Powered by Deep Web Technologies
Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE Systems Engineering Methodology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Engineering Methodology (SEM) In-Stage Assessment Process Guide Version 3 September 2002 U.S. Department of Energy Office of the Chief Information Officer In-Stage Assessment Process Date: September 2002 Page i Rev Date: Table of Contents Section Page 1.0 Overview .......................................................................................................................................... 1 Introduction........................................................................................................................ 1 Purpose .............................................................................................................................. 1 Who Conducts ...................................................................................................................

2

DOE Systems Engineering Methodology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Computer System Retirement Guidelines Computer System Retirement Guidelines Version 3 September 2002 U.S. Department of Energy Office of the Chief Information Officer Computer System Retirement Guidelines Date: September 2002 Page 1 Rev Date: Table of Contents Section Page Purpose ............................................................................................................................................ 2 Initiation and Distribution ............................................................................................................... 2 Resource .......................................................................................................................................... 2 General Information ........................................................................................................................

3

DOE Systems Engineering Methodology (SEM): Stage Exit V3 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(SDLC) used for information systems developed and maintained for the Department Of Energy DOE Systems Engineering Methodology (SEM): Stage Exit V3 More Documents &...

4

DOE Awards Research and Systems Engineering Task Order | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Systems Engineering Task Order Research and Systems Engineering Task Order DOE Awards Research and Systems Engineering Task Order March 28, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a task order to The MITRE Corporation, of McLean Virginia. MITRE will provide research and development in support of DOE's Office of Environmental Management. The task order has an approximate value of $5.9 million, with an 18-month performance period, with nine-month base period and a nine-month option. The MITRE Corporation is a not-for-profit organization chartered to work for the interest of the public. MITRE manages the Internal Revenue Service Federally Funded Research and Development Center (FFRDC) Master Indefinite

5

DOE Solar Decathlon: Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Solar Decathlon Contests Engineering The U.S. Department of Energy Solar Decathlon houses represent the best of modern engineering. For the Engineering...

6

Information Systems Engineering Guidance (ISEG)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Departmental Information Systems Engineering (DISE) Departmental Information Systems Engineering (DISE) Guidance Volume 2 Managing DOE IT Projects March 26, 2002 Revised December 27, 2002 Developed by the Software Quality and Systems Engineering Program Office of the Chief Information Officer Departmental Information Systems Engineering Guidance Title Page Document Series: Departmental Information Systems Engineering (DISE) Guidance Document Name: Volume 2, Managing DOE IT Projects Publication Date: 03/26/03, Revised 12/27/02 Document Owner: Office of the Chief Information Officer Software Quality and Systems Engineering Brenda Coblentz, IM-21, Program Manager Acknowledgement: Wayne Jones, author of the DOE (HQ) IM Project Management Guide, September 1998

7

Smart Document System (SDS) used in managing DOE order`s with electronic Engineering Procedures  

Science Conference Proceedings (OSTI)

The Microsoft (MS) Windows product is widely available for PC`s. There exists many thousands of them at Sandia. All of the MS applications in Windows have a Help file. This help file informs the user ``how to`` use and run that application. It is an ``on-line`` manual. The ``Help Compiler`` was obtained from Microsoft. Use of this compiler enables one to insert text in a form the MS ``Help Engine`` recognizes. This means all of the features of the Help file: Hypertext (hot links), browsing, searching, indexing, bookmarks, annotation, are available for your text. This turns a document into a ``Smart Document.`` The use of this Smart Document System (SDS) for Engineering Procedures (EPs) is described.

Graham, R.; Robbins, D.

1993-12-01T23:59:59.000Z

8

Information Systems Engineering Guidance (ISEG)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Departmental Information Systems Engineering (DISE) Departmental Information Systems Engineering (DISE) Volume 1 Information Systems Engineering Lifecycle January 31, 2002 Software Quality and Systems Engineering Program Office of the Associate CIO of Architecture, Standards & Planning Office of the Chief Information Officer Title Page Document Series: Departmental Information Systems Engineering Document Name: Volume 1, Information Systems Engineering Lifecycle Publication Date: 01/31/02 Document Owner: Software Quality and Systems Engineering Program Office of the Associate CIO of Architecture, Standards & Planning The concepts and processes in this document are aligned with the DOE Information Management (IM) Strategic Plan Mission and Goals. The Information Management Mission is:

9

Information Systems Engineering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Information Systems Engineering Information Systems Engineering The OCIO is dedicated to supporting the development and maintenance of DOE Department wide and site-specific software and IT systems engineering initiatives. This webpage contains resources, checklists, templates, and samples that can be downloaded, plus links to many other informative web sites. In particular, the Department of Energy has issued the DOE Systems Engineering Methodology (SEM), which documents the minimum software and IT systems engineering practices that should be implemented on DOE projects, as well as other accompanying guidance documents. The DOE SEM is the Department's standard lifecycle methodology. It integrates IT systems engineering, software engineering, project management, and quality

10

DOE Systems Engineering Methodology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stage Exit Process Guide Stage Exit Process Guide Version 3 September 2002 U.S. Department of Energy Office of the Chief Information Officer Stage Exit Process Date: September 2002 Page Rev Date: i Table of Contents Section Page 1.0 Overview .............................................................................................................................................. 1 Introduction ..................................................................................................................................... 1 Purpose ............................................................................................................................................ 1 Applicability....................................................................................................................................

11

Does the Air-Conditioning Engineering Rubric Work in Residences...  

NLE Websites -- All DOE Office Websites (Extended Search)

Does the Air-Conditioning Engineering Rubric Work in Residences? Title Does the Air-Conditioning Engineering Rubric Work in Residences? Publication Type Conference Paper LBNL...

12

Advancement of Systems Designs and Key Engineering Technologies for Materials-Based Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Bart van Hassel (Primary Contact), Jose Miguel Pasini, Andi Limarga, John Holowczak, Igor Fedchenia, John Khalil, Reddy Karra, Ron Brown, Randy McGee United Technologies Research Center (UTRC) 411 Silver Lane East Hartford, CT 06108 Phone: (860) 610-7701 Email: vanhasba@utrc.utc.com DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-09GO19006 Project Start Date: February 1, 2009 Project End Date: June 30, 2014 Fiscal Year (FY) 2012 Objectives Collaborate closely with the Hydrogen Storage * Engineering Center of Excellence (HSECoE) partners to advance materials-based hydrogen storage system

13

Green Purchasing under DOE Architect Engineer Contracts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purchasing under DOE Architect Engineer Contracts Purchasing under DOE Architect Engineer Contracts Prescription for Use: This clause should be used in any architect-engineer type contract unless Leadership in Energy and Environmental Design (LEED) Green Building Certification is being pursued. In case of LEED Certification, a detailed series of energy and environmental standards would take the place of this clause. Section I of the contract should also contain the clauses at FAR 52.223-2, Affirmative Procurement of Biobased Products under Service and Construction Contracts, 52.223-15, Energy Efficiency in Energy Consuming Products, and 52.223-17 Affirmative Procurement of EPA- Designated Items in Service and Construction Contracts. H-xx. Green Purchasing under DOE Architect Engineer Contracts

14

Systems Engineering Group  

Science Conference Proceedings (OSTI)

... advances, and deploys measurement science to address application of engineering information systems to complex cyber-physical systems. ...

2011-10-03T23:59:59.000Z

15

DOE Seeks Industry Participation for Engineering Services to...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Participation for Engineering Services to Design Next Generation Nuclear Plant DOE Seeks Industry Participation for Engineering Services to Design Next Generation Nuclear Plant...

16

UML for systems engineering  

Science Conference Proceedings (OSTI)

The paper provides an introduction to the employment of Unified Modeling Language (UML) in systems engineering. The standard being developed for this purpose is the Systems Modeling Language (SysML) specification. This paper, while not dealing with SysML ... Keywords: DoDAF, Software engineering, SysML, Systems engineering, UML

Brian Willard

2007-01-01T23:59:59.000Z

17

DOE Science Showcase - Energy Department Scientists and Engineers Honored  

Office of Scientific and Technical Information (OSTI)

Energy Department Scientists and Engineers Honored Energy Department Scientists and Engineers Honored with Presidential Early Career Awards (PECASE) Researchers funded by the U.S. Department of Energy (DOE) Office of Science were recently honored with the Presidential Early Career Award for Scientists and Engineers (PECASE)-the highest honor bestowed by the U.S. government on outstanding scientists and engineers who are early in their independent research careers (see White House Blog). The DOE awardees were recognized for their research efforts in a variety of issues, from computational biology to atomic, molecular and optical science. Cecilia R. Aragon, LBNL Information Bridge Sunfall: a collaborative visual analytics system for astrophysics Using Visual Analytics to Maintain Situation Awareness in Astrophysics

18

NREL: Systems Engineering - Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshops The Wind Energy Systems Engineering Workshop is a biennial workshop that invites speakers from academia, industry, and international research laboratories to discuss...

19

A road map for implementing systems engineering  

SciTech Connect

Studies by academia, industry, and government indicate that applying a sound systems engineering process to development programs is an important tool for preventing cost and schedule overruns and performance deficiencies. There is an enormous body of systems engineering knowledge. Where does one start? How can the principles of systems engineering be applied in the Sandia environment? This road map is intended to be an aid to answering these questions.

Dean, F.F. [Sandia National Labs., Albuquerque, NM (United States). New Mexico Weapons Systems Engineering Center; Bentz, B.; Bahill, A.T. [Univ. of Arizona, Tucson, AZ (United States)

1997-02-01T23:59:59.000Z

20

DOE`s Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

This paper discusses the Advanced Turbine Systems (ATS) Program, which is necessary to achieve METC`s vision for future IGCC systems. This major new program is a cooperative effort in which DOE`s Office of Fossil Energy (FE) and Office of Conservation and Renewable Energy (CE) are joining forces with the private sector to develop ultra-high efficiency gas turbine systems. A goal of this Program is to have a utility-size gas turbine with a 60 percent efficiency (lower heating value basis (LHV)) ready for commercialization by the year 2002. (While this paper focuses on utility-size turbines which are the primary interest of this audience, an ultra-high efficiency, industrial-size gas turbine will also be developed in the ATS Program with a comparable improvement in efficiency.) Natural gas is the target fuel of the Program, a recognition by DOE that natural gas will play a significant role in supplying future power generation needs in the US. However, to insure that the US has fuel supply options, ATS designs will be adaptable to coal and biomass fuels. Therefore, the ATS Program will directly benefit IGCC and other advanced coal based power generation systems. Cost and efficiency improvements in the turbine system as well as in the gasification and gas stream cleanup plant sections will enable IGCC to reach a cost target of $1,000--$1,280/kW and an efficiency goal of 52 percent (higher heating value basis (HHV)) in the post-2000 market.

Bechtel, T.F.; Bajura, R.A.; Salvador, L.A.

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Work for the DOE Office of Fossil Energy - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy System Applications > DOE Office of Fossil Energy Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Overview DOE...

22

Matching DOE grant program for university nuclear engineering. Final report  

SciTech Connect

The matching grant from DOE for university nuclear engineering at the University of Virginia was used primarily for student support and enhancement of the Nuclear Engineering Department's computer capabilities. This DOE grant, during this 1992-96 period, was matched by funds from Duke Power Company.

Albert B. Reynolds

1996-02-01T23:59:59.000Z

23

NREL: Wind Research - Systems Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer-Aided Engineering Systems Engineering Controls Analysis Testing Utility Grid Integration Assessment Wind Resource Assessment Projects Facilities Research Staff Working...

24

Safety System Engineer and Oversight Programs, March 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

Used in This Report CSE Cognizant System Engineer DNFSB Defense Nuclear Facilities Safety Board DOE U.S. Department of Energy FTCP Federal Technical Capability Panel NNSA...

25

Tank waste remediation system systems engineering management plan  

Science Conference Proceedings (OSTI)

This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.

Peck, L.G.

1998-01-08T23:59:59.000Z

26

DOE Announces Strategic Engineering and Technology Roadmap for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste March 18, 2008 - 10:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today released an Engineering and Technology Roadmap (Roadmap), which details...

27

DOE - Office of Legacy Management -- Combustion Engineering Co...  

Office of Legacy Management (LM)

CT.03-9 USACE Website Also see Documents Related to Combustion Engineering, CT CT.03-1 - DOE Memorandum; Wagoner to Price; Subject: Authorization for Remedial Action at the...

28

American Institute of Chemical Engineers Honors DOE Researcher | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Institute of Chemical Engineers Honors DOE Researcher American Institute of Chemical Engineers Honors DOE Researcher American Institute of Chemical Engineers Honors DOE Researcher August 6, 2009 - 1:00pm Addthis Washington, DC - For his efforts in modeling and simulating fluid-particle flows, a researcher at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has been selected to receive the American Institute of Chemical Engineers' (AIChE) Fluidized Processing Recognition Award. AIChE presents the award every two years to an AIChE member "who has made significant contribution to the science and technology of fluidization or fluidized processes and who has shown leadership in the engineering community." This year the award goes to Dr. Madhava Syamlal, Focus Area Leader for Computational and Basic Sciences at NETL. Dr. Syamlal will

29

American Institute of Chemical Engineers Honors DOE Researcher | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Institute of Chemical Engineers Honors DOE Researcher American Institute of Chemical Engineers Honors DOE Researcher American Institute of Chemical Engineers Honors DOE Researcher August 6, 2009 - 1:00pm Addthis Washington, DC - For his efforts in modeling and simulating fluid-particle flows, a researcher at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has been selected to receive the American Institute of Chemical Engineers' (AIChE) Fluidized Processing Recognition Award. AIChE presents the award every two years to an AIChE member "who has made significant contribution to the science and technology of fluidization or fluidized processes and who has shown leadership in the engineering community." This year the award goes to Dr. Madhava Syamlal, Focus Area Leader for Computational and Basic Sciences at NETL. Dr. Syamlal will

30

DOE Solar Decathlon: News Blog » Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering Below you will find Solar Decathlon news from the Engineering archive, sorted by date. Vienna University of Technology Wins Solar Decathlon 2013! Saturday, October 12, 2013 By Solar Decathlon Team Austria from the Vienna University of Technology has won the U.S. Department of Energy Solar Decathlon 2013. Photo of the exterior of LISI. Team Austria's LISI house is the winner of the U.S. Department of Energy Solar Decathlon 2013. (Credit: Jason Flakes/U.S. Department of Energy Solar Decathlon) The first-time U.S. competitor consistently wowed juries with its LISI house, after winning first place in the Communications Contest, second place in Market Appeal, and tying for third place in Engineering. In measured contests, Team Austria received first place in both the Hot Water

31

SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM More Documents & Publications SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM SOFTWARE QUALITY & SYSTEMS...

32

DOE fundamentals handbook: Engineering symbology, prints, and drawings  

Science Conference Proceedings (OSTI)

The Engineering Symbology, Prints, and Drawings Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and technical staff with the necessary fundamentals training to ensure a basic understanding of engineering prints, their use, and their function. The handbook includes information on engineering fluid drawings and prints; piping and instrument drawings; major symbols and conventions; electronic diagrams and schematics; logic circuits and diagrams; and fabrication, construction, and architectural drawings. This information will provide personnel with a foundation for reading, interpreting, and using the engineering prints and drawings that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

33

DOE fundamentals handbook: Engineering symbology, prints, and drawings. Volume 1  

Science Conference Proceedings (OSTI)

The Engineering Symbology, Prints, and Drawings Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and technical staff with the necessary fundamentals training to ensure a basic understanding of engineering prints, their use, and their function. The handbook includes information on engineering fluid drawings and prints; piping and instrument drawings; major symbols and conventions; electronic diagrams and schematics; logic circuits and diagrams; and fabrication, construction, and architectural drawings. This information will provide personnel with a foundation for reading, interpreting, and using the engineering prints and drawings that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

34

DOE fundamentals handbook: Engineering symbology, prints, and drawings. Volume 2  

SciTech Connect

The Engineering Symbology, Prints, and Drawings Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and technical staff with the necessary fundamentals training to ensure a basic understanding of engineering prints, their use, and their function. The handbook includes information on engineering fluid drawings and prints; piping and instrument drawings; major symbols and conventions; electronic diagrams and schematics; logic circuits and diagrams; and fabrication, construction, and architectural drawings. This information will provide personnel with a foundation for reading, interpreting, and using the engineering prints and drawings that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

35

DOE Seeks Industry Participation for Engineering Services to Design Next  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Participation for Engineering Services to Design Industry Participation for Engineering Services to Design Next Generation Nuclear Plant DOE Seeks Industry Participation for Engineering Services to Design Next Generation Nuclear Plant July 23, 2007 - 2:55pm Addthis Gen IV Reactor Capable of Producing Process Heat, Electricity and/or Hydrogen WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced that the Idaho National Laboratory (INL) is issuing a request for expressions of interest from prospective industry teams capable of providing engineering design services to the INL for the conceptual design phase of the Department's Next Generation Nuclear Plant (NGNP). The NGNP seeks to utilize cutting-edge technology in the effort to reduce greenhouse gas emissions by enabling nuclear energy to replace fossil fuels in the

36

DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Engineering and Technology Roadmap for Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste March 18, 2008 - 10:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today released an Engineering and Technology Roadmap (Roadmap), which details initiatives aimed at reducing the technical risks and uncertainties associated with cleaning up Cold War era nuclear waste over the next ten years. The Roadmap also outlines strategies to minimize such risks and proposes how these strategies would be implemented, furthering the Department's goal of protecting the environment by providing a responsible resolution to the environmental legacy of nuclear weapons production.

37

SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Tracking...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Tracking Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Tracking Checklist The following checklist is...

38

SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Tracking...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& SYSTEMS ENGINEERING PROGRAM: Project Planning Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Design Checklist Energy.gov Careers & Internships Policy &...

39

SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Planning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SYSTEMS ENGINEERING PROGRAM: Requirements Management Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Tracking Checklist Energy.gov Careers & Internships Policy &...

40

SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Design...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SYSTEMS ENGINEERING PROGRAM: Requirements Management Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Tracking Checklist Energy.gov Careers & Internships Policy &...

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM : Acceptance Checklist...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& SYSTEMS ENGINEERING PROGRAM: Software Design Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Tracking Checklist Energy.gov Careers & Internships Policy &...

42

DOE Seeks Industry Participation for Engineering Services to...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

activities supported by the Generation IV nuclear energy systems initiative at DOE's INL. NGNP supports President Bush's Advanced Energy Initiative, which advocates the...

43

Systems Engineering Advancement Research Initiative  

E-Print Network (OSTI)

strategic partners Define and research fundamental concepts for advanced system engineering Contribute materials, and handbooks to inspire, inform, and guide students and practitioners VENUE SEAri is located

de Weck, Olivier L.

44

DOE Transmission System Integration Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heyeck, AEP, Sr. Vice President, Transmission Heyeck, AEP, Sr. Vice President, Transmission and Chair, EPRI Power Delivery & Utilization Sector Council November 01-02, 2012 DoubleTree Hotel, Crystal City Washington D.C. DOE Transmission System Integration Workshop 2 © 2012 Electric Power Research Institute, Inc. All rights reserved. Near-Zero Emissions Long-Term Operations Renewable Integration Water Management Electric Vehicles Demand Response & Efficiency Renewable Energy Energy Storage Sensors & Control Cyber Security Supply = Demand The Power System Supply to Demand Requires a full portfolio of innovative technologies. Tomorrow's Power System One size does not fit all 3 © 2012 Electric Power Research Institute, Inc. All rights reserved. Grid Transformation to Ensure Reliability, Efficiency, Resiliency and Security

45

Overview of DOE's large stationary Stirling engine development program  

SciTech Connect

This paper summarizes the results to date of a program, sponsored by DOE's Office of Fossil Energy, to develop large stationary Stirling engine power systems. Primary applications for such power plants include cogeneration and total energy systems, with a major advantage being their ability to employ solid coal and other non-scarce fuels in an environmentally acceptable manner. 8 refs.

Uherka, K.L.; Holtz, R.E.; Bunker, W.

1981-08-01T23:59:59.000Z

46

Engine idle speed control system  

SciTech Connect

An idle speed control system is described for an internal combustion engine having a fuel delivery means for supplying fuel to the engine, the idle speed control system comprising in combination: means for controlling the fuel delivery means to supply a scheduled idle fuel quantity during a idle operating state of the engine; means for sensing the engine idle speed; integrator means responsive to the engine idle speed and a desired engine idle speed for adjusting the scheduled idle fuel quantity in direction and amount to cause correspondence between the engine idle speed and the desired engine idle speed, the integrator means adjustment being a measure of engine load conditions; and means for establishing the scheduled idle fuel quantity, the means including (A) means for establishing a family of curves as a function of the amount of integrator adjustment of the scheduled idle fuel quantity, each curve of the family of curves representing idle fuel quantity as a function of engine idle speed for a respective engine load condition, and (B) means for selecting the curve corresponding to the integrator adjustment of the scheduled idle fuel quantity and providing the scheduled fuel quantity from the selected curve in accord with the sensed engine idle speed.

Ament, F.

1986-07-01T23:59:59.000Z

47

Stirling engine heating system  

SciTech Connect

A hot gas engine is described wherein a working gas flows back and forth in a closed path between a relatively cooler compression cylinder side of the engine and a relatively hotter expansion cylinder side of the engine and the path contains means including a heat source and a heat sink acting upon the gas in cooperation with the compression and expansion cylinders to cause the gas to execute a thermodynamic cycle wherein useful mechanical output power is developed by the engine, the improvement in the heat source which comprises a plurality of individual tubes each forming a portion of the closed path for the working gas.

Johansson, L.N.; Houtman, W.H.; Percival, W.H.

1988-06-28T23:59:59.000Z

48

DOE Electricity Distribution System Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DISTRIBUTION SYSTEM WORKSHOP DISTRIBUTION SYSTEM WORKSHOP Mapping Challenges and Opportunities to Help Guide DOE R&D Investments over the Next Five Years Sheraton Crystal City, 1800 Jefferson Davis Hwy, Arlington, Virginia September 24-26, 2012 AGENDA Monday, September 24, 2012 1:00-1:30 Welcome and Introduction to the Grid Tech Team (GTT), Vision, and Framework The GTT synchronizes all grid-related activities across the DOE Dr. Anjan Bose, Grid Tech Team Lead 1:30-1:50 OE Vision, Activities, and Issues Patricia A. Hoffman, Assistant Secretary for the Office of Electricity Delivery and Energy Reliability (OE) 1:50-2:10 EERE Vision, Activities, and Issues Dr. David Danielson, Assistant Secretary for the Office of Energy Efficiency and Renewable Energy (EERE) 2:10-2:40 Open Q&A Rich Scheer,

49

DOE - Office of Legacy Management -- Energy Technology Engineering Center -  

Office of Legacy Management (LM)

Energy Technology Engineering Energy Technology Engineering Center - 044 FUSRAP Considered Sites Site: Energy Technology Engineering Center (044) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Energy Technology Engineering Center (ETEC) is a former Department of Energy research laboratory that tested components and systems for liquid metal cooled nuclear reactors. ETEC occupies 90 acres of the Santa Susana Field Laboratory (2700 acres) which is located in the Simi Hills of Ventura County, California. The Rocketdyne Propulsion and Power Division of Boeing owns and operates the Santa Susana Field Laboratory (SSFL). The Department

50

DOE's Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

This paper discusses the Advanced Turbine Systems (ATS) Program, which is necessary to achieve METC's vision for future IGCC systems. This major new program is a cooperative effort in which DOE's Office of Fossil Energy (FE) and Office of Conservation and Renewable Energy (CE) are joining forces with the private sector to develop ultra-high efficiency gas turbine systems. A goal of this Program is to have a utility-size gas turbine with a 60 percent efficiency (lower heating value basis (LHV)) ready for commercialization by the year 2002. (While this paper focuses on utility-size turbines which are the primary interest of this audience, an ultra-high efficiency, industrial-size gas turbine will also be developed in the ATS Program with a comparable improvement in efficiency.) Natural gas is the target fuel of the Program, a recognition by DOE that natural gas will play a significant role in supplying future power generation needs in the US. However, to insure that the US has fuel supply options, ATS designs will be adaptable to coal and biomass fuels. Therefore, the ATS Program will directly benefit IGCC and other advanced coal based power generation systems. Cost and efficiency improvements in the turbine system as well as in the gasification and gas stream cleanup plant sections will enable IGCC to reach a cost target of $1,000--$1,280/kW and an efficiency goal of 52 percent (higher heating value basis (HHV)) in the post-2000 market.

Bechtel, T.F.; Bajura, R.A.; Salvador, L.A.

1993-01-01T23:59:59.000Z

51

Plant Support Engineering: Generic Handbook for New System Engineers  

Science Conference Proceedings (OSTI)

In view of the demographics of todays nuclear plant system engineering organizations, newly hired and often inexperienced engineers are frequently assigned positions as system engineers. System engineering and training organizations are challenged with efficiently and effectively developing these individuals as expeditiously as possible.

2011-04-26T23:59:59.000Z

52

Systems Engineering of Chemical Hydride, Pressure Vessel, and Balance of Plant for Onboard Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

34 34 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jamie D. Holladay (Primary Contact), Kriston P. Brooks, Ewa C.E. Rönnebro, Kevin L. Simmons and Mark R. Weimar. Pacific Northwest National Laboratory (PNNL) 902 Battelle Blvd Richland, WA 99352 Phone: (509) 371-6692 Email: Jamie.Holladay@pnnl.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-AC05-76RL01830

53

NETL: News Release - American Institute of Chemical Engineers Honors DOE  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2009 6, 2009 American Institute of Chemical Engineers Honors DOE Researcher Award Recognizes Accomplishments in Fluidization, Fluidized Processes Washington, D.C. - For his efforts in modeling and simulating fluid-particle flows, a researcher at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has been selected to receive the American Institute of Chemical Engineers' (AIChE) Fluidized Processing Recognition Award. AIChE presents the award every two years to an AIChE member "who has made significant contribution to the science and technology of fluidization or fluidized processes and who has shown leadership in the engineering community." This year the award goes to Dr. Madhava Syamlal, Focus Area Leader for Computational and Basic Sciences at NETL. Dr. Syamlal will receive his award during AIChE's 2009 annual meeting set for November 8-13, 2009, in Nashville, Tenn.

54

Configuration management program plan for Hanford site systems engineering  

SciTech Connect

This plan establishes the integrated configuration management program for the evolving technical baseline developed through the systems engineering process. This configuration management program aligns with the criteria identified in the DOE Standard, DOE-STD-1073-93. Included are specific requirements for control of the systems engineering RDD-100 database, and electronic data incorporated in the database that establishes the Hanford site technical baseline.

Hoffman, A.G.

1994-11-14T23:59:59.000Z

55

How a Chemical Engineering Major & Track Star Came to a DOE Summer...  

NLE Websites -- All DOE Office Websites (Extended Search)

How a Chemical Engineering Major & Track Star Came to a DOE Summer Internship How a Chemical Engineering Major & Track Star Came to a DOE Summer Internship A few of the summer of...

56

How a Chemical Engineering Major & Track Star Came to a DOE Summer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How a Chemical Engineering Major & Track Star Came to a DOE Summer Internship How a Chemical Engineering Major & Track Star Came to a DOE Summer Internship July 22, 2013 - 12:17pm...

57

DOE Electricity Transmission System Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRANSMISSION SYSTEM WORKSHOP TRANSMISSION SYSTEM WORKSHOP Mapping Challenges and Opportunities to Help Guide DOE R&D Investments over the Next Five Years DoubleTree Crystal City, 300 Army Navy Drive, Arlington, VA November 1-2, 2012 AGENDA Thursday, November 1, 2012 8:00-8:10 Welcome and Kickoff David Sandalow, Acting Undersecretary of Energy 8:10-8:30 Introduction to the Grid Tech Team (GTT), Vision, and Framework Distribution Workshop Summary Dr. Anjan Bose, Grid Tech Team Lead 8:30-8:50 OE Vision, Activities, and Issues Patricia A. Hoffman, Assistant Secretary for the Office of Electricity Delivery and Energy Reliability (OE) 8:50-9:10 EERE Vision, Activities, and Issues Dr. David Danielson, Assistant Secretary for the Office of Energy Efficiency and Renewable Energy (EERE)

58

Overview of DOE's large stationary Stirling-engine development program  

SciTech Connect

This paper summarizes the results to date of a program, sponsored by DOE's Office of Fossil Energy, to develop large stationary Stirling engine power systems. Primary applications for such power plants include cogeneration and total energy systems, with a major advantage being their ability to employ solid coal and other non-scarce fuels in an environmentally acceptable manner. The greatest market potential is for individual engine modules in the 373 to 2238 kW range, which can be used in multiple-engine installations for cogeneration systems up to about 20 MWe. Fluidized bed coal combustors are found to be the most effective heat source for such power systems. The major effort in the Stirling engine development program was an industry-based design competition, involving three independent contractual teams. Conceptual designs for state-of-the-art coal-fired Stirling engine systems were developed and all three design teams recommended development of 373 kW modules as base units, which can be coupled together to form individual Stirling engines up to 2238 kW in size. Heat transport system design concepts were also developed for integrating engine hot-end sections with coal combustors, and a comparative discussion of the results is presented in the text of this paper.

Uherka, K.L.; Holtz, R.E.; Bunker, W.

1981-01-01T23:59:59.000Z

59

Departmental Information Systems Engineering (Volume 1) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents & Publications Departmental Information Systems Engineering (Volume 2) Systems Engineering Methodology (SEM) Audit Report: IG-0836 Energy.gov Careers & Internships...

60

Transportation Systems Engineering GRADUATE STUDIES  

E-Print Network (OSTI)

Transportation Systems Engineering GRADUATE STUDIES TRANSPORTATION SYSTEMS are the building blocks and provides for an improved quality of life. However, transportation systems by their very nature also affect the environment through physical construction and operation of transportation facilities, and through the travel

Wang, Yuhang

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering  

SciTech Connect

From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-grave foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.

R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann

2011-06-01T23:59:59.000Z

62

Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering  

SciTech Connect

From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-grave foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.

R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann

2011-06-01T23:59:59.000Z

63

Systems Engineering and Integration  

Energy.gov (U.S. Department of Energy (DOE))

The fuel cycle in use today in the United States faces challenges in achieving the goals of sustainability. While used fuel is safely stored at reactor sites, the development of a system to manage...

64

Solar dish/engine systems  

DOE Green Energy (OSTI)

Solar dish/engine systems convert the energy from the sun into electricity at a very high efficiency. Using a mirror array formed into the shape of a dish, the solar dish focuses the sun's rays onto a receiver. The receiver transmits the energy to an engine that generates electric power. Because of the high concentration ratios achievable with parabolic dishes and the small size of the receiver, solar dishes are efficient at collecting solar energy at very high temperatures. Tests of prototype systems and components at locations throughout the US have demonstrated net solar to electric conversion efficiencies as high as 30%. This is significantly higher than any other solar technology.

NONE

1998-04-01T23:59:59.000Z

65

Systems Engineering | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

technologies to a wide range of complex systems. Some examples of program areas include nuclear power plant safety, human factors engineering, and electric power engineering....

66

CORE COMPETENCY Overview Engineered Specialty Systems  

Remote and Specialty Systems SRNL expertise in remote and specialty systems spans the entire engineered ... simulation, radioactive materials handling ...

