National Library of Energy BETA

Sample records for doe transportation risk

  1. A Resource Handbook on DOE Transportation Risk Assessment (DOE, 2002)

    Broader source: Energy.gov [DOE]

    This resource handbook was compiled for the DOE's Transportation Risk Assessment Working Group. This document includes the first of a planned series of discussion papers on topical aspects of transportation risk problems. These discussion papers are intended to provide practical advice to program managers and technical personnel responsible for preparing NEPA documents and other transportation risk assessments.

  2. The Resource Handbook on DOE Transportation Risk Assessment

    SciTech Connect (OSTI)

    Chen, S. Y.; Kapoor, A. K.

    2003-02-27

    In an attempt to bring forth increased efficiency and effectiveness in assessing transportation risks associated with radioactive materials or wastes, the U.S. Department of Energy's (DOE's) National Transportation Program (NTP) published a resource handbook in 2002. The handbook draws from the broad technical expertise among DOE national laboratories and industry, which reflects the extensive experience gained from DOE's efforts in conducting assessments (i.e., environmental impact assessments) within the context of the National Environmental Policy Act (NEPA) in the past 20 years. The handbook is intended to serve as a primary source of information regarding the approach and basis for conducting transportation risk assessments under normal or accidental conditions that are associated with shipping radioactive materials or wastes. It is useful as a reference to DOE managers, NEPA assessors, technical analysts, contractors, and also stakeholders. It provides a summary of pertinent U.S. policies and regulations on the shipment of radioactive materials, existing guidance on preparing transportation risk assessments, a review of previous transportation risk assessments by DOE and others, a description of comprehensive and generally accepted transportation risk assessment methodologies, and a compilation of supporting data, parameters, and assumptions. The handbook also provides a discussion paper on an issue that has been identified as being important in the past. The discussion paper focuses on cumulative impacts, illustrating the ongoing evolution of transportation risk assessment. The discussion may be expanded in the future as emerging issues are identified. The handbook will be maintained and periodically updated to provide current and accurate information.

  3. A Resource Handbook on DOE Transportation Risk Assessment

    Broader source: Energy.gov [DOE]

    This resource handbook was compiled for the U.S. Department of Energy’s (DOE’s) Transportation Risk Assessment Working Group. This document includes the first of a planned series of discussion papers on topical aspects of transportation risk problems. These discussion papers are intended to provide practical advice to program managers and technical personnel responsible for preparing NEPA documents and other transportation risk assessments.

  4. DOE-Idaho's Packaging and Transportation Perspective

    Office of Environmental Management (EM)

    Idaho's Packaging and T t ti P ti Transportation Perspective Richard Provencher Manager DOE Idaho Operations Office DOE Idaho Operations Office Presented to the DOE National...

  5. 2016 DOE Project Management Workshop - Transportation | Department...

    Office of Environmental Management (EM)

    Transportation 2016 DOE Project Management Workshop - Transportation Complimentary guest shuttle service provided by Sheraton Pentagon City Hotel. PDF icon Shuttle service Key ...

  6. DOE Releases Electricity Subsector Cybersecurity Risk Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Releases Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline DOE Releases Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline May ...

  7. Resource handbook on transportation risk assessment.

    SciTech Connect (OSTI)

    Chen, S. Y.; Biwer, B. M.; Monette, F. A.; Environmental Assessment; SNL; BAPL; USOE; Battelle Memorial Inst.

    2003-01-01

    This resource handbook contains useful information to streamline radioactive material transportation risk assessments for National Environmental Policy Act (NEPA) documents prepared for U.S. Department of Energy (DOE) programs. Streamlining refers to instituting steps that can increase the efficiency of future assessments, reduce costs, and promote increased quality and consistency across the DOE complex. This handbook takes advantage of the wealth of information developed through decades of DOE's NEPA experience. It contains a review of historical assessments; a description of comprehensive and generally acceptable transportation risk assessment methodology (i.e., models); and a compilation of supporting data, parameters, and generally accepted assumptions. This handbook also includes a discussion paper that addresses cumulative impacts (Appendix A). The discussion paper illustrates the evolving and sometimes unresolved issues encountered in transportation risk assessment. Other topics, such as sabotage, environmental justice, and human factors, may be addressed in the future. This resource document was developed as the first primary reference book providing useful information for conducting transportation risk assessments for radioactive material in the NEPA context.

  8. Transportation scenarios for risk analysis.

    SciTech Connect (OSTI)

    Weiner, Ruth F.

    2010-09-01

    Transportation risk, like any risk, is defined by the risk triplet: what can happen (the scenario), how likely it is (the probability), and the resulting consequences. This paper evaluates the development of transportation scenarios, the associated probabilities, and the consequences. The most likely radioactive materials transportation scenario is routine, incident-free transportation, which has a probability indistinguishable from unity. Accident scenarios in radioactive materials transportation are of three different types: accidents in which there is no impact on the radioactive cargo, accidents in which some gamma shielding may be lost but there is no release of radioactive material, and accident in which radioactive material may potentially be released. Accident frequencies, obtainable from recorded data validated by the U.S. Department of Transportation, are considered equivalent to accident probabilities in this study. Probabilities of different types of accidents are conditional probabilities, conditional on an accident occurring, and are developed from event trees. Development of all of these probabilities and the associated highway and rail accident event trees are discussed in this paper.

  9. Spent Fuel Transportation Risk Assessment

    Office of Environmental Management (EM)

    DOE-STD-3020-2005 December 2005 Supersedes DOE-STD-3020-97 January 1997 DOE TECHNICAL STANDARD Specification for HEPA Filters Used by DOE Contractors U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited FOREWARD This U.S. Department of Energy (DOE) standard supersedes DOE-STD-3020-97 and is approved for use by DOE and its contractors. This standard was developed primarily for application in DOE programs. It

  10. Does Water Content or Flow Rate Control Colloid Transport in...

    Office of Scientific and Technical Information (OSTI)

    Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media? Citation Details In-Document Search Title: Does Water Content or Flow Rate Control Colloid ...

  11. DOE Issues Request for Information for Potential WIPP Transportation...

    Office of Environmental Management (EM)

    Potential WIPP Transportation Services Procurement DOE Issues Request for Information for Potential WIPP Transportation Services Procurement February 4, 2016 - 1:00pm Addthis Media ...

  12. Ecological risks of DOE`s programmatic environmental restoration alternatives

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This report assesses the ecological risks of the Department of Energy`s (DOE) Environmental Restoration Program. The assessment is programmatic in that it is directed at evaluation of the broad programmatic alternatives outlined in the DOE Implementation Plan. It attempts to (1) characterize the ecological resources present on DOE facilities, (2) describe the occurrence and importance of ecologically significant contamination at major DOE facilities, (3) evaluate the adverse ecological impacts of habitat disturbance caused by remedial activities, and (4) determine whether one or another of the programmatic alternatives is clearly ecologically superior to the others. The assessment focuses on six representative facilities: the Idaho National Engineering Laboratory (INEL); the Fernald Environmental Management Project (FEMP); the Oak Ridge Reservation (ORR), including the Oak Ridge National Laboratory (ORNL), Y-12 plant, and K-25 plant; the Rocky Flats Plant; the Hanford Reservation; and the Portsmouth Gaseous Diffusion Plant.

  13. DOE perspective on fuel cells in transportation

    SciTech Connect (OSTI)

    Kost, R.

    1996-04-01

    Fuel cells are one of the most promising technologies for meeting the rapidly growing demand for transportation services while minimizing adverse energy and environmental impacts. This paper reviews the benefits of introducing fuel cells into the transportation sector; in addition to dramatically reduced vehicle emissions, fuel cells offer the flexibility than use petroleum-based or alternative fuels, have significantly greater energy efficiency than internal combustion engines, and greatly reduce noise levels during operation. The rationale leading to the emphasis on proton-exchange-membrane fuel cells for transportation applications is reviewed as are the development issues requiring resolution to achieve adequate performance, packaging, and cost for use in automobiles. Technical targets for power density, specific power, platinum loading on the electrodes, cost, and other factors that become increasingly more demanding over time have been established. Fuel choice issues and pathways to reduced costs and to a renewable energy future are explored. One such path initially introduces fuel cell vehicles using reformed gasoline while-on-board hydrogen storage technology is developed to the point of allowing adequate range (350 miles) and refueling convenience. This scenario also allows time for renewable hydrogen production technologies and the required supply infrastructure to develop. Finally, the DOE Fuel Cells in Transportation program is described. The program, whose goal is to establish the technology for fuel cell vehicles as rapidly as possible, is being implemented by means of the United States Fuel Cell Alliance, a Government-industry alliance that includes Detroit`s Big Three automakers, fuel cell and other component suppliers, the national laboratories, and universities.

  14. Radiation risk management at DOE accelerator facilities

    SciTech Connect (OSTI)

    Dyck, O.B. van

    1997-01-01

    The DOE accelerator contractors have been discussing among themselves and with the Department how to improve radiation safety risk management. This activity-how to assure prevention of unplanned high exposures-is separate from normal exposure management, which historically has been quite successful. The ad-hoc Committee on the Accelerator Safety Order and Guidance [CASOG], formed by the Accelerator Section of the HPS, has proposed a risk- based approach, which will be discussed. Concepts involved are risk quantification and comparison (including with non-radiation risk), passive and active (reacting) protection systems, and probabilistic analysis. Different models of risk management will be presented, and the changing regulatory environment will also be discussed..

  15. Spent Fuel Transportation Risk Assessment | Department of Energy

    Office of Environmental Management (EM)

    Spent Fuel Transportation Risk Assessment Spent Fuel Transportation Risk Assessment SFTRA Overview Contents Project and review teams Purpose and goals Basic methodology ...

  16. DOE-Idaho's Packaging and Transportation Perspective | Department...

    Office of Environmental Management (EM)

    PDF icon DOE-Idaho's Packaging and Transportation Perspective More Documents & Publications EA-1386: Final Environmental Assessment EIS-0251-SA-01: Supplement Analysis CX-009632: ...

  17. NREL: Transportation Research - DOE, DOT Announce Collaboration to Advance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Transportation Systems DOE, DOT Announce Collaboration to Advance Smart Transportation Systems May 17, 2016 The U.S. Department of Energy (DOE) and U.S. Department of Transportation (DOT) recently announced their collaboration to accelerate research, demonstration, and deployment of innovative transportation and alternative fuel technologies. The agencies made their formal Memorandum of Understanding known at an electric vehicle workshop in Berkeley, California. The initiative will tap

  18. co2-transport | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport Cost Model FENETL CO2 Transport Cost Model About the model: This model was developed to estimate the cost of transporting a user-specified mass rate of CO2 by pipeline...

  19. DOE Releases Filing Instructions for Federal Risk Insurance for...

    Energy Savers [EERE]

    Filing Instructions for Federal Risk Insurance for New Nuclear Power Plants DOE Releases Filing Instructions for Federal Risk Insurance for New Nuclear Power Plants December 21, ...

  20. DOE - NNSA/NFO -- EM Transportation Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Reports NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Click to subscribe to NNSS News Transportation Reports Click the document title to view or ...

  1. Hazardous Materials Packaging and Transportation Safety - DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60.1D, Hazardous Materials Packaging and Transportation Safety by Ashok Kapoor Functional areas: Hazardous Materials, Packaging and Transportation, Safety and Security, Work...

  2. DOE Issues Request for Information for Potential WIPP Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services Procurement | Department of Energy Information for Potential WIPP Transportation Services Procurement DOE Issues Request for Information for Potential WIPP Transportation Services Procurement February 4, 2016 - 1:00pm Addthis Media Contact Bill Taylor, 575-234-7591, bill.taylor@cbfo.doe.gov Cincinnati -- The U.S. Department of Energy (DOE) Environmental Management Consolidated Business Center (EMCBC) today issued a Sources Sought/Request for Information (RFI) seeking interested

  3. Risk assessment in the DOE Assurance Program for Remedial Action

    SciTech Connect (OSTI)

    Marks, S.; Cross, F.T.; Denham, D.H.; Kennedy, W.E.; Stenner, R.D.

    1985-08-01

    This document provides information obtained during the performance of risk assessment tasks in support of the Assurance Program for Remedial Action (APRA) sponsored by the Office of Operational Safety of the Department of Energy. We have presented a method for the estimation of projected health effects at properties in the vicinity of uranium mill tailing piles due to transported tailings or emissions from the piles. Because radon and radon daughter exposure is identified as the principal factor contributing to health effects at such properties, the basis for estimating lung cancer risk as a result of such exposure is discussed in detail. Modeling of health risk due to a secondary pathway, ingestion of contaminated, home-grown food products, is also discussed since it is a potentially important additional source of exposure in certain geographic locations. Risk assessment methods used in various mill tailings reports are reviewed. The protocols for radiological surveys conducted in DOE-sponsored remedial action programs are critically reviewed with respect to their relevance to the needs of health risk estimation. The relevance of risk assessment to the APRA program is discussed briefly.

  4. DOE - Fossil Energy: Coal Mining and Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mining Fossil Energy Study Guides Coal Mining and Transportation Coal Miners - One type of mining, called "longwall mining", uses a rotating blade to shear coal away from the ...

  5. DOE TMD transportation training module 14 transportation of explosives

    SciTech Connect (OSTI)

    Griffith, R.L. Jr.

    1994-07-01

    The Department of Energy Transportation Management Division has developed training module 14, entitled {open_quotes}Transportation of Explosives{close_quotes} to compliment the basic {open_quotes}core ten{close_quotes} training modules of the Hazardous Materials Modular Training Program. The purpose of this training module is to increase awareness of the Department of Transportation (DOT) requirements concerning the packaging and transportation of explosives. Topics covered in module 14 include the classification of explosives, approval and registration of explosives, packaging requirements, hazard communication requirements, separation and segregation compatibility requirements, loading and unloading operations, as well as safety measures required in the event of a vehicle accident involving explosives.

  6. Truck transport of RAM: Risk effects of avoiding metropolitan areas

    SciTech Connect (OSTI)

    Mills, G.S.; Neuhauser, K.S.

    1997-11-01

    In the transport of radioactive material (RAM), e.g., spent nuclear fuel (SNF), stakeholders are generally most concerned about risks in high population density areas along transportation routes because of the perceived high consequences of potential accidents. The most significant portions of a transcontinental route and an alternative examined previously were evaluated again using population density data derived from US Census Block data. This method of characterizing population that adjoins route segments offers improved resolution of population density variations, especially in high population density areas along typical transport routes. Calculated incident free doses and accident dose risks for these routes, and the rural, suburban and urban segments are presented for comparison of their relative magnitudes. The results indicate that modification of this route to avoid major metropolitan areas through use of non-Interstate highways increases total risk yet does not eliminate a relatively small urban component of the accident dose risk. This conclusion is not altered by improved resolution of route segments adjoining high density populations.

  7. DOE Technical Targets for Fuel Cell Systems for Transportation Applications

    Broader source: Energy.gov [DOE]

    These tables list the U.S. Department of Energy (DOE) technical targets for integrated polymer electrolyte membrane (PEM) fuel cell power systems and fuel cell stacks operating on direct hydrogen for transportation applications.

