpCuttings AnalysisDCDFJTechnologiesHome

  8. Department of Energy Wind Vision: An Industry Preview | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Wind Vision: An Industry Preview Department of Energy Wind Vision: An Industry Preview The "Department of Energy Wind Vision: An Industry Preview,"...

  9. Wind Vision | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows -Vision Wind Vision Addthis

  10. Wind Vision | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows -Vision Wind Vision

  11. DOE Collegiate Wind Competition

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Collegiate Wind Competition will take place concurrently with the 2014 AWEA WINDPOWER Conference and Exhibition in Las Vegas. Spectators are encouraged to attend...

  12. Wind Program: Wind Vision | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind PowerWind

  13. Wind Vision Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois:4 Sector WindOaxacaWind

  14. DOE Collegiate Wind Competition (Presentation)

    SciTech Connect (OSTI)

    Jones, J.

    2014-02-01T23:59:59.000Z

    This presentation for the January Stakeholder Engagement and Outreach webinar outlines the expanded need for workers in the wind industry and provides an overview of the DOE Wind Competition (to be held in May 2014) and the guiding principles of the competition.

  15. EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicles & Batteries EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in Electric Vehicles EV Everywhere Grand Challenge: DOE's 10-Year Vision for...

  16. A Vision for Systems Engineering Applied to Wind Energy (Presentation)

    SciTech Connect (OSTI)

    Felker, F.; Dykes, K.

    2015-01-01T23:59:59.000Z

    This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

  17. U.S. DOE Collegiate Wind Competition

    Broader source: Energy.gov [DOE]

    The U.S. DOE Collegiate Wind Competition challenges teams to design a wind-driven system based on market research, develop a business plan to market the product, build and test the system against...

  18. A New Vision for United States Wind Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Information Resources A New Vision for United States Wind Power A New Vision for United States Wind Power In this video the Department of Energy reports preliminary findings of...

  19. Wind Vision Presentation | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind

  20. WINDExchange Webinar: DOE Wind Market Reports Overview

    Broader source: Energy.gov [DOE]

    Join Ryan Wiser of Lawrence Berkeley National Laboratory for an overview of the DOE 2013 Wind Technologies Market Report and Alice Orrell of Pacific Northwest National Laboratory for a presentation...

  1. Wind Vision: Continuing the Success of Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareersWind Vision: Continuing the Success of Wind

  2. An overview of DOE`s wind turbine development programs

    SciTech Connect (OSTI)

    Laxson, A; Dodge, D; Flowers, L [National Renewable Energy Lab., Golden, CO (United States); Loose, R; Goldman, P [Dept. of Energy, Washington, DC (United States)

    1993-09-01T23:59:59.000Z

    The development of technologically advanced, higher efficiency wind turbines continues to be a high priority activity of the US wind industry. The United States Department of Energy (DOE) is conducting and sponsoring a range of programs aimed at assisting the wind industry with system design, development, and testing. The overall goal is to develop systems that can compete with conventional electric generation for $.05/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with fossil-fuel-based generators for $.04/kWh at 5.8 m/s sites by the year 2000. These goals will be achieved through several programs. The Value Engineered Turbine Program will promote the rapid development of US capability to manufacture wind turbines with known and well documented records of performance, cost, and reliability, to take advantage of near-term market opportunities. The Advanced Wind Turbine Program will assist US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid 1990s) and to develop a new generation of turbines for the year 2000. The collaborative Electric Power Research Institute (EPRI)/DOE Utility Wind Turbine Performance Verification Program will deploy and evaluate commercial-prototype wind turbines in typical utility operating environments, to provide a bridge between development programs currently underway and commercial purchases of utility-grade wind turbines. A number of collaborative efforts also will help develop a range of small systems optimized to work in a diesel hybrid environment to provide electricity for smaller non-grid-connected applications.

  3. DOE Announces Webinars on an Offshore Wind Economic Impacts Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Offshore Wind Economic Impacts Model, Resources for Tribal Energy Efficiency Projects, and More DOE Announces Webinars on an Offshore Wind Economic Impacts Model, Resources for...

  4. DOE Science Showcase - Wind Power

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy,Converting to5994DOE AwardFinalSTTR

  5. Energy Based Methods in Wind Turbine Control CeSOS Highlights and AMOS Visions

    E-Print Network [OSTI]

    N√łrv√•g, Kjetil

    Energy Based Methods in Wind Turbine Control CeSOS Highlights and AMOS Visions Morten D. Pedersen 1 / 26 #12;This talk 1 Background 2 Understanding the Wind Turbine 3 Nonlinear Turbine Modeling 4;Background The Problem Previously stable wind turbine systems began exhibiting resonant behavior when put

  6. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Office of Environmental Management (EM)

    Secretary Ernest Moniz. The proposed Cape Wind project would use 3.6-MW offshore wind turbines that would provide a majority of the electricity needed for Cape Cod, Nantucket,...

  7. How Does a Wind Turbine Work?

    Broader source: Energy.gov [DOE]

    Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to...

  8. Comeback Kids Win DOEís Collegiate Wind Competition

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented with an unforeseen challenge, the Penn State University team went the distance to win the Energy Departmentís inaugural Collegiate Wind Competition.

  9. Department of Energy Wind Vision: An Industry Preview (Text Version...

    Broader source: Energy.gov (indexed) [DOE]

    energy source, wind has already helped the nation reduce its greenhouse gas, water, and air pollution footprint from the power sector. The 96 million metric tons of avoided CO2...

  10. DOE Announces New Wind Vision Initiative at AWEA WINDPOWER Conference |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThirdPartnershipDrilling Technologies | Department

  11. It's Time for a New Wind Vision (Text Version) | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    turbine on it. Over the past few years, wind energy has been one of the fastest growing energy markets both in the U.S. and worldwide, but what does that mean for our renewable...

  12. The EPRI/DOE Utility Wind Turbine Performance Verification Program

    SciTech Connect (OSTI)

    Calvert, S.; Goldman, P. [Department of Energy, Washington, DC (United States); DeMeo, E.; McGowin, C. [Electric Power Research Inst., Palo Alto, CA (United States); Smith, B.; Tromly, K. [National Renewable Energy Lab., Golden, CO (United States)

    1997-01-01T23:59:59.000Z

    In 1992, the Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) initiated the Utility Wind Turbine Performance Verification Program (TVP). This paper provides an overview of the TVP, its purpose and goals, and the participating utility projects. Improved technology has significantly reduced the cost of energy from wind turbines since the early 1980s. In 1992, turbines were producing electricity for about $0.07--$0.09/kilowatt-hour (kWh) (at 7 m/s [16 mph sites]), compared with more than $0.30/kWh in 1980. Further technology improvements were expected to lower the cost of energy from wind turbines to $0.05/kWh. More than 17,000 wind turbines, totaling more than 1,500 MW capacity, were installed in the US, primarily in California and Hawaii. The better wind plants had availabilities above 95%, capacity factors exceeding 30%, and operation and maintenance costs of $0.01/kWh. However, despite improving technology, EPRI and DOE recognized that utility use of wind turbines was still largely limited to turbines installed in California and Hawaii during the 1980s. Wind resource assessments showed that other regions of the US, particularly the Midwest, had abundant wind resources. EPRI and DOE sought to provide a bridge from utility-grade turbine development programs under way to commercial purchases of the wind turbines. The TVP was developed to allow utilities to build and operate enough candidate turbines to gain statistically significant operating and maintenance data.

  13. Sandia National Laboratories: DOE Wind Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-FarmCoolDOEEnergyDOEProgram Sandia

  14. Sandia National Laboratories: DOE Wind Program Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-FarmCoolDOEEnergyDOEProgram

  15. DOE/NREL Advanced Wind Turbine Development Program

    SciTech Connect (OSTI)

    Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

    1993-05-01T23:59:59.000Z

    The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

  16. DOE Office of Indian Energy Partners with ACEP to Study Wind...

    Energy Savers [EERE]

    DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems in Alaska DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems in Alaska February...

  17. Sandia National Laboratories: DOE Awards Wind Research Grants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-FarmCoolDOE DOE International

  18. Wind Vision: A New Era for Wind Power in the United States | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy Wind Power06

  19. How Does a Wind Turbine Work? | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossaryEnergy andAction Center ¬Ľ JobsDoes a Wind

  20. Sandia National Laboratories: DOE Wind Farm of the Future program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-FarmCoolDOEEnergyDOE

  1. ORIGINAL PAPER Insect attraction to wind turbines: does colour play a role?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ORIGINAL PAPER Insect attraction to wind turbines: does colour play a role? C. V. Long & J. A at wind turbine installations has been generating increasing con- cern, both for the continued development the phenomenon of avian and bat mortality at wind turbine installations, an issue that could potentially

  2. Does the infrasound from wind turbines affect the inner ear? Alec N. Salt1

    E-Print Network [OSTI]

    Salt, Alec N.

    Does the infrasound from wind turbines affect the inner ear? Alec N. Salt1 1 Washington University turbines adversely affects human health. The unweighted spectrum of wind turbine noise slowly rises (needing over 120 dB SPL to detect 2 Hz) it is claimed that infrasound generated by wind turbines is below

  3. DOE Announces Webinars on Solar Forecasting Metrics, the DOE Wind Vision,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergy

  4. NREL: Wind Research - NREL/DOE Develop Collaboration with Japan...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    challenges in the deployment of offshore wind energy, including an abundance of deep water and the need to design floating turbines capable of withstanding tropical weather...

  5. New Report Evaluates Impacts of DOE's Wind Powering America Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    address current and emerging barriers that could affect large-scale growth in wind energy capacity. Another recommendation was to continue utilizing the initiative's ability to...

  6. How Does Wind Affect Coal? Cycling, Emissions, and Costs (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Milligan, M.

    2011-05-01T23:59:59.000Z

    This presentation describes in general fashion what the emissions and economic impacts of wind power generation on fossil power plants looks like and also offers some mitigation ideas.

  7. DOE Announces Webinars on Economic Impacts of Offshore Wind,...

    Energy Savers [EERE]

    systems cost. Suzanne Tegen, National Renewable Energy Laboratory (NREL): Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios. This presentation...

  8. Win-Win for Wind and Wildlife: A Vision to Facilitate Sustainable Development

    E-Print Network [OSTI]

    Foresman, Kerry R.

    , North Dakota, United States of America Abstract Wind energy offers the potential to reduce carbon for the U.S. by 2030. We estimate there are ,7,700 GW of potential wind energy available across the U as development based solely on maximizing wind potential. Wind subsidies targeted at favoring low

  9. How Does the Eye Warm? Part II: Sensitivity to Vertical Wind Shear and a Trajectory Analysis

    E-Print Network [OSTI]

    How Does the Eye Warm? Part II: Sensitivity to Vertical Wind Shear and a Trajectory Analysis DANIEL of vertical wind shear on the structure of warming and descent in the eye; results are compared with the no environment, time-averaged eye descent is maximized at 12­13-km height. Warming is not generally maximized

  10. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...

    Energy Savers [EERE]

    Project (CIP). The CIP aims to help U.S. manufacturers of small and mid-sized wind turbines with rotor swept areas up to 1,000 square meters improve their turbine designs and...

  11. New DOE Report Investigates Port Readiness for Offshore Wind | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarkets with Wind Power |Energyof Energy

  12. New DOE Report Reveals Significant Growth in Distributed Wind | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarkets with Wind Power |Energyof

  13. DOE Releases 2010 Wind Technologies Market Report | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOEInfrastructureEnergyRecordsofDepartmentDOE

  14. Sandia National Laboratories: DOE/Sandia Scaled Wind Farm Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia InvolvesDOE-BER NASA Award for MarginalSandia Scaled

  15. DOE: Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets

    SciTech Connect (OSTI)

    Brooks, Daniel, EPRI; Tuohy, Aidan, EPRI; Deb, Sidart, LCG Consulting; Jampani, Srinivas, LCG Consulting; Kirby, Brendan, Consultant; King, Jack, Consultant

    2011-11-29T23:59:59.000Z

    Wind power development in the United States is outpacing previous estimates for many regions, particularly those with good wind resources. The pace of wind power deployment may soon outstrip regional capabilities to provide transmission and integration services to achieve the most economic power system operation. Conversely, regions such as the Southeastern United States do not have good wind resources and will have difficulty meeting proposed federal Renewable Portfolio Standards with local supply. There is a growing need to explore innovative solutions for collaborating between regions to achieve the least cost solution for meeting such a renewable energy mandate. The DOE-funded project 'Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets' aims to evaluate the benefits of coordination of scheduling and balancing for Southwest Power Pool (SPP) wind transfers to Southeastern Electric Reliability Council (SERC) Balancing Authorities (BAs). The primary objective of this project is to analyze the benefits of different balancing approaches with increasing levels of inter-regional cooperation. Scenarios were defined, modeled and investigated to address production variability and uncertainty and the associated balancing of large quantities of wind power in SPP and delivery to energy markets in the southern regions of the SERC. The primary analysis of the project is based on unit commitment (UC) and economic dispatch (ED) simulations of the SPP-SERC regions as modeled for the year 2022. The UC/ED models utilized for the project were developed through extensive consultation with the project utility partners, to ensure the various regions and operational practices are represented as accurately as possible realizing that all such future scenario models are quite uncertain. SPP, Entergy, Oglethorpe Power Company (OPC), Southern Company, and the Tennessee Valley Authority (TVA) actively participated in the project providing input data for the models and review of simulation results and conclusions. While other SERC utility systems are modeled, the listed SERC utilities were explicitly included as active participants in the project due to the size of their load and relative proximity to SPP for importing wind energy. The analysis aspects of the project comprised 4 primary tasks: (1) Development of SCUC/SCED model of the SPP-SERC footprint for the year 2022 with only 7 GW of installed wind capacity in SPP for internal SPP consumption with no intended wind exports to SERC. This model is referred to as the 'Non-RES' model as it does not reflect the need for the SPP or SERC BAs to meet a federal Renewable Energy Standard (RES). (2) Analysis of hourly-resolution simulation results of the Non-RES model for the year 2022 to provide project stakeholders with confidence in the model and analytical framework for a scenario that is similar to the existing system and more easily evaluated than the high-wind transfer scenarios that are analyzed subsequently. (3) Development of SCUC/SCED model of the SPP-SERC footprint for the year 2022 with sufficient installed wind capacity in SPP (approximately 48 GW) for both SPP and the participating SERC BAs to meet an RES of 20% energy. This model is referred to as the 'High-Wind Transfer' model with several different scenarios represented. The development of the High-Wind Transfer model not only included identification and allocation of SPP wind to individual SERC BAs, but also included the evaluation of various methods to allow the model to export the SPP wind to SERC without developing an actual transmission plan to support the transfers. (4) Analysis of hourly-resolution simulation results of several different High-Wind Transfer model scenarios for the year 2022 to determine balancing costs and potential benefits of collaboration among SPP and SERC BAs to provide the required balancing.

  16. Hawaii Hydrogen Power Park The U.S. Department of Energy (U.S. DOE) has promoted the vision that the transition to a

    E-Print Network [OSTI]

    ). The objective of the PICHTR project was developing and testing the use of wind and solar power to power small demonstration program we used the electricity generated by the wind turbine and solar array to powerHawaii Hydrogen Power Park Background The U.S. Department of Energy (U.S. DOE) has promoted

  17. 10-Year Strategic Vision: Forging the Future of the DOE JGI

    SciTech Connect (OSTI)

    None

    2012-09-01T23:59:59.000Z

    Dramatic technological advances in genomics continue to transform modern biology. The DOE Joint Genome Institute (DOE JGI) has been at the leading edge of large-scale sequence-based science from its inception. Presently our ability to generate genomic data greatly outpaces our capacity to convert these data into biological insights. Bridging the gap between a sequenced genome and understanding of organism-scale functions is a significant unsolved problem in modern biology. Consequently, as the DOE JGI plans for its future, a major objective is to couple the generation of sequence data with the development of new large-scale experimental and computational capabilities to functionally annotate DNA sequences, thereby narrowing the gap between generation and interpretation of sequence data.

  18. EA-1800: DOEís Proposed Financial Assistance to Illinois for the Monarch Warren County Wind Turbine Project, Lenox Township, Warren County, Illinois

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has provided Federal funding to the Illinois Department of Commerce and Economic Opportunity (DCEO) under the State Energy Program (SEP). DCEO is seeking to provide $5 million of its SEP funds to Monarch Wind Power (MWP), who would use these funds for the design, permitting, and construction of 12, 1.6-megawatt wind turbines, for a combined generation capacity of 19.2 megawatts.

