Sample records for doe systems development

  1. Development of HVAC System Performance Criteria Using Factorial Design and DOE-2 Simulation

    E-Print Network [OSTI]

    Hou, D.; Jones, J. W.; Hunn, B. D.; Banks, J. A.

    1996-01-01T23:59:59.000Z

    A new approach is described for the development of Heating, Ventilating, and Air-conditioning (HVAC) System Performance Criteria for the Texas Building Energy Design Standard. This approach integrates a design of experimental methodology and DOE-2...

  2. Comparison of the Unique Mobility and DOE-developed ac electric drive systems

    SciTech Connect (OSTI)

    Cole, G.H.

    1993-01-01T23:59:59.000Z

    A comparison was made between the most recent DOE-developed AC electric vehicle drive systems and that which is independently under development by Unique Mobility of Golden, Colorado. The DOE-developed AC systems compared in this study are the Single-Shaft Electric Propulsion System (ETX-II) developed by Ford Motor Company and the General Electric Company under contract number DE-AC07-85NV10418, the Dual-Shaft Electric Propulsion (DSEP) System developed by Eaton Corporation under contract number DOE-AC08-84NV-10366, and the anticipated results of the Modular Electric Vehicle (MEV) system currently being developed by Ford and General Electric under contract number DE-AC07-90ID13019. The Unique Mobility brushless DC electric vehicle drive system represents their latest electric drive technology and is being developed in cooperation with BMW Technik Gmbh of Germany. Comparisons of specific volume, specific weight, efficiency and expected vehicle performance are made of the different systems based upon measured system performance data where available. One conclusion presented is that the Unique Mobility drive system under development with BMW appears to provide comparable performance to the AC systems studied.

  3. DOE Leadership & Career Development Programs | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development DOE Leadership & Career Development Programs DOE Leadership & Career Development Programs Senior Executive Service Candidate Development Program (SESCDP): This...

  4. EAC Recommendations for DOE Action Regarding Development of the...

    Broader source: Energy.gov (indexed) [DOE]

    Development of the Next Generation Grid Operating System (Energy Management System) - October 17, 2012 EAC Recommendations for DOE Action Regarding Development of the Next...

  5. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-11-06T23:59:59.000Z

    The order establishes policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. Cancels DOE O 483.1 Admin Chg 1 and DOE M 483.1-1.

  6. An overview of DOE`s wind turbine development programs

    SciTech Connect (OSTI)

    Laxson, A; Dodge, D; Flowers, L [National Renewable Energy Lab., Golden, CO (United States); Loose, R; Goldman, P [Dept. of Energy, Washington, DC (United States)

    1993-09-01T23:59:59.000Z

    The development of technologically advanced, higher efficiency wind turbines continues to be a high priority activity of the US wind industry. The United States Department of Energy (DOE) is conducting and sponsoring a range of programs aimed at assisting the wind industry with system design, development, and testing. The overall goal is to develop systems that can compete with conventional electric generation for $.05/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with fossil-fuel-based generators for $.04/kWh at 5.8 m/s sites by the year 2000. These goals will be achieved through several programs. The Value Engineered Turbine Program will promote the rapid development of US capability to manufacture wind turbines with known and well documented records of performance, cost, and reliability, to take advantage of near-term market opportunities. The Advanced Wind Turbine Program will assist US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid 1990s) and to develop a new generation of turbines for the year 2000. The collaborative Electric Power Research Institute (EPRI)/DOE Utility Wind Turbine Performance Verification Program will deploy and evaluate commercial-prototype wind turbines in typical utility operating environments, to provide a bridge between development programs currently underway and commercial purchases of utility-grade wind turbines. A number of collaborative efforts also will help develop a range of small systems optimized to work in a diesel hybrid environment to provide electricity for smaller non-grid-connected applications.

  7. DOE Zero Energy Ready Home Case Study, Weiss Building & Development...

    Broader source: Energy.gov (indexed) [DOE]

    Zero Energy Ready Home Case Study, Weiss Building & Development, LLC., System Home, River Forest, IL DOE Zero Energy Ready Home Case Study, Preferred Builders, Old Greenwich, CT,...

  8. Development of a combined soil-wash/in-furnace vitrification system for soil remediation at DOE sites. Final report

    SciTech Connect (OSTI)

    Pegg, I.L.; Guo, Y.; Lahoda, E.J.; Lai, Shan-Tao; Muller, I.S.; Ruller, J. [GTS Duratek, Columbia, MD (United States); Grant, D.C. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

    1993-01-01T23:59:59.000Z

    This report addresses research and development of technologies for treatment of radioactive and hazardous waste streams at DOE sites. Weldon Spring raffinate sludges were used in a direct vitrification study to investigate their use as fluxing agents in glass formulations when blended with site soil. Storm sewer sediments from the Oak Ridge, TN, Y-12 facility were used for soil washing followed by vitrification of the concentrates. Both waste streams were extensively characterized. Testing showed that both mercury and uranium could be removed from the Y-12 soil by chemical extraction resulting in an 80% volume reduction. Thermal desorption was used on the contaminant-enriched minority fraction to separate the mercury from the uranium. Vitrification tests demonstrated that high waste loading glasses could be produced from the radioactive stream and from the Weldon Spring wastes which showed very good leach resistance, and viscosities and electrical conductivities in the range suitable for joule-heated ceramic melter (JHCM) processing. The conceptual process described combines soil washing, thermal desorption, and vitrification to produce clean soil (about 90% of the input waste stream), non-radioactive mercury, and a glass wasteform; the estimated processing costs for that system are about $260--$400/yd{sup 3}. Results from continuous melter tests performed using Duratek`s advanced JHCM (Duramelter) system are also presented. Since life cycle cost estimates are driven largely by volume reduction considerations, the large volume reductions possible with these multi-technology, blended waste stream approaches can produce a more leach resistant wasteform at a lower overall cost than alternative technologies such as cementation.

  9. DOE Cooperative Research and Development Agreements Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 483.1, DOE Cooperative Research and Development Agreements, dated 1-12-01, which establishes requirements for the performance of technology transfer through the use of Cooperative Research and Development Agreements (CRADAs). Canceled by DOE O 483.1A.

  10. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    To establish Department of Energy (DOE) policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. No cancellation.

  11. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-12T23:59:59.000Z

    To establish Department of Energy (DOE) policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. Admin Chg, dated 9-18-2013. Canceled by DOE O 483.1A.

  12. Technology development for DOE SNF management

    SciTech Connect (OSTI)

    Hale, D.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Einziger, R.E. [Pacific Northwest National Lab., Richland, WA (United States); Murphy, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1995-12-31T23:59:59.000Z

    This paper describes the process used to identify technology development needs for the same management of spent nuclear fuel (SNF) in the US Department of Energy (DOE) inventory. Needs were assessed for each of the over 250 fuel types stores at DOE sites around the country for each stage of SNF management--existing storage, transportation, interim storage, and disposal. The needs were then placed into functional groupings to facilitate integration and collaboration among the sites.

  13. DOE Leverages Fossil Energy Expertise to Develop And Explore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Leverages Fossil Energy Expertise to Develop And Explore Geothermal Energy Resources DOE Leverages Fossil Energy Expertise to Develop And Explore Geothermal Energy Resources...

  14. DOE Standard on Development and Use of Probabilistic Risk Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    on Development and Use of Probabilistic Risk Assessment in DOE Nuclear Safety Applications (draft), December 2010 DOE Standard on Development and Use of Probabilistic Risk...

  15. DOE Draft Standard, Development and Use of Probabilistic Risk...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Draft Standard, Development and Use of Probabilistic Risk Assessments in Department of Energy Nuclear Safety Applications, 1210 DOE Draft Standard, Development and Use of...

  16. Recent Developments in DOE FUSRAP - 13014

    SciTech Connect (OSTI)

    Clayton, Christopher [U.S. Department of Energy Office of Legacy Management, Washington, DC (United States)] [U.S. Department of Energy Office of Legacy Management, Washington, DC (United States); Kothari, Vijendra [U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia (United States)] [U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia (United States); Hooten, Gwen; Starr, Ken [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado (United States)] [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado (United States); Bahrke, Cheri; Gillespie, Joey; Widdop, Michael [Stoller LMS Team, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado (United States)] [Stoller LMS Team, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado (United States); Darr, Bob [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Westminster, Colorado (United States)] [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Westminster, Colorado (United States)

    2013-07-01T23:59:59.000Z

    The DOE Office of Legacy Management assumed responsibility for the DOE FUSRAP in 2003. Since then, DOE has evaluated existing guidance and program needs to ensure that the program will remain effective in maintaining protectiveness at remediated FUSRAP sites. DOE has identified crucial elements that must be addressed to meet this goal. Knowledge of the sites and the program must be preserved and accessible to future custodians. Program processes must be defined and coordinated with other agencies. Long-term surveillance and maintenance (LTS and M) requirements for the sites must be based on human health risk and regulatory compliance, and those requirements must be well defined. Useful and accurate program information must be available to stakeholders. DOE has addressed these needs through development of a comprehensive program plan, an LTS and M plan for each completed FUSRAP site, a records finding aid, and a public information web site. These developments help ensure that the current knowledge is preserved and passed on to future custodians and stakeholders. (authors)

  17. Foreign National Access to DOE Cyber Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-01T23:59:59.000Z

    DOE N 205.16, dated 9-15-05, extends this Notice until 9-30-06, unless sooner rescinded. To ensure foreign national access to DOE cyber systems continues to advance DOE program objectives while enforcing information access restrictions.

  18. DOE and Partners Test Enhanced Geothermal Systems Technologies...

    Office of Environmental Management (EM)

    DOE and Partners Test Enhanced Geothermal Systems Technologies DOE and Partners Test Enhanced Geothermal Systems Technologies February 20, 2008 - 4:33pm Addthis DOE has embarked on...

  19. DOE Zero Energy Ready Home Case Study 2013: Weiss Building & Development, LLC., System Home, River Forest, IL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment of EnergyZero EnergyNewTCLLC System Home

  20. DOE Electricity Transmission System Workshop

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE Challenge HomeEnergyElectricity

  1. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Holst, Kent (Iowa Stored Energy Plant Agency, Traer, IA); Huff, Georgianne; Schulte, Robert H. (Schulte Associates LLC, Northfield, MN); Critelli, Nicholas (Critelli Law Office PC, Des Moines, IA)

    2012-01-01T23:59:59.000Z

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  2. USDA and DOE Biomass Research And Development Technical Advisory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Research And Development Technical Advisory Committee Members USDA and DOE Biomass Research And Development Technical Advisory Committee Members January 15, 2008 - 10:23am...

  3. DOE and USCAR Announce $70 Million Project to Accelerate Development...

    Energy Savers [EERE]

    Announce 70 Million Project to Accelerate Development of Lightweight, High-Strength Materials DOE and USCAR Announce 70 Million Project to Accelerate Development of Lightweight,...

  4. DOE-APPROVED COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENT LANGUAGE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANGUAGE AND GUIDANCE The Modular Cooperative Research and Development Agreement (CRADA) was developed to promote consistency throughout the Department of Energy (DOE). The...

  5. DOE Alaska Native Village Renewable Energy Project Development...

    Energy Savers [EERE]

    Alaska Native Village Renewable Energy Project Development Workshop DOE Alaska Native Village Renewable Energy Project Development Workshop March 30, 2015 9:00AM AKDT to April 1,...

  6. Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet), U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    This document introduces the Energy Department’s new Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development. The guide is designed to help those who want to develop community shared solar projects—from community organizers and advocates to utility managers and government officials—navigate the process of developing shared systems, from early planning to implementation.

  7. The proposed combustion standards and DOE thermal treatment systems

    SciTech Connect (OSTI)

    McFee, J. [IT Corp. (United States); Hinman, M.B. [Carter and Hinman, P.A. (United States); Eaton, D.; NcNeel, K. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1997-08-01T23:59:59.000Z

    Under the provisions of the Clean Air Act (CAA) concerning emission of hazardous air pollutants (HAPs), the Environmental Protection Agency (EPA) published the proposed Revised Standards for Hazardous Waste Combustors on April 19, 1996 (EPA, 1996). These standards would apply to the existing Department of Energy (DOE) radioactive and mixed waste incinerators, and may be applied to several developing alternatives to incineration. The DOE has reviewed the basis for these regulations and prepared extensive comments to present concerns about the bases and implications of the standards. DOE is now discussing compliance options with the EPA for regulation of radioactive and mixed waste thermal treatment systems.

  8. Stages of Project Development - DOE Directives, Delegations,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    estimates and their relationship to each other as well as to the key decisions. g4301-1chp3.pdf -- PDF Document, 44 KB Writer: John Makepeace Subjects: ID: DOE G 430.1-1 Chp 3...

  9. Does economic development drive the fertility rebound in OECD countries?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Does economic development drive the fertility rebound in OECD countries? Angela Luci, Olivier Thévenon 167 2010 #12;2 #12;3 Does economic development drive the fertility rebound in OECD countries.thevenon@ined.fr We examine how far changes in fertility trends are related to ongoing economic development in OECD

  10. ISE System Development Methodology Manual

    SciTech Connect (OSTI)

    Hayhoe, G.F.

    1992-02-17T23:59:59.000Z

    The Information Systems Engineering (ISE) System Development Methodology Manual (SDM) is a framework of life cycle management guidelines that provide ISE personnel with direction, organization, consistency, and improved communication when developing and maintaining systems. These guide-lines were designed to allow ISE to build and deliver Total Quality products, and to meet the goals and requirements of the US Department of Energy (DOE), Westinghouse Savannah River Company, and Westinghouse Electric Corporation.

  11. Quality Assurance Management System Guide for Use with 10 CFR 830.120 and DOE O 414.1

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-06-17T23:59:59.000Z

    DOE Elements and DOE contractors should consult this Guide in order to develop and implement effective management systems that are consistent with the Department's quality expectations and that support the Safety Management System Policy, DOE P 450.4. Canceled by DOE G 414.1-2A. Does not cancel other directives.

  12. "LIFE OF FIELD" DEVELOPMENT DECISIONS, DOE-SUPPORTED SIMULATION SOFTWARE

    E-Print Network [OSTI]

    Thompson, Anne

    , Polymer flooding, ASP or lower concentration flooding, and CO2). WHO SHOULD ATTEND Petroleum Engineers"LIFE OF FIELD" DEVELOPMENT DECISIONS, DOE-SUPPORTED SIMULATION SOFTWARE AS A DECISION SUPPORT TOOL, and ultimately enhanced oil recovery (EOR) processes. DOE-developed simulation software packages

  13. DOE Research and Development Accomplishments About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOE Plans2 DOESRSAbout

  14. DOE Research and Development Accomplishments Blog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOE Plans2Blog Date:

  15. DOE Research and Development Accomplishments Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOE Plans2BlogContact

  16. DOE Research and Development Accomplishments Database Browse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOE

  17. Electronic DOE Information Security System (eDISS) PIA, Office...

    Office of Environmental Management (EM)

    DOE Information Security System (eDISS) PIA, Office of Health Safety and Security Electronic DOE Information Security System (eDISS) PIA, Office of Health Safety and Security...

  18. PIA - DOE PIV System | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical: Volume 5,PETPIV System PIA - DOE PIV

  19. DOE Zero Energy Ready Home Case Study, Dwell Development, Seattle...

    Broader source: Energy.gov (indexed) [DOE]

    blown cellulose, R-42 XPS under slab, triple-pane windows, and a ductless mini-split heat pump. Dwell Development - Seattle, WA More Documents & Publications DOE Zero Energy...

  20. Advanced Dewatering Systems Development

    SciTech Connect (OSTI)

    R.H. Yoon; G.H. Luttrell

    2008-07-31T23:59:59.000Z

    A new fine coal dewatering technology has been developed and tested in the present work. The work was funded by the Solid Fuels and Feedstocks Grand Challenge PRDA. The objective of this program was to 'develop innovative technical approaches to ensure a continued supply of environmentally sound solid fuels for existing and future combustion systems with minimal incremental fuel cost.' Specifically, this solicitation is aimed at developing technologies that can (i) improve the efficiency or economics of the recovery of carbon when beneficiating fine coal from both current production and existing coal slurry impoundments and (ii) assist in the greater utilization of coal fines by improving the handling characteristics of fine coal via dewatering and/or reconstitution. The results of the test work conducted during Phase I of the current project demonstrated that the new dewatering technologies can substantially reduce the moisture from fine coal, while the test work conducted during Phase II successfully demonstrated the commercial viability of this technology. It is believed that availability of such efficient and affordable dewatering technology is essential to meeting the DOE's objectives.

  1. DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 This program record from the...

  2. Design & development fo a 20-MW flywheel-based frequency regulation power plant : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Rounds, Robert (Beacon Power, Tyngsboro, MA); Peek, Georgianne Huff

    2009-01-01T23:59:59.000Z

    This report describes the successful efforts of Beacon Power to design and develop a 20-MW frequency regulation power plant based solely on flywheels. Beacon's Smart Matrix (Flywheel) Systems regulation power plant, unlike coal or natural gas generators, will not burn fossil fuel or directly produce particulates or other air emissions and will have the ability to ramp up or down in a matter of seconds. The report describes how data from the scaled Beacon system, deployed in California and New York, proved that the flywheel-based systems provided faster responding regulation services in terms of cost-performance and environmental impact. Included in the report is a description of Beacon's design package for a generic, multi-MW flywheel-based regulation power plant that allows accurate bids from a design/build contractor and Beacon's recommendations for site requirements that would ensure the fastest possible construction. The paper concludes with a statement about Beacon's plans for a lower cost, modular-style substation based on the 20-MW design.

  3. The joint DoD/DOE Munitions Technology Development Program

    SciTech Connect (OSTI)

    Repa, J.V. Jr.

    1994-08-01T23:59:59.000Z

    The joint Department of Defense (DoD)/Department of Energy (DOE) Munitions Technology Development Program is a cooperative, jointly funded effort of research and development to improve nonnuclear munitions technology across all service mission areas. This program is enabled under a Memorandum of Understanding, approved in 1985 between the DoD and the DOE, that tasks the nuclear weapons laboratories of the DOE to solve problems in conventional defense. The selection of the technical areas to be investigated is based on their importance to the military services, the needs that are common to the conventional and nuclear weapons programs, the expertise of the performing organization, and the perceived benefit to the overall national defense efforts. The research benefits both DoD and DOE programs; therefore, funding, planning, and monitoring are joint activities. Technology Coordination Groups (TCGs), organized by topical areas, serve as technology liaisons between the DoD and DOE for the exchange of information. The members of the TCGs are technical experts who meet semiannually in an informal workshop format to coordinate multiagency requirements, establish project plans, monitor technical activity, and develop classification guidance. A technical advisory committee of senior DoD and DOE managers administers the program and provides guidance on policy and strategy. The abstracts in this volume were collected from the technical progress report for fiscal year 1993. The annual report is organized by major technology areas. Telephone and fax numbers for the principal contacts are provided with each abstract.

  4. AGING SYSTEM DESIGN DEVELOPMENT STRATEGY

    SciTech Connect (OSTI)

    J. Beesley

    2005-02-07T23:59:59.000Z

    This plan provides an overview, work to date, and the path forward for the design development strategy of the Aging cask for aging commercial spent nuclear fuel (CSNF) at the Yucca Mountain Project (YMP) repository site. Waste for subsurface emplacement at the repository includes US Department of Energy (DOE) high-level radioactive waste (HLW), DOE SNF, commercial fuel in dual-purpose canisters (DPCs), uncanistered bare fuel, naval fuel, and other waste types. Table 1-1 lists the types of radioactive materials that may be aged at YMP, and those materials that will not be placed in an aging cask or module. This plan presents the strategy for design development of the Aging system. The Aging system will not handle naval fuel, DOE HLW, MCOs, or DOE SNF since those materials will be delivered to the repository in a state and sequence that allows them to be placed into waste packages for emplacement. Some CSNF from nuclear reactors, especially CSNF that is thermally too hot for emplacement underground, will need to be aged at the repository.

  5. Equity markets and economic development: Does the primary market matter?

    E-Print Network [OSTI]

    the secondary market transactions. In addition, from a macroeconomics perspectivea transaction on a stockEquity markets and economic development: Does the primary market matter? Andriansyaha,b,*and George and secondary equity markets in economic growth. In contrast to standard literature consideringsecondary market

  6. DOE-University of Arizona Faculty Development Project. Final report

    SciTech Connect (OSTI)

    None

    1980-09-08T23:59:59.000Z

    The DOE-University of Arizona Faculty Development Project on Energy successfully completed a faculty development program. There were three phases of the program consisting of: a three week energy workshop for teachers, participation and cooperation with Students for Safe Energy in presentation of an Alternative Energy Festival at the University of Arizona, and workshops for teachers conducted at Flowing Wells School District. Each of these is described. Attendees are listed and a director's evaluation of the workshop is given.

  7. DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System Cost - 2013 This program record from the U.S. Department of Energy's Fuel Cell...

  8. DOE GC Joins Customs Service Trade Data System to Strengthen...

    Broader source: Energy.gov (indexed) [DOE]

    Service Trade Data System to Strengthen Enforcement Effort DOE GC Joins Customs Service Trade Data System to Strengthen Enforcement Effort February 14, 2011 - 5:48pm Addthis The...

  9. Overview of DOE's field screening technology development activities

    SciTech Connect (OSTI)

    Frank, C.W.; Anderson, T.D.; Cooley, C.R.; Hain, K.E.; Lien, S.C.T. (USDOE Office of Environmental Restoration and Waste Management, Washington, DC (USA). Office of Technology Development); Snipes, R.L. (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (USA)); Erickson, M.D. (Argonne National Lab., IL (USA))

    1991-01-01T23:59:59.000Z

    The Department of Energy (DOE) has recently created the Office of Environmental Restoration and Waste Management, into which it consolidated those activities. Within this new organization, the Office of Technology Development (OTD) is responsible for research, development, demonstration, testing, and evaluation (RDDT E) activities aimed at meeting DOE cleanup goals, while minimizing cost and risk. Site characterization using traditional drilling, sampling, and analytical methods comprises a significant part of the environmental restoration efforts in terms of both cost and time to accomplish. It can also be invasive and create additional pathways for spread of contaminants. Consequently, DOE is focusing on site characterization as one of the areas in which significant technological advances are possible which will decrease cost, reduce risk, and shorten schedules for achieving restoration goals. DOE is investing considerably in R D and demonstration activities which will improve the abilities to screen chemical, radiological, and physical parameters in the field. This paper presents an overview of the program objectives and status and reviews some of the projects which are currently underway in the area. 1 ref.

  10. High Efficiency Engine Systems Development and Evaluation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Engine Systems Development and Evaluation 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  11. Notice of Intent to Issue DOE N 314.1, DOE-Flex: DOE's Telework Program while Developing a Successor Order (5-6-11)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-06T23:59:59.000Z

    This is to develop DOE N 3XX, which will establish the requirements and responsibilities for the Department's telework/flexiplace program.

  12. ORISE: DOE's Radiation Exposure Monitoring System (REMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK Mapping Application ORISECenterMakingDOE Illness

  13. DOES THE LOCAL EMBEDDEDNESS OF ENERGY PRODUCTION CONTRIBUTE TO SUSTAINABLE RURAL DEVELOPMENT? SOME

    E-Print Network [OSTI]

    Boyer, Edmond

    1 DOES THE LOCAL EMBEDDEDNESS OF ENERGY PRODUCTION CONTRIBUTE TO SUSTAINABLE RURAL DEVELOPMENT Europe. From a rural perspective, the spreading of wind energy parks is the comeback of energy production in the rural system after fifty years of concentration of energy production in towns, in nuclear power stations

  14. DOE SNF technology development necessary for final disposal

    SciTech Connect (OSTI)

    Hale, D.L.; Fillmore, D.L.; Windes, W.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-02-01T23:59:59.000Z

    Existing technology is inadequate to allow safe disposal of the entire inventory of US Department of Energy (DOE) spent nuclear fuel (SNF). Needs for SNF technology development were identified for each individual fuel type in the diverse inventory of SNF generated by past, current, and future DOE materials production, as well as SNF returned from domestic and foreign research reactors. This inventory consists of 259 fuel types with different matrices, cladding materials, meat composition, actinide content, and burnup. Management options for disposal of SNF include direct repository disposal, possible including some physical or chemical preparation, or processing to produce a qualified waste form by using existing aqueous processes or new treatment processes. Technology development needed for direct disposal includes drying, mitigating radionuclide release, canning, stabilization, and characterization technologies. While existing aqueous processing technology is fairly mature, technology development may be needed to apply one of these processes to SNF different than for which the process was originally developed. New processes to treat SNF not suitable for disposal in its current form were identified. These processes have several advantages over existing aqueous processes.

  15. Integrated Safety Management System Guide (Volume 1) for use with Safety Management System Policies (DOE P 450.4, DOE P 450.5, and DOE P 450.6); The Functions, Responsibilities, and Authorities Manual; and DOE Acquisition Regulation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-03-01T23:59:59.000Z

    This Department of Energy (DOE) Integrated Safety Management System (ISMS) Guide is approved for use by the Office of Environment, Safety and Health (EH) and the National Nuclear Security Administration (NNSA). This Guide is available for use by all DOE components and their contractors. This Guide is a consensus document coordinated by EH and prepared under the direction of the DOE Safety Management Implementation Team (SMIT). Replaces DOE G 450.4-1A. Canceled by DOE G 450.4-1C.

  16. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  17. Security alarm communication and display systems development

    SciTech Connect (OSTI)

    Waddoups, I.G.

    1990-01-01T23:59:59.000Z

    Sandia National Laboratories has developed a variety of alarm communication and display systems for a broad spectrum of users. This paper will briefly describe the latest systems developed for the Department of Energy (DOE), the Department of Defense (DoD), and the Department of State (DOS) applications. Applications covered will vary from relatively small facilities to large complex sites. Ongoing system developments will also be discussed. The concluding section will summarize the practical, implementable state-of-the-art features available in new systems. 6 figs.

  18. RSMASS system model development

    SciTech Connect (OSTI)

    Marshall, A.C.; Gallup, D.R.

    1998-07-01T23:59:59.000Z

    RSMASS system mass models have been used for more than a decade to make rapid estimates of space reactor power system masses. This paper reviews the evolution of the RSMASS models and summarizes present capabilities. RSMASS has evolved from a simple model used to make rough estimates of space reactor and shield masses to a versatile space reactor power system model. RSMASS uses unique reactor and shield models that permit rapid mass optimization calculations for a variety of space reactor power and propulsion systems. The RSMASS-D upgrade of the original model includes algorithms for the balance of the power system, a number of reactor and shield modeling improvements, and an automatic mass optimization scheme. The RSMASS-D suite of codes cover a very broad range of reactor and power conversion system options as well as propulsion and bimodal reactor systems. Reactor choices include in-core and ex-core thermionic reactors, liquid metal cooled reactors, particle bed reactors, and prismatic configuration reactors. Power conversion options include thermoelectric, thermionic, Stirling, Brayton, and Rankine approaches. Program output includes all major component masses and dimensions, efficiencies, and a description of the design parameters for a mass optimized system. In the past, RSMASS has been used as an aid to identify and select promising concepts for space power applications. The RSMASS modeling approach has been demonstrated to be a valuable tool for guiding optimization of the power system design; consequently, the model is useful during system design and development as well as during the selection process. An improved in-core thermionic reactor system model RSMASS-T is now under development. The current development of the RSMASS-T code represents the next evolutionary stage of the RSMASS models. RSMASS-T includes many modeling improvements and is planned to be more user-friendly. RSMASS-T will be released as a fully documented, certified code at the end of 1998. A radioisotope space power system model RISMASS is also under development. RISMASS will optimize and predict system masses for radioisotope power sources coupled with close-spaced thermionic diodes. Although RSMASS-D models have been developed for a broad variety of space nuclear power and propulsion systems, only a few concepts will be included in the releasable RSMASS-T computer code. A follow-on effort is recommended to incorporate all previous models as well as solar power system models into one general code. The proposed Space Power and propulsion system MASS (SPMASS) code would provide a consistent analysis tool for comparing a very broad range of alternative power and propulsion systems for any required power level and operating conditions. As for RSMASS-T the SPMASS model should be a certified, fully documented computer code available for general use. The proposed computer program would provide space mission planners with the capability to quickly and cost effectively explore power system options for any space mission. The code should be applicable for power requirements from as low as a few milliwatts (solar and isotopic system options) to many megawatts for reactor power and propulsion systems.

  19. DOE program guide for universities and other research groups. Part I. DOE Research and Development Programs; Part II. DOE Procurement and Assistance Policies/Procedures

    SciTech Connect (OSTI)

    Not Available

    1980-03-01T23:59:59.000Z

    This guide addresses the DOE responsibility for fostering advanced research and development of all energy resources, both current and potential. It is intended to provide, in a single publication, all the fundamental information needed by an institution to develop a potential working relationship with DOE. Part I describes DOE research and development programs and facilities, and identifies areas of additional research needs and potential areas for new research opportunities. It also summarizes budget data and identifies the DOE program information contacts for each program. Part II provides researchers and research administrators with an introduction to the DOE administrative policies and procedures for submission and evaluation of proposals and the administration of resulting grants, cooperative agreements, and research contracts. (RWR)

  20. DOE/NREL Advanced Wind Turbine Development Program

    SciTech Connect (OSTI)

    Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

    1993-05-01T23:59:59.000Z

    The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

  1. DOE Zero Energy Ready Home Case Study: Brookside Development...

    Energy Savers [EERE]

    Preferred Builders, Old Greenwich, CT, Custom DOE Zero Energy Ready Home Case Study: AquaZephyr, Ithaca, NY DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI...

  2. God Does Play Dice: Diagnosis and Validation for Autonomous Systems Tim Menzies

    E-Print Network [OSTI]

    Menzies, Tim

    God Does Play Dice: Diagnosis and Validation for Autonomous Systems S. Bayana David Owen ¡ Tim for validating and diagnosing autonomous intelligent systems. Such techniques provide efficient approximate of LURCH, a random- ized inference engine that we have developed in validating and diagnosing autonomous

  3. Integrated Safety Management System Guide (Volume 1) for use with Safety Management System Policies (DOE P 450.4, DOE P 450.5, and DOE P 450.6); The Functions, Responsibilities, and Authorities Manual; and DOE Acquisition Regulation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-03-01T23:59:59.000Z

    This Department of Energy (DOE) Integrated Safety Management System (ISMS) Guide is approved for use by the Office of Environment, Safety and Health (EH) and the National Nuclear Security Administration (NNSA). This Guide is available for use by all DOE components and their contractors. This Guide is a consensus document coordinated by EH and prepared under the direction of the DOE Safety Management Implementation Team (SMIT). Canceled by DOE G 450.4-1C.