  8. Risk Assessment Tool - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Risk Assessment Technical Experts Working Group Risk Assessment Technical Experts Working Group The Risk Assessment Technical Experts Working Group (RWG) is established to assist DOE in the appropriate and effective use of quantitative risk assessment in nuclear safety related activities. The activities of the group will help DOE ensure that risk assessments supporting nuclear safety decisions are conducted in a consistent manner, of appropriate quality, properly tailored to the needs of the

  9. DOE Standard on Development and Use of Probabilistic Risk Assessment in DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Applications (draft), December 2010 | Department of Energy Standard on Development and Use of Probabilistic Risk Assessment in DOE Nuclear Safety Applications (draft), December 2010 DOE Standard on Development and Use of Probabilistic Risk Assessment in DOE Nuclear Safety Applications (draft), December 2010 There have been significant developments with regard to the risk assessment and risk informed decision making, as it applies to nuclear and other safety areas, since the

  10. DOE Draft Standard, Development and Use of Probabilistic Risk...

    Office of Environmental Management (EM)

    Draft Standard, Development and Use of Probabilistic Risk Assessments in Department of Energy Nuclear Safety Applications, 1210 DOE Draft Standard, Development and Use of ...

  11. DOE Draft Standard, Development and Use of Probabilistic Risk Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Department of Energy Nuclear Safety Applications, 12/10 | Department of Energy DOE Draft Standard, Development and Use of Probabilistic Risk Assessments in Department of Energy Nuclear Safety Applications, 12/10 DOE Draft Standard, Development and Use of Probabilistic Risk Assessments in Department of Energy Nuclear Safety Applications, 12/10 The Department has taken several actions to provide an infrastructure for providing appropriate controls and support for use of risk assessments and

  12. Order Module--DOE O 460.1C, PACKAGING AND TRANSPORTATION SAFETY...

    Office of Environmental Management (EM)

    60.1C, PACKAGING AND TRANSPORTATION SAFETY, DOE O 460.2A, DEPARTMENTAL MATERIALS TRANSPORTATION AND PACKAGING MANAGEMENT Order Module--DOE O 460.1C, PACKAGING AND TRANSPORTATION...

  13. TECHNICAL RISK RATING OF DOE ENVIRONMENTAL PROJECTS - 9153

    SciTech Connect (OSTI)

    Cercy, M; Ronald Fayfich, R; Steven P Schneider, S

    2008-12-12

    The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. The scope of work is diverse, with projects ranging from single acquisitions to collections of projects and operations that span several decades and costs from hundreds of millions to billions US$. The need to be able to manage and understand the technical risks from the project to senior management level has been recognized as an enabler to successfully completing the mission. In 2008, DOE-EM developed the Technical Risk Rating as a new method to assist in managing technical risk based on specific criteria. The Technical Risk Rating, and the criteria used to determine the rating, provides a mechanism to foster open, meaningful communication between the Federal Project Directors and DOE-EM management concerning project technical risks. Four indicators (technical maturity, risk urgency, handling difficulty and resolution path) are used to focus attention on the issues and key aspects related to the risks. Pressing risk issues are brought to the forefront, keeping DOE-EM management informed and engaged such that they fully understand risk impact. Use of the Technical Risk Rating and criteria during reviews provides the Federal Project Directors the opportunity to openly discuss the most significant risks and assists in the management of technical risks across the portfolio of DOE-EM projects. Technical Risk Ratings can be applied to all projects in government and private industry. This paper will present the methodology and criteria for Technical Risk Ratings, and provide specific examples from DOE-EM projects.

  14. Technical Risk Rating of DOE Environmental Projects - 9153

    SciTech Connect (OSTI)

    Cercy, Michael; Fayfich, Ronald; Schneider, Steven

    2009-02-11

    The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. The scope of work is diverse, with projects ranging from single acquisitions to collections of projects and operations that span several decades and costs from hundreds of millions to billions US$. The need to be able to manage and understand the technical risks from the project to senior management level has been recognized as an enabler to successfully completing the mission. In 2008, DOE-EM developed the Technical Risk Rating as a new method to assist in managing technical risk based on specific criteria. The Technical Risk Rating, and the criteria used to determine the rating, provides a mechanism to foster open, meaningful communication between the Federal Project Directors and DOE-EM management concerning project technical risks. Four indicators (technical maturity, risk urgency, handling difficulty and resolution path) are used to focus attention on the issues and key aspects related to the risks. Pressing risk issues are brought to the forefront, keeping DOE-EM management informed and engaged such that they fully understand risk impact. Use of the Technical Risk Rating and criteria during reviews provides the Federal Project Directors the opportunity to openly discuss the most significant risks and assists in the management of technical risks across the portfolio of DOE-EM projects. Technical Risk Ratings can be applied to all projects in government and private industry. This paper will present the methodology and criteria for Technical Risk Ratings, and provide specific examples from DOE-EM projects.

  15. DOE Releases Electricity Subsector Cybersecurity Risk Management Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (RMP) Guideline | Department of Energy Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline DOE Releases Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline May 23, 2012 - 9:30am Addthis News Media Contact: (202) 586-4940 For Immediate Release: May 23, 2012 Department of Energy Releases Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline Public-Private Sector Collaboration Produces Guidance to Help Electric Utilities

  16. Applying Risk Communication to the Transportation of Radioactive Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Applying Risk Communication to the Transportation of Radioactive Materials Applying Risk Communication to the Transportation of Radioactive Materials Participants should expect to gain the following skills: How to recognize how the stakeholders prefer to receive information How to integrate risk communication principles into individual communication How to recognize the importance of earning trust and credibility How to identify stakeholders How to answer questions

  17. DOE and the Department of Transportation Announce Collaboration to Support Smart Transportation Systems and Alternative Fuel Technologies

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) announced a collaboration to accelerate research, development, demonstration, and deployment of innovative smart transportation systems and alternative fuel technologies.

  18. Assessment of the risk of transporting liquid chlorine by rail

    SciTech Connect (OSTI)

    Andrews, W.B.

    1980-03-01

    This report presents the risk of shipping liquid chlorine by rail. While chlorine is not an energy material, there are several benefits to studying chlorine transportation risks. First, chlorine, like energy materials, is widely used as a feedstock to industry. Second, it is the major purification agent in municipal water treatment systems and therefore, provides direct benefits to the public. Finally, other risk assessments have been completed for liquid chlorine shipments in the US and Europe, which provide a basis for comparison with this study. None of the previous PNL energy material risk assessments have had other studies for comparison. For these reasons, it was felt that a risk assessment of chlorine transportation by rail could provide information on chlorine risk levels, identify ways to reduce these risks and use previous studies on chlorine risks to assess the strengths and weaknesses of the PNL risk assessment methodology. The risk assessment methodology used in this study is summarized. The methodology is presented in the form of a risk assessment model which is constructed for ease of periodic updating of the data base so that the risk may be reevaluated as additional data become available. The report is sectioned to correspond to specific analysis steps identified in the model. The transport system and accident environment are described. The response of the transport system to accident environments is described. Release sequences are postulated and evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a direct comparison with other reports in this series.

  19. Overview of DOE-NE Proliferation and Terrorism Risk Assessment

    SciTech Connect (OSTI)

    Sadasivan, Pratap

    2012-08-24

    Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism. The goal is to enable the use of risk information to inform NE R&D program planning. The PTRA program supports DOE-NE's goal of using risk information to inform R&D program planning. The FY12 PTRA program is focused on terrorism risk. The program includes a mix of innovative methods that support the general practice of risk assessments, and selected applications.

  20. DOE - NNSA/NFO -- EM Radioactive Waste Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Click to subscribe to NNSS News Radioactive Waste Transportation Transportation photo Government and ...

  1. DOE - NNSA/NFO -- EM Radioactive Waste Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation>Transportation Working Group NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Click to subscribe to NNSS News Transportation Working Group The ...

  2. Evaluation of the Cask Transportation Facility Modifications (CTFM) compliance to DOE order 6430.1A

    SciTech Connect (OSTI)

    ARD, K.E.

    1999-07-14

    This report was prepared to evaluate the compliance of Cask Transportation Facility Modifications (CTFM) to DOE Order 6430.1A.

  3. Second Draft - DOE O 461.1C, Packaging and Transportation for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Second Draft - DOE O 461.1C, Packaging and Transportation for Offsite Shipment of Materials of National Security Interests by Patricia Greeson The Order establishes requirements...

  4. Joint DOE/NRCan Study of North American Transportation Energy Futures: Phase 2 Results

    SciTech Connect (OSTI)

    None

    2009-01-18

    Joint DOE/NRCan Study of North American Transportation Energy Futures: Discussion of the Study, Presentation of Phase 2 Results - April 30, 2003

  5. Risk analysis for truck transportation of high consequence cargo.

    SciTech Connect (OSTI)

    Waters, Robert David

    2010-09-01

    The fixed facilities control everything they can to drive down risk. They control the environment, work processes, work pace and workers. The transportation sector drive the State and US highways with high kinetic energy and less-controllable risks such as: (1) other drivers (beginners, impaired, distracted, etc.); (2) other vehicles (tankers, hazmat, super-heavies); (3) road environments (bridges/tunnels/abutments/construction); and (4) degraded weather.

  6. Coal Gasification and Transportation Fuels Magazine | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 3 (April 2016) Archived Editions: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 2 (Jan 2016) Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 1 (Oct 2015) Coal Gasification and Transportation Fuels Quarterly News, Vol. 1, Issue 4 (July 2015) Coal Gasification and Transportation Fuels Quarterly News, Vol.

  7. DOE Awards Small Business Transportation Emergency Training Contract

    Broader source: Energy.gov [DOE]

    Cincinnati -- The Department of Energy (DOE) announced today a contract award to Technical Resources Group, Inc. (TRG), of Idaho Falls, Idaho.

  8. DOE Technical Targets for Fuel Cell Systems for Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    which includes automotive and energy companies, specifically the Fuel Cell Technical Team. ... Technical Targets for Automotive Applications: 80-kWe (net) Integrated Transportation Fuel ...

  9. DOE - Office of Legacy Management -- Rulsion Tritium Transport...

    Office of Legacy Management (LM)

    September 2007 pdficon Tritium Transport Model Comments and Responses Colorado Oil and Gas Conservation Commission Colorado Department of Public Health and Environment ...

  10. Risk Management Guide - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7A, Risk Management Guide by John Makepeace Functional areas: Risk Management, Safety and Security This Guide provides non-mandatory risk management approaches for implementing the...

  11. http://www.em.doe.gov/Pages/Transportation.aspx

    National Nuclear Security Administration (NNSA)

    regarding this site should be sent to EM Web Feedback You are here: EM Home > Packaging ... DC 20585 1-800-dial-DOE | f202-586-4403 Web Policies | No Fear Act | Site Map | Privacy ...

  12. Implementation Guide for Use with DOE O 460.2 Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-11-15

    The purpose of this guide is to assist those responsible for transporting and packaging Department materials, and to provide an understanding of Department policies on activities which supplement regulatory requirements. Does not cancel/supersede other directives.

  13. DOE Technical Targets for Fuel Cell Systems and Stacks for Transportation Applications

    Broader source: Energy.gov [DOE]

    These tables list the U.S. Department of Energy (DOE) technical targets for integrated polymer electrolyte membrane (PEM) fuel cell power systems and fuel cell stacks operating on direct hydrogen for transportation applications.

  14. DOE to Transport Moab Mill Tailings by Rail | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Transport Moab Mill Tailings by Rail DOE to Transport Moab Mill Tailings by Rail August 5, 2008 - 2:40pm Addthis Department Approves Project Baseline and Obtains Nuclear Regulatory Commission Nod WASHINGTON, DC - The U.S. Department of Energy (DOE) today reaffirmed its prior decision to relocate mill tailings predominantly by rail from the former uranium-ore processing site near Moab, Utah, 30 miles north to Crescent Junction, Utah. As determined previously, oversized material that is not

  15. DOE Issues Landmark Rule for Risk Insurance for Advanced Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Landmark Rule for Risk Insurance for Advanced Nuclear Facilities DOE Issues Landmark Rule for Risk Insurance for Advanced Nuclear Facilities May 8, 2006 - 10:36am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) issued on Saturday, the interim final rule required by the Energy Policy Act of 2005 (EPACT) for risk insurance to facilitate construction of new advanced nuclear power facilities. The rule establishes the requirements for risk insurance to cover

  16. Implementation Guide for Use with DOE O 460.1A, Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-06-05

    This Guide provides information concerning the use of current principles and practices, including regulatory guidance from the U. S. Department of Transportation and the U. S. Nuclear Regulatory Commission, where available, to establish and implement effective packaging and transportation safety programs. Does not cancel/supersede other directives. The guide and attachments have been combined into one document.

  17. NREL/DOE Launch New Alternative Transportation Web Tools - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL NREL/DOE Launch New Alternative Transportation Web Tools Ways to reduce fleet petroleum use debut alongside a Web site makeover November 9, 2012 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has launched a new tool and redesigned DOE's Alternative Fuels Data Center Web site to help fleet managers, municipalities and consumers choose from a wide variety of alternative fuels and energy efficiency strategies for reducing petroleum use, vehicle emissions,

  18. DOE - Office of Legacy Management -- Penn Central Transportation Co - PA 06

    Office of Legacy Management (LM)

    Central Transportation Co - PA 06 FUSRAP Considered Sites Site: Penn Central Transportation Co. (PA.06) Licensed to DOE for long-term custody and managed by the Office of Legacy Management. Designated Name: Burrell, Pennsylvania, Disposal Site Alternate Name: Penn Central Transportation Co. Location: Blairsville, Pennsylvania Evaluation Year: Site Operations: Site Disposition: Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site. Radioactive Materials Handled: Primary Radioactive

  19. Geographic resolution issues in RAM transportation risk analysis

    SciTech Connect (OSTI)

    MILLS,G. SCOTT; NEUHAUSER,SIEGLINDE

    2000-04-12

    Over the years that radioactive material (RAM) transportation risk estimates have been calculated using the RADTRAN code, demand for improved geographic resolution of route characteristics, especially density of population neighboring route segments, has led to code improvements that provide more specific route definition. With the advent of geographic information systems (GISs), the achievable resolution of route characteristics is theoretically very high. The authors have compiled population-density data in 1-kilometer increments for routes extending over hundreds of kilometers without impractical expenditures of time. Achievable resolution of analysis is limited, however, by the resolution of available data. U.S. Census data typically have 1-km or better resolution within densely-populated portions of metropolitan areas but census blocks are much larger in rural areas. Geographic resolution of accident-rate data, especially for heavy/combination trucks, are typically tabulated on a statewide basis. These practical realities cause one to ask what level(s) of resolution may be necessary for meaningful risk analysis of transportation actions on a state or interstate scale.

  20. Enterprise Risk Management (ERM) Model - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enterprise Risk Management (ERM) Model by Website Administrator The Enterprise Risk Management Model is a new standardized framework that the Department will be using to develop,...

  1. Transportation capabilities study of DOE-owned spent nuclear fuel

    SciTech Connect (OSTI)

    Clark, G.L.; Johnson, R.A.; Smith, R.W.; Abbott, D.G.; Tyacke, M.J.