  19. Wind Vision Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry SoarsStructural1 2

  20. DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin; White, Jonathan

    2011-09-01T23:59:59.000Z

    The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

  1. DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential...

    Energy Savers [EERE]

    Wind Strategy report cover featuring a photo of a receding line of offshore wind turbines in the ocean. The winds of change are blowing for renewable energy policy, and...

  2. DOE 2012 Market Report on U.S. Wind Technologies for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Global Distributed Wind Market (Poster) - Matt Gagne, eFormative Options Using the Wind Policy Tool to Examine Potential Feed-In Tariffs in the United States (Poster) - Matt...

  3. DOE Study finds U.S. Wind Industry Competitive, Efficient, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the global marketplace and their readiness to supply the next generation of wind turbines. Based on a cost breakdown analysis of participating suppliers, the study found...

  4. Microsoft Word - DOE EA 1939-Final EA CCET Wind Energy at RTC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery facility and foundation, (3) an access road, and (4) site clearing. Two wind turbines and foundations would also be constructed as part of the proposed action. Although...

  5. Analysis of SNL/MSU/DOE fatigue database trends for wind turbine blade materials.

    SciTech Connect (OSTI)

    Mandell, John F. (Montana State University, Bozeman, MT); Ashwill, Thomas D.; Wilson, Timothy J. (Montana State University, Bozeman, MT); Sears, Aaron T. (Montana State University, Bozeman, MT); Agastra, Pancasatya (Montana State University, Bozeman, MT); Laird, Daniel L.; Samborsky, Daniel D. (Montana State University, Bozeman, MT)

    2010-12-01T23:59:59.000Z

    This report presents an analysis of trends in fatigue results from the Montana State University program on the fatigue of composite materials for wind turbine blades for the period 2005-2009. Test data can be found in the SNL/MSU/DOE Fatigue of Composite Materials Database which is updated annually. This is the fifth report in this series, which summarizes progress of the overall program since its inception in 1989. The primary thrust of this program has been research and testing of a broad range of structural laminate materials of interest to blade structures. The report is focused on current types of infused and prepreg blade materials, either processed in-house or by industry partners. Trends in static and fatigue performance are analyzed for a range of materials, geometries and loading conditions. Materials include: sixteen resins of three general types, five epoxy based paste adhesives, fifteen reinforcing fabrics including three fiber types, three prepregs, many laminate lay-ups and process variations. Significant differences in static and fatigue performance and delamination resistance are quantified for particular materials and process conditions. When blades do fail, the likely cause is fatigue in the structural detail areas or at major flaws. The program is focused strongly on these issues in addition to standard laminates. Structural detail tests allow evaluation of various blade materials options in the context of more realistic representations of blade structure than do the standard test methods. Types of structural details addressed in this report include ply drops used in thickness tapering, and adhesive joints, each tested over a range of fatigue loading conditions. Ply drop studies were in two areas: (1) a combined experimental and finite element study of basic ply drop delamination parameters for glass and carbon prepreg laminates, and (2) the development of a complex structured resin-infused coupon including ply drops, for comparison studies of various resins, fabrics and pry drop thicknesses. Adhesive joint tests using typical blade adhesives included both generic testing of materials parameters using a notched-lap-shear test geometry developed in this study, and also a series of simulated blade web joint geometries fabricated by an industry partner.

  6. DOE SBIR Phase II Final Technical Report - Assessing Climate Change Effects on Wind Energy

    SciTech Connect (OSTI)

    Whiteman, Cameron; Capps, Scott

    2014-11-05T23:59:59.000Z

    Specialized Vertum Partners software tools were prototyped, tested and commercialized to allow wind energy stakeholders to assess the uncertainties of climate change on wind power production and distribution. This project resulted in three commercially proven products and a marketing tool. The first was a Weather Research and Forecasting Model (WRF) based resource evaluation system. The second was a web-based service providing global 10m wind data from multiple sources to wind industry subscription customers. The third product addressed the needs of our utility clients looking at climate change effects on electricity distribution. For this we collaborated on the Santa Ana Wildfire Threat Index (SAWTi), which was released publicly last quarter. Finally to promote these products and educate potential users we released ďGust or BustĒ, a graphic-novel styled marketing publication.

  7. Cherokee Nation Enterprises Wind Energy Feasibility Study Final Report to U.S. DOE

    SciTech Connect (OSTI)

    Carol E. Wyatt

    2006-04-30T23:59:59.000Z

    CNE has conducted a feasibility study on the Chilocco property in north-central Oklahoma since the grant award on July 20, 2003. This study has concluded that there is sufficient wind for a wind farm and that with the Production Tax Credits and Green Tags, there will be sufficient energy to, not only cover the costs of the Nationís energy needs, but to provide a profit. CNE has developed a wind energy team and is working independently and with industry partners to bring its renewable energy resources to the marketplace. We are continuing with the next phase in conducting avian, cultural and transmission studies, as well as continuing to measure the wind with the SoDAR unit. Cherokee Nation Enterprises, Inc. is a wholly-owned corporation under Cherokee Nation and has managed the Department of Energy grant award since July 20, 2003. In summary, we have determined there is sufficient wind for a wind farm at the Chilocco property where Cherokee Nation owns approximately 4,275 acres. The primary goal would be more of a savings in light of the electricity used by Cherokee Nation and its entities which totals an estimated eight million dollars per year. Cherokee Nation Enterprises (CNE), working independently and with industry partners, plans to bring its renewable energy resources into the marketplace through a well-documented understanding of our undeveloped resource. Our plan is to cultivate this resource in a way that will ensure the development and use for our energy will be in an environmentally and culturally acceptable form.

  8. What does it take to create a clean energy future for Washington? Solar, Wind, Hydro

    E-Print Network [OSTI]

    Hochberg, Michael

    Solar, Wind, Hydro A Complete Energy System Home and Commercial Generation Demand Response 10-10 m 10's leadership and economic advantages in clean energy. - The mission of the Clean Energy Institute is to accelerate the adoption of a clean energy future by advancing next generation solar energy and electrical

  9. DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContractto Host aDesignDOE's Use ofDOE,

  10. Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...

    Broader source: Energy.gov (indexed) [DOE]

    This wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams competing in DOE's Collegiate Wind Competition. This wind tunnel...

  11. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    Planning (Xcel). 2006. Wind Integration Study Report OfTransmission Vision for Wind Integration. White Paper.Charles Smith (Utility Wind Integration Group), Lynn Coles (

  12. DOE/EIS-0485 Draft Environmental Impact Statement Grande Prairie Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department DOE-STD-1171-2003DepartmentDOE/EIS-0350-SA-2COVER

  13. New DOE Modeling Tool Estimates Economic Benefits of Offshore Wind Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarkets with Wind Power |Energy New

  14. New DOE Reports Assess Offshore Wind Market and Supply Chain | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarkets with Wind Power |Energyofof

  15. Wind Vision Chapter 1: Introduction to the Wind Vision

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry SoarsStructural1 2 1

  16. Wind Vision Chapter 3: Impacts of the Wind Vision

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry SoarsStructural1 2 12

  17. Analysis of Mesoscale Model Data for Wind Integration (Poster)

    SciTech Connect (OSTI)

    Schwartz, M.; Elliott, D.; Lew, D.; Corbus, D.; Scott, G.; Haymes, S.; Wan, Y. H.

    2009-05-01T23:59:59.000Z

    Supports examination of implications of national 20% wind vision, and provides input to integration and transmission studies for operational impact of large penetrations of wind on the grid.

  18. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    E-Print Network [OSTI]

    Kay, J.

    2009-01-01T23:59:59.000Z

    Wind Energy tics for Large Arrays Statis- of Wind Turbines (Wind Energy tics for Large Arrays Statis- of Wind Turbines (

  19. Wind Vision | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome toFarm Growth Through the

  20. Three DOE Reports Analyze U.S. Wind Energy Growth | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1Telework Telework The|Conversionof Energy ThinkThisDOE

  1. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    AWEA?s Wind Energy Weekly, DOE/EPRI?s Turbine Verification10% Wind Energy Penetration New large-scale 9 wind turbineswind energy continues to decline as a result of lower wind turbine

  2. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    AWEAís Wind Energy Weekly, DOE/EPRIís Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbinesTurbine Market Report. Washington, D.C. : American Wind Energy

  3. DOE

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy Outlook QuarterlyDOE

  4. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    AWEAís Wind Energy Weekly, DOE/EPRIís Turbine VerificationTurbine Global Market Study: Year Ending 2008. Washington, DC: American Wind Energy

  5. COURSE SYLLABUS Course Title and Number: OPTI 200 Light, Color, and Vision

    E-Print Network [OSTI]

    Arizona, University of

    eyeglasses or contacts to correct vision. - have an understanding of what the LASIK procedure is and does

  6. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEAís Wind Energy Weekly, DOE/EPRIís Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

  7. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    E-Print Network [OSTI]

    Kay, J.

    2009-01-01T23:59:59.000Z

    relationship between potential wind speed and theoreticalfirm contracts. Potential wind investors face considerable15 with optimism the potential that wind, photovoltaic, and

  8. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    of the U.S. DOEís Wind & Hydropower Technologies Program. Weand Renewable Energy (Wind & Hydropower Technologies ProgramManager Office of Wind and Hydropower Technologies Energy

  9. Toward a 20% Wind Electricity Supply in the United States: Preprint

    SciTech Connect (OSTI)

    Flowers, L.; Dougherty, P.

    2007-05-01T23:59:59.000Z

    Since the U.S. Department of Energy (DOE) initiated the Wind Powering America (WPA) program in 1999, installed wind power capacity in the United States has increased from 2,500 MW to more than 11,000 MW. In 1999, only four states had more than 100 MW of installed wind capacity; now 16 states have more than 100 MW installed. In addition to WPA's efforts to increase deployment, the American Wind Energy Association (AWEA) is building a network of support across the country. In July 2005, AWEA launched the Wind Energy Works! Coalition, which is comprised of more than 70 organizations. In February 2006, the wind deployment vision was enhanced by President George W. Bush's Advanced Energy Initiative, which refers to a wind energy contribution of up to 20% of the electricity consumption of the United States. A 20% electricity contribution over the next 20 to 25 years represents 300 to 350 gigawatts (GW) of electricity. This paper provides a background of wind energy deployment in the United States and a history of the U.S. DOE's WPA program, as well as the program's approach to increasing deployment through removal of institutional and informational barriers to a 20% wind electricity future.

  10. Strengthening America's Energy Security with Offshore Wind (Fact Sheet) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This fact sheet provides a brief description of offshore wind energy development in the U.S. and DOE's Wind Program offshore wind R&D activities.

  11. Vision Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley winsVideo History Fusion1.1 The2Vision

  12. Sandia National Laboratories: Wind and Water Materials and Structures...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

  13. Hawai`i Hydrogen Power Park The U.S. Department of Energy (U.S. DOE) has promoted the vision that the transition to a

    E-Print Network [OSTI]

    the capability of dispensing hydrogen for hydrogen-fueled vehicles. The U.S.DOE has named these hydrogen DG was supplied to a fuel cell to produce electrical power. The hydrogen could also have been used to fuel storage. Built and tested at the Fuel Cell test facility, the hydrogen storage system includes an Electric

  14. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Renewable Energy and Energy Efficiency, DOE. LBNL 275-E Advanced Coal Wind Hybrid:Renewable Energy Laboratory), and Ryan Wiser ( LBNL). i Advanced Coal Wind Hybrid:

  15. DOE Releases EPRI Report on Benefits of Regional Coordination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Releases EPRI Report on Benefits of Regional Coordination in Wind Energy Transfers DOE Releases EPRI Report on Benefits of Regional Coordination in Wind Energy Transfers...

  16. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    E-Print Network [OSTI]

    Kay, J.

    2009-01-01T23:59:59.000Z

    W.R. (May 1977), Wind Energy tics for Large Arrays Statis-of the Current Status of Wind Energy Innovative Systems1980), Technology ment of Wind Energy Conversion Systems,

  17. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    E-Print Network [OSTI]

    Kay, J.

    2009-01-01T23:59:59.000Z

    tax SIR Private after-tax SIR IX: Wind Electricity in thetax SIR Private after-tax SIR V: Wind Electricity Generationtax SIR Private after-tax SIR VI: Wind Electricity at the

  18. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    E-Print Network [OSTI]

    Kay, J.

    2009-01-01T23:59:59.000Z

    W.R. (May 1977), Wind Energy tics for Large Arrays Statis-land-use related permits. Wind Energy Report (May 1981) p.2.R. Cappelli, B. Dawley, I. Wind Energy Conversion System

  19. Information architecture. Volume 4: Vision

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    The Vision document marks the transition from definition to implementation of the Department of Energy (DOE) Information Architecture Program. A description of the possibilities for the future, supported by actual experience with a process model and tool set, points toward implementation options. The directions for future information technology investments are discussed. Practical examples of how technology answers the business and information needs of the organization through coordinated and meshed data, applications, and technology architectures are related. This document is the fourth and final volume in the planned series for defining and exhibiting the DOE information architecture. The targeted scope of this document includes DOE Program Offices, field sites, contractor-operated facilities, and laboratories. This document paints a picture of how, over the next 7 years, technology may be implemented, dramatically improving the ways business is conducted at DOE. While technology is mentioned throughout this document, the vision is not about technology. The vision concerns the transition afforded by technology and the process steps to be completed to ensure alignment with business needs. This goal can be met if those directing the changing business and mission-support processes understand the capabilities afforded by architectural processes.

  20. NPP's Role in BSA Vision and Plans

    E-Print Network [OSTI]

    ­ Distinguished Core universities: Columbia, Cornell, Harvard, MIT, Princeton, and Yale Impressive track record impact on DOE's mission Deep, proven and passionate management team, committed to the vision, to BNL; and accelerates DOE's mission in high energy physics, applied energy sciences, environmental/biological sciences

  1. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    E-Print Network [OSTI]

    Kay, J.

    2009-01-01T23:59:59.000Z

    cost city probably overstates the value of wind energy.wind energy conversion system in the South Bronx in New York City.

  2. COHERENT LASER VISION SYSTEM (CLVS) OPTION PHASE

    SciTech Connect (OSTI)

    Robert Clark

    1999-11-18T23:59:59.000Z

    The purpose of this research project was to develop a prototype fiber-optic based Coherent Laser Vision System (CLVS) suitable for DOE's EM Robotic program. The system provides three-dimensional (3D) vision for monitoring situations in which it is necessary to update the dimensional spatial data on the order of once per second. The system has total immunity to ambient lighting conditions.

  3. Best Practices in Literature Research for the 10-Year Extreme Wind Update at the DOE Pantex Site

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley Responsible DOE Office: Office-85(1).pdf094May, 2013 U.3 STAT.

  4. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    M. ( 2011). 2010 Wind Technologies Market Report. DOE/GO-Ashwill, T. (2008). Technology Improvement Opportunities forWind Power in Denmark: Technologies, Policies, and Results.

  5. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of wind turbine assessment based on energy, exergy, LCA andLCA and emergy) in the case of sustainability assessment of windLCA does. In emergy analysis, direct and indirect inputs of wind

  6. Chaninik Wind Group Wind Heat Smart Grids Final Report

    SciTech Connect (OSTI)

    Meiners, Dennis [Technical Contact

    2013-06-29T23:59:59.000Z

    Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

  7. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01T23:59:59.000Z

    and the issues. Ē Wind Energy, 7(4), 373Ė392. Somerville, P.Outlook 2007. American Wind Energy Association, Washington,UK. DOE (2008). ď20% wind energy by 2030: Increasing wind

  8. Wind Vision Testimonials | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows -

  9. Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...

    Office of Environmental Management (EM)

    - 5:11pm Addthis This wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams competing in DOE's Collegiate Wind Competition....