67

TWRS Systems Engineering Working Plan  

SciTech Connect

The purpose of this Systems Engineering (SE) Working Plan (SEWP) is to describe how the Westinghouse Hanford Company (WHC) Tank Waste Remediation System (TWRS) will implement the SE polity and guidance provided in the Tank Waste Remediation System (TWRS) Systems Engineering Management Plan (SEMP). Sections 2.0 through 4.0 cover how the SE process and management will be performed to develop a technical baseline within TWRS. Section 5.0 covers the plans and schedules to implement the SE process and management within TWRS. Detailed information contained in the TWRS Program SEMP is not repeated in this document. This SEWP and the SE discipline defined within apply to the TWRS Program and new and ongoing TWRS projects or activities, including new facilities and safety. The SE process will be applied to the existing Tank Farm operations where the Richland TWRS Program Office management determines the process appropriate and where value will be added to existing Tank Farm system and operations.

Eiholzer, C.R.

1994-09-16T23:59:59.000Z

68

Artificial Intelligence and Systems Engineering  

E-Print Network (OSTI)

/PR URL: http://www.dotomi.com Job Titles: Engineering/IT Apprentice, Client Development/Sales Apprentice, Media Apprentice, Account Management Apprentice, Quality Assurance Apprentice Majors: Business: Business. - BS, Engineering: Contract Major, Engineering: Electrical, Engineering: Industrial, Engineering

Sommerville, Ian

69

DOE O 456.1 Admin Chg 1, The Safe Handling of Unbound Engineered Nanoparticles  

Directives, Delegations, and Requirements

The order establishes requirements and assigns responsibilities for activities involving unbound engineered nanoparticles (UNP). Cancels DOE N 456.1. Admin Chg ...

2011-05-31T23:59:59.000Z

70

NREL: Systems Engineering - Models and Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

and Tools The NREL Systems Engineering Initiative develops, integrates, and analyzes wind energy system models. NREL has developed an overall integrated system analysis tool...

71

Systems engineering: A problem of perception  

SciTech Connect

The characterization of systems engineering as a discipline, process, procedure or a set of heuristics will have an impact on the implementation strategy, the training methodology, and operational environment. The systems engineering upgrade activities in the New Mexico Weapons Development Center and a search of systems engineering related information provides evidence of a degree of ambiguity in this characterization of systems engineering. A case is made in this article for systems engineering being the engineering discipline applied to the science of complexity. Implications of this characterization and some generic issues are delineated with the goal of providing an enterprise with a starting point for developing its business environment.

Senglaub, M.

1995-08-01T23:59:59.000Z

72

Heat engine generator control system  

SciTech Connect

An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.

Rajashekara, Kaushik (Carmel, IN); Gorti, Bhanuprasad Venkata (Towson, MD); McMullen, Steven Robert (Anderson, IN); Raibert, Robert Joseph (Fishers, IN)

1998-01-01T23:59:59.000Z

73

Heat engine generator control system  

DOE Patents (OSTI)

An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.

Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.

1998-05-12T23:59:59.000Z

74

Solar dish/engine systems  

DOE Green Energy (OSTI)

Solar dish/engine systems convert the energy from the sun into electricity at a very high efficiency. Using a mirror array formed into the shape of a dish, the solar dish focuses the sun`s rays onto a receiver. The receiver transmits the energy to an engine that generates electric power. Because of the high concentration ratios achievable with parabolic dishes and the small size of the receiver, solar dishes are efficient at collecting solar energy at very high temperatures. Tests of prototype systems and components at locations throughout the US have demonstrated net solar to electric conversion efficiencies as high as 30%. This is significantly higher than any other solar technology.

Not Available

1998-04-01T23:59:59.000Z

75

Safety-driven system engineering process  

E-Print Network (OSTI)

As the demand for high-performing complex systems has increased, the ability of engineers to meet that demand has not kept pace. The creators of the traditional system engineering processes did not anticipate modern complex ...

Stringfellow, Margaret Virgina

2008-01-01T23:59:59.000Z

76

DOE - Office of Legacy Management -- Hanford Engineer Works ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hanford Engineer Works - WA 01 FUSRAP Considered Sites Site: Hanford Engineer Works (WA.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

77

Development of the environmental management integrated baseline at the Idaho National Engineering Laboratory using systems engineering  

SciTech Connect

The Idaho National Engineering Laboratory (INEL) is one of many Department of Energy (DOE) national laboratories that has been performing environmental cleanup and stabilization, which was accelerated upon the end of the cold war. In fact, the INEL currently receives two-thirds of its scope to perform these functions. However, the cleanup is a highly interactive system that creates an opportunity for systems engineering methodology to be employed. At the INEL, a group called EM (Environmental Management) Integration has been given this charter along with a small core of systems engineers. This paper discusses the progress to date of converting the INEL legacy system into one that uses the systems engineering discipline as the method to ensure that external requirements are met.

Murphy, J.A.; Caliva, R.M.; Wixson, J.R.

1997-10-01T23:59:59.000Z

78

Multimedia Feedback Systems for Engineering  

SciTech Connect

The World Wide Web has become a key tool for information sharing. Engineers and scientists are finding that the web is especially suited to publishing the graphical, multi-layered information that is typical of their work. Web pages are easier to distribute than hardcopy. Web movies have become more accessible, in many offices, than videos. Good VRML viewing software, bundled with most new PCs, has sufficient power to support many engineering needs. In addition to publishing information science and engineering has an important tradition of peer and customer review. Reports, drawings and graphs are typically printed, distributed, reviewed, marked up, and returned to the author. Adding review comments to paper is easy. When, however, the information is in electronic form, this ease of review goes away. It's hard to write on videos. It's even harder to write comments on animated 3D models. These feedback limitations reduce the value of the information overall. Fortunately, the web can also be a useful tool for collecting peer and customer review information. When properly formed, web reports, movies, and 3D animations can be readily linked to review notes. This paper describes three multimedia feed-back systems that Sandia National Laboratories has developed to tap that potential. Each system allows people to make context-sensitive comments about specific web content and electronically ties the comments back to the web content being referenced. The fuel system ties comments to specific web pages, the second system ties the comments to specific frames of digital movies, and the third ties the comments to specific times and viewpoints within 3D animations. In addition to the technologies, this paper describes how they are being used to support intelligent machine systems design at Sandia.

Gladwell, S.; Gottlieb, E.J.; McDonald, M.J.; Slutter, C.L.

1998-12-15T23:59:59.000Z

79

Multimedia Feedback Systems for Engineering  

SciTech Connect

The World Wide Web has become a key tool for information sharing. Engineers and scientists are finding that the web is especially suited to publishing the graphical, multi-layered information that is typical of their work. Web pages are easier to distribute than hardcopy. Web movies have become more accessible, in many offices, than videos. Good VRML viewing software, bundled with most new PCs, has sufficient power to support many engineering needs. In addition to publishing information science and engineering has an important tradition of peer and customer review. Reports, drawings and graphs are typically printed, distributed, reviewed, marked up, and returned to the author. Adding review comments to paper is easy. When, however, the information is in electronic form, this ease of review goes away. It's hard to write on videos. It's even harder to write comments on animated 3D models. These feedback limitations reduce the value of the information overall. Fortunately, the web can also be a useful tool for collecting peer and customer review information. When properly formed, web reports, movies, and 3D animations can be readily linked to review notes. This paper describes three multimedia feed-back systems that Sandia National Laboratories has developed to tap that potential. Each system allows people to make context-sensitive comments about specific web content and electronically ties the comments back to the web content being referenced. The fuel system ties comments to specific web pages, the second system ties the comments to specific frames of digital movies, and the third ties the comments to specific times and viewpoints within 3D animations. In addition to the technologies, this paper describes how they are being used to support intelligent machine systems design at Sandia.

Gladwell, S.; Gottlieb, E.J.; McDonald, M.J.; Slutter, C.L.

1998-12-15T23:59:59.000Z

80

DOE-HDBK-1016/2-93; DOE Fundamentals Handbook Engineering Symbology, Prints, and Drawings Volume 2 of 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6/2-93 6/2-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK ENGINEERING SYMBOLOGY, PRINTS, AND DRAWINGS Volume 2 of 2 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831. Available to the public from the National Technical Information Services, U.S. Department of Commerce, 5285 Port Royal., Springfield, VA 22161. Order No. DE93012181 DOE-HDBK-1016/2-93 ENGINEERING SYMBOLOGY, PRINTS, AND DRAWINGS ABSTRACT The Engineering Sym bology, Prints, and Drawings Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and technical

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE-HDBK-1016/1-93; DOE Fundamentals Handbook Engineering Symbology, Prints, and Drawings Volume 1 of 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

016/1-93 016/1-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK ENGINEERING SYMBOLOGY, PRINTS, AND DRAWINGS Volume 1 of 2 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN37831. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE93012220 DOE-HDBK-1016/1-93 ENGINEERING SYMBOLOGY, PRINTS, AND DRAWINGS ABSTRACT The Engineering Sym bology, Prints, and Drawings Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and

82

Applying System Engineering to Pharmaceutical Safety  

E-Print Network (OSTI)

While engineering techniques are used in the development of medical devices and have been applied to individual healthcare processes, such as the use of checklists in surgery and ICUs, the application of system engineering ...

Couturier, Matthieu

83

System Engineering Design [Nuclear Waste Management using  

NLE Websites -- All DOE Office Websites (Extended Search)

System Engineering System Engineering Design Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology System Engineering Design Bookmark and Share Two major pieces of electrometallurgical process equipment are the Electrorefiner and the Cathode Processor. NE personnel have been involved in the conceptual design, final design, procurement, manufacture,

84

Safe Handling of Engineering Nanoscale Materials: DOE Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

A. H. Carim A. H. Carim Basic Energy Sciences Basic Energy Sciences 5 DOE Policy 456.1: DOE Policy 456.1: Secretarial Policy Statement On Nanoscale Safety Secretarial...

85

Systems Engineering Management Plan. Volume 5 of the MRS Project Management Plan  

SciTech Connect

The purpose of this Monitored Retrievable Storage (MRS) Project Systems Engineering Management Plan (SEMP) is to define and establish the MRS Project Systems Engineering process that implements the approved policy and requirements of the Office of Civilian Radioactive Waste Management (OCRWM) for the US Department of Energy (DOE). This plan is Volume 5 of the MRS Project Management Plan (PMP). This plan provides the framework for implementation of systems engineering on the MRS Project consistent with DOE Order 4700.1, the OCRWM Program Management System Manual (PMSM), and the OCRWM Systems Engineering Management Plan (SEMP).

1994-01-01T23:59:59.000Z

86

ORISE: DOE's Radiation Exposure Monitoring System (REMS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring System (REMS) Monitoring System (REMS) ORISE maintains large database of radition exposure records for the U.S. Department of Energy ORISE staff monitoring radiation data for DOE Rule 10 CFR 835 establishes the U.S. Department of Energy's (DOE) occupational protection rule and requires assessment and recording of radiation doses to individuals who are exposed to sources of radiation or contamination. The Radiation Exposure Monitoring System (REMS) database is the radiation exposure data repository for all monitored DOE employees, contractors, subcontractors and members of the public. REMS maintains dose records for all monitored individuals dating back to 1969. Aggregated, site-specific data are available on the Radiation Exposure Monitoring System website for all years since 1986. Currently,

87

DOE FTCP Supplemental Competencies - Human Factors Engineering Functional Area Qualification Competency Examples for DOE Defense Nuclear Facilities Technical Personnel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FTCP FTCP SUPPLEMENTAL COMPETENCIES HUMAN FACTORS ENGINEERING FUNCTIONAL AREA QUALIFICATION COMPETENCY EXAMPLES For DOE Defense Nuclear Facilities Technical Personnel APPROVAL The Federal Technical Capability Panel consists of senior U.S. Department of Energy (DOE) managers responsible for overseeing the Federal Technical Capability Program. This Panel is responsible for reviewing and approving qualification standards and competencies for Department-wide application. Approval of this set of competency statements by the Federal Technical Capability Panel is indicated by signature below. ?fuv-~ Karen L. Boardman, Chairperson ~·/Cf I Federal Technical Capability Panel * '2._ 3/19/12 I luman Factors Engineering compc1cncics U.S. DEPARTMENT OF ENERGY

88

DOE - Office of Legacy Management -- Idaho National Engineering and  

Office of Legacy Management (LM)

Idaho National Engineering and Idaho National Engineering and Environmental Laboratory - 015 FUSRAP Considered Sites Site: Idaho National Engineering and Environmental Laboratory (015) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: In operation since 1949, the Idaho National Engineering and Environmental Laboratory (INEEL) is a Department of Energy multiprogram national laboratory that supports the Department¿s missions of environmental quality, energy resources, science, and national security. Originally named the National Reactor Testing Station, the INEEL was once the site of the world¿s largest concentration of nuclear reactors. 52 test reactors most

89

KBase: DOE Systems Biology Knowledgebase | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

KBase: DOE Systems Biology Knowledgebase KBase: DOE Systems Biology Knowledgebase KBase is a collaborative, community-driven effort designed to accelerate our understanding of...

90

DOE Nuclear Criticality Safety Program - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Nuclear Criticality Safety Program DOE Nuclear Criticality Safety Program Nuclear Criticality Safety Overview Experience Analysis Tools Current NCS Activities Current R&D Activities DOE Criticality Safety Support Group (CSSG) Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr The DOE Nuclear Criticality Safety Program Bookmark and Share J. Morman and R. Bucher load J. Morman and R. Bucher load samples into the ZPR-6 critical assembly for material worth measurements. Click on image to view larger image. The DOE Nuclear Criticality Safety Program (NCSP) is focused on maintaining fundamental infrastructure that enables retention of DOE capabilities and expertise in nuclear criticality safety necessary to support line

91

DOE/VTP Light-Duty Diesel Engine Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

VTP Light-Duty Diesel Engine Commercialization VTP Light-Duty Diesel Engine Commercialization Vehicle Technologies Program (VTP) spearheaded the development of clean diesel engine technologies for passenger vehicles in the 1990s, spurring the current reintroduction of highly efficient diesel vehicles into the passenger market. Cummins partnered with VTP to develop a diesel engine that meets the 50-state 2010 emissions standards while boosting vehicle fuel economy by 30% over comparable gasoline-powered vehicles. The Cummins engine is scheduled to debut in 2010 Chrysler sport utility vehicles and pickup trucks. VTP-sponsored research demonstrated the ability of diesel passenger vehicles with advanced aftertreatment to meet EPA's stringent Tier II Bin 5 standards, representing an 83% reduction in NOx and more than 87% reduction in

92

Smart Systems School of Engineering and Science  

E-Print Network (OSTI)

Smart Systems School of Engineering and Science Graduate Program #12;School of Engineering and Science Issue: Fall 2010 Graduate Handbook ­ Computer Science: Smart Systems Rev. : 2629 Date: June 3, 2011 Page: ii Contents 1 Introduction to Smart Systems 1 1.1 Philosophy

93

Smart Systems School of Engineering and Science  

E-Print Network (OSTI)

Smart Systems School of Engineering and Science Graduate Program #12;School of Engineering and Science Issue: Fall 2010 Graduate Handbook ­ Computer Science: Smart Systems Rev. : 2537 Date: June 7, 2010 Page: ii Contents 1 Introduction to Smart Systems 1 1.1 Philosophy

94

NREL: Wind Research - Systems Engineering Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Search More Search Options Site Map The National Wind Technology Center (NWTC) wind energy systems engineering initiative has developed an analysis platform to leverage its...

95

Geothermal: Sponsored by OSTI -- Engineered Geothermal Systems...  

Office of Scientific and Technical Information (OSTI)

Engineered Geothermal Systems Energy Return On Energy Investment Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

96

DOE - Office of Legacy Management -- Winchester Engineering and...  

Office of Legacy Management (LM)

Raw Materials Development Laboratory Winchester, Massachusetts Summary Report 1954 - 1959; September 30, 1959 MA.03-3 - DOE Letter; DeLaney to Bolin; Elimination of the...

97

Tank waste remediation system engineering plan  

SciTech Connect

This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

Rifaey, S.H.

1998-01-09T23:59:59.000Z

98

NREL: Energy Systems Integration - U.S. DOE's Energy Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

February 2013 U.S. DOE's Energy Systems Integration Facility at NREL photo showing the front view of the entrance to the Energy Systems Integration Facility Front view of the...

99

DOE - Office of Legacy Management -- Marion Engineer Depot - OH 45  

Office of Legacy Management (LM)

Engineer Depot - OH 45 Engineer Depot - OH 45 FUSRAP Considered Sites Site: MARION ENGINEER DEPOT (OH.45) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: South of Harding Highway (Route 309) at County Route 98, Marion County , Marion , Ohio OH.45-2 Evaluation Year: 1990 OH.45-2 Site Operations: The Engineer Depot was built in 1942 - at one time was the largest warehousing facilities of its kind in the U.S. AEC New York Operations Office provided radiation safety support. The facility stored metascopes, night vision equipment, that contained radium. OH.45-2 OH.45A-2 Site Disposition: FUSRAP - Eliminated - Referred to DOD OH.45-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radium (Radioactive Material in Metascopes)

100

Energy Systems Engineering 1 Clean Coal Technologies  

E-Print Network (OSTI)

Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12.ofPlants Source: CEA,2006, Thermal performance report 377 plants Sub-critical Pulverised coal (535-575 oC, 175/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types

Banerjee, Rangan

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Process Systems Engineering R&D for Advanced Fossil Energy Systems  

SciTech Connect

This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

Zitney, S.E.

2007-09-11T23:59:59.000Z

102

Systems/Component Design, Engineering and Drafting - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Drafting Capabilities Engineering Computation and Design Engineering and Structural Mechanics SystemsComponent Design, Engineering and Drafting Heat Transfer and Fluid Mechanics...

103

Order Module--DOE O 151.1C, COMPREHENSIVE EMERGENCY MANAGEMENT SYSTEM |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

151.1C, COMPREHENSIVE EMERGENCY MANAGEMENT 151.1C, COMPREHENSIVE EMERGENCY MANAGEMENT SYSTEM Order Module--DOE O 151.1C, COMPREHENSIVE EMERGENCY MANAGEMENT SYSTEM The familiar level of this module is designed to summarize the basic information in DOE O 151.1C, Comprehensive Emergency Management System. This module is divided into two sections. in the first section, we will discuss the objectives and responsibilities of DOE O 151.1C, Comprehensive Emergency Management System. In the second section, we will discuss the requirements included in chapters III through XI in the Order. The information provided will meet the relevant requirements in the following DOE Functional Area Qualification Standards: DOE-STD-1177-2004, Emergency Management DOE-STD-1151-2002, Facility Representative DOE-STD-1137-2007, Fire Protection Engineering

104

Integration of project management and systems engineering: Tools for a total-cycle environmental management system  

SciTech Connect

An expedited environmental management process has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL). This process is one result of the Lockheed Martin commitment to the US Department of Energy to incorporate proven systems engineering practices with project management and program controls practices at the INEEL. Lockheed Martin uses a graded approach of its management, operations, and systems activities to tailor the level of control to the needs of the individual projects. The Lockheed Martin definition of systems engineering is: ``Systems Engineering is a proven discipline that defines and manages program requirements, controls risk, ensures program efficiency, supports informed decision making, and verifies that products and services meet customer needs.`` This paper discusses: the need for an expedited environmental management process; how the system was developed; what the system is; what the system does; and an overview of key components of the process.

Blacker, P.B.; Winston, R.

1997-10-01T23:59:59.000Z

105

DOE O 151.1C, Comprehensive Emergency Management System  

Directives, Delegations, and Requirements

The Order establishes policy and assigns roles and responsibilities for the Department of Energy (DOE) Emergency Management System. Cancels DOE O 151.1B.

2005-11-02T23:59:59.000Z

106

DOE, DOI and Army Corps of Engineers Sign Memorandum of Understanding on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, DOI and Army Corps of Engineers Sign Memorandum of DOE, DOI and Army Corps of Engineers Sign Memorandum of Understanding on Hydropower DOE, DOI and Army Corps of Engineers Sign Memorandum of Understanding on Hydropower March 24, 2010 - 12:00am Addthis Washington, DC - US Department of Energy Secretary Steven Chu and US Department of Interior Secretary Ken Salazar announced today that the two agencies, along with the Army Corps of Engineers, will cooperate more closely and align priorities to support the development of environmentally sustainable hydropower. The Memorandum of Understanding represents a new approach to hydropower development - a strategy that can increase the production of clean, renewable power while avoiding or reducing environmental impacts and enhancing the viability of ecosystems. By

107

DOE, DOI and Army Corps of Engineers Sign Memorandum of Understanding on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, DOI and Army Corps of Engineers Sign Memorandum of DOE, DOI and Army Corps of Engineers Sign Memorandum of Understanding on Hydropower DOE, DOI and Army Corps of Engineers Sign Memorandum of Understanding on Hydropower March 24, 2010 - 12:00am Addthis Washington, DC - US Department of Energy Secretary Steven Chu and US Department of Interior Secretary Ken Salazar announced today that the two agencies, along with the Army Corps of Engineers, will cooperate more closely and align priorities to support the development of environmentally sustainable hydropower. The Memorandum of Understanding represents a new approach to hydropower development - a strategy that can increase the production of clean, renewable power while avoiding or reducing environmental impacts and enhancing the viability of ecosystems. By

108

DOE Mobile Detection Assessment Response System (MDARS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Helps Pioneer "Robot" Patrol Technology: Deployment of the Helps Pioneer "Robot" Patrol Technology: Deployment of the DOE Mobile Detection Assessment Response System (MDARS) The use of patrol robots to cost effectively improve security while reducing health and safety risks at DOE and NNSA nuclear facilities is an HSS advanced technology deployment "first". Over the past 2 years, the HSS Office of Technology has played a key role in working with the Army, the National Nuclear Security Administration (NNSA), the Nevada National Security Site (NNSS) and General Dynamics Robotics Systems to purchase, prototype, test and deploy the first of three MDARS patrol robots at NNSS. In addition to the initial purchase, HSS successfully negotiated a mutually acceptable

109

Results of the Boeing/DOE DECC Phase 1 stirling engine project  

DOE Green Energy (OSTI)

Phase I of Boeing Company/DOE Dish Engine Critical Component (DECC) Project started in April of 1998 and was completed in 1999. The Phase I objectives, schedule, and test results are presented in this paper. These data shows the power, energy, and mirror performance are comparable to that when the hardware was first manufactured 15 years ago. During the Phase I and initial Phase II test period the on-sun system accumulated over 3,800 hours of solar-powered operating time, accumulated over 4,500 hours of concentrator solar tracking time, and generated over 50,000 kWh of grid-compatible electrical energy. The data also shows that the system was available 95 {percent} of the time when the sun's insolation level was above approximately 300 w/m{sup 2}, and achieved a daily energy efficiency between 20{percent} and 26{percent}. A second concentrator was refurbished during Phase I and accumulated over 2,200 hours of solar track time. A second Stirling engine operated 24 hours a day in a test cell in Sweden and accumulated over 6,000 test hours. Discussion of daily operation shows no major problems encountered during the testing that would prevent commercialization of the technology. Further analysis of the test data shows that system servicing with hydrogen, coolant and lubricating oil should not be a major O and M cost.

STONE,KENNETH W.; CLARK,TERRY; NELVING,HANS; DIVER JR.,RICHARD B.

2000-03-02T23:59:59.000Z

110

Congeneration system with a Stirling engine  

SciTech Connect

This patent describes a cogeneration system for producing process heat for useful purposes and electric energy. It comprises an electric generator; a Stirling cycle engine having an output shaft operatively coupled to the generator for driving the generator, the engine including at least one internal fuel combustor; means for circulating a cooling liquid about the generator and engine to extract heat therefrom; an exhaust system coupled with the engine for exhausting combustion gases from the engine, the exhaust system including a condensing heat exchanger for cooling the combustion gases below the condensing, temperature of the water vapor in the exhaust gases; means for directing the cooling liquid around the condensing heat exchanger to extract heat therefrom and heat the liquid; and means for directing the cooling liquid for useful purposes.

Meijer, R.J.; Meijer, E.J.; Godett, T.M.

1991-12-24T23:59:59.000Z

111

Socio-technical systems: From design methods to systems engineering  

Science Conference Proceedings (OSTI)

It is widely acknowledged that adopting a socio-technical approach to system development leads to systems that are more acceptable to end users and deliver better value to stakeholders. Despite this, such approaches are not widely practised. We analyse ... Keywords: Socio-technical systems, Software engineering, Systems engineering

Gordon Baxter; Ian Sommerville

2011-01-01T23:59:59.000Z

112

Energy Engineering and Systems Analysis - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Engineering and Systems Analysis U.S. Department of Energy Energy Engineering and Systems Analysis U.S. Department of Energy Search Argonne ... Search Decision and Information Sciences Energy Systems FutureGrid Infrastructure Assurance Center Intelligence Analysis National Security Nuclear Engineering Transportation Research and Analysis Computing Center Transportation Technology R&D Center EESA Intranet Image of battery development team standing by an electric vehicle in Argonne's Ev-Smart Grid Interoperability Center Features eesa success stories ebr-2 Argonne's Major Nuclear Energy Milestones Argonne's Nuclear Energy Exhibit Argonne's Nuclear Energy Exhibit Argonne's Glassblowing Studio Glassblowing Studio Reactor Advanced Burner Test Reactor Preconceptual Design Argonne Experts Guide Argonne Experts Guide

113

DOE-STD-1182-2004; Civil/Structural Engineering Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1182-2004 March 2004 DOE STANDARD CIVIL/STRUCTURAL ENGINEERING FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1182-2004 ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1182-2004

114

NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet)  

SciTech Connect

This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Work was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.

2010-11-01T23:59:59.000Z

115

Senior Systems Engineer | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Senior Systems Engineer | National Nuclear Security Administration Senior Systems Engineer | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Regina Griego Senior Systems Engineer Regina Griego Regina Griego Role: Senior Systems Engineer Profile: Regina Griego has been elected a fellow of the International Council on

116

Implementing Systems Engineering on a CERCLA Project  

SciTech Connect

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), enacted in 1980, provides a regulatory and legal mechanism to reduce risks from prior disposal of hazardous and toxic chemicals. Regulations, Standards, and Guidelines have been published to further define the CERCLA Process. The OU 7-10 Staged Interim Action Project at the Idaho National Engineering and Environmental Laboratory (INEEL) is a CERCLA project working to remediate the pre-1970 disposal pit in which transuranic materials have been disposed. This paper analyzes the CERCLA process from a systems engineering perspective and describes how systems engineering is implemented on this project.

Beitel, George Alois

1999-06-01T23:59:59.000Z

117

Complex Adaptive Systems of Systems (CASOS) engineering environment.  

SciTech Connect

Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

2012-02-01T23:59:59.000Z

118

How a Chemical Engineering Major & Track Star Came to a DOE Summer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How a Chemical Engineering Major & Track Star Came to a DOE Summer How a Chemical Engineering Major & Track Star Came to a DOE Summer Internship How a Chemical Engineering Major & Track Star Came to a DOE Summer Internship July 22, 2013 - 12:17pm Addthis A few of the summer of 2013 Mickey Leland Energy Fellowship class. Pictured from left to right: Wendy Hertulien, Noelle Hilliard, Vianey Escobar, and Jasmin Selby. A few of the summer of 2013 Mickey Leland Energy Fellowship class. Pictured from left to right: Wendy Hertulien, Noelle Hilliard, Vianey Escobar, and Jasmin Selby. Jasmine Selby Mickey Leland Energy Fellow From an early age my mother always instilled in me that education was important. As a young child, growing up in Baltimore, Maryland, I was not always the best at math. During the fourth grade I was placed in a summer

119

The evolution of a successful systems engineering organization at Hanford  

SciTech Connect

As the systems engineering activities at the US Department of Energy`s Hanford reservation have matured, they have been placed in many positions within the management structure. Some of these have been more successful than others. This paper describes the organizational evolution of systems engineering over the last few years to its current successful configuration. Background The US Department of Energy (DOE) owns the 640 square mile Hanford reservation located in southeast Washington State (Figure 1). The Site has been operated for DOE by a team of contractors, who read like a Who`s Who in American Industry. Throughout its history from its founding in 1943 until 1991, Hanford`s primary mission was to produce special nuclear material for the nuclear weapons program. This mission resulted in significant quantities of radioactive and mixed waste that is stored on the site in a variety of forms. In addition much of the surface area, subsurface soil, and groundwater are contaminated to various degrees. The Reservation is located on the banks of the Columbia River, and the avoidance of contaminating the waterway that services the Pacific Northwest is a national concern. In 1991, the mission of the Hanford Site was changed from production to environmental cleanup. To support the development and execution of this mission, DOE directed that systems engineering principles be employed as key feature of the management approach. This paper describes the evolution of organizational configuration supporting systems engineering from a small ancillary activity to one which is now providing the technical basis for the integrated planning and execution of the cleanup mission. It also describes the work remaining to consolidate the existing systems-based processes into a fully integrated management structure.

Grygiel, M.L.

1998-04-03T23:59:59.000Z

120

EE 337 Engineering nano-systems EE 337 Engineering micro and nano-systems  

E-Print Network (OSTI)

EE 337 Engineering nano-systems Page 1 EE 337 Engineering micro and nano-systems A.F.J. Levi Spring.edu/dept/engineering/eleceng/Adv_Network_Tech/Html/ee337.html This course is designed as an introduction to nano-technology, methods to control and exploit the new degrees of freedom delivered by nano-science, and the integration of nano-technology into systems

Levi, Anthony F. J.

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SOLID STATE HYDRIDE SYSTEM ENGINEERING  

DOE Green Energy (OSTI)

A typical hydrogen refueling station was designed based on DOE targets and existing gasoline filling station operations. The purpose of this design was to determine typical heat loads, how these heat loads will be handled, and approximate equipment sizes. For the station model, two DOE targets that had the most impact on the design were vehicle driving range and refueling time. The target that hydrogen fueled vehicles should have the equivalent driving range as present automobiles, requires 5 kg hydrogen storage. Assuming refueling occurs when the tank is 80% empty yields a refueling quantity of 4 kg. The DOE target for 2010 of a refueling time of 3 minutes was used in this design. There is additional time needed for payment of the fuel, and connecting and disconnecting hoses and grounds. It was assumed that this could be accomplished in 5 minutes. Using 8 minutes for each vehicle refueling gives a maximum hourly refueling rate of 7.5 cars per hour per fueling point.

Anton, D; Mark Jones, M; Bruce Hardy, B

2007-10-31T23:59:59.000Z

122

FCT Systems Analysis: DOE H2A Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

H2A Analysis to someone by H2A Analysis to someone by E-mail Share FCT Systems Analysis: DOE H2A Analysis on Facebook Tweet about FCT Systems Analysis: DOE H2A Analysis on Twitter Bookmark FCT Systems Analysis: DOE H2A Analysis on Google Bookmark FCT Systems Analysis: DOE H2A Analysis on Delicious Rank FCT Systems Analysis: DOE H2A Analysis on Digg Find More places to share FCT Systems Analysis: DOE H2A Analysis on AddThis.com... Home Analysis Methodologies DOE H2A Analysis Scenario Analysis Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Contacts DOE H2A Analysis Realistic assumptions, both market- and technology-based, are critical to an accurate analytical study. DOE's H2A Analysis Group develops the

123

Electronic DOE Information Security System (eDISS) PIA, Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Information Security System (eDISS) PIA, Office of Health Safety and Security Electronic DOE Information Security System (eDISS) PIA, Office of Health Safety and Security...

124

FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting: January 31, 2007 on Facebook Tweet about FCT Systems Analysis: DOE 2010-2025 Scenario...

125

EE 238 Engineering nano-systems EE 238 Engineering nano-systems  

E-Print Network (OSTI)

EE 238 Engineering nano-systems Page 1 EE 238 Engineering nano-systems A.F.J. Levi Spring 2009, OHE This course is designed as an introduction to nano-technology, methods to control and exploit the new degrees of freedom delivered by nano-science, and the integration of nano-technology into systems. It is a hands

Levi, Anthony F. J.