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  2. DOE Releases Filing Instructions for Federal Risk Insurance for New Nuclear

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Plants | Department of Energy Filing Instructions for Federal Risk Insurance for New Nuclear Power Plants DOE Releases Filing Instructions for Federal Risk Insurance for New Nuclear Power Plants December 21, 2007 - 4:58pm Addthis Outlines Five Steps for New Nuclear Plant Sponsors to Enter Into a Conditional Agreement for Risk Insurance WASHINGTON, DC - The U.S. Department of Energy (DOE) today released instructions for companies building new nuclear power plants in the United States to

  3. Risk Management Guide - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G 413.3-7A Chg 1 (Admin Chg), Risk Management Guide by Diane Johnson Functional areas: Risk Management, Safety and Security The purpose of this guide is to describe effective risk management processes. The continuous and iterative process includes updating project risk documents and the risk management plan and emphasizes implementation communication of the risks and actions taken. g4133-7a_AdminChg1_10-22-2015.pdf -- PDF Document, 1.48 MB Writer: Diane Johnson Subjects: Management and

  4. DOE Project Management Risk Committee (PMRC) SOP | Department of Energy

    Energy Savers [EERE]

    Prepares for the 2007 Hurricane Season DOE Prepares for the 2007 Hurricane Season May 30, 2007 - 1:25pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today outlined a number of steps that the Department is taking to strengthen its hurricane response system in the United States. Since Hurricanes Katrina and Rita in 2005, DOE has made operational and administrative improvements, including coordination between federal, state and local leaders, deployment of trained staff, and

  5. DOE Standard on Development and Use of Probabilistic Risk Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    The developments and associated technical insights may be of use to DOE in its efforts to continuously improve safety performance at its nuclear facilities. The Department has ...

  6. DOE Order Self Study Modules - DOE O 460.1C Packaging and Transportation Safety and DOE O 460.2A Departmental Materials Transportation and Packaging Management

    Office of Environmental Management (EM)

    2.1 DEPARTMENT OF ENERGY EMPLOYEE CONCERNS PROGRAM ALBUQUERQUE OPERATIONS OFFICE Change No: 0 DOE O 442.1 Level: Familiar Date: 6/15/01 1 DOE O 442.1 DOE EMPLOYEE CONCERNS PROGRAM FAMILIAR LEVEL _________________________________________________________________________ OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to perform the following: 1. State three examples of criteria that should be used to assess the significance of an employee's

  7. Notice of Intent to Revise DOE O 460.2A, Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-18

    Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

  8. DOE (Department of Energy) risk assessment worksheets: A structured approach

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This volume consists of the worksheets for each step in completing the guideline. This guideline outlines the approach to conducting risk assessments of computer security. (JEF)

  9. Enterprise Risk Management Framework - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements Framework by Website Administrator PDF document icon Enterprise_Risk_Managment_Framework.pdf - PDF document, 359 KB (368207

  10. Enterprise Risk Management Model - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements Model by Website Administrator PDF document icon Enterprise_Risk_Management_Model.pdf - PDF document, 863 KB (884517

  11. Standardized DOE Spent Nuclear Fuel Canister and Transportation System for Shipping to the National Repository

    SciTech Connect (OSTI)

    Pincock, David Lynn; Morton, Dana Keith; Lengyel, Arpad Leslie

    2001-02-01

    The U.S.Department of Energys (DOE) National Spent Nuclear Fuel Program (NSNFP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), has been chartered with the responsibility for developing spent nuclear fuel (SNF) standardized canisters and a transportation cask system for shipping DOE SNF to the national repository. The mandate for this development is outlined in the Memorandum of Agreement for Acceptance of Department of Energy Spent Nuclear Fuel and High-Level Radioactive Waste that states, EM shall design and fabricate DOE SNF canisters for shipment to RW. (1) It also states, EM shall be responsible for the design, NRC certification, and fabrication of the transportation cask system for DOE SNF canisters or bare DOE SNF in accordance with 10 CFR Part 71. (2) In fulfillment of these requirements, the NSNFP has developed four SNF standardized canister configurations and has conceptually designed a versatile transportation cask system for shipping the canisters to the national repository.1 The standardized canister sizes were derived from the national repository waste package design for co-disposal of SNF with high-level waste (HLW). One SNF canister can be placed in the center of the waste package or one can be placed in one of five radial positions, replacing a HLW canister. The internal cavity of the transportation cask was derived using the same logic, matching the size of the internal cavity of the waste package. The size of the internal cavity for the transportation cask allows the shipment of multiple canister configurations with the application of a removable basket design. The standardized canisters have been designed to be loaded with DOE SNF, placed into interim storage, shipped to the national repository, and placed in a waste package without having to be reopened. Significant testing has been completed that clearly demonstrates that the standardized canisters can safely achieve their intended design goals. The

  12. DOE 2009 Geothermal Risk Analysis: Methodology and Results (Presentation)

    SciTech Connect (OSTI)

    Young, K. R.; Augustine, C.; Anderson, A.

    2010-02-01

    This presentation summarizes the methodology and results for a probabilistic risk analysis of research, development, and demonstration work-primarily for enhanced geothermal systems (EGS)-sponsored by the U.S. Department of Energy Geothermal Technologies Program.

  13. DOE EVMS Risk Assessment Matrix | Department of Energy

    Office of Environmental Management (EM)

    AST AST is an 8(a)-certified, economically disadvantaged women-owned small business (EDWOSB) serving as the prime contractor on the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) Mission Oriented Technical Support (MOTS) contract. As the 2014 DOE Small Disadvantaged Business (SDB) of the Year, AST has also made the Inc. 500/5000 and Washington Technology Fast 50 lists for the past two consecutive years, even ranking as the number one engineering firm

  14. Examination of Risk Analysis Methods for MOX Land Transport in Japan

    SciTech Connect (OSTI)

    HOHNSTREITER, GLENN FREDRICK; PIERCE, JIM D.

    2003-04-01

    This report presents background information and methodology for a risk assessment of mixed oxide (MOX) reactor fuel transport in the nation of Japan to support their nuclear energy program. This work includes an extensive literature review, a review of other MOX activities worldwide, a survey of the statutory requirements for transporting nuclear materials, a discussion of risk assessment methodology, and calculation results for specific examples. Typical risk evaluations are given to provide guidance for later risk analyses specific to MOX fuel transport in Japan. This report also includes specific information that will be required for routes, cask types, accident-rate statistics, and population densities along specified routes, along with other detailed information needed for risk analysis studies pertinent to MOX transport in Japan. This information will be used in future specific risk studies.

  15. Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010

    Broader source: Energy.gov [DOE]

    On August 12, 2009, the Defense Nuclear Facilities Safety Board(DNFSB) issued Recommendation 2009‐1, Risk Assessment Methodologies at Defense Nuclear Facilities. Thisrecommendation focused on the...

  16. Commercial low-level radioactive waste transportation liability and radiological risk

    SciTech Connect (OSTI)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  17. DOE-NE Proliferation and Terrorism Risk Assessment: FY12 Plans Update

    SciTech Connect (OSTI)

    Sadasivan, Pratap

    2012-06-21

    This presentation provides background information on FY12 plans for the DOE Office of Nuclear Energy Proliferation and Terrorism Risk Assessment program. Program plans, organization, and individual project elements are described. Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism - Goal is to enable the use of risk information to inform NE R&D program planning.

  18. Radioactive Material Transportation Considerations with Respect to DOE 3013 Storage Containers

    SciTech Connect (OSTI)

    HENSEL, SJ

    2004-04-15

    This paper evaluates sealed hardware that meets the requirements of DOE-STD-3013, ''Criteria for Preparing and packaging Plutonium Metals and Oxides for Long-Term Storage'' with respect to radioactive material (Type B quantity) transportation requirements. The Standard provides criteria for packaging of the plutonium materials for storage periods of at least 50 years. The standard requires the hardware to maintain integrity under both normal storage conditions and under anticipated handling conditions. To accomplish this, the standard requires that the plutonium be loaded in a minimum of two nested stainless steel sealed containers that are both tested for leak-tightness per ANSI N14.5. As such the 3013 hardware is robust. While the 3013 STD may provide appropriate storage criteria, it is not intended to provide criteria for transporting the material under the requirements of the Department of Transportation (DOT). In this evaluation, it is assumed that the activity of plutonium exceeds A1 and/or A2 curies as defined in DOT 49 CFR 173.431 and therefore must be shipped as a Type B package meeting the Nuclear Regulatory Commission (NRC) requirements of 10 CFR 71. The evaluation considers Type B shipment of plutonium in the 3013 hardware within a certified package for such contents.

  19. Order Module--DOE O 460.1C, PACKAGING AND TRANSPORTATION SAFETY, DOE O 460.2A, DEPARTMENTAL MATERIALS TRANSPORTATION AND PACKAGING MANAGEMENT

    Office of Energy Efficiency and Renewable Energy (EERE)

    "The familiar level of this module is divided into two sections. The objectives and requirements of DOE O 460.1C and DOE O 460.2A will be discussed in the first and second sections, respectively....

  20. Assessment of the risk of transporting propane by truck and train

    SciTech Connect (OSTI)

    Geffen, C.A.

    1980-03-01

    The risk of shipping propane is discussed and the risk assessment methodology is summarized. The risk assessment model has been constructed as a series of separate analysis steps to allow the risk to be readily reevaluated as additional data becomes available or as postulated system characteristics change. The transportation system and accident environment, the responses of the shipping system to forces in transportation accidents, and release sequences are evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a comparison with other reports in this series. Based on the information presented, accidents involving tank truck shipments of propane will be expected to occur at a rate of 320 every year; accidents involving bobtails would be expected at a rate of 250 every year. Train accidents involving propane shipments would be expected to occur at a rate of about 60 every year. A release of any amount of material from propane trucks, under both normal transportation and transport accident conditions, is to be expected at a rate of about 110 per year. Releases from propane rail tank cars would occur about 40 times a year. However, only those releases that occur during a transportation accident or involve a major tank defect will include sufficient propane to present the potential for danger to the public. These significant releases can be expected at the lower rate of about fourteen events per year for truck transport and about one event every two years for rail tank car transport. The estimated number of public fatalities resulting from these significant releases in 1985 is fifteen. About eleven fatalities per year result from tank truck operation, and approximately half a death per year stems from the movement of propane in rail tank cars.

  1. Report on the U.S. DOE Geothermal Technologies Program's 2009 Risk Analysis

    SciTech Connect (OSTI)

    Young, K. R.; Augustine, C.; Anderson, A.

    2010-02-01

    NREL conducted an annual program risk analysis on behalf of the U.S. Department of Energy Geothermal Technologies Program (GTP). NREL implemented a probabilistic risk analysis of GTP-sponsored research, development, and demonstration (RD&D) work, primarily for enhanced geothermal systems (EGS). The analysis examined estimates of improvement potential derived from program RD&D work for two types of technology performance metric (TPM): EGS-enabling technologies potential and EGS cost improvement potential. Four risk teams (exploration, wells/pumps/tools, reservoir engineering, and power conversion) comprised of industry experts, DOE laboratory researchers, academic researchers, and laboratory subcontractors estimated the RD&D impacts and TPM-improvement probability distributions. The assessment employed a risk analysis spreadsheet add-in that uses Monte Carlo simulation to drive the Geothermal Electric Technology Evaluation Model (GETEM). The GETEM-based risk analysis used baseline data from the experts' discussion of multiple reports and data sources. Risk results are expressed in terms of each metric's units and/or the program's top-level metric: levelized costs of electricity (LCOE). Results--both qualitative comments and quantitative improvement potential--are thorough and cohesive in three of the four expert groups. This conference paper summarizes the industry's current thinking on various metrics and potential for research improvement in geothermal technologies.

  2. Comparison and Analysis of Regulatory and Derived Requirements for Certain DOE Spent Nuclear Fuel Shipments; Lessons Learned for Future Spent Fuel Transportation Campaigns

    SciTech Connect (OSTI)

    Kramer, George L., Ph.D.; Fawcett, Rick L.; Rieke, Philip C.

    2003-02-27

    Radioactive materials transportation is stringently regulated by the Department of Transportation and the Nuclear Regulatory Commission to protect the public and the environment. As a Federal agency, however, the U.S. Department of Energy (DOE) must seek State, Tribal and local input on safety issues for certain transportation activities. This interaction has invariably resulted in the imposition of extra-regulatory requirements, greatly increasing transportation costs and delaying schedules while not significantly enhancing the level of safety. This paper discusses the results an analysis of the regulatory and negotiated requirements established for a July 1998 shipment of spent nuclear fuel from foreign countries through the west coast to the Idaho National Engineering and Environmental Laboratory (INEEL). Staff from the INEEL Nuclear Materials Engineering and Disposition Department undertook the analysis in partnership with HMTC, to discover if there were instances where requirements derived from stakeholder interactions duplicate, contradict, or otherwise overlap with regulatory requirements. The study exhaustively lists and classifies applicable Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) regulations. These are then compared with a similarly classified list of requirements from the Environmental Impact Statements (EIS) and those developed during stakeholder negotiations. Comparison and analysis reveals numerous attempts to reduce transportation risk by imposing more stringent safety measures than those required by DOT and NRC. These usually took the form of additional inspection, notification and planning requirements. There are also many instances of overlap with, and duplication of regulations. Participants will gain a greater appreciation for the need to understand the risk-oriented basis of the radioactive materials regulations and their effectiveness in ensuring safety when negotiating extra-regulatory requirements.

  3. DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials

    SciTech Connect (OSTI)

    Marsha Keister

    2001-02-01

    DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials Implementing adequate institutional programs and validating preparedness for emergency response to radiological transportation incidents along or near U.S. Department of Energy (DOE) shipping corridors poses unique challenges to transportation operations management. Delayed or insufficient attention to State and Tribal preparedness needs may significantly impact the transportation operations schedule and budget. The DOE Transportation Emergency Preparedness Program (TEPP) has successfully used a cooperative planning process to develop strong partnerships with States, Tribes, Federal agencies and other national programs to support responder preparedness across the United States. DOE TEPP has found that building solid partnerships with key emergency response agencies ensures responders have access to the planning, training, technical expertise and assistance necessary to safely, efficiently and effectively respond to a radiological transportation accident. Through the efforts of TEPP over the past fifteen years, partnerships have resulted in States and Tribal Nations either using significant portions of the TEPP planning resources in their programs and/or adopting the Modular Emergency Response Radiological Transportation Training (MERRTT) program into their hazardous material training curriculums to prepare their fire departments, law enforcement, hazardous materials response teams, emergency management officials, public information officers and emergency medical technicians for responding to transportation incidents involving radioactive materials. In addition, through strong partnerships with Federal Agencies and other national programs TEPP provided technical expertise to support a variety of radiological response initiatives and assisted several programs with integration of the nationally recognized MERRTT program

  4. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O 580 .1 A Admin Chg 1 3 10-23 2012 U.S. Department of Energyadmin change DOE O XXX.XWashington, D.C. DOE O XXX.X Chg X: XX-XX-XXXX SUBJECT: ADMINISTRATIVE CHANGE TO DOE O XXX.X, TITLE (IN ITALICS) EXPLANATION OF CHANGES. [This information can be copied from the Approval Memo] LOCATIONS OF CHANGES: Page Paragraph Changed To [Original text that was changed] [Revised text]

  5. DRAFT - DOE O 460.1D, Hazardous Materials Packaging and Transportation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60.1D, Hazardous Materials Packaging and Transportation Safety by Website Administrator The Order establishes safety requirements for the proper packaging and transportation of...