  10. 3D Computer Vision and Video Computing 3D Vision3D Vision

    E-Print Network [OSTI]

    Zhu, Zhigang

    3D Computer Vision and Video Computing 3D Vision3D Vision CSC I6716 Fall 2010 Topic 1 of Part II Camera Models Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu #12;3D Computer Vision and Video Computing 3D Vision3D Vision Closely Related Disciplines Image Processing ­ images to mages Computer

  11. 3D Computer Vision and Video Computing 3D Vision3D Vision

    E-Print Network [OSTI]

    Zhu, Zhigang

    1 3D Computer Vision and Video Computing 3D Vision3D Vision Topic 1 of Part II Camera Models CSC I6716 Spring2011 Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing 3D Vision3D Vision Closely Related Disciplines Image Processing ­ images to mages Computer

  12. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    AWEAís Wind Energy Weekly, DOE/EPRIís Turbine Verificationthe latest turbine models. The U.S. DOE Wind Energy Program

  13. National Action Plan for Energy Efficiency Vision for 2025-A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy. You have dialed into the DOE TAP Webcast titled National Action Plan For Energy Efficiency Vision for 2025, a Framework For Change. And we have Stacy Angel, who is the...

  14. Wind Vision Chapter 2: Wind Power in the United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry SoarsStructural1 2 12 2

  15. DOE-ID Mission and Vision

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice of ScientificSolar Residence by

  16. BLUE VIEW VISION INSIGHT! Good news--your vision plan

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    WELCOME TO BLUE VIEW VISION INSIGHT! Good news--your vision plan is flexible and easy to use, your discounts, and much more! Blue View Vision InsightSM University of California Student Health Insurance Plan (UC SHIP) 2013/14 Your Blue View Vision Insight Network Blue View Vision Insight offers you

  17. BLUE VIEW VISION INSIGHT! Good news--your vision plan

    E-Print Network [OSTI]

    Barrett, Jeffrey A.

    WELCOME TO BLUE VIEW VISION INSIGHT! Good news--your vision plan is flexible and easy to use, your discounts, and much more! Blue View Vision InsightSM University of California Student Health Insurance Plan (UC SHIP) 2012/13 Your Blue View Vision Insight Network Blue View Vision Insight offers you

  18. The Economic Impact of Wind Power on Ercot Regulation Market.

    E-Print Network [OSTI]

    Zheng, Bin

    2013-01-01T23:59:59.000Z

    ??U.S. wind power generation has grown rapidly in the last decade due to government policies designed to reduce pollution. Although wind power does not contributeÖ (more)

  19. 3D Computer Vision and Video Computing 3D Vision3D Vision

    E-Print Network [OSTI]

    Zhu, Zhigang

    1 3D Computer Vision and Video Computing 3D Vision3D Vision CSc I6716 Fall 2010 Topic 3 of Part II Stereo Vision Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing Stereo VisionStereo Vision Problem Infer 3D structure of a scene from two or more images taken

  20. 3D Computer Vision and Video Computing 3D Vision3D Vision

    E-Print Network [OSTI]

    Zhu, Zhigang

    1 3D Computer Vision and Video Computing 3D Vision3D Vision CSc I6716 Spring 2011 Topic 3 of Part II Stereo Vision p g Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing Stereo VisionStereo Vision Problem Infer 3D structure of a scene from two or more images

  1. CCPExecutiveSummary Storing Wind

    E-Print Network [OSTI]

    Feigon, Brooke

    CCPExecutiveSummary July 2011 Storing Wind for a Rainy Day W: www.uea.ac.uk/ccp T: +44 (0)1603 593715 A: UEA, Norwich, NR4 7TJ Storing Wind for a Rainy Day: What kind of electricity does Denmark export? BACKGROUND The last decade has seen a remarkable increase in the number of wind installations

  2. E-Print Network 3.0 - arctic wind technology Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arctic wind technology Search Powered by Explorit Topic List Advanced Search Sample search results for: arctic wind technology Page: << < 1 2 3 4 5 > >> 1 NOAA's Arctic VisiON &...

  3. Making Computer Vision Computationally Efficient

    E-Print Network [OSTI]

    Sundaram, Narayanan

    2012-01-01T23:59:59.000Z

    Workloads 4 Parallelizing Computer Vision 4.1 Numerical9.1.1 Pattern analysis of computer vision workloads 9.1.23 Understanding Computer Vision 3.1 Patterns and

  4. DOE Announces Webinars on Pedestrian-Friendly Nighttime Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pedestrian-Friendly Nighttime Lighting, an Offshore Wind Economic Impacts Model, and More DOE Announces Webinars on Pedestrian-Friendly Nighttime Lighting, an Offshore Wind...

  5. Wind derivatives: hedging wind risk:.

    E-Print Network [OSTI]

    Hoyer, S.A.

    2013-01-01T23:59:59.000Z

    ??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these windÖ (more)

  6. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    E-Print Network [OSTI]

    Kay, J.

    2009-01-01T23:59:59.000Z

    Thus, the net marginal investment costs of the wind systemi f any: Total net investment costs before: and after tax:$426 = (11) Total net investment costs before: $5836 and

  7. Retrospective Benefit-Cost Evaluation of DOE Investment in Photovoltai...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrospective Benefit-Cost Evaluation of DOE Investment in Photovoltaic Energy Systems solarpv.pdf More Documents & Publications SunShot Vision Study: February 2012 (Book),...

  8. NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects

    Broader source: Energy.gov [DOE]

    In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

  9. Wind Vision Chapter 4: The Wind Vision Roadmap: A Pathway Forward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry SoarsStructural1 2 124

  10. An Autonomous Excavator with Vision-Based Track Slippage Control

    E-Print Network [OSTI]

    Lowe, David

    1 An Autonomous Excavator with Vision-Based Track Slippage Control Parvaneh Saeedi, Peter D, such as lifting and carrying loads, digging and ground level- ing. Autonomous controls for driving or assisting of noise. Sonar, a low resolution system, is sensitive to environmental disturbances (wind, temperature

  11. Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy.

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy. Wind's variability does increase the day-to-day and minute-to- minute operating costs of a utility system because the wind variations do affect the operation of other plants. But investigations by utility

  12. DOEGO85004_1: Final Non-proprietary Technical Report, Generating Process and Economic Data for Preliminary Design of PureVision Biorefineries DOEGO85004_2: One Original Final Proprietary Technical Report to be mailed to DOE Golden.

    SciTech Connect (OSTI)

    Kadam, Kiran L., Ph.D; Lehrburger, Ed

    2008-01-17T23:59:59.000Z

    The overall objective of the project was to define a two-stage reactive fractionation process for converting corn stover into a solid cellulose stream and two liquid streams containing mostly hemicellulosic sugars and lignin, respectively. Toward this goal, biomass fractionation was conducted using a small continuous pilot unit with a nominal capacity of 100 pounds per day of dry biomass to generate performance data using primarily corn stover as feedstock. In the course of the program, the PureVision process was optimized for efficient hemicellulose hydrolysis in the first stage employing autohydrolysis and delignification in the second stage using sodium hydroxide as a catalyst. The remaining cellulose was deemed to be an excellent substrate for producing fermentation sugars, requiring 40% less enzymes for hydrolysis than conventional pretreatment systems using dilute acid. The fractionated cellulose was also determined to have potential higher-value applications as a pulp product. The lignin coproduct was determined to be substantially lower in molecular weight (MW) compared to lignins produced in the kraft or sulfite pulping processes. This low-MW lignin can be used as a feed and concrete binder and as an intermediate for producing a range of high-value products including phenolic resins. This research adds to the understanding of the biomass conversion area in that a new process was developed in the true spirit of biorefineries. The work completed successfully demonstrated the technical effectiveness of the process at the pilot level indicating the technology is ready to advance to a 2Ė3 ton per day scale. No technical showstoppers are anticipated in scaling up the PureVision fractionation process to commercial scale. Also, economic feasibility of using the PureVision process in a commercial-scale biorefinery was investigated and the minimum ethanol selling price for the PureVision process was calculated to be $0.94/gal ethanol vs. $1.07/gal ethanol for the NREL process. Thus, the PureVision process is economically attractive. Given its technical and economic feasibility, the project is of benefit to the public in the following ways: 1) it demonstrated a novel biomass fractionation process that can provide domestic supply of renewable transportation fuel from all three biomass components (cellulose, hemicellulose and lignin), 2) the lignin stream from the process has many higher-value applications beyond simply burning the lignin for energy as proposed by competing technologies, 3) it can be deployed in rural areas and create jobs in these areas, and 3) it can add to the nationís economy and security.

  13. EIS-0418: PrairieWinds Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve the interconnection request from PrairieWinds for their South Dakota PrairieWinds Project, a 151.5-megawatt (MW) nameplate capacity wind powered generation facility, including 101 General Electric 1.5-MW wind turbine generators, electrical collector lines, collector substation, transmission line, communications system, and wind turbine service access roads.

  14. 2009 Wind Technologies Market Report: Executive Summary

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2010-08-01T23:59:59.000Z

    This is the Executive Summary of the full report entitled 2009 Wind Technologies Market Report (DOE/GO-102010-3107).

  15. Fatigue of Wind Blade Laminates:Fatigue of Wind Blade Laminates: Effects of Resin and Fabric Structure

    E-Print Network [OSTI]

    Fatigue of Wind Blade Laminates:Fatigue of Wind Blade Laminates: Effects of Resin and Fabric University MCARE 2012 #12;Outline · Overview of MSU Fatigue Program on Wind Blade MaterialsWind Blade Wind Blade Component Materials Acknowledgements: Sandia National Laboratories/DOE (Joshua Paquette

  16. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

  17. NREL: Wind Research - U.S. Department of Energy Wind Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy Wind Program Announces New Round of Funding for 2016 Collegiate Wind Competition October 30, 2014 The U.S. Department of Energy's (DOE's) National...

  18. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Reference Case Service Report, April 2009). DOE/EIA-0383(Integration StudyóFinal Report. Prepared for Xcel Energy andWind Technologies Market Report EnerNex Corp. and Windlogics

  19. Abstract--This paper presents a comparison of lateral controllers for vision-based control of a small autonomous

    E-Print Network [OSTI]

    Frew, Eric W.

    of a small autonomous aircraft following a road. Control strategies are designed to stabilize the aircraft conditions as well as with background wind, a zero-roll assumption in the vision system, and realistic presented here is to enable vision- based following of a roadway by small, autonomous aircraft using only

  20. Vision 2020 |LSU Residential Colleges Program Vision 2020

    E-Print Network [OSTI]

    Harms, Kyle E.

    Vision 2020 |LSU Residential Colleges Program Vision 2020 Residential Colleges Program Department of Residential Life Louisiana State University Strategic Plan 24 November 2011 Robert V. Rohli Faculty Director #12;Vision 2020 | LSU Residential Colleges Program 11.24.2011 Page | - 2 - Mission Statement MISSION

  1. National Hydrogen Vision Meeting Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document provides presentations and summaries of the notes from the National Hydrogen Vision Meeting''s facilitated breakout sessions. The Vision Meeting, which took place November 15-16, 2001, k

  2. Just Books Seminar VISIONS OF THE AMERICAN ENVIRONMENT: IMAGES TO ACTION

    E-Print Network [OSTI]

    Snider, Barry B.

    2 Just Books Seminar VISIONS OF THE AMERICAN ENVIRONMENT: IMAGES TO ACTION Spring 2013 posted X63075, goldin@brandeis.edu What role does the natural environment play in the North American of the natural environment in the North American vision, through the lens of books and selected readings, films

  3. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright © 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

  4. VISIONS FOR A SUSTAINABLE

    E-Print Network [OSTI]

    Riesenhuber, Maximilian

    THE VISIONS FOR A SUSTAINABLE GEORGETOWN INITIATIVE study with recommendations for a campus climate action plan prepared for the Hoyas Roundtable on Sustainability MARCH 15, 2012 THE HOYA ROUNDTABLE SERIES: SPOTLIGHT ON SUSTAINABILITY GEORGETOWN SUSTAINABILITY #12;Georgetown University is taking major steps toward

  5. Wind for Schools Project Curriculum Brief (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding education to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institutions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more graduate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and related components and services to European countries. DOE's Wind Powering America initiative launched the Wind for Schools project to develop a wind energy knowledge base among future leaders of our communities, states, and nation while raising awareness about wind energy's benefits. This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

  6. Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE)

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  7. Wasted Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    why turbulent airflows are causing power losses and turbine failures in America's wind farms-and what to do about it April 1, 2014 Wasted Wind This aerial photo of Denmark's Horns...

  8. Wind Energy

    Broader source: Energy.gov [DOE]

    Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  9. Wind Power Development in the United States: Current Progress, Future Trends

    E-Print Network [OSTI]

    Wiser, Ryan H

    2009-01-01T23:59:59.000Z

    system that relies heavily on wind. 5. References U.S.Department of Energy (DOE). 2008. ď20% Wind Energy by2030: Increasing Wind Energyís Contribution to U.S.

  10. A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS

    E-Print Network [OSTI]

    Osborn, Julie G.; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

    2001-01-01T23:59:59.000Z

    Documentation Report: Wind Energy Submodule (WES). DOE/EIA-The Economic Value of Wind Energy at High Power SystemOF THE TREATMENT OF WIND ENERGY IN THE AEO99 VERSION OF NEMS

  11. Wind Power Development in the United States: Current Progress, Future Trends

    E-Print Network [OSTI]

    Wiser, Ryan H

    2009-01-01T23:59:59.000Z

    U.S. Department of Energy (DOE). 2008. ď20% Wind Energy by2030: Increasing Wind Energyís Contribution to U.S.targets. Keywords: Wind energy, renewable energy, cost

  12. A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS

    E-Print Network [OSTI]

    Osborn, Julie G.; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

    2001-01-01T23:59:59.000Z

    Documentation Report: Wind Energy Submodule (WES). DOE/EIA-The Economic Value of Wind Energy at High Power Systemthe characterization of wind energy in the model as used for

  13. EIS-0437: Interconnection of the Buffalo Ridge III Wind Project, Brookings and Deuel Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to interconnect the Heartland Wind, LLC, proposed Buffalo Ridge III Wind Project in Brookings and Deuel Counties, South Dakota, to DOEís Western Area Power Administration transmission system.

  14. FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT

    E-Print Network [OSTI]

    Firestone, Jeremy

    FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT Prepared by Jon Lilley, Blaise Sheridan, Dawn........................................................................................................................ 28 #12; 3 Feed-in Tariffs and Offshore Wind Power Development Prepared Pursuant to DOE Grant Em

  15. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Fuel Cell Technologies Publication and Product Library (EERE)

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

  16. Organizational Beliefs and Managerial Vision

    E-Print Network [OSTI]

    Van den Steen, Eric

    2003-03-28T23:59:59.000Z

    This paper studies, in a world with differing priors, the role of organizational beliefs and managerial vision in the behavior and performance of corporations.

  17. U.S. Department of Energy Wind and Hydropower Technologies: Top 10 Program Accomplishments

    SciTech Connect (OSTI)

    Not Available

    2008-05-01T23:59:59.000Z

    This brochure describes the top ten accompishments of the DOE Wind Energy Program during the past 30 years.

  18. Vision, Leadership and Commitment...

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReportVictor Kane About Us VictorActionVisionV

  19. Mission, Vision, Values

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & Fuel Cells SystemMission, Vision, Values

  20. Wind for Schools Affiliate Programs: Wind and Hydropower Technologies Program (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01T23:59:59.000Z

    The U.S. Department of Energy's (DOE's) Wind for Schools program is designed to raise awareness about the benefits of wind energy while simultaneously developing a wind energy knowledge base in future leaders of our communities, states, and nation. To accommodate the many stakeholders who are interested in the program, a Wind for Schools affiliate program has been implemented. This document describes the affiliate program and how interested schools may participate.

  1. Wind Turbine Safety and Function Test Report for the Gaia-Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-01-01T23:59:59.000Z

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. The results of the testing provide the manufacturers with reports that can be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11-kW wind turbine mounted on an 18-m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark. The system was installed by the NWTC site operations group with guidance and assistance from Gaia-Wind.

  2. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World alumvision.pdf More Documents...

  3. Computer vision techniques for underwater navigation

    E-Print Network [OSTI]

    Barngrover, Christopher M.

    2010-01-01T23:59:59.000Z

    DCS) Chapter 2 Computer Vision . . 2.1 Labeling . . . . 2.2OF CALIFORNIA, SAN DIEGO Computer Vision Techniques fordegree Master of Science in Computer Science by Christopher

  4. 2020 Vision Project Summary

    SciTech Connect (OSTI)

    Gordon, K.W.; Scott, K.P.