  4. Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs—Summary Report

    SciTech Connect (OSTI)

    O'Neil, Lori Ross; Assante, Michael; Tobey, D. H.; Conway, T. J.; Vanderhorst, Jr, T. J.; Januszewski, III, J.; Leo, R.; Perman, K.

    2013-07-01T23:59:59.000Z

    This document is a summarization of the report, Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs, the final report for phase 2 of the SPSP (DOE workforce study) project.

  5. Notice of Intent to Develop DOE O 470.5, Integrating Existing Technical Security Program Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-21T23:59:59.000Z

    This memorandum provides justification for the development of one integrated and consolidated set of requirements for the Department of Energy (DOE) Technical Security Program (TSP). This Order will combine the existing necessary requirements from DOE Manual (M) 205.1-3, Telecommunications Security Manual, dated 4-17-2006 and DOE M 470.4-4A chg.1, Information Security Manual, dated 10-12-2010; Section D -Technical Surveillance Countermeasures, into a single DOE Order defining the DOE TSP.

  6. DOE technology information management system database study report

    SciTech Connect (OSTI)

    Widing, M.A.; Blodgett, D.W.; Braun, M.D.; Jusko, M.J.; Keisler, J.M.; Love, R.J.; Robinson, G.L. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.

    1994-11-01T23:59:59.000Z

    To support the missions of the US Department of Energy (DOE) Special Technologies Program, Argonne National Laboratory is defining the requirements for an automated software system that will search electronic databases on technology. This report examines the work done and results to date. Argonne studied existing commercial and government sources of technology databases in five general areas: on-line services, patent database sources, government sources, aerospace technology sources, and general technology sources. First, it conducted a preliminary investigation of these sources to obtain information on the content, cost, frequency of updates, and other aspects of their databases. The Laboratory then performed detailed examinations of at least one source in each area. On this basis, Argonne recommended which databases should be incorporated in DOE`s Technology Information Management System.

  7. A progress report on DOE`s advanced hydropower turbine systems program

    SciTech Connect (OSTI)

    Sale, M.J.; Cada, G.F.; Rinehart, B.E. [and others

    1997-06-01T23:59:59.000Z

    Recent hydropower research within the U.S. Department of Energy (DOE) has focused on the development of new turbine designs that can produce hydroelectricity without such adverse environmental affects as fish entrainment/impingement or degradation of water quality. In partnership with the hydropower industry, DOE`s advanced turbine program issued a Request for Proposals for conceptual designs in October 1994. Two contracts were awarded for this initial program phase, work on which will be complete this year. A technical advisory committee with representatives from industry, regulatory agencies, and natural resource agencies was also formed to guide the DOE turbine research. The lack of quantitative biological performance criteria was identified by the committee as a critical knowledge gap. To fill this need, a new literature review was completed on the mechanisms of fish mortality during turbine passage (e.g., scrape/strike, shear, press change, etc.), ways that fish behavior affects their location and orientation in turbines, and how these turbine passage stresses can be measured. Thus year, new Laboratory tests will be conducted on fish response to shear, the least-well understood mechanism of stress. Additional testing of conceptual turbine designs depends on the level of federal funding for this program.

  8. New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development

    E-Print Network [OSTI]

    Minnesota, University of

    New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development DOE Response based on contributions from Office of Biomass Program; Argonne National, Hill, Tilman, Polasky and Hawthorne study ("Land Clearing and the Biofuel Carbon Debt") claims

  9. USDA and DOE Award Biomass Research and Development Grants to...

    Broader source: Energy.gov (indexed) [DOE]

    and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. For more information on DOE's Biomass Program,...

  10. DOE-Sponsored Syngas Cleanup Demonstration Project Reaches Development...

    Energy Savers [EERE]

    of Energy (DOE), a demonstration-scale application of RTI International's warm synthesis gas (syngas) cleanup process technology has achieved a key operational milestone at Tampa...

  11. JCS PHEV System Development

    Broader source: Energy.gov (indexed) [DOE]

    PHEV Contract - P.O. 08-2047 U.S. Department of Energy Merit Review Scott Engstrom Johnson Controls - Saft March 20th, 2009 This presentation does not contain any proprietary,...

  12. NERSC Cyber Security Challenges That Require DOE Development and Support

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    ) is to accelerate the pace of scientific discovery by providing high performance computing, information, data, and impacts the productivity of the DOE Science community. In particular, NERSC and other high performance computing (HPC) centers have special security challenges that are unlikely to be met unless DOE funds

  13. Final Technical Report on DOE Junior Faculty Development Award

    SciTech Connect (OSTI)

    Munsat, Tobin

    2014-08-21T23:59:59.000Z

    Over the course of this project we developed and contstructed the Colorado FRC facility, which included a custom vacuum vessel, high voltage and firing circuitry, two plasma gun electrodes, and pumping system, and several diagnostics. Density measurements were made with a multichannel CO{sub 2} (10.6 ?m) laser interferometer. We also developed and a high-resolution magnetic probe array for 3-axis measurements of magnetic fluctuations. We constructed and implemented a triple Langmuir probe for making time-resolved measurements of plasma density, potential, and temperature. By calculating the time history of the gun eigenvalue, we observed indications that the Taylor formation paradigm applies. To estimate the spectral characteristics of fluctuations in an FRC, we developed a technique to extract the relevant spectral information using data from the high-resolution multi-point magnetic probe.

  14. Power Systems Development Facility

    SciTech Connect (OSTI)

    None

    2003-07-01T23:59:59.000Z

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  15. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2004-04-30T23:59:59.000Z

    This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

  16. DOE to Provide up to $14 Million to Develop Advanced Batteries...

    Office of Environmental Management (EM)

    to Provide Nearly 20 Million to Further Development of Advanced Batteries for Plug-in Hybrid Electric Vehicles DOE Announces 17 Million to Promote Greater Automobile Efficiency...

  17. DOE

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy Outlook QuarterlyDOE

  18. DOE-backed independent scrubber system is criticized by AEP

    SciTech Connect (OSTI)

    Not Available

    1990-02-01T23:59:59.000Z

    Among the five early contract signers from the second round of 16 clean-coal technologies selected by the Dept of Energy (DOE) for partial funding was Pure Air's flue-gas desulfurization (FGD) technology-and-service project for Northern Indiana Public Service Co (Nipsco). Pure Air is not only financing, designing, and building the $141-million Nipsco advanced wet-scrubber system at Units 7 (183 MW) and 8 (345 MW) of the utility's Bailly powerplant, it is also operating and maintaining the scrubber. It is the own-and-operate approach that caught DOE's eye, because it allows utilities who are inexperienced in running a complex chemical plant to remain focused on electricity production while avoiding a major capital expense. American Electric Power Service Co questions the service contract, but not the technology. AEP's assistant general counsel foresees a full array of possibilities associated with contract complexity when dealing with removal. The paper briefly describes these complexities.

  19. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    Unknown

    2002-05-01T23:59:59.000Z

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids circulation rate, and reactor temperature on CO/CO{sub 2} ratio, H{sub 2}/converted carbon ratio, gasification rates, carbon conversion, and cold and hot gas efficiencies. Test run GCT3 was started on December 1, 2000, with the startup of the thermal oxidizer fan, and was completed on February 1, 2001. This test was conducted in two parts; the loop seal was commissioned during the first part of this test run from December 1 through 15, which consisted of hot inert solids circulation testing. These initial tests provided preliminary data necessary to understand different parameters associated with the operation and performance of the loop seal. The loop seal was tested with coal feed during the second part of the test run and additional data was gathered to analyze reactor operations and to identify necessary modifications to improve equipment and process performance. In the second part of GCT3, the gasification portion of the test, from January 20 to February 1, 2001, the mixing zone and riser temperatures were varied between 1,675 and 1,825 F at pressures ranging from 200 to 240 psig. There were 306 hours of solid circulation and 184 hours of coal feed attained in GCT3.

  20. DOE Funds 15 New Projects to Develop Solar Power Storage and...

    Broader source: Energy.gov (indexed) [DOE]

    15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to 67.6 Million DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer...

  1. DOE Learning & Development Competency Governance Structure Senior HC Leadership

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE ExercisesReserve | DepartmentofLearning &

  2. Policy Flash 2014-30 DOE Order 412.1a, Work Authorization System...

    Broader source: Energy.gov (indexed) [DOE]

    0 DOE Order 412.1a, Work Authorization System Administrative Change Policy Flash 2014-30 DOE Order 412.1a, Work Authorization System Administrative Change Questions concerning this...

  3. TRANSCOM: The US Department of Energy (DOE) system for tracking shipments

    SciTech Connect (OSTI)

    Boes, K.S.; Joy, D.S.; Pope, R.B. [Oak Ridge National Lab., TN (United States); Thomas, T.M. [US Dept. of Energy, Germantown, MD (United States); Lester, P.B. [US Dept. of Energy, Oak Ridge, TN (United States)

    1994-06-01T23:59:59.000Z

    The US Department of energy (DOE) Transportation Management Division (TMD) has developed a system which allows communications with and near real-time tracking of high-visibility shipments of hazardous materials. This system, which is known as TRANSCOM (Transportation Tracking and Communications System), is currently in operation. This paper summarizes the current status of TRANSCOM, its history, the experience associated with its use, and the future plans for its growth and enhancement. during the first half of fiscal year (FY) 1994, 38 shipments were tracked by the TRANSCOM system. These shipments included two Mark-42 spent fuel shipments, one BUSS cask shipment, and one waterway shipment (the Seawolf shipment).

  4. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    SciTech Connect (OSTI)

    Bickford, D.F.

    1993-12-31T23:59:59.000Z

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

  5. DOE Headquarters (HQ) Environmental Management System (EMS) Policy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of1WIPP | DepartmentHQ F 1511.1 DOE HQShuttle)

  6. PIA - DOE Savannah River Operations Office PRISM System | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical: Volume 5,PETPIV System PIA - DOE

  7. Systemic Signalling in Plant Development

    E-Print Network [OSTI]

    Jackson, David

    develop continuously throughout their life cycle, constantly initiating new or- gans. They doSystemic Signalling in Plant Development David Jackson, Cold Spring Harbor Laboratory, Cold Spring to the production of systemic signals that control the development of distant organs and tissues. Introduction

  8. Development Wells At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpenMaui Area (DOE

  9. Development Wells At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpenMauiArea (DOE

  10. DOE Cooperative Research and Development Agreements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE Challenge HomeEnergy The U.S.DepartmentTo

  11. DOE Draft Standard, Development and Use of Probabilistic Risk Assessments

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE Challenge HomeEnergy TheofEM Deputy

  12. 2011 DOE Vehicle Technologies KIVA-Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( SampleEnergy back_cover.pdf MoreReview Report: AlgaeCostDOE

  13. DOE Research and Development Accomplishments Alfred Nobel Laureates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOE Plans2

  14. DOE Research and Development Accomplishments Blog Archive 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOE Plans2Blog

  15. DOE Research and Development Accomplishments Nobel Physicists Associated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOESearchwith the DOE

  16. How does renewable energy drive community economic development, improve air quality & contribute to healthy families & communities?

    E-Print Network [OSTI]

    de Leon, Alex R.

    · How does renewable energy drive community economic development, improve air quality & contribute to healthy families & communities? · How does renewable energy revitalize agricultural communities, provide energy self-sufficiency & protect the environment? · How do renewable energy & sustainable food create

  17. Development of a criticality safety program guide for DOE nonreactor nuclear facilities

    SciTech Connect (OSTI)

    Hopper, C.M. [Oak Ridge National Lab., TN (United States)

    1994-09-01T23:59:59.000Z

    The objective of this paper was a presentation and discussion of the US DOE`s efforts to develop a NCS program guide for the implementation of 10CFR830.380. Topics of discussion were: (1) introduction/general practices; (2) definition of terms; (3) administration; (4) NCSA guidelines; (5) calculations; (6) conduct of operations; (7) state support; and (8) emergency preparedness.

  18. DOE Zero Energy Ready Home Case Study: Brookside Development...

    Energy Savers [EERE]

    ceilings, R-10 rigid polyiso on basement walls, a tankless gas water heater, and a heat pump with gas furnace backup. Brookside Development: Singer Village Derby - Derby, CT...

  19. DOE to Host Alaska Native Village Energy Development Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    Alaska Native villages, the workshop agenda will cover topics such as: Strategic energy planning Clean energy project development and financing Technology updates Energy...

  20. DOE Funds 21 Research, Development and Demonstration Projects...

    Energy Savers [EERE]

    of UtahEnergy and Geoscience Institute (EGI) (Anchorage, Alaska): to identify open fracture systems by their Fluid Inclusion Stratigraphy (FIS) chemical signature; differences...

  1. Guide to good practices for developing learning objectives. DOE Handbook

    SciTech Connect (OSTI)

    NONE

    1992-07-01T23:59:59.000Z

    This guide to good practices provides information and guidance on the types of and development of learning objectives in a systematic approach to training program. This document can serve as a reference during the development of new learning objectives or refinement of existing ones.

  2. Standardized DOE Spent Nuclear Fuel Canister and Transportation System for Shipping to the National Repository

    SciTech Connect (OSTI)

    Pincock, David Lynn; Morton, Dana Keith; Lengyel, Arpad Leslie

    2001-02-01T23:59:59.000Z

    The U.S.Department of Energy’s (DOE) National Spent Nuclear Fuel Program (NSNFP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), has been chartered with the responsibility for developing spent nuclear fuel (SNF) standardized canisters and a transportation cask system for shipping DOE SNF to the national repository. The mandate for this development is outlined in the Memorandum of Agreement for Acceptance of Department of Energy Spent Nuclear Fuel and High-Level Radioactive Waste that states, “EM shall design and fabricate … DOE SNF canisters for shipment to RW.” (1) It also states, “EM shall be responsible for the design, NRC certification, and fabrication of the transportation cask system for DOE SNF canisters or bare DOE SNF in accordance with 10 CFR Part 71.” (2) In fulfillment of these requirements, the NSNFP has developed four SNF standardized canister configurations and has conceptually designed a versatile transportation cask system for shipping the canisters to the national repository.1 The standardized canister sizes were derived from the national repository waste package design for co-disposal of SNF with high-level waste (HLW). One SNF canister can be placed in the center of the waste package or one can be placed in one of five radial positions, replacing a HLW canister. The internal cavity of the transportation cask was derived using the same logic, matching the size of the internal cavity of the waste package. The size of the internal cavity for the transportation cask allows the shipment of multiple canister configurations with the application of a removable basket design. The standardized canisters have been designed to be loaded with DOE SNF, placed into interim storage, shipped to the national repository, and placed in a waste package without having to be reopened. Significant testing has been completed that clearly demonstrates that the standardized canisters can safely achieve their intended design goals. The transportation cask system will include all of the standard design features, with the addition of dual containment for the shipment of failed fuel. The transportation cask system will also meet the rigorous licensing requirements of the Nuclear Regulatory Commission (NRC) to ensure that the design and the methods of fabrication employed will result in a shipping cask that will safely contain the radioactive materials under all credible accident scenarios. The standardization of the SNF canisters and the versatile design of the transportation cask system will eliminate a proliferation of designs and simplify the operations at the user sites and the national repository.

  3. DOE Facilitates Market-Driven Solutions to Develop and Deploy...

    Office of Environmental Management (EM)

    system of supply and return ducts. | Photo courtesy of iStockphotoDonNichols. Central Air Conditioning At its Supercenter in Leavenworth, Kansas-the first site to implement the...

  4. DOE Awards $20 Million to Develop Geothermal Power Technologies...

    Energy Savers [EERE]

    fluid will then be used as the heat source for a heating system, a greenhouse, and a fish farm. This "cascading" use of the geothermal resource is meant to improve the economics...

  5. Steam Challenge: Developing A New DOE Program to Help Industry be Steam Smart

    E-Print Network [OSTI]

    Jones, T.; Hart, F.

    Last year, the Alliance to Save Energy, the Department of Energy's Office of Industrial Technologies, and a cadre of private companies and associations formed an innovative "Steam Partnership" with the goal of developing a new, DOE technical...

  6. Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program

    Broader source: Energy.gov [DOE]

    DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems.

  7. Development of a Dynamic DOE Calibration Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy Duty TrucksDevelopment

  8. Development of a Natural Gas-to-Hydrogen Fueling System

    E-Print Network [OSTI]

    compressors Reliable & cost effective hydrogen fueling system #12;9 Accomplishments > Comprehensive subsystem> Development of a Natural Gas-to- Hydrogen Fueling System DOE Hydrogen & Fuel Cell Merit Review integrator, fuel processing subsystem ­ FuelMaker Corporation > Maker of high-quality high

  9. DOE, USDA Announce Funding for Biomass Research and Development Initiative

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Departmentto DevelopMark Duff (LATA KY),| Department of

  10. DOE Announces Selections from Solid-State Lighting Product Development

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajorProduct Development

  11. DOE Awards $20 Million to Develop Geothermal Power Technologies |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergyDeveloping aClean Energy Technologies

  12. DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird QuarterintoCurrent June ENERGY- BCSPilot

  13. DOE Announces Additional Steps in Developing Sustainable Biofuels Industry

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThirdPartnership | Department of Energy|

  14. DOE Expands International Effort to Develop Fuel-Efficient Trucks |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of1WIPP | Department of Energy Exercises

  15. Collaborative Utility Task Force Partners with DOE to Develop Cyber

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4CenterPointChristinaClayCoal to Liquids »CogentrixSecurity

  16. Capsule review of the DOE research and development and field facilities

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses, and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)

  17. DOE workshop: Sedimentary systems, aqueous and organic geochemistry

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    A DOE workshop on sedimentary systems, aqueous and organic geochemistry was held July 15-16, 1993 at Lawrence Berkeley Laboratory. Papers were organized into several sections: Fundamental Properties, containing papers on the thermodynamics of brines, minerals and aqueous electrolyte solutions; Geochemical Transport, covering 3-D imaging of drill core samples, hydrothermal geochemistry, chemical interactions in hydrocarbon reservoirs, fluid flow model application, among others; Rock-Water Interactions, with presentations on stable isotope systematics of fluid/rock interaction, fluid flow and petotectonic evolution, grain boundary transport, sulfur incorporation, tracers in geologic reservoirs, geothermal controls on oil-reservoir evolution, and mineral hydrolysis kinetics; Organic Geochemistry covered new methods for constraining time of hydrocarbon migration, kinetic models of petroleum formation, mudstones in burial diagenesis, compound-specific carbon isotope analysis of petroleums, stability of natural gas, sulfur in sedimentary organic matter, organic geochemistry of deep ocean sediments, direct speciation of metal by optical spectroscopies; and lastly, Sedimentary Systems, covering sequence stratigraphy, seismic reflectors and diagenetic changes in carbonates, geochemistry and origin of regional dolomites, and evidence of large comet or asteroid impacts at extinction boundaries.

  18. Support for DOE program in mineral waste-form development

    SciTech Connect (OSTI)

    Palmour, H. III; Hare, T.M.; Russ, J.C.; Batchelor, A.D.; Paisley, M.J.; Freed, L.E.

    1982-09-01T23:59:59.000Z

    This research investigation relates to sintered simulation ceramic waste forms of the generic SYNROC compositional type. Though they have been formulated with simulated wastes only, they serve as prototypes for potential hot, processed, crystalline waste forms whose combined thermodynamic stability and physical integrity are considered to render them capable of long-term imobilization of high-level radwastes under deep geologic disposal conditions. The problems involved are nontrivial, largely because of the very complex nature of the radwastes: a typical waste stream would contain more than 31 cation species. When the stabilizing matrix constituents are included, the final batch composition must successfully account (and find substitutional homes for some 35 different cation species. One of the important objectives of this study thus has been to develop a computer-based method for simulating these complex ion substitutions, and for calculating the resultant phase demands and batch formulations. Primary goals of the study have been (1) use of that computer simulation capability to incorporate rationally the radwaste ions from a specific waste stream (PW-7a) into the available SYNROC lattice sites and (2) utilization of existing ceramic processing and sintering methodologies to assure (and to understand) the attainment of high density, fine microstructure, full phase development and other features of the sintered product which are known to relate directly to its integrity and leach resistance. Though improved resistance to leaching has been a continuing goal, time and budget constraints have precluded initiation of any leachability studies of these new compositions during this contract period. 27 references, 15 figures, 6 tables.

  19. CLASSIFICATION OF THE MGR SUBSURFACE DEVELOPMENT TRANSPORTATION SYSTEM

    SciTech Connect (OSTI)

    R. Garrett

    1999-08-31T23:59:59.000Z

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) subsurface development transportation structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P7 ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  20. DOE Awards Research and Systems Engineering Task Order

    Broader source: Energy.gov [DOE]

    Cincinnati – The U.S. Department of Energy (DOE) today awarded a task order to The MITRE Corporation, of McLean Virginia.

  1. DOE/AHAM advanced refrigerator technology development project

    SciTech Connect (OSTI)

    Vineyard, E.A.; Sand, J.R.; Rice, C.K.; Linkous, R.L.; Hardin, C.V.; Bohman, R.H.

    1997-03-01T23:59:59.000Z

    As part of the effort to improve residential energy efficiency and reduce greenhouse emissions from power plants, several design options were investigated for improving the energy efficiency of a conventionally designed domestic refrigerator-freezer. The program goal was to reduce the energy consumption of a 20-ft{sup 3} (570-L) top-mount refrigerator-freeze to 1.00 kWh/d, a 50% reduction from the 1993 National Appliance Energy Conservation Act (NAECA) standard. The options--such as improved cabinet and door insulation, a high-efficiency compressor, a low-wattage fan, a large counterflow evaporator, and adaptive defrost control--were incorporated into prototype refrigerator-freezer cabinets and refrigeration systems. The refrigerant HFC-134a was used as a replacement for CFC-12. The baseline energy performance of the production refrigerator-freezers, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. The project consisted of three main phases: (1) an evaluation of energy-efficient design options using computer simulation models and experimental testing, (2) design and testing of an initial prototype unit, and (3) energy and economic analyses of a final prototype. The final prototype achieved an energy consumption level of 0.93 kWh/d--an improvement of 45% over the baseline unit and 54% over the 1993 NAECA standard for 20-fg{sup 3} (570-L) units. The manufacturer`s cost for those improvements was estimated at $134; assuming that cost is doubled for the consumer, it would take about 11.4 years to pay for the design changes. Since the payback period was thought to be unfeasible, a second, more cost-effective design was also tested. Its energy consumption level was 1.16 kWh/d, a 42% energy savings, at a manufacturer`s cost increase of $53. Again assuming a 100% markup, the payback for this unit would be 6.6 years.

  2. Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-19T23:59:59.000Z

    The Notice establishes DOE policy requirements and responsibilities for remote connections to DOE and contractor information technology systems. The Notice will also ensure compliance with the requirements of DOE O 205.1, Department of Energy Cyber Security Management Program, dated 3-21-03, to protect DOE information and information technology systems commensurate with the risk and magnitude of harm that could result from their unauthorized access, use, disclosure, modification or destruction. DOE N 205.15, dated 3/18/05, extends this directive until 3/18/06. No cancellations.

  3. DOE-TSPP-3, Use of Voluntary Consensus Standards and Interaction with Standards Development Organizations- August 1, 2000

    Broader source: Energy.gov [DOE]

    This procedure identifies the process by which DOE adopts Voluntary Consensus Standards (VCSs) and provides guidance for the interaction of DOE and contractor employees with Standards Development Organizations (SDOs).

  4. DOE/CBFO-11-3479 Panel Closure System Design

    E-Print Network [OSTI]

    Report for the AP-151 (PC3R) Performance Assessment, Revision 1 #12;ii Acronyms CBFO Carlsbad Field Executive Summary The U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) request

  5. DOE-STD-3024-98; DOE Standard Content of System Design Descriptions

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix DOE-STD-3009-2014 Requirements Matrix March 2,POUND22-98

  6. The Power Systems Development Facility -- Current status

    SciTech Connect (OSTI)

    Pinkston, T.E.; Maxwell, J.D.; Leonard, R.F.; Vimalchand, P.

    1995-11-01T23:59:59.000Z

    Southern Company Services, Inc. (SCS) has entered into a cooperative agreement with the US Department of Energy (DOE) to build and operate the Power Systems Development Facility (PSDF), currently under construction in Wilsonville, Alabama, 40 miles southeast of Birmingham. The objectives of the PSDF are to develop advanced coal-fired power generation technologies through testing and evaluation of hot gas cleanup systems and other major components at the pilot scale. The performance of components will be assessed and demonstrated in an integrated mode of operation and at a component size readily scaleable to commercial systems. The facility will initially contain five modules: (1) a transport reactor gasifier and combustor, (2) an advanced pressurized fluidized-bed combustion (APFBC) system, (3) a particulate control module, (4) an advanced burner-gas turbine module, and (5) a fuel cell. The five modules will initially be configured into two separate test trains, the transport reactor train (2 tons/hour of coal feed) and the APFBC train (3 tons/hour of coal feed). In addition to a project description, the project design and construction status, preparations for operations, and project test plans are reported in this paper.

  7. Pyrgeometer Calibration for DOE-Atmospheric System Research Program Using NREL Method (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Stoffel, T.

    2010-03-15T23:59:59.000Z

    Presented at the DOE-Atmospheric System Research Program, Science Team Meeting, 15-19 March 2010, Bethesda, Maryland. The presentation: Pyrgeometer Calibration for DOE-Atmospheric System Research program using NREL Method - was presented by Ibrahim Reda and Tom Stoffel on March 15, 2010 at the 2010 ASR Science Team Meeting. March 15-19, 2010, Bethesda, Maryland.

  8. Development of Corrosion Inhibiting E-Coat System for Body-in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrosion Inhibiting E-Coat System for Body-in-White Assemblies Development of Corrosion Inhibiting E-Coat System for Body-in-White Assemblies 2012 DOE Hydrogen and Fuel Cells...

  9. Notice of Intent to Revise DOE O 483.1, Cooperative Research and Development Agreements and DOE M 483.1-1, Cooperative Research and Development Agreements Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-02-21T23:59:59.000Z

    Justification memorandum approving revision of the outdated DOE O 483.1 to incorporate DOE M 483.1-1 into the revised order.

  10. ENGINEERING SYSTEMS THE FUTURE OF ENGINEERING SYSTEMS: DEVELOPMENT OF

    E-Print Network [OSTI]

    de Weck, Olivier L.

    ENGINEERING SYSTEMS MONOGRAPH THE FUTURE OF ENGINEERING SYSTEMS: DEVELOPMENT OF ENGINEERING LEADERS OF ENGINEERING SYSTEMS: DEVELOPMENT OF ENGINEERING LEADERS Daniel Hastings INTRODUCTION From birth through death, inhabitants of developed societies live supported in a complex, interconnected set of overlapping systems

  11. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect (OSTI)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30T23:59:59.000Z

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

  12. DOE Radiation Exposure Monitoring System (REMS) Data Update

    SciTech Connect (OSTI)

    Rao, Nimi; Hagemeyer, Derek

    2012-05-05T23:59:59.000Z

    This slide show presents the 2011 draft data for DOE occupational radiation exposure.Clarification is given on Reporting Data regarding: reporting Total Organ Dose (TOD); reporting Total Skin Dose (TSD), and Total Extremity Dose (TExD) ; and Special individuals reporting.

  13. MacroMacro--SystemSystem--Model Overview:Model Overview: DOE H2 Analysis WorkshopDOE H2 Analysis Workshop

    E-Print Network [OSTI]

    Cell Cost Models Vehicle Selection Model Gasoline Vehicle Cost Models Environmental Performance Model to analyze components and subsystems of an eventual hydrogen economy, a modeling architecture does not exist that addresses the overarching hydrogen fuel infrastructure as a "system." Such a macro-system model is critical

  14. Material development in the SI{sub 3}N{sub 4} system using glass encapsulated Hip`ing. Final report, Phase 2: DOE/ORNL Ceramic Technology Project

    SciTech Connect (OSTI)

    Corbin, N.D.; Sundberg, G.J.; Siebein, K.N.; Willkens, C.A.; Pujari, V.K.; Rossi, G.A.; Hansen, J.S.; Chang, C.L.; Hammarstrom, J.L.

    1992-04-01T23:59:59.000Z

    This report covers a two-year program to develop fully dense Si{sub 3}N{sub 4} matrix SiC whisker composites with enhanced properties over monolithic Si{sub 3}N{sub 4} materials. The primary goal was to develop a composite with a fracture toughness > 10 MPa{radical}m, capable of using high pressure glass encapsulated HIP`ing. Coating methods were developed to apply thin (<150nm) stoichiometric BN layers to SiC whiskers and also to apply a dual coating of SiC over carbon to the whiskers. Fracture toughness of the composites was determined to increase as the quantity of whiskers (or elongated grains) with their axis perpendicular to the crack plane increased. Of the interface compositions evaluated in this effort, carbon was determined to be the most effective for increasing toughness. The highest toughnesses (6.8--7.0 MPa{radical}m) were obtained with uniaxially aligned carbon coated whiskers. There was no evidence of the carbon coating compromising the oxidation resistance of the composites at 1370{degree}C.

  15. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect (OSTI)

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15T23:59:59.000Z

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The Point Defect Model (PDM) is directly applied as the theoretical assessment method for describing the passive film formed on iron/steels. The PDM is used to describe general corrosion in the passive region of iron. In addition, previous work suggests that pit formation is due to the coalescence of cation vacancies at the metal/film interface which would make it possible to use the PDM parameters to predict the onset of pitting. This previous work suggests that once the critical vacancy density is reached, the film ruptures to form a pit. Based upon the kinetic parameters derived for the general corrosion case, two parameters relating to the cation vacancy formation and annihilation can be calculated. These two parameters can then be applied to predict the transition from general to pitting corrosion for iron/mild steels. If cation vacancy coalescence is shown to lead to pitting, it can have a profound effect on the direction of future studies involving the onset of pitting corrosion. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool f

  16. The DOE Wide Area Measurement System (WAMS) Project -- Demonstration of dynamic information technology for the future power system

    SciTech Connect (OSTI)

    Mittelstadt, W.A. [Bonneville Power Administration (United States); Hauer, J.F. [Pacific Northwest Lab., Richland, WA (United States); Krause, P.E.; Wilson, R.E. [Western Power Administration (United States); Overholt, P.N. [USDOE (United States); Rizy, D.T. [Oak Ridge National Lab., TN (United States)

    1995-12-31T23:59:59.000Z

    In 1989 the Bonneville Power Administration (BPA) and the Western Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands in an environment characterized by increased competition, a wider range of services and vendors, and much narrower operating margins. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI).