  6. Surface Transportation Board BNSF/DOE/DOD Rate-Service Agreement...

    Office of Environmental Management (EM)

    BNSFDOEDOD Rate-Service Agreement Surface Transportation Board BNSFDOEDOD Rate-Service Agreement Surface Transportation Board BNSFDOEDOD Rate-Service Agreement (88.9 KB) More ...

  7. Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection

    SciTech Connect (OSTI)

    Barbara H. Dolphin; William D. RIchins; Stephen R. Novascone

    2010-10-01

    The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision

  8. Quantification of key long-term risks at CO? sequestration sites: Latest results from US DOE's National Risk Assessment Partnership (NRAP) Project

    SciTech Connect (OSTI)

    Pawar, Rajesh; Bromhal, Grant; Carroll, Susan; Chu, Shaoping; Dilmore, Robert; Gastelum, Jason; Oldenburg, Curt; Stauffer, Philip; Zhang, Yingqi; Guthrie, George

    2014-12-31

    Risk assessment for geologic CO? storage including quantification of risks is an area of active investigation. The National Risk Assessment Partnership (NRAP) is a US-Department of Energy (US-DOE) effort focused on developing a defensible, science-based methodology and platform for quantifying risk profiles at geologic CO? sequestration sites. NRAP has been developing a methodology that centers round development of an integrated assessment model (IAM) using system modeling approach to quantify risks and risk profiles. The IAM has been used to calculate risk profiles with a few key potential impacts due to potential CO? and brine leakage. The simulation results are also used to determine long-term storage security relationships and compare the long-term storage effectiveness to IPCC storage permanence goal. Additionally, we also demonstrate application of IAM for uncertainty quantification in order to determine parameters to which the uncertainty in model results is most sensitive.

  9. Quantification of key long-term risks at CO₂ sequestration sites: Latest results from US DOE's National Risk Assessment Partnership (NRAP) Project

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pawar, Rajesh; Bromhal, Grant; Carroll, Susan; Chu, Shaoping; Dilmore, Robert; Gastelum, Jason; Oldenburg, Curt; Stauffer, Philip; Zhang, Yingqi; Guthrie, George

    2014-12-31

    Risk assessment for geologic CO₂ storage including quantification of risks is an area of active investigation. The National Risk Assessment Partnership (NRAP) is a US-Department of Energy (US-DOE) effort focused on developing a defensible, science-based methodology and platform for quantifying risk profiles at geologic CO₂ sequestration sites. NRAP has been developing a methodology that centers round development of an integrated assessment model (IAM) using system modeling approach to quantify risks and risk profiles. The IAM has been used to calculate risk profiles with a few key potential impacts due to potential CO₂ and brine leakage. The simulation results are alsomore » used to determine long-term storage security relationships and compare the long-term storage effectiveness to IPCC storage permanence goal. Additionally, we also demonstrate application of IAM for uncertainty quantification in order to determine parameters to which the uncertainty in model results is most sensitive.« less

  10. Second Draft - DOE O 461.1C, Packaging and Transportation for Offsite Shipment of Materials of National Security Interests

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest. DOE Order 461.1C received a significant number of major and suggested comments the first time it was reviewed in RevCom. As a result of the number of comments received, the OPI have a second RevCom review. This revision of DOE O 461.1C incorporates changes which resulted from the comment resolution process of the initial draft.

  11. DOE Safety Metrics Indicator Program (SMIP) Fiscal Year 2000 Annual Report of Packaging- and Transportation-related Occurrences

    SciTech Connect (OSTI)

    Dickerson, L.S.

    2001-07-26

    The Oak Ridge National Laboratory (ORNL) has been charged by the DOE National Transportation Program (NTP) with the responsibility of retrieving reports and information pertaining to packaging and transportation (P&T) incidents from the centralized Occurrence Reporting and Processing System (ORPS) database. These selected reports have been analyzed for trends, impact on P&T operations and safety concerns, and lessons learned (LL) in P&T operations. This task is designed not only to keep the NTP aware of what is occurring at DOE sites on a periodic basis, but also to highlight potential P&T problems that may need management attention and allow dissemination of LL to DOE Operations Offices, with the subsequent flow of information to contractors. The Safety Metrics Indicator Program (SMIP) was established by the NTP in fiscal year (FY) 1998 as an initiative to develop a methodology for reporting occurrences with the appropriate metrics to show rates and trends. One of its chief goals has been to augment historical reporting of occurrence-based information and present more meaningful statistics for comparison of occurrences. To this end, the SMIP established a severity weighting system for the classification of the occurrences, which would allow normalization of the data and provide a basis for trending analyses. The process for application of this methodology is documented in the September 1999 report DOE Packaging and Transportation Measurement Methodology for the Safety Metrics Indicator Program (SMIP). This annual report contains information on those P&T-related occurrences reported to the ORPS during the period from October 1, 1999, through September 30, 2000. Only those incidents that occur in preparation for transport, during transport, and during unloading of hazardous material are considered as packaging- or transportation-related occurrences. Other incidents with P&T significance, but not involving hazardous material (such as vehicle accidents or empty

  12. DRAFT - DOE O 460.1D, Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  13. Center for Mesoscale Transport Properties (m2M) | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Center for Mesoscale Transport Properties (m2M) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Mesoscale Transport Properties (m2m) Print Text Size: A A A FeedbackShare Page m2M Header Director Esther Takeuchi Lead Institution Stony Brook University Year Established 2014 Mission To understand and provide control of transport properties in

  14. Savannah River Site Eastern Transportation Hub: A Concept For a DOE Eastern Packaging, Staging and Maintenance Center - 13143

    SciTech Connect (OSTI)

    England, Jeffery L.; Adams, Karen; Maxted, Maxcine; Ruff Jr, Clarence; Albenesius, Andrew; Bowers, Mark D.; Fountain, Geoffrey; Hughes, Michael; Gordon, Sydney; O'Connor, Stephen

    2013-07-01

    The Department of Energy (DOE) is working to de-inventory sites and consolidate hazardous materials for processing and disposal. The DOE administers a wide range of certified shipping packages for the transport of hazardous materials to include Special Nuclear Material (SNM), radioactive materials, sealed sources and radioactive wastes. A critical element to successful and safe transportation of these materials is the availability of certified shipping packages. There are over seven thousand certified packagings (i.e., Type B/Type AF) utilized within the DOE for current missions. The synergistic effects of consolidated maintenance, refurbishment, testing, certification, and costing of these services would allow for efficient management of the packagings inventory and to support anticipated future in-commerce shipping needs. The Savannah River Site (SRS) receives and ships radioactive materials (including SNM) and waste on a regular basis for critical missions such as consolidated storage, stabilization, purification, or disposition using H-Canyon and HB-Line. The Savannah River National Laboratory (SRNL) has the technical capability and equipment for all aspects of packaging management. SRS has the only active material processing facility in the DOE complex and is one of the sites of choice for nuclear material consolidation. SRS is a logical location to perform maintenance and periodic testing of the DOE fleet of certified packagings. This initiative envisions a DOE Eastern Packaging Staging and Maintenance Center (PSMC) at the SRS and a western hub at the Nevada National Security Site (NNSS), an active DOE Regional Disposal Site. The PSMC's would be the first place DOE would go to meet their radioactive packaging needs and the primary locations projects would go to disposition excess packaging for beneficial reuse. These two hubs would provide the centralized management of a packaging fleet rather than the current approach to design, procure, maintain and dispose

  15. DOE NEPA Guidance and Requirements - Search Index - List of Contents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy List of Contents DOE NEPA Guidance and Requirements - Search Index - List of Contents Return to Download Page The NEPA Guidance and Requirements - Search Index includes: A Brief Guide - DOE-wide Contracts For NEPA Documentation [DOE][2003] A Citizen's Guide to the NEPA - Having Your Voice Heard [CEQ][2007] A Resource Handbook on DOE Transportation Risk Assessment [DOE][2002] Actions During the NEPA Process - Interim Actions [DOE][2003] Administrative Record Guidance

  16. DOE NEPA Guidance and Requirements - Search Index - Table of Contents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Table of Contents DOE NEPA Guidance and Requirements - Search Index - Table of Contents Return to Download Page The DOE NEPA Guidance and Requirements - Search Index includes: NEPA Guidance and Requirements Documents Issued by Published A Brief Guide - DOE-wide Contracts For NEPA Documentation DOE 2003 A Citizen's Guide to the NEPA - Having Your Voice Heard CEQ 2007 A Resource Handbook on DOE Transportation Risk Assessment DOE 2002 Actions During the NEPA Process -

  17. Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media?

    SciTech Connect (OSTI)

    Thorsten Knappenberger; Markus Flury; Earl D. Mattson; James B. Harsh

    2014-03-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (? ?r)/(?s ?r)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  18. Nohemi Brewer Transportation Program Manager U.S. Department of Energy (DOE), National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Working Group Meeting November 16, 2012 Welcome! Page 2 Page 2Title ID 411- 11/16/2012 - Page 2 Meeting Purpose Provide forum for information exchange related to the Site-Wide Environmental Impact Statement (SWEIS) analysis of low-level/mixed low-level radioactive waste (LLW/MLLW) transportation to the Nevada National Security Site (NNSS) Page 3 Page 3Title ID 411- 11/16/2012 - Page 3 Transportation Working Group Members * State of Nevada * Counties * Cities * Tribal * Nevada

  19. DOE/BES Workshop on Clean and Efficient Combustion of 21st Century Transportation Fuels

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  20. Understanding the Subsurface Reactive Transport of Transuranic Contaminants at DOE Sites

    SciTech Connect (OSTI)

    Barnett, Mark O.; Albrecht-Schmitt, Thomas E.; Saiers, James E.; Shuh, David K.

    2013-12-20

    Our primary hypothesis is that actinides can interact with surfaces in fundamentally different ways than other metals, metalloids, and oxyanions and that this fundamental difference requires new approaches to studying and modeling transuranic sorption to minerals and geomedia. This project supports a key mission of the SBR program to develop sufficient scientific understanding such that DOE sites will be able to incorporate coupled physical, chemical, and biological processes into decision making for environmental management and long-term stewardship, while also supporting DOE’s commitment to education, training, and collaboration with DOE user facilities.

  1. Preliminary definition of the DOE/OCRWM transportation operating system: Final report

    SciTech Connect (OSTI)

    Rawl, R.R.; Kline, S.C.

    1988-01-01

    This paper is based on the report ''Preliminary Definition of the Transportation Operations System'' and presents a summary of the preliminary definition of transportation operations activities for the cask shipment cycle, commencing with the dispatch of an empty cask, to loading and unloading of cask contents, and preparation of the empty cask for redispatch. It first presents a high-level description of the transportation cycle and then further describes each of the major activities in greater detail. For simplicity of presentation, the highway mode of transport is most often used to describe activities. The reader should keep in mind that the use of other modes will slightly alter the activities and possibly the sequences. Major activities and functions of the system are organized into a first cut of how they could be allocated to specific facilities. The reader should keep in mind that the assignment of functions and the aggregation of these into specific facilities are tasks which have yet to be performed. This paper simply presents a first look at possible groupings of the functions on a facility basis. 12 figs.

  2. Transportation Baseline Report

    SciTech Connect (OSTI)

    Fawcett, Ricky Lee; Kramer, George Leroy Jr.

    1999-12-01

    The National Transportation Program 1999 Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste and materials transportation. In addition, this Report provides a summary overview of DOEs projected quantities of waste and materials for transportation. Data presented in this report were gathered as a part of the IPABS Spring 1999 update of the EM Corporate Database and are current as of July 30, 1999. These data were input and compiled using the Analysis and Visualization System (AVS) which is used to update all stream-level components of the EM Corporate Database, as well as TSD System and programmatic risk (disposition barrier) information. Project (PBS) and site-level IPABS data are being collected through the Interim Data Management System (IDMS). The data are presented in appendices to this report.

  3. Yucca Mountain transportation routes: Preliminary characterization and risk analysis; Volume 2, Figures [and] Volume 3, Technical Appendices

    SciTech Connect (OSTI)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-05-31

    This report presents appendices related to the preliminary assessment and risk analysis for high-level radioactive waste transportation routes to the proposed Yucca Mountain Project repository. Information includes data on population density, traffic volume, ecologically sensitive areas, and accident history.

  4. Proposed Risk-Informed Seismic Hazard Periodic Reevaluation Methodology for Complying with DOE Order 420.1C

    SciTech Connect (OSTI)

    Kammerer, Annie

    2015-10-01

    Department of Energy (DOE) nuclear facilities must comply with DOE Order 420.1C Facility Safety, which requires that all such facilities review their natural phenomena hazards (NPH) assessments no less frequently than every ten years. The Order points the reader to Standard DOE-STD-1020-2012. In addition to providing a discussion of the applicable evaluation criteria, the Standard references other documents, including ANSI/ANS-2.29-2008 and NUREG-2117. These documents provide supporting criteria and approaches for evaluating the need to update an existing probabilistic seismic hazard analysis (PSHA). All of the documents are consistent at a high level regarding the general conceptual criteria that should be considered. However, none of the documents provides step-by-step detailed guidance on the required or recommended approach for evaluating the significance of new information and determining whether or not an existing PSHA should be updated. Further, all of the conceptual approaches and criteria given in these documents deal with changes that may have occurred in the knowledge base that might impact the inputs to the PSHA, the calculated hazard itself, or the technical basis for the hazard inputs. Given that the DOE Order is aimed at achieving and assuring the safety of nuclear facilities—which is a function not only of the level of the seismic hazard but also the capacity of the facility to withstand vibratory ground motions—the inclusion of risk information in the evaluation process would appear to be both prudent and in line with the objectives of the Order. The purpose of this white paper is to describe a risk-informed methodology for evaluating the need for an update of an existing PSHA consistent with the DOE Order. While the development of the proposed methodology was undertaken as a result of assessments for specific SDC-3 facilities at Idaho National Laboratory (INL), and it is expected that the application at INL will provide a demonstration of the

  5. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  6. Clean Cities: Building Partnerships to Cut Petroleum Use in Transportation (Brochure), U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Building Partnerships to Cut Petroleum Use in Transportation The U.S. Department of Energy's (DOE's) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. At the national level, the program develops and promotes publications, tools, and other unique resources. At the local level, nearly 100 coalitions leverage these resources to create networks of stakeholders. The coalitions support fleets by

  7. Enforcement Guidance Supplement 98-02: DOE Enforcement Activities where Off-site Transportation Issues are also Present.

    Broader source: Energy.gov [DOE]

    Recently several questions have arisen regarding the scope of Price-Anderson enforcement when transportation issues are directly or indirectly involved in an incident. These questions can be separated into two areas, (1) transportation issues that involve on-site transportation typically not regulated by the Department of Transportation (DOT), and (2) transportation issues that involve off-site transportation. This guidance addresses off-site transportation that is regulated by DOT and other state and federal agencies.