    2000-11-01T23:59:59.000Z

    Since the 2020 Vision project began in 1996, students from participating schools have completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on US national security. This report summarizes the students' views and describes trends observed over the course of the 2020 Vision project's five years. It also highlights the main organizational features of the project. An analysis of thematic trends among the scenarios showed interesting shifts in students' thinking, particularly in their views of computer technology, US relations with China, and globalization. In 1996, most students perceived computer technology as highly beneficial to society, but as the year 2000 approached, this technology was viewed with fear and suspicion, even personified as a malicious, uncontrollable being. Yet, after New Year's passed with little disruption, students generally again perceived computer technology as beneficial. Also in 1996, students tended to see US relations with China as potentially positive, with economic interaction proving favorable to both countries. By 2000, this view had transformed into a perception of China emerging as the US' main rival and ''enemy'' in the global geopolitical realm. Regarding globalization, students in the first two years of the project tended to perceive world events as dependent on US action. However, by the end of the project, they saw the US as having little control over world events and therefore, we Americans would need to cooperate and compromise with other nations in order to maintain our own well-being.

  5. Python and computer vision

    SciTech Connect (OSTI)

    Doak, J. E. (Justin E.); Prasad, Lakshman

    2002-01-01T23:59:59.000Z

    This paper discusses the use of Python in a computer vision (CV) project. We begin by providing background information on the specific approach to CV employed by the project. This includes a brief discussion of Constrained Delaunay Triangulation (CDT), the Chordal Axis Transform (CAT), shape feature extraction and syntactic characterization, and normalization of strings representing objects. (The terms 'object' and 'blob' are used interchangeably, both referring to an entity extracted from an image.) The rest of the paper focuses on the use of Python in three critical areas: (1) interactions with a MySQL database, (2) rapid prototyping of algorithms, and (3) gluing together all components of the project including existing C and C++ modules. For (l), we provide a schema definition and discuss how the various tables interact to represent objects in the database as tree structures. (2) focuses on an algorithm to create a hierarchical representation of an object, given its string representation, and an algorithm to match unknown objects against objects in a database. And finally, (3) discusses the use of Boost Python to interact with the pre-existing C and C++ code that creates the CDTs and CATS, performs shape feature extraction and syntactic characterization, and normalizes object strings. The paper concludes with a vision of the future use of Python for the CV project.

  6. Wind turbine

    SciTech Connect (OSTI)

    Abe, M.

    1982-01-19T23:59:59.000Z

    The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

  7. Meteorological aspects of siting large wind turbines

    SciTech Connect (OSTI)

    Hiester, T.R.; Pennell, W.T.

    1981-01-01T23:59:59.000Z

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  8. WINDExchange Webinar: Small and Distributed Wind Turbine Update...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an overview of recent news and updates pertaining to small and distributed wind turbines. Bret Barker, U.S. Department of Energy, will present a DOE program overview,...

  9. Vision North Texas

    E-Print Network [OSTI]

    Walz, K.

    2011-01-01T23:59:59.000Z

    , 2011 ? ? FW D 16 County Region for Vision North Texas 5.3M people in 2000; 6.5M in 2010; 9.5M in 2030; 11.7M in 2050 ESL-KT-11-11-18 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 ESL-KT-11-11-18 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 ESL-KT-11..., Dallas, Texas, Nov. 7 ? 9, 2011 ESL-KT-11-11-18 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 ESL-KT-11-11-18 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 2030 ?Business as usual? households/acre ESL-KT-11-11-18 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011...

  10. EA-1610: Windy Hollow Wind Project, Laramie County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proponent request to interconnect their proposed Windy Hollow Wind Project in Laramie County, Wyoming, to DOEís Western Area Power Administrationís transmission system.

  11. Webinar: Tapping Into Wind in Urban Environments

    Broader source: Energy.gov [DOE]

    This live webinar presented by DOE on†"Community Renewable Energy Success Stories: Tapping into Wind in Urban Environments" will take place†on Tuesday, September 18, 2012, from 3:00 Ė 4:15 p.m....

  12. Wind Energy and Economic Development in Nebraska

    SciTech Connect (OSTI)

    Lantz, E.

    2009-06-01T23:59:59.000Z

    This fact sheet summarizes a recent report by the National Renewable Energy Laboratory (NREL), Economic Development Benefits from Wind Power in Nebraska: A Report for the Nebraska Energy Office, which focuses on the estimated economic development impacts in Nebraska from development and operation of wind power in the state as envisioned in the U.S. Department of Energy's (DOE's) report, 20% Wind Energy by 2030.

  13. The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    3] U.S. Department of Energy (DOE). 2008. 20% Wind Energy by2030: Increasing Wind Energy ' s Contribution to U. S .Trans mission and Wind Energy: Capturing the Prevailing

  14. DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at MultipleorderNuclear PlantsFirst-of-its-Kind

  15. 20% Wind Energy 20% Wind Energy

    E-Print Network [OSTI]

    Powell, Warren B.

    (government, industry, utilities, NGOs) Analyzes wind's potential contributions to energy security, economic · Transmission a challenge #12;Wind Power Class Resource Potential Wind Power Density at 50 m W/m 2 Wind Speed20% Wind Energy by 2030 20% Wind Energy by 2030 #12;Presentation and Objectives Overview Background

  16. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  17. EIS-0408: DOE Notice of Availability of a Programmatic Draft...

    Broader source: Energy.gov (indexed) [DOE]

    jointly by DOE's Western Area Power Administration and the Department of the Interior's Fish and Wildlife Service, will evaluate the environmental impacts of wind energy...

  18. New DOE Modeling Tool Estimates Economic Benefits of Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    renewable power plants. The updated version allows users to better understand the potential regional economic impacts of offshore wind development. DOE is using the new...

  19. SunShot Vision Study: February 2012 (Book)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    The objective of the SunShot Vision Study is to provide an in-depth assessment of the potential for solar technologies to meet a significant share of electricity demand in the United States during the next several decades. Specifically, it explores a future in which the price of solar technologies declines by about 75% between 2010 and 2020 - in line with the U.S. Department of Energy (DOE) SunShot Initiative's targets.

  20. Sandia National Laboratories: DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-FarmCoolDOE DOE International Energy

  1. An Earth-Friendly Wind Vision | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s) AllMarch/April 2015 EERE's internalDepartment

  2. Department of Energy Wind Vision: An Industry Preview | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINLNuclear262 2.272OrganizationEnergy

  3. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15T23:59:59.000Z

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

  4. Designing Micro Wind Turbines for Portable Power Generation Francois Hogan

    E-Print Network [OSTI]

    Barthelat, Francois

    to the design of a wind turbine rotor. Number of blades The number of blades does not have a significant impact on the efficiency of a wind turbine. We have chosen a two blade design because of ease of fabrication in order) (2) ∑ This two blade micro wind turbine meets the optimal specifications to ensure good efficiency

  5. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

  6. Wind energy systems: program summary

    SciTech Connect (OSTI)

    None

    1980-05-01T23:59:59.000Z

    The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

  7. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect (OSTI)

    Turtle Mountain Community College

    2003-12-30T23:59:59.000Z

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

  8. EA-1902: Northern Wind Project, Roberts County, South Dakota

    Broader source: Energy.gov [DOE]

    DOEís Western Area Power Administration is preparing an EA that evaluates the potential environmental impacts of the proposed Northern Wind Project in Summit, Roberts County, South Dakota. Additional information is available on the project webpage, http://www.wapa.gov/ugp/Environment/NorthernWindFarm.htm.

  9. Oxford University Civil Engineering Novel Foundations for Offshore Wind FarmsNovel Foundations for Offshore Wind Farms

    E-Print Network [OSTI]

    Houlsby, Guy T.

    Oxford University Civil Engineering Novel Foundations for Offshore Wind FarmsNovel Foundations for Offshore Wind Farms Prof. Guy Houlsby, Dr Byron Byrne, Dr Chris Martin Oxford University #12;Oxford each turbine does not generate all the time, say 3000) #12;Oxford University Civil Engineering Wind

  10. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

  11. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

  12. Microsoft Word - DOE Sponsored Competition Challenges Student...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by a panel of judges from DOE, TechGROWTH Ohio, and university faculty. Team "Sky Energy," from Ohio University, won first place for its proposed solar and wind farm that...

  13. Balancing of Wind Power.

    E-Print Network [OSTI]

    ‹lker, Muhammed Akif

    2011-01-01T23:59:59.000Z

    ?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, windÖ (more)

  14. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  15. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  16. NREL: Wind Research - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Below are upcoming events related to wind energy technology. January 2015 2015 Wind Energy Systems Engineering Workshop January 14 - 15, 2015 Boulder, CO The third NREL Wind...

  17. Wind power and Wind power and

    E-Print Network [OSTI]

    Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, J√łrgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

  18. EA-1920: Border Winds 2, North Dakota

    Broader source: Energy.gov [DOE]

    DOEís Western Area Power Administration is preparing this EA to evaluate the environmental impacts of a proposed wind turbine generation facility in Rolette and Towner Counties in North Dakota. If the proposal is implemented, power generated by this facility would interconnect at an existing substation and would be distributed via an existing transmission line owned and operated by Western.

  19. DOE 2008 Occupational Radiation Exposure October 2009

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Security

    2009-10-01T23:59:59.000Z

    A major priority of the U.S. Department of Energy (DOE) is to ensure the health, safety, and security of DOE employees, contractors, and subcontractors. The Office of Health, Safety and Security (HSS) provides the corporate-level leadership and strategic vision necessary to better coordinate and integrate health, safety, environment, security, enforcement, and independent oversight programs. One function that supports this mission is the DOE Corporate Operating Experience Program that provides collection, analysis, and dissemination of performance indicators, such as occupational radiation exposure information. This analysis supports corporate decision-making and synthesizes operational information to support continuous environment, safety, and health improvement across the DOE complex.

  20. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01T23:59:59.000Z

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  1. Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Lew, D.; Piwko, R.; Jordan, G.; Miller, N.; Clark, K.; Freeman, L.; Milligan, M.

    2011-01-01T23:59:59.000Z

    The Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. It was initiated in 2007 to examine the operational impact of up to 35% energy penetration of wind, photovoltaics (PV), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming (see study area map). WestConnect also includes utilities in California, but these were not included because California had already completed a renewable energy integration study for the state. This study was set up to answer questions that utilities, public utilities commissions, developers, and regional planning organizations had about renewable energy use in the west: (1) Does geographic diversity of renewable energy resource help mitigate variability; (2) How do local resources compare to out-of-state resources; (3) Can balancing area cooperation help mitigate variability; (4) What is the role and value of energy storage; (5) Should reserve requirements be modified; (6) What is the benefit of forecasting; and (7) How can hydropower help with integration of renewables? The Western Wind and Solar Integration Study is sponsored by the U.S. Department of Energy (DOE) and run by NREL with WestConnect as a partner organization. The study follows DOE's 20% Wind Energy by 2030 report, which did not find any technical barriers to reaching 20% wind energy in the continental United States by 2030. This study and its partner study, the Eastern Wind Integration and Transmission Study, performed a more in-depth operating impact analysis to see if 20% wind energy was feasible from an operational level. In DOE/NREL's analysis, the 20% wind energy target required 25% wind energy in the western interconnection; therefore, this study considered 20% and 30% wind energy to bracket the DOE analysis. Additionally, since solar is rapidly growing in the west, 5% solar was also considered in this study. The goal of the Western Wind and Solar Integration Study is to understand the costs and operating impacts due to the variability and uncertainty of wind, PV, and CSP on the grid. This is mainly an operations study, (rather than a transmission study), although different scenarios model different transmission build-outs to deliver power. Using a detailed power system production simulation model, the study identifies operational impacts and challenges of wind energy penetration up to 30% of annual electricity consumption.

  2. DOE Releases Climate VISION Progress Report 2007 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department of Energy Secretary Steven Chuof Energy

  3. DOE Research and Development Accomplishments: Visions of Success I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma

  4. ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001 ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001...

  5. Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Kelly, M.

    2010-05-01T23:59:59.000Z

    As the United States moves toward a vision of greatly expanded wind energy use as outlined in the U.S. Department of Energy's 20% Wind Energy by 2030 report, the need for skilled workers at all levels in the industry is repeatedly identified as a critical issue. This presentation is an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry through a discussion of the activities identified that must be put in place to train workers. The paper will also provide a framework to address issues raised from each of the education and industry sectors, identifying a roadmap for developing an educational infrastructure to support wind technology. The presentation will also provide an understanding of the available resources, materials, and programs available across the industry. This presentation provides an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry as part of a collaborative effort to develop a wind workforce roadmap. This presentation will provide 1) A review of needed programs to train workers for the wind industry; 2) An overview of the importance education will play if the nation is to expand wind energy (both in development and deployment terms) and a review of ongoing activities with a focus on federal efforts; 3) A review of the materials and resources available across the industry and a framework to address issues raised from each of the education and industry sectors.

  6. Quantifying the sensitivity of wind farm performance to array layout options using large-eddy simulation

    E-Print Network [OSTI]

    and is coupled with an actuator line model to simulate the effects of the rotating wind turbine blades. A control that is capable of resolving wind turbine blades as rotat- ing actuator lines (not fixed disks) and does not rely by the spacing between wind turbines (along and across the prevailing wind direction) and by their alignment

  7. Nepal 2030: A Vision for Peaceful and Prosperous Nation [Nepal 2030: A Vision for

    E-Print Network [OSTI]

    Richner, Heinz

    1 Nepal 2030: A Vision for Peaceful and Prosperous Nation #12;[Nepal 2030: A Vision for Peaceful (eds.). 2012. Nepal 2030: A Vision for Peaceful and Prosperous Nation. Kathmandu: South Asia Regional;The editors of the book Nepal 2030: A Vision for PeacefulandProsperousNationacknowledgesupport from

  8. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect (OSTI)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01T23:59:59.000Z

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  9. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareersWind Vision:#EnergyFaceoff100% Clean

  10. Photogrammetry & Machine Vision 1. Image sensors

    E-Print Network [OSTI]

    Giger, Christine

    Photogrammetry & Machine Vision 1. Image sensors (a) Fundamentals of image sensors (b) CCD image'Apuzzo Photogrammetry and Machine Vision - 3 Point cloud processing, surface generation, texturing (b) Camera, noise) 2N. D'Apuzzo Photogrammetry and Machine Vision - 3 Point cloud processing, surface generation

  11. Photogrammetry & Machine Vision 1. Image sensors

    E-Print Network [OSTI]

    Giger, Christine

    Photogrammetry & Machine Vision 1. Image sensors (a) Fundamentals of image sensors (b) CCD image. Remondino, N. D'Apuzzo Photogrammetry and Machine Vision ­ 1. Measurement in images (b) Camera calibration of Photogrammetry and Machine Vision Fully understand: 1. Image based 3D and 4D measurement 2. Image based 3D

  12. Photogrammetry & Machine Vision 1. Image sensors

    E-Print Network [OSTI]

    Giger, Christine

    Photogrammetry & Machine Vision 1. Image sensors (a) Fundamentals of image sensors (b) CCD image. Remondino, N. D'Apuzzo Photogrammetry and Machine Vision ­ 2. Camera calibration and orientation (b) Camera and Machine Vision ­ 2. Camera calibration and orientation (b) Calibration methods (reference object, point

  13. FINAL REPORT WIND POWER WARM SPRINGS RESERVATION TRIBAL LANDS DOE GRANT NUMBER DE-FG36-07GO17077 SUBMITTED BY WARM SPRINGS POWER & WATER ENTERPRISES A CORPORATE ENTITY OF THE CONFEDERATED TRIBES OF WARM SPRINGS WARM SPRINGS, OREGON

    SciTech Connect (OSTI)

    Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

    2009-03-30T23:59:59.000Z

    Wind Generation Feasibility Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon. The organization is responsible for managing electrical power generation facilities on tribal lands and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

  14. Summary of student scenarios: 2020 Vision project, fiscal year 1997

    SciTech Connect (OSTI)

    Gordon, K.W.; Munoz, A.; Scott, K.P.; Rinne, R.