126

Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 1 Systems Engineering  

E-Print Network (OSTI)

;©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 2 Objectives l To explain why be considered in the system design process l To explain system engineering and system procurement processes #12©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 1 Systems Engineering l

Scharff, Christelle

127

CRAD, Engineering - Office of River Protection K Basin Sludge Waste System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineering - Office of River Protection K Basin Sludge Waste Engineering - Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Engineering program at the Office of River Protection K Basin Sludge Waste System. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Office of River Protection K Basin Sludge Waste System More Documents & Publications CRAD, Emergency Management - Office of River Protection K Basin Sludge

128

DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Systems Advances, Hydrogen Safety Events Databases, and More DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety Events Databases, and More September 9, 2013...

129

DOE-STD-1135-99 Guidance for Nuclear Criticality Safety Engineer Training and Qualification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5-99 5-99 September 1999 DOE STANDARD GUIDANCE FOR NUCLEAR CRITICALITY SAFETY ENGINEER TRAINING AND QUALIFICATION U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1135-99 iii FOREWORD This Department of Energy Standard is required for use by all DOE Contractor criticality safety personnel. It contains guidelines that should be followed for NCS training and qualification

130

Work for the DOE Office of Power Technology - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

of Power of Power Technology Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Overview DOE Office of Fossil Energy DOE Office of Transportation Technologies Ion-mobility Spectrometry Based NOx Sensor DOE Office of Power Technology Work for Others Safety-Related Applications Homeland Security Applications Biomedical Applications Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Energy System Applications Bookmark and Share DOE Office of Power Technology NDE for Ceramics in Microturbines The concept of distributed energy systems using small gas turbines (< 500

131

Engineered Barrier System: Physical and Chemical Environment  

Science Conference Proceedings (OSTI)

The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

P. Dixon

2004-04-26T23:59:59.000Z

132

Combustion engineering issues for solid fuel systems  

SciTech Connect

The book combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book provides real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. Contents are: Introduction; Coal Characteristics; Characteristics of Alternative Fuels; Characteristics and Behavior of Inorganic Constituents; Fuel Blending for Combustion Management; Fuel Preparation; Conventional Firing Systems; Fluidized-Bed Firing Systems; Post-Combustion Emissions Control; Some Computer Applications for Combustion Engineering with Solid Fuels; Gasification; Policy Considerations for Combustion Engineering.

Bruce Miller; David Tillman [Pennsylvania State University, University Park, PA (United States). Energy Institute

2008-05-15T23:59:59.000Z

133

GENETIC ALGORITHMS CONTROL SYSTEMS ENGINEERING  

E-Print Network (OSTI)

sources. One of related works is an energy-harvesting WSN for a railway monitoring system [6]. In [7.032mW (indoor) to 37mW (direct sunlight) when energy is harvested from solar or 5mW (piezoelectric

Coello, Carlos A. Coello

134

DOE's Idaho National Lab Issues Request for Proposals for Engineering and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho National Lab Issues Request for Proposals for Idaho National Lab Issues Request for Proposals for Engineering and Design on NGNP DOE's Idaho National Lab Issues Request for Proposals for Engineering and Design on NGNP July 26, 2006 - 4:37pm Addthis Services Will Guide R&D on Next Generation Reactor WASHINGTON, DC. - In an important step forward for the Next Generation Nuclear Plant (NGNP) project, the U.S. Department of Energy's Idaho National Laboratory today issued a Request for Proposals (RFP) for engineering services in support of development of NGNP. This RFP is for pre-conceptual engineering and design services to assist in focusing the technical scope and principles of research and development on the next generation reactor, and to provide a basis for subsequent development of the technical and functional specifications for the prototype facilities.

135

High efficiency stoichiometric internal combustion engine system  

DOE Patents (OSTI)

A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

Winsor, Richard Edward (Waterloo, IA); Chase, Scott Allen (Cedar Falls, IA)

2009-06-02T23:59:59.000Z

136

Final report to DOE: Matching Grant Program for the Penn State University Nuclear Engineering Program  

SciTech Connect

The DOE/Industry Matching Grant Program is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Despite a serious decline in student enrollments in the 1980s and 1990s, the discipline of nuclear engineering remained important to the advancement of the mission goals of DOE. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the U.S. At Penn State, the Matching Grant Program played a critical role in the survival of the Nuclear Engineering degree programs. Funds were used in a variety of ways to support both undergraduate and graduate students directly. Some of these included providing seed funding for new graduate research initiatives, funding the development of new course materials, supporting new teaching facilities, maintenance and purchase of teaching laboratory equipment, and providing undergraduate scholarships, graduate fellowships, and wage payroll positions for students.

Jack S. Brenizer, Jr.

2003-01-17T23:59:59.000Z

137

Energy Engineering & Systems Analysis Success Stories  

E-Print Network (OSTI)

Energy Engineering & Systems Analysis Success Stories For further information, contact: Glenn vehicle information on performance, fuel economy, energy consumption and emissions output. The Challenge. Having the data available before design will accelerate the time to market as manufacturers will not have

Hudson, Randy

138

Method and system for controlled combustion engines  

DOE Patents (OSTI)

A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

Oppenheim, A. K. (Berkeley, CA)

1990-01-01T23:59:59.000Z

139

Dish/Engine Systems for Concentrating Solar Power | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DishEngine Systems for Concentrating Solar Power DishEngine Systems for Concentrating Solar Power August 20, 2013 - 5:02pm Addthis The dishengine system is a concentrating solar...

140

DOE Technical Standards Program: Search System  

NLE Websites -- All DOE Office Websites (Extended Search)

the Nuclear Safety Technical Standards Collection, using a full-text search engine to query all text components of the documents. The "Search" button will execute a query on the...

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

7th Annual Systems Biology Symposium: Systems Biology and Engineering  

DOE Green Energy (OSTI)

Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

Galitski, Timothy P.

2008-04-01T23:59:59.000Z

142

MSSE | Measurement Science and Systems Engineering | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Supporting Organizations Supporting Organizations Biosciences Division Energy and Transportation Science Division Electrical and Electronics Systems Research Division Building Technologies Program Sustainable Transportation Program Clean Energy Home | Science & Discovery | Clean Energy | Supporting Organizations | Electrical and Electronics Systems Research Division SHARE Electrical and Electronics Systems Research Division The Electrical and Electronics Systems Research Division (EESR) Division at the Oak Ridge National Laboratory (ORNL) performs applied research and development in nationally important areas of energy and security. The mission of EESR is to provide pathways for the translation of basic science to engineering applications. This is accomplished through the creation and

143

Attenuating Diesel Engine Emissions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Attenuating Diesel Attenuating Diesel Engine Emissions Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process Laboratory Planning Process Work for Others in the Office of Science Laboratory Directed Research and Development (LDRD) DOE's Philosophy on LDRD Frequently Asked Questions Success Stories Brochures Additional Information LDRD Program Contacts Technology Transfer DOE National Laboratories Contact Information Laboratory Policy and Evaluation U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202) 586-3119 Success Stories Attenuating Diesel Engine Emissions Print Text Size: A A A RSS Feeds FeedbackShare Page Early this decade, Argonne chemists developed a special catalyst that can

144

Spent Nuclear Fuel project systems engineering management plan  

SciTech Connect

The purpose of the WHC Systems Engineering Management Plan (SEMP) is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices to enhance the WHC engineering management of the SNF Project. The scope of the SEMP encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project. This implementation applies to, and is tailored to the needs of the SNF project and all its subprojects, including all current and future subprojects

Womack, J.C.

1995-10-03T23:59:59.000Z

145

Usability Engineering for Complex Interactive Systems Development," Human Systems Integration Symposium 2003, Engineering for Usability  

E-Print Network (OSTI)

process that ensures a high level of effectiveness, efficiency, and safety in complex interactive systems. This paper presents a brief description of usability engineering activities, and discusses our experiences with leading usability engineering activities for three very different types of interactive applications: a responsive workbench-based command and control application called Dragon, a wearable augmented reality application for urban warfare called Battlefield Augmented Reality System (BARS), and a head-mounted hardware device, called Nomad, for dismounted soldiers. For each application, we present our approach to usability engineering, how we tailored the usability

Joseph L. Gabbard; Deborah Hix, Ph.D.; J. Edward; Swan Ii, Ph.D.; Mark A. Livingston, Ph.D.; Tobias H. Hllerer; Simon J. Julier, Ph.D.; Dennis Brown; Yohan Baillot

2003-01-01T23:59:59.000Z

146

Energy Department Early Career Scientists and Engineers Honored | U.S. DOE  

Office of Science (SC) Website

Early Career Scientists and Engineers Honored Early Career Scientists and Engineers Honored News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.01.07 Energy Department Early Career Scientists and Engineers Honored Print Text Size: A A A Subscribe FeedbackShare Page WASHINGTON, DC - At a White House ceremony today, eight "early career" researchers, funded by the U.S. Department of Energy's (DOE) Office of Science and its National Nuclear Security Administration (NNSA), were honored for their work ranging from computer vision and machine intelligence to identifying genetic switches in the human genome.

147

Evolution of a Unique Systems Engineering Capability  

SciTech Connect

The Idaho National Laboratory (INL) is a science-based, applied engineering laboratory dedicated to supporting U.S. Department of Energy missions in nuclear and energy research, science, and national security. The INLs Systems Engineering organization supports all of the various programs under this wide array of missions. As with any multifaceted organization, strategic planning is essential to establishing a consistent culture and a value discipline throughout all levels of the enterprise. While an organization can pursue operational excellence, product leadership or customer intimacy, it is extremely difficult to excel or achieve best-in-class at all three. In fact, trying to do so has resulted in the demise of a number of organizations given the very intricate balancing act that is necessary. The INLs Systems Engineering Department has chosen to focus on customer intimacy where the customers needs are first and foremost and a more total solution is the goal. Frequently a total solution requires the employment of specialized tools to manage system complexity. However, it is only after understanding customer needs that tool selection and use would be pursued. This results in using both commercial-off-the-shelf (COTS) tools and, in some cases, requires internal development of specialized tools. This paper describes how a unique systems engineering capability, through the development of customized tools, evolved as a result of this customer-focused culture. It also addresses the need for a common information model or analysis framework and presents an overview of the tools developed to manage and display relationships between entities, support trade studies through the application of utility theory, and facilitate the development of a technology roadmap to manage system risk and uncertainty.

Robert M. Caliva; James A. Murphy; Kyle B. Oswald

2011-06-01T23:59:59.000Z

148

ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT  

Science Conference Proceedings (OSTI)

The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

G.H. Nieder-Westermann

2005-04-07T23:59:59.000Z

149

DOE-STD-3024-98; DOE Standard Content of System Design Descriptions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4-98 4-98 October 1998 DOE STANDARD CONTENT OF SYSTEM DESIGN DESCRIPTIONS U.S. Department of Energy AREA EDCO Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-3024-98 Page iii FOREWORD This Department of Energy (DOE) standard is approved for use by all Departmental organizational units and contractors of the Department. A System Design Description (SDD) describes the requirements and features of a system. This standard

150

Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator  

E-Print Network (OSTI)

Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

Demirel, Melik C.

151

Ladies and Gentlemen, Start Your Engines | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Ladies and Gentlemen, Start Your Engines Ladies and Gentlemen, Start Your Engines Stories of Discovery & Innovation Ladies and Gentlemen, Start Your Engines Enlarge Photo Photo courtesy of Pacific Northwest National Laboratory 900-MHz NMR spectrometer allows scientists to transcend previous limits in catalyst characterization. In addition [to new understanding of sulfur poisoning and thermal damage], I would like to acknowledge that the CRADA provided us with access to the other discoveries made at PNNL in the area of NOX storage component morphological mobility, which proved key to interpreting many features of these uniquely complex catalytic systems. Dr. John C. Wall Cummins Vice President and Chief Technical Officer 03.28.11 Ladies and Gentlemen, Start Your Engines Fundamental studies in catalysis enabled the use of efficient "lean-burn" engines

152

PIA - WEB iPASS System DOE PIA | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

iPASS System DOE PIA PIA - WEB iPASS System DOE PIA PIA - WEB iPASS System DOE PIA PIA - WEB iPASS System DOE PIA More Documents & Publications PIA - INL Education Programs...

153

Corporate Systems Engineering | Open Energy Information  

Open Energy Info (EERE)

Corporate Systems Engineering Corporate Systems Engineering Place Indianapolis, Indiana Product Indiana-based energy management company. Coordinates 39.76691°, -86.149964° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.76691,"lon":-86.149964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Airfoil seal system for gas turbine engine  

SciTech Connect

A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

Diakunchak, Ihor S.

2013-06-25T23:59:59.000Z

155

Process Systems Engineering R&D for Advanced Fossil Energy Systems  

SciTech Connect

This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

Zitney, S.E.

2007-09-11T23:59:59.000Z

156

Engineering the Interface Between Cellular Chassis and Integrated Biological Systems  

E-Print Network (OSTI)

The engineering of biological systems with predictable behavior is a challenging problem. One reason for this difficulty is that engineered biological systems are embedded within complex and variable host cells. To help ...

Canton, Bartholomew

2005-08-08T23:59:59.000Z

157

Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science  

E-Print Network (OSTI)

Roadmap: Applied Engineering ­ Manufacturing Systems ­ Bachelor of Science [AT 15000 Introduction to Human Communication 3 Fulfills Kent Core Additional Kent Core Requirement 3 See #12;Roadmap: Applied Engineering ­ Manufacturing Systems ­ Bachelor of Science [AT

Sheridan, Scott

158

Survey Report: Improving Integration of Program Management and Systems Engineering  

E-Print Network (OSTI)

Formanyyears,aculturalbarrierhasexistedbetweenpractitionersofsystemsengineeringandofprogrammanagement.Somesystemsengineersandprogrammanagershavedevelopedthemindsetthattheirworkactivitiesar ...

Conforto, Edivandro

159

DOE Action Plan Addressing the Electricity Distribution System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ACTION PLAN ACTION PLAN ADDRESSING THE ELECTRICITY DISTRIBUTION SYSTEM ~DRAFT~ DOE Action Plan Addressing the Electricity Distribution System 1 Table of Contents INTRODUCTION ................................................................................................................... 2 The Grid Tech Team ................................................................................................ 2 Focus on Distribution .............................................................................................. 3 Roadmap Goals ....................................................................................................... 3 PROCESS OVERVIEW ........................................................................................................... 4

160

Engineering the Presentation Layer of Adaptable Web Information Systems  

E-Print Network (OSTI)

by a prototype application. 1 Introduction Engineering personalized Web Information Systems (WIS) is a complexEngineering the Presentation Layer of Adaptable Web Information Systems Zolt´an Fiala1 , Flavius,houben,pbarna}@win.tue.nl Abstract. Engineering adaptable Web Information Systems (WIS) re- quires systematic design models

Houben, Geert-Jan

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Low emission turbo compound engine system  

SciTech Connect

A diesel or HHCI engine has an air intake and an exhaust for products of combustion. A pair of turbochargers receive the products of combustion in a series relationship and an exhaust aftertreatment device receive the products of combustion from the downstream turbine. A power turbine receives the output from the exhaust aftertreatment device and an EGR system of the power turbine passes a selected portion of the output to a point upstream of the upstream turbocharger compressor. A device adds fuel to the aftertreatment device to regenerate the particulate filter and the power turbine recoups the additional energy. The power turbine may be used to drive accessories or the prime output of the engine.

Vuk; Carl T. (Denver, IA)

2011-05-31T23:59:59.000Z

162

NETL-RUA Engineer Earns Presidential Award for R&D That Could Help Meet DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineer Earns Presidential Award for R&D That Could Help Engineer Earns Presidential Award for R&D That Could Help Meet DOE Carbon Capture Goals NETL-RUA Engineer Earns Presidential Award for R&D That Could Help Meet DOE Carbon Capture Goals July 23, 2012 - 1:00pm Addthis Washington, DC - A Carnegie Mellon University professor who worked with the National Energy Technology Laboratory (NETL) on research that could help meet carbon capture goals has earned a Presidential Early Career Award for Scientists and Engineers (PECASE). Dr. John Kitchin of Carnegie Mellon's Department of Chemical Engineering was recognized by the White House for his research in electrochemical separations for energy applications, which has the potential to enable clean coal technologies that meet U.S. Department of Energy (DOE) goals for

163

Report to DOE and Exelon Corporation: Matching Grant Program for the Nuclear Engineering Program at University of Wisconsin, Madison  

SciTech Connect

The DOE Industry Matching Grant Program, which began in 1992, is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Over the past two decades nuclear engineering programs in the United States have witnessed a serious decline in student enrollments, number of faculty members and support from their host universities. Despite this decline, the discipline of nuclear engineering remains important to the advancement of the mission goals of the U.S. Department of Energy. These academic programs are also critically important in maintaining a viable workforce for the nation's nuclear industry. As conceived by Commonwealth Edison, this program has focused on creating a partnership between DOE and private sector businesses, which employ nuclear engineers. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the United States.

Corradini, Michael L.

2002-02-18T23:59:59.000Z

164

Report to DOE and Exelon Corporation: Matching Grant Program for the Nuclear Engineering Program at University of Wisconsin, Madison  

SciTech Connect

The DOE Industry Matching Grant Program, which began in 1992, is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Over the past two decades nuclear engineering programs in the United States have witnessed a serious decline in student enrollments, number of faculty members and support from their host universities. Despite this decline, the discipline of nuclear engineering remains important to the advancement of the mission goals of the U.S. Department of Energy. These academic programs are also critically important in maintaining a viable workforce for the nation's nuclear industry. As conceived by Commonwealth Edison, this program has focused on creating a partnership between DOE and private sector businesses, which employ nuclear engineers. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the United States.

Corradini, Michael L.

2002-02-18T23:59:59.000Z

165

Proceedings of Human Systems Integration Symposium 2003, Engineering for Usability, Vienna, VA, June 2325, 2003.  

E-Print Network (OSTI)

.S. Usability Engineering for Complex Interactive Systems Development ABSTRACT Usability engineering is a cost. These activities are further explained in Section "Activities in Usability Engineering." Usability engineering interactive systems (Section "Usability Engineering Case Studies: Developing Complex Interactive Systems

Swan II, J. Edward

166

Multi-purpose canister system evaluation: A systems engineering approach  

SciTech Connect

This report summarizes Department of Energy (DOE) efforts to investigate various container systems for handling, transporting, storing, and disposing of spent nuclear fuel (SNF) assemblies in the Civilian Radioactive Waste Management System (CRWMS). The primary goal of DOE`s investigations was to select a container technology that could handle the vast majority of commercial SNF at a reasonable cost, while ensuring the safety of the public and protecting the environment. Several alternative cask and canister concepts were evaluated for SNF assembly packaging to determine the most suitable concept. Of these alternatives, the multi-purpose canister (MPC) system was determined to be the most suitable. Based on the results of these evaluations, the decision was made to proceed with design and certification of the MPC system. A decision to fabricate and deploy MPCs will be made after further studies and preparation of an environmental impact statement.

1994-09-01T23:59:59.000Z

167

2012 DOE Safety System Oversight Workshop Presentation ? QA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sykes NA-SH-10 (CDNS staff) Why do we have CSEs and SSOs? CD NS Chief, Defense Nuclear Safety Why do we have CSEs and SSOs? NS , y Why do we have Cognizant System Engineers? * 10...

168

Optical monitoring system for a turbine engine  

SciTech Connect

The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

2013-05-14T23:59:59.000Z

169

COMPRESSIVE STRESS SYSTEM FOR A GAS TURBINE ENGINE - Energy ...  

The present application provides a compressive stress system for a gas turbine engine. The compressive stress system may include a first bucket ...

170

System Design, Analysis, Modeling, and Media Engineering Properties...  

NLE Websites -- All DOE Office Websites (Extended Search)

modeling and simulations of * various storage systems configurations. Lead the storage system energy analysis and provide * results. Compile and obtain media engineering...

171

Washington Closure Hanford System Engineer Program FY2010 Annual Report  

SciTech Connect

This report is a summary of the assessments of the vital safety systems (VSS) that are administered under WCHs system engineer program.

J.N. Winters

2010-11-02T23:59:59.000Z

172

6.828 Operating System Engineering, Fall 2003  

E-Print Network (OSTI)

Teaches the fundamentals of engineering operating systems. The following topics are studied in detail: virtual memory, kernel and user mode, system calls, threads, context switches, interrupts, interprocess communication, ...

Kaashoek, Frans, 1965-

173

FINAL DOE/OR/21950-1016 RESPONSIVENESS SUMMARY= PRAXAIR INTERIM ACTIONS ENGINEERING  

Office of Legacy Management (LM)

p//l/ * :P/ p//l/ * :P/ 142366 _ FINAL DOE/OR/21950-1016 RESPONSIVENESS SUMMARY= PRAXAIR INTERIM ACTIONS ENGINEERING EVALUATION/COST ANALYSIS (EEKA) TONAWANDA, NEW YORK MAY 1996 prepared by U.S. Department of Energy, Oak Ridge Operations Off ice, Formerly Utilized Sites Remedial Action Program with technical assistance from Science Applications International Corporation ESC-FUSRAP under Contract No. DE-AC05-91OR21950 TABLE OF CONTENTS LISTOFTABLES ........................................... iii ACRONYMS AND ABBREVIATIONS ............................... v 1. INTRODUCTION ......................................... 1 2. SCOPE AND ORGANIZATION OF THE RESPONSIVENESS SUMMARY ..... 1 3. COMMENTSANDRESPONSES ....................... .: ... . .... 1 3.1 THE PREFERRED REMEDY .............................

174

Systems Engineering -MENG Post Graduate Activities Detail & History  

E-Print Network (OSTI)

as an international student2008 Graduate and Professional Schools Employer Title City State/Country Amazon.com Software Engineer Seattle NY Apple Software Engineer Cupertino CA BAE Systems Software Eng. Wayne NJ Citi Surface Warfare Officer (Nuclear) Boston MA VSEA Electrical Systems Engineer II Boston MA www

Lipson, Michal

175

A study of the reliability of Stirling engines for distributed receiver systems  

Science Conference Proceedings (OSTI)

The objective of this study was to examine the reliability of existing and improved Stirling engine concepts for dispersed solar dish/electric applications in the 25--50 kW/sub e/ range. Five current kinematic Stirling engine designs have the capability to meet or exceed the 32% system efficiency goal of the DOE Solar Thermal Program. Experience with the Vanguard Solar-Dish/Stirling Engine module demonstrated that the 32% efficiency goal is realistic, but that improved Stirling engine reliability is necessary for successful implementation of dispersed solar power systems. A review of historical Stirling engine data illustrated that the three major reliability issues with kinematic Stirling engines are the piston-rod seals, engine hot parts and power control/drive systems. A specific kinematic engine concept that appears to have the potential for meeting the 50,000-hour operating lifetime requirement of solar power systems has a pressurized crankcase to reduce piston-rod seal problems, an indirectly heated hot-end section using heat pipes to smooth out temperature gradients in the heater tubes, and a variable-angle swashplate for power control. Further development efforts are required to establish reliability and validate performance goals of these engine concepts. 30 refs., 13 figs., 8 tabs.

Holtz, R.E.; Uherka, K.L.

1988-11-01T23:59:59.000Z

176

Fuel-cell engine stream conditioning system  

SciTech Connect

A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

DuBose, Ronald Arthur (Marietta, GA)

2002-01-01T23:59:59.000Z

177

DOE G 200  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

G 200.1-1A G 200.1-1A Department of Energy (DOE) Systems Engineering Methodology Version 3 The DOE Systems Development Lifecycle (SDLC) for Information Technology Investments September 2002 U. S. DEPARTMENT OF ENERGY Office of the Chief Information Officer Date: September 2002 Page Rev Date: i TITLE PAGE Document Name: Department of Energy Systems Engineering Methodology (SEM) The DOE Systems Development Lifecycle (SDLC) for Information Technology Investments Publication Date: Original March 1996; Revised November 1997 Version 2 March 1999 Version 3 September 2002 Approval: ___________________________________ Karen Evans, Chief Information Officer ___________________________________ Brenda Coblentz, Program Manager, Software Quality & Systems Engineering

178

ITM Syngas and ITM H2: Engineering Development of Ceramic Membrane Reactor Systems for  

E-Print Network (OSTI)

ITM Syngas and ITM H2: Engineering Development of Ceramic Membrane Reactor Systems for Converting (U.S. DOE) and other members of the ITM Syngas/ITM H2 Team, is developing Ion Transport Membrane (ITM-scale centralized hydrogen production facilities with CO2 capture. The major goals of the ITM Syngas and ITM H2

179

DOE Order Self Study Modules - DOE O 151.1C Comprehensive Emergency Management System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

O 151.1C O 151.1C COMPREHENSIVE EMERGENCY MANAGEMENT SYSTEM NATIONAL NUCLEAR SECURITY ADMINISTRATION SERVICE CENTER Change No: 3 DOE O 151.1C Level: Familiar Date: 12/1/08 1 DOE O 151.1C COMPREHENSIVE EMERGENCY MANAGEMENT SYSTEM FAMILIAR LEVEL _________________________________________________________________________ OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to: 1. List the objectives of DOE O 151.1C, Comprehensive Emergency Management System (EMS); 2. Describe the responsibilities assigned to the following positions or groups for implementation and management of the EMS: Cognizant/field element managers Site/facility managers 3. State the purpose of a hazard survey; 4. List three phases of the planning process that should be addressed in an

180

OE Power Systems Engineering Research & Development Program Partnerships |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission » Power Systems Engineering Research and Development » OE Mission » Power Systems Engineering Research and Development » OE Power Systems Engineering Research & Development Program Partnerships OE Power Systems Engineering Research & Development Program Partnerships The OE Power Systems Research and Development Program engages a broad group of stakeholders in program planning, identification of high-priority technology gap areas, and joint participation in research, development, demonstration, and deployment activities. The partnerships involve: Partnerships with Other Federal Programs Federal partnerships include participation with the Federal Energy Management Program (FEMP) to promote and install distributed energy systems at Federal facilities; the Office of Energy Assurance and the Department of

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Incineration of DOE offsite mixed waste at the Idaho National Engineering and Environmental Laboratory  

Science Conference Proceedings (OSTI)

The Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) is one of three incinerators in the US Department of Energy (DOE) Complex capable of incinerating mixed low-level waste (MLLW). WERF has received MLLW from offsite generators and is scheduled to receive more. The State of Idaho supports receipt of offsite MLLW waste at the WERF incinerator within the requirements established in the (INEEL) Site Treatment Plan (STP). The incinerator is operating as a Resource Conservation and Recovery Act (RCRA) Interim Status Facility, with a RCRA Part B permit application currently being reviewed by the State of Idaho. Offsite MLLW received from other DOE facilities are currently being incinerated at WERF at no charge to the generator. Residues associated with the incineration of offsite MLLW waste that meet the Envirocare of Utah waste acceptance criteria are sent to that facility for treatment and/or disposal. WERF is contributing to the treatment and reduction of MLLW in the DOE Complex.

Harris, J.D.; Harvego, L.A.; Jacobs, A.M. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Willcox, M.V. [Dept. of Energy Idaho Operations Office, Idaho Falls, ID (United States)

1998-01-01T23:59:59.000Z

182

A Virtual Engineering Framework for Simulating Advanced Power System  

SciTech Connect

In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

2008-06-18T23:59:59.000Z

183

System Engineering Management and Implementation Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)  

Science Conference Proceedings (OSTI)

This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate systems engineering requirements for W-211.

VAN BEEK, J.E.

2000-05-05T23:59:59.000Z

184

Why does file system prefetching work?  

Science Conference Proceedings (OSTI)

Most file systems attempt to predict which disk blocks will be needed in the near future and prefetch them into memory; this technique can improve application throughput as much as 50%. But why? The reasons include that the disk cache comes into play, ...

Elizabeth Shriver; Christopher Small; Keith A. Smith

1999-06-01T23:59:59.000Z

185

Engine control system for multiple combustion modes  

Science Conference Proceedings (OSTI)

To reduce the emission by Diesel-engine in railway traction, continuous development and innovation in combustion, sensing net, control method and strategies are required to met the legal requirements. Multiple combustion modes by Diesel engines can reduce ...

D. Bonta; V. Tulbure; Cl. Festila

2008-05-01T23:59:59.000Z

186

Engineered Geothermal Systems Energy Return On Energy Investment  

SciTech Connect

Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use ??efficiency? when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy ?? heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the ??minimum? EROI an energy production system should have to be an asset rather than a liability.

Mansure, A J

2012-12-10T23:59:59.000Z

187

Nuclear Systems Technologies - Nuclear Engineering Division ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Departments involved: Research & Test Reactor | Engineering Development and Applications "Decommissioning of Nuclear Facilities" training courses Argonne Decommissioning Training...

188

Nuclear Systems Analysis - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

189

Exhaust system for v-type engine  

SciTech Connect

An exhaust system is described for an engine having a first exhaust manifold, a second exhaust manifold, a first catalytic converter, a first exhaust pipe portion extending from the first exhaust manifold, and a second exhaust pipe portion extending from the second exhaust manifold. The first and second exhaust pipe portions merge into a common exhaust pipe section leading to the first catalytic converter. A second catalytic converter is positioned in the first exhaust pipe portion, the length of the second exhaust pipe portion from the outlet of the second exhaust manifold to the merger to the common exhaust pipe section being the same as the length of the first exhaust pipe portion to the inlet to the second catalytic converter from the outlet of the first exhaust manifold. The first exhaust pipe portion is substantially longer than the second exhaust pipe portion.

Takii, O.

1987-03-31T23:59:59.000Z

190

Engineering Fundamentals - Process Control Systems, Version 2.0  

Science Conference Proceedings (OSTI)

The Process Control Systems (PCS) module of Engineering Fundamentals (EF-PCS) Version 2.0 provides a basic overview of this topic, applicable to users in all engineering disciplines who are beginning their career in the nuclear power industry.The Process Control Systems Version 2.0 module covers basic terms and concepts of process control systems and discusses their applications in nuclear power plants. This course will help new engineers understand how their work might impact and/or be ...

2013-02-05T23:59:59.000Z

191

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering Lawrence Livermore National Laboratory Home Technologies Core Competencies Showcase Careers Partnerships About Advanced Manufacturing Developing high-performance materials, devices, components, and assemblies enabled by innovative design tools and novel manufacturing techniques Learn more Applied Electromagnetics Supporting the development of electromagnetic systems that are pervasive and paramount to the greater National Security community. Learn more Data Sciences Enabling better decisions through the development and application of state-of-the-art techniques in machine learning, statistics, and decision sciences Learn more Precision Engineering Embracing determinism to guide rigorous design, construction, and metrology of mechatronic systems, instruments, and manufactured components

192

Engineered Geothermal Systems Energy Return On Energy Investment  

DOE Green Energy (OSTI)

Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy ?? heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the ??minimum? EROI an energy production system should have to be an asset rather than a liability.

Mansure, A J

2012-12-10T23:59:59.000Z

193

Update on DOE Integrated Energy Systems Projects  

E-Print Network (OSTI)

The Integrated Energy Systems Program, Office of Industrial Programs U. S. Department of Energy has responsibilities in diverse areas of Industrial Energy Conservation. These activities include Energy Analysis and Diagnostic Centers (EADC) providing energy audit support to small and medium sized manufacturing plants, technology transfer support in conjunction with industrial sector companies and trade associations, funding and direction of the Energy Integrated Farm program, administration of the Industrial Energy Efficiency Improvement Program, and the Industrial Sector Technology Use Model (ISTUM). Recent technology transfer activity with the major industrial trade associations and manufacturing firms has been for the development of industrial energy conservation guides, publication of association conservation seminar proceedings, and cooperative assistance in selected projects designed to enhance conservation in industrial manufacturing activities. This paper briefly describes specific federal industrial conservation program achievements and current and planned technology transfer and industrial conservation projects extending into 1986.