  8. Comparative transportation risk assessment for borosilicate-glass and ceramic forms for immobilization of SRP Defense waste

    SciTech Connect (OSTI)

    Moyer, R A

    1982-04-01

    It is currently planned to immobilize the SRP high-level nuclear waste in solid form and then ship it from SRP to a federal repository. This report compared transportation operations and risks for SRP high-level waste in a borosilicate glass form and in a ceramic form. Radiological and nonradiological impacts from normal transport and from potential accidents during transit were determined using the Defense Waste Process Facility Environmental Impact Statement (DWPF EIS) as the source of basic data. Applicable regulations and some current regulatory uncertainties are also discussed.

  9. Taking Control and Taking Risks | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Taking Control and Taking Risks Lori Diachin at Lawrence Livermore National Laboratory discusses her path in computer science. Print Text Size: A A A Subscribe FeedbackShare Page ...

  10. Risk analysis of remediation technologies for a DOE facility. Master`s thesis

    SciTech Connect (OSTI)

    Wilson, H.A.

    1998-03-01

    The Department of Energy is responsible for selecting a remediation technology to cleanup the Waste Area Group (WAG) 6 site at the Paducah Gaseous Diffusion Plant (PGDP) in Kentucky. WAG 6 is contaminated with an uncertain amount of trichloroethylene (TCE) and technetium-99 (Tc-99). Selecting a remediation technology involves a certain degree of risk because many of these technologies are new or proven only for a specific type of contaminant or a particular set of site conditions. Differences between contaminant type and site conditions are enough to make the performance of a remediation technology uncertain. This research identifies the technological risks of two remediation technologies: Dynamic Underground Stripping (DUS) and In Situ Chemical Oxidation (ISCO). Risk is defined as the likelihood of undesirable events occurring during the implementation of a technology at WAG 6.

  11. WIPP Documents - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation

  12. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  13. Risk and return in petroleum investment: what does the evidence show. [Monograph

    SciTech Connect (OSTI)

    Rose, P.S.; Riener, K.D.

    1981-01-01

    This study examines recent trends in the profitability, risk, and funds sources and uses of major private petroleum firms, most of which are based in the US. The study finds little evidence that major oil and gas producers and their investors earned excessive or windfall returns above normal market levels during and after the 1973-74 oil embargo. It also produces evidence that financial risks in the petroleum sector are increasing, spurred on by heavier use of debt financing and the search for oil and gas in more-remote locations. A growth in capital investment has been made possible by sharply increasing the industry's drawings on external funds, principally through the issuance of debt securities, and reducing asset liquidity. Financial trends of this nature bear close watching because they have a direct bearing on the long-run growth and viability of individual petroleum producers. The pursuit of increased independence from foreign sources of oil and gas requires that industry net earnings be sufficient to cover growing domestic needs. 33 references. 5 tables.

  14. DRAFT - DOE O 461.1C, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest.

  15. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE ...

  16. PRESTO-II: a low-level waste environmental transport and risk assessment code

    SciTech Connect (OSTI)

    Fields, D.E.; Emerson, C.J.; Chester, R.O.; Little, C.A.; Hiromoto, G.

    1986-04-01

    PRESTO-II (Prediction of Radiation Effects from Shallow Trench Operations) is a computer code designed for the evaluation of possible health effects from shallow-land and, waste-disposal trenches. The model is intended to serve as a non-site-specific screening model for assessing radionuclide transport, ensuing exposure, and health impacts to a static local population for a 1000-year period following the end of disposal operations. Human exposure scenarios considered include normal releases (including leaching and operational spillage), human intrusion, and limited site farming or reclamation. Pathways and processes of transit from the trench to an individual or population include ground-water transport, overland flow, erosion, surface water dilution, suspension, atmospheric transport, deposition, inhalation, external exposure, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses, as well as doses to the intruder and farmer, may be calculated. Cumulative health effects in terms of cancer deaths are calculated for the population over the 1000-year period using a life-table approach. Data are included for three example sites: Barnwell, South Carolina; Beatty, Nevada; and West Valley, New York. A code listing and example input for each of the three sites are included in the appendices to this report.

  17. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Supersedes DOE O 460.1B.

  18. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  19. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  20. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  1. Transportation risk assessment for the shipment of irradiated FFTF tritium target assemblies from the Hanford Site to the Savannah River Site

    SciTech Connect (OSTI)

    Nielsen, D. L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This report examines the potential health and safety impacts associated with transportation of irradiated tritium targets from FFTF to the Savannah River Site for processing at the Tritium Extraction Facility. Potential risks to workers and members of the public during normal transportation and accident conditions are assessed.

  2. Leakage Risk Assessment of CO{sub 2} Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    SciTech Connect (OSTI)

    Mazzoldi, A.; Oldenburg, C. M.

    2013-12-17

    The Illinois Basin Decatur Project (IBDP) is designed to confirm the ability of the Mt. Simon Sandstone, a major regional saline-water-bearing formation in the Illinois Basin, to store 1 million tons of carbon dioxide (CO{sub 2}) injected over a period of three years. The CO{sub 2} will be provided by Archer Daniels Midland (ADM) from its Decatur, Illinois, ethanol plant. In order to transport CO{sub 2} from the capture facility to the injection well (also located within the ADM plant boundaries), a high-pressure pipeline of length 3,200 ft (975 m) has been constructed, running above the ground surface within the ADM plant footprint. We have qualitatively evaluated risks associated with possible pipeline failure scenarios that lead to discharge of CO{sub 2} within the real-world environment of the ADM plant in which there are often workers and visitors in the vicinity of the pipeline. There are several aspects of CO{sub 2} that make its transportation and potential leakage somewhat different from other substances, most notable is its non-flammability and propensity to change to solid (dry ice) upon strong decompression. In this study, we present numerical simulations using Computational Fluid Dynamics (CFD) methods of the release and dispersion of CO{sub 2} from individual hypothetical pipeline failures (i.e., leaks). Failure frequency of the various components of a pipeline transportation system over time are taken from prior work on general pipeline safety and leakage modeling and suggest a 4.65% chance of some kind of pipeline failure over the three-years of operation. Following the Precautionary Principle (see below), we accounted for full-bore leakage scenarios, where the temporal evolution of the mass release rate from the high-pressure pipeline leak locations was simulated using a state-of-the-art Pipe model which considers the thermodynamic effects of decompression in the entire pipeline. Failures have been simulated at four representative locations along

  3. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste ...

  4. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  5. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels DOE 1540.1A, DOE 1540.2, DOE 1540.3A.

  6. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-26

    Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels: DOE 1540.1A, DOE 1540.2, and DOE 1540.3A.

  7. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-04

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  8. TU-C-18A-01: Models of Risk From Low-Dose Radiation Exposures: What Does the Evidence Say?

    SciTech Connect (OSTI)

    Bushberg, J; Boreham, D; Ulsh, B

    2014-06-15

    At dose levels of (approximately) 500 mSv or more, increased cancer incidence and mortality have been clearly demonstrated. However, at the low doses of radiation used in medical imaging, the relationship between dose and cancer risk is not well established. As such, assumptions about the shape of the dose-response curve are made. These assumptions, or risk models, are used to estimate potential long term effects. Common models include 1) the linear non-threshold (LNT) model, 2) threshold models with either a linear or curvilinear dose response above the threshold, and 3) a hormetic model, where the risk is initially decreased below background levels before increasing. The choice of model used when making radiation risk or protection calculations and decisions can have significant implications on public policy and health care decisions. However, the ongoing debate about which risk model best describes the dose-response relationship at low doses of radiation makes informed decision making difficult. This symposium will review the two fundamental approaches to determining the risk associated with low doses of ionizing radiation, namely radiation epidemiology and radiation biology. The strengths and limitations of each approach will be reviewed, the results of recent studies presented, and the appropriateness of different risk models for various real world scenarios discussed. Examples of well-designed and poorly-designed studies will be provided to assist medical physicists in 1) critically evaluating publications in the field and 2) communicating accurate information to medical professionals, patients, and members of the general public. Equipped with the best information that radiation epidemiology and radiation biology can currently provide, and an understanding of the limitations of such information, individuals and organizations will be able to make more informed decisions regarding questions such as 1) how much shielding to install at medical facilities, 2) at

  9. Risk Assessment & Management Information

    Broader source: Energy.gov [DOE]

    NRC - A Proposed Risk Management Regulatory Framework, April 2012 Risk Assessment Technical Experts Working Group (RWG) web page DOE Standard on Development and Use of Probabilistic Risk Assessment in DOE Nuclear Safety Applications (draft), December 2010 Consortium for Risk Evaluation with Stakeholder Participation Workshop on Risk Assessment and Safety Decision Making Under Uncertainty

  10. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  11. Imaging dose in breast radiotherapy: does breast size affect the dose to the organs at risk and the risk of secondary cancer to the contralateral breast?

    SciTech Connect (OSTI)

    Batumalai, Vikneswary; Quinn, Alexandra; Jameson, Michael; Delaney, Geoff; Holloway, Lois

    2015-03-15

    Correct target positioning is crucial for accurate dose delivery in breast radiotherapy resulting in utilisation of daily imaging. However, the radiation dose from daily imaging is associated with increased probability of secondary induced cancer. The aim of this study was to quantify doses associated with three imaging modalities and investigate the correlation of dose and varying breast size in breast radiotherapy. Planning computed tomography (CT) data sets of 30 breast cancer patients were utilised to simulate the dose received by various organs from a megavoltage computed tomography (MV-CT), megavoltage electronic portal image (MV-EPI) and megavoltage cone-beam computed tomography (MV-CBCT). The mean dose to organs adjacent to the target volume (contralateral breast, lungs, spinal cord and heart) were analysed. Pearson correlation analysis was performed to determine the relationship between imaging dose and primary breast volume and the lifetime attributable risk (LAR) of induced secondary cancer was calculated for the contralateral breast. The highest contralateral breast mean dose was from the MV-CBCT (1.79 Gy), followed by MV-EPI (0.22 Gy) and MV-CT (0.11 Gy). A similar trend was found for all organs at risk (OAR) analysed. The primary breast volume inversely correlated with the contralateral breast dose for all three imaging modalities. As the primary breast volume increases, the likelihood of a patient developing a radiation-induced secondary cancer to the contralateral breast decreases. MV-CBCT showed a stronger relationship between breast size and LAR of developing a radiation-induced contralateral breast cancer in comparison with the MV-CT and MV-EPI. For breast patients, imaging dose to OAR depends on imaging modality and treated breast size. When considering the use of imaging during breast radiotherapy, the patient's breast size and contralateral breast dose should be taken into account.

  12. Sustainable Transportation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  13. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  14. Supplemental information related to risk assessment for the off-site transportation of low-level mixed waste for the U.S. Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Monette, F.A.; Biwer, B.M.; LePoire, D.J.; Lazaro, M.A.; Antonopoulos, A.A.; Hartmann, H.M.; Policastro, A.J.; Chen, S.Y.

    1996-12-01

    This report provides supplemental information to support the human health risk assessment conducted for the transportation of low-level mixed waste (LLMW) in support of the US Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS). The assessment considers both the radioactive and chemical hazards associated with LLMW transportation. Detailed descriptions of the transportation health risk assessment methods and results of the assessment are presented in Appendix E of the WM PEIS. This report presents additional information that is not included in Appendix E but that was needed to conduct the transportation risk assessment for Waste Management (WM) LLMW. Included are definitions of the LLMW alternatives considered in the WM PEIS; data related to the inventory and to the physical, chemical, and radiological characteristics of WM LLMW; an overview of the risk assessment methods; and detailed results of the assessment for each WM LLMW case considered.

  15. DOE FEMA Videos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE FEMA Videos DOE FEMA Videos EMERGENCY RESPONSE TO A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL This training video and user guide was designed to supplement the ...

  16. Graduate student theses supported by DOE`s Environmental Sciences...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 29 ENERGY PLANNING AND POLICY; US DOE; RESEARCH PROGRAMS; EDUCATION; ECOSYSTEMS; CARBON CYCLE; CLIMATIC CHANGE; ENERGY; ENVIRONMENTAL TRANSPORT; SEAS; ...

  17. Isotope Program Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isotope Program Transportation Isotope Program Transportation Isotope Program Transportation (894.11 KB) More Documents & Publications Nuclear Fuel Storage and Transportation Planning Project Overview Section 180(c) Ad Hoc Working Group DOE Office of Nuclear Energy

  18. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-03-18

    The following directives are extended until 3-18-06: DOE N 205.8, Cyber Security Requirements for Wireless Devices and Information Systems, dated 2-11-04; DOE N 205.9, Certification and Accreditation Process for Information Systems Including National Security Systems, dated 02-19-04; DOE N 205.10, Cyber Security Requirements for Risk Management, dated 02-19-04; DOE N 205.11, Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems, dated 2-19-04. DOE N 205.12, Clearing, Sanitizing, and Destroying Information System Storage Media, Memory Devices, and Other Related Hardware, dated 2-19-04.

  19. DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Item Packaging and Transportation for Offsite Shipment of Materials of National Security Interest https:www.directives.doe.govinformational-purposes-only...

  20. Supplemental information related to risk assessment for the off-site transportation of low-level waste for the U.S. Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Monette, F.A.; Biwer, B.M.; LePoire, D.J.; Chen, S.Y. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-12-01

    This report presents supplemental information to support the human health risk assessment conducted for the transportation of low-level waste (LLW) in support of the US Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS). Detailed descriptions of the transportation health risk assessment method and results of the assessment are presented in Appendix E of the WM PEIS and are not repeated in this report. This report presents additional information that is not presented in Appendix E but that was needed to conduct the transportation risk assessment for Waste Management (WM) LLW. Included are definition of the LLW alternatives considered in the WM PEIS, data related to the inventory and to the physical and radiological characteristics of WM LLW, an overview of the risk assessment method, and detailed results of the assessment for each WM LLW alternative considered.

  1. Transportation System Concept of Operations

    SciTech Connect (OSTI)

    N. Slater-Thompson

    2006-08-16

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level

  2. Microsoft Word - Transportation pdf.doc

    National Nuclear Security Administration (NNSA)

    ... Although the Green Book provides a general overview of what a DOE NEPA transportation ... Department of Energy Documents (DOE, 1995a), subsequently referred to as the "Framework." ...

  3. Cloud-Based Transportation Management System Delivers Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reduce transportation costs. The Department of Energy (DOE) Office of Packaging & Transportation (OPT) implemented ATLAS (Automated Transportation Logistics & Analysis System), a ...

  4. NREL: Transportation Research - Transportation and Hydrogen Newsletter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This is the May 2015 issue of the Transportation and Hydrogen Newsletter. May 28, 2015 Photo of a car refueling at a hydrogen dispensing station. DOE's H2FIRST project focuses on ...

  5. DOE-STD-1628-2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of Probabilistic Risk Assessments for Nuclear Safety Applications This document is the DOE Technical Standard entitled, “Development of Probabilistic Risk Assessments for Nuclear Safety Applications”.