    1997-11-01T23:59:59.000Z

    The Strategic Issues Thinking: 2020 Vision project introduces students and teaches to national security issues through the techniques of scenario building, and engages them in an interactive process of creating scenarios relevant to the Department of Energy, Defense Programs (DOE/DP). Starting with the world as it is today, teams of students develop a series of scenarios on international developments over the next 25 years under various circumstances. This report identifies recurrent themes in the student`s scenarios, lists creative ways the students presented their scenarios, compares and contrasts the program`s FY97 results with FY96 results, identifies the benefits of the program, and offers a glimpse of Sandia`s future plans for the 2020 Vision project.

  15. A vision for reinforcement learning

    E-Print Network [OSTI]

    Wang, Deli

    of California, San Diego August 21, 2011 1 / 29 #12;What is the goal of maintenance? Preventive maintenanceA vision for reinforcement learning and predictive maintenance Charles Elkan University. Intrinsically probabilistic: Reduce expected later cost. From reactive maintenance to proactive maintenance

  16. Proceedings NATIONAL HYDROGEN VISION MEETING

    E-Print Network [OSTI]

    's Plan directs us to explore the possibility of a hydrogen economy..." Spencer Abraham, Secretary be found at the end of this document.) The intent was to identify a common vision of a "hydrogen economy of the Group: Which factors are most likely to support/inhibit the development of a "hydrogen economy

  17. Low Wind Speed Turbine Development Project Report: November 4, 2002 - December 31, 2006

    SciTech Connect (OSTI)

    Mikhail, A.

    2009-01-01T23:59:59.000Z

    This report summarizes work conducted by Clipper Windpower under the DOE Low Wind Speed Turbine project. The objective of this project was to produce a wind turbine that can lower the cost of energy.

  18. Cooperative field test program for wind systems

    SciTech Connect (OSTI)

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01T23:59:59.000Z

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  19. Built-Environment Wind Turbine Roadmap

    SciTech Connect (OSTI)

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01T23:59:59.000Z

    Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

  20. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01T23:59:59.000Z

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  1. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

  2. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

  3. Wind pro?le assessment for wind power purposes.

    E-Print Network [OSTI]

    Sointu, Iida

    2014-01-01T23:59:59.000Z

    ??Preliminary estimation of wind speed at the wind turbine hub height is critically important when planning new wind farms. Wind turbine power output is proportionalÖ (more)

  4. Wind Powering America Webinar: Wind Power Economics: Past, Present...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November...

  5. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    Wind Resource and Conduct a Preliminary Estimate < Community Wind Handbook Jump to: navigation, search WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHCommunity Wind Handbook...

  6. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Energy Savers [EERE]

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  7. Genetic Evidence for the Coexistence of Pheromone Perception and Full Trichromatic Vision in Howler Monkeys

    E-Print Network [OSTI]

    Zhang, Jianzhi

    Genetic Evidence for the Coexistence of Pheromone Perception and Full Trichromatic Vision in Howler Monkeys David M. Webb,* Liliana Corte¬īs-Ortiz, and Jianzhi Zhang* *Department of Ecology and Evolutionary trichromacy alone does not lead to the loss of pheromone communication. We suggest that the ecological

  8. Vision, Robotics and Images Research Group, UFPR 1 GPU-accelerated PSF Estimation with a

    E-Print Network [OSTI]

    with a Cooperative Particle Swarm Optimization Kiepenheuer Institute for Solar Physics Freiburg, 04.06.2013 Peter F) Kiepenheuer Institute for Solar Physics, Freiburg, Germany #12;Vision, Robotics and Images Research Group on the dynamics of a bird flock Find good "food" regions in search space Does not guaranty optimal solution

  9. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. Ē Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

  10. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

  11. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.an Order Revising the Wind Integration Rate for Wind Powered

  12. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    2010. SPP WITF Wind Integration Study. Little Rock,an Order Revising the Wind Integration Rate for Wind PoweredPacifiCorp. 2010. 2010 Wind Integration Study. Portland,

  13. VISION User Guide - VISION (Verifiable Fuel Cycle Simulation) Model

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern; Steven J. Piet; Benjamin A. Baker; Joseph Grimm

    2009-08-01T23:59:59.000Z

    The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating ďwhat ifĒ scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level for U.S. nuclear power. The model is not intended as a tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., ďreactor typesĒ not individual reactors and ďseparation typesĒ not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation of disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. Note that recovered uranium is itself often partitioned: some RU flows with recycled transuranic elements, some flows with wastes, and the rest is designated RU. RU comes out of storage if needed to correct the U/TRU ratio in new recycled fuel. Neither RU nor DU are designated as wastes. VISION is comprised of several Microsoft Excel input files, a Powersim Studio core, and several Microsoft Excel output files. All must be co-located in the same folder on a PC to function. We use Microsoft Excel 2003 and have not tested VISION with Microsoft Excel 2007. The VISION team uses both Powersim Studio 2005 and 2009 and it should work with either.

  14. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1Wind Power

  15. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPPCompletes aboutWind Energy

  16. Int J Computer Vision 3 (1989) 181-208 1 Int J Computer Vision 3 (1989) 181-208 2

    E-Print Network [OSTI]

    Murray, David

    Int J Computer Vision 3 (1989) 181-208 1 #12;Int J Computer Vision 3 (1989) 181-208 2 #12;Int J Computer Vision 3 (1989) 181-208 3 #12;Int J Computer Vision 3 (1989) 181-208 4 #12;Int J Computer Vision 3 (1989) 181-208 5 #12;Int J Computer Vision 3 (1989) 181-208 6 #12;Int J Computer Vision 3 (1989) 181

  17. Analysis of wind power for battery charging

    SciTech Connect (OSTI)

    Muljadi, E.; Drouilhet, S.; Holz, R. [National Renewable Energy Lab., Golden, CO (United States); Gevorgian, V. [University of Armenia, Yerevan (Armenia). State Engineering

    1995-11-01T23:59:59.000Z

    One type of wind-powered battery charging will be explored in this paper. It consists of a wind turbine driving a permanent magnet alternator and operates at variable speed. The alternator is connected to a battery bank via a rectifier. The characteristic of the system depends on the wind turbine, the alternator, and the system configuration. If the electrical load does not match the wind turbine, the performance of the system will be degraded. By matching the electrical load to the wind turbine, the system can be improved significantly. This paper analyzes the properties of the system components. The effects of parameter variation and the system configuration on the system performance are investigated. Two basic methods of shaping the torque-speed characteristic of the generator are presented. The uncompensated as well as the compensated systems will be discussed. Control strategies to improve the system performance will be explored. Finally, a summary of the paper will be presented in the last section.

  18. Wind Vision: New Report Highlights a Robust Wind Energy Future | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome toFarm Growth Through theof

  19. Wind Vision: A New Era for Wind Power in the United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry SoarsStructural1

  20. Wind Vision: A New Era for Wind Power in the United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry SoarsStructural1This

  1. NREL: Wind Research - Special Notice: 2016 U.S. Department of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special Notice: 2016 U.S. Department of Energy Collegiate Wind Competition September 16, 2014 The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL)...

  2. Evaluating state markets for residential wind systems: Results from an economic and policy analysis tool

    E-Print Network [OSTI]

    Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

    2004-01-01T23:59:59.000Z

    Administration (2003). Annual Energy Outlook 2003. DOE/EIA-SP SWAT TVA USDA Annual Energy Outlook American Wind Energyaccording to the 2003 Annual Energy Outlook. Although this

  3. The National Wind Technology Center

    SciTech Connect (OSTI)

    Thresher, R.W.; Hock, S.M. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Loose, R.R.; Cadogon, J.B.

    1994-07-01T23:59:59.000Z

    Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

  4. Wind Energy Stakeholder Outreach and Education

    SciTech Connect (OSTI)

    Bob Lawrence; Craig Cox; Jodi Hamrick; DOE Contact - Keith Bennett

    2006-07-27T23:59:59.000Z

    Since August of 2001, Bob Lawrence and Associates, Inc. (BL&A) has applied its outreach and support services to lead a highly effective work effort on behalf of Wind Powering America (WPA). In recent years, the company has generated informative brochures and posters, researched and created case studies, and provided technical support to key wind program managers. BL&A has also analyzed Lamar, Coloradoís 162MW wind project and developed a highly regarded 'wind supply chain' report and outreach presentation. BL&Aís efforts were then replicated to characterize similar supply chain presentations in New Mexico and Illinois. Note that during the period of this contract, the recipient met with members of the DOE Wind Program a number of times to obtain specific guidance on tasks that needed to be pursued on behalf of this grant. Thus, as the project developed over the course of 5 years, the recipient varied the tasks and emphasis on tasks to comply with the on-going and continuously developing requirements of the Wind Powering America Program. This report provides only a brief summary of activities to illustrate the recipient's work for advancing wind energy education and outreach from 2001 through the end of the contract period in 2006. It provides examples of how the recipient and DOE leveraged the available funding to provide educational and outreach work to a wide range of stakeholder communities.

  5. DOE Onboarding

    Broader source: Energy.gov (indexed) [DOE]

    First Six Months First Year *Continual Learning *Fraud Awareness *eOPF & ePerformance *ESS & Workflow *DOE Social Media *Networking Opportunity GETTING SETTLED ADJUSTMENT &...

  6. DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    a useful reference. Find out more Do you have questions about DOE PAGESBeta content, procedures, or policies? More information is available at OSTI's Public Access Policy page and...

  7. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  8. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  9. Wind turbine rotor aileron

    DOE Patents [OSTI]

    Coleman, Clint (Warren, VT); Kurth, William T. (Warren, VT)

    1994-06-14T23:59:59.000Z

    A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

  10. Assessment of research needs for wind turbine rotor materials technology

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  11. Commonwealth Wind Incentive Program Ė Micro Wind Initiative

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program Ė Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

  12. Wind energy bibliography

    SciTech Connect (OSTI)

    None

    1995-05-01T23:59:59.000Z

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  13. Wind for Schools (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2010-05-01T23:59:59.000Z

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  14. Wind Energy Multiyear Program Plan for 2007-2012

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    The purpose of this document is to provide an overview of the DOE Wind Energy Program and to describe the near and long-term goals and strategies for achieving the program's mission.

  15. Collegiate Wind Competition 2016 Notice of Intent | Department...

    Broader source: Energy.gov (indexed) [DOE]

    2016 Notice of Intent Collegiate Wind Competition 2016 Notice of Intent September 18, 2014 - 12:33pm Addthis DOE's National Renewable Energy Laboratory (NREL) has announced that it...

  16. Module Handbook Specialisation Wind Energy

    E-Print Network [OSTI]

    Habel, Annegret

    of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Credit points 8 CP

  17. EA-1581: Sand Hills Wind Project, Wyoming

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with DOEís Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  18. Kaneohe, Hawaii Wind Resource Assessment Report

    SciTech Connect (OSTI)

    Robichaud, R.; Green, J.; Meadows, B.

    2011-11-01T23:59:59.000Z

    The Department of Energy (DOE) has an interagency agreement to assist the Department of Defense (DOD) in evaluating the potential to use wind energy for power at residential properties at DOD bases in Hawaii. DOE assigned the National Renewable Energy Laboratory (NREL) to facilitate this process by installing a 50-meter (m) meteorological (Met) tower on residential property associated with the Marine Corps Base Housing (MCBH) Kaneohe Bay in Hawaii.

  19. acute vision loss: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    card at the time of visit Clemson Area Vision to cover routine vision exam(s), eyeglasses, andor contact lens up to 300 per policy year. Vision Exams Stuart, Steven J. 236...

  20. ageless vision glare: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    card at the time of visit Clemson Area Vision to cover routine vision exam(s), eyeglasses, andor contact lens up to 300 per policy year. Vision Exams Stuart, Steven J. 228...

  1. Managing Wind-based Electricity Generation and Storage

    E-Print Network [OSTI]

    and solar energy--is free, abundant, and most importantly, does not exacerbate the global warming problemManaging Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper on renewable energy, and to develop efficient electricity storage. Renewable energy--such as wind energy

  2. Vision Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do BrasilGmbH JumpVeronagest SAJVLtd JumpVision

  3. Solar Vision | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystems Jump to:Jump to:Vision Jump to:

  4. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    mance characteristics of wind generator. The wind speed atcharacteristics of the wind generator. When wind speed is

  5. Oak Ridge Office of Environmental Management Pursues Vision of...

    Office of Environmental Management (EM)

    Office of Environmental Management Pursues Vision of Future While Remembering Past Oak Ridge Office of Environmental Management Pursues Vision of Future While Remembering Past...

  6. The Tunnel Vision Syndrome: Massively Delaying Progress

    E-Print Network [OSTI]

    Hartenstein, Reiner

    The Tunnel Vision Syndrome: Massively Delaying Progress Reiner Hartenstein, Professor, IEEE fellow facet as the complete answer are far from solving the problem. What is the reason of these slow-down- stream-based computing was delayed for decades by the tunnel vision syndrome. The History of Systolic

  7. Robotics and Vision Scientist Evolution Robotics

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    Robotics and Vision Scientist Evolution Robotics 1055 E. Colorado Bl., #410 Pasadena, California 91106 (626) 993-3300 09 May 2011 Evolution Robotics Employment Opportunity Profile · Title: Robotics and Vision Scientist · Reports to: VP of Research and Development The Company: Evolution Robotics, Inc

  8. VISION 21 SYSTEMS ANALYSIS METHODOLOGIES

    SciTech Connect (OSTI)

    G.S. Samuelsen; A. Rao; F. Robson; B. Washom

    2003-08-11T23:59:59.000Z

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into power plant systems that meet performance and emission goals of the Vision 21 program. The study efforts have narrowed down the myriad of fuel processing, power generation, and emission control technologies to selected scenarios that identify those combinations having the potential to achieve the Vision 21 program goals of high efficiency and minimized environmental impact while using fossil fuels. The technology levels considered are based on projected technical and manufacturing advances being made in industry and on advances identified in current and future government supported research. Included in these advanced systems are solid oxide fuel cells and advanced cycle gas turbines. The results of this investigation will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  9. Howard County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

  10. Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota

    SciTech Connect (OSTI)

    Jimenez, A. C.

    2013-12-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.

  11. Distributed Wind Policy Comparison Tool Guidebook

    SciTech Connect (OSTI)

    Not Available

    2011-11-01T23:59:59.000Z

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE's '20% Wind Energy by 2030' report and helping to meet COE targets.

  12. Aleutian Pribilof Islands Wind Energy Feasibility Study

    SciTech Connect (OSTI)

    Bruce A. Wright

    2012-03-27T23:59:59.000Z

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and Sand Point have allowed for proper wind turbine siting without killing birds, especially endangered species and bald eagles. APIA continues coordinating and looking for funding opportunities for regional renewable energy projects. An important goal for APIA has been, and will continue to be, to involve community members with renewable energy projects and energy conservation efforts.

  13. Wind Turbine Safety and Function Test Report for the Mariah Windspire Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-07-01T23:59:59.000Z

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.

  14. Hurricane Katrina Wind Investigation Report

    SciTech Connect (OSTI)

    Desjarlais, A. O.