  17. Development of Building Automation and Control Systems

    E-Print Network [OSTI]

    Yang, Yang; Zhu, Qi; Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

    2012-01-01T23:59:59.000Z

    A design flow for building automation and control systems,’’Development of Building Automation and Control Systems Yangdesign of the build- ing automation system (including the

  18. The DOE Wide Area Measurement System (WAMS) Project: Demonstration of dynamic information technology for the future power system

    SciTech Connect (OSTI)

    Mittelstadt, W.A. [USDOE Bonneville Power Administration, Portland, OR (United States); Krause, P.E.; Wilson, R.E. [USDOE Western Area Power Administration, Golden, CO (United States); Overholt, P.N. [USDOE, Washington, DC (United States); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States); Hauer, J.F. [Pacific Northwest National Lab., Richland, WA (United States); Rizy, D.T. [Oak Ridge National Lab., TN (United States)

    1996-07-01T23:59:59.000Z

    In 1989 the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands, in an environment where increased competition, a wider range of services and vendors, and much narrower operating margins all contribute to increased system efficiencies and capacity. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment--the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI). The WAMS project also brings added focus and resources to the evolving Western System Dynamic Information Network, or WesDINet. This is a collective response of the Western Systems Coordinating Council (WSCC) member utilities to their shared needs for direct information about power system characteristics, model fidelity, and operational performance. The WAMS project is a key source of the technology and backbone communications needed to make WesDINet a well integrated, cost effective enterprise network demonstrating the role of dynamic information technology in the emerging utility environment.

  19. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01T23:59:59.000Z

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  20. SUMMARY REPORT OF THE DOE DIRECT LIQUEFACTION PROCESS DEVELOPMENT CAMPAIGN OF THE LATE TWENTIETH CENTURY

    SciTech Connect (OSTI)

    F.P. Burke; S.D. Brandes; D.C. McCoy; R.A. Winschel; D. Gray; G. Tomlinson

    2001-07-01T23:59:59.000Z

    Following the petroleum price and supply disruptions of 1973, the U.S. government began a substantial program to fund the development of alternative fuels. Direct coal liquefaction was one of the potential routes to alternative fuels. The direct coal liquefaction program was funded at substantial levels through 1982, and at much lower levels thereafter. Those processes that were of most interest during this period were designed to produce primarily distillate fuels. By 1999, U.S. government funding for the development of direct coal liquefaction ended. Now that the end of this campaign has arrived, it is appropriate to summarize the process learnings derived from it. This report is a summary of the process learnings derived from the DOE direct coal liquefaction process development campaign of the late twentieth century. The report concentrates on those process development programs that were designed to produce primarily distillate fuels and were largely funded by DOE and its predecessors in response to the petroleum supply and price disruptions of the 1970s. The report is structured as chapters written by different authors on most of the major individual DOE-funded process development programs. The focus of the report is process learnings, as opposed to, say, fundamental coal liquefaction science or equipment design. As detailed in the overview (Chapter 2), DOE's direct coal liquefaction campaign made substantial progress in improving the process yields and the quality of the distillate product. Much of the progress was made after termination by 1983 of the major demonstration programs of the ''first generation'' (SRC-II, H-Coal, EDS) processes.

  1. Common Rail Injection System Development

    SciTech Connect (OSTI)

    Electro-Motive,

    2005-12-30T23:59:59.000Z

    The collaborative research program between the Department of energy and Electro-Motive Diesels, Inc. on the development of common rail fuel injection system for locomotive diesel engines that can meet US EPA Tier 2 exhaust emissions has been completed. This final report summarizes the objectives of the program, work scope, key accomplishments and research findings. The major objectives of this project encompassed identification of appropriate injection strategies by using advanced analytical tools, development of required prototype hardware/controls, investigations of fuel spray characteristics including cavitation phenomena, and validation of hareware using a single-cylinder research locomotive diesel engine. Major milestones included: (1) a detailed modeling study using advanced mathematical models - several various injection profiles that show simultaneous reduction of NOx and particulates on a four stroke-cycle locomotive diesel engine were identified; (2) development of new common rail fuel injection hardware capable of providing these injection profiles while meeting EMD engine and injection performance specifications. This hardware was developed together with EMD's current fuel injection component supplier. (3) Analysis of fuel spray characteristics. Fuel spray numerical studies and high speed photographic imaging analyses were performed. (4) Validation of new hardware and fuel injection profiles. EMD's single-cylinder research diesel engine located at Argonne National Laboratory was used to confirm emissions and performacne predictions. These analytical ane experimental investigations resulted in optimized fuel injection profiles and engine operating conditions that yield reductions in NOx emissions from 7.8 g/bhp-hr to 5.0 g/bhp-hr at full (rated) load. Additionally, hydrocarbon and particulate emissions were reduced considerably when compared to baseline Tier I levels. The most significant finding from the injection optimization process was a 2% to 3% improvement in fuel economy over EMD's traditional Tier I engine hardware configuration. the common rail fuel injection system enabled this added benefit by virtue of an inherent capability to provide multiple injections per power stroke at high fuel rail pressures. On the basis of the findings in this study, EMD concludes that the new electronically-controlled high-pressure common rail injection system has the potential to meet locomotive Tier 2 NOx and particulates emission standards without sacrificing the fuel economy. A number of areas to further improve the injection hardware and engine operating characteristics to further exploit the benefits of common rail injection system have also been identified.

  2. Sandia National Laboratories: DOE Energy Storage Systems program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-FarmCoolDOE DOEactivity EERE

  3. DOE Systems Biology Knowledgebase (KBASE) (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Arkin, Adam [LBNL] [LBNL

    2012-03-21T23:59:59.000Z

    Adam Arkin from Berkeley Lab on the DOE Systems Biology Knowledgebase (KBASE) at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  4. Proposed Renewal of the Harvard/MIT DOE GTL Systems Biology Center 2007-2012

    E-Print Network [OSTI]

    Church, George M.

    Proposed Renewal of the Harvard/MIT DOE GTL Systems Biology Center 2007-2012 CONTENTS I1-SysBio renewal proposal is configured to either stand alone with existing collaborations or to potentially act

  5. Building the DOE Systems Biology Knowledgebase (KBase) ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Brettin, Tom [Oak Ridge National Laboratory

    2013-03-22T23:59:59.000Z

    Tom Brettin on "Building the DOE Systems Biology Knowledgebase (KBase)" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  6. DOE Systems Biology Knowledgebase (KBASE) (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Arkin, Adam [LBNL

    2013-01-15T23:59:59.000Z

    Adam Arkin from Berkeley Lab on the DOE Systems Biology Knowledgebase (KBASE) at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  7. SEP Success Stories: "Idle Free Systems" Does Not Stand Idly...

    Broader source: Energy.gov (indexed) [DOE]

    retaining power to a truck's cab. | Courtesy of Idle Free Systems. Wisconsin-based Idle Free Systems received nearly 1.2M from the Energy Department's State Energy Program to...

  8. Advanced Integrated Systems Technology Development

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    prototype personal comfort system devices, (5) a buildingprototype personal comfort system devices, (5) a buildingparts. Each personal comfort system device creates normal

  9. DOE and Industry Showcase New Control Systems Security Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to design a secure, networked control systems architecture. The project is led by Siemens Corporate Research in partnership with Rutgers University, Siemens Energy, and the...

  10. Production and perception of vowels: does the density of the system play a role?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Production and perception of vowels: does the density of the system play a role? Christine Meunier system seems to influence vowel perception but not vowel production. 1. INTRODUCTION Each language has with a dense vocalic system? Moreover, is the phonetic production of a vowel affected by the density

  11. Geothermal Program Review VII: proceedings. DOE Research and Development for the Geothermal Marketplace

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    Each year the Geothermal Technology Division of the US Department of Energy conducts an indepth review of its entire geothermal R and D program. The 2--3 day conference serves several purposes: a status report on current R and D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. This year's conference, Program Review 7, was held in San Francisco on March 21--23, 1989. As indicated by its title, ''DOE Research and Development for the Geothermal Marketplace'', Program Review 7 emphasized developing technologies, concepts, and innovations having potential for commercial application in the foreseeable future. Program Review 7 was comprised of eight sessions including an opening session and a special presentation on the ''Role of Geothermal Energy in Minimizing Global Environmental Problems.'' The five technical sessions covered GTD-sponsored R and D in the areas of hydrothermal (two sessions), hot dry rock, geopressured, and magma. Presentations were made by the relevant field researchers, and sessions were chaired by the appropriate DOE Operations Office Geothermal Program Manager. The technical papers and commentary of invited speakers contained in these Proceedings have been compiled in the order in which they were presented at Program Review 7.

  12. Advanced turbine systems phase II - conceptual design and product development. Final report, August 1993--July 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all U.S. energy resources. Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems (ATS). The technical ATS requirements are based upon two workshops held in Greenville, SC that were sponsored by DOE and hosted by Clemson University. The objective of this 8-year program, managed jointly by DOE`s Office of Fossil Energy, and, Office of Conservation and Renewable Energy, is to develop natural-gas-fired base load power plants that will have cycle efficiencies greater than 60%, lower heating value (LHV), be environmentally superior to current technology, and also be cost competitive. The program will include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

  13. NERSC Cyber Security Challenges That Require DOE Development andSupport

    SciTech Connect (OSTI)

    Draney, Brent; Campbell, Scott; Walter, Howard

    2007-01-16T23:59:59.000Z

    Traditional security approaches do not adequately addressall the requirements of open, scientific computing facilities. Many ofthe methods used for more restricted environments, including almost allcorporate/commercial systems, do not meet the needs of today's science.Use of only the available "state of the practice" commercial methods willhave adverse impact on the ability of DOE to accomplish its sciencegoals, and impacts the productivity of the DOE Science community. Inparticular, NERSC and other high performance computing (HPC) centers havespecial security challenges that are unlikely to be met unless DOE fundsdevelopment and support of reliable and effective tools designed to meetthe cyber security needs of High Performance Science. The securitychallenges facing NERSC can be collected into three basic problem sets:network performance and dynamics, application complexity and diversity,and a complex user community that can have transient affiliations withactual institutions. To address these problems, NERSC proposes thefollowing four general solutions: auditing user and system activityacross sites; firewall port configuration in real time;cross-site/virtual organization identity management and access control;and detecting security issues in application middleware. Solutions arealsoproposed for three general long term issues: data volume,application complexity, and information integration.

  14. Applied Materials Develops an Advanced Epitaxial Growth System to Bring Down LED Costs

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, Applied Materials has developed an advanced epitaxial growth system for gallium nitride (GaN) LED devices that decreases operating costs, increases internal quantum efficiency, and improves binning yields.

  15. Future challenges and DOE/NNSA-JAEA cooperation for the development of advanced safeguards

    SciTech Connect (OSTI)

    Stevens, Rebecca S [Los Alamos National Laboratory; Mc Clelland - Kerr, John [NNSA-NA-242; Senzaki, Masao [JAEA; Hori, Masato [JAEA

    2009-01-01T23:59:59.000Z

    The United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) has been cooperating with Japan on nuclear safeguards for over thirty years. DOE/NNSA has collaborated with the Japan Atomic Energy Agency (JAEA) and its predecessors in addressing the need for innovative solutions to nuclear transparency and verification issues in one of the world's most advanced nuclear fuel cycle states. This collaboration includes over ninety activities that have involved nearly every facility in the JAEA complex and many national laboratories in the U.S. complex. The partnership has yielded new technologies and approaches that have benefited international safeguards not only in Japan, but around the world. The International Atomic Energy Agency uses a number of safeguards solutions developed under this collaboration to improve its inspection efforts in Japan and elsewhere. Japanese facilities serve as test beds for emerging safeguards technologies and are setting the trend for new nuclear energy and fuel cycle development worldwide. The collaboration continues to be an essential component of U.S. safeguards outreach and is integral to the DOE/NNSA's Next Generation Safeguards Initiative. In addition to fostering international safeguards development, the cooperation is an opportunity for U.S. scientists to work in facilities that have no analog in the United States, thus providing crucial real-life experience for and aiding development of the next generation of U.S. safeguards specialists. It is also an important element of promoting regional transparency thereby building confidence in the peaceful nature of nuclear programs in the region. The successes engendered by this partnership provide a strong basis for addressing future safeguards challenges, in Japan and elsewhere. This paper summarizes these challenges and the associated cooperative efforts that are either underway or anticipated.

  16. Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program (Topic 2)

    SciTech Connect (OSTI)

    James Fenton, PhD; Darlene Slattery, PhD; Nahid Mohajeri, PhD

    2012-09-05T23:59:59.000Z

    The Department of Energy’s High Temperature, Low Relative Humidity Membrane Program was begun in 2006 with the Florida Solar Energy Center (FSEC) as the lead organization. During the first three years of the program, FSEC was tasked with developing non-Nafion® proton exchange membranes with improved conductivity for fuel cells. Additionally, FSEC was responsible for developing protocols for the measurement of in-plane conductivity, providing conductivity measurements for the other funded teams, developing a method for through-plane conductivity and organizing and holding semiannual meetings of the High Temperature Membrane Working Group (HTMWG). The FSEC membrane research focused on the development of supported poly[perfluorosulfonic acid] (PFSA) – Teflon membranes and a hydrocarbon membrane, sulfonated poly(ether ether ketone). The fourth generation of the PFSA membrane (designated FSEC-4) came close to, but did not meet, the Go/No-Go milestone of 0.1 S/cm at 50% relative humidity at 120 °C. In-plane conductivity of membranes provided by the funded teams was measured and reported to the teams and DOE. Late in the third year of the program, DOE used this data and other factors to decide upon the teams to continue in the program. The teams that continued provided promising membranes to FSEC for development of membrane electrode assemblies (MEAs) that could be tested in an operating fuel cell. FSEC worked closely with each team to provide customized support. A logic flow chart was developed and discussed before MEA fabrication or any testing began. Of the five teams supported, by the end of the project, membranes from two of the teams were easily manufactured into MEAs and successfully characterized for performance. One of these teams exceeded performance targets, while the other requires further optimization. An additional team developed a membrane that shows great promise for significantly reducing membrane costs and increasing membrane lifetime.

  17. DEMONSTRATiON OF A SUBSURFACE CONTAINMENT SYSTEM FOR INSTALLATION AT DOE WASTE SITES

    SciTech Connect (OSTI)

    Thomas J. Crocker; Verna M. Carpenter

    2003-05-21T23:59:59.000Z

    Between 1952 and 1970, DOE buried mixed waste in pits and trenches that now have special cleanup needs. The disposal practices used decades ago left these landfills and other trenches, pits, and disposal sites filled with three million cubic meters of buried waste. This waste is becoming harmful to human safety and health. Today's cleanup and waste removal is time-consuming and expensive with some sites scheduled to complete cleanup by 2006 or later. An interim solution to the DOE buried waste problem is to encapsulate and hydraulically isolate the waste with a geomembrane barrier and monitor the performance of the barrier over its 50-yr lifetime. The installed containment barriers would isolate the buried waste and protect groundwater from pollutants until final remediations are completed. The DOE has awarded a contract to RAHCO International, Inc.; of Spokane, Washington; to design, develop, and test a novel subsurface barrier installation system, referred to as a Subsurface Containment System (SCS). The installed containment barrier consists of commercially available geomembrane materials that isolates the underground waste, similar to the way a swimming pools hold water, without disrupting hazardous material that was buried decades ago. The barrier protects soil and groundwater from contamination and effectively meets environmental cleanup standards while reducing risks, schedules, and costs. Constructing the subsurface containment barrier uses a combination of conventional and specialized equipment and a unique continuous construction process. This innovative equipment and construction method can construct a 1000-ft-long X 34-ft-wide X 30-ft-deep barrier at construction rates to 12 Wday (8 hr/day operation). Life cycle costs including RCRA cover and long-term monitoring range from approximately $380 to $590/cu yd of waste contained or $100 to $160/sq ft of placed barrier based upon the subsurface geology surrounding the waste. Project objectives for Phase I were to validate the SCS construction equipment and process, evaluate the system performance, validate the barrier constructability, and assess the barrier effectiveness. The objectives for Phase 11, which is a full-scale demonstration at a DOE site, are to perform an extensive characterization of the test site, to demonstrate the equipment and the installation process under site-specific performance and regulatory requirements, to validate the operational performance of the equipment, and to perform long-term verification of the barrier using monitoring wells. To date, significant progress has been made to establish the technical and economical feasibility of the SCS. This report describes the SCS conventional and specialized equipment, barrier materials, and construction process. It presents results of the specialized equipment Factory Test, the SCS Control Test and the SCS Advance Control Test at the RAHCO facility. Provided herein are the system performance capabilities and an estimated construction cost and schedule for a 1000-ft-long X 34-ft-wide X 29-ft-deep containment barrier at the DOE Oak Ridge Bear Creek Burial Grounds are also provided.

  18. Networked Systems for Developing Regions

    E-Print Network [OSTI]

    Subramanian, Lakshminarayanan

    at the Bottom of the Pyramid !! Amartya Sen: Development as Freedom !! Paul Collier: The Bottom Billion

  19. Development of a techno-economic model to optimization DOE spent nuclear fuel disposition

    SciTech Connect (OSTI)

    Ramer, R.J.; Plum, M.M.; Adams, J.P.; Dahl, C.A.

    1997-11-01T23:59:59.000Z

    The purpose of the National Spent Nuclear Fuel (NSNF) Program conducted by Lockheed Martin Idaho Technology Co. (LMITCO) at the Idaho National Engineering and Environmental Laboratory (INEEL) is to evaluate what to do with the spent nuclear fuel (SNF) in the Department of Energy (DOE) complex. Final disposition of the SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on the fuel type and the current locations of the fuel. One of the first steps associated with selecting one or more sites for treating the SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the electrometallurgical treatment process for fuels at several locations. The set of questions addresses all issues associated with the design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs will be applied to determine the life-cycle cost of each option. This technique can also be applied to other treatment techniques for treating spent nuclear fuel.

  20. Development of a Techno-Economic Model to Optimize DOE Spent Nuclear Fuel Disposition

    SciTech Connect (OSTI)

    Ramer, R. J.; Plum, M. M.; Adams, J. P.; Dahl, C. A.

    1998-02-01T23:59:59.000Z

    The National Spent Nuclear Fuel (NSNF) Program is evaluating final disposition of spent nuclear fuel (SNE) in the Department of Energy (DOE) complex. Final disposition of SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment (EMT) and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on fuel type and location of the fuel. One of the first steps associated with selecting one or more sites for treating SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the EMT process for fuels at several locations. The set of questions addresses all issues associated with design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs can be applied to determine the life cycle cost of each option. This technique can also be applied to other treatment techniques for treating SNF.

  1. The Ninth Annual DOE Solid-State Lighting Market Development Workshop

    Broader source: Energy.gov [DOE]

    Nearly 200 lighting leaders from across North America gathered in Detroit from November 12–13, 2014, for the ninth annual Solid-State Lighting (SSL) Market Development Workshop, hosted by DOE. The diverse audience spanned the spectrum of SSL stakeholders, representing industry, government, efficiency organizations, utilities, municipalities, designers, specifiers, retailers, and distributors. The workshop’s purpose was to create a forum for airing issues and questions regarding today’s solid-state lighting products, and identifying strategies that will speed market adoption.

  2. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001.

    SciTech Connect (OSTI)

    FOX,K.J.

    2001-12-01T23:59:59.000Z

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2001. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2001 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2002. The BNL LDRD budget authority by DOE in FY 2001 was $6 million. The actual allocation totaled $5.3 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators.

  3. Alliance Laundry Systems to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers

    Broader source: Energy.gov [DOE]

    Letter from Alliance Laundry Systems, LLC to DOE General Counsel, Re: Your (DOE's) request of 11-30-2010 Regarding Clothes Washer Test Procedure Waivers. ALS believes that grandfathering all units...

  4. Development and application of earth system models

    E-Print Network [OSTI]

    Development and application of earth system models Ronald G. Prinn *Reprinted from Proceedings, 2011) The global environment is a complex and dynamic system. Earth system modeling is needed to help: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Development and application of earth system

  5. Notice of Intent to Revise DOE G 414.1-1B, Management and Independent Assessments Guide for Use with 10 CFR, Part 830, Subpart A, and DOE O 414.1C, Quality Assurance; DOE M 450.4-1, Integrated Safety Management System Manual; and DOE O 226.1A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-18T23:59:59.000Z

    This memorandum provides justification for revising DOE G 414.1-1B, Management and Independent Assessments Guide for Use With 10 CFR, Part 830, Subpart A, and DOE O 414.1C, Quality Assurance; DOE M 450.4-1, Integrated Safety Management System Manual; and DOE O 226.1A, Implementation of Department of Energy Oversight Policy.

  6. How Does the Republic of Science Shape the Patent System? Broadening the

    E-Print Network [OSTI]

    Loudon, Catherine

    357 How Does the Republic of Science Shape the Patent System? Broadening the Institutional Analysis of Innovation Beyond Patents Fiona E. Murray,* Joshua S. Gans,** and Mackey L. Craven*** I. The Republic. Intertwined Relationship Between the Patent System & the Republic of Science

  7. Development of a natural Gas Systems Analysis Model (GSAM)

    SciTech Connect (OSTI)

    Godec, M.; Haas, M.; Pepper, W.; Rose, J.

    1993-12-31T23:59:59.000Z

    Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE`s upstream as well as downstream natural gas R&D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE`s Natural Gas Strategic Plan requires that its R&D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R&D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R&D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R&D programs.

  8. Design of product development systems

    E-Print Network [OSTI]

    Aguirre Granados, Adrian

    2008-01-01T23:59:59.000Z

    The development of successful new products in less time and using fewer resources is key to the financial success of most consumer product companies. In this thesis we have studied the development of new products and how ...

  9. DOE Announces Webinars on Solar Thermochemical Reaction Systems, Wind

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergyDeveloping a Tribal Strategic Energy Plan,

  10. DOE Announces Webinars on the National Geothermal Data System, Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergyDeveloping a TribalResources

  11. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Energy Savers [EERE]

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  12. DOE Announces Webinars on High Performance Space Conditioning Systems,

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThirdPartnershipDrillingRFIChallenges, and MoreTribal

  13. Embedded Automotive System Development Process

    E-Print Network [OSTI]

    Langenwalter, Joachim

    2011-01-01T23:59:59.000Z

    Model based design enables the automatic generation of final-build software from models for high-volume automotive embedded systems. This paper presents a framework of processes, methods and tools for the design of automotive embedded systems. A steer-by-wire system serves as an example.

  14. Radioisotope-based Nuclear Power Strategy for Exploration Systems Development

    SciTech Connect (OSTI)

    Schmidt, George R.; Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2006-01-20T23:59:59.000Z

    Nuclear power will play an important role in future exploration efforts. Its benefits pertain to practically all the different timeframes associated with the Exploration Vision, from robotic investigation of potential lunar landing sites to long-duration crewed missions on the lunar surface. However, the implementation of nuclear technology must follow a logical progression in capability that meets but does not overwhelm the power requirements for the missions in each exploration timeframe. It is likely that the surface power infrastructure, particularly for early missions, will be distributed in nature. Thus, nuclear sources will have to operate in concert with other types of power and energy storage systems, and must mesh well with the power architectures envisioned for each mission phase. Most importantly, they must demonstrate a clear advantage over other non-nuclear options (e.g., solar power, fuel cells) for their particular function. This paper describes a strategy that does this in the form of three sequential system developments. It begins with use of radioisotope generators currently under development, and applies the power conversion technology developed for these units to the design of a simple, robust reactor power system. The products from these development efforts would eventually serve as the foundation for application of nuclear power systems for exploration of Mars and beyond.

  15. DOE (Department of Energy) nuclear weapon R and T (research, development, and testing): Objectives, roles, and responsibilities

    SciTech Connect (OSTI)

    Otey, G.R.

    1989-07-01T23:59:59.000Z

    An overview of the DOE nuclear weapons research, development, and testing program is given along with a description of the program objectives and the roles and responsibilities of the various involved organizations. The relationship between the DoD and DOE is described and the division of responsibilities for weapon development as well as the coordinated planning and acquisition activities are reviewed. Execution of the RD T program at the nuclear weapons laboratories is outlined. 24 refs., 3 figs.

  16. Computing Services and Systems Development Welcome Students

    E-Print Network [OSTI]

    Sibille, Etienne

    the Help Desk at 412-624-HELP [4357] · Your password must be changed every 180 days. · Prompted at My Pitt Development Computing Services and Systems Development (CSSD) We provide the technology tools and services Arriving on Campus · Arriving on Campus · Technology Help #12;Computing Services and Systems Development

  17. Developing energy efficient filtering systems

    E-Print Network [OSTI]

    Azzopardi, L.

    Azzopardi,L. Vanderbauwhede,W. Moadeli,M. Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval (SIGIR09) pp 664-665 ACM

  18. Toward Lean Hardware/Software System Development: An Evaluation of Selected Complex Electronic System Development Methodologies

    E-Print Network [OSTI]

    Hou, Alex

    The development of electronic hardware and software has become a major component of major DoD systems. This report surveys a wide set of new electronic hardware/software development methods and develops a system to evaluate ...

  19. Connecticut State University System Initiative for Nanotechnology-Related Equipment, Faculty Development and Curriculum Development

    SciTech Connect (OSTI)

    Broadbridge, Christine C. [Southern Connecticut State University

    2013-03-28T23:59:59.000Z

    DOE grant used for partial fulfillment of necessary laboratory equipment for course enrichment and new graduate programs in nanotechnology at the four institutions of the Connecticut State University System (CSUS). Equipment in this initial phase included variable pressure scanning electron microscope with energy dispersive x-ray spectroscopy elemental analysis capability [at Southern Connecticut State University]; power x-ray diffractometer [at Central Connecticut State University]; a spectrophotometer and spectrofluorimeter [at Eastern Connecticut State University; and a Raman Spectrometer [at Western Connecticut State University]. DOE's funding was allocated for purchase and installation of this scientific equipment and instrumentation. Subsequently, DOE funding was allocated to fund the curriculum, faculty development and travel necessary to continue development and implementation of the System's Graduate Certificate in Nanotechnology (GCNT) program and the ConnSCU Nanotechnology Center (ConnSCU-NC) at Southern Connecticut State University. All of the established outcomes have been successfully achieved. The courses and structure of the GCNT program have been determined and the program will be completely implemented in the fall of 2013. The instrumentation has been purchased, installed and has been utilized at each campus for the implementation of the nanotechnology courses, CSUS GCNT and the ConnSCU-NC. Additional outcomes for this grant include curriculum development for non-majors as well as faculty and student research.

  20. Improved Design of Nuclear Reactor Control System | U.S. DOE...

    Office of Science (SC) Website

    instrumentation: Improved Design of Nuclear Reactor Control System Developed at: Oak Ridge National Laboratory, Holifield Radioactive Ion Beam Facility (HRIBF) Developed...

  1. OE Power Systems Engineering Research & Development Program Partnershi...

    Broader source: Energy.gov (indexed) [DOE]

    Mission Power Systems Engineering Research and Development OE Power Systems Engineering Research & Development Program Partnerships OE Power Systems Engineering Research &...

  2. DOE Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented by the Tribal Energy Program and the U.S. Department of Energy (DOE) Office of Indian Energy with support from DOE's National Renewable Energy Laboratory, this interactive workshop will...

  3. Natural System Evaluation and Tool Development: International...

    Broader source: Energy.gov (indexed) [DOE]

    collaboration on the natural system evaluation and tool development included: (1) data interpretation of colloid-facilitated transport experiments at Grimsel Test Site, (2)...

  4. Developing Secure Power Systems Professional Competence: Alignment...

    Broader source: Energy.gov (indexed) [DOE]

    workforce development resources that can aid in the accelerating need for Secure Power Systems Professionals, while at the same time identifying capabilities and competencies to...

  5. Regional Systems Development for Geothermal Energy Resources...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii)....

  6. JM to Develop DOE P 364.1, Health and Safety Training Reciprocity

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-12-19T23:59:59.000Z

    The policy will provide expectations for the acceptance of equivalent worker safety and health training across the DOE Complex.

  7. DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems

    Broader source: Energy.gov [DOE]

    DOE will launch a collaborative effort with industry to evaluate and scope high-impact manufacturing R&D to improve natural gas systems efficiency and leak reduction. The goal of this effort is to establish an advanced manufacturing initiative. AMO will lead this effort.

  8. Managing Design and Construction Using Systems Engineering for Use with DOE O 413.3A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-23T23:59:59.000Z

    This Guide provides the Department of Energy's federal project directors with the methodologies and tools needed to plan, implement and complete assigned projects using a Systems Engineering approach in accordance with the requirements of DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. No cancellations.

  9. Resilient engineered systems: the development of an inherent system property

    E-Print Network [OSTI]

    Mitchell, Susan McAlpin

    2007-09-17T23:59:59.000Z

    was defined as the amount of energy a system can store before reaching a point of instability. The energy input into each system as well as the system�s exergy were used to develop system stress and system strain variables. Process variable changes...

  10. Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1991-01-07T23:59:59.000Z

    This report discusses the following tasks; solar heating with isothermal collector operation and advanced control strategy; solar cooling with solid desiccant; liquid desiccant cooling system development; solar house III -- development and improvement of solar heating systems employing boiling liquid collectors; generic solar domestic water heating systems; advanced residential solar domestic hot water (DHW) systems; management and coordination of Colorado State/DOE program; and field monitoring workshop.

  11. Hybrid Ground Source System Analysis and Tool Development

    Broader source: Energy.gov (indexed) [DOE]

    Development Principal Investigator Scott Hackel, Energy Center of Wisconsin Ground Source Heat Pumps Demonstration Projects May 18, 2010 This presentation does not contain any...

  12. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    FCT Program's Multiyear Research, Development and Demonstration Plan. targetsonboardhydrostorage.pdf More Documents & Publications Targets for Onboard Hydrogen Storage Systems...

  13. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    SciTech Connect (OSTI)

    Manoj Kumar

    2012-12-20T23:59:59.000Z

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  14. Operating cost guidelines for benchmarking DOE thermal treatment systems for low-level mixed waste

    SciTech Connect (OSTI)

    Salmon, R.; Loghry, S.L.; Hermes, W.H.

    1994-11-01T23:59:59.000Z

    This report presents guidelines for estimating operating costs for use in benchmarking US Department of Energy (DOE) low-level mixed waste thermal treatment systems. The guidelines are based on operating cost experience at the DOE Toxic Substances Control Act (TSCA) mixed waste incinerator at the K-25 Site at Oak Ridge. In presenting these guidelines, it should be made clear at the outset that it is not the intention of this report to present operating cost estimates for new technologies, but only guidelines for estimating such costs.