  6. DOE/EIS-0026-SA-06: Supplement Analysis for the Transportation of Transuranic Waste in TRUPACT-III Containers (9/25/07)

    Office of Environmental Management (EM)

    DOE/EA-1976 FINDING OF NO SIGNIFICANT IMPACT FOR PROPOSED CNG PROJECT REGARDING EMERA CNG, LLC APPLICATION SEEKING DEPARTMENT OF ENERGY AUTHORIZATION TO EXPORT COMPRESSED NATURAL GAS TO NON-FREE TRADE AGREEMENT NATIONS AGENCY: U.S. Department of Energy, Office of Fossil Energy ACTION: Finding of No Significant Impact SUMMARY: The U.S. Department of Energy (DOE) prepared an environmental assessment (EA) to evaluate the potential environmental impacts associated with the construction and operation

  7. Simulation of transportation of low enriched uranium solutions

    SciTech Connect (OSTI)

    Hope, E.P.; Ades, M.J.

    1996-08-01

    A simulation of the transportation by truck of low enriched uranium solutions has been completed for NEPA purposes at the Savannah River Site. The analysis involves three distinct source terms, and establishes the radiological risks of shipment to three possible destinations. Additionally, loading accidents were analyzed to determine the radiological consequences of mishaps during handling and delivery. Source terms were developed from laboratory measurements of chemical samples from low enriched uranium feed materials being stored at SRS facilities, and from manufacturer data on transport containers. The transportation simulations were accomplished over the INTERNET using the DOE TRANSNET system at Sandia National Laboratory. The HIGHWAY 3.3 code was used to analyze routing scenarios, and the RADTRAN 4 code was used to analyze incident free and accident risks of transporting radiological materials. Loading accidents were assessed using the Savannah River Site AXAIR89Q and RELEASE 2 codes.

  8. DOE handbook electrical safety

    SciTech Connect (OSTI)

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  9. National Transportation Stakeholders Forum (NTSF)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) National Transportation Stakeholders Forum (NTSF) is the mechanism through which DOE communicates at a national level with states and tribes about the Department...

  10. The transportation external coordination working group

    SciTech Connect (OSTI)

    1995-10-01

    In an effort to improve coordinated interactions between the United States Department of Energy (DOE) and external groups interested in transportation activities, DOE established the Transportation External Coordination Working Group (TEC/WG). Membership includes representatives from State, Tribal and local governments, industry, and professional organizations. All DOE programs with significant transportation programs participate.

  11. Water Transport Within the STack: Water Transport Exploratory Studies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. 2_lanl.pdf (22.05 KB) More Documents & Publications Water Transport Exploratory Studies Fuel Cell Kickoff Meeting Agenda

  12. DOE Announces $22 Million in Funding to Accelerate the Development of Plug-In Electric Vehicles and Use of Other Sustainable Transportation Technologies

    Broader source: Energy.gov [DOE]

    The Energy Department (DOE) announced $22 million to support research, development, and demonstration of innovative plug-in electric vehicle (PEV) and direct injection propane engine technologies, as well as community-based projects to accelerate the adoption of light, medium, and heavy duty vehicles that operate on fuels such as biodiesel, electricity, E85, hydrogen, natural gas, and propane.

  13. Risk Management Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-18

    This Guide provides non-mandatory risk management approaches for implementing the requirements of DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets. Supersedes DOE G 413.3-7.

  14. DOE Program Resources and Tools for Petroleum Reduction in the...

    Open Energy Info (EERE)

    DOE Program Resources and Tools for Petroleum Reduction in the Transportation Sector Webinar Jump to: navigation, search Tool Summary Name: DOE Program Resources and Tools for...

  15. MELTER: A model of the thermal response of cargos transported in the Safe-Secure Trailer subject to fire environments for risk assessment applications

    SciTech Connect (OSTI)

    Larsen, M.E.

    1994-08-01

    MELTER is an analysis of cargo responses inside a fire-threatened Safe-Secure Trailer (SST) developed for the Defense Program Transportation Risk Assessment (DPTRA). Many simplifying assumptions are required to make the subject problem tractable. MELTER incorporates modeling which balances the competing requirements of execution speed, generality, completeness of essential physics, and robustness. Input parameters affecting the analysis include those defining the fire scenario, those defining the cargo loaded in the SST, and those defining properties of the SST. For a specified fire, SST, and cargo geometry MELTER predicts the critical fire duration that will lead to a failure. The principal features of the analysis include: (a) Geometric considerations to interpret fire-scenario descriptors in terms of a thermal radiation boundary condition, (b) a simple model of the SST`s wall combining the diffusion model for radiation through optically-thick media with an endothermic reaction front to describe the charring of dimensional, rigid foam in the SST wall, (c) a transient radiation enclosure model, (d) a one-dimensional, spherical idealization of the shipped cargos providing modularity so that cargos of interest can be inserted into the model, and (e) associated numerical methods to integrate coupled, differential equations and find roots.

  16. Development of Onsite Transportation Safety Documents for Nevada Test Site

    SciTech Connect (OSTI)

    Frank Hand, Willard Thomas, Frank Sciacca, Manny Negrete, Susan Kelley

    2008-05-08

    Department of Energy (DOE) Orders require each DOE site to develop onsite transportation safety documents (OTSDs). The Nevada Test Site approach divided all onsite transfers into two groups with each group covered by a standalone OTSD identified as Non-Nuclear and Nuclear. The Non-Nuclear transfers involve all radioactive hazardous material in less than Hazard Category (HC)-3 quantities and all chemically hazardous materials. The Nuclear transfers involve all radioactive material equal to or greater than HC-3 quantities and radioactive material mated with high explosives regardless of quantity. Both OTSDs comply with DOE O 460.1B requirements. The Nuclear OTSD also complies with DOE O 461.1A requirements and includes a DOE-STD-3009 approach to hazard analysis (HA) and accident analysis as needed. All Nuclear OTSD proposed transfers were determined to be non-equivalent and a methodology was developed to determine if equivalent safety to a fully compliant Department of Transportation (DOT) transfer was achieved. For each HA scenario, three hypothetical transfers were evaluated: a DOT-compliant, uncontrolled, and controlled transfer. Equivalent safety is demonstrated when the risk level for each controlled transfer is equal to or less than the corresponding DOT-compliant transfer risk level. In this comparison the typical DOE-STD-3009 risk matrix was modified to reflect transportation requirements. Design basis conditions (DBCs) were developed for each non-equivalent transfer. Initial DBCs were based solely upon the amount of material present. Route-, transfer-, and site-specific conditions were evaluated and the initial DBCs revised as needed. Final DBCs were evaluated for each transfers packaging and its contents.

  17. Transportation Infrastructure

    Office of Environmental Management (EM)

    09 Archive Transportation Fact of the Week - 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009 #598 Hybrid Vehicle Sales by Model November 23, 2009 #597 Median Age of Cars and Trucks Rising in 2008 November 16, 2009

  18. Transportation safety training

    SciTech Connect (OSTI)

    Jones, E.

    1990-01-01

    Over the past 25 years extensive federal legislation involving the handling and transport of hazardous materials/waste has been passed that has resulted in numerous overlapping regulations administered and enforced by different federal agencies. The handling and transport of hazardous materials/waste involves a significant number of workers who are subject to a varying degree of risk should an accident occur during handling or transport. Effective transportation training can help workers address these risks and mitigate them, and at the same time enable ORNL to comply with the federal regulations concerning the transport of hazardous materials/waste. This presentation will outline how the Environmental and Health Protection Division's Technical Resources and Training Section at the Oak Ridge National Laboratory, working with transportation and waste disposal personnel, have developed and implemented a comprehensive transportation safety training program to meet the needs of our workers while satisfying appropriate federal regulations. 8 refs., 3 tabs.

  19. Development of a Density Sensor for In-Line Real-Time Process Control and Monitoring of Slurries during Radioactive Waste Retrieval and Transport Operations at DOE Sites

    SciTech Connect (OSTI)

    Bamberger, Judith A.; Greenwood, Margaret S.

    2001-11-19

    A density sensor (densimeter) to monitor and control slurries in-line real-time during radioactive waste retrieval and transport and detect conditions leading to degraded transport and line plugging is described. Benefits over baseline grab samples and off line analysis include: early detection and prevention of pipeline plugging, real-time density through the transfer process, elimination of grab sampling and off-line analysis, and reduced worker radiation exposure. The sensor is small, robust and could be retrofitted into existing pump pit manifolds and transfer lines. The probe uses ultrasonic signal reflection at the fluid-pipe wall interface to quantify density and features include: a non-intrusive sensing surface located flush with the pipeline wall; performance that is not affected by entrained air or by electromagnetic noise from nearby pumps and other equipment and is compact. Components were tested for chemical and radiation resistance and the spool piece was pressure tested in accordance with ASME Process Piping Code B31.3 and approved by the Hanford Site Flammable Gas Equipment Advisory Board for installation. During pipeline tests, the sensor predicted density within + 2% oriented in vertical and horizontal position. The densimeter is installed in the modified process manifold that is installed in the prefabricated pump pit at Hanford tank SY-101 site. In FY-2002 the density sensor performance will be evaluated during transfers of both water and waste through the pipeline. A separate project developed an ultrasonic sensor that: 1) can be attached permanently to a pipeline wall, possibly as a spool piece inserted into the line or 2) can clamp onto an existing pipeline wall and be movable to another location. This method is attractive for radioactive fluids transport applications because the sensors could be applied to existing equipment without the need to penetrate the pipe pressure boundary or to open the system to install new equipment.

  20. Radioactive Material Transportation Practices Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04

    This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Supersedes DOE M 460.2-1.

  1. DOE Office of Nuclear Energy | Department of Energy

    Office of Environmental Management (EM)

    Energy DOE Office of Nuclear Energy DOE Office of Nuclear Energy (222.52 KB) More Documents & Publications Section 180(c) Ad Hoc Working Group Nuclear Fuel Storage and Transportation Planning Project Overview Transportation Plan Ad Hoc Working Group

  2. DOE FEMA Videos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE FEMA Videos DOE FEMA Videos EMERGENCY RESPONSE TO A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL This training video and user guide was designed to supplement the MERRTT program and has been produced as a cooperative effort between the Federal Emergency Management Agency (FEMA) and the DOE Transportation Emergency Preparedness Program. The video will demonstrate basic response techniques to a transportation accident involving radioactive material. Starting with the initial 9-1-1

  3. DOE/LM-1469

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE/LM-1469

  4. DOE Head of Contracting Activity and Procurement Directors' Directory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other DOE HCA List May 26 2015.pdf More Documents & Publications Chapter 1 - Acquisition Regulations System DOE Site Facility Management Contracts Internet Posting High Risk Plan

  5. Summary - Major Risk Factors Integrated Facility Disposition...

    Office of Environmental Management (EM)

    Office of Environmental Management (DOE-EM) External Technical Review of the Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN Why DOE-EM Did...

  6. High Risk Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon High Risk Plan More Documents & Publications DOE Site Facility Management Contracts Internet Posting DOE Head of Contracting Activity and Procurement Directors' Directory ...

  7. Center for Electric Drive Transportation at the University of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Transportation at the University of Michigan - Dearborn Center for Electric Drive Transportation at the University of Michigan - Dearborn 2012 DOE Hydrogen and Fuel ...

  8. Sustainable Transportation (Fact Sheet), Office of Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Sustainable Transportation (Fact Sheet), Office of Energy ...

  9. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and...

  10. Update on EM Transportation Program Activities | Department of...

    Office of Environmental Management (EM)

    EM Transportation Program Activities Update on EM Transportation Program Activities Motor Carrier Evaluation Program, DOE Directives, Upcoming Shipping Activities Update on EM ...

  11. Risk Management Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-16

    This Guide provides a framework for identifying and managing key technical, schedule, and cost risks through applying the requirements of DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE G 413.3-7A, dated 1-12-11. Does not cancel other directives.

  12. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-12-22

    The Order establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), materials transportation and packaging to ensure the safe, secure, efficient packaging and transportation of materials, both hazardous and nonhazardous. Cancels DOE O 460.2 and DOE O 460.2 Chg 1

  13. Reliable Muddle: Transportation Scenarios for the 80% Greenhouse Gas Reduction Goal for 2050 (Presentation)

    SciTech Connect (OSTI)

    Melaina, M.; Webster, K.

    2009-10-28

    Presentation describing transportation scenarios for meeting the 2050 DOE goal of reducing greenhouse gases by 80%.

  14. DOE standard: Radiological control

    SciTech Connect (OSTI)

    Not Available

    1999-07-01

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  15. Risk Assessment Technical Experts Working Group

    Broader source: Energy.gov [DOE]

    The Risk Assessment Technical Experts Working Group (RWG) was established to assist DOE in the appropriate and effective use of quantitative risk assessment in nuclear safety related activities.

  16. DOE PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2016 DOE Organization Chart - February 2016 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. DOECHART-NONAMES-2016-February-22.pdf (81.63 KB) More Documents & Publications DOE Organization Chart - January

    January 2016 DOE Organization Chart - January 2016 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the

  17. Fuel Cells for Transportation- Research and Development: Program Abstracts

    Broader source: Energy.gov [DOE]

    Remarkable progress has been achieved in the development of proton-exchange-membrane(PEM) fuel cell technology since the U.S. Department of Energy (DOE) initiated a significant developmental program in the early 1990s. This progress has stimulated enormous interest worldwide in developing fuel cell products for transportation as well as for stationary and portable power applications. The potential markets are huge, but so are the R&D risks. Given the potential for PEM fuel cells to deliver large economic and environmental benefits to the Nation, DOE continues to take a leadership role in developing and validating this technology. DOE’s strategy to implement its Fuel Cells for Transportation program has three components: an R&D strategy, a fuels strategy, and a management strategy.

  18. Onsite transportation of radioactive materials at the Savannah River Site

    SciTech Connect (OSTI)

    Watkins, R.

    2015-03-03

    The Savannah River Site (SRS) Transportation Safety Document (TSD) defines the onsite packaging and transportation safety program at SRS and demonstrates its compliance with Department of Energy (DOE) transportation safety requirements, to include DOE Order 460.1C, DOE Order 461.2, Onsite Packaging and Transfer of Materials of National Security Interest, and 10 CFR 830, Nuclear Safety Management (Subpart B).

  19. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-18

    Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

  20. Transportation Emergency Preparedness Program Plan, U.S. Department of Energy Region 6

    SciTech Connect (OSTI)

    Marsha Keister

    2010-04-01

    The United States Department of Energy (DOE) Region 6 Transportation Emergency Preparedness Program Plan (TEPP Plan) operates within the framework of the DOE emergency management system for developing, coordinating, and directing emergency planning, preparedness, and readiness assurance activities for radiological transportation incidents. The DOE Region 6 TEPP Plan is a narrative description of the DOE Transportation Emergency Preparedness Program activities, training and technical assistance provided to states and tribes along DOE's transportation corridors in DOE Region 6.

  1. Transportation Financial Incentives and Programs Resources |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find transportation financial incentives and programs resources below. DOE Resources Alternative Fuels Data Center: Federal and State Laws and Incentives Clean Cities: Related ...

  2. Vehicle Technologies Office Merit Review 2015: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2015: Transportation ... DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual ...

  3. Transportation Emergency Preparedness Program Exercise Overview...

    Office of Environmental Management (EM)

    - Making A Difference DOE Efforts in Preparing and Improving First Response Capabilities and Performance through Drills and Exercises Transportation Emergency Preparedness Program...