    2007-08-15T23:59:59.000Z

    This investigation of roof damage caused by Hurricane Katrina is a joint effort of the Roofing Industry Committee on Weather Issues, Inc. (RICOWI) and the Oak Ridge National Laboratory/U.S. Department of Energy (ORNL/DOE). The Wind Investigation Program (WIP) was initiated in 1996. Hurricane damage that met the criteria of a major windstorm event did not materialize until Hurricanes Charley and Ivan occurred in August 2004. Hurricane Katrina presented a third opportunity for a wind damage investigation in August 29, 2005. The major objectives of the WIP are as follows: (1) to investigate the field performance of roofing assemblies after major wind events; (2) to factually describe roofing assembly performance and modes of failure; and (3) to formally report results of the investigations and damage modes for substantial wind speeds The goal of the WIP is to perform unbiased, detailed investigations by credible personnel from the roofing industry, the insurance industry, and academia. Data from these investigations will, it is hoped, lead to overall improvement in roofing products, systems, roofing application, and durability and a reduction in losses, which may lead to lower overall costs to the public. This report documents the results of an extensive and well-planned investigative effort. The following program changes were implemented as a result of the lessons learned during the Hurricane Charley and Ivan investigations: (1) A logistics team was deployed to damage areas immediately following landfall; (2) Aerial surveillance--imperative to target wind damage areas--was conducted; (3) Investigation teams were in place within 8 days; (4) Teams collected more detailed data; and (5) Teams took improved photographs and completed more detailed photo logs. Participating associations reviewed the results and lessons learned from the previous investigations and many have taken the following actions: (1) Moved forward with recommendations for new installation procedures; (2) Updated and improved application guidelines and manuals from associations and manufacturers; (3) Launched certified product installer programs; and (4) Submitted building code changes to improve product installation. Estimated wind speeds at the damage locations came from simulated hurricane models prepared by Applied Research Associates of Raleigh, North Carolina. A dynamic hurricane wind field model was calibrated to actual wind speeds measured at 12 inland and offshore stations. The maximum estimated peak gust wind speeds in Katrina were in the 120-130 mph range. Hurricane Katrina made landfall near Grand Isle, Louisiana, and traveled almost due north across the city of New Orleans. Hurricane winds hammered the coastline from Houma, Louisiana, to Pensacola, Florida. The severe flooding problems in New Orleans made it almost impossible for the investigating teams to function inside the city. Thus the WIP investigations were all conducted in areas east of the city. The six teams covered the coastal areas from Bay Saint Louis, Mississippi, on the west to Pascagoula, Mississippi, on the east. Six teams involving a total of 25 persons documented damage to both low slope and steep slope roofing systems. The teams collected specific information on each building examined, including type of structure (use or occupancy), wall construction, roof type, roof slope, building dimensions, roof deck, insulation, construction, and method of roof attachment. In addition, the teams noted terrain exposure and the estimated wind speeds at the building site from the Katrina wind speed map. With each team member assigned a specific duty, they described the damage in detail and illustrated important features with numerous color photos. Where possible, the points of damage initiation were identified and damage propagation described. Because the wind speeds in Katrina at landfall, where the investigations took place, were less than code-specified design speeds, one would expect roof damage to be minimal. One team speculated that damage to all roofs in the area they examined was les

  15. Estimation of Wind Speed in Connection to a Wind Turbine

    E-Print Network [OSTI]

    Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

  16. Wind energy offers considerable promise; the wind itself is free,

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

  17. Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms

    E-Print Network [OSTI]

    Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms is not used to supply baseload electric power today. Interconnecting wind farms through the transmission grid farms are interconnected in an array, wind speed correlation among sites decreases and so does

  18. Letter to the Editor The precautionary principle and wind-farm planning: Data

    E-Print Network [OSTI]

    Donázar, José A.

    a consequence of the less intensive monitoring of this species and of mortality in wind-farms throughout SpainLetter to the Editor The precautionary principle and wind-farm planning: Data scarcity does to our paper (Carrete et al., 2009) help to clarify issues in the field of wind energy planning, thus

  19. Large-eddy simulation of a wind turbine wake in turbulent

    E-Print Network [OSTI]

    Firestone, Jeremy

    Large-eddy simulation of a wind turbine wake in turbulent neutral shear flow Shengbai Xie, Cristina-similar velocity profile existing in the wake after a wind turbine? How does the wake influence the vertical? Motivation #12; Large-eddy simulation for turbulent flow field Actuator-line model for wind turbine ui

  20. Estimate of Extreme Wind, Wave, Surge, and Current Conditions Wilmington Canyon Integrated Design Project

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 Estimate of Extreme Wind, Wave, Surge, and Current Conditions for the Wilmington Canyon. In order to estimate loads during extreme wind and wave events, these events must be defined. The design. This paper does not treat wave spectral analysis, extreme wind shear, veer, clocking, turbulence intensity

  1. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01T23:59:59.000Z

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  2. Wind Resource Maps (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

  3. Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-09-01T23:59:59.000Z

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

  4. Final Technical Report Laramie County Community College: Utility-Scale Wind Energy Technology

    SciTech Connect (OSTI)

    Douglas P. Cook

    2012-05-22T23:59:59.000Z

    The Utility-Scale Wind Energy Technology U.S. Department of Energy (DOE) grant EE0000538, provided a way ahead for Laramie County Community College (LCCC) to increase educational and training opportunities for students seeking an Associate of Applied Science (AAS) or Associate of Science (AS) degree in Wind Energy Technology. The DOE grant enabled LCCC to program, schedule, and successfully operate multiple wind energy technology cohorts of up to 20-14 students per cohort simultaneously. As of this report, LCCC currently runs four cohorts. In addition, the DOE grant allowed LCCC to procure specialized LABVOLT electronic equipment that directly supports is wind energy technology curriculum.

  5. EA-1884: Invenergy Interconnection for the Wray Wind Energy Project, Town of Wray, Yuma County, CO

    Broader source: Energy.gov [DOE]

    DOEís Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed Wray Wind Energy Project, for approximately 90 megawatts of wind generation, to Westernís existing Wray Substation in Yuma County, Colorado.

  6. EA-1611: Colorado Highlands Wind Project, Logan County, Colorado

    Broader source: Energy.gov [DOE]

    DOEís Western Area Power Administration prepared an EA in 2009 to assess the potential environmental impacts of interconnecting the proposed Colorado Highlands Wind Project to Westernís transmission system. The EA analyzed a proposal for 60 wind turbine generators with a total output nameplate capacity of 90 megawatts (MW). Western is preparing a supplemental EA to assess the potential environmental impacts of the proposed expansion of the project by 11 wind turbine generators that would add approximately 20 MW. Additional information is available on the Western Area Power Administration webpage for this project.

  7. Surface wind speed distributions| Implications for climate and wind power.

    E-Print Network [OSTI]

    Capps, Scott Blair

    2010-01-01T23:59:59.000Z

    ?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. UntilÖ (more)

  8. NREL: Wind Research - Boosting Wind Plant Power Output by 4%...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boosting Wind Plant Power Output by 4%-5% through Coordinated Turbine Controls July 30, 2014 Wind plant underperformance has plagued wind plant developers for years. To address...

  9. Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014 Collegiate Teams Boise State...

  10. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  11. DOE Expands, Simplifies Loan Guarantees for Renewable Energy...

    Office of Environmental Management (EM)

    in loans for conventional renewable energy generation projects such as wind, solar, biomass, and geothermal power, as well as hydropower. DOE will draw on up to 750 million in...

  12. Wind resource characterization results to support the Sandia Wind Farm Feasibility Study : August 2008 through March 2009.

    SciTech Connect (OSTI)

    Deola, Regina Anne

    2010-01-01T23:59:59.000Z

    Sandia National Laboratories Wind Technology Department is investigating the feasibility of using local wind resources to meet the requirements of Executive Order 13423 and DOE Order 430.2B. These Orders, along with the DOE TEAM initiative, identify the use of on-site renewable energy projects to meet specified renewable energy goals over the next 3 to 5 years. A temporary 30-meter meteorological tower was used to perform interim monitoring while the National Environmental Policy Act (NEPA) process for the larger Wind Feasibility Project ensued. This report presents the analysis of the data collected from the 30-meter meteorological tower.

  13. Great Plains Wind Energy Transmission Development Project

    SciTech Connect (OSTI)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09T23:59:59.000Z

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

  14. Final Technical Report - Kotzebue Wind Power Project - Volume II

    SciTech Connect (OSTI)

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

    2007-10-31T23:59:59.000Z

    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEAís wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  15. Next-Generation Wind Technology

    Broader source: Energy.gov [DOE]

    The Wind Program works with industry partners to increase the performance and reliability of next-generation wind technologies while lowering the cost of wind energy.

  16. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty Ėcost, performance, and price of wind energy, some of these

  17. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    The Effects of Integrating Wind Power on Transmission Systemat Various Levels of Wind Power Capacity Penetration 201242 6. Wind Power Price

  18. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    About Large Offshore Wind Power: Underlying Factors. EnergyOpinion on Offshore Wind Power - Interim Report. University2002) Economic Impacts of Wind Power in Kittitas County, Wa.

  19. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  20. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  1. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  2. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  3. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  4. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  5. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  6. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

  7. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

  8. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  9. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  10. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  11. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  12. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    2010. SPP WITF Wind Integration Study. Little Rock,GE Energy. 2011a. Oahu Wind Integration Study Final Report.PacifiCorp. 2010. 2010 Wind Integration Study. Portland,

  13. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. Ē Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

  14. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Market Report vii potential wind energy generation withinthat nearly 8% of potential wind energy generation withinAreas, in GWh (and % of potential wind generation) Electric

  16. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    capacity), with 17% of all potential wind energy generationthat roughly 17% of potential wind energy generation withinexample, roughly 1% of potential wind energy output in 2009

  17. DOE F

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the DOE6 / 06 2 SunProgrammatic

  18. DOE F

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the DOE6 / 06 2

  19. DOE-0346

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State oftoDOE-0346

  20. Wind energy information guide

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  1. Wind Power Career Chat

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  2. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Bureau of Land Management with DOEís Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Westernís transmission lines.

  3. EA-1909: South Table Wind Farm Project, Kimball County, Nebraska

    Broader source: Energy.gov [DOE]

    DOEís Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed South Table Wind Project, which would generate approximately 60 megawatts from about 40 turbines, to Westernís existing Archer-Sidney 115-kV Transmission Line in Kimball County, Nebraska.

  4. EA-1955: Campbell County Wind Project, Pollock, South Dakota

    Broader source: Energy.gov [DOE]

    DOEís Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm near Pollock, South Dakota, to Westernís existing transmission line at that location.

  5. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Broader source: Energy.gov (indexed) [DOE]

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

  6. DOE Advanced Protection Project

    Broader source: Energy.gov (indexed) [DOE]

    Circuit Fault Status - Four Faults Recorded * 10212007 (high winds) - Relay pick-ups, but no trip * 12252007 (high winds) - Protection operated correctly - Post-fault...

  7. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01T23:59:59.000Z

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  8. Future Vision for Instrumentation, Information and Control Modernization

    SciTech Connect (OSTI)

    Ken D. Thomas

    2012-05-01T23:59:59.000Z

    A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. II&C has been identified as a potential life-limiting issue for the domestic LWR fleet in addressing the reliability and aging concerns of the legacy systems in service today. The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. Pilot projects are being conducted as the means for industry to gain confidence in these new technologies for use in nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision. Initial project results confirm that the technologies can address provide substantial efficiency and human performance benefits while resolving the reliability and aging concerns.

  9. National Wind Distance Learning Collaborative

    SciTech Connect (OSTI)

    Dr. James B. Beddow

    2013-03-29T23:59:59.000Z

    Executive Summary The energy development assumptions identified in the Department of Energy's position paper, 20% Wind Energy by 2030, projected an exploding demand for wind energy-related workforce development. These primary assumptions drove a secondary set of assumptions that early stage wind industry workforce development and training paradigms would need to undergo significant change if the workforce needs were to be met. The current training practice and culture within the wind industry is driven by a relatively small number of experts with deep field experience and knowledge. The current training methodology is dominated by face-to-face, classroom based, instructor present training. Given these assumptions and learning paradigms, the purpose of the National Wind Distance Learning Collaborative was to determine the feasibility of developing online learning strategies and products focused on training wind technicians. The initial project scope centered on (1) identifying resources that would be needed for development of subject matter and course design/delivery strategies for industry-based (non-academic) training, and (2) development of an appropriate Learning Management System (LMS). As the project unfolded, the initial scope was expanded to include development of learning products and the addition of an academic-based training partner. The core partners included two training entities, industry-based Airstreams Renewables and academic-based Lake Area Technical Institute. A third partner, Vision Video Interactive, Inc. provided technology-based learning platforms (hardware and software). The revised scope yielded an expanded set of results beyond the initial expectation. Eight learning modules were developed for the industry-based Electrical Safety course. These modules were subsequently redesigned and repurposed for test application in an academic setting. Software and hardware developments during the project's timeframe enabled redesign providing for student access through the use of tablet devices such as iPads. Early prototype Learning Management Systems (LMS) featuring more student-centric access and interfaces with emerging social media were developed and utilized during the testing applications. The project also produced soft results involving cross learning between and among the partners regarding subject matter expertise, online learning pedagogy, and eLearning technology-based platforms. The partners believe that the most significant, overarching accomplishment of the project was the development and implementation of goals, activities, and outcomes that significantly exceeded those proposed in the initial grant application submitted in 2009. Key specific accomplishments include: (1) development of a set of 8 online learning modules addressing electrical safety as it relates to the work of wind technicians; (3) development of a flexible, open-ended Learning Management System (LMS): (3) creation of a robust body of learning (knowledge, experience, skills, and relationships). Project leaders have concluded that there is substantial resource equity that could be leverage and recommend that it be carried forward to pursue a Next Stage Opportunity relating to development of an online core curriculum for institute and community college energy workforce development programs.

  10. An Integrated Hydrogen Vision for California

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    Techno-economic Analysis of Different Options for the Production of Hydrogen from Sunlight, Wind, and Biomass,Ē

  11. Competitive Wind Grants (Vermont)

    Broader source: Energy.gov [DOE]

    The Clean Energy Development Fund Board will offer a wind grant program beginning October 1, 2013. The grant program will replace the wind incentives that were originally part of the [http:/...

  12. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  13. See the Wind

    Broader source: Energy.gov (indexed) [DOE]

    See the Wind Grades: 5-8 , 9-12 Topic: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency...

  14. Talbot County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance amends the Talbot County Code, Chapter 190, Zoning, Subdivision and Land Development, to permit small wind turbine systems with wind turbine towers not to exceed 160 feet in total...

  15. Wind Energy Act (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the...

  16. Environmental assessment, expanded Ponnequin wind energy project, Weld County, Colorado

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    The US Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCo) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE`s deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.

  17. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Wind Logics, Inc. 2004. Wind Integration StudyóFinal Report.EnerNex Corp. 2006. Wind Integration Study for Public

  18. What is Wind Chill Temperature? It is the temperature it "feels like" outside and is based on the rate of heat loss

    E-Print Network [OSTI]

    What is Wind Chill Temperature? It is the temperature it "feels like" outside and is based on the rate of heat loss from exposed skin caused by the effects of wind and cold. As the wind increases, the body is cooled at a faster rate causing the skin temperature to drop. Wind Chill does not impact

  19. Kent County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

  20. Wind-To-Hydrogen Energy Pilot Project

    SciTech Connect (OSTI)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24T23:59:59.000Z

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the end of December 2008. Several issues continued to prevent consistent operation, resulting in operation o

  1. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    is located in Europe. In contrast, all wind power projectsin Europe. In 2009, for example, more wind power was

  2. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  3. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15T23:59:59.000Z

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  4. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  5. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04T23:59:59.000Z

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  6. Assessment of the National Wind Coordinating Collaborative: Addressing Environmental and Siting Issues Associated with Wind Energy Development

    SciTech Connect (OSTI)

    Van Cleve, Frances B.; States, Jennifer C.

    2010-11-09T23:59:59.000Z

    The National Wind Coordinating Collaborative (NWCC) is a consensus-based stakeholder group comprised of representatives from the utility, wind industry, environmental, consumer, regulatory, power marketer, agricultural, tribal, economic development, and state and federal government sectors. The purpose of the NWCC is to support the development of an environmentally, economically, and politically sustainable commercial market for wind power (NWCC 2010). The NWCC has been funded by the U.S. Department of Energy (DOE) since its inception in 1994. In order to evaluate the impact of the work of the NWCC and how this work aligns with DOEís strategic priorities, DOE tasked Pacific Northwest National Laboratory (PNNL) to conduct a series of informal interviews with a small sample of those involved with NWCC.

  7. Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind· vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you· made! The biggest differences

  8. Wind: wind speed and wind power density maps at 10m and 50m above...

    Open Energy Info (EERE)

    files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer....

  9. Wind: wind speed and wind power density GIS data at 10m and 50m...

    Open Energy Info (EERE)

    files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer....

  10. Aeroacoustic Testing of Wind Turbine Airfoils: February 20, 2004 - February 19, 2008

    SciTech Connect (OSTI)

    Devenport, W.; Burdisso, R. A.; Camargo, H.; Crede, E.; Remillieux, M.; Rasnick, M.; Van Seeters, P.

    2010-05-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), working through its National Renewable Energy Laboratory (NREL), is engaged in a comprehensive research effort to improve the understanding of wind turbine aeroacoustics. The motivation for this effort is the desire to exploit the large expanse of low wind speed sites that tend to be close to U.S. load centers. Quiet wind turbines are an inducement to widespread deployment, so the goal of NREL's aeroacoustic research is to develop tools that the U.S. wind industry can use in developing and deploying highly efficient, quiet wind turbines at low wind speed sites. NREL's National Wind Technology Center (NWTC) is implementing a multifaceted approach that includes wind tunnel tests, field tests, and theoretical analyses in direct support of low wind speed turbine development by its industry partners. NWTC researchers are working hand in hand with engineers in industry to ensure that research findings are available to support ongoing design decisions.