Williams, T. E., Jr.

1984-01-01T23:59:59.000Z

194

EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho...

195

Changes related to "Corporate Systems Engineering" | Open Energy...  

Open Energy Info (EERE)

Retrieved from "http:en.openei.orgwikiSpecial:RecentChangesLinkedCorporateSystemsEngineering" Atom Special pages About us Disclaimers Energy blogs Developer services...

196

Pages that link to "Corporate Systems Engineering" | Open Energy...  

Open Energy Info (EERE)

| 500) Retrieved from "http:en.openei.orgwikiSpecial:WhatLinksHereCorporateSystemsEngineering" Special pages About us Disclaimers Energy blogs Developer services OpenEI...

197

Importance of systems biology in engineering microbes for biofuel production  

E-Print Network (OSTI)

of knowledge from sys-tems biology approaches in metabolicand by the Synthetic Biology Engineering Research Center (Current Opinion in Chemical Biology 8. Blanch HW, Adams PD,

Mukhopadhyay, Aindrila

2011-01-01T23:59:59.000Z

198

Heat transfer characteristics of a fluidized bed : stirling engine system.  

E-Print Network (OSTI)

??A fluidized bed combustion (FBC) system was designed to provide heat energy to the head of a Stirling cycle engine. Preliminary testing with a simulated (more)

Anzalone, Thomas M.

1989-01-01T23:59:59.000Z

199

Sustainable Energy Economy: The Next Challenge for Systems Engineers; Preprint  

DOE Green Energy (OSTI)

This paper discusses large, past projects that may provide insights into how systems engineers can help in the transition to a sustainable energy economy.

Snyder, N.

2008-06-01T23:59:59.000Z

200

Benchmarking Music Information Retrieval Systems Department of Electronic Engineering  

E-Print Network (OSTI)

Benchmarking Music Information Retrieval Systems Josh Reiss Department of Electronic Engineering and effective benchmarking system for music information retrieval (MIR) systems. This will serve the multiple surrounding retrieval of audio in test collections. 1. INTRODUCTION The Music Information Retrieval (MIR

Reiss, Josh

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE/EA-1149; Environmental Assessment: Closure of the Waste Calcining Facility, Idaho Nation Engineering Laboratory (and FONSI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 July 1996 Environmental Assessment Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory U. S. DEPARTMENT OF ENERGY FINDING OF NO SIGNIFICANT IMPACT FOR THE CLOSURE OF THE WASTE CALCINING FACILITY AT THE IDAHO NATIONAL ENGINEERING LABORATORY Agency: U. S. Department of Energy (DOE) Action: Finding of No Significant Impact SUMMARY: The DOE-Idaho Operations Office has prepared an environmental assessment (EA) to analyze the environmental impacts of closing the Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory (INEL). The purpose of the action is to reduce the risk of radioactive exposure and release of radioactive and hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce the risks to human

202

CERCLA reporting requirements, DOE occurrence reporting, and the DOE Emergency Management System. CERCLA Information Brief  

SciTech Connect

The Emergency Management System (EMS) provides a structure for reporting and processing operations information related to DOE owned/operated facilities. Hazardous Substance (HS) releases are subject to reporting requirements under the EMS as well as under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLA requires reporting of HS releases into the environment in amounts greater than or equal to Reportable Quantities (RQs). This Information Brief elaborates on earlier CERCLA reporting and response process information Briefs by providing a general explanation of these CERCLA or EMS requirements, procedures, and events as they pertain to releases of HS`s at DOE facilities.

Dailey, R.

1993-10-01T23:59:59.000Z

203

DOE Action Plan Addressing the Electricity Transmission System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. DEPARTMENT OF ENERGY U.S. DEPARTMENT OF ENERGY ACTION PLAN ADDRESSING THE ELECTRICITY TRANSMISSION SYSTEM ~DRAFT~ DOE Action Plan Addressing the Electricity Transmission System 1 Table of Contents * INTRODUCTION ................................................................................................................... 2 The Grid Tech Team ...................................................................................................... 2 Focus on Transmission .................................................................................................. 3 Roadmap Goals ............................................................................................................. 4 * PROCESS OVERVIEW ........................................................................................................... 5

204

Systems Engineering Provides Successful High Temperature Steam Electrolysis Project  

DOE Green Energy (OSTI)

This paper describes two Systems Engineering Studies completed at the Idaho National Laboratory (INL) to support development of the High Temperature Stream Electrolysis (HTSE) process. HTSE produces hydrogen from water using nuclear power and was selected by the Department of Energy (DOE) for integration with the Next Generation Nuclear Plant (NGNP). The first study was a reliability, availability and maintainability (RAM) analysis to identify critical areas for technology development based on available information regarding expected component performance. An HTSE process baseline flowsheet at commercial scale was used as a basis. The NGNP project also established a process and capability to perform future RAM analyses. The analysis identified which components had the greatest impact on HTSE process availability and indicated that the HTSE process could achieve over 90% availability. The second study developed a series of life-cycle cost estimates for the various scale-ups required to demonstrate the HTSE process. Both studies were useful in identifying near- and long-term efforts necessary for successful HTSE process deployment. The size of demonstrations to support scale-up was refined, which is essential to estimate near- and long-term cost and schedule. The life-cycle funding profile, with high-level allocations, was identified as the program transitions from experiment scale R&D to engineering scale demonstration.

Charles V. Park; Emmanuel Ohene Opare, Jr.

2011-06-01T23:59:59.000Z

205

DOE-RL Integrated Safety Management System Description  

SciTech Connect

The purpose of this Integrated Safety Management System Description (ISMSD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This ISMSD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this ISMSD contains some information on contractor processes and procedures which then require RL approval or oversight. This ISMSD does not purport to contain a full description of the contractors' ISM System Descriptions.

SHOOP, D.S.

2000-09-01T23:59:59.000Z

206

A systems engineering primer for every engineer and scientist  

E-Print Network (OSTI)

Released system specification. - FDD: Updates - The range ofcontrol board established. - FDD: Baselined and controlledand external interfaces. - FDD: Final ICD. - All physical

Edwards, William R.

2001-01-01T23:59:59.000Z

207

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Exploration Methods for Engineered Geothermal Systems Exploration Methods for Engineered Geothermal Systems Through Integrated Geophysical, Geologic and Geochemical Interpretation the Seismic Analysis Component Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Development of Exploration Methods for Engineered Geothermal Systems Through Integrated Geophysical, Geologic and Geochemical Interpretation the Seismic Analysis Component Authors Ileana M. Tibuleac, Joe Iovenitti, David von Seggern, Jon Sainsbury, Glenn Biasi and John G. Anderson Conference Stanford Geothermal Conference; Stanford University; 2013 Published PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University;, 2013 DOI Not Provided Check for DOI availability: http://crossref.org

208

Engine having a high pressure hydraulic system and low pressure lubricating system  

DOE Patents (OSTI)

An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2000-01-01T23:59:59.000Z

209

DOE and Industry Showcase New Control Systems Security Technologies at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development » Energy Delivery Systems Technology Development » Energy Delivery Systems Cybersecurity » Control Systems Security News Archive » DOE and Industry Showcase New Control Systems Security Technologies at DistribuTECH DOE and Industry Showcase New Control Systems Security Technologies at DistribuTECH DistribuTECH Conference Tuesday-Thursday, March 23-25, 2010 Tampa Convention Center Booth #231 Tampa, FL Join the Department of Energy and its industry partners as they showcase six new products and technologies designed to secure the nation's energy infrastructure from cyber attack on Tuesday through Thursday, March 23-25. Visit Booth #231 at the DistribuTECH 2010 Conference & Exhibition in Tampa, FL, to see first-hand demonstrations of several newly commercialized control systems security products-each developed through a

210

Review of the Los Alamos National Laboratory Weapons Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Mechanical Engineers CFR Code of Federal Regulations CSE Cognizant System Engineer DOE U.S. Department of Energy dp Differential Pressure DSA Documented Safety Analysis HSS...

211

Task-specific information retrieval systems for software engineers  

Science Conference Proceedings (OSTI)

This paper discusses the development of task-specific information retrieval systems for software engineers. We discuss how software engineers interact with information and information retrieval systems and investigate to what extent a domain-specific ... Keywords: Collaborative filtering, Contextualization of information retrieval, Domain-specific information retrieval, Implicit feedback

Adam Grzywaczewski; Rahat Iqbal

2012-07-01T23:59:59.000Z

212

Energy Systems Division Ed Daniels, Division Director University of Chicago Review Energy Engineering and Systems Analysis November 18, 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Technology Research and Development Don Hillebrand, Energy Systems Division Director Secretary of Energy Advisory Board Meeting Energy Engineering and Systems Analysis April 2012 Argonne's Transportation Research Is Focused on DOE's Energy Resources Goal  Improving energy productivity across all sectors, including transportation, is a goal in the Energy Security Theme of the DOE Strategic Plan.  A strategy to meet that goal is to develop technologies that enable cars and trucks to be fuel efficient, while remaining cost and performance competitive. 2 Market Snapshot - Auto Sales have Recovered Efficiency reduces oil use and CO2 emissions

213

Cooling system for an automobile engine  

SciTech Connect

This patent describes a cooling system for an automobile engine having a water jacket, a radiator, a water pump, and a thermostat housing, comprising: a first passage communicating an upper outlet of the water jacket with an inlet of the radiator provided at a lower portion, a second passage communicating an upper outlet of the radiator with an inlet of the water pump and having the thermostat housing at the upstream of the pump; an outlet of the pump communicated with a lower inlet of the water jacket; a bypass connected between the first passage and the thermostat housing; a thermostat comprising a thermo-sensitive device, a first valve and a second valve disposed in the thermostat housing both the valves operatively connect to the thermo-sensitive device, so that the first valve closes the second passage and the second valve opens the bypass; the thermo-sensitive device disposes in the bypass and the first and second valves operate by the operation of the thermo-sensitive device.

Kuze, Y.

1987-07-14T23:59:59.000Z

214

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Development of Exploration Methods for Engineered Geothermal Systems Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Abstract N/A Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Citation U.S. Department of Energy. Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and

215

EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Idaho National Engineering Laboratory Sewer System Upgrade 7: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho SUMMARY This EA evaluates the environmental impacts of a proposal to upgrade the Sewer System at the U.S. Department of Energy's Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The proposed action would include activities conducted at the Central Facilities Area, Test Reactor Area, and the Containment Test Facility at the Test Area North at INEL. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 1, 1994 EA-0907: Finding of No Significant Impact Idaho National Engineering Laboratory Sewer System Upgrade Project

216

DOE technology information management system database study report  

SciTech Connect

To support the missions of the US Department of Energy (DOE) Special Technologies Program, Argonne National Laboratory is defining the requirements for an automated software system that will search electronic databases on technology. This report examines the work done and results to date. Argonne studied existing commercial and government sources of technology databases in five general areas: on-line services, patent database sources, government sources, aerospace technology sources, and general technology sources. First, it conducted a preliminary investigation of these sources to obtain information on the content, cost, frequency of updates, and other aspects of their databases. The Laboratory then performed detailed examinations of at least one source in each area. On this basis, Argonne recommended which databases should be incorporated in DOE`s Technology Information Management System.

Widing, M.A.; Blodgett, D.W.; Braun, M.D.; Jusko, M.J.; Keisler, J.M.; Love, R.J.; Robinson, G.L. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.

1994-11-01T23:59:59.000Z

217

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

systems (typically Stirling engines or CPV modules) forheat engines including Brayton, Ericsson, and Stirling, thefocal-mounted engine (e.g. dish-Stirling) by decoupling the

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

218

System Level Analysis of Hydrogen Storage Options - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Rajesh K. Ahluwalia (Primary Contact), T. Q. Hua, J-K Peng, Hee Seok Roh, and Romesh Kumar Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-5979 Email: walia@anl.gov DOE Manager HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov Start Date: October 1, 2004 Projected End Date: September 30, 2014 Objective The overall objective of this effort is to support DOE with independent system level analyses of various H 2 storage approaches, to help to assess and down-select options, and to determine the feasibility of meeting DOE targets. Fiscal Year (FY) 2012 Objectives Model various developmental hydrogen storage systems. * Provide results to Hydrogen Storage Engineering Center *

219

Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research  

Science Conference Proceedings (OSTI)

The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

Bickford, D.F.

1993-12-31T23:59:59.000Z

220

Ocean Engineering and Energy Systems | Open Energy Information  

Open Energy Info (EERE)

and Energy Systems Jump to: navigation, search Name Ocean Engineering and Energy Systems Sector Marine and Hydrokinetic Website http:www.ocees.com Region United States LinkedIn...

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SYSTEMS ENGINEERING FOR HIGH PERFORMANCE COMPUTING SOFTWARE: THE HDDA DAGH  

E-Print Network (OSTI)

SYSTEMS ENGINEERING FOR HIGH PERFORMANCE COMPUTING SOFTWARE: THE HDDA DAGH INFRASTRUCTURE systems implementing high performance computing applications. The example which drives the creation in the context of high performance computing software. Applicationof these principleswill be seen

Parashar, Manish

222

Proposed Renewal of the Harvard/MIT DOE GTL Systems Biology Center 2007-2012  

E-Print Network (OSTI)

systems, thermodynamic cycles, combustion and thermochemical analysis, reciprocating engines, gas turbine-time simulations. Emphasizes developing effective interactive media programs for all engineering disciplines

Church, George M.

223

Architecting the System of Systems Enterprise: Enabling Constructs and Methods from the Field of Engineering Systems  

E-Print Network (OSTI)

Engineering systems is a field of scholarship focused on developing fundamental theories and methods to address the challenges of large-scale complex systems in context of their socio-technical environments. The authors ...

Rhodes, Donna H.

224

Solid fuel combustion system for gas turbine engine  

DOE Patents (OSTI)

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

225

Algae Biofuels and Future Engineers Kimberley Ogden is UAs principal investigator on a $44million DOE biofuels  

E-Print Network (OSTI)

Algae Biofuels and Future Engineers Kimberley Ogden is UAs principal investigator on a $44million DOE biofuels project and an NSF-funded STEM educator. The National Alliance for Advanced Biofuels totaling more than $44 million for algal Biofuels And bio products research and development. Kim Ogden

Wong, Pak Kin

226

Microsoft Word - DOE-ID-11-002 DOE Direct cooling system [1].doc  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 SECTION A. Project Title: Cooling System for Substation Bldg CPP-613 SECTION B. Project Description The scope of work includes the purchase and installation of an Energy Star compliant 208V three phase staged cooling system capable of maintaining CPP-613 at a temperature below 85 degrees F. The system shall be designed to operate at an elevation of 5000 feet with outside environmental temperatures ranging from -20°F to 100°F. The cooling system shall be pad mounted on the east side of the building between the two cable feeds. The concrete pad will be provided by DOE. The scope of work includes purchasing an appropriately sized cooling system, placing the unit on the concrete pad, making all necessary wall penetrations into the building, installing ductwork and air handlers inside the building, and installing a

227

FEED SYSTEMS WWW.NETL.DOE.GOV Gasification Systems Program Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

FEED SYSTEMS WWW.NETL.DOE.GOV Gasification Systems Program Research and Development Areas are in Color. Feed Systems R&D Areas are Brighter. Grey sections are part of other closely...

228

Software Engineering for Automotive Systems: A Roadmap  

Science Conference Proceedings (OSTI)

The first pieces of software were introduced into cars in 1976. By 2010, premium class vehicles are expected to contain one gigabyte of on-board software. We present research challenges in the domain of automotive software engineering.

Alexander Pretschner; Manfred Broy; Ingolf H. Kruger; Thomas Stauner

2007-05-01T23:59:59.000Z

229

Industrial & Systems Engineering University of Washington  

E-Print Network (OSTI)

to lift and move heavy items Expedite global services #12;Industrial Engineers are everywhere! Roger internships/jobs · Consulting · Accenture, Ernst & Young Consulting, Siemens · Manufacturing · Boeing, TMX

Anderson, Richard

230

Engineering healthcare as a service system  

Science Conference Proceedings (OSTI)

Engineering has and will continue to have a critical impact on healthcare; the application of technology-based techniques to biological problems can be defined to be technobiology applications. This paper is primarily focused on applying the technobiology ...

James M. Tien; Pascal J. Goldschmidt-Clermont

2009-01-01T23:59:59.000Z

231

DOE Hydrogen Analysis Repository: Hydrogen Systems Analysis, Education, and  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis, Education, and Outreach Systems Analysis, Education, and Outreach Project Summary Full Title: Hydrogen Systems Analysis, Education, and Outreach Project ID: 89 Principal Investigator: Faith Klareich Brief Description: Sentech undertook systems analysis and technical/economic assessments to allow DOE to define the strategic goals of the hydrogen R&D program. Keywords: Technoeconomic analysis; education Purpose Provide data that allow DOE to define the strategic goals of the hydrogen R&D program. Performer Principal Investigator: Faith Klareich Organization: Sentech, Inc. Address: 7475 Wisconsin Avenue, Suite 900 Bethesda , MD 20814 Telephone: 240-223-5500 Period of Performance Start: August 1996 End: September 1997 Project Description Type of Project: Analysis Category: Hydrogen Fuel Pathways

232

Disposal Systems Evaluations and Tool Development - Engineered Barrier  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Systems Evaluations and Tool Development - Engineered Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation The engineered barrier system (EBS) plays a key role in the long-term isolation of nuclear waste in geological repository environments. This report focuses on the progress made in the evaluation of EBS design concepts, assessment of clay phase stability at repository-relevant conditions, thermodynamic database development for cement and clay phases, and THMC coupled phenomena along with the development of tools and methods to examine these processes. This report also documents the advancements of the Disposal System Evaluation Framework (DSEF) for the development of

233

Systems Engineering and Integration: Decision Applications: D, Decision  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Engineering and Integration Home Systems Engineering and Integration Home CONTACTS Group Leader Julianna Fessenden-Rahn Deputy Group Leader Vacant Office Administrator Lorraine Johnson d division logo image Systems Engineering and Integration The Systems Engineering & Integration Group (D-3) helps policy-makers anticipate and respond to constantly evolving weapons of mass destruction (WMD) and natural threats on local and global scales-from chemical, biological, radiological, and explosive (CBRE) events to catastrophic natural disasters. We provide scientific, systematic, and integrated decision support in these areas: prevention preparation characterization response recovery public health protection We develop and deploy comprehensive, integrated CBRE and wide-area surveillance systems, using system-of-systems architectures and technologies. reactor

234

DOE G 430.1-1 Chp 25, Guidelines for Engineering, Design, and Inspection Costs  

Directives, Delegations, and Requirements

This chapter addresses engineering, design, and inspection activities that begin with preliminary design (Title I).

1997-03-28T23:59:59.000Z

235

Demonstration of a NOx Control System for Stationary Diesel Engines  

Science Conference Proceedings (OSTI)

California has over 26,000 stationary diesel engines, mostly in emergency power and direct drive applications. In the past few years, various incentive programs in the state have resulted in the change-out of older, dirtier engines for newer, cleaner models or replacement with electric motors. Emissions reductions can be accomplished by equipping existing engines with controls for nitrogen oxides (NOx) and particulate matter (PM). The retrofit systems currently available, however, either are not cost com...

2005-06-30T23:59:59.000Z

236

Panel: How Can Software Reliability Engineering (SRE) Help System Engineers and Software Architects?  

Science Conference Proceedings (OSTI)

This panel session will discuss how Systems Engineers and Software Architects can benefit porn using SRE. Members of the panel will discuss how their respective organizations use (or anticipate using) SRE earlier in the software development life-cycle. ...

Panel chair; W. Ehrlich; J. Musa; P. Mangan; R. Yacobellis

1996-10-01T23:59:59.000Z

237

DOE Hydrogen Analysis Repository: Powertrain Systems Analysis Toolkit  

NLE Websites -- All DOE Office Websites (Extended Search)

Powertrain Systems Analysis Toolkit (PSAT) Powertrain Systems Analysis Toolkit (PSAT) Project Summary Full Title: Powertrain Systems Analysis Toolkit (PSAT) Project ID: 122 Principal Investigator: Aymeric Rousseau Brief Description: PSAT is a forward-looking model that simulates fuel economy and performance in a realistic manner -- taking into account transient behavior and control system characteristics. It can simulate an unrivaled number of predefined configurations (conventional, electric, fuel cell, series hybrid, parallel hybrid, and power split hybrid). Keywords: Hybrid electric vehicles (HEV); fuel cell vehicles (FCV); vehicle characteristics Purpose Simulate performance and fuel economy of advanced vehicles to support U.S. DOE R&D activities Performer Principal Investigator: Aymeric Rousseau

238

ENGINEERED BARRIER SYSTEM FEATURES, EVENTS AND PROCESSES  

Science Conference Proceedings (OSTI)

The purpose of this report is to evaluate and document the inclusion or exclusion of engineered barrier system (EBS) features, events, and processes (FEPs) with respect to models and analyses used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for exclusion screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs addressed in this report deal with those features, events, and processes relevant to the EBS focusing mainly on those components and conditions exterior to the waste package and within the rock mass surrounding emplacement drifts. The components of the EBS are the drip shield, waste package, waste form, cladding, emplacement pallet, emplacement drift excavated opening (also referred to as drift opening in this report), and invert. FEPs specific to the waste package, cladding, and drip shield are addressed in separate FEP reports: for example, ''Screening of Features, Events, and Processes in Drip Shield and Waste Package Degradation'' (BSC 2005 [DIRS 174995]), ''Clad Degradation--FEPs Screening Arguments (BSC 2004 [DIRS 170019]), and Waste-Form Features, Events, and Processes'' (BSC 2004 [DIRS 170020]). For included FEPs, this report summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). This report also documents changes to the EBS FEPs list that have occurred since the previous versions of this report. These changes have resulted due to a reevaluation of the FEPs for TSPA-LA as identified in Section 1.2 of this report and described in more detail in Section 6.1.1. This revision addresses updates in Yucca Mountain Project (YMP) administrative procedures as they pertain to this report; the current procedures are addressed in Section 2. This revision also addresses updates to the technical basis in supporting analysis and model reports and corroborative documentation, as presented in Sections 4 and 6 of this report. Finally, Sections 4, 5, and 6 of this report provide additional information pertaining to the relevant FEPs-related Acceptance Criteria presented in ''Yucca Mountain Review Plan, Final Report'' (YMRP) (NRC 2003 [DIRS 163274], Sections 2.2.1.2.1.3 and 2.2.1.3.3.3).

Jaros, W.

2005-08-30T23:59:59.000Z

239

Diagnostic and Advisory Systems - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostic and Advisory Systems Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning SystemsProcess...

240

IS&JCH040117 Software Engineering. Chapter 2 Slide 0 of 46 Computer-Based System Engineering  

E-Print Network (OSTI)

and people ©IS&JCH040117 Software Engineering. Chapter 2 Slide 1 of 46 Objectives To explain why software in the system design process To explain system engineering and system procurement processes ©IS&JCH040117©IS&JCH040117 Software Engineering. Chapter 2 Slide 0 of 46 Chapter 2 Computer-Based System

Huang, Jung-Chang

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Quality Assurance: Fundamentals of the DOE Quality System  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamentals of the DOE Quality System Fundamentals of the DOE Quality System The quality assurance program is a management system involving all organizational components and should not be regarded as the sole domain of any single group. The Order and Rule reflects the concept that all work is a process that can be planned, performed, assessed, and improved. The basic requirements are broken into three categories: MANAGEMENT PERFORMANCE ASSESSMENT This format permits managers, those performing the work, and those assessing the planning implementation, and results of the work to focus on their unique responsibilities in carrying out the provisions of the quality assurance program. The three categories capture the range of activities common to all work, from organizing and staffing to assessing results and

242

Data System Sciences & Engineering Group - Contact Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us If you have any questions or comments regarding any of our research and development activities, how to work with the Data Systems Sciences & Engineering Group, or the content of this website, please contact: Robert R. Burleson Richard M. Lusk Group Leader, Data Systems Sciences & Engineering Group Computational Sciences and Engineering Division Oak Ridge National Laboratory P.O. Box 2008, MS-6085 Oak Ridge, Tennessee 37831-6085 Office: (865) 574-8864 E-mail: luskrm@ornl.gov If you need to contact individuals in the Group or need general information, contact: Rochelle Coats Data Systems Sciences & Engineering Group Secretary, Computational Sciences and Engineering Division Oak Ridge National Laboratory P.O. Box 2008, MS-6085 Oak Ridge, Tennessee 37831-6085

243

Comparison of Compensation paid scientists and engineers in research and development. DOE National Survey of Compensation, 1980 data  

Science Conference Proceedings (OSTI)

Several compensation characteristics of DOE contractor-operated laboratories are compared with those reported in the 1980 National Survey of Compensation Paid Scientists and Engineers Engaged in Research and Development Activities. The data are as of August 1, 1980. A total of 339 establishments (industry, Federal laboratories, Federal contract research centers, nonprofit research institutes, educational institutions) and 18 DOE laboratories are included in the survey. Characteristics of DOE laboratories such as salaries by field of degree, maturity, and management levels are shown and are compared with the National Survey patterns. Approximately 8 out of 10 S and E's at DOE Laboratories (84.8%) held a degree in one of four fields: engineering, chemistry, physics, or mathematics/statistics. In the National Survey, 78.5% of all S and E's held degrees in these fields. The average DOE Laboratory S and E salary increased 6.6% between 1979 and 1980, while the average salary in the National Survey advanced by 7.5%. The National Survey percentage increase over the year was greater at each degree level than among DOE Laboratories.

Not Available

1981-01-01T23:59:59.000Z

244

Detection & Diagnostic Systems - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Departments > Detection & Diagnostic Departments > Detection & Diagnostic Systems DEPARTMENTS Engineering Analysis Nuclear Systems Analysis Research & Test Reactor Nonproliferation and National Security Detection & Diagnostic Systems Engineering Development & Applications Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Detection & Diagnostic Systems Bookmark and Share The Detection & Diagnostic Systems Department conducts research and development related to instruments and non-destructive evaluation (NDE) techniques for characterization of materials and determination of system parameters related to different energy systems (including fossil,

245

Joint DOE/industry photovoltaic system reliability program  

DOE Green Energy (OSTI)

To achieve the lowest life-cycle cost (LCC), photovoltaic (PV) systems must have the optimum mix of low first cost, low operation and maintenance (O&M) cost, and high availability. Additionally, the long-term health of the photovoltaic (PV) industry requires that PV systems work as expected. Although PV modules now enjoy high reliability due to a significant multi-year effort by both the U.S. Department of Energy (DOE) and industry, the same is not always true of PV systems. Even for systems that do operate reliably, customers, suppliers, and manufacturers can benefit from knowing what O&M expenses to expect. This knowledge will reduce technology risk to the customer and improve likelihood of commitment to PV projects. System integrators and utilities may benefit from O&M cost information to improve system designs, to properly price service agreements and warranties, and to optimize maintenance strategies. The DOE and component manufacturers may benefit from identifying cost drivers to optimally focus research and quality assurance resources to improve product reliability. This paper discusses the first of five tasks identified for this project, quantifying system reliability and life cycle cost by collecting, analyzing and reporting data on PV system reliability and cost. Industry participants collect the necessary O&M data on systems they are monitoring. Sandia provides support in the form of assistance identifying data that needs to be collected, helping develop forms or databases to collect the data, and analyzing the data.

Maish, A.B.; Atcitty, C. [Sandia National Labs., NM (United States); Hester, S. [Utility Photo Voltaic Group, Washington, DC (United States)] [and others

1997-06-01T23:59:59.000Z

246

Information Science, Systems & Technology -Undergraduate (College of Engineering ONLY)  

E-Print Network (OSTI)

by Information Science undergraduate students from the Class of 2011 in the College of Engineering. Historical Responded: 10 Response Rate: 100% 2011 Graduate and Professional Schools Cornell University MENG Civil Analyst Baltimore MD Factset Research Systems, Inc. Software Engineer Stanford CT General Electric

Lipson, Michal

247

Engineering concerns in solar system design and operation  

SciTech Connect

This paper has been prepared to help architects and engineers avoid some of the problems which have typically been encountered in solar heating and cooling installations. The primary focus of the paper is on engineering concerns associated with the startup and operation of solar systems. Recommendations are also made regarding the design and installation phases to help in avoiding these problems.

Easterly, J.L.

1979-03-01T23:59:59.000Z

248

On-Board Hydrogen Gas Production System For Stirling Engines  

DOE Patents (OSTI)

A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

Johansson, Lennart N. (Ann Arbor, MI)

2004-06-29T23:59:59.000Z

249

OCRWM Systems Engineering Management Plan (SEMP). Revision 3  

SciTech Connect

The Office of Civilian Radioactive Waste Management Systems Engineering Management Plan (OCRWM SEMP) specifies the technical management approach for the development of the waste management system, and specifies the approach for the development of each of the system elements -- the waste acceptance system, the transportation system, the Monitored Retrievable Storage (MRS) facility, and the mined geologic disposal system, which includes site characterization activity. The SEMP also delineates how systems engineering will be used by OCRWM to describe the system development process; it identifies responsibilities for its implementation, and specifies the minimum requirements for systems engineering. It also identifies the close interrelationship of system engineering and licensing processes. This SEMP, which is a combined OCRWM and M&O SEMP, is part of the top-level program documentation and is prepared in accordance with the direction provided in the Program Management System Manual (PMSM). The relationship of this document to other top level documents in the CRWMS document hierarchy is defined in the PMSM. A systems engineering management plan for each project, which specifies the actions to be taken in implementing systems engineering at the project level, shall be prepared by the respective project managers. [``Program`` refers to the CRWMS-wide activity and ``project`` refers to that level responsible for accomplishing the specific activities of that segment of the program.] The requirements for the project level SEMPs are addressed in Section 4.2.2.2. They represent the minimum set of requirements, and do not preclude the broadening of systems engineering activities to meet the specific needs of each project.

1994-06-01T23:59:59.000Z

250

MS in Mechanical Engineering with a certificate in Energy Systems Engineering  

E-Print Network (OSTI)

Energy Conversion Systems ME 401 Refrigeration & Cryogenics ME 402 Design of Thermal Systems ME 502 sections) Required (1 course) ME 401 Refrigeration & Cryogenics ME 402 Design of Thermal Systems ME 502 elective section. Required (2 courses) ME 501 Combustion Fundamentals ME 503 Design of Int. Comb. Engines

Thomas, Brian G.

251

Photosynthetic Systems | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Photosynthetic Systems Photosynthetic Systems Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Photosynthetic Systems Print Text Size: A A A RSS Feeds FeedbackShare Page This research area supports fundamental research on the biological conversion of solar energy to chemically stored forms of energy. Topics of study include light harvesting, exciton transfer, charge separation, transfer of reductant to carbon dioxide, as well as the biochemistry of carbon fixation and carbon storage. Emphasized areas are those involving strong intersection between biological sciences and energy-relevant

252

DOE directives: Improving contractor review and compliance systems  

Science Conference Proceedings (OSTI)

Department of Energy contractors are regulated by DOE directives. Rigorous and effective contractor administrative systems to review directives and document compliance are essential. WINCO recognized the need to improve its directives review system. Three areas have been addressed: Computerized tracking, documentation of the review itself--at the requirement rather then the directive level, and the role of the directives administrator. The result is a system that generates and captures information for use in the company rather than simply creating files and that attest to work accomplished.