  15. NV energy electricity storage valuation : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader [Pacific Northwest National Laboratory, Richland, WA; Jin, Chunlian [Pacific Northwest National Laboratory, Richland, WA

    2013-06-01T23:59:59.000Z

    This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority (%22BA%22) as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 (%22Pay-for-performance%22). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

  16. Conceptual modular description of the high-level waste management system for system studies model development

    SciTech Connect (OSTI)

    McKee, R.W.; Young, J.R.; Konzek, G.J.

    1992-08-01T23:59:59.000Z

    This document presents modular descriptions of possible alternative components of the federal high-level radioactive waste management system and the procedures for combining these modules to obtain descriptions for alternative configurations of that system. The 20 separate system component modules presented here can be combined to obtain a description of any of the 17 alternative system configurations (i.e., scenarios) that were evaluated in the MRS Systems Studies program (DOE 1989a). First-approximation descriptions of other yet-undefined system configurations could also be developed for system study purposes from this database. The descriptions include, in a modular format, both functional descriptions of the processes in the waste management system, plus physical descriptions of the equipment and facilities necessary for performance of those functions.

  17. Maternal work behavior under welfare reform: How does the transition from welfare to work affect child development?

    E-Print Network [OSTI]

    Shyy, Wei

    welfare to work affect child development? Abstract Using data from a longitudinal sample of formerMaternal work behavior under welfare reform: How does the transition from welfare to work affect of Mental Health (R24-MH51363) to the Social Work Research Development Center on Poverty, Risk, and Mental

  18. DOE FY 2010 Budget Request and Recovery Act Funding for Energy Research, Development, Demonstration, and Deployment: Analysis and Recommendations

    SciTech Connect (OSTI)

    Anadon, Laura Diaz; Gallagher, Kelly Sims; Bunn, Matthew

    2009-06-01T23:59:59.000Z

    The combination of the FY 2010 budget request for the Department of Energy (DOE) and the portion of the American Recovery and Reinvestment Act of 2009 (ARRA) funds likely to be available in 2010 would (assuming that they would be split evenly between FY 2010 and FY 2011) result in a doubling in funding available for energy research, development, and deployment (ERD and D) from $3.6 billion in FY 2009 to $7.2 billion in FY 2010. Without the stimulus funds, DOE ERD and D investments in FY 2010 would decrease very slightly when compared to FY 2009. Excluding the $7.5 billion for the Advanced Technology Vehicles Manufacturing Loans in FY 2009, the FY 2010 budget request for deployment represents a 33 percent decrease from the FY 2009 levels from $520 million to $350 million. This decrease is largely due to the large amounts of funds appropriated in ARRA for DOE deployment programs, or $23.6 billion, which are three times greater than those appropriated in the FY 2009 budget. These very substantial funding amounts, coupled with the broad range of institutional innovations the administration is putting in place and movement toward putting a price on carbon emissions, will help accelerate innovation for a broad range of energy technologies. DOE's Advanced Research Projects Agency-Energy (ARPA-E) and the Energy Innovation Hubs are important initiatives that could contribute to two weak points of the government's energy innovation effort, namely funding high-risk projects in transformational technologies and in companies that have not traditionally worked with the government and strengthening the integration of basic and applied research in priority areas. Increasing the funding for different types of energy storage research, providing some support for exploring opportunities in coal-to-liquids with carbon capture and storage (CCS) and coal-and-biomass-to-liquids with CCS, and reducing funding for fission RD and D are other actions that Congress could take in the short-term. Energy storage may play a crucial role in the future of the power and transportation systems, which together consume two thirds of primary energy in the United States. A recent National Academy of Science report recommended carrying out detailed scenario assessments of the penetration of unconventional fuels from coal and coal and biomass with CCS. And the research plan provided for nuclear fission does not justify spending as many funds as were requested. The proposed funding for FY 2010 and the resources from ARRA, however, do not guarantee that the United States will finally enjoy the predictable and consistent publicly-funded energy technology innovation effort that it needs. The Obama administration must put in place a comprehensive energy technology innovation strategy that will ensure that an expanded ERD3 effort is both sustainable and efficient. This commission would be charged with, inter alia, developing a strategy that optimizes the integration of the various stages of innovation (research, development, demonstration, early deployment), as well as integrates efforts across technology areas. The database upon which this analysis is based may be downloaded in Excel format at: http://belfercenter.ksg.harvard.edu/publication/19119/ .

  19. Embracing Agile Development of Usable Software Systems

    E-Print Network [OSTI]

    McCrickard, Scott

    Embracing Agile Development of Usable Software Systems AbstractJason Chong Lee Center for Human. This is becoming evident in the emerging field of agile software development which has largely ignored or been programming--an agile software development process, and scenario-based design--a usability engineering process

  20. Technology Development and Field Trials of EGS Drilling Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Project objective: Development of drilling systems...

  1. JCS PHEV System Development-USABC

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Vehicle Technologies U.S. Department of Energy Merit Review Scott Engstrom Johnson Controls - Saft May 10, 2011 This presentation does not contain any proprietary,...

  2. JCS PHEV System Development-USABC

    Broader source: Energy.gov (indexed) [DOE]

    0 DOE Vehicle Technologies U.S. Department of Energy Merit Review Scott Engstrom Johnson Controls - Saft April 9, 2010 This presentation does not contain any proprietary,...

  3. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25T23:59:59.000Z

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  4. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    None

    2014-04-15T23:59:59.000Z

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  5. New developments in multi-meson systems

    SciTech Connect (OSTI)

    W. Detmold, B. Smigielski

    2010-06-01T23:59:59.000Z

    New developments in the study of multi-meson systems are reviewed. We highlight a new recursive algorithm for generating the requisite contractions needed for studying complex systems of mesons involving large numbers of particles or multiple species of particles. First results on mixed species systems involving pions and kaons are also presented.

  6. New developments in multi-meson systems

    E-Print Network [OSTI]

    William Detmold; Brian Smigielski

    2011-01-13T23:59:59.000Z

    New developments in the study of multi-meson systems are reviewed. We highlight a new recursive algorithm for generating the requisite contractions needed for studying complex systems of mesons involving large numbers of particles or multiple species of particles. First results on mixed species systems involving pions and kaons are also presented.

  7. DOE's Hydrogen Fuel Cell Activities: Developing Technology and Validating it through Real-World Evaluation (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

    2008-05-12T23:59:59.000Z

    Presentation prepared for the May 12, 2008 Alternative Fuels and Vehicles Conference that describes DOE's current hydrogen fuel cell technology validation projects.

  8. Model Development Development of a system emulating the global carbon cycle in Earth system models

    E-Print Network [OSTI]

    K. Tachiiri; J. C. Hargreaves; J. D. Annan; A. Oka; A. Abe-ouchi; M. Kawamiya

    2010-01-01T23:59:59.000Z

    developed a loosely coupled model (LCM) which can represent the outputs of a GCMbased Earth system model

  9. DOE Robotic and Remote Systems Assistance to the Government of Japan

    SciTech Connect (OSTI)

    Derek Wadsworth; Victor Walker

    2013-02-01T23:59:59.000Z

    At the request of the Government of Japan, DOE did a complex wide survey of available remotely operated and robotic systems to assist in the initial assessment of the damage to the Fukushima Daiichi reactors following an earthquake and subsequent tsunami. As a result several radiation hardened cameras and a Talon robot were identified as systems that could immediately assist in the effort and were subsequently sent to Japan. These systems were transferred to the Government of Japan and used to map radiation levels surrounding the damaged facilities. This report describes the equipment, its use, data collected, and lessons learned from the experience.

  10. HVDC control developments - addressing system requirements

    SciTech Connect (OSTI)

    Hauth, R.L.; Patel, H.S.; Piwko, R.J.

    1984-01-01T23:59:59.000Z

    This article describes typical high voltage direct current (HVDC) control systems and some of the new developments in the control area. HVDC control systems are showing their flexible characteristics as demonstrated, for example, by the new modulation, torsional damping, and alternating current voltage and reactive power controllers. Extensive studies are conducted to design and integrate such controllers into HVDC systems and to assure against any detrimental interactions within the total control system. 8 figures.

  11. DOE-STD-1095-95; DOE Standard Department of Energy Laboratory Accreditation Program For Personnel Dosimetry Systems

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-9395-95 December 1995 DOE STANDARD

  12. Next Generation Environmentally Friendly Driving Feedback Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmentally Friendly Driving Feedback Systems Research and Development Next Generation Environmentally Friendly Driving Feedback Systems Research and Development 2012 DOE...

  13. Hazardous Substance Release Reporting Under CERCLA, EPCR {section}304 and DOE Emergency Management System (EMS) and DOE Occurrence Reporting Requirements. Environmental Guidance

    SciTech Connect (OSTI)

    Traceski, T.T.

    1994-06-01T23:59:59.000Z

    Releases of various substances from DOE facilities may be subject to reporting requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Emergency Planning and Community Right-to-Know Act (EPCRA), as well as DOE`s internal ``Occurrence Reporting and Processing of Operations Information`` and the ``Emergency Management System`` (EMS). CERCLA and EPCPA are Federal laws that require immediate reporting of a release of a Hazardous Substance (HS) and an Extremely Hazardous Substance (EHS), respectively, in a Reportable Quantity (RQ) or more within a 24-hour period. This guidance uses a flowchart, supplemental information, and tables to provide an overview of the process to be followed, and more detailed explanations of the actions that must be performed, when chemical releases of HSs, EHSs, pollutants, or contaminants occur at DOE facilities. This guidance should be used in conjunction with, rather than in lieu of, applicable laws, regulations, and DOE Orders. Relevant laws, regulations, and DOE Orders are referenced throughout this guidance.

  14. ITM Syngas and ITM H2: Engineering Development of Ceramic Membrane Reactor Systems for

    E-Print Network [OSTI]

    (U.S. DOE) and other members of the ITM Syngas/ITM H2 Team, is developing Ion Transport Membrane (ITM of the ITM membrane to oxygen ions, which diffuse through the membrane under a chemical potential gradientITM Syngas and ITM H2: Engineering Development of Ceramic Membrane Reactor Systems for Converting

  15. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report

    SciTech Connect (OSTI)

    Williams, D N

    2011-09-27T23:59:59.000Z

    The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing Centre, the National Aeronautics and Space Administration Jet Propulsion Laboratory, and the National Oceanic and Atmospheric Administration. The ESGF software is distinguished from other collaborative knowledge systems in the climate community by its widespread adoption, federation capabilities, and broad developer base. It is the leading source for present climate data holdings, including the most important and largest data sets in the global-climate community, and - assuming its development continues - we expect it to be the leading source for future climate data holdings as well. Recently, ESG-CET extended its services beyond data-file access and delivery to include more detailed information products (scientific graphics, animations, etc.), secure binary data-access services (based upon the OPeNDAP protocol), and server-side analysis. The latter capabilities allow users to request data subsets transformed through commonly used analysis and intercomparison procedures. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users seeking to understand, process, extract value from, visualize, and/or communicate it to others. This ongoing effort, though daunting in scope and complexity, will greatly magnify the value of numerical climate model outputs and climate observations for future national and international climate-assessment reports. The ESG-CET team also faces substantial technical challenges due to the rapidly increasing scale of climate simulation and observational data, which will grow, for example, from less than 50 terabytes for the last Intergovernmental Panel on Climate Change (IPCC) assessment to multiple Petabytes for the next IPCC assessment. In a world of exponential technological change and rapidly growing sophistication in climate data analysis, an infrastructure such as ESGF must constantly evolve if it is to remain relevant and useful. Regretfully, we submit our final report at the end of project funding. To continue to serve the climate-science community, we are

  16. Development of plutonium aerosol fractionation system

    E-Print Network [OSTI]

    Mekala, Malla R.

    1993-01-01T23:59:59.000Z

    DEVELOPMENT OF A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1993 Major Subject: Mechanical Engineering DEVELOPMENT OP A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Approved as to style and content by: A. R. McFarland (Chair of Committee) N. K. Anand (Mer toer) (', & C. B...

  17. Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen

    E-Print Network [OSTI]

    Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen andand Fuel CellsFuel Cells Coordination Catalyst Development Water and Thermal Management Economic Analysis of PEM Fuel Cell Systems #12; Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi EppingKathi Epping #12

  18. DEVELOPMENT OF A WIRELINE CPT SYSTEM FOR MULTIPLE TOOL USAGE

    SciTech Connect (OSTI)

    Stephen P. Farrington; Martin L. Gildea; J. Christopher Bianchi

    1999-08-01T23:59:59.000Z

    The first phase of development of a wireline cone penetrometer system for multiple tool usage was completed under DOE award number DE-AR26-98FT40366. Cone penetrometer technology (CPT) has received widespread interest and is becoming more commonplace as a tool for environmental site characterization activities at several Department of Energy (DOE) facilities. Although CPT already offers many benefits for site characterization, the wireline system can improve CPT technology by offering greater utility and increased cost savings. Currently the use of multiple CPT tools during a site characterization (i.e. piezometric cone, chemical sensors, core sampler, grouting tool) must be accomplished by withdrawing the entire penetrometer rod string to change tools. This results in multiple penetrations being required to collect the data and samples that may be required during characterization of a site, and to subsequently seal the resulting holes with grout. The wireline CPT system allows multiple CPT tools to be interchanged during a single penetration, without withdrawing the CPT rod string from the ground. The goal of the project is to develop and demonstrate a system by which various tools can be placed at the tip of the rod string depending on the type of information or sample desired. Under the base contract, an interchangeable piezocone and grouting tool was designed, fabricated, and evaluated. The results of the evaluation indicate that success criteria for the base contract were achieved. In addition, the wireline piezocone tool was validated against ASTM standard cones, the depth capability of the system was found to compare favorably with that of conventional CPT, and the reliability and survivability of the system were demonstrated.

  19. The Initial Development of a Computerized Operator Support System

    SciTech Connect (OSTI)

    Roger Lew; Ronald L Boring; Thomas A Ulrich; Ken Thomas

    2014-08-01T23:59:59.000Z

    A computerized operator support system (COSS) is a collection of resilient software technologies to assist operators in monitoring overall nuclear power plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. The COSS provides rapid assessments, computations, and recommendations to reduce workload and augment operator judgment and decision-making during fast- moving, complex events. A prototype COSS for a chemical volume control system at a nuclear power plant has been developed in order to demonstrate the concept and provide a test bed for further research. The development process identified four underlying elements necessary for the prototype, which consist of a digital alarm system, computer-based procedures, piping and instrumentation diagram system representations, and a recommender module for mitigation actions. An operational prototype resides at the Idaho National Laboratory (INL) using the U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). Several human-machine interface (HMI) considerations are identified and incorporated in the prototype during this initial round of development.

  20. Overview of the U.S. DOE Accident Tolerant Fuel Development Program

    SciTech Connect (OSTI)

    Jon Carmack; Frank Goldner; Shannon M. Bragg-Sitton; Lance L. Snead

    2013-09-01T23:59:59.000Z

    The United States Fuel Cycle Research and Development Advanced Fuels Campaign has been given the responsibility to conduct research and development on enhanced accident tolerant fuels with the goal of performing a lead test assembly or lead test rod irradiation in a commercial reactor by 2022. The Advanced Fuels Campaign has defined fuels with enhanced accident tolerance as those that, in comparison with the standard UO2-Zircaloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations and operational transients, as well as design-basis and beyond design-basis events. This paper provides an overview of the FCRD Accident Tolerant Fuel program. The ATF attributes will be presented and discussed. Attributes identified as potentially important to enhance accident tolerance include reduced hydrogen generation (resulting from cladding oxidation), enhanced fission product retention under severe accident conditions, reduced cladding reaction with high-temperature steam, and improved fuel-cladding interaction for enhanced performance under extreme conditions. To demonstrate the enhanced accident tolerance of candidate fuel designs, metrics must be developed and evaluated using a combination of design features for a given LWR design, potential improvements to that design, and the design of an advanced fuel/cladding system. The aforementioned attributes provide qualitative guidance for parameters that will be considered for fuels with enhanced accident tolerance. It may be unnecessary to improve in all attributes and it is likely that some attributes or combination of attributes provide meaningful gains in accident tolerance, while others may provide only marginal benefits. Thus, an initial step in program implementation will be the development of quantitative metrics. A companion paper in these proceedings provides an update on the status of establishing these quantitative metrics for accident tolerant LWR fuel.1 The United States FCRD Advanced Fuels Campaign has embarked on an aggressive schedule for development of enhanced accident tolerant LWR fuels. The goal of developing such a fuel system that can be deployed in the U.S. LWR fleet in the next 10 to 20 years supports the sustainability of clean nuclear power generation in the United States.

  1. Development of the RFID System for nuclear materials management.

    SciTech Connect (OSTI)

    Chen, K.; Tsai, H.; Liu, Y. Y. (Decision and Information Sciences)

    2008-01-01T23:59:59.000Z

    Radio frequency identification (RFID) is one of today's most rapidly growing technologies in the automatic data collection industry. Although commercial applications are already widespread, the use of this technology for managing nuclear materials is only in its infancy. Employing an RFID system has the potential to offer an immense payback: enhanced safety and security, reduced need for manned surveillance, real-time access to status and event history data, and overall cost-effectiveness. The Packaging Certification Program (PCP) in the U.S. Department of Energy's (DOE's) Office of Environmental Management (EM), Office of Packaging and Transportation (EM-63), is developing an RFID system for nuclear materials management. The system consists of battery-powered RFID tags with onboard sensors and memories, a reader network, application software, a database server and web pages. The tags monitor and record critical parameters, including the status of seals, movement of objects, and environmental conditions of the nuclear material packages in real time. They also provide instant warnings or alarms when preset thresholds for the sensors are exceeded. The information collected by the readers is transmitted to a dedicated central database server that can be accessed by authorized users across the DOE complex via a secured network. The onboard memory of the tags allows the materials manifest and event history data to reside with the packages throughout their life cycles in storage, transportation, and disposal. Data security is currently based on Advanced Encryption Standard-256. The software provides easy-to-use graphical interfaces that allow access to all vital information once the security and privilege requirements are met. An innovative scheme has been developed for managing batteries in service for more than 10 years without needing to be changed. A miniature onboard dosimeter is being developed for applications that require radiation surveillance. A field demonstration of the RFID system was recently conducted to assess its performance. The preliminary results of the demonstration are reported in this paper.

  2. Notice of Intent to Develop DOE O 470.X, Insider Threat Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-10-17T23:59:59.000Z

    The Order establishes top-level responsibilities and requirements for DOE's Insider Threat Program, which is intended to deter, detect, and mitigate insider threat actions by all Federal and contractor employees.

  3. DOE Funds 21 Research, Development and Demonstration Projects for up to $78

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3AofFuelMillion

  4. DOE Mentoring Program

    Broader source: Energy.gov [DOE]

    The Office of Learning and Workforce Development coordinates this mentoring program for DOE Federal Employees.

  5. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15T23:59:59.000Z

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

  6. JCS PHEV System Development-USABC

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Vehicle Technologies U.S. Department of Energy Merit Review Avie Judes Johnson Controls, Inc. May 16, 2012 1 This presentation does not contain any proprietary, confidential...

  7. JCS PHEV System Development-USABC

    Broader source: Energy.gov (indexed) [DOE]

    3 DOE Vehicle Technologies U.S. Department of Energy Merit Review Avie Judes Johnson Controls, Inc. May 13, 2013 1 This presentation does not contain any proprietary, confidential...

  8. Technology Development and Field Trials of EGS Drilling Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS...

  9. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    SciTech Connect (OSTI)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; Rooyen, D. van; Weeks, J.

    1997-01-01T23:59:59.000Z

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided in companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.

  10. DOE Announces More than $5 Million to Support Wind Energy Development |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThirdPartnership |DevelopmentDepartment of Energy

  11. Systems engineering identification and control of mixed waste technology development

    SciTech Connect (OSTI)

    Beitel, G.A.

    1997-08-01T23:59:59.000Z

    The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop technologies required to meet the Department`s commitments for treatment of mixed low-level and transuranic wastes. Waste treatment includes all necessary steps from generation through disposal. Systems engineering was employed to reduce programmatic risk, that is, risk of failure to meet technical commitments within cost and schedule. Customer needs (technology deficiencies) are identified from Site Treatment Plans, Consent Orders, ten year plans, Site Technical Coordinating Groups, Stakeholders, and Site Visits. The Technical Baseline, a prioritized list of technology deficiencies, forms the basis for determining which technology development activities will be supported by the MWFA. Technology Development Requirements Documents are prepared for each technology selected for development. After technologies have been successfully developed and demonstrated, they are documented in a Technology Performance Report. The Technology Performance Reports are available to any of the customers or potential users of the technology, thus closing the loop between problem identification and product development. This systematic approach to technology development and its effectiveness after 3 years is discussed in this paper.

  12. Development of a Low-Cost Rotary Steerable Drilling System

    SciTech Connect (OSTI)

    Roney Nazarian

    2012-01-31T23:59:59.000Z

    The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully exercised the tool's build/turn/drop/hold target capabilities and its higher end ratings for bit weight, torque and rotary speed. The tool teardowns were rigorously analyzed at the conclusion of each field run to assess component wear rates and to fully document any detrimental behavior(s) observed.

  13. Development of Reversible Fuel Cell Systems at Proton Energy

    E-Print Network [OSTI]

    /DOE Reversible Fuel Cell Workshop 5 Proton OnSite · Manufacturer of Proton Exchange Membrane (PEM) hydrogen Fuel Cell Workshop PEM Cell Stacks Complete Systems 6 Proton Capabilities · Complete product/DOE Reversible Fuel Cell Workshop 9 PEM Fuel Cell & Electrolysis · Humidified gas streams vs. liquid water

  14. PMEL contributions to the collaboration: SCALING THE EARTH SYSTEM GRID TO PETASCALE DATA for the DOE SciDACs Earth System Grid Center for Enabling Technologies

    SciTech Connect (OSTI)

    Hankin, Steve

    2012-06-01T23:59:59.000Z

    Drawing to a close after five years of funding from DOE's ASCR and BER program offices, the SciDAC-2 project called the Earth System Grid (ESG) Center for Enabling Technologies has successfully established a new capability for serving data from distributed centers. The system enables users to access, analyze, and visualize data using a globally federated collection of networks, computers and software. The ESG softwareâ??now known as the Earth System Grid Federation (ESGF)â??has attracted a broad developer base and has been widely adopted so that it is now being utilized in serving the most comprehensive multi-model climate data sets in the world. The system is used to support international climate model intercomparison activities as well as high profile U.S. DOE, NOAA, NASA, and NSF projects. It currently provides more than 25,000 users access to more than half a petabyte of climate data (from models and from observations) and has enabled over a 1,000 scientific publications.

  15. HAMMER COURSEWARE MANAGEMENT SYSTEM (CMS) SYSTEM DEVELOPMENT & IMPLEMENTATION

    SciTech Connect (OSTI)

    GARDNER, P.R.

    2006-04-28T23:59:59.000Z

    HAMMER Courseware Management System (HAMMERCMS) is the official name of the system Fluor Hanford, Inc., uses to facilitate development of, deliver, and track training presented in some electronic form (mainly, web-based training) to Hanford Site employees, subcontractors, and vendors.

  16. The SLC control system - status and development

    SciTech Connect (OSTI)

    Phinney, N.; Shoaee, H.

    1987-03-01T23:59:59.000Z

    The SLC control system is installed and operational in the full SLC through the Linac, Damping Rings, Positron Source, Arcs and Final Focus. The system now includes a host VAX 11/785, a development VAX 11/780, 4 VAX workstations, a distributed network of 70 microprocessors, and about 270 Camac crates with more than 4000 modules. The micros are used for control and monitoring of the hardware, for pulse-to-pulse feedback, and for consoles (COWs). High level model-driven host software provides a variety of tools for beam setup, optimization, diagnosis, and stabilization. This paper will summarize the current status and projects under development.

  17. Integrated Microbial Genomes (IMG) System from the DOE Joint Genome Institute (JGI)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The integrated microbial genomes (IMG) system is a data management, analysis and annotation platform for all publicly available genomes. IMG contains both draft and complete JGI microbial genomes integrated with all other publicly available genomes from all three domains of life, together with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and annotating genomes, genes and functions, individually or in a comparative context. Since its first release in 2005, IMG's data content and analytical capabilities have been constantly expanded through quarterly releases. IMG is provided by the DOE-Joint Genome Institute (JGI) and is available from http://img.jgi.doe.gov. [Abstract from The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions; Victor M. Markowitz, Ernest Szeto, Krishna Palaniappan, Yuri Grechkin, Ken Chu, I-Min A. Chen, Inna Dubchak, Iain Anderson, Athanasios Lykidis, Konstantinos Mavromatis, Natalia N. Ivanova and Nikos C. Kyrpides; Nucleic Acids Research, 2008, Vol. 36. (Database Issue) See also the companion system, Integrated Microbial Genomes with Microbiome Samples.

  18. Membrane separation systems---A research and development needs assessment

    SciTech Connect (OSTI)

    Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-03-01T23:59:59.000Z

    Membrane based separation technology, a relative newcomer on the separations scene, has demonstrated the potential of saving enormous amounts of energy in the processing industries if substituted for conventional separation systems. Over 1 quad annually, out of 2.6, can possibly be saved in liquid-to-gas separations, alone, if membrane separation systems gain wider acceptance, according to a recent DOE/OIP (DOE/NBM-80027730 (1986)) study. In recent years great strides have been made in the field and offer even greater energy savings in the future when substituted for other conventional separation techniques such as distillation, evaporation, filtration, sedimentation, and absorption. An assessment was conducted by a group of six internationally known membrane separations experts who examined the worldwide status of research in the seven major membrane areas. This encompassed four mature technology areas: reverse osmosis, micorfiltration, ultrafiltration, and electrodialysis; two developing areas: gas separation and and pervaporation; and one emerging technology: facilitated transport. Particular attention was paid to identifying the innovative processes currently emerging, and even further improvements which could gain wider acceptance for the more mature membrane technology. The topics that were pointed out as having the greatest research emphasis are pervaporation for organic-organic separations; gas separation; micorfiltration; an oxidant-resistant reverse osmosis membrane; and a fouling-resistant ultrafiltration membrane. 35 refs., 6 figs., 22 tabs.

  19. Heatpipe power system and heatpipe bimodal system development status

    SciTech Connect (OSTI)

    Houts, Michael G.; Poston, David I.; Emrich, William J. Jr. [Los Alamos National Laboratory, MS K551, Los Alamos, New Mexico 87545 (United States); NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35758 (United States)

    1998-01-15T23:59:59.000Z

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is underway, and testing should begin in early 1998.

  20. Heatpipe power system and heatpipe bimodal system development status

    SciTech Connect (OSTI)

    Houts, M.G.; Poston, D.I. [Los Alamos National Laboratory, MS K551, Los Alamos, New Mexico 87545 (United States); Emrich, W.J. Jr. [NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35758 (United States)

    1998-01-01T23:59:59.000Z

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is underway, and testing should begin in early 1998. {copyright} {ital 1998 American Institute of Physics.}

  1. U.S. DOE Collegiate Wind Competition

    Broader source: Energy.gov [DOE]

    The U.S. DOE Collegiate Wind Competition challenges teams to design a wind-driven system based on market research, develop a business plan to market the product, build and test the system against...

  2. MPACT Fast Neutron Multiplicity System Prototype Development

    SciTech Connect (OSTI)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01T23:59:59.000Z

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  3. Land Information Systems in Developing Countries

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    development. Afrika-Studiesentrum, Lieden: Andersson, Sune (1986). Cadastre as a Base for Land Information-378. Andersson, Sune (1988). Examples and Lessons in LIS. International Federation of Surveyors- FIG Land Information System Workshop. Bali, Indonesia: FIG. 253-256. Andersson, Sune (1988). Problems and Issues

  4. Development of an Integrated Distribution Management System

    SciTech Connect (OSTI)

    Schatz, Joe E.

    2010-10-20T23:59:59.000Z

    This final report details the components, functionality, costs, schedule and benefits of developing an Integrated Distribution Management System (IDMS) for power distribution system operation. The Distribution Automation (DA) and Supervisory Control and Data Acquisition (SCADA) systems used by electric power companies to manage the distribution of electric power to retail energy consumers are vital components of the Nation’s critical infrastructure. Providing electricity is an essential public service and a disruption in that service, if not quickly restored, could threaten the public safety and the Nation’s economic security. Our Nation’s economic prosperity and quality of life have long depended on the essential services that utilities provide; therefore, it is necessary to ensure that electric utilities are able to conduct their operations safely and efficiently. A fully integrated technology of applications is needed to link various remote sensing, communications and control devices with other information tools that help guide Power Distribution Operations personnel. A fully implemented IDMS will provide this, a seamlessly integrated set of applications to raise electric system operating intelligence. IDMS will enhance DA and SCADA through integration of applications such as Geographic Information Systems, Outage Management Systems, Switching Management and Analysis, Operator Training Simulator, and other Advanced Applications, including unbalanced load flow and fault isolation/service restoration. These apps are capable of utilizing and obtaining information from appropriately installed DER, and by integrating disparate systems, the Distribution Operators will benefit from advanced capabilities when analyzing, controlling and operating the electric system.

  5. 2013 Community Earth System Model (CESM) Tutorial-Proposal to DOE

    SciTech Connect (OSTI)

    Holland, Marika; Bates, Susan

    2014-12-04T23:59:59.000Z

    THE SAME REQUEST WILL BE SENT TO BOTH NSF AND DOE TO EACH SUPPORT $35K. The third annual Community Earth System Model (CESM) tutorial for students and early career scientists was held from 30 July to 3 August, 2012. This event was extremely successful and, as for the tutorials in previous years, there was a greater demand than could be met. This indicates a continuing need for a tutorial of this type and we anticipate that the 2013 tutorial will be well received. The tutorial will include lectures on simulating the climate system and practical sessions on running CESM, modifying components, and analyzing data. These will be targeted to the graduate student level. Attendance will be limited to a maximum of 80 students with financial support for up to 40 students. Attendees will be balanced across institutions.