  11. Wind Generation on Winnebago Tribal Lands

    SciTech Connect (OSTI)

    Multiple

    2009-09-30T23:59:59.000Z

    The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 Ė 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining months of the twelve-month collection period is consistent with that collected in the first seven months, the Western Winnebago site may present an interesting opportunity for Winnebago. Given the distance to nearby substations, and high cost of interconnection at higher voltage transmission lines, Winnebago would likely need to be part of a larger project in order to reduce power costs to more attractive levels. Another alternative would be to pursue grant funding for a portion of development or equipment costs, which would also help reduce the cost of power produced. The NREL tower from the WinnaVegas site was taken down in late 2008, re-instrumented and installation attempted on the Thunderway site south of the Winnebago community. Based on projected wind speeds, current equipment costs, and the projectís proximity to substations for possible interconnection, a Thunderway community-scale wind project could also be feasible.

  12. Vertical axis wind turbine

    SciTech Connect (OSTI)

    Kato, Y.; Seki, K.; Shimizu, Y.

    1981-01-27T23:59:59.000Z

    Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

  13. Vertical axis wind turbine

    SciTech Connect (OSTI)

    Kato, Y.; Seki, K.; Shimizu, Y.

    1981-01-27T23:59:59.000Z

    Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

  14. Wind energy applications guide

    SciTech Connect (OSTI)

    anon.

    2001-01-01T23:59:59.000Z

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  15. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01T23:59:59.000Z

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  16. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13T23:59:59.000Z

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  17. Cooperative field test program for wind systems. Final report

    SciTech Connect (OSTI)

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01T23:59:59.000Z

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  18. DOE HANDBOOK

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the2.4Today,Guide forHandbook

  19. DOE News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE National

  20. DOE News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE

  1. DOE News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE December

  2. DOE News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE

  3. DOE News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOESeptember

  4. DOE News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOESeptember

  5. DOE News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,

  6. DOE News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

  7. DOE News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

  8. DOE News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

  9. DOE News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

  10. DOE News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

  11. DOE News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656

  12. DOE News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656ÔÉź U .

  13. DOE-0336

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State ofto Partner36

  14. DOE-0344

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State ofto

  15. DOE-0400

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State

  16. DOE Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOE Plans2

  17. DOE-0342

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice of ScientificSolar Residence by e2DOE5, 2012

  18. the risk issue of wind measurement for wind turbine operation

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Sciences, National Taiwan University #12;outline ∑ Wind measurement in meteorology and wind farm design-related issues on wind turbine operation 3/31/2011 2 #12;WIND MEASUREMENT IN METEOROLOGY & WIND FARM DESIGN 3.brainybetty.com 11 wind farm at ChangHwa Coastal Industrial Park 70m wind tower 70m 50m 30m 10m #12;1 2 3 4 5 1 (70M

  19. NREL: Wind Research - WindPACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the cost of wind energy Determine probable size ranges of advanced utility-scale turbines over the next decade for U.S. application Evaluate advanced concepts that are...

  20. Composite Wind Turbine Blade Effects of Defects: Part B--Progressive Damage Modeling of Fiberglass/Epoxy

    E-Print Network [OSTI]

    Composite Wind Turbine Blade Effects of Defects: Part B-- Progressive Damage Modeling of Fiberglass for the reliability of modern composite wind turbine blades. The DOE has sponsored a comprehensive study to a wind turbine blade reliability infrastructure. To support this development of a reliability

  1. VISION: Verifiable Fuel Cycle Simulation Model

    SciTech Connect (OSTI)

    Jacob Jacobson; A. M. Yacout; Gretchen Matthern; Steven Piet; David Shropshire; Tyler Schweitzer

    2010-11-01T23:59:59.000Z

    The nuclear fuel cycle consists of a set of complex components that work together in unison. In order to support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system. The Advanced Fuel Cycle Initiativeís systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION.

  2. VISION: Verifiable Fuel Cycle Simulation Model

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01T23:59:59.000Z

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiativeís systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  3. Wind energy conversion system

    SciTech Connect (OSTI)

    Longrigg, P.

    1987-03-17T23:59:59.000Z

    This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

  4. Establishment of Small Wind Regional Test Centers: Preprint

    SciTech Connect (OSTI)

    Jimenez, T.; Forsyth, T.; Huskey, A.; Mendoza, I.; Sinclair, K.; Smith, J.

    2011-03-01T23:59:59.000Z

    The rapid growth of the small wind turbine (SWT) market is attracting numerous entrants. Small wind turbine purchasers now have many options but often lack information (such as third-party certification) to select a quality turbine. Most SWTs do not have third-party certification due to the expense and difficulty of the certification process. Until recently, the only SWT certification bodies were in Europe. In North America, testing has been limited to a small number of U.S. Department of Energy (DOE) subsidized tests conducted at the National Wind Technology Center (NWTC) under the ongoing Independent Testing Project. Within the past few years, the DOE, National Renewable Energy Lab (NREL), and some states have worked with the North American SWT industry to create a SWT certification infrastructure. The goal is to increase the number of certified turbines and gain greater consumer confidence in SWT technology. The American Wind Energy Association (AWEA) released the AWEA Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 - 2009) in December 2009. The Small Wind Certification Council (SWCC), a North American certification body, began accepting applications for certification to the AWEA standard in February 2010. To reduce certification testing costs, DOE/NREL is providing financial and technical assistance for an initial round of tests at four SWT test sites which were selected via a competitive solicitation. The four organizations selected are Windward Engineering (Utah), The Alternative Energy Institute at West Texas A&M (Texas), a consortium consisting of Kansas State University and Colby Community College (Kansas), and Intertek (New York). Each organization will test two small wind turbines as part of their respective subcontract with DOE/NREL. The testing results will be made publically available. The goal is to establish a lower-cost U.S. small wind testing capability that will lead to increased SWT certification.

  5. EIS-0408: Upper Great Plains Wind Energy Programmatic EIS

    Broader source: Energy.gov [DOE]

    This EIS, being prepared jointly by DOE's Western Area Power Administration and the Department of the Interiorís Fish and Wildlife Service, will evaluate the environmental impacts of wind energy development in Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota Ė Westernís Upper Great Plains customer service region. Western will use the EIS to implement a comprehensive regional program to manage interconnection requests for wind energy projects.

  6. WINDExchange Offshore Wind Webinar: Transmission Planning and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind WINDExchange Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind...

  7. An Integrated Hydrogen Vision for California

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    $4. Wind electrolysis-derived hydrogen would cost about $7-Electrolysis 24,000 kg/day NAS/NRC, 2004 Note: Delivered hydrogen costs

  8. Wind turbine reliability : understanding and minimizing wind turbine operation and maintenance costs.

    SciTech Connect (OSTI)

    Not Available

    2004-11-01T23:59:59.000Z

    Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. Cost of energy (COE) is a key project evaluation metric, both in commercial applications and in the U.S. federal wind energy program. To reflect this commercial reality, the wind energy research community has adopted COE as a decision-making and technology evaluation metric. The COE metric accounts for the effects of reliability through levelized replacement cost and unscheduled maintenance cost parameters. However, unlike the other cost contributors, such as initial capital investment and scheduled maintenance and operating expenses, costs associated with component failures are necessarily speculative. They are based on assumptions about the reliability of components that in many cases have not been operated for a complete life cycle. Due to the logistical and practical difficulty of replacing major components in a wind turbine, unanticipated failures (especially serial failures) can have a large impact on the economics of a project. The uncertainty associated with long-term component reliability has direct bearing on the confidence level associated with COE projections. In addition, wind turbine technology is evolving. New materials and designs are being incorporated in contemporary wind turbines with the ultimate goal of reducing weight, controlling loads, and improving energy capture. While the goal of these innovations is reduction in the COE, there is a potential impact on reliability whenever new technologies are introduced. While some of these innovations may ultimately improve reliability, in the short term, the technology risks and the perception of risk will increase. The COE metric used by researchers to evaluate technologies does not address this issue. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce COE.

  9. The Web Services Vision Definition of Web Services

    E-Print Network [OSTI]

    Cheverst, Keith

    1 The Web Services Vision Overview Definition of Web Services Key concepts Difference from traditional web model Context Service-oriented architecture Distributed computing Overview Microsoft .NET vision Web Services Difference from traditional web model Context Service-oriented architecture

  10. A National Vision of America's Transition to a Hydrogen Economy...

    Energy Savers [EERE]

    A National Vision of America's Transition to a Hydrogen Economy--To 2030 and Beyond A National Vision of America's Transition to a Hydrogen Economy--To 2030 and Beyond The summary...

  11. wind_guidance

    Broader source: Energy.gov [DOE]

    Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

  12. Barstow Wind Turbine Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  13. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08T23:59:59.000Z

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  14. Wind Wave Float

    Broader source: Energy.gov (indexed) [DOE]

    Weinstein Principle Power, Inc. aweinstein@principlepowerinc.com November 1, 2011 2 | Wind and Water Power Program eere.energy.gov Purpose, Objectives, & Integration Project...

  15. Talkiní Bout Wind Generation

    Broader source: Energy.gov [DOE]

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  16. Wind Engineering & Natural Disaster Mitigation

    E-Print Network [OSTI]

    Denham, Graham

    Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

  17. Wind Energy and Spatial Technology

    E-Print Network [OSTI]

    Schweik, Charles M.

    2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

  18. Proceedings Nordic Wind Power Conference

    E-Print Network [OSTI]

    Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

  19. Modeling access to wind resources in the United States

    SciTech Connect (OSTI)

    Short, W.D.

    1999-10-20T23:59:59.000Z

    To project the US potential to meet future electricity demands with wind energy, estimates of available wind resource and costs to access that resource are critical. The US Department of Energy (DOE) Energy Information Administration (EIA) annually estimates the US market penetration of wind in its Annual Energy Outlook series. For these estimates, the EIA uses wind resource data developed by the Pacific Northwest National Laboratory for each region of the country. However, the EIA multiplies the cost of windpower by several factors, some as large as 3, to account for resource quality, market factors associated with accessing the resource, electric grid impacts, and rapid growth in the wind industry. This paper examines the rationale behind these additional costs and suggests alternatives.

  20. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  1. American Wind Energy Association Wind Energy Finance and Investment...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT to October 21, 2014 5:00PM EDT...

  2. Wind Powering America's Wind for Schools Team Honored with Wirth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America's Wind for Schools Team Honored with Wirth Chair Award Wind Powering America's Wind for Schools Team Honored with Wirth Chair Award May 1, 2012 - 2:46pm Addthis This is an...

  3. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Environmental Management (EM)

    : Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Here you will find the...

  4. DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Policy on Decommissioning DOE Facilities Under CERCLA DOE Policy on Decommissioning DOE Facilities Under CERCLA In May 1995, the Department of Energy (DOE) issued a policy in...

  5. Assessment of Offshore Wind System Design, Safety, and Operation Standards

    SciTech Connect (OSTI)

    Sirnivas, S.; Musial, W.; Bailey, B.; Filippelli, M.

    2014-01-01T23:59:59.000Z

    This report is a deliverable for a project sponsored by the U.S. Department of Energy (DOE) entitled National Offshore Wind Energy Resource and Design Data Campaign -- Analysis and Collaboration (contract number DE-EE0005372; prime contractor -- AWS Truepower). The project objective is to supplement, facilitate, and enhance ongoing multiagency efforts to develop an integrated national offshore wind energy data network. The results of this initiative are intended to 1) produce a comprehensive definition of relevant met-ocean resource assets and needs and design standards, and 2) provide a basis for recommendations for meeting offshore wind energy industry data and design certification requirements.

  6. Underwater Computer Vision: Two Decades of Traditional Approaches

    E-Print Network [OSTI]

    Treuille, Adrien

    waters). Why is vision difficult in underwater? environment lighting medium Sensor & sensor platform #12) Why is vision difficult in underwater? environment lighting medium Sensor & sensor platform #12;7 Why is vision difficult in underwater? environment lighting medium Sensor & sensor platform 4. Poor positioning

  7. Loss of Daylight Vision in Retinal Degeneration: Are

    E-Print Network [OSTI]

    Tabin, Cliff

    Loss of Daylight Vision in Retinal Degeneration: Are Oxidative Stress and Metabolic Dysregulation, particularly in cones, the type of photoreceptors that mediate daylight and color vision. The evidence, providing our daylight vision, and have many of the same features and vulnerabilities as rod photoreceptors

  8. LARGE SCALE WIND CLIMATOLOGICAL EXAMINATIONS OF WIND ENERGY UTILIZATION

    E-Print Network [OSTI]

    Andrea Kircsi

    The aim of this article is to describe the particular field of climatology which analyzes air movement characteristics regarding utilization of wind for energy generation. The article describes features of wind energy potential available in Hungary compared to wind conditions in other areas of the northern quarter sphere in order to assist the wind energy use development in Hungary. Information on wind climate gives a solid basis for financial and economic decisions of stakeholders in the field of wind energy utilization.

  9. Choosing wind power plant locations and sizes based on electric reliability measures using multiple-year wind speed measurements

    SciTech Connect (OSTI)

    Milligan, M.R.; Artig, R.

    1999-07-08T23:59:59.000Z

    To project the US potential to meet future electricity demands with wind energy, estimates of available wind resource and costs to access that resource are critical. The US Department of Energy (DOE) Energy Information Administration (EIA) annually estimates the US market penetration of wind in its Annual Energy Outlook series. For these estimates, the EIA uses wind resource data developed by the Pacific Northwest National Laboratory for each region of the country. However, the EIA multiplies the cost of windpower by several factors, some as large as 3, to account for resource quality, market factors associated with accessing the resource, electric grid impacts, and rapid growth in the wind industry. This paper examines the rationale behind these additional costs and suggests alternatives.

  10. Q-Winds satellite hurricane wind retrievals and H*Wind comparisons

    E-Print Network [OSTI]

    Hennon, Christopher C.

    tailored to extreme wind events. Because of this and precipitation effects, scatterometers have failed/passive scatterometer retrieval algorithm designed specifically for extreme wind events, hereafter identified1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W

  11. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Environmental Management (EM)

    Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) Executive summary of a report on the requirements needed...

  12. Integrated Imaging and Vision Techniques for Industrial Inspection: A Special Issue on Machine Vision and Applications

    SciTech Connect (OSTI)

    Liu, Zheng; Ukida, H.; Ramuhalli, Pradeep; Forsyth, D. S.

    2010-06-05T23:59:59.000Z

    Imaging- and vision-based techniques play an important role in industrial inspection. The sophistication of the techniques assures high- quality performance of the manufacturing process through precise positioning, online monitoring, and real-time classification. Advanced systems incorporating multiple imaging and/or vision modalities provide robust solutions to complex situations and problems in industrial applications. A diverse range of industries, including aerospace, automotive, electronics, pharmaceutical, biomedical, semiconductor, and food/beverage, etc., have benefited from recent advances in multi-modal imaging, data fusion, and computer vision technologies. Many of the open problems in this context are in the general area of image analysis methodologies (preferably in an automated fashion). This editorial article introduces a special issue of this journal highlighting recent advances and demonstrating the successful applications of integrated imaging and vision technologies in industrial inspection.