Airmet, D.

1990-05-07T23:59:59.000Z

253

DOE G 413.3-10A, Earned Value Management System (EVMS)  

Directives, Delegations, and Requirements

This Guide provides approaches for implementing the Earned Value Management System (EVMS) requirements of DOE O 413.3B. Cancels DOE G 413.3-10.

2012-03-13T23:59:59.000Z

254

Comparison of compensation paid scientists and engineers in research and development: DOE National Survey of Compensation, 1982 data  

Science Conference Proceedings (OSTI)

Under a contract with the US Department of Energy, the Columbus Laboratories of Battelle conducts an annual salary survey entitled A National Survey of Compensation Paid to Scientists and Engineers engaged in Research and Development Activities. The 1982 report contained the results of its 15th annual survey and included data for five types of R and D establishments (sectors): Industry, Nonprofit Research Institutes, Federally Funded R and D Centers (referred to as Contract Research Centers), Federal Government Laboratories, and Educational Institutions. This study covers 18 DOE contractor-operated laboratories, 7 of which are included in the Contract Research Center sector of Battelle's National Survey. Each DOE Laboratory agreed that computer tapes of its submission, reflecting Survey input, would be made available to DOE for this study. The purpose of this study is to compare compensation and other characteristics of the DOE Laboratories with National Survey patterns.

Not Available

1983-01-01T23:59:59.000Z

255

Comparison of compensation paid scientists and engineers in research and development: DOE national survey of compensation, 1981 data  

Science Conference Proceedings (OSTI)

Under a contract with the US Department of Energy, the Columbus Laboratories of Battelle conducts an annual salary survey entitled A National Survey of Compensation Paid to Scientists and Engineers Engaged in Research and Development Activities. The 1981 report contained the results of its 14th annual survey and included data for five types of R and D establishments (sectors): Industry, Nonprofit Research Institutes, Federally Funded R and D Centers (referred to as Contract Research Centers), Federal Government Laboratories, and Educational Institutions. This study covers 18 DOE contractor-operated laboratories, 7 of which are included in the Contract Research Center sector of Battelle's National Survey. Each DOE Laboratory agreed that computer tapes of its submission, reflecting Survey input, would be made available to DOE for this study. The purpose of this study is to compare compensation and other characteristics of the DOE Laboratories with National Survey patterns.

Not Available

1982-01-01T23:59:59.000Z

256

DOE-RL Integrated Safety Management System Program Description  

SciTech Connect

The purpose of this Integrated Safety Management System (ISMS) Program Description (PD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This PD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this PD contains some information on contractor processes and procedures which then require RL approval or oversight.

SHOOP, D.S.

2000-06-29T23:59:59.000Z

257

Systems engineering identification and control of mixed waste technology development  

SciTech Connect

The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop technologies required to meet the Department`s commitments for treatment of mixed low-level and transuranic wastes. Waste treatment includes all necessary steps from generation through disposal. Systems engineering was employed to reduce programmatic risk, that is, risk of failure to meet technical commitments within cost and schedule. Customer needs (technology deficiencies) are identified from Site Treatment Plans, Consent Orders, ten year plans, Site Technical Coordinating Groups, Stakeholders, and Site Visits. The Technical Baseline, a prioritized list of technology deficiencies, forms the basis for determining which technology development activities will be supported by the MWFA. Technology Development Requirements Documents are prepared for each technology selected for development. After technologies have been successfully developed and demonstrated, they are documented in a Technology Performance Report. The Technology Performance Reports are available to any of the customers or potential users of the technology, thus closing the loop between problem identification and product development. This systematic approach to technology development and its effectiveness after 3 years is discussed in this paper.

Beitel, G.A.

1997-08-01T23:59:59.000Z

258

Does  

NLE Websites -- All DOE Office Websites (Extended Search)

Does Does the cellulose-binding module move on the cellulose surface? Yu-San Liu Æ Yining Zeng Æ Yonghua Luo Æ Qi Xu Æ Michael E. Himmel Æ Steve J. Smith Æ Shi-You Ding Received: 26 November 2008 / Accepted: 11 May 2009 / Published online: 19 June 2009 Ó Springer Science+Business Media B.V. 2009 Abstract Exoglucanases are key enzymes required for the efficient hydrolysis of crystalline cellulose. It has been proposed that exoglucanases hydrolyze cellulose chains in a processive manner to produce primarily cellobiose. Usually, two functional modules are involved in the processive mechanism: a catalytic module and a carbohydrate-binding module (CBM). In this report, single molecule tracking techniques were used to analyze the molecular motion of CBMs labeled with quantum dots (QDs) and bound to cellulose crystals. By tracking the single QD, we observed that the family 2 CBM from

259

6.033 Computer System Engineering (SMA 5501), Spring 2005  

E-Print Network (OSTI)

Topics on the engineering of computer software and hardware systems: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination ...

Balakrishnan, Hari

260

Enhanced Classifications of Engineered Paved Surfaces for Urban Systems Modeling  

Science Conference Proceedings (OSTI)

There is a greater need than ever for the ability to accurately model urban system impacts resulting around the planet. Rapid urbanization is transforming landscapes from vegetation to an engineered infrastructure and thus altering land cover and ...

Jay Golden; W. C. Chuang; W. L. Stefanov

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Dish/Engine Systems for Concentrating Solar Power  

Energy.gov (U.S. Department of Energy (DOE))

The dish/engine system is a concentrating solar power (CSP) technology that produces relatively small amounts of electricity compared to other CSP technologiestypically in the range of 3 to 25...

262

ESD.84 Engineering Systems Doctoral Seminar, Fall 2002  

E-Print Network (OSTI)

Examines core theory and contextual applications of the emerging field of Engineering Systems. The focus is on doctoral-level analysis of scholarship on key concepts such as complexity, uncertainty, fragility, and robustness, ...

Magee, Christopher

263

CONTROL OF DIESEL ENGINE UREA SELECTIVE CATALYTIC REDUCTION SYSTEMS.  

E-Print Network (OSTI)

??A systematic nonlinear control methodology for urea-SCR systems applicable for light-to-heavy-duty Diesel engine platforms in a variety of on-road, off-road, and marine applications is developed (more)

Hsieh, Ming-Feng

2010-01-01T23:59:59.000Z

264

ESD.83 Doctoral Seminar in Engineering Systems, Fall 2009  

E-Print Network (OSTI)

In establishing the Engineering Systems Division, MIT has embarked on a bold experiment bringing together diverse areas of expertise into what is designed to be a new field of study. In many respects, the full scale ...

Magee, Christopher L.

265

Engineering coherent control of quantum information in spin systems  

E-Print Network (OSTI)

Quantum Information Processing (QIP) promises increased efficiency in computation. A key step in QIP is implementing quantum logic gates by engineering the dynamics of a quantum system. This thesis explores the requirements ...

Hodges, Jonathan Stuart

2007-01-01T23:59:59.000Z

266

Concentrating Solar Power Dish/Engine System Basics | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

technologies-typically in the range of 3 to 25 kilowatts. Dishengine systems use a parabolic dish of mirrors to direct and concentrate sunlight onto a central engine that...

267

Platforms and real options in large-scale engineering systems  

E-Print Network (OSTI)

This thesis introduces a framework and two methodologies that enable engineering management teams to assess the value of real options in programs of large-scale, partially standardized systems implemented a few times over ...

Kalligeros, Konstantinos C., 1976-

2006-01-01T23:59:59.000Z

268

Stakeholder-assisted modeling and policy design for engineering systems  

E-Print Network (OSTI)

There is a growing realization that stakeholder involvement in decision-making for large- scale engineering systems is necessary and crucial, both from an ethical perspective, as well as for improving the chances of success ...

Mostashari, Ali, 1974-

2005-01-01T23:59:59.000Z

269

SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Requirements...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

system owners, project managers, and other information system development and maintenance professionals with guidance in identifying and planning requirements management...

270

Integrated Engineering and Economic Operation of Power Systems  

Science Conference Proceedings (OSTI)

The operations of the physical and market systems are now intertwined and mutually dependent. Engineering operations rely on wholesale markets to obtain essential resources; conversely, engineering operations support and facilitate these markets. Methods that in the past focused narrowly on one aspect must now be enhanced and extended to cope with the tight interconnections among aspects of the overall system. These considerations in daily operations also apply to long-term planning and investments in ne...

2004-03-23T23:59:59.000Z

271

Two-tank working gas storage system for heat engine  

DOE Patents (OSTI)

A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

Hindes, Clyde J. (Troy, NY)

1987-01-01T23:59:59.000Z

272

Mechanical Systems Qualification Standard DOE-STD-1161-2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mechanical Systems Mechanical Systems Qualification Standard DOE-STD-1161-2008 August 2012 Reference Guide The Functional Area Qualification Standard References Guides are developed to assist operators, maintenance personnel, and the technical staff in the acquisition of technical competence and qualification within the Technical Qualification Program (TQP). Please direct your questions or comments related to this document to Patrick C. Romero, Deputy TQP Manager, Office of Leadership and Career Management, NNSA Albuquerque Complex, 505.845.6371. This page is intentionally blank. ii Table of Contents FIGURES ....................................................................................................................................... v TABLES ....................................................................................................................................... vii

273

EnergyCS Inc Energy Control Systems Engineering Inc | Open Energy...  

Open Energy Info (EERE)

EnergyCS Inc Energy Control Systems Engineering Inc Jump to: navigation, search Name EnergyCS Inc (Energy Control Systems Engineering, Inc) Sector Services Product String...

274

Engineering Design Inspection and Administrative EDIA | U.S. DOE Office of  

Office of Science (SC) Website

EDIA EDIA Project Assessment (OPA) OPA Home About Project Management Processes and Procedures Cost & Contingency EDIA Escalation Rates Earned Value Management System (EVMS) Certifications Awards Lessons Learned Tools & Resources SC Projects Other Links SC Federal Project Directors (FPD) and FPD Resources Contact Information Project Assessment U.S. Department of Energy SC-28/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4840 F: (301) 903-8520 E: sc.opa@science.doe.gov Project Management EDIA Print Text Size: A A A RSS Feeds FeedbackShare Page (June 2012) The Office of Project Assessment conducted a survey of project EDIA cost data. Below is the summary of the survey results (May 2012) of project EDIA cost as a percent of construction cost (R&D and Commissioning and Testing

275

Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report Site Visit Report Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System INTRODUCTION AND OVERVIEW This report documents the results of the Office of Health, Safety and Security's (HSS) review of a safety system oversight (SSO) assessment of the Los Alamos National Laboratory (LANL) Weapons Engineering Tritium Facility (WETF) tritium gas handling system (TGHS). The assessment evaluated the TGHS's ability to perform as required by safety bases and other applicable requirements. The assessment was sponsored by the U.S. Department of Energy (DOE) Los Alamos Site Office (LASO) and was conducted October 25 - November 5, 2010. LASO was the overall lead organization for the evaluation, which included independent

276

Abstract Tracking System | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Archives » Abstract Tracking System Archives » Abstract Tracking System Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Archives Abstract Tracking System Print Text Size: A A A RSS Feeds FeedbackShare Page The Division of Materials Sciences and Engineering (DMSE) within the Office of Basic Energy Sciences has entered the summaries of its FY 2005 - FY 2007

277

Engineered Osmosis for Energy Efficient Separations: Optimizing Waste Heat Utilization FINAL SCIENTIFIC REPORT DOE F 241.3  

SciTech Connect

The purpose of this study is to design (i) a stripper system where heat is used to strip ammonia (NH{sub 3}) and carbon dioxide (CO{sub 2}) from a diluted draw solution; and (ii) a condensation or absorption system where the stripped NH{sub 3} and CO{sub 2} are captured in condensed water to form a re-concentrated draw solution. This study supports the Industrial Technologies Program of the DOE Office of Energy Efficiency and Renewable Energy and their Industrial Energy Efficiency Grand Challenge award solicitation. Results from this study show that stimulated Oasys draw solutions composed of a complex electrolyte solution associated with the dissolution of NH{sub 3} and CO{sub 2} gas in water can successfully be stripped and fully condensed under standard atmospheric pressure. Stripper bottoms NH{sub 3} concentration can reliably be reduced to < 1 mg/L, even when starting with liquids that have an NH{sub 3} mass fraction exceeding 6% to stimulate diluted draw solution from the forward osmosis membrane component of the process. Concentrated draw solution produced by fully condensing the stripper tops was show to exceed 6 M-C with nitrogen-to-carbon (N:C) molar ratios on the order of two. Reducing the operating pressure of the stripper column serves to reduce the partial vapor pressure of both NH{sub 3} and CO{sub 2} in solution and enables lower temperature operation towards integration of industrial low-grade of waste heat. Effective stripping of solutes was observed with operating pressures as low as 100 mbar (3-inHg). Systems operating at reduced pressure and temperature require additional design considerations to fully condense and absorb these constituents for reuse within the Oasys EO system context. Comparing empirical data with process stimulation models confirmed that several key parameters related to vapor-liquid equilibrium and intrinsic material properties were not accurate. Additional experiments and refinement of material property databases within the chosen process stimulation software was required to improve the reliability of process simulations for engineering design support. Data from experiments was also employed to calculate critical mass transfer and system design parameters (such as the height equivalent to a theoretical plate (HETP)) to aid in process design. When measured in a less than optimal design state for the stripping of NH{sub 3} and CO{sub 2} from a simulated dilute draw solution the HETP for one type of commercial stripper packing material was 1.88 ft/stage. During this study it was observed that the heat duty required to vaporize the draw solution solutes is substantially affected by the amount of water boilup also produced to achieve a low NH{sub 3} stripper bottoms concentration specification. Additionally, fluid loading of the stripper packing media is a critical performance parameter that affects all facets of optimum stripper column performance. Condensation of the draw solution tops vapor requires additional process considerations if being conducted in sub-atmospheric conditions and low temperature. Future work will focus on the commercialization of the Oasys EO technology platform for numerous applications in water and wastewater treatment as well as harvesting low enthalpy energy with our proprietary osmotic heat engine. Engineering design related to thermal integration of Oasys EO technology for both low and hig-grade heat applications is underway. Novel thermal recovery processes are also being investigated in addition to the conventional approaches described in this report. Oasys Water plans to deploy commercial scale systems into the energy and zero liquid discharge markets in 2013. Additional process refinement will lead to integration of low enthalpy renewable heat sources for municipal desalination applications.

NATHAN HANCOCK

2013-01-13T23:59:59.000Z

278

DOE Hydrogen Analysis Repository: Distributed Hydrogen Fueling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Hydrogen Fueling Systems Analysis Distributed Hydrogen Fueling Systems Analysis Project Summary Full Title: H2 Production Infrastructure Analysis - Task 1: Distributed Hydrogen Fueling Systems Analysis Project ID: 78 Principal Investigator: Brian James Keywords: Hydrogen infrastructure; costs; methanol; hydrogen fueling Purpose As the DOE considers both direct hydrogen and reformer-based fuel cell vehicles, it is vital to have a clear perspective of the relative infrastructure costs to supply each prospective fuel (gasoline, methanol, or hydrogen). Consequently, this analysis compares these infrastructure costs as well as the cost to remove sulfur from gasoline (as will most likely be required for use in fuel cell systems) and the cost implications for several hydrogen tank filling options. This analysis supports Analysis

279

DOE Hydrogen Analysis Repository: Hydrogen Storage Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Systems Analysis Storage Systems Analysis Project Summary Full Title: System Level Analysis of Hydrogen Storage Options Project ID: 202 Principal Investigator: Rajesh K. Ahluwalia Keywords: Hydrogen storage; compressed hydrogen tanks Purpose ANL is developing models to understand the characteristics of storage systems based on approaches with unique characteristics (thermal energy and temperature of charge and discharge, kinetics of the physical and chemical process steps involved) and to evaluate their potential to meet DOE targets for on-board applications. Performer Principal Investigator: Rajesh K. Ahluwalia Organization: Argonne National Laboratory (ANL) Address: 9700 S. Cass Ave. Argonne, IL 60439 Telephone: 630-252-5979 Email: walia@anl.gov Additional Performers: T.Q. Hua, Argonne National Laboratory; Romesh Kumar, Argonne National Laboratory; J-C Peng, Argonne National Laboratory

280

UMCP-BG and E collaboration in nuclear power engineering in the framework of DOE-Utility Nuclear Power Engineering Education Matching Grant Program  

SciTech Connect

The DOE-Utility Nuclear Power Engineering Education Matching Grant Program has been established to support the education of students in Nuclear Engineering Programs to maintain a knowledgeable workforce in the United States in order to keep nuclear power as a viable component in a mix of energy sources for the country. The involvement of the utility industry ensures that this grant program satisfies the needs and requirements of local nuclear energy producers and at the same time establishes a strong linkage between education and day-to-day nuclear power generation. As of 1997, seventeen pairs of university-utility partners existed. UMCP was never a member of that group of universities, but applied for the first time with a proposal to Baltimore Gas and Electric Company in January 1999 [1]. This proposal was generously granted by BG&E [2,3] in the form of a gift in the amount of $25,000 from BG&E's Corporate Contribution Program. Upon the arrival of a newly appointed Director of Administration in the Department of Materials and Nuclear Engineering, the BG&E check was deposited into the University's Maryland Foundation Fund. The receipt of the letter and the check enabled UMCP to apply for DOE's matching funds in the same amount by a proposal.

Wolfe, Lothar PhD

2000-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE  

Gasoline and Diesel Fuel Update (EIA)

DOE DOE /E/A- 0202( 83//Q J Sh or t-T er m En er gy O ut lo ok a to m Quar terly Proje ction s Febru ary 1983 Ene rgy Info rma tion Adm inist ratio n Was hing ton, D.C. t rt jrt .or t lor t lor t .lor t- ior t- ior t <.o rt ort . m .er m -Te rm -Te rm -Te rm -Te rm -Te rm -Te rm -Te rm -Te rm -Te rm -Te rm -Te rm -Te rm -T erm -T erm -T erm Nrm ue rgy En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y ^n erg y Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Ou tlo ok Sh ort -T erm 1 Sh ort -T erm Sh ort -T erm Sh ort -T erm Sh ort -T erm Sh ort -T erm Sh ort -T erm Sh ort -T erm Sh ort -T erm Sh ort -T erm Sh ort -T erm Sh ort -T erm

282

Engineering Better Plants for Biofuels | U.S. DOE Office of Science...  

Office of Science (SC) Website

content was much greater. The resulting plants were viable and grew normally. When biomass from these engineered plants was subjected to enzymatic digestion, more sugars were...

283

Systems/Process Monitoring, Diagnostics and Control - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities > Nuclear Systems Capabilities > Nuclear Systems Technologies > Systems/Process Monitoring, Diagnostics and Control Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning Systems/Process Monitoring, Diagnostics and Control Overview Process Monitoring & Signal Validation Diagnostic & Advisory Systems Advanced (AI-based) Nonlinear Controllers for Industrial Processes Artificial intelligence Other Capabilities Work with Argonne Contact us For Employees Site Map Help Systems/Process Monitoring, Diagnostics and Control Bookmark and Share Systems/Process Monitoring, Diagnostics and Control Systems/Process Monitoring, Diagnostics and Control. Click on image to view larger image. The goal of the Nuclear Engineering Division's research on advanced

284

Linear hydraulic drive system for a Stirling engine  

SciTech Connect

A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible. 2 figs.

Walsh, M.M.

1984-02-21T23:59:59.000Z

285

Linear hydraulic drive system for a Stirling engine  

DOE Patents (OSTI)

A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

Walsh, Michael M. (Schenectady, NY)

1984-02-21T23:59:59.000Z

286

Standardized DOE Spent Nuclear Fuel Canister and Transportation System for Shipping to the National Repository  

SciTech Connect

The U.S.Department of Energys (DOE) National Spent Nuclear Fuel Program (NSNFP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), has been chartered with the responsibility for developing spent nuclear fuel (SNF) standardized canisters and a transportation cask system for shipping DOE SNF to the national repository. The mandate for this development is outlined in the Memorandum of Agreement for Acceptance of Department of Energy Spent Nuclear Fuel and High-Level Radioactive Waste that states, EM shall design and fabricate DOE SNF canisters for shipment to RW. (1) It also states, EM shall be responsible for the design, NRC certification, and fabrication of the transportation cask system for DOE SNF canisters or bare DOE SNF in accordance with 10 CFR Part 71. (2) In fulfillment of these requirements, the NSNFP has developed four SNF standardized canister configurations and has conceptually designed a versatile transportation cask system for shipping the canisters to the national repository.1 The standardized canister sizes were derived from the national repository waste package design for co-disposal of SNF with high-level waste (HLW). One SNF canister can be placed in the center of the waste package or one can be placed in one of five radial positions, replacing a HLW canister. The internal cavity of the transportation cask was derived using the same logic, matching the size of the internal cavity of the waste package. The size of the internal cavity for the transportation cask allows the shipment of multiple canister configurations with the application of a removable basket design. The standardized canisters have been designed to be loaded with DOE SNF, placed into interim storage, shipped to the national repository, and placed in a waste package without having to be reopened. Significant testing has been completed that clearly demonstrates that the standardized canisters can safely achieve their intended design goals. The transportation cask system will include all of the standard design features, with the addition of dual containment for the shipment of failed fuel. The transportation cask system will also meet the rigorous licensing requirements of the Nuclear Regulatory Commission (NRC) to ensure that the design and the methods of fabrication employed will result in a shipping cask that will safely contain the radioactive materials under all credible accident scenarios. The standardization of the SNF canisters and the versatile design of the transportation cask system will eliminate a proliferation of designs and simplify the operations at the user sites and the national repository.

Pincock, David Lynn; Morton, Dana Keith; Lengyel, Arpad Leslie

2001-02-01T23:59:59.000Z

287

Data System Sciences & Engineering Group - Sensor Networks  

NLE Websites -- All DOE Office Websites (Extended Search)

asset visibility and tracking for an intelligence agency sponsor. Projects Atmospheric Radiation Measurement Program Knowledge Management & Analysis System RFID Accountability...

288

Mechanical Engineering Industrial Energy Systems Laboratory  

E-Print Network (OSTI)

of District Heating and Cooling with an Electro-Thermal Energy Storage System Master Thesis ANURAG KUMAR of the district energy systems is performed and modifications are proposed in a district heating network. Based of the ETES system to integrate the district heating and cooling networks. An operational synergy is developed

Candea, George

289

Romanian power systems engineering towards EU integration  

Science Conference Proceedings (OSTI)

The evolution of electric power system analysis methods followed the present technical problems and business needs of electric utilities in Romania, before EU integration. Present technical requirements and the current stage of power system analysis ... Keywords: computer applications, computer simulation, fourier analysis, modelling, power systems, training

Stefania Popadiuc; Bogdan Popa; Frangiskos Topalis; Cristiana Geambasu

2007-05-01T23:59:59.000Z

290

DOE Scientist Earns Chairman's Award from Propulsion and Power Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scientist Earns Chairman's Award from Propulsion and Power Scientist Earns Chairman's Award from Propulsion and Power Systems Alliance DOE Scientist Earns Chairman's Award from Propulsion and Power Systems Alliance October 2, 2009 - 1:00pm Addthis Washington, DC - A researcher at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has been presented with the Chairman's Award by the Propulsion and Power Systems Alliance (PPSA). Mary Anne Alvin, a physical scientist in NETL's Office of Research and Development, was recognized for her lead role in revitalizing the PPSA Materials Technical Area Team. This prestigious award is only given during a year when outstanding service is observed. The PPSA was formed in 1999 with the mission of improving coordination and collaboration among government agencies to better leverage existing federal

291

DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety Events  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webinars on Energy Systems Advances, Hydrogen Safety Webinars on Energy Systems Advances, Hydrogen Safety Events Databases, and More DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety Events Databases, and More September 9, 2013 - 12:00pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars September 10: Live Webinar on the Hydrogen Safety Events Database Webinar Sponsor: Fuel Cell Technologies Office The Energy Department will present a live webcast titled "What We Can Learn

292

Review of four DOE-sponsored low temperature steam systems  

SciTech Connect

The system characteristics and limited operating experience of four DOE-sponsored low temperature steam system field tests are described. The West Point Peperell (Honeywell) installation in Farifax, Alabama, has been operational for nine months but has experienced numerous minor equipment and system problems and a major problem with its shadow bar tracker. The other three installations are not operational yet. Johnson and Johnson (Acurex) in Sherman, Texas, is currently in the startup and checkout phase and will be operational in December, 1979. Home Laundry (Jacobs-Del) in Pasadena, California, and Tropicana Products (General Electric) in Bradenton, Florida, are both well into the construction phase and expect to be operational in February, 1980.

Gerich, J.W.

1979-11-20T23:59:59.000Z

293

Closed-loop air cooling system for a turbine engine  

DOE Patents (OSTI)

Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

North, William Edward (Winter Springs, FL)

2000-01-01T23:59:59.000Z

294

DOE/NETL ADVANCED COMBUSTION SYSTEMS: CHEMICAL LOOPING SUMMARY  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION SYSTEMS: CHEMICAL LOOPING SUMMARY JULY 2013 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal li- ability or responsibility for the accuracy, completeness, or useful- ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommenda-

295

Extensible Prototyping for pragmatic engineering of knowledge-based systems  

Science Conference Proceedings (OSTI)

Knowledge-based systems (KBSs) have been built and practically applied in various contexts for decades. Yet, they still challenge developers by their complexity: Apart from a sound knowledge base they likewise require comprehensive user interface (UI) ... Keywords: Agile development, Engineering knowledge-based systems, Evolutionary prototyping, Mixed fidelity prototyping, Participatory development, UI prototyping

Martina Freiberg; Albrecht Striffler; Frank Puppe

2012-09-01T23:59:59.000Z

296

CIRES/GSD Professional Research Assistant Sr. HPC Systems Engineer  

E-Print Network (OSTI)

forecasts. ESRL/GSD is a part of NOAA's Research and Development High Performance Computing Systems Program of GSD is looking for a temporary (12 mo) full-time Sr. High Performance Computing (HPC) System Engineer to support multiple state-of-the-art High Performance Computers in Boulder, CO and Fairmont, WV. The Sr

Colorado at Boulder, University of

297

Data System Sciences & Engineering Group - Risk Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Knowledge Center as a Content Delivery System Operationalizing Explosives Safety (Factsheet) Scepter Integrates Disparate Data Sources Fallout Planning Tool SCIPUFF Server...

298

Physical Similitude in Hierarchical Engineered Systems  

E-Print Network (OSTI)

of water-cooled nuclear reactor technology. As the industryin particular advanced nuclear reactor technology, and theirof the system. In the nuclear reactor community, Wulff and

Blandford, Edward David

2010-01-01T23:59:59.000Z

299

Project: Systems Engineering for Smart Manufacturing  

Science Conference Proceedings (OSTI)

... [2] Systems-2020 Study, Final Report, Booz Allen Hamilton, 16 August 2010. Available at http://www.acq.osd.mil/ se/docs ...

2013-01-03T23:59:59.000Z

300

DOE ETV-1 electric test vehicle. Phase III: performance testing and system evaluation. Final report  

DOE Green Energy (OSTI)

The DOE ETV-1 represents the most advanced electric vehicle in operation today. Engineering tests have been conducted by the Jet Propulsion Laboratory in order to characterize its overall system performance and component efficiencies within the system environment. A dynamometer was used in order to minimize the ambient effects and large uncertainties present in track testing. Extensive test requirements have been defined and procedures were carefully controlled in order to maintain a high degree of credibility. Limited track testing was performed in order to corroborate the dynamometer results. Test results include an energy flow analysis through the major subsystems and incorporate and aerodynamic and rolling losses under cyclic and various steady speed conditions. A complete summary of the major output from all relevant dynamometer and track tests is also included as an appendix.

Kurtz, D. W.

1981-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System  

Science Conference Proceedings (OSTI)

Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: Phase 1 market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. Phase 2 Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

Zurlo, James; Lueck, Steve

2011-08-31T23:59:59.000Z

302

A Systems Engineering Framework for Design, Construction and Operation of the Next Generation Nuclear Plant  

DOE Green Energy (OSTI)

Not since the International Space Station has a project of such wide participation been proposed for the United States. Ten countries, the European Union, universities, Department of Energy (DOE) laboratories, and industry will participate in the research and development, design, construction and/or operation of the fourth generation of nuclear power plants with a demonstration reactor to be built at a DOE site and operational by the middle of the next decade. This reactor will be like no other. The Next Generation Nuclear Plant (NGNP) will be passively safe, economical, highly efficient, modular, proliferation resistant, and sustainable. In addition to electrical generation, the NGNP will demonstrate efficient and cost effective generation of hydrogen to support the Presidents Hydrogen Initiative. To effectively manage this multi-organizational and technologically complex project, systems engineering techniques and processes will be used extensively to ensure delivery of the final product. The technological and organizational challenges are complex. Research and development activities are required, material standards require development, hydrogen production, storage and infrastructure requirements are not well developed, and the Nuclear Regulatory Commission may further define risk-informed/performance-based approach to licensing. Detailed design and development will be challenged by the vast cultural and institutional differences across the participants. Systems engineering processes must bring the technological and organizational complexity together to ensure successful product delivery. This paper will define the framework for application of systems engineering to this $1.5B - $1.9B project.

Edward J. Gorski; Charles V. Park; Finis H. Southworth

2004-06-01T23:59:59.000Z

303

Immunity-based systems revisited: toward systems science for robust and adaptive engineering  

Science Conference Proceedings (OSTI)

The East Japan Earthquake on March 11 and the ensuing tsunami and nuclear power plant catastrophe showed the urgent need for reconciliation between humans and nature. We consider that today's engineering and supporting sciences may require reconsideration ... Keywords: autonomous distributed systems, immunity-based systems, lessons from disasters, robust and adaptive engineering, sustainability by rearrangement, weakly strained system

Yoshiteru Ishida

2011-11-01T23:59:59.000Z

304

Development of a Low-Energy Proton Accelerator System for the Proton Engineering Frontier Project (PEFP)  

E-Print Network (OSTI)

Development of a Low-Energy Proton Accelerator System for the Proton Engineering Frontier Project (PEFP)

Han, J M

2003-01-01T23:59:59.000Z

305

Engineering Design of a Continuous Duty $\\gamma$ -Production Proton Target for the Contraband Detection System  

E-Print Network (OSTI)

Engineering Design of a Continuous Duty $\\gamma$ -Production Proton Target for the Contraband Detection System

Rathke, J; Klein, J

1999-01-01T23:59:59.000Z

306

Physical Similitude in Hierarchical Engineered Systems  

E-Print Network (OSTI)

Hanford who first formally introduced system hierarchy and the concept of defense-in-depth into re- actor design and construction [construction of the plutonium production complex starting initially at Oak Ridge and ultimately being completed at the Hanford

Blandford, Edward David

2010-01-01T23:59:59.000Z

307

Hybrid vehicle system studies and optimized hydrogen engine design  

DOE Green Energy (OSTI)

We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO{sub x} emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO{sub x}. Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today`s gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

Smith, J.R.; Aceves, S.