  6. Low-Cost Hydrogen Distributed Production System Development

    SciTech Connect (OSTI)

    C.E. (Sandy) Thomas, Ph.D., President; Principal Investigator, and

    2011-03-10T23:59:59.000Z

    H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

  7. Development of an AC Module System: Final Technical Report

    SciTech Connect (OSTI)

    Suparna Kadam; Miles Russell

    2012-06-15T23:59:59.000Z

    The GreenRay Inc. program focused on simplifying solar electricity and making it affordable and accessible to the mainstream population. This was accomplished by integrating a solar module, micro-inverter, mounting and monitoring into a reliable, 'plug and play' AC system for residential rooftops, offering the following advantages: (1) Reduced Cost: Reduction in installation labor with fewer components, faster mounting, faster wiring. (2) Maximized Energy Production: Each AC Module operates at its maximum, reducing overall losses from shading, mismatch, or module downtime. (3) Increased Safety. Electrical and fire safety experts agree that AC Modules have significant benefits, with no energized wiring or live connections during installation, maintenance or emergency conditions. (4) Simplified PV for a Broader Group of Installers. Dramatic simplification of design and installation of a solar power system, enabling faster and more efficient delivery of the product into the market through well-established, mainstream channels. This makes solar more accessible to the public. (5) Broadened the Rooftop Market: AC Modules enable solar for many homes that have shading, split roofs, or obstructions. In addition, due to the smaller building block size of 200W vs. 1000W, homeowners with budget limitations can start small and add to their systems over time. Through this DOE program GreenRay developed the all-in-one AC Module system with an integrated PV Module and microinverter, custom residential mounting and performance monitoring. Development efforts took the product from its initial concept, through prototypes, to a commercial product sold and deployed in the residential market. This pilot deployment has demonstrated the technical effectiveness of the AC Module system in meeting the needs and solving the problems of the residential market. While more expensive than the traditional central inverter systems at the pilot scale, the economics of AC Modules become more and more favorable as the product matures and is made in high volumes. GreenRay's early customers have been highly enthusiastic about the AC Module system benefits.

  8. DOE Tour of Zero: The Singer Village by Brookside Development, LLC |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » AlternativeUp HomeHorseDOE Directives DOEFebruaryDepartment

  9. DOE Funds Advanced Magnet Lab and NREL to Develop Next-Generation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5

  10. Sensor Development for PEM Fuel Cell Systems

    SciTech Connect (OSTI)

    Steve Magee; Richard Gehman

    2005-07-12T23:59:59.000Z

    This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

  11. Industrial Advanced Turbine Systems: Development and Demonstration. Annual report, September 14, 1995--September 30, 1996

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The objective of the cooperative agreements granted under the program is to join the DOE with industry in research and development that will lead to commercial offerings in the private sector. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The ATS will foster (1) early market penetration that enhances the global competitiveness of U.S. industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled U.S. technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program (DE-FC21-95MC31173) by the DOE`s Office of Energy Efficiency and Renewable Energy (EE). Technical administration of the Cooperative Agreement will be provided from EE`s Chicago Operations Office. Contract administration of the Cooperative Agreement will be provided from DOE`s Office of Fossil Energy, Morgantown Energy Technology Center (METC).

  12. Materials and Component Development for Advanced Turbine Systems

    SciTech Connect (OSTI)

    Alvin, M.A.; Pettit, F.; Meier, G.; Yanar, N.; Chyu, M.; Mazzotta, D.; Slaughter, W.; Karaivanov, V.; Kang, B.; Feng, C.; Chen, R.; Fu, T-C.

    2008-10-01T23:59:59.000Z

    In order to meet the 2010-2020 DOE Fossil Energy goals for Advanced Power Systems, future oxy-fuel and hydrogen-fired turbines will need to be operated at higher temperatures for extended periods of time, in environments that contain substantially higher moisture concentrations in comparison to current commercial natural gas-fired turbines. Development of modified or advanced material systems, combined with aerothermal concepts are currently being addressed in order to achieve successful operation of these land-based engines. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) has initiated a research program effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers as Howmet International and Coatings for Industry (CFI), and test facilities as Westinghouse Plasma Corporation (WPC) and Praxair, to develop advanced material and aerothermal technologies for use in future oxy-fuel and hydrogen-fired turbine applications. Our program efforts and recent results are presented.

  13. Colorado Firm Develops Innovative Materials for Geothermal Systems...

    Energy Savers [EERE]

    Colorado Firm Develops Innovative Materials for Geothermal Systems Colorado Firm Develops Innovative Materials for Geothermal Systems April 18, 2013 - 12:00am Addthis With support...

  14. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filters Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA)...

  15. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of...

  16. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Particulate Filters...

  17. Advanced Boost System Development for Diesel HCCI/LTC Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boost System Development for Diesel HCCILTC Application Advanced Boost System Development for Diesel HCCILTC Application Optimization of a turbocharger for high EGR applications...

  18. Research and Development Needs for Wind Systems Utilizing Controllable...

    Energy Savers [EERE]

    Research and Development Needs for Wind Systems Utilizing Controllable Grid Simulators and Full Scale Hardware in the Loop Testing Research and Development Needs for Wind Systems...

  19. Hybrid Ground Source System Analysis and Tool Development | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Hybrid Ground Source System Analysis and Tool Development Hybrid Ground Source System Analysis and Tool Development Project objectives: 1. Compile filtered hourly data for three...

  20. Manpower trends and training requirements for radiation protection personnel in the DOE contractor system

    SciTech Connect (OSTI)

    Trice, J.

    1984-02-01T23:59:59.000Z

    This document reports results of a survey undertaken jointly by the Office of Nuclear Safety and the Office of Industrial Relations, US Department of Energy, with assistance from Oak Ridge Associated Universities. The purpose of the survey was twofold: (1) to determine the current status and recent trends in technician-level radiation safety manpower among DOE contractors; and (2) to document the scope of radiation safety training activities for radiation protection technicians and other workers within the DOE contractor system. Data reported here were obtained both by use of a formal written questionnaire completed by staff at 34 government-owned, contractor-operated (GOCO) nuclear facilities and through supplemental documentation obtained from contractors of training procedures and requirements. The first half of this report describes trends in radiation protection manpower and reports workforce characteristics of health physics technicians. The second half of the report describes program requirements and procedures in those facilities that conduct formal in-house training programs for their radiation protection workforces. 4 figures, 22 tables.

  1. 2014 DOE SOLID-STATE LIGHTING MARKET DEVELOPMENT WORKSHOP | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013 issue ofOffice | Department4 U.S.DOE

  2. Development Wells At Silver Peak Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has Type Term TitleSilver Peak Area (DOE GTP)

  3. DOE and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment ofCaldwell andPaloDOE andDepartment News

  4. DOE Zero Energy Ready Home Case Study, Weiss Building & Development, LLC.,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOE Theory Focus Session on HydrogenServicesNM,Custom Home, Downer

  5. Resonant Kicker System Development at SLAC

    SciTech Connect (OSTI)

    Beukers, Tony; Krzaszczak, John; Larrus, Marc; Lira, Antonio de; /SLAC

    2009-04-27T23:59:59.000Z

    The design and installation of the Linear Coherent Light Source [1] at SLAC National Accelerator Laboratory has included the development of a kicker system for selective beam bunch dumping. The kicker is based on an LC resonant topology formed by the 50 uF energy storage capacitor and the 64 uH air core magnet load which has a sinusoidal pulse period of 400us. The maximum magnet current is 500 A. The circuit is weakly damped, allowing most of the magnet energy to be recovered in the energy storage capacitor. The kicker runs at a repetition rate of 120Hz. A PLC-based control system provides remote control and monitoring of the kicker via EPICS protocol. Fast timing and interlock signals are converted by discrete peak-detect and sample-hold circuits into DC signals that can be processed by the PLC. The design and experimental characterization of the system are presented.

  6. Vehicle Technologies Office Merit Review 2014: DOE GATE Center of Excellence in Sustainable Vehicle Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Clemson University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DOE GATE Center of...

  7. Recommendation 171: Commendation for Waste Information Management System

    Broader source: Energy.gov [DOE]

    The ORSSAB commends DOE and Florida International University for development of the Waste Information Management System.

  8. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-03-18T23:59:59.000Z

    The following directives are extended until 3-18-06: DOE N 205.8, Cyber Security Requirements for Wireless Devices and Information Systems, dated 2-11-04; DOE N 205.9, Certification and Accreditation Process for Information Systems Including National Security Systems, dated 02-19-04; DOE N 205.10, Cyber Security Requirements for Risk Management, dated 02-19-04; DOE N 205.11, Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems, dated 2-19-04. DOE N 205.12, Clearing, Sanitizing, and Destroying Information System Storage Media, Memory Devices, and Other Related Hardware, dated 2-19-04.

  9. Lean Gasoline System Development for Fuel Efficient Small Cars

    SciTech Connect (OSTI)

    None

    2013-08-30T23:59:59.000Z

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  10. Development of casthouse expert system for tapping

    SciTech Connect (OSTI)

    Takihira, K.; Ino, K.; Yamana, S.; Masumoto, S.; Sugawara, H. (Kawasaki Steel Corp., Tokyo (Japan). Ironmaking Dept.)

    1993-01-01T23:59:59.000Z

    Although the standardization of casting operations is necessary to secure stable blast furnace operation, intuitive practices (which are by definition non-quantifiable) and experience are prevalent. Because BF operation is a field which is difficult to standardize and reduce to documentary form, the present work had as its goal the standardization of judgments and systematization of information related to taphole opening and closing. The project was carried out in the highly computerized environment at Mizushima No. 3 BF, where the authors introduced an expert system guidance function in February, 1992. Standardization of operations through the use of this guidance system and the completion of guidance function development resulted in better consistency in taphole depths and optimization of the size of the taphole (taphole volume), which have in turn led to improvement in the pig/slag balance and a reduction in the time required for taphole opening.

  11. DOE Community-/Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    This interactive workshop will walk participants through five steps to help tribes understand the process for and potential pitfalls of developing community- and facility-scale renewable energy...

  12. Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    David Petti

    2014-06-01T23:59:59.000Z

    Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150°C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250°C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150°C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.

  13. DOE Awards $10.5 Million for Small Business Research and Development...

    Energy Savers [EERE]

    concepts for improving the performance and reducing the costs of land-based and offshore wind technologies: Boulder Nonlinear Systems, Inc., in Lafayette, Colorado, will...

  14. DOE Awards $5.3 Million to Support the Development of University...

    Broader source: Energy.gov (indexed) [DOE]

    such as an index of key organizations, relevant funding sources, and Illinois-based innovation achievements. Fraunhofer Center for Sustainable Energy Systems (Cambridge,...

  15. Particulate Control Device (PCD) Testing at the Power Systems Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Longanbach, J.R.

    1995-12-01T23:59:59.000Z

    One of the U.S. Department of Energy`s (DOE`s) objectives overseen by the Morgantown Energy Technology Center (METC) is to test systems and components for advanced coal-based power generation systems, including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), and integrated gasification/fuel cell (IGFC) systems. Stringent particulate requirements for fuel gas for both combustion turbines and fuel cells that are integral to these systems. Particulates erode and chemically attack the blade surfaces in turbines, and cause blinding of the electrodes in fuel cells. Filtration of the hot, high-pressure, gasified coal is required to protect these units. Filtration can be accomplished by first cooling the gas, but the system efficiency is reduced. High-temperature, high-pressure, particulate control devices (PCDs) need to be developed to achieve high efficiency and to extend the lifetime of downstream components to acceptable levels. Demonstration of practical high-temperature PCDs is crucial to the evolution of advanced, high-efficiency, coal-based power generation systems. The intent at the Power Systems Development Facility (PSDF) is to establish a flexible test facility that can be used to (1) develop advanced power system components, such as high-temperature, high-pressure PCDs; (2) evaluate advanced power system configurations and (3) assess the integration and control issues of these advanced power systems.

  16. Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1992-03-23T23:59:59.000Z

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems, (2) a project to build and test several generic solar water heaters, (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems, (4) a liquid desiccant cooling system development project, (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research, and (6) a management task. The objectives and progress in each task are described in this report.

  17. Geographic Information System Tools for Management of US DOE Sites - 13489

    SciTech Connect (OSTI)

    Carpenter, Cliff [U.S. Department of Energy Office of Legacy Management, 99 Research Park Road, Morgantown, WV 26505 (United States)] [U.S. Department of Energy Office of Legacy Management, 99 Research Park Road, Morgantown, WV 26505 (United States); Pilz, Elaine [S.M. Stoller Corporation, 2597 Legacy Way, Grand Junction, CO 81503 (United States)] [S.M. Stoller Corporation, 2597 Legacy Way, Grand Junction, CO 81503 (United States); Pawel, Steve [S.M. Stoller Corporation, 10995 Hamilton-Cleves Highway, Harrison, OH 45030 (United States)] [S.M. Stoller Corporation, 10995 Hamilton-Cleves Highway, Harrison, OH 45030 (United States)

    2013-07-01T23:59:59.000Z

    The DOE Office of Legacy Management (LM) uses a variety of GIS tools to support long-term surveillance and maintenance (LTS and M) activities at DOE closure sites. These geo-spatial applications provide access to data both for external public viewing and for internal analysis and decision making. LM uses a custom geo-spatial application called geo-spatial Environmental Mapping System (GEMS) that draws validated information from a database of 4.6 million analytical results and 232,000 water level measurements for 58 LTS and M sites. These data were collected from transferred sites over a period of 40 years. The database is used to capture and store historical environmental information such as analytical chemistry data, groundwater depths and elevations, well logs, well construction data, geo-referenced boundaries, site physical features, and sampling locations from LTS and M sites. Stakeholders, regulators, and project personnel can use this Web-based application and data to display information in several forms, such as a tabular report, a graph, and a geo-spatial display, or the data can be labeled or highlighted in a map view. Institutional controls, with their LTS and M requirements and documentation, have recently been incorporated into a prototype GEMS Web page for the Weldon Spring, Missouri, Site. LM uses multiple internal GIS viewers to help ensure the future protection of human health and the environment. For example, at the Rocky Flats, Colorado, Site, LM uses a GIS application to display real property interests on authoritative maps. Another project is used to facilitate discussions at stakeholder meetings for the Rocky Flats site's Original Landfill. The Uranium Leasing Program uses multiple interactive maps that assist in ongoing monitoring and the oversight of lease-holders' activities. (authors)

  18. A Technology Roadmap for Strategic Development of Enhanced Geothermal...

    Energy Savers [EERE]

    Development of Enhanced Geothermal Systems DOE Project Partner AltaRock Energy drills for geothermal energy at the Newberry Volcano EGS Demonstration site, near Bend, Oregon. DOE...

  19. Advanced Electric Traction System Technology Development

    SciTech Connect (OSTI)

    Anderson, Iver

    2011-01-14T23:59:59.000Z

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  20. DOE to Provide Nearly $20 Million to Further Development of Advanced...

    Office of Environmental Management (EM)

    over three years for a project to develop batteries based on nanophase iron-phosphate chemistry for 10- and 40-mile range PHEVs; Compact Power Inc. of Troy, MI - selected for an...

  1. Power Systems Development Facility. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell.

  2. Design and Development of Integrated Compact Multiphase Separation System (CMSS)

    SciTech Connect (OSTI)

    Ram S. Mohan; Ovadia Shoham

    2006-04-30T23:59:59.000Z

    The petroleum industry has relied in the past mainly on conventional vessel-type separators, which are bulky, heavy and expensive, to process wellhead production of oil-water-gas flow. Economic and operational pressures continue to force the petroleum industry to seek less expensive and more efficient separation alternatives in the form of compact separators. The compact dimensions, smaller footprint and lower weight of compact separators have a potential for cost savings to the industry, especially in offshore and subsea applications. Also, compact separators reduce the inventory of hydrocarbons significantly, which is critical for environmental This report presents a brief overview of the activities and tasks accomplished during the Budget Period II (October 09, 2004-April 30, 2006) of the DOE project titled ''Design and Development of Integrated Compact Multiphase Separation System (CMSS{copyright})''. An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with discussions. The findings of this investigation are summarized in the ''Conclusions'' section In this investigation, the concept of CMSS{copyright} has been developed and is proven through simulation studies and validated by experimental data. As part of the second phase of the project (Budget Period II--10/09/2004-04/30/2006) experimental investigation of the integrated CMSS{copyright} for different configurations has been conducted in order to evaluate the performance of the individual separation components, and determine how they will affect the performance of each other when integrated in the CMSS{copyright}. An intelligent control system is also developed to improve the total system efficiency of Compact Multiphase Separation System (CMSS{copyright}). In mature oil fields, water handling poses a huge problem. Thus water knock out at the earliest stage helps in significant cost savings during handling, separation and transportation of oil. One of the objectives of the CMSS{copyright} configuration is to knock out free water from the upstream fluids. The results from theoretical and experimental studies show that Free Water Knock Out (FWKO) CMSS{copyright} system can be readily deployed in the field using the control system strategies designed, implemented and tested in this study.

  3. Development of a natural gas systems analysis model (GSAM)

    SciTech Connect (OSTI)

    NONE

    1999-10-01T23:59:59.000Z

    This report provides an overview of the activities to date and schedule for future testing, validation, and authorized enhancements of Natural Gas Systems Analysis Model (GSAM). The goal of this report is to inform DOE managers of progress in model development and to provide a benchmark for ongoing and future research. Section II of the report provides a detailed discussion on the major GSAM development programs performed and completed during the period of performance, July 1, 1998 to September 30, 1999. Key improvements in the new GSAM version are summarized in Section III. Programmer's guides for GSAM main modules were produced to provide detailed descriptions of all major subroutines and main variables of the computer code. General logical flowcharts of the subroutines are also presented in the guides to provide overall picture of interactions between the subroutines. A standard structure of routine explanation is applied in every programmer's guide. The explanation is started with a brief description or main purpose of the routine, lists of input and output files read and created, and lists of invoked/child and calling/parent routines. In some of the guides, interactions between the routine itself and its parent and child routines are presented in the form of graphical flowchart. The explanation is then proceeded with step by step description of computer code in the subroutine where each step delegates a section of related code. Between steps, if a certain section of code needs further explanation, a Note is inserted with relevant explanation.

  4. Online Catalog of Isotope Products from DOE's National Isotope Development Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority commodities of strategic importance for the Nation and are essential for energy, medical, and national security applications and for basic research; a goal of the program is to make critical isotopes more readily available to meet domestic U.S. needs. This subprogram is steward of the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL), the Brookhaven Linear Isotope Producer (BLIP) facility at BNL, and hot cell facilities for processing isotopes at ORNL, BNL and LANL. The subprogram also coordinates and supports isotope production at a suite of university, national laboratory, and commercial accelerator and reactor facilities throughout the Nation to promote a reliable supply of domestic isotopes. The National Isotope Development Center (NIDC) at ORNL coordinates isotope production across the many facilities and manages the business operations of the sale and distribution of isotopes.

  5. Cask systems development program seal technology

    SciTech Connect (OSTI)

    Madsen, M.M.; Edwards, K.R.; Humphreys, D.L.

    1991-01-01T23:59:59.000Z

    General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (10 CFR 71). Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. Experiments were performed to characterize the performance of several seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fuorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Results show that the seal materials tested, with the exception of silicone S613-60, are not leak tight at manufacturer low-temperature ratings. This paper documents the initial series of experiments developed to characterize the performance of several static seals under conditions representative of RAM transport container environments. Helium leak rates of face seals were measured at low and ambient temperatures to compare seal materials. As scaling laws have not been developed for seals, the leakage rates measured in this program are intended to be used in a qualitative rather than quantitative manner. 5 refs., 7 figs., 2 tabs.

  6. Use of Federated Object Modeling to Develop a Macro-System Model for the U.S. Department of Energy's Hydrogen Program; Preprint

    SciTech Connect (OSTI)

    Ruth, M. F.; Vanderveen, K. B.; Sa, T. J.

    2006-07-01T23:59:59.000Z

    DOE is working on changing transportation fuel to hydrogen. To assist in that effort, we are developing a macro-system model that will link existing or developmental component models together.

  7. A Layered Architecture for Describing Information System Development Methodologies

    E-Print Network [OSTI]

    Han, Jun

    of the development process such as requirements engineering, while others cover the whole system development life cycle. Some include project management and estimation techniques while others focus only

  8. Development of an Advanced Combined Heat and Power (CHP) System...

    Broader source: Energy.gov (indexed) [DOE]

    an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2011 Development of an Advanced Combined Heat and Power (CHP) System...

  9. Development of a High-Efficiency Zonal Thermoelectric HVAC System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications...

  10. Developing a Research Proposal | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density,TiO2(110). |Gas-phaseDeveloping a Research

  11. DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofTheEnergy StrengthensDevelopment |Hybrid

  12. DOE Awards $10.5 Million for Small Business Research and Development in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergyDeveloping aClean Energy Technologies |

  13. DOE - Office of Legacy Management -- Union Mines Development Corp - NY 0-22

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site - MOTracerlab IncMines Development

  14. DOE Announces $26 Million to Develop Energy Efficient Processes for U.S.

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird QuarterintoCurrent JuneEfficiency

  15. DOE Announces up to $29.3 Million in Projects for Research, Development,

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of Energy 2010 Federal Energyofand

  16. DOE Announces up to $74 Million for Fuel Cell Research and Development |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of Energy 2010 Federalup to $7 Million

  17. DOE Awards $5.3 Million to Support the Development of University-Based

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of Energy 2010Department of| Department

  18. DOE Awards Up to $14.6 Million to Support Development of Advanced Water

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of EnergyRenewableEnergy forFuel

  19. US DOE-AECL cooperative program for development of high-level radioactive waste container fabrication, closure, and inspection techniques

    SciTech Connect (OSTI)

    Russell, E.W.

    1990-06-01T23:59:59.000Z

    The US Department of Energy (DOE) and Atomic Energy of Canada Limited (AECL) plan to initiate a cooperative research program on development of manufacturing processes for high-level radioactive waste containers. This joint program will benefit both countries in the development of processes for the fabrication, final closure in a hot-cell, and certification of the containers. Program activity objectives can be summarized as follows: to support the selection of suitable container fabrication, final closure, and inspection techniques for the candidate materials and container designs that are under development or are being considered in the US and Canadian repository programs; and to investigate these techniques for alternate materials and/or container designs, to be determined in future optimization studies relating to long-term performance of the waste packages. The program participants will carry out this work in a conditional phased approach, and the scope of work for subsequent years will evolve subject to developments in earlier years. The overall term of this cooperative program is planned to run roughly three years. 5 refs., 2 tabs.

  20. Guidance for Developing and Implementing Institutional Controls for Long-Term Surveillance and Maintenance at DOE Legacy Management Sites

    Broader source: Energy.gov [DOE]

    This guidance document is to help U.S. Department of Energy (DOE) Office of Legacy Management (LM) personnel understand what is necessary and acceptable for implementing the provisions of DOE...

  1. Solid Oxide Fuel Cell and Power System Development at PNNL

    Broader source: Energy.gov (indexed) [DOE]

    Solid Oxide Fuel Cell and Power Solid Oxide Fuel Cell and Power S t D l t t PNNL S t D l t t PNNL System Development at PNNL System Development at PNNL Larry Chick Energy Materials...

  2. Simulation methods for the development of modular strategic guidance systems

    E-Print Network [OSTI]

    Long, Stephen Michael, Ensign

    2003-01-01T23:59:59.000Z

    The traditional approach to simulation-based system design results in a stovepiped development process where subsystems are developed independently and integration requirements are then levied on the system architecture. ...

  3. Evaluation of battery/microturbine hybrid energy storage technologies at the University of Maryland :a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    De Anda, Mindi Farber (Energetics, Inc., Washington, DC); Fall, Ndeye K. (Energetics, Inc., Washington, DC)

    2005-03-01T23:59:59.000Z

    This study describes the technical and economic benefits derived from adding an energy storage component to an existing building cooling, heating, and power system that uses microturbine generation to augment utility-provided power. Three different types of battery energy storage were evaluated: flooded lead-acid, valve-regulated lead-acid, and zinc/bromine. Additionally, the economic advantages of hybrid generation/storage systems were evaluated for a representative range of utility tariffs. The analysis was done using the Distributed Energy Technology Simulator developed for the Energy Storage Systems Program at Sandia National Laboratories by Energetics, Inc. The study was sponsored by the U.S. DOE Energy Storage Systems Program through Sandia National Laboratories and was performed in coordination with the University of Maryland's Center for Environmental Energy Engineering.

  4. Benefit/cost framework for evaluating modular energy storage : a study for the DOE energy storage systems program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Schoenung, Susan M. (Longitude 122 West, Inc., Menlo Park, CA)

    2008-02-01T23:59:59.000Z

    The work documented in this report represents another step in the ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Energy Storage Systems (ESS) Program. This study uses updated cost and performance information for modular energy storage (MES) developed for this study to evaluate four prospective value propositions for MES. The four potentially attractive value propositions are defined by a combination of well-known benefits that are associated with electricity generation, delivery, and use. The value propositions evaluated are: (1) transportable MES for electric utility transmission and distribution (T&D) equipment upgrade deferral and for improving local power quality, each in alternating years, (2) improving local power quality only, in all years, (3) electric utility T&D deferral in year 1, followed by electricity price arbitrage in following years; plus a generation capacity credit in all years, and (4) electric utility end-user cost management during times when peak and critical peak pricing prevail.

  5. Research and development separation technology: The DOE Industrial Energy Conservation Program

    SciTech Connect (OSTI)

    Not Available

    1987-07-01T23:59:59.000Z

    This brochure summarizes the Office of Industrial Programs' RandD efforts in the advancement of separation technology. The purpose of this brochure is to provide interested parties with information on federal industrial energy conservation activities in separation technology. The brochure is comprised of the following sections: Separation Technology, summarizes the current state of separation technology and its uses. Potential Energy Savings, discusses the potential for industrial energy conservation through the implementation of advanced separation processes. Office of Industrial Programs' RandD Efforts in Separation Technology Development, describes the separation RandD projects conducted by IP. RandD Data Base, lists contractor, principal investigator, and location of each separation-related RandD effort sponsored by IP.

  6. ASSESS (Analytic System and Software for Evaluating Safeguards and Security) update: Current status and future developments

    SciTech Connect (OSTI)

    Al-Ayat, R.A. (Lawrence Livermore National Lab., CA (USA)); Cousins, T.D. (USDOE, Washington, DC (USA)); Hoover, E.R. (Sandia National Labs., Albuquerque, NM (USA))

    1990-07-15T23:59:59.000Z

    The Analytic System and Software for Evaluating Safeguards and Security (ASSESS) has been released for use by DOE field offices and their contractors. In October, 1989, we offered a prototype workshop to selected representatives of the DOE community. Based on the prototype results, we held the first training workshop at the Central Training Academy in January, 1990. Four additional workshops are scheduled for FY 1990. ASSESS is a state-of-the-art analytical tool for management to conduct integrated evaluation of safeguards systems at facilities handling facilities. Currently, ASSESS focuses on the threat of theft/diversion of special nuclear material by insiders, outsiders, and a special form of insider/outsider collusion. ASSESS also includes a neutralization module. Development of the tool is continuing. Plans are underway to expand the capabilities of ASSESS to evaluate against violent insiders, to validate the databases, to expand the neutralization module, and to assist in demonstrating compliance with DOE Material Control and Accountability (MC A) Order 5633.3. These new capabilities include the ability to: compute a weighted average for performance capability against a spectrum of insider adversaries; conduct defense-in-depth analyses; and analyze against protracted theft scenarios. As they become available, these capabilities will be incorporated in our training program. ASSESS is being developed jointly by Lawrence Livermore and Sandia National Laboratories under the sponsorship of the Department of Energy (DOE) Office of Safeguards and Security.

  7. High Efficiency Engine Systems Development and Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    Engine system modeling (GT-Power) Bottoming cycle modeling (GT-Power, Matlab) Vehicle system modeling (GT-Drive, PSAT, Autonomie) 0 20 40 60 80 Vehicle Speed,...

  8. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov [DOE]

    Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

  9. Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs for Phase 2 of the Secure Power Systems Professional project

    SciTech Connect (OSTI)

    O'Neil, Lori Ross; Assante, Michael; Tobey, D. H.; Conway, T. J.; Vanderhorst, Jr, T. J.; Januszewski, III, J.; leo, R.; Perman, K.

    2013-08-26T23:59:59.000Z

    This is the final report of Phase 2 of the Secure Power Systems Professional project, a 3 phase project. DOE will post to their website upon release.

  10. Development and Demonstration of an OWC Power System

    SciTech Connect (OSTI)

    DiBella, Francis

    2014-03-19T23:59:59.000Z

    The objectives of this Department of Energy (DOE) effort were to finalize the engineering design of a turbine and diffuser assembly, complete the scaled mechanical testing of the new blade articulation control mechanism and other critical components, to finalize the detailed design of a nominal 350 kWe turbine that will be used in an Oscillating Water Column (OWC), Wave Energy Converter System (WEC), and to assist Oceanlinx Limited in the installation and ocean water testing of the complete system.

  11. Efficient Motor System Tools Sponsored by the DOE Motor Challenge Program

    E-Print Network [OSTI]

    Blazewicz, S.; McCoy, G. A.; Olszewski, M.; Scheihing, P.

    efficiency, purchase price, energy costs, hours of operation, load factor, and utility rebates are taken into account. -Utility rebate program data, which includes minimum qualifying efficiency and rebate dollar values. -Menus and extensive Help screens... in accordance with these two assumptions, the private sector will supply the delivery mechanisms for Motor Challenge tools because they will represent a value added to their existing commercial products. Industry and DOE Drivers Industry and DOE, in general...

  12. DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost -

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3Aof Energy

  13. DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System Cost - 2013

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3Aof

  14. AISI/DOE Technology Roadmap Program: Development of Cost-effective, Energy-efficient Steel Framing

    SciTech Connect (OSTI)

    Nader R. Elhajj

    2003-01-06T23:59:59.000Z

    Steel members in wall construction form a thermal bridge that interrupts the insulation layer of a wall. This causes higher rate of heat transfer by conduction through the wall framing than through other parts of the wall. One method to reduce the thermal bridging effect is to provide a break, such as insulating sheathing. A thermally efficient slit-web and stud was developed in this program to mitigate the conductivity of steel. The thermal performance of the slit-web stud was evaluated at Oak Ridge National Laboratory using hotbox testing. The thermal test results showed that the prototype slit-web stud performed 17% better than the solid-web stud, using R-13 fiber glass batts with exterior OSB sheathing and interior drywall. The structural behavior of this slit-web stud was evaluated in axial, bending, shear, shearwall, and stub-column tests. Test results indicated that the slitweb stud performed similarly or better than the solid-web stud in most structural performance characteristics investigated. Thus, the prototype slit-web stud has been shown to be thermally efficient, economiexecy viable, structurally sound, easily manufactured and usable in a range of residential installations.

  15. System development & validation process for emerging growing organizations

    E-Print Network [OSTI]

    Almazán López, José Antonio

    2009-01-01T23:59:59.000Z

    This thesis has the main purpose of presenting the Development and Validation phase of the product development system from the point of view of an emerging and growing product development organization, denoting the obstacles ...