  4. Transportation and Stationary Power Integration: Workshop Proceedings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings for the Transportation and Stationary Power Integration Workshop held on ... U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen Fuel and Pressure ...

  5. Department of Energy Receives Highest Transportation Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today received the Transportation Community Awareness and Emergency Response (TRANSCAER) Chairman's Award, one of industry's ...

  6. Automated Transportation Logistics and Analysis System (ATLAS...

    Office of Environmental Management (EM)

    The Department of Energy's (DOE's) Automated Transportation Logistics and Analysis System is an integrated web-based logistics management system allowing users to manage inbound ...

  7. PBA Transportation Websites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PBA Transportation Websites PBA Transportation Websites PBA Transportation Websites presented to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program. 19_pba_transport_websites.pdf (69.62 KB) More Documents & Publications Planning, Budget, and Analysis Program Analysis Vehicle Technologies Office Merit Review 2016: ANL Vehicle Technologies Analysis Modeling Program

  8. ORISE: Crisis and Risk Communication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy (DOE) Oak Ridge Office (ORO), ORISE provides crisis and risk communication support through the management of its Joint Information Center (JIC)...

  9. Robustness of RISMC Insights under Alternative Aleatory/Epistemic Uncertainty Classifications: Draft Report under the Risk-Informed Safety Margin Characterization (RISMC) Pathway of the DOE Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Eslinger, Paul W.; Johnson, Kenneth I.

    2012-09-20

    The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). A technical challenge at the core of this effort is to establish the conceptual and technical feasibility of analyzing safety margin in a risk-informed way, which, unlike conventionally defined deterministic margin analysis, would be founded on probabilistic characterizations of uncertainty in SSC performance. In the context of probabilistic risk assessment (PRA) technology, there has arisen a general consensus about the distinctive roles of two types of uncertainty: aleatory and epistemic, where the former represents irreducible, random variability inherent in a system, whereas the latter represents a state of knowledge uncertainty on the part of the analyst about the system which is, in principle, reducible through further research. While there is often some ambiguity about how any one contributing uncertainty in an analysis should be classified, there has nevertheless emerged a broad consensus on the meanings of these uncertainty types in the PRA setting. However, while RISMC methodology shares some features with conventional PRA, it will nevertheless be a distinctive methodology set. Therefore, the paradigms for classification of uncertainty in the PRA setting may not fully port to the RISMC environment. Yet the notion of risk-informed margin is based on the characterization of uncertainty, and it is therefore critical to establish a common understanding of uncertainty in the RISMC setting.

  10. Supervisory Loan Specialist (Strategic Risk)

    Broader source: Energy.gov [DOE]

    This position is located in the Department of Energy (DOE) Loans Programs Office (LPO), Risk Management Division (RMD or LP-40) Strategic Risk Group (LP-40). The incumbent is the supervisor for the...

  11. DOE explosives safety manual. Revision 7

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This manual prescribes the Department of Energy (DOE) safety rules used to implement the DOE safety policy for operations involving explosives. This manual is applicable to all DOE facilities engaged in operations of development, manufacturing, handling, storage, transportation, processing, or testing of explosives, pyrotechnics and propellants, or assemblies containing these materials. The standards of this manual deal with the operations involving explosives, pyrotechnics and propellants, and the safe management of such operations. The design of all new explosives facilities shall conform to the requirements established in this manual and implemented in DOE 6430.1A, ``General Design Criteria Manual.`` It is not intended that existing physical facilities be changed arbitrarily to comply with these provisions, except as required by law. Existing facilities that do not comply with these standards may continue to be used for the balance of their functional life, as long as the current operation presents no significantly greater risk than that assumed when the facility was originally designed and it can be demonstrated clearly that a modification to bring the facility into compliance is not feasible. However, in the case of a major renovation, the facility must be brought into compliance with current standards. The standards are presented as either mandatory or advisory. Mandatory standards, denoted by the words ``shall,`` ``must,`` or ``will,`` are requirements that must be followed unless written authority for deviation is granted as an exemption by the DOE. Advisory standards denoted by ``should`` or ``may`` are standards that may be deviated from with a waiver granted by facility management.

  12. DOE Patents

    Office of Scientific and Technical Information (OSTI)

    DOE Patents From the 1940's to today... A central collection of US Department of energy patent information Search For Terms: Find + Advanced Search Advanced Search All Fields: ...

  13. Final Technical Report, DOE/ER/64323

    SciTech Connect (OSTI)

    Valocchi, Albert J. University of Illinois, Dept of Civil & Environ Engr

    2013-06-05

    The DOE SciDAC program funded a team that developed PFLOTRAN, the next-generation (â??peta-scaleâ??) massively parallel, multiphase, multicomponent reactive flow and transport code. These codes are required to improve understanding and risk management of subsurface contaminant migration and geological sequestration of carbon dioxide. The important fate and transport processes occurring in the subsurface span a wide range of spatial and temporal scales, and involve nonlinear interactions among many different chemical constituents. Due to the complexity of this problem, modeling subsurface processes normally requires simplifying assumptions. However, tools of advanced scientific computing that have been used in other areas such as energy and materials research can also help address challenging problems in the environmental and geoscience fields. The overall project was led by Los Alamos National Laboratory and included Argonne, Oak Ridge and Pacific Northwest National Laboratories, in addition to the University of Illinois. This report summarizes the results of the research done at the University of Illinois, which focused on improvements to the underlying physical and computational modeling of certain transport and mixing processes.

  14. EPAct Transportation Regulatory Activities

    SciTech Connect (OSTI)

    2011-11-21

    The U.S. Department of Energy's (DOE) Vehicle Technologies Program manages several transportation regulatory activities established by the Energy Policy Act of 1992 (EPAct), as amended by the Energy Conservation Reauthorization Act of 1998, EPAct 2005, and the Energy Independence and Security Act of 2007 (EISA).

  15. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  16. Vehicle Technologies Office: 2014 DEER Overview of the U.S. DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2014 DEER Overview of the U.S. DOE Vehicle Technologies Program DOE rationale for addressing transportation oil dependency, programs, specifically ...

  17. DOE F

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    242.1 (12-2014) U.S. DEPARTMENT OF ENERGY Forms Manager Designation SECTION I. Designation Information Pursuant to DOE Guide 242.1-1, Forms Management Guide, (Name) _______________________________________________ is hereby designated a Forms Manager for (DOE Organization/Contractor Activity) ____________________________________________________________________. The incumbent's responsibilities include providing guidance and assisting within their respective organizations, supporting applicable

  18. Quality Assurance Plan for Transportation Management Division Transportation Training Programs

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The U.S. Department of Transportation (DOT) implemented new rules requiring minimum levels of training for certain key individuals who handle, package, transport, or otherwise prepare hazardous materials for transportation. In response to these rules, the U.S. Department of Energy (DOE), Transportation Management Division (TMD), has developed a transportation safety training program. This program supplies designed instructional methodology and course materials to provide basic levels of DOT training to personnel for whom training has become mandatory. In addition, this program provides advanced hazardous waste and radioactive material packaging and transportation training to help personnel achieve proficiency and/or certification as hazardous waste and radioactive material shippers. This training program does not include site-specific or task-specific training beyond DOT requirements.

  19. DOe/EA 2024 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    DOe/EA 2024 Environmental Assessment for Gap Material Plutonium - Transport, Receipt, and Processing The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), has prepared this Environmental Assessment for Gap Material Plutonium - Transport, Receipt, and Processing to evaluate the potential environmental impacts associated with transporting plutonium from foreign

  20. State & Local Sustainable Transportation Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE Office of Energy Efficiency and Renewable Energy provides tools, resources, and more on vehicles, bioenergy, and fuel cells to help state and local governments reduce transportation agency expenses, improve infrastructure, and decrease the impacts of transportation-associated activities on the environment by using advanced vehicles and alternative fuels.

  1. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  2. Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy, U.S. Department of Energy (DOE) | Department of Energy Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  3. DOE/ID-Number

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal: Analyzing Variations over Time, Events, and Program Designs Prepared for US Department of Energy Nuclear Fuel Storage and Transportation Planning Project Hank C. Jenkins-Smith Carol L. Silva Kerry G. Herron Kuhika G. Ripberger Matthew Nowlin Joseph Ripberger Center for Risk and Crisis Management, University of Oklahoma Evaristo "Tito" Bonano Rob P. Rechard Sandia

  4. Spring 2011 National Transportation Stakeholder Forum Meetings, Colorado |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 National Transportation Stakeholder Forum Meetings, Colorado Spring 2011 National Transportation Stakeholder Forum Meetings, Colorado NTSF Spring 2011 Agenda Final Agenda NTSF Presentations Activities and Accomplishments Developing a Regulatory Framework for Extended Storage and Transportation DOE Railcar Fleet Asset Planning & Lessons Learned DOE Shipment Activities: What We Accomplished and a Look Forward DOE-Idaho's Packaging and Transportation Perspective

  5. Chamber transport

    SciTech Connect (OSTI)

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  6. DOE Reports

    Broader source: Energy.gov [DOE]

    10 CFR Part 63, YMRP, and Yucca Mountain Repository License Application Cross Reference Matrix. (pdf)Note: Primary Reference Documents Disk 1 and Disk 2 filescan be received by contacting the DOE...

  7. Preliminary characterization of risks in the nuclear waste management system based on information in the literature

    SciTech Connect (OSTI)

    Daling, P.M.; Rhoads, R.E.; Van Luick, A.E.; Fecht, B.A.; Nilson, S.A.; Sevigny, N.L.; Armstrong, G.R.; Hill, D.H.; Rowe, M.; Stern, E.

    1992-01-01

    This document presents preliminary information on the radiological and nonradiological risks in the nuclear waste management system. The objective of the study was to (1) review the literature containing information on risks in the nuclear waste management system and (2) use this information to develop preliminary estimates of the potential magnitude of these risks. Information was collected on a broad range of risk categories to assist the US Department of Energy (DOE) in communicating information about the risks in the waste management systems. The study examined all of the portions of the nuclear waste management system currently expected to be developed by the DOE. The scope of this document includes the potential repository, the integral MRS facility, and the transportation system that supports the potential repository and the MRS facility. Relevant literature was reviewed for several potential repository sites and geologic media. A wide range of ``risk categories`` are addressed in this report: (1) public and occupational risks from accidents that could release radiological materials, (2) public and occupational radiation exposure resulting from routine operations, (3) public and occupational risks from accidents involving hazards other than radioactive materials, and (4) public and occupational risks from exposure to nonradioactive hazardous materials during routine operations. The report is intended to provide a broad spectrum of risk-related information about the waste management system. This information is intended to be helpful for planning future studies.

  8. Microsoft Word - DOE-ID-INL-14-040.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... health, or similar requirements of DOE or Executive ... petroleum and natural gas products that pre-exist in ... consistent with approved land use or transportation ...

  9. Microsoft Word - DOE-ID-INL-13-023.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... health, or similar requirements of DOE or Executive ... petroleum and natural gas products that pre-exist in ... consistent with approved land use or transportation ...

  10. Microsoft Word - DOE-ID-INL-12-024..doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    health, or similar requirements of DOE or Executive ... petroleum and natural gas products that pre-exist in ... consistent with approved land use or transportation ...

  11. DOE Technical Targets for Fuel Cell System Humidifiers and Air...

    Energy Savers [EERE]

    ... DOE Hydrogen and Fuel Cells Program Record 15015, "Fuel Cell System Cost-2015." Technical Targets: Cathode Humidification System and Humidifier Membrane for 80-kWe Transportation ...

  12. DOE Shipment Activities: What We Accomplished and a Look Forward...

    Office of Environmental Management (EM)

    Accomplished and a Look Forward Presented by Stephen O'Connor, Director of Office of Packaging and Transportation. PDF icon DOE Shipment Activities: What We Accomplished and a...

  13. Sandia Energy - DOE EERE Technologist in Residence Pilot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Energy Water Security Transportation Energy Water Power News Energy Efficiency Wind Energy News & Events Research & Capabilities Solar Systems Engineering DOE EERE...

  14. Microsoft Word - DOE-ID-INL-11-010.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work will involve the removal of the inspection station, material transporters, laser ... Yes No Approved by Richard Kauffman, acting DOE-ID NEPA Compliance Officer on 8312011.

  15. Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests

    SciTech Connect (OSTI)

    Ward, Anderson L.; Gee, Glendon W.

    2000-06-23

    This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptual models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.

  16. Transportation Data Programs:Transportation Energy Data Book,Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Market Report, and VT Fact of the Week | Department of Energy Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting van009_davis_2013_p.pdf (3.39 MB) More Documents &

  17. Greater-than-Class C low-level radioactive waste transportation regulations and requirements study. National Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Tyacke, M.; Schmitt, R.

    1993-07-01

    The purpose of this report is to identify the regulations and requirements for transporting greater-than-Class C (GTCC) low-level radioactive waste (LLW) and to identify planning activities that need to be accomplished in preparation for transporting GTCC LLW. The regulations and requirements for transporting hazardous materials, of which GTCC LLW is included, are complex and include several Federal agencies, state and local governments, and Indian tribes. This report is divided into five sections and three appendices. Section 1 introduces the report. Section 2 identifies and discusses the transportation regulations and requirements. The regulations and requirements are divided into Federal, state, local government, and Indian tribes subsections. This report does not identify the regulations or requirements of specific state, local government, and Indian tribes, since the storage, treatment, and disposal facility locations and transportation routes have not been specifically identified. Section 3 identifies the planning needed to ensure that all transportation activities are in compliance with the regulations and requirements. It is divided into (a) transportation packaging; (b) transportation operations; (c) system safety and risk analysis, (d) route selection; (e) emergency preparedness and response; and (f) safeguards and security. This section does not provide actual planning since the details of the Department of Energy (DOE) GTCC LLW Program have not been finalized, e.g., waste characterization and quantity, storage, treatment and disposal facility locations, and acceptance criteria. Sections 4 and 5 provide conclusions and referenced documents, respectively.