1995-04-26T23:59:59.000Z

308

Superfast Search Engine Speeds Past the Competition | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Superfast Search Engine Speeds Past the Competition Superfast Search Engine Speeds Past the Competition Stories of Discovery & Innovation Superfast Search Engine Speeds Past the Competition Enlarge Photo Getty Images Bitmap indices translate variable values into strings of bits, or 1's and 0's. These indices tend to be very efficient because computer processors are optimized to perform so-called logical operations on bits. Enlarge Photo Illustration: A. Tovey Source: Wu, Otto, and 05.31.11 Superfast Search Engine Speeds Past the Competition Software developed for analyzing physics data finds powerful commercial applications. Our world is increasingly data-driven, whether we are searching for information on our home computer, accessing databases for everything from medical records to financial data, or scanning the depths of outer

309

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

310

Engineering development of advanced coal-fired low-emission boiler system  

Science Conference Proceedings (OSTI)

The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems'' Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO[sub x] emissions not greater than one-third NSPS; SO[sub x] emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

Not Available

1993-02-26T23:59:59.000Z

311

DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lex lex 00023 L Projed Tide: u.s. DEPARTMENT OF ENERGY OFFICE OF RIVER PROTECTION NEPA REVIEW SCREENING FORM Phase IL Determination of manium in ~water. U. Project DeKriptioD a&d LHaDea (iDdudiBg Time Period Ova- wlDdr plopasetl actioB will oceur and Projed' DimeDsioas - e.g.. acres dispJaced/distwbal,. eunatioft ~~ ek..): The objective of this project is to desi~ build, deploy and test a field deployable insttt:tm.ent that can perform near-rea1 ~ fully autonomous measurements of uranium in contaminated groundwater plmnes.. The approximate dimensions of the deployable uranium ~ are Z x 2 x 4 feet. The system periodically samples Y«1lter from existing aquifer tubes., and. the sampies are analyzed for u.ranium concentration using a colorimetric cbelation sysWn.. Analytical teSUlts are

312

National Library of Energy beta: A New Search Engine Facilitating Access to DOE Info  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Scientific and Technical Information (OSTI) has launched the Department of Energy (DOE)National Library of Energy(NLE) beta, a virtual library and open government resource to...

313

The DOE/SCS Power Systems Development Facility  

Science Conference Proceedings (OSTI)

The use of coal for power generation has come under increasing environmental scrutiny over the past five years. Advances in coal-based power generation technology will continue to develop towards systems that have high efficiency, environmental superiority and lower or sustainable cost-of-electricity compared to current coal-based technology. Emerging power generation technologies that work toward these goals include integrated gasification combined-cycle (IGCC) and pressurized fluidized-bed combustion (PFBC). One method for improving the efficiency and lowering the capital cost further for advanced power plants utilizing coal is by employing hot gas cleanup. Although hot gas cleanup has the potential for improving the viability of coal-based power generation, the removal of hot particulates from the gas stream has proven to be a challenging task. The demonstration of particulate control devices (PCDS) under realistic conditions for advanced power generation remains the single most important area for development. With the Southern Company`s commitment to be a major supplier of electricity worldwide and our continued use of coal as a primary fuel source, Southern Company Services (SCS) has entered into a cooperative effort with the Department of Energy (DOE) Morgantown Energy Technology Center (METC) to develop a facility where component and system integration tests can be carried out for advanced coal-based power plants. The Power Systems Development Facility (PSDF) is being designed to be a flexible facility that will address the development of the PCDs required for advanced coal-based power generation systems.

Haq, Z.U.; Pinkston, T.E.; Sears, R.E.; Vimalchand, P.

1993-12-31T23:59:59.000Z

314

Microsoft PowerPoint - Overview Briefing - Tab 1 DOE's Procurement System July 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

' ' s P r o c u r e m e n t S y s t e m D O E ' s P r o c u r e m e n t S y s t e m 1 - 2 DOE's Procurement System The System Infrastructure What Organizations Govern/Influence the System? What is the Statutory/Regulatory Framework of the System? What Roles Do DOE Officials Play In the Process? What Does DOE's Procurement System Encompass? 1 - 3 What Does DOE's Procurement System Encompass? The integration of the procurement process (acquisition of property and services), the professional development of procurement personnel, and the management structure for carrying out the procurement function. For purposes of this presentation, DOE's Procurement System includes policies, procedures and management systems pertaining to the provision of financial assistance (grants and cooperative agreements).

315

Nuclear Systems Modeling and Design Analysis - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Nuclear Systems Modeling and Design Analysis CAPABILITIES Overview Nuclear Systems Modeling and Design Analysis Nuclear Systems Technologies Risk and Safety Assessments Nonproliferation and National Security Materials Testing Engineering Computation & Design Engineering Experimentation Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Capabilities Nuclear Systems Modeling and Design Analysis Bookmark and Share Reactor Physics and Fuel Cycle Analysis Reactor Physics and Fuel Cycle Analysis We have played a major role in the design and analysis of most existing and past reactor types and of many

316

DOE-HDBK-3027-99; DOE Handbook Integrated Safety Management Systems (ISMS) Verification Team Leader's Handbook  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27-99 27-99 June 1999 DOE HANDBOOK INTEGRATED SAFETY MANAGEMENT SYSTEMS (ISMS) VERIFICATION TEAM LEADER'S HANDBOOK U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-3027-99 iii INTEGRATED SAFETY MANAGEMENT SYSTEMS (ISMS) VERIFICATION TEAM LEADER' S HANDBOOK FOREWORD This ISMS Verification Team Leader'

317

DOE - Office of Legacy Management -- Era Tool and Engineering Co - IL 29  

NLE Websites -- All DOE Office Websites (Extended Search)

Era Tool and Engineering Co - IL 29 Era Tool and Engineering Co - IL 29 FUSRAP Considered Sites Site: Era Tool and Engineering Co. (IL.29 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Audi-Tex Industries, Incorporated IL.29-1 Location: 4555 West Addison Street , Chicago , Illinois IL.29-2 Evaluation Year: 1989 IL.29-3 Site Operations: From February 1944 through June 1944, provided personnel, facilities, and equipment to produce machined parts for special equipment, tools, jigs, fixtures, etc., from materials furnished by the University of Chicago IL.29-4 IL.29-5 Site Disposition: Eliminated - Radiation levels below criteria IL.29-2 Radioactive Materials Handled: None indicated Primary Radioactive Materials Handled: None indicated

318

Handbook of biomass downdraft gasifier engine systems  

DOE Green Energy (OSTI)

This handbook has been prepared by the Solar Energy Research Institute under the US Department of Energy /bold Solar Technical Information Program/. It is intended as a guide to the design, testing, operation, and manufacture of small-scale (less than 200 kW (270 hp)) gasifiers. A great deal of the information will be useful for all levels of biomass gasification. The handbook is meant to be a practical guide to gasifier systems, and a minimum amount of space is devoted to questions of more theoretical interest.

Reed, T B; Das, A

1988-03-01T23:59:59.000Z

319

DOE Directives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Directives DOE Directives DOE Directives Directives are the Department of Energy's primary means to communicate and institutionalize directives and policies and to establish requirements, responsibilities, and procedures for Departmental elements and contractors. DOE O 413.3A - Program and Project Management for the Acquisition of Capital Assets DOE G 413.3-1 - Managing Design and Construction Using Systems Engineering for Use with DOE O 413.3A DOE G 413.3-2 - Quality Assurance Guide for Project Management DOE G 413.3-3 - Safeguards and Security for Program and Project Management DOE G 413.3-8 - Environmental Management (EM) Cleanup Projects DOE G 413.3-9 - U.S. Department of Energy Project Review Guide for Capital Asset Projects DOE G 413.3-10 - Earned Value Management System (EVMS)

320

Alliance Laundry Systems to DOE General Counsel; Re:Request for Comment on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliance Laundry Systems to DOE General Counsel; Re:Request for Alliance Laundry Systems to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers Alliance Laundry Systems to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers Letter from Alliance Laundry Systems, LLC to DOE General Counsel, Re: Your (DOE's) request of 11-30-2010 Regarding Clothes Washer Test Procedure Waivers. ALS believes that grandfathering all units already rated would be , fair to both manufacturers and end users. ALS is a small manufacturer and does not have the means to manufacture the large-capacity washer beyond the 3.5 cubic feet rating. ALS would like DOE to stop spending federal dollars on this issue and to stop affording larger manufacturers any further advantage in the marketplace. Alliance Laundry Systems to DOE General Counsel; Re:Request for Comment on

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume I. Summary, objectives and management. Revision 2  

SciTech Connect

This document defines a plan for conducting selected aspects of the engineering testing required for magnetic fusion reactor FWBS components and systems. The ultimate product of this program is an established data base that contributes to a functional, reliable, maintainable, economically attractive, and environmentally acceptable commercial fusion reactor first wall, blanket, and shield system. This program plan updates the initial plan issued in November of 1980 by the DOE/Office of Fusion Energy (unnumbered report). The plan consists of two parts. Part I is a summary of activities, responsibilities and program management including reporting and interfaces with other programs. Part II is a compilation of the Detailed Technical Plans for Phase I (1982 to 1984) developed by the participants during Phase 0 of the program (July to December 1981).

Not Available

1982-08-01T23:59:59.000Z

322

E-CARe: A Process for Engineering Ubiquitous Information Systems  

Science Conference Proceedings (OSTI)

Ubiquity in Information Systems ISs is a new requirement widely expressed by customers and users due to emerging and evolving communication and mobile technologies. Each IS should support a set of mobile applications used either to interact smartly with ... Keywords: Context-Awareness, Context-Reactivity, Engineering Process, Event Flow, Ubiquitous Requirement

Ansem Ben Cheikh, Agns Front, Jean-Pierre Giraudin, Stphane Coulondre

2013-07-01T23:59:59.000Z

323

CIRES/NGDC Research Associate Satellite Sensor Systems Engineer  

E-Print Network (OSTI)

, Boulder, CO. This position is for a Satellite Sensor Systems Engineer within the NGDC Solar and Terrestrial Physics (STP) division. STP is responsible for oversight of the NOAA space weather sensors STP work to ensure that current and future space weather sensors provide effective operational

Colorado at Boulder, University of

324

Power Systems Engineering Research Center Renewable Electricity Futures  

E-Print Network (OSTI)

Power Systems Engineering Research Center Renewable Electricity Futures Trieu Mai Electricity of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity

Van Veen, Barry D.

325

Systems Engineering -MENG Post Graduate Activities Detail & History  

E-Print Network (OSTI)

of 2009. Historical data is provided to allow for comparison of activity and salary trends. Number Graduated: 37 Number Responded: 24 Response Rate: 65% Employer Title City State/Country Cayuga Medical Center Data Analyst Ithaca NY Delphi Systems Engineer Kokomo IN Electric Power Group Intern Pasadena CA

Lipson, Michal

326

Objective versus subjective coordination in the engineering of agent systems  

Science Conference Proceedings (OSTI)

The governance of interaction is a critical issue in the engineering of agent systems. Research on coordination addresses this issue by providing a wide range of models, abstractions and technologies. It is often the case, however, that such a wide range ...

Andrea Omicini; Sascha Ossowski

2003-01-01T23:59:59.000Z

327

Designing the Cloud-based DOE Systems Biology Knowledgebase  

Science Conference Proceedings (OSTI)

Systems Biology research, even more than many other scientific domains, is becoming increasingly data-intensive. Not only have advances in experimental and computational technologies lead to an exponential increase in scientific data volumes and their complexity, but increasingly such databases themselves are providing the basis for new scientific discoveries. To engage effectively with these community resources, integrated analyses, synthesis and simulation software is needed, regularly supported by scientific workflows. In order to provide a more collaborative, community driven research environment for this heterogeneous setting, the Department of Energy (DOE) has decided to develop a federated, cloud based cyber infrastructure - the Systems Biology Knowledgebase (Kbase). Pacific Northwest National Laboratory (PNNL) with its long tradition in data intensive science lead two of the five initial pilot projects, these two focusing on defining and testing the basic federated cloud-based system architecture and develop a prototype implementation. Hereby the community wide accessibility of biological data and the capability to integrate and analyze this data within its changing research context were seen as key technical functionalities the Kbase needed to enable. In this paper we describe the results of our investigations into the design of a cloud based federated infrastructure for: (1) Semantics driven data discovery, access and integration; (2) Data annotation, publication and sharing; (3) Workflow enabled data analysis; and (4) Project based collaborative working. We describe our approach, exemplary use cases and our prototype implementation that demonstrates the feasibility of this approach.

Lansing, Carina S.; Liu, Yan; Yin, Jian; Corrigan, Abigail L.; Guillen, Zoe C.; Kleese van Dam, Kerstin; Gorton, Ian

2011-09-01T23:59:59.000Z

328

Progress report on the DOE/DGE/LBL reservoir engineering and subsidence programs  

DOE Green Energy (OSTI)

Fiscal year 1978 was the second year of LBL's responsibility for the Geothermal Reservoir Engineering Management Program (GREMP) on behalf of the Division of Geothermal Energy of the Department of Energy. The history of this program through FY 1977 is explained in LBL's Earth Sciences Division Annual Report for 1978. Administrative highlights of the program in FY 1978 are given.

Howard J.H.; Noble, J.E.; Schwarz, W.J.; Graf, A.N.

1978-01-01T23:59:59.000Z

329

Subsystem engineering and development of grid-connected photovoltaic systems  

DOE Green Energy (OSTI)

The experience gained in fielding residential and intermediate sized photovoltaic application experiments is summarized. This experience is used to guide the engineering and development of array and power conditioning subsystems for grid-connected photovoltaic systems. A major consideration in this development effort is cost. Through innovative engineering, using a modular building block approach for the array subsystem, it is now possible to construct array fields, in moderate quantities, for about $52/m/sup 2/ excluding the photovoltaic modules. Similarly, results of power conditioning subsystem development indicate a projected cost of about $0.25/W/sub p/ for advanced units with conversion efficiencies in excess of 90%.

Burgess, E.L.; Post, H.N.; Key, T.S.

1982-01-01T23:59:59.000Z

330

Modeling the Performance of Engineered Systems for Closure and Near-Surface Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

performance cleanup closure performance cleanup closure M E Environmental Management Environmental Management Performance Assessment Community of Practice Technical Exchange July 13-14, 2009 Modeling the Performance of Engineered Systems for Closure and Near-Surface Disposal - Overview and Focused Discussions David S. Kosson CRESP and Vanderbilt University Tank Waste Corporate Board Meeting July 29, 2009 1 safety performance cleanup closure M E Environmental Management Environmental Management Agenda * Overview of DOE Performance Assessment Practices * Focused Discussions - Role of PA Process in Risk Communication and Decisions - Modeling Improvements - PA Assumption Validation - Uncertainty Evaluation - Evolving EPA Developments - Related IAEA Activities * Looking forward

331

FACILITIES ENGINEER WEST CHICAGO Execute capital projects for manufacturing facilities and utilities systems: scope development, cost  

E-Print Network (OSTI)

improvements, including all stages of project engineering: scope development, cost estimation, system designFACILITIES ENGINEER ­ WEST CHICAGO OVERVIEW: Execute capital projects for manufacturing facilities and utilities systems: scope development, cost estimation, system design, equipment sizing

Heller, Barbara

332

FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting: August 9-10,  

NLE Websites -- All DOE Office Websites (Extended Search)

August 9-10, 2006 to someone by E-mail August 9-10, 2006 to someone by E-mail Share FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting: August 9-10, 2006 on Facebook Tweet about FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting: August 9-10, 2006 on Twitter Bookmark FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting: August 9-10, 2006 on Google Bookmark FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting: August 9-10, 2006 on Delicious Rank FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting: August 9-10, 2006 on Digg Find More places to share FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting: August 9-10, 2006 on AddThis.com... Home Analysis Methodologies DOE H2A Analysis Scenario Analysis Quick Links Hydrogen Production Hydrogen Delivery

333

Multiple fuel supply system for an internal combustion engine  

DOE Patents (OSTI)

A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

Crothers, William T. (Sunol, CA)

1977-01-01T23:59:59.000Z

334

DOE workshop: Sedimentary systems, aqueous and organic geochemistry  

SciTech Connect

A DOE workshop on sedimentary systems, aqueous and organic geochemistry was held July 15-16, 1993 at Lawrence Berkeley Laboratory. Papers were organized into several sections: Fundamental Properties, containing papers on the thermodynamics of brines, minerals and aqueous electrolyte solutions; Geochemical Transport, covering 3-D imaging of drill core samples, hydrothermal geochemistry, chemical interactions in hydrocarbon reservoirs, fluid flow model application, among others; Rock-Water Interactions, with presentations on stable isotope systematics of fluid/rock interaction, fluid flow and petotectonic evolution, grain boundary transport, sulfur incorporation, tracers in geologic reservoirs, geothermal controls on oil-reservoir evolution, and mineral hydrolysis kinetics; Organic Geochemistry covered new methods for constraining time of hydrocarbon migration, kinetic models of petroleum formation, mudstones in burial diagenesis, compound-specific carbon isotope analysis of petroleums, stability of natural gas, sulfur in sedimentary organic matter, organic geochemistry of deep ocean sediments, direct speciation of metal by optical spectroscopies; and lastly, Sedimentary Systems, covering sequence stratigraphy, seismic reflectors and diagenetic changes in carbonates, geochemistry and origin of regional dolomites, and evidence of large comet or asteroid impacts at extinction boundaries.

Not Available

1993-07-01T23:59:59.000Z

335

Tank waste remediation system process engineering instruction manual  

SciTech Connect

The purpose of the Tank Waste Remediation System (TWRS) Process Engineering Instruction Manual is to provide guidance and direction to TWRS Process Engineering staff regarding conduct of business. The objective is to establish a disciplined and consistent approach to business such that the work processes within TWRS Process Engineering are safe, high quality, disciplined, efficient, and consistent with Lockheed Martin Hanford Corporation Policies and Procedures. The sections within this manual are of two types: for compliance and for guidance. For compliance sections are intended to be followed per-the-letter until such time as they are formally changed per Section 2.0 of this manual. For guidance sections are intended to be used by the staff for guidance in the conduct of work where technical judgment and discernment are required. The guidance sections shall also be changed per Section 2.0 of this manual. The required header for each manual section is illustrated in Section 2.0, Manual Change Control procedure. It is intended that this manual be used as a training and indoctrination resource for employees of the TWRS Process Engineering organization. The manual shall be required reading for all TWRS Process Engineering staff, matrixed, and subcontracted employees.

ADAMS, M.R.

1998-11-04T23:59:59.000Z

336

Engineered Geothermal Systems Energy Return On Energy Investment  

NLE Websites -- All DOE Office Websites (Extended Search)

EGS EROI - 1 EGS EROI - 1 Engineered Geothermal Systems Energy Return On Energy Investment A.J. Mansure, Geothermal Consultant, ajm@q.com Albuquerque, NM 12/10/2012 Key Words: energy, EROI, EGS, efficiency, energy investment, energy return, input energy, energy payback, and net energy. Abstract Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use "efficiency" when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS

337

Exhaust gas recirculation system for an internal combustion engine  

SciTech Connect

An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

Wu, Ko-Jen

2013-05-21T23:59:59.000Z

338

Materials Sciences and Engineering (MSE) Division Homepage | U.S. DOE  

Office of Science (SC) Website

MSE Home MSE Home Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Print Text Size: A A A RSS Feeds FeedbackShare Page Research Needs Workshop Reports Workshop Reports The Materials Sciences and Engineering (MSE) Division supports fundamental experimental and theoretical research to provide the knowledge base for the discovery and design of new materials with novel structures, functions, and properties. This knowledge serves as a basis for the development of new materials for the generation, storage, and use of energy and for mitigation of the environmental impacts of energy use. (details) The MSE research portfolio consists of the research focus areas in the

339

Energy Control Systems Engineering Inc | Open Energy Information  

Open Energy Info (EERE)

Control Systems Engineering Inc Control Systems Engineering Inc Jump to: navigation, search Name Energy Control Systems Engineering Inc Place Monrovia, California Zip 91016 Sector Services Product The company is focused on consulting, design and prototype services for system integration, management and monitoring of electrochemical energy systems such as batteries and fuel cells. Coordinates 6.30077°, -10.79716° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":6.30077,"lon":-10.79716,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering Engineering1354608000000EngineeringSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Engineering Some of these resources are LANL-only and will require Remote Access. Key Resources Reference Standards Data Sources Organizations Journals Key Resources Engineering Village Includes Engineering Index (Ei) and Compendex Knovel Handbooks, databases, and eBooks integrated with analytical and search tools IEEE Xplore Full text access to technical literature, standards, and conference proceedings in engineering and technology SPIE Digital Library Full-text papers from SPIE journals and proceedings published since 1998; subject coverage includes optics, photonics, electronic imaging, visual information processing, biomedical optics, lasers, and

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A Project Management and Systems Engineering Structure for a Generation IV Very High Temperature Reactor  

DOE Green Energy (OSTI)

The Very High Temperature Reactor (VHTR) will be an advanced, very high temperature (approximately 1000o C. coolant outlet temperature), gas cooled nuclear reactor and is the nearest term of six Generation IV reactor technologies for nuclear assisted hydrogen production. In 2001, the Generation IV International Forum (GIF), a ten nation international forum working together with the Department of Energys (DOE) Nuclear Energy Research Advisory Committee (NERAC), agreed to proceed with the development of a technology roadmap and identified the next generation of nuclear reactor systems for producing new sources of power. Since a new reactor has not been licensed in the United States since the 1970s, the risks are too large for a single utility to assume in the development of an unprecedented Generation IV reactor. The government must sponsor and invest in the research to resolve major first of a kind (FOAK) issues through a full-scale demonstration prior to industry implementation. DOEs primary mission for the VHTR is to demonstrate nuclear reactor assisted cogeneration of electricity and hydrogen while meeting the Generation IV goals for safety, sustainability, proliferation resistance and physical security and economics. The successful deployment of the VHTR as a demonstration project will aid in restarting the now atrophied U.S. nuclear power industry infrastructure. It is envisioned that VHTR project participants will include DOE Laboratories, industry partners such as designers, constructors, manufacturers, utilities, and Generation IV international countries. To effectively mange R&D, engineering, procurement, construction, and operation for this multi-organizational and technologically complex project, systems engineering will be used extensively to ensure delivery of the final product. Although the VHTR is an unprecedented FOAK system, the R&D, when assessed using the Office of Science and Technology Gate Model, falls primarily in the 3rd - Exploratory Development, 4th Advanced Development, and 5th- Engineering Development stages of maturity rather than in the basic and viability stages. Therefore the R&D must be controlled and project driven from the top down to address specific issues of feasibility, proof of design or support of engineering. The design evolution must be through the systems approach including an iterative process of high-level requirements definition, engineering to focus R&D to verify feasibility, requirements development and conceptual design, R&D to verify design and refine detailed requirements for final detailed design. This paper will define a framework for project management and application of systems engineering at the Idaho National Engineering and Environmental Laboratory (INEEL). The VHTR Project includes an overall reactor design and construction activity and four major supporting activities: fuel development and qualification, materials selection and qualification, NRC licensing and regulatory support, and the hydrogen production plant.

Ed Gorski; Dennis Harrell; Finis Southworth

2004-09-01T23:59:59.000Z

342

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrodynamics Bioscience, Biosecurity, Health Chemical Science Earth, Space Sciences Energy Engineering High Energy Density Plasmas, Fluids Information Science, Computing,...

343

A progress report on DOE`s advanced hydropower turbine systems program  

DOE Green Energy (OSTI)

Recent hydropower research within the U.S. Department of Energy (DOE) has focused on the development of new turbine designs that can produce hydroelectricity without such adverse environmental affects as fish entrainment/impingement or degradation of water quality. In partnership with the hydropower industry, DOE`s advanced turbine program issued a Request for Proposals for conceptual designs in October 1994. Two contracts were awarded for this initial program phase, work on which will be complete this year. A technical advisory committee with representatives from industry, regulatory agencies, and natural resource agencies was also formed to guide the DOE turbine research. The lack of quantitative biological performance criteria was identified by the committee as a critical knowledge gap. To fill this need, a new literature review was completed on the mechanisms of fish mortality during turbine passage (e.g., scrape/strike, shear, press change, etc.), ways that fish behavior affects their location and orientation in turbines, and how these turbine passage stresses can be measured. Thus year, new Laboratory tests will be conducted on fish response to shear, the least-well understood mechanism of stress. Additional testing of conceptual turbine designs depends on the level of federal funding for this program.

Sale, M.J.; Cada, G.F.; Rinehart, B.E. [and others

1997-06-01T23:59:59.000Z

344

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Exploration Methods for Engineered Geothermal Systems Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geophysical Exploration Technologies Project Description A comprehensive, interdisciplinary approach is proposed using existing geophysical exploration technology coupled with new seismic techniques and subject matter experts to determine the combination of geoscience data that demonstrates the greatest potential for identifying EGS drilling targets using non-invasive techniques. This proposed exploration methodology is expected to increase spatial resolution and reduce the non-uniqueness that is inherent in geological data, thereby reducing the uncertainty in the primary selection criteria for identifying EGS drilling targets. These criteria are, in order of importance: (1) temperatures greater than 200-250°C at 1-5 km depth; (2) rock type at the depth of interest, and; (3) stress regime.

345

Challenges to cognitive systems engineering: understanding qualitative aspects of control actions  

Science Conference Proceedings (OSTI)

The paper discusses the future role of Cognitive Systems Engineering (CSE) in contributing to integrated design of process, automation and human machine systems. Existing concepts and methods of Cognitive Systems Engineering do not integrate well with ... Keywords: cognitive system engineering, means-end analysis, multilevel flow modeling, process control

Morten Lind

2009-09-01T23:59:59.000Z

346

Order Module--DOE G 450.4-1B, INTEGRATED SAFETY MANAGEMENT SYSTEM GUIDE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

G 450.4-1B, INTEGRATED SAFETY MANAGEMENT SYSTEM G 450.4-1B, INTEGRATED SAFETY MANAGEMENT SYSTEM GUIDE Order Module--DOE G 450.4-1B, INTEGRATED SAFETY MANAGEMENT SYSTEM GUIDE This Guide has two purposes. One purpose is to assist DOE contractors in developing, describing, and implementing an ISMS to comply with DOE P 450.4, Safety Management system Policy; DOE P 450.5, Line Environment, Safety, and Health Oversight; DOE P 450.6, Secretarial Policy Statement Environment, Safety and Health; DOE P 411.1, Safety Management FRAM; and the following provisions of the DEAR: 48 CFR 970.5223-1, which requires integration of environment, safety, and health into work planning and execution; 48 CFR 970.5204-2, which deals with laws, regulations, and DOE directives; and 48 CFR 970.1100-1, which requires performance-based contracting.

347

Engineered microbial systems for enhanced conversion of lignocellulosic biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

752; 752; NO. OF PAGES 6 Please cite this article in press as: Elkins JG, et al. Engineered Q1microbial systems for enhanced conversion of lignocellulosic biomass, Curr Opin Biotechnol (2010), doi:10.1016/ j.copbio.2010.05.008 Available online at www.sciencedirect.com Engineered microbial systems for enhanced conversion of lignocellulosic biomass James G Elkins, Babu Raman and Martin Keller In order for plant biomass to become a viable feedstock for meeting the future demand for liquid fuels, efficient and cost- effective processes must exist to breakdown cellulosic materials into their primary components. A one-pot conversion strategy or, consolidated bioprocessing, of biomass into ethanol would provide the most cost-effective route to renewable fuels and the realization of this technology is being actively pursued by both multi-disciplinary research centers and

348

Importance of systems biology in engineering microbes for biofuel production  

SciTech Connect

Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable resources has catalyzed numerous research endeavors that focus on developing microbial systems for production of such natural products. Eliminating bottlenecks in microbial metabolic pathways and alleviating the stresses due to production of these chemicals are crucial in the generation of robust and efficient production hosts. The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose stresses due to product synthesis, and provides the rationale to cost-effectively engineer optimal industrial microorganisms.

Mukhopadhyay, Aindrila; Redding, Alyssa M.; Rutherford, Becky J.; Keasling, Jay D.

2009-12-02T23:59:59.000Z

349

Nitrogen oxide -- Sensors and systems for engine management  

DOE Green Energy (OSTI)

The goal of this Cooperative Research and Development (CRADA) effort is to further develop sensors and sensor systems in order to meet current and anticipated air emissions requirements due to the operation of Defense Program facilities and the emission standards imposed on new vehicles operating in this country. Specific objectives of this work are to be able to measure and control on-line and in real-time, emissions, engine operation, air-to-fuel intake ratios, and throttle/accelerator positions in future models of consumer automobiles. Sensor and application specific integrated circuit developments within Lockheed Martin Energy Systems are applicable to the monitoring and engine controls needed by General Motors. In the case of emissions sensors, base technology in thick/thin film sensors and optical systems will be further developed to address the combination of high temperature and accumulated deposits expected in the exhaust stream. Other technologies will also be explored to measure fuel-to-air ratios and technologies such as fiber optic and acoustic wave devices that are applicable to the combustion sensing on an individual base. Two non-contact rotary position sensors have been developed for use in control-by-wire throttle control applications. The two CRADA developed sensors consist of a non-contact, differential capacitance position transducer and a custom complementary metal oxide semiconductor (C-MOS) application specific integrated circuit (ASIC) suitable for use in both passenger and engine compartments.

Hiller, J.M.; Bryan, W.L. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Miller, C.E. [General Motors, Inc., Flint, MI (United States). A.C. Rochester Div.

1997-06-24T23:59:59.000Z

350

Advanced Engine/Aftertreatment System R&D  

DOE Green Energy (OSTI)

Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT, also known as NOx adsorber catalyst) regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy.

Pihl, J.; West, B.; Toops, T.; Adelman, B. (Navistar, Inc.); Derybowski, E. (Navistar, Inc.)

2011-09-30T23:59:59.000Z

351

Externally excited resonant free piston stirling engine thermal amplifier system and method of operation and control therefor  

SciTech Connect

This patent describes an externally excited resonant free piston stirling engine thermal amplifier and load system driven thereby which is over damped at all operating load levels and does not freely oscillate. This system and its method of operation consists of: 1.) A variably controlled drive motor coupled with the displacer/piston of the engine; 2.) A controllable power supply coupled to the drive motor to provide variably controlled energizing electric signals to the drive motor; 3.) A device for sensing at least one selected operating parameter of the stirling engine thermal amplifier and load system during operation to drive a load; and 4.) A feedback system which includes a response to the sensed stirling engine thermal amplifier system operating parameter signal for deriving at least one feedback control signal operative to control the energizing electric signals supplied to the drive motor for controlling its operation. These signals then precisely, variably and stably controll the operation of the stirling engine thermal amplifier and load system.

Vitale, N.G.; Dhar, M.

1986-02-11T23:59:59.000Z

352

Qualitative knowledge construction for engineering systems : extending the design structure matrix methodology in scope and procedure  

E-Print Network (OSTI)

This thesis presents a new modeling framework and research methodology for the study of engineering systems. The thesis begins with a formal conceptualization of Engineering Systems based upon a synthesis of various ...

Bartolomei, Jason E

2007-01-01T23:59:59.000Z

353

January 30, 2008, New Directions in Learning: Building a DOE University System  

NLE Websites -- All DOE Office Websites (Extended Search)

Directions Directions in Learning at DOE: Building a DOE University System FTCP Teleconference January 30, 2008 Dr. Jeff T.H. Pon Chief Human Capital Officer U.S. DOE 1 Mission Critical Function Needed Competencies Assess and/or Certify Possession of Competencies Training & Development Programs Aligned with Competencies IDP To Improve Performance and Close Competency Gaps Mission & Strategic Goals DOE is Implementing a Competency- Centric Learning Framework The DOE Competency Framework Enables Strategic Alignment of Learning & Development Systems to Strategic Goals 2 U = Universal Competencies: universal competencies needed by every individual to be effective in today's work environment. Examples may include: *Resolving Conflict *Emotional Intelligence *Team Skills

354

SiNode Systems Wins the Second Annual DOE National Clean Energy ...  

The Department of Energy is proud to announce that SiNode Systems from Northwestern University has won the second annual DOE National Clean Energy Business Plan ...