  13. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    P. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &Economic Analysis of a Wind Farm in Nantucket Sound. Beacon

  14. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy from the bottom toover the cost and price of wind energy that it receives. Asweighted-average price of wind energy in 1999 was $65/MWh (

  15. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    natural gas prices, though the economic value of wind energyenergy and climate policy initiatives. With wind turbine pricesprices reported here would be at least $20/MWh higher without the PTC), they do not represent wind energy

  16. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    weighted-average price of wind energy in 1999 was roughly $reduced near-term price expectations, wind energy?s primaryelectricity prices in 2009 pushed wind energy to the top of

  17. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01T23:59:59.000Z

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  18. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

  19. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

  20. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

  1. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportAssociates. 2010. SPP WITF Wind Integration Study. Little10, 2010. David, A. 2009. Wind Turbines: Industry and Trade

  2. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

  3. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    shows that 8.5% of potential wind energy generation withinin GWh (and as a % of potential wind generation) Electricreport also laid out a potential wind power deployment path

  4. TESLA'S VISION OF THE WIRELESS GLOBAL COMMUNICATIONS

    E-Print Network [OSTI]

    Trajkovic, Ljiljana

    TESLA'S VISION OF THE WIRELESS GLOBAL COMMUNICATIONS Ljiljana Trajkovi Communication Networks;January 17, 2005 UBC Ljiljana Trajkovic, Simon Fraser University 2 Road map Tesla in 1890's First wireless;January 17, 2005 UBC Ljiljana Trajkovic, Simon Fraser University 4 Alternate currents Tesla left Edison

  5. TESLA'S VISION OF THE WIRELESS GLOBAL COMMUNICATIONS

    E-Print Network [OSTI]

    Trajkovic, Ljiljana

    , at an AIEE meeting in New York, Tesla presented a lecture entitled "A New System of Alternate Current MotorsTESLA'S VISION OF THE WIRELESS GLOBAL COMMUNICATIONS Ljiljana Trajkovi Communication Networks;March 12, 2004 Kwantlen College Ljiljana Trajkovic, Simon Fraser University 2 Road map Tesla in 1890's

  6. 2020 Vision Project Summary: FY99

    SciTech Connect (OSTI)

    K.W. Gordon; K.P. Scott

    2000-01-01T23:59:59.000Z

    During the 1998-99 school year, students from participating schools completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on U.S. national security. This report summarizes the student's views and describes trends observed over the course of the 2020 Vision project's four years.

  7. Utrecht University's vision for teaching and

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Utrecht University's vision for teaching and learning In recent years, student numbers field, Utrecht University seeks to retain and strengthen its leading position in education, working by their work and enabled to innovate and improve their teaching. It is Utrecht University's ambition to deliver

  8. Filtrage particulaire dans la vision robotique

    E-Print Network [OSTI]

    LeGland, François

    Filtrage particulaire dans la vision robotique : Application √† la commande d'un mini-drone √?cole Th√©matique Filtrage Particulaire 9 f√©vrier 2012 C√©line Teuli√®re #12;Mobile robotics A task is defined2 (Independent Robotics) CyCab (Inria) Quadri-rotor (Novadem) HRP-4 (Kawada) 2 #12;Mobile robot

  9. Mathematical Optimization in Graphics and Vision

    E-Print Network [OSTI]

    Mathematical Optimization in Graphics and Vision Luiz Velho Paulo Cezar Pinto Carvalho IMPA - Instituto de Matemática Pura e Aplicada Course ScheduleCourse Schedule Module 1 ­ Computer Graphics to Answer · Why optimization is important for graphics? ­ Problems and Solutions · How optimization can

  10. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff Here you willWind EnergyWind

  11. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrekWest Winds Wind

  12. Computer Vision, Graphics, and Image Processing 40 (1987) 250-266 1 Computer Vision, Graphics, and Image Processing 40 (1987) 250-266 2

    E-Print Network [OSTI]

    Murray, David

    Computer Vision, Graphics, and Image Processing 40 (1987) 250-266 1 #12;Computer Vision, Graphics, and Image Processing 40 (1987) 250-266 2 #12;Computer Vision, Graphics, and Image Processing 40 (1987) 250-266 3 #12;Computer Vision, Graphics, and Image Processing 40 (1987) 250-266 4 #12;Computer Vision

  13. Small Wind Information (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

  14. Offshore Wind Geoff Sharples

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make the blades bigger? · How big will turbines get? #12;Offshore Resource is Good #12

  15. Carbon smackdown: wind warriors

    ScienceCinema (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  16. Carbon smackdown: wind warriors

    SciTech Connect (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-07-21T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  17. VARIABLE SPEED WIND TURBINE

    E-Print Network [OSTI]

    Chatinderpal Singh

    Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

  18. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  19. Wind Wildlife Research Meeting X

    Broader source: Energy.gov [DOE]

    The biennial Wind Wildlife Research Meeting provides an internationally recognized forum for researchers and wind-wildlife stakeholders to hear contributed papers, view research posters, and listen...

  20. Wind and Solar Curtailment: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration of Wind Power Into Power Systems as Well as on Transmission Networks for Offshore Wind Power Plants London, England October 22 - 24, 2013 Conference Paper NREL...

  1. Wind Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

  2. Large Wind Property Tax Reduction

    Broader source: Energy.gov [DOE]

    In 2001, North Dakota established property tax reductions for commercial wind turbines constructed before 2011. Originally, the law reduced the taxable value of centrally-assessed* wind turbines...

  3. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine equipment-related costs are assumed to equal 85% of 2010 Wind Technologies Market Report periods to further avoid ďnoiseĒ

  4. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    selected wind turbine components that include towers (tradeWind turbine transactions differ in the services offered (e.g. , whether towers

  5. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    wind turbine manufacturers: Vestas (nacelles, blades, and towersWind turbine transactions differ in the services offered (e.g. , whether towers

  6. Wind Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. IEA Wind Task 34 (WREN) Quarterly Webinar 3:...

  7. Stakeholder Engagement and Outreach March Webinar: Wind Energy and Property Values

    Broader source: Energy.gov [DOE]

    DOE's Stakeholder Engagement and Outreach initiative will host a webinar presenting the topic of wind turbines and property values. Lead author Carol Atkinson-Palombo, assistant professor at the...

  8. If I generate 20 percent of my national electricity from wind...

    Open Energy Info (EERE)

    generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

  9. Ris National Laboratory DTU Wind Energy Department

    E-Print Network [OSTI]

    wind speed, wind direction relative to the spinner and flow inclination angle. A wind tunnel concept anemometer is a wind measurement concept in which measurements of wind speed in the flow over a wind turbine on a modified 300kW wind turbine spinner, was mounted with three 1D sonic wind speed sensors. The flow around

  10. Ponnequin Wind Energy Project Weld County, Colorado

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    The purpose of this environmental assessment (EA) is to provide the U.S. Department of Energy (DOE) and the public with information on potential environmental impacts associated with the development of the Ponnequin Wind Energy Project in Colorado. This EA and public comments received on it will be used in DOE`s deliberations on whether to release funding for the project. This document provides a detailed description of the proposed project and an assessment of potential impacts associated with its construction and operations. Resources and conditions considered in the analysis include streams; wetlands; floodplains; water quality; soils; vegetation; air quality; socioeconomic conditions; energy resources; noise; transportation; cultural resources; visual and land use resources; public health and safety; wildlife; threatened, endangered, and candidate species; and cumulative impacts. The analysis found that the project would have minimal impacts on these resources and conditions, and would not create impacts that exceed the significance criteria defined in this document. 90 refs., 5 figs.

  11. EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposed wind energy generation project in Coconino County, Arizona, on privately owned ranch lands and trust lands administered by the Arizona State Land Department. The proposed project includes a new transmission tie-line that would cross lands administered by Coconino National Forest and interconnect with DOEís Western Area Power Administrationís existing Glen Canyon-Pinnacle Peak transmission lines.

  12. EIS-0413: Searchlight Wind Energy Project, Searchlight, NV

    Broader source: Energy.gov [DOE]

    The Department of the Interiorís Bureau of Land Management, with DOEís Western Area Power Administration as a cooperating agency, is preparing this EIS to evaluate the environmental impacts of a proposal to construct and operate 156 wind turbine generators and related facilities on public lands surrounding the town of Searchlight, Nevada. The proposal includes a substation that would be operated by Western.

  13. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

    2011-11-29T23:59:59.000Z

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

  14. Sandia National Laboratories: DOE Bioenergy Technologies Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-FarmCoolDOE DOE InternationalBioenergy

  15. EA-1970: Fishermenís Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey

    Broader source: Energy.gov [DOE]

    DOE is proposing to provide funding to Fishermenís Energy LLC to construct and operate up to five 5.0 MW wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

  16. Design and construction of vertical axis wind turbines using dual-layer vacuum-forming

    E-Print Network [OSTI]

    Carper, Christopher T

    2010-01-01T23:59:59.000Z

    How does one visualize wind? Is it the way trees bend in a strong gust or the way smoke is carried in a breeze? What if wind could be visualized using design, technology, and light? This thesis documents the design of a ...

  17. TAP Helps States and Local Governments Reach Their Wind Power Goals

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Technical Assistance Project: Wind and Hydropower Program provides information to state and local officials regarding the U.S. Department of Energy's Technical Assistance Project (TAP). The TAP program provides access to wind energy experts at U.S. Department of Energy (DOE) national laboratories, including the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Lawrence Berkeley National Laboratory (LBNL).

  18. A Disturbance Margin For Quantifying Limits on Power Smoothing by Wind Turbines

    E-Print Network [OSTI]

    Maggiore, Manfredi

    wind variation a wind turbine can absorb in variable speed mode while still being guaranteed to operate speed and generator torque to store and release energy. This ability must be constrained by turbine speed and generator torque limits. To date, work in the literature is conceptual and does not indicate

  19. Office of Indian Energy Policy and Programs | Department of Energy

    Energy Savers [EERE]

    Wind Potential Map As part of DOE's new Wind Vision Report, this map shows how wind power could generate up to 35% of the nation's electricity by 2050. Read more...

  20. EIS-0470: U.S. Department of Energy Loan Guarantee for the Cape Wind Energy Project on the Outer Continental Shelf off Massachusetts, Nantucket Sound

    Broader source: Energy.gov [DOE]

    The DOE Loan Programs Office is proposing to offer a loan guarantee to Cape Wind Associates, LLC for the construction and start-up of the Cape Wind Energy Project in Nantucket Sound, offshore of Massachusetts. The proposed Cape Wind Energy Project would consist of up to 130, 3.6-MW turbine generators, in an area of roughly 25-square miles, and would include 12.5 miles of 115-kilovolt submarine transmission cable and an electric service platform. To inform DOE's decision regarding a loan guarantee, DOE adopted the Department of the Interiorís 2009 Final Cape Wind Energy Project EIS, in combination with two Cape Wind Environmental Assessments dated May 2010 and April 2011 (per 40 CFR 1506.4), as a DOE Final EIS (DOE/EIS-0470). The adequacy of the Department of the Interior final EIS adopted by DOE is the subject of a judicial action. This project is inactive.

  1. Wind Energy Kit | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Kit Wind Energy Kit Wind Energy :: Kit Materials List Below is a list of the different Wind Energy kits available. For more details, download the Wind Energy Kit List....

  2. Wind Energy Program: Top 10 Program Accomplishments

    Broader source: Energy.gov [DOE]

    Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

  3. Utilizing Wind: Optimal Wind Farm Placement in the United States

    E-Print Network [OSTI]

    Powell, Warren B.

    Utilizing Wind: Optimal Wind Farm Placement in the United States By: Yintao Sun Advisor: Professor Acknowledgements First and foremost, I would like to thank my advisor, Professor Warren Powell, for all the help he An Introduction to Wind Energy 1 1.1 Wind, a Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

  4. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  5. Wind Energy at NREL's National Wind Technology Center

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  6. Reference wind farm selection for regional wind power prediction models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

  7. WIND ENERGY Wind Energ. 2013; 00:112

    E-Print Network [OSTI]

    WIND ENERGY Wind Energ. 2013; 00:1­12 DOI: 10.1002/we RESEARCH ARTICLE Model predictive control in wind speed, ensuring certain power gradients, with an insignificant loss in energy production rejection, model predictive control, convex optimization, wind power control, energy storage, power output

  8. WIND ENERGY Wind Energ. 2013; 16:7790

    E-Print Network [OSTI]

    Papalambros, Panos

    energy industry lags far behind the wind energy industry, it has the potential to become a role player is equal to the long-term potential of onshore wind energy.1,2 Therefore, the utilisation of marineWIND ENERGY Wind Energ. 2013; 16:77­90 Published online 19 March 2012 in Wiley Online Library

  9. Wind Power Outreach Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power Wind

  10. DOE-FLEX: DOE's Telework Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-02-11T23:59:59.000Z

    The order establishes the requirements and responsibilities for the Departments telework program. Cancels DOE N 314.1.

  11. DOE Partners with Other Federal Agencies Working on the Wind...

    Broader source: Energy.gov (indexed) [DOE]

    objectives and milestones. The former processing site in Riverton is a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site, licensed to LM for long-term...

  12. DOE Announces Webinars on Wind Energy and Property Values, the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar on Innovation in the Interconnection Application Process Webinar Sponsor: EERE Solar Energy Technologies Office The Energy Department will present a live webinar titled...

  13. DOE Announces Webinars on the Distributed Wind Power Market,...

    Energy Savers [EERE]

    typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars August 21: Live Webinar on the 2012...

  14. DOE Announces Webinars on Economic Impacts of Offshore Wind,...

    Broader source: Energy.gov (indexed) [DOE]

    typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars November 20: Live Webinar on Jobs and...

  15. DOE Announces Webinars on Geography of Alternative Fuels, Wind...

    Office of Environmental Management (EM)

    development and the AWWI's Landscape Assessment Tool. Brian Woodbridge from the U.S. Fish and Wildlife Service will speak about the agency's decision-support tools that are...

  16. About the DOE Wind Program | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OF THE| DepartmentUs AboutAbout theAbout

  17. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department of Energy SecretaryEnergyEnergy The

  18. Austin Energy Wins DOE Wind Power Award | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE BlogAttachmentFlash2011-21 Audit Letter6-0136Year30,DataEnergy Wins

  19. Northern Wind Project Draft Environmental Assessment DOE/EA-1902

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2EnergyDepartment ofNewsNortheastB O N N E V I L

  20. How Does a Wind Turbine Work? | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory History On7, 2008ScienceWhile

  1. 2011 DOE Funded Offshore Wind Project Updates | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE) | DepartmentFeedstock

  2. DOE Announces Webinars on Geography of Alternative Fuels, Wind Siting

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergy Efficiency ConservationConsiderations, and

  3. DOE Announces Webinars on Solar Thermochemical Reaction Systems, Wind

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergyDeveloping a Tribal Strategic Energy Plan,

  4. DOE Announces Webinars on an Offshore Wind Economic Impacts Model,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergyDeveloping a TribalResources for Tribal Energy

  5. DOE Releases 2011 Wind Technologies Market Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOEDOEAVAILABLEDepartment ofHeld this Summer |12

  6. New Report Evaluates Impacts of DOE's Wind Powering America Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarkets withCohenNew PartnersCell

  7. DOE Releases 2012 Wind Technologies Market Report | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram

  8. US DOE Wind Powering America | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:ToyoTurkey:S ArmyMeasuringResourcesBioGen

  9. DOE Announces Webinars on the Distributed Wind Power Market, Lighting

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2Consolidated Edison5 by ISA

  10. AWEA and DOE Collaborate on Offshore Wind Recommended Practices |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department ofEnergy PHEV Demand

  11. US DOE 20% Wind Energy by 2030 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to:Development ReportsAssessmentsby 2030 Jump

  12. US DOE Wind Powering America | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to:Development ReportsAssessmentsby

  13. DOE Lab Releases Wind Turbine Reliability Benchmark Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor06/2015)09 I. Steps Taken5ofLNG Exports Announcements -

  14. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Renewable Energy, Wind and Hydropowerin Spain. Spanish Wind Energy Association (AEE) contributionin a Wind Turbine. Ē Wind Energy (9:1Ė2); pp. 141Ė161.

  15. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...

    Broader source: Energy.gov (indexed) [DOE]

    6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and...

  16. Community Wind Benefits (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    This fact sheet explores the benefits of community wind projects, including citations to published research.

  17. wind engineering & natural disaster mitigation

    E-Print Network [OSTI]

    Denham, Graham

    wind engineering & natural disaster mitigation #12;wind engineering & natural disaster mitigation Investment WindEEE Dome at Advanced Manufacturing Park $31million Insurance Research Lab for Better Homes $8million Advanced Facility for Avian Research $9million #12;wind engineering & natural disaster mitigation

  18. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect (OSTI)

    Saur, G.; Ramsden, T.

    2011-05-01T23:59:59.000Z

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  19. Optimization of Wind Turbine Operation

    E-Print Network [OSTI]

    Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN S√łrensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10¬į. The average flow

  20. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    some wind turbine manufacturers experienced blade andwind turbine manufacturers: Vestas (nacelles, blades, and