  18. Chapter 17 - Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8,2005 MEMORANDUM FOR FROM: SUBJECT: Accounting Handbook - Chapter 1 7, Transportation Attached is the final version of Chapter 17, "Transportation," of the Department's Accounting Handbook. A draft version of this chapter was circulated for review and comment in a November 1,2004, memorandum "Request for Review of D r a f t DOE Accounting Handbook Chapter 17." There were no comments on this chapter. We appreciate your assistance in the update of the Accounting Handbook. When

  19. DOE Hydrogen Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cells Mark Paster U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure Program January, 2005 A Bold New Approach is Required 0 4 8 12 16 20 24 28 32 1970 1980 1990 2000 2010 2020 2030 2040 2050 Petroleum (MMB/Day Oil Equivalent) Actual Projection U.S. Oil Production EIA 2003 Base Case Extended Oil Consumption With Average Fuel Efficiency Automobile & Light Truck Oil Use U.S. Transportation Oil Consumption U.S. Refinery Capacity Source: DOE/EIA, International Petroleum

  20. Computer Security Risk Assessment

    Energy Science and Technology Software Center (OSTI)

    1992-02-11

    LAVA/CS (LAVA for Computer Security) is an application of the Los Alamos Vulnerability Assessment (LAVA) methodology specific to computer and information security. The software serves as a generic tool for identifying vulnerabilities in computer and information security safeguards systems. Although it does not perform a full risk assessment, the results from its analysis may provide valuable insights into security problems. LAVA/CS assumes that the system is exposed to both natural and environmental hazards and tomore » deliberate malevolent actions by either insiders or outsiders. The user in the process of answering the LAVA/CS questionnaire identifies missing safeguards in 34 areas ranging from password management to personnel security and internal audit practices. Specific safeguards protecting a generic set of assets (or targets) from a generic set of threats (or adversaries) are considered. There are four generic assets: the facility, the organization''s environment; the hardware, all computer-related hardware; the software, the information in machine-readable form stored both on-line or on transportable media; and the documents and displays, the information in human-readable form stored as hard-copy materials (manuals, reports, listings in full-size or microform), film, and screen displays. Two generic threats are considered: natural and environmental hazards, storms, fires, power abnormalities, water and accidental maintenance damage; and on-site human threats, both intentional and accidental acts attributable to a perpetrator on the facility''s premises.« less

  1. Radiation exposures for DOE and DOE contractor employees - 1991. Twenty-fourth annual report

    SciTech Connect (OSTI)

    Smith, M.H.; Hui, T.E.; Millet, W.H.; Scholes, V.A.

    1994-11-01

    This is the 24th annual radiation exposure report published by US DOE and its predecessor agencies. This report summarizes the radiation exposures received by both employees and visitors at DOE and COE contractor facilities during 1991. Trends in radiations exposures are evaluated. The significance of the doses is addressed by comparing them to the DOE limits and by correlating the doses to health risks based on risk estimates from expert groups.

  2. Transportation and packaging resource guide

    SciTech Connect (OSTI)

    Arendt, J.W.; Gove, R.M.; Welch, M.J.

    1994-12-01

    The purpose of this resource guide is to provide a convenient reference document of information that may be useful to the U.S. Department of Energy (DOE) and DOE contractor personnel involved in packaging and transportation activities. An attempt has been made to present the terminology of DOE community usage as it currently exists. DOE`s mission is changing with emphasis on environmental cleanup. The terminology or nomenclature that has resulted from this expanded mission is included for the packaging and transportation user for reference purposes. Older terms still in use during the transition have been maintained. The Packaging and Transportation Resource Guide consists of four sections: Sect. 1, Introduction; Sect. 2, Abbreviations and Acronyms; Sect. 3, Definitions; and Sect. 4, References for packaging and transportation of hazardous materials and related activities, and Appendices A and B. Information has been collected from DOE Orders and DOE documents; U.S Department of Transportation (DOT), U.S. Environmental Protection Agency (EPA), and U.S. Nuclear Regulatory Commission (NRC) regulations; and International Atomic Energy Agency (IAEA) standards and other international documents. The definitions included in this guide may not always be a regulatory definition but are the more common DOE usage. In addition, the definitions vary among regulatory agencies. It is, therefore, suggested that if a definition is to be used in a regulatory or a legal compliance issue, the definition should be verified with the appropriate regulation. To assist in locating definitions in the regulations, a listing of all definition sections in the regulations are included in Appendix B. In many instances, the appropriate regulatory reference is indicated in the right-hand margin.

  3. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Transport A simplified drawing of the beam transport system from the linac to Target-1 (Lujan Center), Target-2 (Blue Room) and Target-4 is shown below. In usual operation ...

  4. DOE-STD-1185-2007

    Office of Energy Efficiency and Renewable Energy (EERE)

    Nuclear Explosive Safety Study Functional Area Qualification Standard The technical FAQS has been developed as a tool to assist DOE program and field offices in the development and implementation of the TQP in their organization. For ease of transportability of qualifications between DOE elements, program and field offices are expected to use this technical FAQS without modification.

  5. WIPP Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across tribal lands. Transportation Centralized Procurement Program - The Centralized Procurement Program provides a common method to procure standard items used in the packaging and handling of transuranic wasted destined for WIPP. Transuranic Waste Transportation Routes - A map showing transuranic waste generator sites and

  6. SHIPMENT OF TWO DOE-STD-3013 CONTAINERS IN A 9977 TYPE B PACKAGE

    SciTech Connect (OSTI)

    Abramczyk, G.; Bellamy, S.; Loftin, B.; Nathan, S.

    2011-06-06

    The 9977 is a certified Type B Packaging authorized to ship uranium and plutonium in metal and oxide forms. Historically, the standard container for these materials has been the DOE-STD-3013 which was specifically designed for the long term storage of plutonium bearing materials. The Department of Energy has used the 9975 Packaging containing a single 3013 container for the transportation and storage of these materials. In order to reduce container, shipping, and storage costs, the 9977 Packaging is being certified for transportation and storage of two 3013 containers. The challenges and risks of this content and the 9977s ability to meet the Code of Federal Regulations for the transport of these materials are presented.

  7. Spring 2010 National Transportation Stakeholder Forum Meetings, Illinois |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 National Transportation Stakeholder Forum Meetings, Illinois Spring 2010 National Transportation Stakeholder Forum Meetings, Illinois NTSF Spring 2010 Agenda Final Agenda NTSF Presentations Applying Risk Communication to the Transportation of Radioactive Materials Department of Energy Office of Science Transportation Overview Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities EM Waste and Materials Disposition &

  8. DOE Patents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    PATENTS Toggle Navigation Home About DOEpatents FAQ Contact Us DOE Patents From the 1940's to today... A central collection of US Department of energy patent information Search For Terms: Find + Advanced Search × Advanced Search All Fields: Patent Title: Abstract: Assignee: Inventor(s): Name Name ORCID Search Authors Patent Number: Patent Application Number: Contract Number: Subject: Lab/Technology Center: Sponsoring Office: Issue Date: to Sort: Relevance (highest to lowest) Publication Date

  9. DOE-0342

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revision 2A Hanford Site Chronic Beryllium Disease Prevention Program (CBDPP) Date Published _________________ Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management P.O. Box 550 Richland, Washington 99352 Release Approval Date By Janis D. Aardal at 9:28 am, May 14, 2014 Approved for Public Release; Further Dissemination Unlimited DOE-0342, Rev. 2A Hanford Site Chronic Beryllium Disease Prevention Program (CBDPP) Published Date: 09-19-2013 Effective Date:

  10. DOE-0344

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Revision 3A Hanford Site Excavating, Trenching and Shoring Procedure (HSETSP) Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management Approved for Public Release; Further Dissemination Unlimited DOE-0344, Rev. 3A Hanford Site Excavating, Trenching, and Shoring Procedure (HSETSP) Published Date: 10-30-2013 Effective Date: 11-29-2013 Change Summary Page 1 of 2 CHANGE SUMMARY Justification for revision: This revision is to allow for the use of an automated

  11. DOE-0400

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    400 Revision 0 Hanford Site-Wide Employee Concerns Program Procedure Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management Approved for Public Release; Further Dissemination Unlimited DOE-0400, Rev. 0 Hanford Site-Wide Employee Concerns Program Procedure Published Date: 10-29-2013 Effective Date: 11-27-2013 ii CHANGE SUMMARY Revision # Date/Section Changed Change Details 0 7/23/2013 Initial Issue developed by the Employee Concerns Committee, composed of

  12. Independent Oversight Evaluation, Office of Secure Transportation -

    Office of Environmental Management (EM)

    February 2004 | Department of Energy Evaluation, Office of Secure Transportation - February 2004 Independent Oversight Evaluation, Office of Secure Transportation - February 2004 February 2004 Evaluation of the Office of Secure Transportation Emergency Management Program This report provides the results of an independent oversight evaluation of the emergency management program at the Department of Energy's (DOE) Office of Secure Transportation. The evaluation was performed in October 2003 by

  13. Historical Information on the Transportation External Coordination Working Group (TEC)

    Broader source: Energy.gov [DOE]

    TEC was formed in 1992 to improve coordination between the U.S. Department of Energy (DOE) and external groups interested in the Department's transportation activities. TEC was co-chaired by DOE's...

  14. DOE's Carbon Storage Advances Featured in Special Issue of Internation...

    Energy Savers [EERE]

    DOE's Carbon Storage Advances Featured in Special Issue of ... monitor a geologic system to reduce uncertainty in ... conducted under the Energy Department's National Risk ...

  15. DOE Announces Webinars on Residential Energy Efficiency, Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency, Marine and Hydrokinetic Technology Development Risk Management, and More DOE Announces Webinars on Residential Energy Efficiency, Marine and ...

  16. Use of Risk-Based End States

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-07-15

    The policy addresses conducting cleanup that is aimed at, and achieves, clearly defined, risk-based end states. Canceled by DOE N 251.106.

  17. Panel 4 - applications to transportation

    SciTech Connect (OSTI)

    Nichols, F.; Au, J.; Bhattacharya, R.; Bhushan, B.; Blunier, D.; Boardman, B.; Brombolich, L.; Davidson, J.; Graham, M.; Hakim, N.; Harris, K.; Hay, R.; Herk, L.; Hojnacki, H.; Rourk, D.; Kamo, R.; Nieman, B.; O`Neill, D.; Peterson, M.B.; Pfaffenberger, G.; Pryor, R.W.; Russell, J.; Syniuta, W.; Tamor, M.; Vojnovich, T.; Yarbrough, W.; Yust, C.S.

    1993-01-01

    The aim of this group was to compile a listing of current and anticipated future problem areas in the transportation industry where the properties of diamond and DLC films make them especially attractive and where the panel could strongly endorse the establishment of DOE/Transportation Industry cooperative research efforts. This section identifies the problem areas for possible applications of diamond/DLC technology and presents indications of current approaches to these problems.

  18. Gyrokinetic simulations of turbulent transport in fusion plasmas

    SciTech Connect (OSTI)

    Rogers, Barrett Neil

    2013-05-30

    This is the final report for a DOE award that was targeted at understanding and simulating turbulence and transport in plasma fusion devices such as tokamaks.

  19. Base Technology for Radioactive Material Transportation Packaging Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-07-08

    To establish Department of Energy (DOE) policies and responsibilities for coordinating and planning base technology for radioactive material transportation packaging systems.

  20. Efficient self-consistent quantum transport simulator for quantum...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Efficient self-consistent quantum transport simulator for quantum ... DOE Contract Number: DE-AC04-94AL85000 Resource Type: Journal Article Resource Relation: ...

  1. Non-LTE Radiation Transport in High Radiation Plasmas (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Non-LTE Radiation Transport in High Radiation Plasmas Citation Details ... DOE Contract Number: W-7405-ENG-48 Resource Type: Journal Article Resource Relation: ...

  2. FAQS Reference Guide – Transportation and Traffic Management

    Office of Energy Efficiency and Renewable Energy (EERE)

    This reference guide addresses the competency statements in the September 2002 edition of DOE-STD-1155-2002, Transportation and Traffic Functional Area Qualification Standard.

  3. Sustainable Transportation (Fact Sheet), Office of Energy Efficiency...

    Office of Environmental Management (EM)

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies. ...

  4. Department of Energy Spent Fuel Shipping Campaigns: Comparisons of Transportation Plans and Lessons Learned

    SciTech Connect (OSTI)

    Holm, Judith A.; Thrower, Alex W.; Antizzo, Karen

    2003-02-27

    Over the last 30 years, the U.S. Department of Energy (DOE) has successfully and safely transported shipments of spent nuclear fuel over America's highways and railroads. During that time, an exemplary safety record has been established with no identifiable fatalities, injuries, or environmental damage caused by the radioactive nature of the shipments. This paper evaluates some rail and truck shipping campaigns, planning processes, and selected transportation plans to identify lessons learned in terms of planning and programmatic activities. The intent of this evaluation is to document best practices from current processes and previous plans for DOE programs preparing or considering future plans. DOE's National Transportation Program (NTP) reviewed 13 plans, beginning with core debris shipments from Three Mile Island to current, ongoing fuel campaigns. This paper describes lessons learned in the areas of: emergency planning, planning information, security, shipment prenotification, emergency notification/response, terrorism/sabotage risk, and recovery and cleanup, as well as routing, security, carrier/driver requirements, transportation operational contingencies, tracking, inspections and safe parking.

  5. Verbal risk in communicating risk

    SciTech Connect (OSTI)

    Walters, J.C.; Reno, H.W.

    1993-03-01

    When persons in the waste management industry have a conversation concerning matters of the industry, thoughts being communicated are understood among those in the industry. However, when persons in waste management communicate with those outside the industry, communication may suffer simply because of poor practices such as the use of jargon, euphemisms, acronyms, abbreviations, language usage, not knowing audience, and public perception. This paper deals with ways the waste management industry can communicate risk to the public without obfuscating issues. The waste management industry should feel obligated to communicate certain meanings within specific contexts and, then, if the context changes, should not put forth a new, more appropriate meaning to the language already used. Communication of the waste management industry does not have to be provisional. The authors suggest verbal risks in communicating risk can be reduced significantly or eliminated by following a few basic communication principles. The authors make suggestions and give examples of ways to improve communication with the general public by avoiding or reducing jargon, euphemisms, and acronyms; knowing the audience; avoiding presumptive knowledge held by the audience; and understanding public perception of waste management issues.

  6. DOE Form

    National Nuclear Security Administration (NNSA)

    /1991) PROJECT: U.S. Department of Energy Requirements Change Notice Baseline List of Required Compliance Documents CONTRACTOR: Babcock & Wilcox Technical Services Y-12, LLC CONTRACT NO.: DE-AC05-000R22800, I.85 , Laws, Regulations, and DOE Directives (December 2000), DEAR 970.5204-2 No.: NNSA-50 Page 1 of 36 Pages LOCATION: Oak Ridge, Tennessee DATE OF CONTRACT: August 31 , 2000 This Requirements Change Notice (RCN) No. NNSA-50 incorporates, into Section J, Attachment E, Contract No.

  7. DOE Form

    National Nuclear Security Administration (NNSA)

    11991) PROJECT: U.S. Department of Energy Requirements Change Notice Baseline List of Required Compliance Documents CONTRACTOR: Babcock & Wilcox Technical Services Y-12, LLC CONTRACT NO. : DE-AC05-000R22800, 1.85, Laws, Regulations, and DOE Directives (December 2 000), DEAR 970.5204-2 COR-NP0-60 ESH-6.6.2013-515290 No.: NNSA-51 Page 1 of 34 Pages LOCATION : Oak Ridge, Tennessee DATE OF CONTRACT: August 31, 2000 This Requirements Change Notice (RCN) No. NNSA-51 incorporates, into Section J,

  8. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work schedule options. Our goal is to reduce emissions related to employee travel and commuting to and from work by 13 percent. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science

  9. Vadose zone transport field study: Detailed test plan for simulated leak tests

    SciTech Connect (OSTI)

    AL Ward; GW Gee

    2000-06-23

    The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from these uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to

  10. Nuclear Fuel Storage and Transportation Planning Project Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Storage and Transportation Planning Project Overview Nuclear Fuel Storage and Transportation Planning Project Overview Nuclear Fuel Storage and Transportation Planning Project Overview (956.77 KB) More Documents & Publications Section 180(c) Ad Hoc Working Group DOE Office of Nuclear Energy Transportation Plan Ad Hoc Working Group