355

Alliance Laundry Systems to DOE General Counsel; Re:Request for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Alliance Laundry Systems to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes...

356

DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines  

DOE Green Energy (OSTI)

Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels. Extensive data from current and previous years was leveraged into participation with several large proposal teams, as our fuels database covers a very wide range of conventional and emerging fuels and biofuels.

Bunting, Bruce G [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

357

System theoretic framework for assuring safety and dependability of highly integrated aero engine control systems  

E-Print Network (OSTI)

The development of complex, safety-critical systems for aero-engine control is subject to the, often competing, demands for higher safety and reduced development cost. Although the commercial aerospace industry has a general ...

Atherton, Malvern J

2005-01-01T23:59:59.000Z

358

Engineering Systems Matrix: An organizing framework for modeling large-scale complex systems  

E-Print Network (OSTI)

The scope and complexity of engineered systems are ever-increasing as burgeoning global markets, unprecedented technological capabilities, rising consumer expectations, and ever-changing social requirements present difficult ...

Bartolomei, Jason E.

359

DOE/EA-1083; Environmental Assessment and Plan for New Silt/Clay Source Development and Use at the Idaho National Engineering and Environmental Laboratory (and FONSI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83 83 April 1997 Environmental Assessment and Plan for New Silt/Clay Source Development and Use at the Idaho National Engineering and Environmental Laboratory U. S. DEPARTMENT OF ENERGY FINDING OF NO SIGNIFICANT IMPACT FOR A NEW SILT/CLAY SOURCE DEVELOPMENT AND USE AT THE IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY Agency: U. S. Department of Energy (DOE) Action: Finding of No Significant Impact SUMMARY: The DOE-Idaho Operations Office (DOE-ID) has prepared an environmental assessment (EA) to analyze the environmental impacts of closing its current silt/clay source and opening as many as three new sources with volumes sufficient to support potential Idaho National Engineering and Environmental Laboratory (INEEL) projects through 2005. The current source, Spreading Area B

360

Systems and method for delivering liquified gas to an engine  

DOE Patents (OSTI)

A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); O' Brien, James E. (Idaho Falls, ID); Siahpush, Ali S. (Idaho Falls, ID); Brown, Kevin B. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Computer Based Training (CBT) - American Society of Mechanical Engineers (ASME) CBT for Service Water System Engineers v1.0  

Science Conference Proceedings (OSTI)

American Society of Mechanical Engineers (ASME) requirements for Service Water System Engineers, Version 1.0 is a computer-based training module that allows users to access training when desired and review it at their own pace.This computer-based training (CBT) course's objective is to introduce students to ASME requirements associated with service water systems, and in particular, service water piping systems. The student will first learn about the design criteria used to ...

2013-11-06T23:59:59.000Z

362

NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

557 * November 2010 557 * November 2010 NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach National Renewable Energy Laboratory (NREL) Teams: Hydrogen Education, Melanie Caton; Market Transformation, Michael Ulsh Accomplishment: NREL started using its Ford hydrogen-powered internal combustion engine (H 2 ICE) bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. As the first national laboratory to receive such a bus, NREL

363

Systems for delivering liquified natural gas to an engine  

DOE Patents (OSTI)

A fuel delivery system includes a fuel tank configured to receive liquid natural gas. A first conduit extends from a vapor holding portion of the fuel tank to an economizer valve. A second conduit extends from a liquid holding portion of the fuel tank to the economizer valve. Fluid coupled to the economizer valve is a vaporizer which is heated by coolant from the engine and is positioned below the fuel tank. The economizer valve selectively withdraws either liquid natural gas or vaporized natural gas from the fuel tank depending on the pressure within the vapor holding portion of the fuel tank. A delivery conduit extends from the vaporizer to the engine. A return conduit having a check valve formed therein extends from the delivery conduit to the vapor holding portion of the fuel tank for pressurizing the fuel tank.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); O' Brien, James E. (Idaho Falls, ID); Siahpush, Ali S. (Idaho Falls, ID); Brown, Kevin B. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

364

Risk assessment and life prediction of complex engineering systems  

SciTech Connect

Many complex engineering systems will exceed their design life expectancy within the next 10 to 15 years. It is also expected that these systems must be maintained and operated beyond their design life. This paper presents a integrated approach for managing the risks associated with aging effects and predicting the residually expectancy these systems, The approach unifies risk assessment, enhanced surveillance and testing, and robust computational models to assess the risk, predict age, and develop a life-extension management procedure. It also relies on the state of the art in life-extension and risk assessment methods from the nuclear power industry. Borrowing from the developments in decision analysis, this approach should systematically identify the options available for managing the existing aging systems beyond their intended design life.

Garcia, M.D.; Varma, R. [Los Alamos National Lab., NM (United States); Heger, A.S. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering

1996-03-01T23:59:59.000Z

365

"Idle Free Systems" Does Not Stand Idly by | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Idle Free Systems" Does Not Stand Idly by "Idle Free Systems" Does Not Stand Idly by "Idle Free Systems" Does Not Stand Idly by March 12, 2012 - 6:50pm Addthis Idle Free System's frame rail unit mounted onto the chassis rail of a truck. Idle Free produces battery-powered, idle-elimination systems that lower fuel costs and CO2 emissions while retaining power to a truck’s cab. | Courtesy of Idle Free Systems. Idle Free System's frame rail unit mounted onto the chassis rail of a truck. Idle Free produces battery-powered, idle-elimination systems that lower fuel costs and CO2 emissions while retaining power to a truck's cab. | Courtesy of Idle Free Systems. Julie McAlpin Communications Liaison, State Energy Program What does this mean for me? Idle Free technology can deliver annual savings of up to $10,000 for

366

"Idle Free Systems" Does Not Stand Idly by | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Idle Free Systems" Does Not Stand Idly by "Idle Free Systems" Does Not Stand Idly by "Idle Free Systems" Does Not Stand Idly by March 12, 2012 - 6:50pm Addthis Idle Free System's frame rail unit mounted onto the chassis rail of a truck. Idle Free produces battery-powered, idle-elimination systems that lower fuel costs and CO2 emissions while retaining power to a truck’s cab. | Courtesy of Idle Free Systems. Idle Free System's frame rail unit mounted onto the chassis rail of a truck. Idle Free produces battery-powered, idle-elimination systems that lower fuel costs and CO2 emissions while retaining power to a truck's cab. | Courtesy of Idle Free Systems. Julie McAlpin Communications Liaison, State Energy Program What does this mean for me? Idle Free technology can deliver annual savings of up to $10,000 for

367

Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 15, April 15 1996--June 1996  

SciTech Connect

The Pittsburgh Energy Technology center of the US Department of Energy (DOE) has contracted with Combustion Engineering; Inc. (ABB CE) to perform work on the {open_quotes}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quote} Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis and Phases II and III on a cost-share basis.

1996-08-19T23:59:59.000Z

368

SunShot Initiative: Dish Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

Dish Engine to someone by E-mail Dish Engine to someone by E-mail Share SunShot Initiative: Dish Engine on Facebook Tweet about SunShot Initiative: Dish Engine on Twitter Bookmark SunShot Initiative: Dish Engine on Google Bookmark SunShot Initiative: Dish Engine on Delicious Rank SunShot Initiative: Dish Engine on Digg Find More places to share SunShot Initiative: Dish Engine on AddThis.com... Concentrating Solar Power Systems Parabolic Trough Linear Fresnel Power Tower Dish Engine Components Competitive Awards Staff Photovoltaics Systems Integration Balance of Systems Dish Engine DOE funds solar research and development (R&D) in dish/engine systems as one of four concentrating solar power (CSP) technologies aiming to meet the goals of the SunShot Initiative. CSP dish engines, which provide high solar

369

Power Systems Engineering Research and Development (PSE R&D) | Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Systems Engineering Research and Development (PSE Power Systems Engineering Research and Development (PSE R&D) Power Systems Engineering Research and Development (PSE R&D) Power Systems Engineering Research and Development (PSE R&D) Power Systems Engineering Research and Development activities accelerate discovery and innovation in electric transmission and distribution technologies and create "next generation" devices, software, tools, and techniques to help modernize the electric grid. Projects are planned and implemented in concert with partners from other Federal programs; electric utilities; equipment manufacturers; regional, state, and local agencies; national laboratories; and universities. Coordination is critical to focusing Federal efforts and ensuring that projects are properly aligned

370

DOE Radiation Exposure Monitoring System (REMS) Data Update  

SciTech Connect

This slide show presents the 2011 draft data for DOE occupational radiation exposure.Clarification is given on Reporting Data regarding: reporting Total Organ Dose (TOD); reporting Total Skin Dose (TSD), and Total Extremity Dose (TExD) ; and Special individuals reporting.

Rao, Nimi; Hagemeyer, Derek

2012-05-05T23:59:59.000Z

371

Exploring flexible strategies in engineering systems using screening models : applications to offshore petroleum projects  

E-Print Network (OSTI)

Engineering Systems, such as offshore petroleum exploration and production systems, generally require a significant amount of capital investment under various technical and market uncertainties. Choosing appropriate designs ...

Lin, Jijun, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

372

DOE and Industry Showcase New Control Systems Security Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Advisory Committee Technology Development Transmission Planning Smart Grid Energy Delivery Systems Cybersecurity Control Systems Security News Archive Control...

373

Railplug Ignition System for Enhanced Engine Performance and Reduced Maintenance  

SciTech Connect

This Final Technical Report discusses the progress that was made on the experimental and numerical tasks over the duration of this project. The primary objectives of the project were to (1) develop an improved understanding of the spark ignition process, and (2) develop the railplug as an improved ignitor for large bore stationary natural gas engines. We performed fundamental experiments on the physical processes occurring during spark ignition and used the results from these experiments to aid our development of the most complete model of the spark ignition process ever devised. The elements in this model include (1) the dynamic response of the ignition circuit, (2) a chemical kinetics mechanism that is suitable for the reactions that occur in the plasma, (3) conventional flame propagation kinetics, and (4) a multi-dimensional formulation so that bulk flow through the spark gap can be incorporated. This model (i.e., a Fortran code that can be used as a subroutine within an engine modeling code such as KIVA) can be obtained from Prof. Ron Matthews at rdmatt{at}mail.utexas.edu or Prof. DK Ezekoye at dezekoye{at}mail.utexas.edu. Fundamental experiments, engine experiments, and modeling tasks were used to help develop the railplug as a new ignitor for large bore natural gas engines. As the result of these studies, we developed a railplug that could extend the Lean Stability Limit (LSL) of an engine operating at full load on natural gas from {phi} = 0.59 for operation on spark plugs down to {phi} = 0.53 using railplugs with the same delivered energy (0.7 J). However, this delivered energy would rapidly wear out the spark plug. For a conventional delivered energy (<0.05 J), the LSL is {phi} = 0.63 for a spark plug. Further, using a permanent magnet to aid the plasma movement, the LSL was extended to {phi} = 0.54 for a railplug with a delivered energy of only 0.15 J/shot, a typical discharge energy for commercial capacitive discharge ignition systems. Here, it should be noted that railplugs and the associated ignition circuit should not cost much more than a conventional spark ignition system. Additionally, it is believed that the railplug performance can be further improved via continued research and development.

DK Ezekoye; Matt Hall; Ron Matthews

2005-08-01T23:59:59.000Z

374

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

375

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

376

A power system includes an engine, a motor/generator operatively connected to the engine, and a starter operatively connected to at least one of the engine and the motor/generator.  

Science Conference Proceedings (OSTI)

A power system includes an engine, a motor/generator operatively connected to the engine, and a starter operatively connected to at least one of the engine and the motor/generator.

Hoff, Brian D. (East Peoria, IL); Algrain, Marcelo C. (Peoria, IL)

2008-12-09T23:59:59.000Z

377

A surety engineering framework to reduce cognitive systems risks.  

SciTech Connect

Cognitive science research investigates the advancement of human cognition and neuroscience capabilities. Addressing risks associated with these advancements can counter potential program failures, legal and ethical issues, constraints to scientific research, and product vulnerabilities. Survey results, focus group discussions, cognitive science experts, and surety researchers concur technical risks exist that could impact cognitive science research in areas such as medicine, privacy, human enhancement, law and policy, military applications, and national security (SAND2006-6895). This SAND report documents a surety engineering framework and a process for identifying cognitive system technical, ethical, legal and societal risks and applying appropriate surety methods to reduce such risks. The framework consists of several models: Specification, Design, Evaluation, Risk, and Maturity. Two detailed case studies are included to illustrate the use of the process and framework. Several Appendices provide detailed information on existing cognitive system architectures; ethical, legal, and societal risk research; surety methods and technologies; and educing information research with a case study vignette. The process and framework provide a model for how cognitive systems research and full-scale product development can apply surety engineering to reduce perceived and actual risks.

Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); Peercy, David Eugene; Caldera, Eva O. (University of New Mexico, Albuquerque, NM); Shaneyfelt, Wendy L.

2008-12-01T23:59:59.000Z

378

The Industrial Power Plant Management System - An Engineering Approach  

E-Print Network (OSTI)

Based on energy studies in over 70 plants in the forest products industry, experience has shown that, in addition to process improvements, the most important energy conservation measures in mill power departments are: - Load shedding and fuel allocation in such a manner that economically optimum conditions are achieved, taking into account purchased power supply. - Upgrading instrumentation for more accurate information and closer monitoring of plant operation. To achieve the maximum savings from these measures, a computerized energy management system is often required. This is because the optimum load allocation and best operating point must be determined through continuous energy balance calculations as the demand situation changes. The paper discusses the systems engineering approach to the design of a computerized energy management system. It is based on practical experience focusing on a tailored solution for any industrial power plant, resulting in a concept which is technically and economically feasible.

Aarnio, S. E.; Tarvainen, H. J.; Tinnis, V.

1979-01-01T23:59:59.000Z

379

Engineering design aspects of the heat-pipe power system  

SciTech Connect

The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations.

Capell, B.M.; Houts, M.G.; Poston, D.I.; Berte, M.

1997-10-01T23:59:59.000Z

380

Concentrating Solar Power Dish/Engine System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrating Solar Power Dish/Engine System Basics Concentrating Solar Power Dish/Engine System Basics Concentrating Solar Power Dish/Engine System Basics August 20, 2013 - 5:02pm Addthis The dish/engine system is a concentrating solar power (CSP) technology that produces relatively small amounts of electricity compared to other CSP technologies-typically in the range of 3 to 25 kilowatts. Dish/engine systems use a parabolic dish of mirrors to direct and concentrate sunlight onto a central engine that produces electricity. The two major parts of the system are the solar concentrator and the power conversion unit. Solar Concentrator Illustration of a dish/engine power plant. Sunlight is shown reflecting off the large dish-shaped concentrator and onto the mounted power conversion unit to generate electricity that is fed into the power grid. The system looks similar to a large satellite television receiver dish.

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Stirling engines in generating heat and electricity for micro: CHP systems  

Science Conference Proceedings (OSTI)

In this paper, an analysis of different generating heat and electricity systems with Stirling engine is made from the point of view of benefits and limitations, both operational and economic and environmental. Stirling engine has the ability to work ... Keywords: biomass, fossil fuels, generating heat and electricity system, m-CHP, stirling engine

Dan Scarpete; Krisztina Uzuneanu

2011-03-01T23:59:59.000Z

382

Design and development of eco-friendly alcohol engine fitted with waste heat recovery system  

Science Conference Proceedings (OSTI)

The present paper discusses the design and development of an eco-friendly alcohol engine fitted with the waste heat recovery system as a remedial alternative to the existing commonly used internal combustion engine. With the present trends in Internal ...

G. Vijayan Iyer; Nikos E. Mastorakis

2006-06-01T23:59:59.000Z

383

DOE-STD-1170-2003; Electrical Systems Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEASUREMENT MEASUREMENT SENSITIVE DOE-STD-1170-2003 December 2003 DOE STANDARD ELECTRICAL SYSTEMS FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1170-2003 This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1170-2003

384

DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems in Alaska DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems in Alaska February 13, 2013 - 3:26pm Addthis The U.S. Department of Energy (DOE) Office of Indian Energy is collaborating with the University of Alaska Fairbanks ACEP (Alaska Center for Energy and Power) to support in-depth technical and economic analysis of wind-diesel energy systems in rural Alaska. The resulting report will evaluate the costs and benefits of installing hybrid power systems in Alaska Native villages to alleviate high energy costs by reducing dependence on imported fossil fuels. Through the Energy Policy Act of 2005, the DOE Office of Indian Energy is authorized to fund and implement a variety of programmatic activities that

385

DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems in Alaska DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems in Alaska February 13, 2013 - 3:26pm Addthis The U.S. Department of Energy (DOE) Office of Indian Energy is collaborating with the University of Alaska Fairbanks ACEP (Alaska Center for Energy and Power) to support in-depth technical and economic analysis of wind-diesel energy systems in rural Alaska. The resulting report will evaluate the costs and benefits of installing hybrid power systems in Alaska Native villages to alleviate high energy costs by reducing dependence on imported fossil fuels. Through the Energy Policy Act of 2005, the DOE Office of Indian Energy is authorized to fund and implement a variety of programmatic activities that

386

DOE Hydrogen and Fuel Cells Program: Systems Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Independent Reviews Independent Reviews Macro-System Model U.S. Department of Energy Search help Home > Systems Integration Printable Version Systems Integration The technological advancements and lessons learned through research, development, and demonstration of hydrogen and fuel cell technologies must be integrated to work as a fully functional system. This is the focus of systems integration-understanding the complex interactions between components, systems costs, environmental impacts, societal impacts, and system trade-offs. Identifying and analyzing these interactions will enable evaluation of alternative concepts and pathways, and result in well-integrated and optimized hydrogen and fuel cell systems. Led by the Office of Energy Efficiency and Renewable Energy, this activity

387

DOE Hydrogen Analysis Repository: PV-Hydrogen System Simulator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Approach: The photovoltaic hydrogen system has a photovoltaic array with an optional maximum power point tracker that supplies electrical energy to the system. This electrical...

388

DOE Hydrogen Analysis Repository: Automotive System Cost Model...  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive System Cost Model (ASCM) Project Summary Full Title: Automotive System Cost Model (ASCM) Project ID: 118 Principal Investigator: Sujit Das Purpose Estimate current and...

389

DOE Hydrogen and Fuel Cells Program: Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Repository H2A Analysis Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems...

390

Preliminary systems engineering evaluations for the National Ecological Observatory Network.  

Science Conference Proceedings (OSTI)

The National Ecological Observatory Network (NEON) is an ambitious National Science Foundation sponsored project intended to accumulate and disseminate ecologically informative sensor data from sites among 20 distinct biomes found within the United States and Puerto Rico over a period of at least 30 years. These data are expected to provide valuable insights into the ecological impacts of climate change, land-use change, and invasive species in these various biomes, and thereby provide a scientific foundation for the decisions of future national, regional, and local policy makers. NEON's objectives are of substantial national and international importance, yet they must be achieved with limited resources. Sandia National Laboratories was therefore contracted to examine four areas of significant systems engineering concern; specifically, alternatives to commercial electrical utility power for remote operations, approaches to data acquisition and local data handling, protocols for secure long-distance data transmission, and processes and procedures for the introduction of new instruments and continuous improvement of the sensor network. The results of these preliminary systems engineering evaluations are presented, with a series of recommendations intended to optimize the efficiency and probability of long-term success for the NEON enterprise.

Robertson, Perry J.; Kottenstette, Richard Joseph; Crouch, Shannon M.; Brocato, Robert Wesley; Zak, Bernard Daniel; Osborn, Thor D.; Ivey, Mark D.; Gass, Karl Leslie; Heller, Edwin J.; Dishman, James Larry; Schubert, William Kent; Zirzow, Jeffrey A.

2008-11-01T23:59:59.000Z

391

Engine having hydraulic and fan drive systems using a single high pressure pump  

DOE Patents (OSTI)

An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2000-01-01T23:59:59.000Z

392

Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.  

DOE Green Energy (OSTI)

This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

2011-04-01T23:59:59.000Z

393

Systems integration and upgrade of an Engineering Flight Simulator  

E-Print Network (OSTI)

This thesis presents the system integration and upgrade of the Texas A&M Flight Mechanics Laboratory Engineering Flight Simulator (EFS). This upgrade replaced the previous EFS, a simplistic design that did not resemble an aircraft cockpit or present the pilot with a visual environment adequate for basic flight maneuvers. The EFS goals included: increased field of view for scenery generation, enlarging and improving the cockpit environment, providing a rudimentary cockpit control loader and developing a reliable, portable, data acquisition system. Two head down displays, surrounded by buttons, are installed in a T-37 military trainer cockpit. A digital aircraft configuration indicator completes the instrument panel. Optical encoders monitor all cockpit control effectors connected to a control loader providing a linear stick force gradient and 12 lbs. maximum force. A serial based data acquisition system records all parameters and is compatible with all foreseeable computing platforms. A projector frame, mounts three projectors displaying information from a Silicon Graphics Inc. computer yielding a 148? field of view on three eight foot wide screens. The system provides a significant research tool for testing and evaluation of the General Aviation Pilot Advisor and Training System, a fuzzy logic based pilot advisory system.

Alcorn, William Pleasant

2002-01-01T23:59:59.000Z

394

Exhaust gas purification system for lean burn engine  

DOE Patents (OSTI)

An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

Haines, Leland Milburn (Northville, MI)

2002-02-19T23:59:59.000Z

395

Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems  

DOE Green Energy (OSTI)

This paper surveys the landscape of systems engineering methods and current wind modeling capabilities to assess the potential for development of a systems engineering to wind energy research, design, and development. Wind energy has evolved from a small industry in a few countries to a large international industry involving major organizations in the manufacturing, development, and utility sectors. Along with this growth, significant technology innovation has led to larger turbines with lower associated costs of energy and ever more complex designs for all major subsystems - from the rotor, hub, and tower to the drivetrain, electronics, and controls. However, as large-scale deployment of the technology continues and its contribution to electricity generation becomes more prominent, so have the expectations of the technology in terms of performance and cost. For the industry to become a sustainable source of electricity, innovation in wind energy technology must continue to improve performance and lower the cost of energy while supporting seamless integration of wind generation into the electric grid without significant negative impacts on local communities and environments. At the same time, issues associated with wind energy research, design, and development are noticeably increasing in complexity. The industry would benefit from an integrated approach that simultaneously addresses turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated in order to meet this diverse set of goals while recognizing trade-offs that exist between them. While potential exists today to integrate across different domains within the wind energy system design process, organizational barriers such as different institutional objectives and the importance of proprietary information have previously limited a system level approach to wind energy research, design, and development. To address these challenges, NREL has embarked on an initiative to evaluate how methods of systems engineering can be applied to the research, design and development of wind energy systems. Systems engineering is a field within engineering with a long history of research and application to complex technical systems in domains such as aerospace, automotive, and naval architecture. As such, the field holds potential for addressing critical issues that face the wind industry today. This paper represents a first step for understanding this potential through a review of systems engineering methods as applied to related technical systems. It illustrates how this might inform a Wind Energy Systems Engineering (WESE) approach to the research, design, and development needs for the future of the industry. Section 1 provides a brief overview of systems engineering and wind as a complex system. Section 2 describes these system engineering methods in detail. Section 3 provides an overview of different types of design tools for wind energy with emphasis on NREL tools. Finally, Section 4 provides an overview of the role and importance of software architecture and computing to the use of systems engineering methods and the future development of any WESE programs. Section 5 provides a roadmap of potential research integrating systems engineering research methodologies and wind energy design tools for a WESE framework.

Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

2011-12-01T23:59:59.000Z

396

Safety System Oversight Workshop (May 12-13, 2010) Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Systems & Engineering Oversight Strategy SSO Conference May 2010 James Hinderer ABSSO Engineer Y 12 Site Office Y-12 Site Office Overview Background Requirements per DOE...

397

Engineering intracellular active transport systems as in vivo biomolecular tools.  

DOE Green Energy (OSTI)

Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptional regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo applications. Further development could potentially enable selective capture of intracellular antigens, targeted delivery of therapeutic agents, or disruption of the transport systems and consequently the infection and pathogenesis cycle of biothreat agents.

Bachand, George David; Carroll-Portillo, Amanda

2006-11-01T23:59:59.000Z

398

PIA - DOE Savannah River Operations Office PRISM System | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA, Idaho National Laboratory PIA - Bonneville Power Adminstration Ethics Helpline MOX Services Unclassified Information System PIA, National Nuclear Services Administration...

399

NREL: Energy Systems Integration - U.S. DOE's Energy Systems Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2013 September 2013 Energy Systems Integration eNewsletter As energy systems integration (ESI) rapidly gains momentum as a new science and the Energy Systems Integration Facility (ESIF) opens its doors for business, the past few months have been marked with important milestones at the National Renewable Energy Laboratory (NREL). After announcing the ESIF as the newest U.S. Department of Energy (DOE) user facility in June, Energy Secretary Ernest Moniz made a visit to NREL this month and officially dedicated the ESIF as the nation's first major research facility focused on clean energy grid integration and wide-scale deployment. Read on to learn more about the latest news surrounding ESI at NREL. In this Issue Energy Secretary Moniz Headlines September 11 ESIF Dedication

400

Analytical Framework to Evaluate Emission Control Systems for Marine Engines  

E-Print Network (OSTI)

720 rpm) marine diesel engines with a maximum power ratingpower are under consideration to reduce energy requirements of marinemarine diesel engines, are operated near/at the port to provide power

Jayaram, Varalakshmi

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Comparison of engine simulation software for development of control system  

Science Conference Proceedings (OSTI)

Most commonly used commercial engine simulation packages generate detailed estimation of the combustion and gas flow parameters. These parameters are required for advanced research on fluid flow and heat transfer and development of geometries of engine ...

KinYip Chan, Andrzej Ordys, Konstantin Volkov, Olga Duran

2013-01-01T23:59:59.000Z

402

Improving Reliability and Durability of Efficient and Clean Energy Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

10 10 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Prabhakar Singh Center for Clean Energy Engineering University of Connecticut (UConn) 44 Weaver Road, Unit 5233 Storrs, CT 06268-5233 Phone: (860) 486-8379 Email: singh@engr.uconn.edu DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Technical Advisor Thomas Benjamin Phone: (720) 356-1805 Email: benjamin@anl.gov Contract Number: DE-EE00003226 Project Start Date: August 1, 2010 Project End Date: July 31, 2013 *Congressionally directed project Fiscal Year (FY) 2012 Objectives Develop an understanding of the degradation processes * in advanced electrochemical energy conversion systems.

403

Importance of systems biology in engineering microbes for biofuel production  

E-Print Network (OSTI)

TS, Steen E, Keasling JD: Biofuel Alternatives to ethanol:in engineering microbes for biofuel production Aindrila

Mukhopadhyay, Aindrila

2011-01-01T23:59:59.000Z

404

MATH 335 Winter 2010 Mathematics of Engineering Systems  

E-Print Network (OSTI)

meaningful step toward the development of better design models. vii #12;1. INTRODUCTION Stirling engine Stirling models s3 5 claim to be "validated" by comparison with real engine test data. Validation implies for the case of the General Motors GPU-3 Stirling engine operating as a heat pump. The third-order model6

Offin, Dan

405

DOE Hydrogen Analysis Repository: Policy Office Electricity Modeling System  

NLE Websites -- All DOE Office Websites (Extended Search)

Policy Office Electricity Modeling System (POEMS) Policy Office Electricity Modeling System (POEMS) Project Summary Full Title: Policy Office Electricity Modeling System (POEMS) Project ID: 93 Principal Investigator: Lessly Goudarzi Purpose Designed and built by OnLocation specifically to address electricity industry restructuring issues Performer Principal Investigator: Lessly Goudarzi Organization: OnLocation, Inc. Address: Suite 300, 501 Church Street Vienna, VA 22180 Telephone: 703-938-5151 Email: goudarzi@onlocationinc.com Project Description Type of Project: Model Category: Energy Infrastructure Products/Deliverables Description: National Transmission Grid Study - Appendix A Publication Title: Policy Office Electricty Modeling System (POEMS) and Documentation for Transmission Analysis (PDF 461 KB) Download Adobe Reader.

406

Earned Value Management System (EVMS) Certifications | U.S. DOE...  

Office of Science (SC) Website

Management Processes and Procedures Cost & Contingency EDIA Escalation Rates Earned Value Management System (EVMS) Certifications Awards Lessons Learned Tools & Resources SC...

407

DOE AVESTAR Center Deploys 3-D Virtual Training System | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

systems to showcase clean coal technologies that support a clean energy future. With fossil fuel sources accounting for approximately 80 percent of national and international...

408

SYSTEM PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP  

E-Print Network (OSTI)

+Introduction on Low Thermal Energy Stirling Engine Photos from the last friendship get-together #12;-Nano System Engineering Title of his talk: I am a Gaijin: From Dream to Expectation to Reality Dr. Emanuel Leleito International Student Advisor, School of Engineering Title of his talk: Japan Life: Looking Back

Oak Ridge National Laboratory

409

Axially staged combustion system for a gas turbine engine  

DOE Patents (OSTI)

An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

Bland, Robert J. (Oviedo, FL)

2009-12-15T23:59:59.000Z

410

DOE Systems Biology Knowledgebase (KBASE) (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)  

Science Conference Proceedings (OSTI)

Adam Arkin from Berkeley Lab on the DOE Systems Biology Knowledgebase (KBASE) at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

Arkin, Adam [LBNL

2012-03-21T23:59:59.000Z

411

Integrated Dry NOx/SO2 Emissions Control System, A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Integrated Dry NO X SO 2 Emissions Control System A DOE Assessment October 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry...

412

Report on DOE Proposal ''Electronic Transport in Disordered Two Dimensional Electron Systems''  

Science Conference Proceedings (OSTI)

Under the support of the DOE grant, studied the electronic transport properties in an interacting two-dimensional electron system and the magneto-transport properties, such as giant magneto-resistance (GMR) or colossal magneto-resistance (CMR).

None

2004-03-31T23:59:59.000Z

413

Building the DOE Systems Biology Knowledgebase (KBase) ( 7th Annual SFAF Meeting, 2012)  

SciTech Connect

Tom Brettin on "Building the DOE Systems Biology Knowledgebase (KBase)" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Brettin, Tom [Oak Ridge National Laboratory

2012-06-01T23:59:59.000Z

414

An artificial neural network system for diagnosing gas turbine engine fuel faults  

DOE Green Energy (OSTI)

The US Army Ordnance Center & School and Pacific Northwest Laboratories are developing a turbine engine diagnostic system for the M1A1 Abrams tank. This system employs Artificial Neural Network (AN) technology to perform diagnosis and prognosis of the tank`s AGT-1500 gas turbine engine. This paper describes the design and prototype development of the ANN component of the diagnostic system, which we refer to as ``TEDANN`` for Turbine Engine Diagnostic Artificial Neural Networks.

Illi, O.J. Jr. [Army Ordnance Center and School, Aberdeen Proving Ground, MD (United States). Knowledge Engineering Group (KEG); Greitzer, F.L.; Kangas, L.J. [Pacific Northwest Lab., Richland, WA (United States); Reeve, T. [Expert Solutions, Stratford, CT (United States)

1994-04-01T23:59:59.000Z

415

DOCS System Configuration Management Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOCS System Configuration Management Plan DOCS System Configuration Management Plan The DOCS Systems Configuration Management Plan (SCMP), from an actual DOE systems engineering...