  16. JCS PHEV System Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE VehicleStationaryLaboratory,Iowa9: WhatA P OLMay

  17. Thermal Characterization and Analysis of A123 Systems Battery Cells, Modules and Packs: Cooperative Research and Development Final Report, CRADA Number CRD-07-243

    SciTech Connect (OSTI)

    Pesaran, A.

    2012-03-01T23:59:59.000Z

    In support of the A123 Systems battery development program with USABC/DOE, NREL provided technical support in thermal characterization, analysis and management of batteries. NREL's effort was part of Energy Storage Project funded by DOE Vehicle Technologies Program. The purpose of this work was for NREL to perform thermal characterization and analysis of A123 Systems cells and modules with the aim for Al23 Systems to improve the thermal performance of their battery cells, modules and packs.

  18. Seamless Energy Management Systems Part II: Development of Prototype

    E-Print Network [OSTI]

    Seamless Energy Management Systems Part II: Development of Prototype Core Elements Final Project System #12;#12;Seamless Energy Management Systems Part II: Development of Prototype Core Elements Final Center (PSERC) research project entitled "Seamless Energy Management Systems" (S-53G for 2013

  19. Central Energy Systems - Applications to Economic Development

    E-Print Network [OSTI]

    Myers, M. S.; Diserens, S. E.

    1985-01-01T23:59:59.000Z

    the conceptual stage of design. The second program, Central Energy Systems Analysis Program (CESAP) analyzes energy efficiency for a group of buildings and determines if a new district heating and cooling (DHC) system would be a cost effective application...

  20. Development and Application of Earth System Models

    E-Print Network [OSTI]

    Prinn, Ronald G.

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. ...

  1. Biomedical System for Monitoring Pressure Ulcer Development

    E-Print Network [OSTI]

    Wang, Frank Tinghwa

    2013-01-01T23:59:59.000Z

    OF C ALIFORNIA Los Angeles Biomedical System for MonitoringOF THE D ISSERTATION Biomedical System for Monitoringto the design of a biomedical sys- tem for the monitoring of

  2. Development of KSTAR Thomson scattering system

    SciTech Connect (OSTI)

    Lee, J. H.; Oh, S. T.; Wi, H. M. [National Fusion Research Institute, Gwahangno 113, Daejeon 305-333 (Korea, Republic of)

    2010-10-15T23:59:59.000Z

    To measure the electron temperature (T{sub e}) and electron density (n{sub e}) profiles in the Korean Superconducting Tokamak Advanced Research (KSTAR) device for the KSTAR third campaign (September 2010), we designed and installed a Thomson scattering system. The KSTAR Thomson scattering system is designed as a tangential Thomson scattering system and utilizes the N-, L-, and B-ports. The N-port is designed for the collection optics with a cassette system, the L-port is the laser input port, and the B-port is the location of the beam dump. In this paper, we will describe the final design of the KSTAR Thomson scattering system.

  3. Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1

    SciTech Connect (OSTI)

    None

    1995-10-01T23:59:59.000Z

    This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

  4. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 5.0 Systems Integration

    Broader source: Energy.gov [DOE]

    Systems Integration section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

  5. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 4.0 Systems Analysis

    Broader source: Energy.gov [DOE]

    Systems Analysis section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

  6. Earned Value Management System (EVMS) for use with DOE O 413.3B

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-29T23:59:59.000Z

    DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, (the Order) was revised November 29, 2010. As a result, the companion 413.3 Series Guides must be revised to align with the requirements delineated in the Order.

  7. In-Vivo Storage System Development Noah Watkins1

    E-Print Network [OSTI]

    Maltzahn, Carlos

    In-Vivo Storage System Development Noah Watkins1 , Carlos Maltzahn1 , Scott Brandt1 , Ian Pye3 developers to consider non- standard storage system interfaces. In contrast to the practice of virtually always designing for file-like byte-stream interfaces, co-designed domain- specific storage system

  8. Integrating Photovoltaic Systems into Low-Income Housing Developments

    E-Print Network [OSTI]

    Integrating Photovoltaic Systems into Low-Income Housing Developments: A Case Study on the Creation Integrating Photovoltaic Systems into Low-Income Housing Developments: A Case Study on the Creation of a New with integrating photovoltaic (PV) systems into existing financing models and the added cost to the new

  9. Disposal Systems Evaluations and Tool Development - Engineered...

    Broader source: Energy.gov (indexed) [DOE]

    engineered barrier system (EBS) plays a key role in the long-term isolation of nuclear waste in geological repository environments. This report focuses on the progress made in the...

  10. Program plan for research and development of HVDC power systems and components

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    The Division of Electric Energy Systems (EES) of the US Department of Energy (DOE) has formulated a program for research and development (R and D) of high-voltage direct-current (HVDC) power transmission and delivery systems and associated dc components. The program includes analysis of future utility system applications, development of new HVDC control and protection concepts, and advanced dc component research. The structure of this program will provide an appropriate balance between mid- and long-term options for the enhancement of HVDC power transmission and delivery for future electric power systems. This HVDC research program is intended to further develop and improve an important energy transport technology, one that will offer many opportunities to reduce future energy costs. The economics and operating constraints in alternating-current (ac) solutions strongly indicate that new HVDC technology options will be advantageous and will provide an enhanced ability to use generation and transmission system resources efficiently and economically in existing electric energy systems. Studies show that further development of this technology will lead to significant integration of new HVDC techniques into existing electric energy systems with appreciable economic and technical benefit. The R and D proposed in this HVDC Program Plan will be of substantial value to future electric power systems.

  11. Energy storage benefits and market analysis handbook : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Corey, Garth P.; Iannucci, Joseph J., Jr. (Distributed Utility Associates, Livermore, CA)

    2004-12-01T23:59:59.000Z

    This Guide describes a high level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric utility-related applications. In the United States use of electricity storage to support and optimize transmission and distribution (T&D) services has been limited due to high storage system cost and by limited experience with storage system design and operation. Recent improvement of energy storage and power electronics technologies, coupled with changes in the electricity marketplace, indicate an era of expanding opportunity for electricity storage as a cost-effective electric resource. Some recent developments (in no particular order) that drive the opportunity include: (1) states adoption of the renewables portfolio standard (RPS), which may increased use of renewable generation with intermittent output, (2) financial risk leading to limited investment in new transmission capacity, coupled with increasing congestion on some transmission lines, (3) regional peaking generation capacity constraints, and (4) increasing emphasis on locational marginal pricing (LMP).

  12. Standardization of information systems development processes and banking industry adaptations

    E-Print Network [OSTI]

    Tanrikulu, Zuhal

    2011-01-01T23:59:59.000Z

    This paper examines the current system development processes of three major Turkish banks in terms of compliance to internationally accepted system development and software engineering standards to determine the common process problems of banks. After an in-depth investigation into system development and software engineering standards, related process-based standards were selected. Questions were then prepared covering the whole system development process by applying the classical Waterfall life cycle model. Each question is made up of guidance and suggestions from the international system development standards. To collect data, people from the information technology departments of three major banks in Turkey were interviewed. Results have been aggregated by examining the current process status of the three banks together. Problematic issues were identified using the international system development standards.

  13. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-15T23:59:59.000Z

    Effective immediately, DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11-1-99, and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99, are extended until 9-30-06, unless sooner rescinded.

  14. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-02-24T23:59:59.000Z

    This Notice extends the following directives until 2/16/04: DOE N 205.2, Foreign National Access to DOE Cyber Systems, and DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99-7/1/00.

  15. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-12T23:59:59.000Z

    The following directives are extended until 8-12-04. DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11/1/99. DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99.

  16. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-12T23:59:59.000Z

    The following directives are extended until 8-12-05: DOE N 205.2, Foreign National Access to DOE Cyber Security Systems, dated 11-1-99 and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99. No cancellations.

  17. Development of a CAN Based Electric Vehicle Control System

    E-Print Network [OSTI]

    Vincent, Stephen Andrew

    2014-08-31T23:59:59.000Z

    Abstract The Intelligent Systems and Automation Lab (ISAL) at the University of Kansas has been working on developing new electric vehicle drivetrain and battery technology using an electric bus as a development platform. In its preexisting state...

  18. DEVELOPMENT OFA WIRELESS ACTIVE SYSTEM FOR TPS STRUCTURAL HEALTH MONITORING

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    TPS damage. Several essential aspects are being studied: (a) development of high temperature aspects are being studied: (a) development of high temperature piezoelectric wafer active sensor (HTDEVELOPMENT OFA WIRELESS ACTIVE SYSTEM FOR TPS STRUCTURAL HEALTH MONITORING Victor Giurgiutiu1

  19. DOE Standard: Fire protection design criteria

    SciTech Connect (OSTI)

    Not Available

    1999-07-01T23:59:59.000Z

    The development of this Standard reflects the fact that national consensus standards and other design criteria do not comprehensively or, in some cases, adequately address fire protection issues at DOE facilities. This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, National Fire Protection Association (NFPA) Codes and Standards, and any other applicable DOE construction criteria. This Standard replaces certain mandatory fire protection requirements that were formerly in DOE 5480.7A, ``Fire Protection``, and DOE 6430.1A, ``General Design Criteria``. It also contains the fire protection guidelines from two (now canceled) draft standards: ``Glove Box Fire Protection`` and ``Filter Plenum Fire Protection``. (Note: This Standard does not supersede the requirements of DOE 5480.7A and DOE 6430.1A where these DOE Orders are currently applicable under existing contracts.) This Standard, along with the criteria delineated in Section 3, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

  20. Development of By-Pass Blending Station System

    E-Print Network [OSTI]

    Liu, M.; Barnes, D.; Bunz, K.; Rosenberry, N.

    2003-01-01T23:59:59.000Z

    A new building blending station system named by-pass blending station (BBS) has been developed to reduce building pump energy consumption in both district heating and cooling systems. Theoretical investigation demonstrated that the BBS can...

  1. Understanding energy technology developments from an innovation system perspective

    E-Print Network [OSTI]

    Understanding energy technology developments from an innovation system perspective Mads Borup1. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark for discussing the framework conditions for transition to sustainable energy technologies and strengths

  2. Development of SCR on Diesel Particulate Filter System for Heavy...

    Broader source: Energy.gov (indexed) [DOE]

    172012 Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications Mojghan Naseri, Daniel Kucheruck, Hai-Ying Chen , Sougato Chatterjee DEER Conference 2012...

  3. Advanced Boost System Development for Diesel HCCI/LTC Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace037sun2011o.pdf More Documents & Publications Advanced Boost System Development for Diesel...

  4. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) ace22lee.pdf More Documents & Publications...

  5. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

  6. The Brief History and Future Development of Earth System Models...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brief History and Future Development of Earth System Models: Resolution and Complexity Warren M. Washington National Center for Atmospheric Research NERSC Lecture Series at...

  7. Advanced Boost System Development for Diesel HCCI/LTC Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace037sun2012o.pdf More Documents & Publications Advanced Boost System Development for Diesel...

  8. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-03-29T23:59:59.000Z

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

  9. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    SciTech Connect (OSTI)

    Not Available

    1980-02-01T23:59:59.000Z

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  10. Manufacturing Research & Development for Systems that will

    E-Print Network [OSTI]

    focused on manufacturability issues such as low-cost, high-volume manufacturing systems, advanced to move the United States toward a future hydrogen economy. While many scientific, technical's laboratory-scale fabrication technologies to high-volume commercial manufacturing has been identified as one

  11. Quality Assurance Management System Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-17T23:59:59.000Z

    This Guide provides information on principles and practices used to establish and implement an effective quality assurance program or quality management system in accordance with the requirements of 10 CFR 830. Cancels DOE G 414.1-2. Canceled by DOE G 414.1-2B.

  12. Service Systems Engineering: New Course Development -Service Systems Operations Dana M. Johnson(1)

    E-Print Network [OSTI]

    Onder, Nilufer

    008-0523 Service Systems Engineering: New Course Development - Service Systems Operations Dana M La Jolla, California, U.S.A. May 9 to May 12, 2008 #12;Service Systems Engineering: New Course Development - Service Systems Operations Abstract A new curriculum in Service Systems Engineering, which

  13. Help for the Developers of Control System Cyber Security Standards

    SciTech Connect (OSTI)

    Robert P. Evans

    2008-05-01T23:59:59.000Z

    A Catalog of Control Systems Security: Recommendations for Standards Developers (Catalog), aimed at assisting organizations to facilitate the development and implementation of control system cyber security standards, has been developed. This catalog contains requirements that can help protect control systems from cyber attacks and can be applied to the Critical Infrastructures and Key Resources of the United States and other nations. The requirements contained in the catalog are a compilation of practices or various industry bodies used to increase the security of control systems from both physical and cyber attacks. They should be viewed as a collection of recommendations to be considered and judiciously employed, as appropriate, when reviewing and developing cyber security standards for control systems. The recommendations in the Catalog are intended to be broad enough to provide any industry using control systems the flexibility needed to develop sound cyber security standards specific to their individual security requirements.

  14. Development and validation of standard classroom observation systems for school practitioners: Ecobehavioral Assessment Systems Software (EBASS)

    E-Print Network [OSTI]

    Greenwood, Charles R.; Carta, Judith J.; Kamps, Debra; Terry, Barbara; Delquadri, Joseph

    1994-01-01T23:59:59.000Z

    The development and validation of Ecobehavioral Assessment Systems Software (EBASS), a computer-assisted observational system for school practitioners, are described. Portable computers, used to support observational ...

  15. Notice of Intent to Develop DOE G 415.1-1, Information Technology Project Execution Model Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-03-06T23:59:59.000Z

    The proposed guide will support consistent and effective implementation of DOE O 415.1 and will assist IT Program and Project Managers in effectively managing and applying sound project management to IT projects subject to that order.

  16. Industrial advanced turbine systems: Development and demonstration. Quarterly report, October 1--December 31, 1997

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    The US DOE has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development; Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. Forecasts call for completion of the program within budget as originally estimated. Scheduled completion is forecasted to be approximately 3 years late to original plan. This delay has been intentionally planned in order to better match program tasks to the anticipated availability of DOE funds. To ensure the timely realization of DOE/Solar program goals, the development schedule for the smaller system (Mercury 50) and enabling technologies has been maintained, and commissioning of the field test unit is scheduled for May of 2000. As of the end of the reporting period work on the program is 24.7% complete (22.8% last quarter). Work on the Mercury 50 development and ATS technology development portions of the program (WBS 10000 et seq) is 41.6% complete. Although a great amount of work occurred in the quarter, a significant amount of this work entailed the revision and rerelease of several Mercury 50 drawings. Estimates of percent compete are based upon milestones completed. In order to maintain objectivity in assessing schedule progress, Solar uses a 0/100 percent complete assumption for milestones rather than subjectively estimating progress toward completion of milestones. Cost and schedule variation information is provided in Section 4.0 Program Management.

  17. The mechanical control of nervous system development

    E-Print Network [OSTI]

    Franze, Kristian

    2013-08-16T23:59:59.000Z

    ., Walsh, C. A. and Sheen, V. L. (2007) 'Insights into the gyrification of developing ferret brain by magnetic resonance imaging', J Anat 210(1): 66-77. Nordahl, C. W., Dierker, D., Mostafavi, I., Schumann, C. M., Rivera, S. M., Amaral, D. G. and Van... forces can be measured using Förster resonance energy transfer (FRET)-based force sensors (Grashoff et al., 2010). Here, a short elastic domain is inserted between two fluorophores that undergo FRET; this tension sensor module is inserted into vinculin...

  18. Development of Enhanced Geothermal Systems Technologies Workshops |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle Batteryof Energy Developing a NewDepartment of

  19. Modernizing systems engineering : cognitive systems and model-based approaches for spacecraft architecture development

    E-Print Network [OSTI]

    Karlow, Brandon (Brandon James)

    2014-01-01T23:59:59.000Z

    Systems engineering exists as a discipline to enable organizations to control and manage the development of complex hardware and software. These methods are particularly essential in the development of space systems, which ...

  20. DOE GovTrip PIA, Office of Corporate Information Systems | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G 242.1-1

  1. DOE GC Joins Customs Service Trade Data System to Strengthen Enforcement

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the2.4 (09-13)Lynchburg, VA.

  2. DOE-STD-1161-2003; Mechanical Systems Functional Area Qualification Standard

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-9395-954March59-2003 January

  3. Abstract Tracking System | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960RealStephanieUseful WorkshopsU.S. DOE224ARMArchives

  4. Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development

    E-Print Network [OSTI]

    Angenent, Lars T.

    Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Transitions: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st the Marcellus shale In addition to the specific questions identified for the case of Marcellus shale gas in New

  5. Supplement analysis for a container system for the management of DOE spent nuclear fuel located at the INEEL

    SciTech Connect (OSTI)

    NONE

    1999-03-12T23:59:59.000Z

    The Council on Environmental Quality (CEQ) regulations for implementing the NEPA, 40 CFR 1502.9 (c), directs federal agencies to prepare a supplement to an environmental impact statement when an agency makes substantial changes in the Proposed Action that are relevant to environmental concerns, or there are significant new circumstances or information relevant to environmental concerns and bearing on the Proposed Action or impacts. When it is unclear whether a supplemental environmental impact statement is required, DOE regulations (10 CFR 1021.314) direct the preparation of a supplement analysis to assist in making that determination. This supplement analysis evaluates the impacts of employing dual-purpose canisters (DPCs) to prepare DOE SNF located at the INEEL for interim onsite storage and transport outside the State of Idaho. Impacts associated with DPC manufacturing, loading and storage of DOE-ID SNF into DPCs, transport of loaded DPCs outside Idaho, and the cumulative impacts are compared with the impacts previously analyzed in the SNF and INEL EIS and the Navy Container System EIS. This SA provides information to determine whether: (1) an existing EIS should be supplemented; (2) a new EIS should be prepared; or (3) no further NEPA documentation is required.

  6. Wyoming DOE EPSCoR

    SciTech Connect (OSTI)

    Gern, W.A.

    2004-01-15T23:59:59.000Z

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  7. Volatilization of Fission Products from Metallic Melts in the Melt-Dilute Treatment Technology Development for Al-Based DOE Spent Nuclear Fuels

    SciTech Connect (OSTI)

    Adams, T.

    1999-11-18T23:59:59.000Z

    The melt-dilute treatment technology is being developed to facilitate the ultimate disposition of highly enriched Al-Base DOE spent nuclear fuels in a geologic repository such as that proposed for Yucca Mountain. Currently, approximately 28 MTHM is expected to be returned to the Savannah River Site from domestic and foreign research reactors. The melt-dilute treatment technology will melt the fuel assemblies to reduce their volume and alloys them with depleted uranium to isotopically dilute the 235U concentration. The resulting alloy is cast into a form for long term geologic repository storage. Benefits accrued from the melt-dilute process include the potential for significant volume reduction; reduced criticality potential, and proliferation concerns. A critical technology element in the development of the melt-dilute process is the development of offgas system requirements. The volatilization of radioactive species during the melting stage of the process primarily constitutes the offgas in this process. Several of the species present following irradiation of a fuel assembly have been shown to be volatile or semi-volatile under reactor core melt-down conditions. Some of the key species that have previously been studied are krypton, iodine, and cesium. All of these species have been shown to volatilize during melting experiments however, the degree to which they are released is highly dependent upon atmosphere, fuel burnup, temperature, and fuel composition. With this in mind an analytical and experimental program has been undertaken to assess the volatility and capture of species under the melt-dilute operating conditions.

  8. Masters Thesis- Criticality Alarm System Design Guide with Accompanying Alarm System Development for the Radioisotope Production Laboratory in Richland, Washington

    SciTech Connect (OSTI)

    Greenfield, Bryce A.

    2009-12-20T23:59:59.000Z

    A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (DOE) hazard class 1 and 2 facilities. Regulatory and technical requirements were both addressed. A list of design tasks and technical subtasks are thoroughly analyzed to provide concise direction for how to complete the analysis. An example of the application of the design methodology, the Criticality Alarm System developed for the Radioisotope Production Laboratory (RPL) of Richland, Washington is also included. The analysis for RPL utilizes the Monte Carlo code MCNP5 for establishing detector coverage in the facility. Significant improvements to the existing CAS were made that increase the reliability, transparency, and coverage of the system.

  9. Ethical principles and guidelines for the development of cognitive systems.

    SciTech Connect (OSTI)

    Shaneyfelt, Wendy

    2006-05-01T23:59:59.000Z

    As cognitive systems technologies emerge, so too do the ethical issues surrounding their development and use. To develop cognitive systems technologies responsibly, Sandia National Laboratories is establishing a framework to proactively address both real and potential ethical issues. This report contains the principles and guidelines developers can use to guide them as they are confronted with ethical issues related to developing cognitive systems technologies as they apply to U.S. national security. A process to apply these principles offers a practical way to transfer these principles from paper to a working strategy. Case studies are presented to reflect upon potential scenarios and to consider resolution strategies.

  10. Solar Water Splitting: Photocatalyst Materials Discovery and Systems Development

    SciTech Connect (OSTI)

    McNulty, Thomas F.

    2008-05-02T23:59:59.000Z

    Hydrogen promises to be an attractive transportation fuel in the post-fossil fuel era. Relatively abundant and clean burning (water being the principal byproduct), hydrogen offers the potential to significantly reduce greenhouse gas emissions. However, there are significant technical barriers that require solutions before hydrogen can be implemented in large scale. These are: · Sources (e.g. hydrocarbon, water) · Transportation · Storage Each of the aforementioned barriers carries with it important considerations. First, would a hydrocarbon-based hydrogen source be of any benefit compared to conventional fossil fuels? Second, will a system based on centralized generation and distribution be viable? Finally, methods of on-board storage, whether they are liquefaction, adsorption, or intercalation, are far from optimized. The scope of this program is limited to hydrogen generation, specifically generation using solarinitiated water electrolysis. Though concept of making hydrogen using water and sunlight may sound somewhat far-fetched, in reality the concept is very real. Since the discovery of solar-generated hydrogen, termed photoelectrochemical hydrogen, nearly 30 years ago by Fujishima and Honda, significant advances in both fundamental understanding and technological capability have been made. Using solar radiation to generate hydrogen in a fashion akin to using solar to generate electricity offers many advantages. First, hydrogen can be generated at the point of use, reducing the importance of transportation. Second, using water as the hydrogen source eliminates greenhouse gas evolution and the consequences that come with it. Finally, because the process uses very little electricity (pumps and compressors predominantly), the quantity of chemical fuel produced far exceeds the amount of electricity consumed. Consequently, there is some level of truth to the notion that photoelectrochemically-derived hydrogen offers the potential to nearly eliminate greenhouse gas emissions from the transportation landscape. This report focuses primarily on the technical issues inherent to developing an economically viable photoelectrochemical hydrogen system. This involves research intended to address technology gaps as well as research to address commercial feasibility. Though a firm cost target is not identified explicitly, much of the economics are presented in terms of “dollars per gallon of gasoline equivalent” ($/gge). Obviously this is a moving target, but it is important to understand cost in terms of current gasoline pricing, since the intended target is gasoline replacement. However, this does put the cost contribution into a perspective that at least allows for a reasonable assessment of technological viability. It also allows for the identification of need areas beyond the obvious technology gaps.

  11. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    SciTech Connect (OSTI)

    Adam Schaut

    2011-12-30T23:59:59.000Z

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system concept development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity was deemed the most important attribute to successfully validate Alcoa's advanced trough archi

  12. DOE/DHS INDUSTRIAL CONTROL SYSTEM CYBER SECURITY PROGRAMS: A MODEL FOR USE IN NUCLEAR FACILITY SAFEGUARDS AND SECURITY

    SciTech Connect (OSTI)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

    2011-07-01T23:59:59.000Z

    Many critical infrastructure sectors have been investigating cyber security issues for several years especially with the help of two primary government programs. The U.S. Department of Energy (DOE) National SCADA Test Bed and the U.S. Department of Homeland Security (DHS) Control Systems Security Program have both implemented activities aimed at securing the industrial control systems that operate the North American electric grid along with several other critical infrastructure sectors (ICS). These programs have spent the last seven years working with industry including asset owners, educational institutions, standards and regulating bodies, and control system vendors. The programs common mission is to provide outreach, identification of cyber vulnerabilities to ICS and mitigation strategies to enhance security postures. The success of these programs indicates that a similar approach can be successfully translated into other sectors including nuclear operations, safeguards, and security. The industry regulating bodies have included cyber security requirements and in some cases, have incorporated sets of standards with penalties for non-compliance such as the North American Electric Reliability Corporation Critical Infrastructure Protection standards. These DOE and DHS programs that address security improvements by both suppliers and end users provide an excellent model for nuclear facility personnel concerned with safeguards and security cyber vulnerabilities and countermeasures. It is not a stretch to imagine complete surreptitious collapse of protection against the removal of nuclear material or even initiation of a criticality event as witnessed at Three Mile Island or Chernobyl in a nuclear ICS inadequately protected against the cyber threat.

  13. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Broader source: Energy.gov (indexed) [DOE]

    May 20, 2009 DOE Annual Merit Review & Peer Evaluation Meeting PI: Kyeong Lee (Postdoc: Seung Yang) Argonne National Laboratory DOE Project Managers: Kenneth Howden & Gurpreet...

  14. Development of a focused ion beam micromachining system

    SciTech Connect (OSTI)

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01T23:59:59.000Z

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  15. Embedded Automotive System Development Process Steer-By-Wire System

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -In-the-Loop (HIL) Testing The Integral methods include: 1. Source Control Interface 2. Requirements Management, models are made and used to specify system data, interfaces, feedback control logic, discrete/state logic&V) Integral (Software Configuration Management, Requirements Traceability and Documentation) Methods & Tools

  16. Membrane separation systems---A research and development needs assessment

    SciTech Connect (OSTI)

    Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-04-01T23:59:59.000Z

    Industrial separation processes consume a significant portion of the energy used in the United States. A 1986 survey by the Office of Industrial Programs estimated that about 4.2 quads of energy are expended annually on distillation, drying and evaporation operations. This survey also concluded that over 0.8 quads of energy could be saved in the chemical, petroleum and food industries alone if these industries adopted membrane separation systems more widely. Membrane separation systems offer significant advantages over existing separation processes. In addition to consuming less energy than conventional processes, membrane systems are compact and modular, enabling easy retrofit to existing industrial processes. The present study was commissioned by the Department of Energy, Office of Program Analysis, to identify and prioritize membrane research needs in light of DOE's mission. Each report will be individually cataloged.

  17. Development status of the heatpipe power and bimodal systems

    SciTech Connect (OSTI)

    Poston, David I.; Houts, Michael G. [Nuclear Systems Design and Analysis Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] Emrich, William J., Jr. [NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35738 (United States)

    1999-01-01T23:59:59.000Z

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too much at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power ({gt}1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999. {copyright} {ital 1999 American Institute of Physics.}

  18. Development status of the heatpipe power and bimodal systems

    SciTech Connect (OSTI)

    Poston, David I.; Houts, Michael G. [Nuclear Systems Design and Analysis Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Emrich, William J. Jr. [NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35738 (United States)

    1999-01-22T23:59:59.000Z

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too much at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power (>1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999.

  19. Implementation of an Integrated Information Management System for the US DOE Hanford Tank Farms Project

    SciTech Connect (OSTI)

    Joyner, William Scott [Washington River Protection Systems, Richland, WA (United States); Knight, Mark A. [Washington River Protection Systems, Richland, WA (United States)

    2013-11-14T23:59:59.000Z

    In its role as the Tank Operations Contractor at the U.S. Department of Energy's site in Hanford, WA, Washington River Protection Solutions, LLC is implementing an integrated document control and configuration management system. This system will combine equipment data with technical document data that currently resides in separate disconnected databases. The new system will provide integrated information, enabling users to more readily identify the documents that relate to a structure, system, or component and vice-versa. Additionally, the new system will automate engineering work processes through electronic workflows, and where practical and feasible provide integration with design authoring tools. Implementation of this system will improve configuration management of the technical baseline, increase work process efficiencies, support the efficient design of future large projects, and provide a platform for the efficient future turnover of technical baseline data and information.

  20. Systems Integration | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration Systems Integration Through the SunShot Initiative, the U.S. Department of Energy (DOE) supports the development of innovative, cost-effective solutions that...

  1. Development of a graphical user interface and graphics display for the WIND system

    SciTech Connect (OSTI)

    O`Steen, B.L.; Fast, J.D.; Suire, B.S.

    1992-12-31T23:59:59.000Z

    An advanced graphical user interface (GUI) and improved graphics for transport calculations have been developed for the Weather Information and Display System (WINDS). Two WINDS transport codes, Area Evac and 2DPUF, have been ported from their original VAX/VMS environment to a UNIX operating system and reconfigured to take advantage of the new graphics capability. A developmental prototype of this software is now available on a UNIX based IBM 340 workstation in the Dose Assessment Center (DAC). Automatic transfer of meteorological data from the WINDS VAX computers to the IBM workstation in the DAC has been implemented. This includes both regional National Weather Service (NWS) data and SRS tower data. The above developments fulfill a FY 1993 DOE milestone.

  2. Development of a graphical user interface and graphics display for the WIND system

    SciTech Connect (OSTI)

    O'Steen, B.L.; Fast, J.D.; Suire, B.S.

    1992-01-01T23:59:59.000Z

    An advanced graphical user interface (GUI) and improved graphics for transport calculations have been developed for the Weather Information and Display System (WINDS). Two WINDS transport codes, Area Evac and 2DPUF, have been ported from their original VAX/VMS environment to a UNIX operating system and reconfigured to take advantage of the new graphics capability. A developmental prototype of this software is now available on a UNIX based IBM 340 workstation in the Dose Assessment Center (DAC). Automatic transfer of meteorological data from the WINDS VAX computers to the IBM workstation in the DAC has been implemented. This includes both regional National Weather Service (NWS) data and SRS tower data. The above developments fulfill a FY 1993 DOE milestone.

  3. Advanced turbine systems program conceptual design and product development. Annual report, August 1993--July 1994

    SciTech Connect (OSTI)

    NONE

    1994-11-01T23:59:59.000Z

    This Yearly Technical Progress Report covers the period August 3, 1993 through July 31, 1994 for Phase 2 of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE Contract No. DE-AC421-93MC30246. As allowed by the Contract (Part 3, Section J, Attachment B) this report is also intended to fulfill the requirements for a fourth quarterly report. The objective of Phase 2 of the ATS Program is to provide the conceptual design and product development plan for an ultra-high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized in the year 2000. During the period covered by this report, Solar has completed three of eight program tasks and has submitted topical reports. These three tasks included a Project Plan submission of information required by NEPA, and the selection of a Gas-Fueled Advanced Turbine System (GFATS). In the latest of the three tasks, Solar`s Engineering team identified an intercooled and recuperated (ICR) gas turbine as the eventual outcome of DOE`s ATS program coupled with Solar`s internal New Product Introduction (NPI) program. This machine, designated ``ATS50`` will operate at a thermal efficiency (turbine shaft power/fuel LHV) of 50 percent, will emit less than 10 parts per million of NOx and will reduce the cost of electricity by 10 percent. It will also demonstrate levels of reliability, availability, maintainability, and durability (RAMD) equal to or better than those of today`s gas turbine systems. Current activity is concentrated in three of the remaining five tasks a Market Study, GFATS System Definition and Analysis, and the Design and Test of Critical Components.