416

Engineering Task Plan for Routine Engineering Support for Core Sampler System  

SciTech Connect

Routine engineering support is required during normal operation of the core sampler trucks and associated ancillary equipment. This engineering support consists of, but is not limited to, troubleshooting operation problems, correcting minor design problems, assistance with work package preparation, assistance with procurement, fabrication shop support, planning of engineering tasks and preparation of associated Engineering Task Plans (ETP) and Engineering Service Requests (ESR). This ETP is the management plan document for implementing routine engineering support. Any additional changes to the scope of this ETP shall require a Letter of Instruction from Lockheed Martin Hanford Corp (LMHC). This document will also be the Work Planning Document for Development Control (HNF 1999a). The scope of this task will be to provide routine engineering support for Characterization equipment as required to support Characterization Operations. A task by task decision will be made by management to determine which tasks will be done per this ETP and if additional ETPs and/or ESRs are required. Due to the unique nature of this task, the only identifiable deliverable is to provide support as requested. Deliverables will be recorded in a task logbook as activities are identified. ESRs will be generated for tasks that require more than 40 person hours to complete, per Characterization Engineering Desk Instructions (DI 1999a).

BOGER, R.M.

1999-12-06T23:59:59.000Z

417

DOE Hydrogen and Fuel Cells Program: 2010 Annual Progress Report - Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis Systems Analysis Printable Version 2010 Annual Progress Report VII. Systems Analysis This section of the 2010 Progress Report for the DOE Hydrogen Program focuses on systems analysis. Each technical report is available as an individual Adobe Acrobat PDF. Systems Analysis Sub-Program Overview, Fred Joseck, DOE Scenario Evaluation, Regionalization and Analysis (SERA) Model, Brian Bush, National Renewable Energy Laboratory Analysis of Energy Infrastructures and Potential Impacts from an Emergent Hydrogen Fueling Infrastructure, David Reichmuth, Sandia National Laboratories Agent-Based Model of the Transition to Hydrogen-Based Personal Transportation: Consumer Adoption and Infrastructure Development Including Combined Hydrogen, Heat, and Power, Matthew Mahalik, Argonne National

418

Complex Adaptive Systems of Systems (CASoS) engineering and foundations for global design.  

SciTech Connect

Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which must be recognized and reckoned with to design a secure future for the nation and the world. Design within CASoS requires the fostering of a new discipline, CASoS Engineering, and the building of capability to support it. Towards this primary objective, we created the Phoenix Pilot as a crucible from which systemization of the new discipline could emerge. Using a wide range of applications, Phoenix has begun building both theoretical foundations and capability for: the integration of Applications to continuously build common understanding and capability; a Framework for defining problems, designing and testing solutions, and actualizing these solutions within the CASoS of interest; and an engineering Environment required for 'the doing' of CASoS Engineering. In a secondary objective, we applied CASoS Engineering principles to begin to build a foundation for design in context of Global CASoS

Brodsky, Nancy S.; Finley, Patrick D.; Beyeler, Walter Eugene; Brown, Theresa Jean; Linebarger, John Michael; Moore, Thomas W.; Glass, Robert John, Jr.; Maffitt, S. Louise; Mitchell, Michael David; Ames, Arlo Leroy

2012-01-01T23:59:59.000Z

419

Complex Adaptive System of Systems (CASoS) Engineering Applications. Version 1.0.  

SciTech Connect

Complex Adaptive Systems of Systems, or CASoS, are vastly complex eco-socio-economic-technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to highly-saturated interdependencies and allied vulnerabilities to cascades in associated systems. The Phoenix initiative approaches this high-impact problem space as engineers, devising interventions (problem solutions) that influence CASoS to achieve specific aspirations. CASoS embody the world's biggest problems and greatest opportunities: applications to real world problems are the driving force of our effort. We are developing engineering theory and practice together to create a discipline that is grounded in reality, extends our understanding of how CASoS behave, and allows us to better control those behaviors. Through application to real-world problems, Phoenix is evolving CASoS Engineering principles while growing a community of practice and the CASoS engineers to populate it.

Linebarger, John Michael; Maffitt, S. Louise (New Mexico Institute of Mining and Technology, Albuquerque, NM); Glass, Robert John, Jr.; Beyeler, Walter Eugene; Brown, Theresa Jean; Ames, Arlo Leroy

2011-10-01T23:59:59.000Z

420

DOE Hydrogen Analysis Repository: Renewable Energy Power System Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Power System Modular Simulator (RPM-Sim) Renewable Energy Power System Modular Simulator (RPM-Sim) Project Summary Full Title: Renewable Energy Power System Modular Simulator (RPM-Sim) Project ID: 104 Principal Investigator: Edward Muljadi Keywords: Renewable; hybrid electric vehicles (HEV) Purpose This is a package software program developed based on a modular concept. Each module consists of a type of equipment or an element of a power system (for example, diesel-genset, wind turbine generator, village load, rotary converter, PV-inverter module, fuel cell-inverter module (developed by Prof. Hashem Nehrir, Montana State University), electrolysis module (developed by Prof. Hosein Salehfar and Prof. Mann University of North Dakota). Performer Principal Investigator: Edward Muljadi Organization: National Renewable Energy Laboratory (NREL)

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

2012 DOE Facility Representatives/Safety System Oversight Workshop...  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety System Oversight Fire Safety Overall Workshop Agenda May 14-18, 2012 Alexis Park Hotel Las Vegas, Nevada Monday, May 14, 2012 8:00 a.m. - 5:00 p.m. SAF-271, SSO...

422

$18.8 Million Award for Power Systems Engineering Research Center...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Continues Collaboration of 13 Universities and 35 Utilities for Electric Power Research, Building the Nation's Energy Workforce 18.8 Million Award for Power Systems Engineering...

423

Applying Systems Engineering in a Renewable Energy Research and Development Environment: Preprint  

SciTech Connect

This paper examines lessons learned in systems engineering research and development at the National Renewable Energy Laboratory and explores new ideas for future process enhancements.

Snyder, N.; Antkowiak, M.

2010-04-01T23:59:59.000Z

424

DOE Hydrogen Program Record 10004, Fuel Cell System Cost - 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record Program Record Record #: 10004 Date: September 16, 2010 Title: Fuel Cell System Cost - 2010 Update to: Record 9012 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: December 16, 2010 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on 2010 technology and operating on direct hydrogen is projected to be $51/kW when manufactured at a volume of 500,000 units/year. Rationale: In fiscal year 2010, TIAX LLC (TIAX) and Directed Technologies, Inc. (DTI) each updated their 2009 cost analyses of 80-kW net direct hydrogen PEM automotive fuel cell systems based on 2010 technology and projected to manufacturing volumes of 500,000 units per year [1,2]. Both cost estimates are based on performance at beginning of life.

425

DOE Hydrogen Analysis Repository: Macro-System Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Macro-System Model Macro-System Model Project Summary Full Title: Macro-System Model (MSM) Project ID: 66 Principal Investigator: Mark Ruth Brief Description: Federated object model framework is used to link other models to perform rapid cross-cutting analysis. Keywords: Transition; well-to-wheels (WTW); renewable; hydrogen production; emissions; cost Purpose Perform rapid cross-cutting analysis by utilizing and linking other models. This work will also improve consistency between models. Analyses that require the MSM will be used to support decisions regarding programmatic investments and focus of funding and to estimate program outputs and outcomes. Performer Principal Investigator: Mark Ruth Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd.

426

DOE Hydrogen Analysis Repository: Hydrogen Storage Systems Cost Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Cost Analysis Hydrogen Storage Systems Cost Analysis Project Summary Full Title: Cost Analysis of Hydrogen Storage Systems Project ID: 207 Principal Investigator: Stephen Lasher Keywords: Hydrogen storage; costs Purpose The purpose of this analysis is to help guide researchers and developers toward promising R&D and commercialization pathways by evaluating the various on-board hydrogen storage technologies on a consistent basis. Performer Principal Investigator: Stephen Lasher Organization: TIAX, LLC Address: 15 Acorn Park Cambridge, MA 02140 Telephone: 617-498-6108 Email: lasher.stephen@tiaxllc.com Additional Performers: Matt Hooks, TIAX, LLC; Mark Marion, TIAX, LLC; Kurtis McKenney, TIAX, LLC; Bob Rancatore, TIAX, LLC; Yong Yang, TIAX, LLC Sponsor(s) Name: Sunita Satyapal

427

DOE-STD-1161-2003; Mechanical Systems Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-2003 1-2003 June 2003 DOE STANDARD MECHANICAL SYSTEMS FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1161-2003 iii APPROVAL The Federal Technical Capability Panel consists of senior Department of Energy managers responsible

428

The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project  

SciTech Connect

In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.

Hopper, Calvin Mitchell [ORNL

2011-01-01T23:59:59.000Z

429

The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project  

SciTech Connect

In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.

Hopper, Calvin Mitchell [ORNL

2011-01-01T23:59:59.000Z

430

Q: What are you (DOE) looking for in your accounting system review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accounting Systems Accounting Systems Accounting Systems Question: Why are you doing an accounting system review, what are you (DOE) looking for, and what do you need from me? Answer: DOE policy requires an accounting system review when we have not previously funded an organization. The standards for an acceptable financial system are found at 10 C.F.R. 600.121, 600.220, and 600.311. The specific requirements differ slightly by type of organization but common to all is the need for an accounting system that is adequate for the accumulation and segregation of costs on a project-by-project basis. Also your system must have controls and be able to account for all funds, property, and other assets. Your accounting system must be adequate to permit the reports we require.

431

Develop the dual fuel conversion system for high output, medium speed diesel engines. Final report  

DOE Green Energy (OSTI)

The original plan for the project involved design modifications to an existing system to enhance its performance and increase the limit of power that was achieved by the original design and to apply the higher performance product to the full sized engine and test its performance. The new system would also be applied to a different engine model. The specific work would include the redesign of gas injectors, piston configurations and two types of igniters, engine instrumentation, monitoring and testing.

NONE

1998-07-16T23:59:59.000Z

432

Improving the Thermal Output Availability of Reciprocating Engine Cogeneration Systems by Mechanical Vapor Compression  

E-Print Network (OSTI)

An innovative, alternative reciprocating engine cogeneration system is being developed that can provide the industrial and commercial end-user with electric power and process heat that is totally in the form of high-pressure steam. Current reciprocating engine systems can now provide only low-pressure steam or hot water from the engine jacket, and this often is not needed or not the most appropriate.

Becker, F. E.; DiBella, F. A.; Lamphere, F.

1986-06-01T23:59:59.000Z

433

Distributed systems from natural to engineered: three phases of inspiration by nature  

Science Conference Proceedings (OSTI)

So far, most nature-inspired applications concern single components and non-distributed systems. However, distributed adaptive complex systems in nature also exhibit many properties which could be highly useful in engineered systems. The most ... Keywords: #, 42, CAS, autonomy, bio-inspiration, bio-inspired computation, complex adaptive systems, complexity theory, distributed systems, nature-inspired engineering, properties, self-&, self-organisation

R. Frei; J. Barata

2010-05-01T23:59:59.000Z

434

Prototype Engineered Barrier System Field Test (PEBSFT); Final report  

SciTech Connect

This final report represents a summary of data and interpretations obtained from the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The PEBSFT was conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for future field tests that will be conducted in the Exploratory Studies Facilities (ESF) at Yucca Mountain. The primary objective of the test was to provide a basis for determining whether tests planned for the ESF have the potential to be successful. Chapter 1 on high frequency electromagnetic tomography discusses the rock mass electromagnetic permittivity and attenuation rate changes that were measured to characterize the water distribution in the near field of a simulated waste container. The data are used to obtain quantitative estimates of how the moisture content in the rock mass changes during heating and to infer properties of the spatial variability of water distribution, leading to conclusions about the role of fractures in the system. Chapter 2 discusses the changes in rock moisture content detected by the neutron logging probe. Chapter 3 permeability tests discusses the characterization of the in-situ permeability of the fractured tuff around the borehole. The air permeability testing apparatus, the testing procedures, and the data analysis are presented. Chapter 4 describes the moisture collection system installed in the heater borehole to trap and measure the moisture volumes. Chapter 5 describes relative humidity measurements made with the thermocouple psychrometer and capacitance sensors. Chapter 6 discusses gas pressure measurements in the G-Tunnel, addressing the calibration and installation of piezoresistive-gaged transducers. Chapter 7 describes the calibration and installation of thermocouples for temperature measurements. Chapter 8 discusses the results of the PEBSFT.

Ramirez, A.L. [ed.; Buscheck, T.; Carlson, R.; Daily, W.; Lee, K.; Lin, Wunan; Mao, Nai-hsien; Ueng, Tzou-Shin; Wang, H.; Watwood, D.

1991-08-01T23:59:59.000Z

435

Study and analysis of best practices for the development of systems engineers at a multi-national organization  

E-Print Network (OSTI)

Thesis statement: The purpose of this thesis is threefold: * Define the role and need of systems engineers/integrators within a large organization. * Analyze the system engineering procedures and availability of systems ...

Dubey, Rajeev

2006-01-01T23:59:59.000Z

436

Biological Systems Science Division (BSSD) | U.S. DOE Office of Science  

Office of Science (SC) Website

Biological and Environmental Research (BER) BER Home About Research Research Abstracts Searchable Archive of BER Highlights External link Biological Systems Science Division (BSSD) Genomic Science DOE Bioenergy Research Centers Radiochemistry & Imaging Instrumentation Radiobiology: Low Dose Radiation Research DOE Human Subjects Protection Program Structural Biology DOE Joint Genome Institute Climate and Environmental Sciences Division (CESD) Facilities Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) News & Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3251 F: (301)

437

IECEC '91; Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Boston, MA, Aug. 4-9, 1991. Vol. 5 - Renewable resource systems, Stirling engines and applications, systems and cycles  

SciTech Connect

Various papers on energy conversion engineering are presented. The general topics considered are: developments in nuclear power, energy from waste and biomass, system performance and materials in photovoltaics, solar thermal energy, wind energy systems, Stirling cycle analysis, Stirling cycle power, Stirling component technology, Stirling cooler/heat pump developments, Stirling engine concepts, Stirling engine design and optimization, Stirling engine dynamics and response, Stirling engine solar terrestrial, advanced cogeneration, AMTC, fossil fuel systems and technologies, marine energy.

Not Available

1991-01-01T23:59:59.000Z

438

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System Callaway Spring 2011 #12;Abstract A Better Steam Engine: Designing a Distributed Concentrating Solar of analysis of Distributed Concentrating Solar Combined Heat and Power (DCS-CHP) systems is a design

California at Berkeley, University of

439

Phoenix : Complex Adaptive System of Systems (CASoS) engineering version 1.0.  

SciTech Connect

Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to pervasive interdependencies and attendant vulnerabilities to cascades in associated systems. Phoenix was initiated to address this high-impact problem space as engineers. Our overarching goals are maximizing security, maximizing health, and minimizing risk. We design interventions, or problem solutions, that influence CASoS to achieve specific aspirations. Through application to real-world problems, Phoenix is evolving the principles and discipline of CASoS Engineering while growing a community of practice and the CASoS engineers to populate it. Both grounded in reality and working to extend our understanding and control of that reality, Phoenix is at the same time a solution within a CASoS and a CASoS itself.

Moore, Thomas W.; Quach, Tu-Thach; Detry, Richard Joseph; Conrad, Stephen Hamilton; Kelic, Andjelka; Starks, Shirley J.; Beyeler, Walter Eugene; Brodsky, Nancy S.; Verzi, Stephen J.; Brown, Theresa Jean; Glass, Robert John, Jr.; Sunderland, Daniel J.; Mitchell, Michael David; Ames, Arlo Leroy; Maffitt, S. Louise; Finley, Patrick D.; Russell, Eric Dean; Zagonel, Aldo A.; Reedy, Geoffrey E.; Mitchell, Roger A.; Corbet, Thomas Frank, Jr.; Linebarger, John Michael

2011-08-01T23:59:59.000Z

440

DOE GC Joins Customs Service Trade Data System to Strengthen Enforcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GC Joins Customs Service Trade Data System to Strengthen GC Joins Customs Service Trade Data System to Strengthen Enforcement Effort DOE GC Joins Customs Service Trade Data System to Strengthen Enforcement Effort February 14, 2011 - 5:48pm Addthis The Department of Energy today announced that its Office of the General Counsel has joined the Board of Directors of the International Trade Data System, and now has access to the U.S. Customs and Border Protection "Automated Commercial Environment." This provides DOE with real-time information on imported products subject to DOE's energy conservation regulations. The Department will now be able more easily to identify products imported in violation of its energy conservation regulations thus ensuring that foreign manufacturers have to follow the same rules as

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Innovative Systems Engineering Solar LLC ISE Solar LLC | Open Energy  

Open Energy Info (EERE)

Solar LLC ISE Solar LLC Solar LLC ISE Solar LLC Jump to: navigation, search Name Innovative Systems Engineering Solar LLC (ISE Solar LLC) Place Warminster, Pennsylvania Zip 18974-1454 Sector Solar Product US-based manufacturer of vacuum deposition equipment for thin-film amorphous silicon products; offers management and operation of thin-film solar plants. Coordinates 40.205459°, -75.100077° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.205459,"lon":-75.100077,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

1993-01-01T23:59:59.000Z

443

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

This invention is comprised of an improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1992-12-31T23:59:59.000Z

444

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1993-12-21T23:59:59.000Z

445

Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report  

SciTech Connect

The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

W.E. Lowry

2001-12-13T23:59:59.000Z

446

United States Environmental Monitoring EPA-600/4-81-047 Environmental Protection Systems Laboratory DOE/DP/00539-043  

Office of Legacy Management (LM)

EPA-600/4-81-047 EPA-600/4-81-047 Environmental Protection Systems Laboratory DOE/DP/00539-043 Agency P.O. Box 15027 June 1981 Las Vegas NV 891 14 Research and Development Offsite Environmental Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1980 prepared for the Nevada Operations Office U.S. Department of Energy This page intentionally left blank EPA-60014-81-047 DOE/DP/00539-043 June 1981 OFFSITE ENVIRONMENTAL MONITORING REPORT Radiation moni t o r i ng around U n i t e d States nuclear t e s t areas, calendar y e a r 1980 D. D. Smith, R. F. Grossman, W. D. Corkern, D. J. Thorn6 and R. G. Patzer Envi ronmental Moni t o r i ng Systems Laboratory Las Vegas, Nevada 89114 and J. L. Hopper Reynol ds E l e c t r i c a l & Engineering Company, Inc.

447

Socio-cognitive analysis of engineering systems design : shared knowledge, process, and product  

E-Print Network (OSTI)

This research is based on the well-known but seldom stated premise that the design of complex engineered systems is done by people -- each with their own knowledge, thoughts, and views about the system being designed. To ...

Avnet, Mark Sean

2009-01-01T23:59:59.000Z

448

Engineer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

information. PARS II uses the same data as maintained in our contractors' project management systems, so everyone from the Federal Project Director's staff to the Secretary of...

449

ENGINEERING  

NLE Websites -- All DOE Office Websites (Extended Search)

our power infrastructure compels us to examine every opportunity for innovation. From smart grid technologies to hybrid systems that integrate fossil, nuclear, and renewable...

450

DOE/ID-Number  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INEEL/EXT-04-02423 INEEL/EXT-04-02423 ABB SCADA/EMS System INEEL Baseline Summary Test Report J. R. Davidson M. R. Permann B. L. Rolston S. J. Schaeffer November 2004 Prepared by: Idaho National Engineering and Environmental Laboratory INEEL/EXT-04-02423 ABB SCADA/EMS System INEEL Baseline Summary Test Report J. R. Davidson M. R. Permann B. L. Rolston S. J. Schaeffer November 2004 Idaho National Engineering and Environmental Laboratory INEEL National Security Division Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Office of Energy Assurance Under DOE Idaho Operations Office Contract DE-AC07-99ID13727 ABB SCADA/EMS System INEEL Baseline Summary Test Report INEEL/EXT-04-02423 November 2004 ABSTRACT The Idaho National Engineering and Environmental Laboratory

451

DOE/EIS-0251; Supplemental Analysis For a Container System for the Management of DOE Spent Nuclear Fuel Located at the INEEL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ID-10636 ID-10636 SUPPLEMENT ANALYSIS FOR A CONTAINER SYSTEM FOR THE MANAGEMENT OF DOE SPENT NUCLEAR FUEL LOCATED AT THE INEEL March 1999 U.S. Department of Energy Idaho Operations Office Idaho Falls, Idaho DOE/ID-10636 SUPPLEMENT ANALYSIS FOR A CONTAINER SYSTEM FOR THE MANAGEMENT OF DOE SPENT NUCLEAR FUEL LOCATED AT THE INEEL March 1999 Department of Energy Idaho Operations Office Idaho Falls, Idaho SNF Supplement Analysis ii March 1999 CONTENTS Acronyms and Abbreviations .............................................................................................. v Summary ..........................................................................................................................S-1 1.0 Purpose and Proposed Action ......................................................................................

452

DOE Completes $17 Million Loan Guarantee for New York Energy Storage System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Completes $17 Million Loan Guarantee for New York Energy DOE Completes $17 Million Loan Guarantee for New York Energy Storage System with Recovery Act Funds DOE Completes $17 Million Loan Guarantee for New York Energy Storage System with Recovery Act Funds December 23, 2010 - 12:00am Addthis Washington D.C. --- Energy Secretary Steven Chu today announced a $17.1 million loan guarantee has been finalized for the AES Westover facility. The loan guarantee will support the construction of a 20 megawatt (MW) energy storage system using advanced lithium-ion batteries. The AES project, located in Johnson City, New York, will help provide a more stable and efficient electrical grid for the state's high-voltage transmission network. "The AES project helps reduce carbon emissions and strengthens our energy infrastructure by allowing for more renewable energy sources like solar and

453

Thermal energy from a biogas engine/generator system  

SciTech Connect

A biogas fueled engine/generator equipped with heat recovery apparatus and thermal storage is described. The thermal energy is used to fuel a liquid fuel plant. Heat recovery is quantified and the static and dynamic performance of the thermal storage is described. At 1260 rpm the engine/generator produces 21 kW of electric power and 2500 kJ/min of thermal energy.

Stahl, T.; Fischer, J.R.; Harris, F.D.

1982-12-01T23:59:59.000Z

454

Systems engineering management and implementation plan for Project W-464, immobilized high-level waste storage  

SciTech Connect

The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-46 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan. (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented.

Wecks, M.D.

1998-04-15T23:59:59.000Z

455

Systems engineering management and implementation plan for Project W-465, immobilized low-activity waste plan  

SciTech Connect

The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-465 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented.

Latray, D.A.

1998-05-15T23:59:59.000Z

456

Comparison of the Unique Mobility and DOE-developed ac electric drive systems  

DOE Green Energy (OSTI)

A comparison was made between the most recent DOE-developed AC electric vehicle drive systems and that which is independently under development by Unique Mobility of Golden, Colorado. The DOE-developed AC systems compared in this study are the Single-Shaft Electric Propulsion System (ETX-II) developed by Ford Motor Company and the General Electric Company under contract number DE-AC07-85NV10418, the Dual-Shaft Electric Propulsion (DSEP) System developed by Eaton Corporation under contract number DOE-AC08-84NV-10366, and the anticipated results of the Modular Electric Vehicle (MEV) system currently being developed by Ford and General Electric under contract number DE-AC07-90ID13019. The Unique Mobility brushless DC electric vehicle drive system represents their latest electric drive technology and is being developed in cooperation with BMW Technik Gmbh of Germany. Comparisons of specific volume, specific weight, efficiency and expected vehicle performance are made of the different systems based upon measured system performance data where available. One conclusion presented is that the Unique Mobility drive system under development with BMW appears to provide comparable performance to the AC systems studied.

Cole, G.H.

1993-01-01T23:59:59.000Z

457

Traceability in Systems Engineering - Review of industrial practices, state-of-the-art technologies and new research solutions  

Science Conference Proceedings (OSTI)

This article discusses issues and solutions regarding traceability for Systems Engineering projects. A review of industrial Systems Engineering practice is presented based on observations and studies that have been carried out at different original equipment ... Keywords: Efficient trace link modelling, Morphological schema, Nomenclature, Systems Engineering, Systems modelling, Traceability

Simon Frederick KNigs; Grischa Beier; Asmus Figge; Rainer Stark

2012-10-01T23:59:59.000Z

458

Hydrogen Storage Engineering Center of Excellence - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Donald L. Anton (Primary Contact), Theodore Motyka, Bruce Hardy and David Tamburello Savannah River National Laboratory (SRNL) Bldg. 999-2W Aiken, SC 29808 Phone: (803) 507-8551 Email: DONALD.ANTON@SRNL.DOE.GOV DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Technical Advisor Robert Bowman Phone: 818-354-7941 Email: rcbjr1967@gmail.com Subcontractors: * Pacific Northwest National Laboratory (PNNL) * United Technologies Research Center (UTRC) * General Motors Corp (GM) * Ford Motor Corp. (FMC)

459

Biodiesel Impact on Engine Lubricant Dilution During Active Regeneration of Aftertreatment Systems  

Science Conference Proceedings (OSTI)

Experiments were conducted with ultra low sulfur diesel (ULSD) and 20% biodiesel blends (B20) to compare lube oil dilution levels and lubricant properties for systems using late in-cylinder fuel injection for aftertreatment regeneration. Lube oil dilution was measured by gas chromatography (GC) following ASTM method D3524 to measure diesel content, by Fourier transform infrared (FTIR) spectrometry following a modified ASTM method D7371 to measure biodiesel content, and by a newly developed back-flush GC method that simultaneously measures both diesel and biodiesel. Heavy-duty (HD) engine testing was conducted on a 2008 6.7L Cummins ISB equipped with a diesel oxidation catalyst (DOC) and diesel particle filter (DPF). Stage one of engine testing consisted of 10 consecutive repeats of a forced DPF regeneration event. This continuous operation with late in-cylinder fuel injection served as a method to accelerate lube-oil dilution. Stage two consisted of 16 hours of normal engine operation over a transient test cycle, which created an opportunity for any accumulated fuel in the oil sump to evaporate. Light duty (LD) vehicle testing was conducted on a 2010 VW Jetta equipped with DOC, DPF and a NOx storage catalyst (NSC). Vehicle testing comprised approximately 4,000 miles of operation on a mileage-accumulation dynamometer (MAD) using the U.S. Environmental Protection Agency's Highway Fuel Economy Cycle because of the relatively low engine oil and exhaust temperatures, and high DPF regeneration frequency of this cycle relative to other cycles examined. Comparison of the lube oil dilution analysis methods suggests that D3524 does not measure dilution by biodiesel. The new back-flush GC method provided analysis for both diesel and biodiesel, in a shorter time and with lower detection limit. Thus all lube oil dilution results in this paper are based on this method. Analysis of the HD lube-oil samples showed only 1.5% to 1.6% fuel dilution for both fuels during continuous operation under DPF regeneration events. During the second stage of HD testing, the ULSD lube-oil dilution levels fell from 1.5% to 0.8%, while for B20, lube-oil dilution levels fell from 1.6% to 1.0%, but the fuel in the oil was 36% biodiesel. For the LD vehicle tests, the frequency of DPF regeneration events was observed to be the same for both ULSD and B20. No significant difference between the two fuels' estimated soot loading was detected by the engine control unit (ECU), although a 23% slower rate of increase in differential pressure across DPF was observed with B20. It appears that the ECU estimated soot loading is based on the engine map, not taking advantage of the lower engine-out particulate matter from the use of biodiesel. After 4,000 miles of LD vehicle operation with ULSD, fuel dilution in the lube-oil samples showed total dilution levels of 4.1% diesel. After 4,000 miles of operation with B20, total fuel in oil dilution levels were 6.7% consisting of 3.6% diesel fuel and 3.1% biodiesel. Extrapolation to the 10,000-mile oil drain interval with B20 suggests that the total fuel content in the oil could reach 12%, compared to 5% for operation on ULSD. Analysis of the oil samples also included measurement of total acid number, total base number, viscosity, soot, metals and wear scar; however, little difference in these parameters was noted.

He, X.; Williams, A.; Christensen, E.; Burton, J.; McCormick, R.

2011-12-01T23:59:59.000Z

460

Observing the evolution of a quantum system that does not evolve  

E-Print Network (OSTI)

This article deals with the problem of gathering information on the time evolution of a single metastable quantum system whose evolution is impeded by the quantum Zeno effect. It has been found it is in principle possible to obtain some information on the time evolution and, depending on the specific system, even to measure its average decay rate, even if the system does not undergo any evolution at all.

Simone De Liberato

2007-05-16T23:59:59.000Z

Note: This page contains sample records for the topic "doe systems engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Audit Report Waste Treatment Plans at the Idaho National Engineering and Environmental Laboratory, DOE/IG-0440  

Energy.gov (U.S. Department of Energy (DOE))

The Idaho National Engineering and Environmental Laboratory (Laboratory) stores nearly 65,000 cubic meters of waste generated on site or brought to the State of Idaho (Idaho) from Department of...

462

Systems Engineering in the Development and Implementation of the Savannah River Site Transuranic Waste Disposition Program  

SciTech Connect

The use of systems engineering facilitated the strategic planning and implementation of the Savannah River Site (SRS) transuranic waste disposal program. This application represented the first SRS use of systems engineering in the pre-program planning stages during the development of a comprehensive strategic plan for the disposal of transuranic waste at the Department of Energy Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The use of systems engineering focused the efforts of the technical experts to devise a three initiative plan for the disposal of transuranic waste where previous efforts failed. Continued application of systems engineering facilitated the further development and implementation of the first initiative outlined in the strategic plan, i.e., set-up the program and process to begin to characterize and ship waste to the WIPP.This application of systems engineering to the transuranic waste program represented the first opportunity at the SRS for a comprehensive usage of systems engineering at all program levels. The application was initiated at the earliest possible point in the program development, i.e., strategic planning, and successively was used in detailed development and implementation of the program. Systems engineering successfully focused efforts to produce a comprehensive plan for the disposal of SRS transuranic waste at the WIPP, and facilitated development of the SRS capability and infrastructure to characterize, certify, and ship waste.

Fayfich, R.R.

1999-03-10T23:59:59.000Z

463

DOE Office of Civilian Radioactive Waste Management (OCRWM) system studies digest  

SciTech Connect

The Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) has sponsored system studies to support the evaluation of alternative configurations and operations for the Civilian Radioactive Waste Management System (CRWMS) and the development of system requirements and design specifications. These studies are generally directed toward evaluating the impacts of alternatives to the monitored retrievable storage (MRS) and fuel rod consolidation, waste form and characteristics sequences, cask and canister concepts, allocation of waste acceptance rights, and system throughput rates. The objectives of this document are: To present major system issues and related system element issues in a structured manner; to discuss key results of major system studies and explain the basis for certain current system assumptions; to summarize the scope and results of completed system studies that are still relevant at the time this document is published; and to provide the background needed for identifying and prioritizing system issues to be resolved. Consistent with the objectives, the document does not include low-level subsystem studies addressing system element issues that do not interact with overall system issues. The document is expected to be updated as major new system studies are completed and significant new results are available.

McLeod, N.B. (Johnson and Associates Inc., Fairfax, Virginia (United States)); Nguyen, T.D.; Drexelius, R. (USDOE Office of Civilian Radioactive Waste Management, Washington, DC (United States)); McKee, R.W. (Pacific Northwest Lab., Richland, WA (United States))

1992-06-01T23:59:59.000Z

464

Electrical Engineering (EE) is a diverse discipline encompassing computer and information systems, controls,  

E-Print Network (OSTI)

and multiply excited systems. Concepts in rotating machinery analysis. Direct energy conversion. Prerequisite70 electrical Electrical Engineering (EE) is a diverse discipline encompassing computer information processing. ProgrAmS AVAilAble · ElectricalEngineering Bachelor of Science 131 units · Computer

Rohs, Remo