  4. US DOE Office of Technology Innovation and Development - Integration of the EM R and D Program in 2012 and Beyond - 12537

    SciTech Connect (OSTI)

    Collazo, Yvette T.; DeLeon, Gary; Schneider, Steve; Gerdes, Kurt; Szilagyi, Andy [Office of Technology Innovation and Development, U.S. DOE, Washington, DC 20585 (United States); Wellman, Dawn; Bredt, Paul [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Pierce, Eric [Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 (United States); Marra, Jim [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

    2012-07-01T23:59:59.000Z

    Applied research and technology development has the potential to accelerate environmental cleanup and reduce the cost for cleanup and closure of U.S. Department of Energy (DOE) legacy waste sites throughout the United States. Providing the scientific understanding, knowledge, and technologies to enable successful completion of the DOE Office of Environmental Management (EM) mission, the Technology Innovation and Development program is transforming science and innovation into practical solutions for environmental cleanup. Through integration, collaboration, and communication with DOE partner organization, DOE site managers and contractors, these technologies will reduce human health and environmental risk, cost, and time associated with cleanup and closure. The Office of Technology Innovation and Development (OTID) focused efforts in fiscal year 2011 (FY 2011) to a proactive, visionary program balance with integrated, cross-disciplinary applied research and technology development activities. This transition provides the necessary scientific and technical advancements to address near-term needs. In addition, it fills the critical role in providing scientific approaches and advanced technologies that look beyond today's known needs and requirements to provide innovative technologies to make the necessary long-term changes required to facilitate cleanup and bring sites to closure. The outcomes and impacts of this strategy are summarized in the Impact Plan, which describes potential reduction in life-cycle costs through the development and deployment of advanced technologies supporting EM needs associated with waste processing, groundwater and soil remediation, deactivation and decommissioning, and spent nuclear fuel and materials disposition. Additionally, the OTID International Program Strategic Plan 2010-2015 outlines cooperation and collaboration with the international community that has similar nuclear legacy management experience and expertise to foster transfer of best science practices being used in the field. (authors)

  5. TECHNOLOGY NEEDS AND STATUS ON CLOSURE OF DOE RADIOACTIVE WASTE TANK ANCILLARY SYSTEMS

    SciTech Connect (OSTI)

    Burns, H; Sharon Marra, S; Christine Langton, C

    2009-01-21T23:59:59.000Z

    This paper summarizes the current state of art of sampling, characterizing, retrieving, transferring and treating the incidental waste and stabilizing the void space in tank ancillary systems and the needs involved with closure of these systems. The overall effort for closing tank and ancillary systems is very large and is in the initial stages of being addressed in a systematic manner. It was recognized in doing this effort, that gaps in both technology and material application for characterization and removal of residual waste and closure of ancillary systems would be identified. Great efficiencies are to be gained by defining the technology need areas early in the closure process and providing recommendations for technical programs to improve the closure strategies. Therefore, this paper will not only summarize the state of closure of ancillary systems but also provide recommendations to address the technology gaps identified in this assessment.

  6. Mikro Systems Develops Unique Ceramic Core Casting Technology | U.S. DOE

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman Resources HumanOffice of Science (SC)Office of

  7. Development of a composite repair system for reinforcing offshore risers

    E-Print Network [OSTI]

    Alexander, Christopher Richard

    2009-05-15T23:59:59.000Z

    A research program was conducted to investigate the application of composite materials in repairing corroded offshore risers, leading to the development of an optimized repair using a hybrid carbon/E-glass system. The objective of this research...

  8. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov (indexed) [DOE]

    Technology Development and Field Trials of EGS Drilling Systems David W. Raymond, PI Steven D. Knudsen, Co-PI Sandia National Laboratories ARRA Funded R&D April 22-25, 2013 This...

  9. Lean Gasoline System Development for Fuel Efficient Small Car...

    Broader source: Energy.gov (indexed) [DOE]

    Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

  10. Thermal and mechanical development of the East African Rift System

    E-Print Network [OSTI]

    Ebinger, Cynthia Joan

    1988-01-01T23:59:59.000Z

    The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, ...

  11. Development of a robot localization and environment mapping system

    E-Print Network [OSTI]

    Panas, Cynthia Dawn Walker

    2012-01-01T23:59:59.000Z

    The intent of this research is to develop a robust, efficient, self-contained localization module for use in a robotic liquefied petroleum gas (LPG) tank inspection system. Inspecting large LPG tanks for defects is difficult, ...

  12. Advanced boost system development for diesel HCCI/LTC applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ace36sun.pdf More Documents & Publications Advanced boost system development for diesel HCCILTC...

  13. ORGANIZATIONAL, INTERFACE AND FINANCIAL BARRIERS TO THE COMMERCIAL DEVELOPMENT OF COMMUNITY ENERGY SYSTEMS

    E-Print Network [OSTI]

    Schladale, R.

    2010-01-01T23:59:59.000Z

    important until photovoltaic system costs fall dramatically,The D.O.E. goal for photovoltaic cell cost is $0.50 per peakto dominate the cost of photovoltaic systems if largescale

  14. Development of Design and Simulation Tool for Hybrid Geothermal Heat Pump System

    Broader source: Energy.gov [DOE]

    This project will expand Expand eQUEST, a building energy analysis software with latest implementation of DOE-2, for simulations of HGSHP systems and improve its existing simulation capabilities for ordinary GSHP systems.

  15. Real lessons for venture capitalists in multimodal logistics systems : where does profitability come from?

    E-Print Network [OSTI]

    Veniamis, Nikolas Th

    2006-01-01T23:59:59.000Z

    In this thesis we review three case studies in multimodal logistics and transportation systems and analyze the reasons that lead to failure or success. We present the business idea and model of each case study and study ...

  16. Building Thermal Envelope Systems and Materials (BTESM) progress report for DOE Office of Buildings Energy Research

    SciTech Connect (OSTI)

    Burn, G. (comp.)

    1990-01-01T23:59:59.000Z

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

  17. Advanced Turbine Systems Program: Conceptual design and product development

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    Objective is to provide the conceptual design and product development plant for an ultra high efficiency, environmentally superior, and cost competitive industrial gas turbine system to be commercialized by the year 2000 (secondary objective is to begin early development of technologies critical to the success of ATS). This report addresses the remaining 7 of the 9 subtasks in Task 8, Design and Test of Critical Components: catalytic combustion, recuperator, high- temperature turbine disc, advanced control system, and ceramic materials.

  18. Topping combustor application to the Wilsonville Advanced Power Systems Development Facility

    SciTech Connect (OSTI)

    Domeracki, W.F. [Westinghouse Electric Corp., Orlando, FL (United States); Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Crumm, C.J. [Foster Wheeler USA Corp., Clinton, NJ (United States); Morton, F.C. [Southern Co. Services, Wilsonville, AL (United States)

    1997-12-31T23:59:59.000Z

    The Advanced Power Systems Development Facility (PSDF) located at Wilsonville Alabama is a Department of Energy (DOE) and Industry cost-shared facility which will be operated by Southern Company Services. This facility is designed to provide long-term hot gas cleanup and process testing for an Advanced Pressurized Fluidized Bed Combustion (PFBC) and Gasification System. It incorporates carbonization with a circulating fluidized bed and topping combustion system. The plant will produce 4 MW of electricity. It is being designed by Foster Wheeler and is scheduled to commence operation in 1998. As in any new technology or project there is usually a number of critical components whose successful development form the foundation for the overall success of the concept. In the development of advanced (PFBC) power generation plants, one of those critical components is the topping combustion system. This paper presents the criteria for the Westinghouse developed Topping Combustor that will fire a coal derived high temperature, ammonia-rich syngas into a high temperature vitiated air stream to drive an Allison Model 501-KM gas turbine.

  19. Notice of Intent to Develop DOE G 430.1-8, Asset Revitalization Initiative Guide for Sustainable Asset Management and Reuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    U.S. Department of Energy (DOE) Order 430.1B, Real Property Asset Management, calls for the agency to "establish a corporate, holistic, and performance-based approach to real property life-cycle asset management." It discusses requirements to properly plan, acquire, maintain, recapitalize, and dispose of assets, while recognizing the importance of stakeholder involvement, privatization, cultural and natural preservation, and local economic development.

  20. Notice of Intent to Develop DOE G 430.1-8, Asset Revitalization Initiative Guide for Sustainable Asset Management and Reuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-02-19T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 430.1B, Real Property Asset Management, calls for the agency to "establish a corporate, holistic, and performance-based approach to real property life-cycle asset management." It discusses requirements to properly plan, acquire, maintain, recapitalize, and dispose of assets, while recognizing the importance of stakeholder involvement, privatization, cultural and natural preservation, and local economic development.

  1. DOE Ofice of Civilian Radioactive Waste Management Systems studies plan, fiscal years 1991 and 1992. [Appendix lists system studies with respective abstracts

    SciTech Connect (OSTI)

    Wood, T W; Haffner, D R; Fletcher, J F

    1991-08-01T23:59:59.000Z

    The Systems Engineering Management Plan for the DOE Office of Civilian Radioactive Waste Management, which defines the systems engineering process for the Federal Radioactive Waste System (FWMS), requires that systems studies to support the integration, evaluation, and optimization of the system be identified. These studies are generally directed toward further defining system or system-element functional requirements, including interface requirements, evaluating alternative system configurations or operational rules, or optimizing design features to achieve system integration. Because the decisions based on these studies are conducted within the overall configuration management process, a consistent and documented framework for the identification and conduct of systems studies must be available. A planned approach is needed so that results from defensible and referenceable systems analyses are available to make informed decisions in a timely manner. This Plan covers top level'' studies (i.e., those involving system requirements generally and the definition of requirements for system elements). This Plan is focused on the FY 1991 and 1992 period, and will be updated periodically as required to ensure its currency. Proposed systems studies for FY 1991 and 1992, their recommended timing, and their relations to one another, current studies, and major program milestones are identified. In general, only those studies supporting monitored retrievable storage (MRS) design requirements are recommended for immediate initiation. The studies are grouped into five major decision groups to allow scheduling to support specific decision windows. The proposed system studies schedule is generally a conservative one, with studies occurring early in or before the associated decision window. These proposed studies are described in this Plan. 16 refs., 6 figs., 2 tabs.

  2. JOINT-INDUSTRY PARTNERSHIP TO DEVELOP A HOLLOW SPHERE DUAL-GRADIENT DRILLING SYSTEM

    SciTech Connect (OSTI)

    William C. Maurer; Colin Ruan; Greg Deskins

    2003-05-01T23:59:59.000Z

    Maurer Technology Inc. (MTI) formed a joint-industry partnership to fund the development of a hollow sphere dual-gradient drilling (DGD) system. Phase I consisted of collecting, compiling, analyzing, and distributing information and data regarding a new DGD system for use by the oil and gas industry. Near the end of Phase I, DOE provided funding to the project that was used to conduct a series of critical follow-on tests investigating sphere separation in weighted waterbase and oilbase muds. Drilling costs in deep water are high because seawater pressure on the ocean floor creates a situation where many strings of casing are required due to the relatively close spacing between fracture and pore pressure curves. Approximately $100 million have been spent during the past five years on DGD systems that place pumps on the seafloor to reduce these drilling problems by reducing the annulus fluid pressure at the bottom of the riser. BP estimates that a DGD system can save $9 million per well in the Thunderhorse Field and Conoco estimates it can save $5 to $15 million per well in its deepwater operations. Unfortunately, previous DGD development projects have been unsuccessful due to the high costs ($20 to $50 million) and reliability problems with seafloor pump systems. MTI has been developing a simple DGD system concept that would pump hollow glass spheres into the bottom of the riser to reduce density of the mud in the riser. This eliminates the requirement for seafloor pumps and replaces them with low cost mud pumps, shale shakers, and other oilfield equipment that can be operated on the rig by conventional crews. A $1.8 million Phase I joint-industry project funded by five service companies and three operators showed that hollow spheres could be pumped well, but difficulties were encountered in separating the spheres from a polymer mud supplied by Halliburton due to the high viscosity of this mud at the low shear rates encountered on oilfield shale shaker screens. As a result, an excessive amount of this polymer mud flowed across the screen with the beads instead of through the screen. At the completion of the Phase I project, it was concluded that the hollow sphere system would not work effectively with the polymer mud tested. ExxonMobil and Shell engineers proposed that additional sphere separation tests needed to be conducted with weighted oilfield waterbase and oilbase muds to determine if the DGD system would work with these muds. The DOE agreed to provide a $200,000 grant for these tests. The DOE-funded tests, described in this report, showed that the spheres could be pumped with conventional oilfield centrifugal and triplex mud pumps and separated effectively from both oilfield waterbase and oilbase muds using conventional oilfield shale shakers and hydrocyclones. As a result of the success of these DOE tests, this DGD system is ready for full-scale field testing, first on land wells and later in the offshore environment. Maurer Technology Inc. is currently proposing a Phase II project to oil companies to further develop this DGD concept. This project would be funded by four to eight operators. If Phase II tests are successful, Noble plans to commercialize this system with a service company partner that will market and operate the DGD system on Noble's and other drilling contractors' rigs.

  3. Innovation system dynamics and sustainable development Challenges for policy

    E-Print Network [OSTI]

    Innovation system dynamics and sustainable development ­ Challenges for policy Paper in progress Innovation, Sustainability and Policy Conference, 23-25 May 2004 Kloster Seeon, Germany Dr. Maj Munch, while market development perspectives are neglected. The NIS perspective forwarded in this paper has

  4. The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project

    SciTech Connect (OSTI)

    Hopper, Calvin Mitchell [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.

  5. Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development

    E-Print Network [OSTI]

    Walter, M.Todd

    Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Engineering) W. VA #12;Energy Transitions: A Systems Approach August 2011 version Page 2 Energy Transitions sources globally, some very strong short-term drivers of energy transitions reflect rising concerns over

  6. AUTONOMOUS UNDERSEA SYSTEMS NETWORK (AUSNET) Development Status Update

    E-Print Network [OSTI]

    1 AUTONOMOUS UNDERSEA SYSTEMS NETWORK (AUSNET) Development Status Update Charles Benton and James Kenney Technology Systems, Inc. (TSI), Wiscassett, ME Steven G. Chappell and D.R. Blidberg Autonomous promises to significantly enhance the capabilities of Autonomous Undersea Vehicles (AUVs) as they become

  7. Ongoing Space Nuclear Systems Development in the United States

    SciTech Connect (OSTI)

    S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

    2011-10-01T23:59:59.000Z

    Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

  8. Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30T23:59:59.000Z

    The Department of Energy (DOE) Directives System is the means by which DOE policies, requirements, and responsibilities are developed and communicated throughout the Department. Directives are used to inform, direct, and guide employees in the performance of their jobs, and to enable employees to work effectively within the Department and with agencies, contractors, and the public. Cancels: DOE O 251.1, DOE M 251.1-1

  9. System Design and Experimental Development of the Kalina Cycle Technology

    E-Print Network [OSTI]

    Kalina, A. I.; Leibowitz, H. M.

    SYSTEM DESIGN AND EXPERIMENTAL DEVELOPMENT OF THE KALINA CYCLE TECHNOLOGY A. I. KALINA President AKT Systems, Inc. Hayward, California ABSTRACT For any given heat source, only a portion of the thermal energy may be converted into useful... work. The amount of energy \\~hich may be converted from any form into mechanical energy is referred to as exergy. The ratio of the system's mechanical work to the exergy of the heat source is referred to as exergeti calor thermodynamic efficiency...

  10. DOE/EIS-0251; Supplemental Analysis For a Container System for the Management of DOE Spent Nuclear Fuel Located at the INEEL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix DOE-STD-3009-2014of Energy 6-2013,EA - 0942ID-10636

  11. Resources Improving Pumping System Performance: A Sourcebook for Industry, DOE and Hydraulic

    E-Print Network [OSTI]

    unknown authors

    Consider impeller trimming when any of the following apply: • The head provided by an oversized, throttled pump exceeds process requirements. • System bypass valves are open, indicating excess flow rate. • The pump is operating far from its design point. • The operating head and (or) flow rate are greater than process requirements.

  12. DOE/NNSA Aerial Measuring System (AMS): Flying the 'Real' Thing

    SciTech Connect (OSTI)

    Craig Lyons

    2011-06-24T23:59:59.000Z

    This slide show documents aerial radiation surveys over Japan. Map product is a compilation of daily aerial measuring system missions from the Fukushima Daiichi power plant to 80 km radius. In addition, other flights were conducted over US military bases and the US embassy.

  13. DOE Issues Funding Opportunity for Advanced Computational and Modeling Research for the Electric Power System

    Broader source: Energy.gov [DOE]

    The objective of this Funding Opportunity Announcement (FOA) is to leverage scientific advancements in mathematics and computation for application to power system models and software tools, with the long-term goal of enabling real-time protection and control based on wide-area sensor measurements.

  14. Reading and Reference List Optimized Behavioral Interventions: What Does Control Systems Engineering

    E-Print Network [OSTI]

    Contractor, Anis

    approaches to engineering modeling of weight change interventions: [8] Navarro-Barrientos, J.E., D.E. Rivera available from http://csel.asu.edu/adaptiveintervention (select item 7). [9] Navarro-Barrientos, J.E., D.E. Navarro-Barrientos, D.S. Downs, J.S. Savage, L.M. Collins, "A Dynamical Systems Model for Gestatio

  15. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    SciTech Connect (OSTI)

    Albrecht H. Mayer

    2000-07-15T23:59:59.000Z

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  16. An overview: Component development for solar thermal systems

    SciTech Connect (OSTI)

    Mancini, T.R.

    1994-10-01T23:59:59.000Z

    In this paper, I review the significant issues and the development of solar concentrators and thermal receivers for central-receiver power plants and dish/engine systems. Due to the breadth of the topic area, I have arbitrarily narrowed the content of this paper by choosing not to discuss line-focus (trough) systems and energy storage. I will focus my discussion on the development of heliostats, dishes, and receivers since the 1970s with an emphasis on describing the technologies and their evolution, identifying some key observations and lessons learned, and suggesting what the future in component development may be.

  17. Development of a complex compound chill storage system

    SciTech Connect (OSTI)

    Rockenfelleer, U.; Kirol, L.

    1991-08-01T23:59:59.000Z

    A thermal energy storage system applicable to industrial refrigeration needs at temperatures as low as {minus}28{degree}C has been developed. The system is based on the chemical bonding between a gaseous refrigerant and a solid salt. The system has been tested successfully in the laboratory and a small unit capable of holding 4 ton-h has been constructed in a factory environment. Much of the development efforts have centered on designing the reactor/heat exchanger where the salt and the refrigerant are combined. Economic evaluations have been made and show an estimated simple rate of return between 30 and 50%. 6 refs., 30 figs.

  18. Development of a Mine Rescue Drilling System (MRDS) :

    SciTech Connect (OSTI)

    Raymond, David W.; Gaither, Katherine N.; Polsky, Yarom; Knudsen, Steven D.; Broome, Scott Thomas; Su, Jiann-Cherng; Blankenship, Douglas A.; Costin, Laurence S.

    2014-06-01T23:59:59.000Z

    Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site; (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.

  19. SciTech Connect: DOE SciDAC's Earth System Grid Center for Enabling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controllerAdditiveBetatron

  20. ENABLING SYSTEMS THINKING TO ACCELERATE THE DEVELOPMENT OF SENIOR SYSTEMS ENGINEERS

    E-Print Network [OSTI]

    de Weck, Olivier L.

    ENABLING SYSTEMS THINKING TO ACCELERATE THE DEVELOPMENT OF SENIOR SYSTEMS ENGINEERS by Heidi Leoti of Cincinnati SUBMITTED TO THE ENGINEERING SYSTEMS DIVISION IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ENGINEERING SYSTEMS AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

  1. DOE Information Bridge

    E-Print Network [OSTI]

    United States. Department of Energy. Office of Scientific and Technical Information

    DOE Information Bridge, a component of EnergyFiles, provides free, convenient, and quick access to full-text DOE research and development reports in physics, chemistry, materials, biology, environmental sciences, energy technologies, engineering, computer and information science, renewable energy, and other topics. This vast collection includes over 43,000 reports that have been received and processed by OSTI since January 1995.

  2. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-01-09T23:59:59.000Z

    The Manual describes the Departments explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. Cancels DOE M 440.1-1. Canceled by DOE O 440.1B Chg 1.

  3. Industrial advanced turbine systems: Development and demonstration. Quarterly report, July 1--September 30, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The US DOE has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The ATS will foster (1) early market penetration that enhances the global competitiveness of US industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled US technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development; Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. Forecasts call for completion of the program within budget as originally estimated. Scheduled completion is forecasted to be approximately 3 years late to original plan. Significant efforts were spent this quarter to reforecast and control expenditures due to Solar`s and DOE`s current funding and resource constraints. Selective reductions and delays in program activities were identified and implemented. Although these actions will increase technical risk and the attainment of stretch goals, it is not anticipated that the schedule for initial test units or the attainment of basic program performance requirements will be impacted. As of the end of the reporting period work on the program is 22.80% complete based upon milestones completed. This measurement is considered quite conservative as numerous drawings on the Mercury 50 are near release. Variance information is provided in Section 4.0-Program Management.

  4. DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Departmentto DevelopMark Duff (LATA KY),

  5. Next Generation Environmentally Friendly Driving Feedback Systems Research and Development

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Heavy Duty Powertrain System Optimization and Emissions Test Procedure Development

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Capabilities of the DOE Remote Sensing Laboratory`s aerial measuring system

    SciTech Connect (OSTI)

    Riedhauser, S.R.

    1995-09-01T23:59:59.000Z

    This report describes the capabilities of the Remote Sensing Laboratory`s aircraft for use in environmental radiation surveys, multispectral (visible, near infrared, and thermal infrared) surveys of vegetation and buildings, and photographic documentation of the areas covered by the two other surveys. The report discusses the technical capabilities of the various systems and presents examples of the data from a recent demonstration survey. To provide a view of the types of surveys the Remote Sensing Laboratory has conducted in the past, the appendices describe several of the previous area surveys and emergency search surveys.

  8. SciTech Connect: DOE SciDAC's Earth System Grid Center for Enabling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controllerAdditiveBetatron RadiationDirectmorphinanTechnologies

  9. DOE Completes $17 Million Loan Guarantee for New York Energy Storage System

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of1 Ingrid A.C.ofComments RegulatoryAbout

  10. PIA - WEB iPASS System DOE PIA | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical:Rocky Mountain OTCSunfloweriPASS System

  11. Atmospheric System Research (ASR) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960RealStephanieUseful2-3,Atmospheric System Research

  12. Earth System Modeling (ESM) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High EnergyEliane S LessnerDrTimEarth System Modeling

  13. Comprehensive Emergency Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-01T23:59:59.000Z

    To establish policy and to assign and describe roles and responsibilities for the Department of Energy (DOE) Emergency Management System. The Emergency Management System provides the framework for development, coordination, control, and direction of all emergency planning, preparedness, readiness assurance, response, and recovery actions. Canceled by DOE O 151.1B. Cancels DOE O 151.1.

  14. DOE Grant DEFG02-95ER25253 Final Report Development of Simulation Tools for Virus Shell Assembly

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy,Converting to5994DOE AwardFinal Technical

  15. Southern company energy storage study : a study for the DOE energy storage systems program.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton [Southern Company Services, Inc., Birmingham, AL; Jenkins, Kip [Southern Company Services, Inc., Birmingham, AL

    2013-03-01T23:59:59.000Z

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  16. Preliminary definition of the DOE/OCRWM transportation operating system: Final report

    SciTech Connect (OSTI)

    Rawl, R.R.; Kline, S.C.

    1988-01-01T23:59:59.000Z

    This paper is based on the report ''Preliminary Definition of the Transportation Operations System'' and presents a summary of the preliminary definition of transportation operations activities for the cask shipment cycle, commencing with the dispatch of an empty cask, to loading and unloading of cask contents, and preparation of the empty cask for redispatch. It first presents a high-level description of the transportation cycle and then further describes each of the major activities in greater detail. For simplicity of presentation, the highway mode of transport is most often used to describe activities. The reader should keep in mind that the use of other modes will slightly alter the activities and possibly the sequences. Major activities and functions of the system are organized into a first cut of how they could be allocated to specific facilities. The reader should keep in mind that the assignment of functions and the aggregation of these into specific facilities are tasks which have yet to be performed. This paper simply presents a first look at possible groupings of the functions on a facility basis. 12 figs.

  17. Rock Mechanics and Enhanced Geothermal Systems: A DOE-sponsored Workshop to Explore Research Needs

    SciTech Connect (OSTI)

    Francois Heuze; Peter Smeallie; Derek Elsworth; Joel L. Renner

    2003-10-01T23:59:59.000Z

    This workshop on rock mechanics and enhanced geothermal systems (EGS) was held in Cambridge, Mass., on June 20-21 2003, before the Soil and Rock America 2003 International Conference at MIT. Its purpose was to bring together experts in the field of rock mechanics and geothermal systems to encourage innovative thinking, explore new ideas, and identify research needs in the areas of rock mechanics and rock engineering applied to enhanced geothermal systems. The agenda is shown in Appendix A. The workshop included experts in the fields of rock mechanics and engineering, geological engineering, geophysics, drilling, the geothermal energy production from industry, universities and government agencies, and laboratories. The list of participants is shown is Appendix B. The first day consisted of formal presentations. These are summarized in Chapter 1 of the report. By the end of the first day, two broad topic areas were defined: reservoir characterization and reservoir performance. Working groups were formed for each topic. They met and reported in plenary on the second day. The working group summaries are described in Chapter 2. The final session of the workshop was devoted to reaching consensus recommendations. These recommendations are given in Chapter 3. That objective was achieved. All the working group recommendations were considered and, in order to arrive at a practical research agenda usable by the workshop sponsors, workshop recommendations were reduced to a total of seven topics. These topics were divided in three priority groups, as follows. First-priority research topics (2): {sm_bullet} Define the pre-existing and time-dependent geometry and physical characteristics of the reservoir and its fracture network. That includes the identification of hydraulically controlling fractures. {sm_bullet} Characterize the physical and chemical processes affecting the reservoir geophysical parameters and influencing the transport properties of fractures. Incorporate those processes in reservoir simulators. Second-priority research topics (4): {sm_bullet} Implement and proof-test enhanced fracture detection geophysical methods, such as 3-D surface seismics, borehole seismics, and imaging using earthquake data. {sm_bullet} Implement and proof-test enhanced stress measurement techniques, such as borehole breakout analysis, tilt-meters, and earthquake focal mechanism analysis. {sm_bullet} Implement and proof-test high-temperature down-hole tools for short-term and long-term diagnostics, such as borehole imaging, geophone arrays, packers, and electrical tools.

  18. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-15)

    SciTech Connect (OSTI)

    N /A

    2001-06-19T23:59:59.000Z

    BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission lines. Work also includes clearing of a small (<1/4 mile) section of access road. All work will be in accordance with the National Electrical Safety Code and BPA standards. See Section 1.1 of the attached checklist for detailed information on each section of the referenced transmission lines. BPA will conduct the vegetation control with the goal of removing tall-growing vegetation that is currently or will soon be a hazard to the transmission lines and where possible to promote low-growing plant communities in the right-of-way. This project meets the standards and guidelines for the Transmission System Vegetation Management Program Final Environmental Impact Statement (FEIS) and Record of Decision (ROD). The vegetation needing control is mainly Douglas Fir, Alder, and blackberries as indicated in Section 1.2 of the attached checklist. The work involved in the ROW includes: clearing tall growing vegetation that is currently or will soon pose a hazard to the lines; treating the associated stumps and re-sprouts with herbicide to ensure that the roots are killed preventing new sprouts; and selectively eliminating tall growing vegetation before it reaches a height or density to begin competing with low-growing vegetation. All work will take place in existing rights-of-ways and around transmission structures. All work will be accomplished by selective vegetation control methods to assure that there is little potential harm to non-target vegetation and to low-growing plants. The work will provide system reliability and fire protection. Also, all off right-of-way trees that are potentially unstable and will fall within a minimum distance or into the zone where the conductors swing will be removed. Access roads will be treated using mowing and herbicide applications. The work will provide system reliability. The subject transmission lines range from 115kV to 230kV and are made up of accompanying access roads, steel and wooden transmission line structures and associated switching platforms. The minimum clearance ranges from 21 feet for 115kV lines to 23 feet for 230kV lines. ROW easement widths vary along the length of the project. Vegetation control for this project is designed to provide a 3 year maintenance free interval. In summary, the overall vegetation management scheme will be to selectively remove tall growing vegetation then apply selective herbicide treatment using cut stump applications.

  19. State and local economic development tools : how does the range of state-level economic development tools available to a locality influence the way local resources are deployed?

    E-Print Network [OSTI]

    Piercy, Brett I. (Brett Ianthe)

    2010-01-01T23:59:59.000Z

    Patterns in Community Development Block Grant (CDBG) expenditures for economic development in selected states were analyzed to explore whether differences in economic development tools, policies and programs available at ...

  20. Design and development for a low emission boiler system

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The Department of Energy initiated the Combustion 2000 program to develop the next generation of coal-fired power plants. Sargent & Lundy (S&L) is working on the Low Emission Boiler System (LEBS) portion of the program led by Riley Stoker Corporation, with support from Textron Defense Systems, Tecogen, and Reaction Engineering International. Together these organizations form {open_quotes}the Riley Team.{close_quotes} There are four phases of the LEBS development program. Currently, we are working in Phase I, which involves the design of a 400 MWe unit. Phase II through IV will involve pilot scale component testing and a Proof-of-Concept facility ({approximately}40MWe) design, construction, and operation. This document comprises the Design and Development Report for the LEBS. The report describes the design basis, design uncertainties and development plan for each of the major LEBS subsystems.

  1. Power Systems Development Facility Gasification Test Campaing TC14

    SciTech Connect (OSTI)

    Southern Company Services

    2004-02-28T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details test campaign TC14 of the PSDF gasification process. TC14 began on February 16, 2004, and lasted until February 28, 2004, accumulating 214 hours of operation using Powder River Basin (PRB) subbituminous coal. The gasifier operating temperatures varied from 1760 to 1810 F at pressures from 188 to 212 psig during steady air blown operations and approximately 160 psig during oxygen blown operations.

  2. Development of crawler type device using new measuring system

    SciTech Connect (OSTI)

    Maruyama, T.; Sasaki, T.; Yagi, T. [Ishikawajima-Harima Heavy Industries Co., Ltd., Yokohama (Japan)

    1995-08-01T23:59:59.000Z

    This paper reports the development and field application of a new device which examine shell to shell weld joints of RPV. In a BWR type nuclear power plant, there is narrow space around the Reactor Pressure Vessel (RPV) because RPV is enclosed by the Reactor Shield Wall (RSW) and thermal insulations. The developed device is characterized by a new position measuring system and magnet wheels for driving. The new position measuring system uses laser beam and ultrasonic wave. The magnet wheels make the device travel freely in the narrow space between RPV and insulation. This device is tested on mock-ups and applied examination of RPVs to verify field applicability.

  3. DOE handbook: Design considerations

    SciTech Connect (OSTI)

    NONE

    1999-04-01T23:59:59.000Z

    The Design Considerations Handbook includes information and suggestions for the design of systems typical to nuclear facilities, information specific to various types of special facilities, and information useful to various design disciplines. The handbook is presented in two parts. Part 1, which addresses design considerations, includes two sections. The first addresses the design of systems typically used in nuclear facilities to control radiation or radioactive materials. Specifically, this part addresses the design of confinement systems and radiation protection and effluent monitoring systems. The second section of Part 1 addresses the design of special facilities (i.e., specific types of nonreactor nuclear facilities). The specific design considerations provided in this section were developed from review of DOE 6430.1A and are supplemented with specific suggestions and considerations from designers with experience designing and operating such facilities. Part 2 of the Design Considerations Handbook describes good practices and design principles that should be considered in specific design disciplines, such as mechanical systems and electrical systems. These good practices are based on specific experiences in the design of nuclear facilities by design engineers with related experience. This part of the Design Considerations Handbook contains five sections, each of which applies to a particular engineering discipline.

  4. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    SciTech Connect (OSTI)

    King, D.A.

    1994-11-10T23:59:59.000Z

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  5. Memorandum Memorializing Ex Parte Communication, DOE impending...

    Broader source: Energy.gov (indexed) [DOE]

    The meeting was requested by AMCA International to introduce the association's leadership, standards, and experience in developing fan standards to DOE; to learn more about the DOE...

  6. DOE HydrogenDOE Hydrogen Composite Tank ProgramComposite Tank Program

    E-Print Network [OSTI]

    DOE HydrogenDOE Hydrogen Composite Tank ProgramComposite Tank Program Dr. Neel Sirosh DIRECTOR and validate 5,000 psi storage tanks ­ Tank efficiency: 7.5 ­ 8.5 wt% · Validate 5,000 psi in-tank-pressure regulators ­ Total storage system efficiency: 5.7 wt% · Develop and validate 10,000 psi storage tanks ­ Tank

  7. Power Systems Development Facility. First quarterly report, 1997

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    The objective of this project, herein referred to as the Power Systems Development Facility (PSDF), is to evaluate hot gas particle control technologies using coal derived gas streams. This project entails the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device (PCD) issues to be addressed include the integration of the PCDs into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  8. PART II -Core Leader Competencies (what a leader does): Works to lead others; develops themselves, their subordinates and organizations to achieve mission accomplishment 1. Character: A person's moral and ethical qualities which give a leader motivation t

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    PART II - Core Leader Competencies (what a leader does): Works to lead others; develops themselves or consequences 4. SELFLESS-SERVICE: Places welfare of others and Army priorities before self 6. INTEGRITY: Does that are an inherent part of an individual's total core, physical, and intellectual aspects. Attributes shape how one

  9. Development of an On-Line Expert System: Heat Rate Degradation Expert System Advisor

    E-Print Network [OSTI]

    Sopocy, D. M.; Henry, R. E.; Gehl, S.; Divakaruni, S. M.

    An on-line expert system for fossil-fueled power plants, the "Heat Rate Degradation Expert System Advisor," is being developed. This expert system will operate on a microcomputer and will interface with existing plant data acquisition and/or thermal...

  10. DOE Onboarding

    Broader source: Energy.gov (indexed) [DOE]

    First Six Months First Year *Continual Learning *Fraud Awareness *eOPF & ePerformance *ESS & Workflow *DOE Social Media *Networking Opportunity GETTING SETTLED ADJUSTMENT &...

  11. DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    a useful reference. Find out more Do you have questions about DOE PAGESBeta content, procedures, or policies? More information is available at OSTI's Public Access Policy page and...

  12. Development of a semi-automated ZLC system for rapid screening of adsorbents for carbon capture 

    E-Print Network [OSTI]

    Hu, Xiayi

    2012-06-25T23:59:59.000Z

    In this dissertation a novel ZLC setup has been developed as part of a DOE-funded grant in collaboration with UOP, to provide rapid screening of novel adsorbent materials for carbon capture (CC). The key features of the ...

  13. Development of Human-Robot Interaction Systems for Humanoid Robots

    E-Print Network [OSTI]

    Maxwell, Bruce

    Development of Human-Robot Interaction Systems for Humanoid Robots Bruce A. Maxwell, Brian Leighton, Andrew Ramsay Colby College {bmaxwell,bmleight,acramsay}@colby.edu Abstract - Effective human-robot interaction is one of the primary challenges for humanoid robots. Sources of uncertainty, such as robot motion

  14. The development of large technical systems: implications for hydrogen

    E-Print Network [OSTI]

    Watson, Andrew

    to imagine a new hydrogen energy economy1 in which hydrogen is generated, transported, stored and made for hydrogen and its desirability2 , this hydrogen energy economy is not inevitable. The gap between where weThe development of large technical systems: implications for hydrogen Jim Watson March 2002 Tyndall

  15. Biological Development model for the Design of Robust Digital System

    E-Print Network [OSTI]

    Fernandez, Thomas

    Biological Development model for the Design of Robust Digital System Heng Liu Doctor of Philosophy and Keywords i Abstract This thesis presents a biologically-inspired developmental model for the design. The methods presented have been applied to produce a self-repairing two bit multiplier and an autonomous robot

  16. Power Systems Development Facility: Design, Construction, and Commissioning Status

    SciTech Connect (OSTI)

    Powell, C.A.; Vimalchand; Hendrix, H.L.; Honeycut, P.M.

    1996-12-31T23:59:59.000Z

    This paper will provide an introduction to the Power Systems Development Facility, a Department of Energy sponsored, engineering scale demonstration of two advanced coal-fired power technologies; and discuss current status of design, construction and commissioning of this facility. 28 viewgraphs, including 2 figs.

  17. Development of a Clinical Pathways Analysis System with Adaptive Bayesian

    E-Print Network [OSTI]

    Kopec, Danny

    Development of a Clinical Pathways Analysis System with Adaptive Bayesian Nets and Data Mining such analyses. The computation of "lift" (a measure of completed pathways improvement potential) leads us an artificial set of such records and use these for clinical pathways analyses. We use data mining software

  18. Development of an Automated Tracking System of Tagged Wild Animals

    E-Print Network [OSTI]

    Development of an Automated Tracking System of Tagged Wild Animals Mariya Ishutkina1 Timothy Chan2 and there are about a hundred of them living in the wild. For tracking purposes, each animal is outfitted remaining animals and established a captive-breeding program to restore red wolves in the wild. As pointed

  19. A System for Epigenetic Concept Development through Autonomous Associative Learning

    E-Print Network [OSTI]

    Grabowski, Laura M. - Department of Computer Science, University of Texas

    . A concept is an abstract and compact representation of information from multiple sources. This paper environment, to develop an internal sensor that measures the semi-concrete concept of distance traveled that is not necessarily in the self-reflective domain, greatly widening the pool of cognitive systems. This work

  20. Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995

    SciTech Connect (OSTI)

    Karstensen, K.W.

    1995-07-01T23:59:59.000Z

    This Quarterly Technical Progress Report covers the period February 1, 1995, through April 30, 1995, for Phase II of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE contract No. DE-AC21-93MC30246. The objective of Phase II of the ATS Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. Tasks 1, 2, 3, 5, 6 and 7 of Phase II have been completed in prior quarters. Their results have been discussed in the applicable quarterly reports and in their respective topical reports. With the exception of Task 7, final editions of these topical reports have been submitted to the DOE. This quarterly report, then, addresses only Task 4 and the nine subtasks included in Task 8, {open_quotes}Design and Test of Critical Components.{close_quotes} These nine subtasks address six ATS technologies as follows: (1) Catalytic Combustion - Subtasks 8.2 and 8.5, (2) Recuperator - Subtasks 8.1 and 8.7, (3) Autothermal Fuel Reformer - Subtask 8.3, (4) High Temperature Turbine Disc - Subtask 8.4, (5) Advanced Control System (MMI) - Subtask 8.6, and (6) Ceramic Materials - Subtasks 8.8 and 8.9. Major technological achievements from Task 8 efforts during the quarter are as follows: (1) The subscale catalytic combustion rig in Subtask 8.2 is operating consistently at 3 ppmv of NO{sub x} over a range of ATS operating conditions. (2) The spray cast process used to produce the rim section of the high temperature turbine disc of Subtask 8.4 offers additional and unplanned spin-off opportunities for low cost manufacture of certain gas turbine parts.

  1. TONGUES: RAPID DEVELOPMENT OF A SPEECH-TO-SPEECH TRANSLATION SYSTEM Alan W Black

    E-Print Network [OSTI]

    Black, Alan W

    -to- speech translation system in a new language that could run on a small portable computer. Croatian reasons, Croatian was chosen as the target language. Although spoken by around 5 million people, it does

  2. Electric motor systems in developing countries: Opportunities for efficiency improvement

    SciTech Connect (OSTI)

    Meyers, S.; Monahan, P.; Lewis, P.; Greenberg, S. [Lawrence Berkeley Lab., CA (United States); Nadel, S. [American Council for an Energy-Efficient Economy, Washington, DC (United States)

    1993-08-01T23:59:59.000Z

    This report presents an overview of the current status and efficiency improvement potential of industrial motor systems in developing countries. Better management of electric motor systems is of particular relevance in developing countries, where improved efficiency can lead to increased productivity and slower growth in electricity demand. Motor systems currently consume some 65--80% of the industrial electricity in developing countries. Drawing on studies from Thailand, India, Brazil, China, Pakistan, and Costa Rica, we describe potential efficiency gains in various parts of the motor system, from the electricity delivery system through the motor to the point where useful work is performed. We report evidence of a significant electricity conservation potential. Most of the efficiency improvement methods we examine are very cost-effective from a societal viewpoint, but are generally not implemented due to various barriers that deter their adoption. Drawing on experiences in North America, we discuss a range of policies to overcome these barriers, including education, training, minimum efficiency standards, motor efficiency testing protocols, technical assistance programs, and financial incentives.

  3. Integrated Safety Management System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-11-01T23:59:59.000Z

    This manual provides requirements and guidance for DOE and contractors to ensure development and implementation of an effective Integrated Safety Management system that is periodically reviewed and continuously improved. Canceled by DOE O 450.2.

  4. EA-1616: National Carbon Research Center Project at Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama

    Broader source: Energy.gov [DOE]

    This EA evaluates and updates the potential environmental impacts of DOE’s proposed continued operations of the NCCC Project at the PSDF plant. The NCCC is designed to test and evaluate carbon dioxide (CO2) control technologies for power generation facilities, including CO2 capture solvents and sorbents, mass-transfer devices, lower cost water-gas shift reactors, and scaled-up membrane technologies. Additionally, the NCCC evaluates methods to integrate CO2 capture technologies with other coal-based power plant systems by testing both pre-combustion and post-combustion technologies. The NCCC provides the capability to test these systems under a wide range of fuels, including bituminous and sub-bituminous coals, lignites and biomass/coal mixtures. The goal of the NCCC project is to accelerate the development, optimization, and commercialization of viable CO2 control technologies.

  5. Management and Independent Assessments Guide for Use with 10 CFR Part 830, Subpart A, and DOE O 414.1C, Quality Assurance; DOE M 450.4 -1, Integrated Safety Management System Manual; and DOE O 226.1A, Implementation of DOE Oversight Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-09-27T23:59:59.000Z

    This Guide provides information on establishing processes for performing effective assessments. The revision to Guide reflects updated assessment practices, international standards, and changes in DOE expectations. Cancels DOE G 414.1-1A. Certified 11-18-10. Canceled by DOE G 414.1-1C.

  6. Development of an integrated system for estimating human error probabilities

    SciTech Connect (OSTI)

    Auflick, J.L.; Hahn, H.A.; Morzinski, J.A.

    1998-12-01T23:59:59.000Z

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project had as its main objective the development of a Human Reliability Analysis (HRA), knowledge-based expert system that would provide probabilistic estimates for potential human errors within various risk assessments, safety analysis reports, and hazard assessments. HRA identifies where human errors are most likely, estimates the error rate for individual tasks, and highlights the most beneficial areas for system improvements. This project accomplished three major tasks. First, several prominent HRA techniques and associated databases were collected and translated into an electronic format. Next, the project started a knowledge engineering phase where the expertise, i.e., the procedural rules and data, were extracted from those techniques and compiled into various modules. Finally, these modules, rules, and data were combined into a nearly complete HRA expert system.

  7. Advanced Turbine Systems (ATS) program conceptual design and product development

    SciTech Connect (OSTI)

    NONE

    1996-08-31T23:59:59.000Z

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  8. Technical Assistance to Developers

    SciTech Connect (OSTI)

    Rockward, Tommy [Los Alamos National Laboratory; Borup, Rodney L. [Los Alamos National Laboratory; Garzon, Fernando H. [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Spernjak, Dusan [Los Alamos National Laboratory

    2012-07-17T23:59:59.000Z

    This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols, and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.

  9. Lean Gasoline System Development for Fuel Efficient Small Car

    Broader source: Energy.gov (indexed) [DOE]

    contain any proprietary, confidential, or otherwise restricted information Stuart R. Smith - Principal Investigator GM Powertrain May 17, 2013 2013 DOE Vehicle Technologies...

  10. Power Systems Development Facility Gasification Test Campaign TC17

    SciTech Connect (OSTI)

    Southern Company Services

    2004-11-30T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results gasification operation with Illinois Basin bituminous coal in PSDF test campaign TC17. The test campaign was completed from October 25, 2004, to November 18, 2004. System startup and initial operation was accomplished with Powder River Basin (PRB) subbituminous coal, and then the system was transitioned to Illinois Basin coal operation. The major objective for this test was to evaluate the PSDF gasification process operational stability and performance using the Illinois Basin coal. The Transport Gasifier train was operated for 92 hours using PRB coal and for 221 hours using Illinois Basin coal.

  11. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

    2011-04-01T23:59:59.000Z

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  12. DOE Systems Engineering Methodology

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof EnergyAlliance | DepartmentWaivers |NuclearCFOSaves Money,of

  13. DOE Systems Engineering Methodology

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContract at its HanfordBreakthroughsof Energy

  14. Development of a dispatchable PV peak shaving system. Final report on PV:BONUS Phase 2 activities

    SciTech Connect (OSTI)

    Ferguson, W.D. [Conectiv, Inc., Wilmington, DE (United States); Nigro, R.M. [Applied Energy Group, Inc., Hauppauge, NY (United States)

    1999-01-20T23:59:59.000Z

    In July 1993, the Delmarva Power and Light Company (now Conectiv, Inc.) was awarded a contract for the development of a Dispatchable Photovoltaic Peak Shaving System under the US Department of Energy PV:BONUS Program. The rationale for the dispatchable PV peak shaving system is based on the coincidence between the solar resource and the electrical load in question. Where poor coincidence exists, a PV array by itself does little to offset peak demands. However, with the addition of a relatively small amount of energy storage, the energy from the PV array can be managed and the value of the PV system increases substantially. In Phase 2, Delmarva Power continued the refinement of the system deployed in Phase 1. Four additional dispatchable PV peak shaving systems were installed for extended testing and evaluation at sites in Delaware, Maryland, Wisconsin and North Carolina. A second type of system that can be used to provide back-up power as well as peak shaving was also developed in Phase 2. This PV-UPS system used a packaging approach nearly identical to the PV peak shaving system, although there were significant differences in the design of the power electronics and control systems. Conceptually, the PV-UPS system builds upon the idea of adding value to PV systems by increasing functionality. A prototype of the PV-UPS system was installed in Delaware for evaluation near the end of the contract period.

  15. RSX system development under VAX/VMS compatibility mode

    SciTech Connect (OSTI)

    Fuka, M.A.

    1983-01-01T23:59:59.000Z

    The Control System for the Proton Storage Ring now being built at Los Alamos will use a VAX-11/750 as its main control computer with several LSI-11/23 microprocessors reading and controlling the hardware. The VMS Compatibility Mode makes it possible to use the VAX as a development system for the LSI-11/23 microprocessors running the RSX-11S (stand-alone) operating system. Digital Equipment Corporation (DEC)-supplied software is used to generate the RSX-11S operating system and DECNET-11S network software. We use the VMS editors to create source files, the Macro-11 assembler and the PDP-11 Fortran-77 compiler to generate object code, and the RSX Task Builder to link the executable RSX task image. The RSX task then can be tested to some extent on the VAX before it is down-line loaded to the LSI-11/23 for further testing.

  16. Needed improvements in the development of systemic corrective actions.

    SciTech Connect (OSTI)

    Campisi, John A.

    2009-07-01T23:59:59.000Z

    There are indications that corrective actions, as implemented at Sandia National Laboratories are not fully adequate. Review of independent audits spanning multiple years provides evidence of recurring issues within the same or similar operations and programs. Several external audits have directly called into question the ability Sandia's assessment and evaluation processes to prevent recurrence. Examples of repeated findings include lockout/tagout programs, local exhaust ventilation controls and radiological controls. Recurrence clearly shows that there are underlying systemic factors that are not being adequately addressed by corrective actions stemming from causal analyses. Information suggests that improvements in the conduct of causal analyses and, more importantly, in the development of subsequent corrective actions are warranted. Current methodolgies include Management Oversight Risk Tree, developed in the early 1970s and Systemic Factors Analysis. Recommendations for improvements include review of other causal analysis systems, training, improved formality of operations, improved documentation, and a corporate method that uses truly systemic solutions. This report was written some years ago and is being published now to form the foundation for current, follow-on reports being developed. Some outdated material is recognized but is retained for report completeness.

  17. Advanced tangential low NOx systems - development and results

    SciTech Connect (OSTI)

    Allen, J.W.; Beal, P.R. [Rolls-Royce Industrial Power Group, Derby (United Kingdom)

    1996-01-01T23:59:59.000Z

    The development of low NO{sub x} combustion systems has identified the near burner flame conditions as critical in determining the eventual NO{sub x} emission levels. In this paper the development of this criterion, in respect of tangentially coal ({open_quote}T{close_quote}) fired power generation boilers, is discussed together with their commercial application. The potential ultra low NO{sub x} performance of these techniques requires a deeper understanding of coal characteristics in addition to the standard properties involving volatile release rates, the behaviour of particulate clouds and their burning velocities. Aerodynamic properties including fuel air mixing, velocity and particulate distribution are all of fundamental importance and can be studied by means of isothermal physical modelling and computational fluid dynamics (CFD). Amalgamation of these various aspects into burner and combustion system design can be considered as NO{sub x} control by flame management and can be applied to conventional systems as well as to the development of advanced low NO{sub x} burner technology. Low NO{sub x} equipment based on this technology is known as the EnviroNO{sub x}{trademark} system.

  18. Hot-gas cleanup system model development. Volume I. Final report

    SciTech Connect (OSTI)

    Ushimaru, K.; Bennett, A.; Bekowies, P.J.

    1982-11-01T23:59:59.000Z

    This two-volume report summarizes the state of the art in performance modeling of advanced high-temperature, high-pressure (HTHP) gas cleanup devices. Volume I contains the culmination of the research effort carried over the past 12 months and is a summary of research achievements. Volume II is the user's manual for the computer programs developed under the present research project. In this volume, Section 2 presents background information on pressurized, fluidized-bed combustion concepts, a description of the role of the advanced gas cleanup systems, and a list of advanced gas cleanup systems that are currently in development under DOE sponsorship. Section 3 describes the methodology for the software architecture that forms the basis of the well-disciplined and structured computer programs developed under the present project. Section 4 reviews the fundamental theories that are important in analyzing the cleanup performance of HTHP gas filters. Section 5 discusses the effect of alkali agents in HTHP gas cleanup. Section 6 evaluates the advanced HTHP gas cleanup models based on their mathematical integrity, availability of supporting data, and the likelihood of commercialization. As a result of the evaluation procedure detailed in Section 6, five performance models were chosen to be incorporated into the overall system simulation code, ASPEN. These five models (the electrocyclone, ceramic bag filter, moving granular bed filter, electrostatic granular bed filter, and electrostatic precipitator) are described in Section 7. The method of cost projection for these five models is discussed in Section 8. The supporting data and validation of the computer codes are presented in Section 9, and finally the conclusions and recommendations for the HTHP gas cleanup system model development are given in Section 10. 72 references, 19 figures, 25 tables.

  19. Power Systems Development Facility Gasification Test Campaign TC22

    SciTech Connect (OSTI)

    Southern Company Services

    2008-11-01T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

  20. DOE standard: Radiological control

    SciTech Connect (OSTI)

    Not Available

    1999-07-01T23:59:59.000Z

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  1. Development of a Microchannel In Situ Propellant Production System

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Rassat, Scot D.; TeGrotenhuis, Ward E.

    2005-09-01T23:59:59.000Z

    An in situ propellant production (ISPP) plant on future Mars robotic missions can produce oxygen (O2) and methane (CH4) that can be used for propellant for the return voyage. By producing propellants from Mars atmospheric carbon dioxide (CO2) and hydrogen (H2) brought from Earth, the initial mass launched in low Earth orbit can be reduced by 20% to 45%, as compared to carrying all of the propellant for a round-trip mission to the Mars surface from Earth. Pacific Northwest National Laboratory used microchannel architecture to develop a Mars-based In Situ Propellant Production (ISPP) system. This three year research and development effort focused on process intensification and system miniaturization of three primary subsystems: a thermochemical compressor, catalytic reactors, and components for separating gas phases from liquid phases. These systems were designed based on a robotic direct return mission scenario, but can be scaled up to human flight missions by simply numbering up the microchannel devices. The thermochemical compression was developed both using absorption and adsorption. A multichannel adsorption system was designed to meet the full-scale CO2 collection requirements using temperature swing adsorption. Each stage is designed to achieve a 10x compression of CO2. A compression ratio to collect Martian atmospheric CO2 at ~0.8 kPa and compress it to at least 100 kPa can be achieved with two adsorption stages in series. A compressor stage incorporates eight thermally coupled adsorption cells at various stages in the adsorption/desorption cycle to maximize the recuperation of thermal energy and provide a nearly continuous flow of CO2 to the downstream reactors. The thermochemically compressed CO2 is then mixed with hydrogen gas and fed to two reactors: a Sabatier Reaction unit and a Reverse Water/Gas Shift unit. The microchannel architecture allows better heat control than is possible in an adiabatic system, resulting in significantly higher conversion. The reactors can also have reduced mass over conventional hardware. Over 60% conversion was achieved using a two stage RWGS reactor in which water was removed between stages. Sabatier conversions of greater than 85% were achieved in a single stage system. Since the RWGS is endothermic and the Sabatier is exothermic, by combining the two reactions, heat generated from the Sabatier can be used to fuel the RWGS reaction. A combined Sabatier/RWGS reactor was successfully tested. Both the Sabatier and RWGS reactions generate water. The water will be collected and electrolyzed to produce oxygen and recycle the hydrogen. A microchannel phase separator is also under development to separate liquid water from vapor and other gases in these product streams. This phase separator relies on surface forces, not gravitational effects, to separate the water and is therefore suited to space applications. The specific energy of this device reached values of 1200 to 8000 W/K for water mole fractions of 20 to 70%. The phase separator technology was scaled up in a system to removed water from a cathode effluent of a 5 kW PEM fuel cell. In this case a three channel device can remove 43 mL/min of water in 95 SCFM of air. This exceeded the design requirements of the device. A system model of the microchannel ISPP plant was generated to predict the size, weight and performance for the individual components and use it to optimize the overall system. The microchannel technologies developed for CO2 collection, reaction, and phase separation can be used not only for an ISPP system, but also life support, EVA, and lunar applications. The use of microchannel technologies reduces both mass and volume of the system as well as improving the system efficiency.

  2. 1. "A Roadmap for Developing Accelerator Transmutation of Waste Technology," Report to Congress, DOE0RW-0519, U.S.

    E-Print Network [OSTI]

    Danon, Yaron

    1. "A Roadmap for Developing Accelerator Transmutation of Waste Technology," Report to Congress, R. C. Block (RPI) A novel, tunable X-ray source using the 100-MeV electron linear accelerator photons" is associated with electrons moving through a medium at relativistic speeds. These photons

  3. Gasification advanced research and technology development (AR and TD) cross-cut meeting and review. [US DOE supported

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    The US Department of Energy gasification advanced research and technology development (AR and TD) cross-cut meeting and review was held June 24 to 26, 1981, at Germantown, Maryland. Forty-eight papers from the proceedings have been entered individually into EDB and ERA. (LTN)

  4. Development of a waste dislodging and retrieval system for use in the Oak Ridge National Laboratory gunite tank

    SciTech Connect (OSTI)

    Randolph, J.D.; Lloyd, P.D.; Burks, B.L. [and others

    1997-03-01T23:59:59.000Z

    As part of the Gunite And Associated Tanks (GAAT) Treatability Study the Oak Ridge National Laboratory (ORNL) has developed a tank waste retrieval system capable of removing wastes varying from liquids to thick sludges. This system is also capable of scarifying concrete walls and floors. The GAAT Treatability Study is being conducted by the Department of Energy Oak Ridge Environmental Restoration Program. Much of the technology developed for this project was cosponsored by the DOE Office of Science and Technology through the Tanks Focus Area (TFA) and the Robotics Technology Development Program. The waste dislodging and conveyance (WD&C) system was developed jointly by ORNL and participants from the TFA. The WD&C system is comprised of a four degree-of-freedom arm with back driveable motorized joints. a cutting and dislodging tool, a jet pump and hose management system for conveyance of wastes, confined sluicing end-effector, and a control system, and must be used in conjunction with a robotic arm or vehicle. Other papers have been submitted to this conference describing the development and operation of the arm and vehicle positioning systems. This paper will describe the development of the WD&C system and its application for dislodging and conveyance of ORNL sludges from the GAAT tanks. The confined sluicing end-effector relies on medium pressure water jets to dislodge waste that is then pumped by the jet pump through the conveyance system out of the tank. This paper will describe the results of cold testing of the integrated system. At the conference presentation there will also be results from the field deployment. ORNL has completed fabrication of the WD&C system for waste removal and is full-scale testing, including testing of the confined sluicing end-effector.

  5. Final report on activities and findings under DOE grant “Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases”

    SciTech Connect (OSTI)

    Prather, Michael J. [UCI

    2014-11-07T23:59:59.000Z

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  6. Development of a World Wide Web based quiz management system

    E-Print Network [OSTI]

    Taylor, Shannon Carol

    1997-01-01T23:59:59.000Z

    and tested three Web-based evaluation systems: Mklesson, Eval, and Tutorial Gateway. Mklesson was developed by David Wheeler at the Institute for Defense Analyses. This is a public domain generating program. The program allows an instructor to create a... file which includes standard HTML coding, text, and extended HTML statements that produce a tutorial. The extended HTML statements break up the file into a group of 14 HTML files. The program then processes the files, the tutorial will consist of a...

  7. Investigate the Development of a Wireless Flight Test System

    E-Print Network [OSTI]

    Attalury, Pradeep

    2009-12-23T23:59:59.000Z

    Investigate the Development of a Wireless Flight Test System By Pradeep Attalury Submitted to the graduate program in Aerospace Engineering and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements... ............................................................ 98 Figure 5.11: The W-AHRS Unit in the Front Seat ................................................... 99 Figure 5.12: The Access Point and the Battery ......................................................... 99 Figure 5.13: Engineer in the Back...

  8. Advanced Boost System Developing for High EGR Applications

    SciTech Connect (OSTI)

    Sun, Harold

    2012-09-30T23:59:59.000Z

    To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications • This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. • Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

  9. RESEARCH & DEVELOPMENT: PROGRAM ABSTRACTS

    E-Print Network [OSTI]

    ) 586-8061 Fax: (202) 586-9811 E-mail: patrick.davis@ee.doe.gov Fuel Cell Core Technology R&D JoAnn Milliken (202) 586-2480 Fax: (202) 586-9811 E-mail: joann.milliken@ee.doe.gov Fuel Cell System Development Donna Ho (202) 586-8000 Fax: (202) 586-9811 E-mail: donna.ho@ee.doe.gov Mailing Address U.S. Department

  10. MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS ? PROJECT SUMMARY

    SciTech Connect (OSTI)

    M. A. Alvin

    2010-06-18T23:59:59.000Z

    Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach ?1425-1760?C (?2600-3200?F) with pressures of ?300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project, and introduces three new technology areas ? high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.

  11. Development of PhytoPET: A plant imaging PET system

    SciTech Connect (OSTI)

    Dong, H; Lee, S J; McKisson, J; Xi, W; Zorn, C; Howell, C R; Crowell, A S; Cumberbatch, L; Reid, C D; Smith, M F

    2012-02-01T23:59:59.000Z

    The development and initial evaluation of a high-resolution positron emission tomography (PET) system to image the biodistribution of positron emitting tracers in live plants is underway. The positron emitting {sup 11}CO{sub 2} tracer is used in plant biology research investigating carbon sequestration in biomass, optimization of plant productivity and biofuel development. This PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single 5 cm x 5 cm Hamamatsu H8500 position sensitive photomultiplier tubes. Each H8500 is coupled to a LYSO:Ce scintillator array composed of 48 x 48 elements that are 10 mm thick arranged with a 1.0 mm pitch. An Ethernet based 12-bit flash analog to digital data acquisition system with onboard coincident matrix definition is under development to digitize the signals. The detector modules of the PhytoPET system can be arranged and stacked to accommodate various sized plants and plant structures.

  12. receive DOE Early Career Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrological controls on carbon cycling in flood plain ecosystems into Earth System Models (ESM). "The DOE Early Career Research Award represents both a significant honor...

  13. Development of adherent ceramic coatings to reduce contact stress damage of ceramics. Final report: DOE/ORNL Ceramic Technology Project

    SciTech Connect (OSTI)

    Wayne, S.F.; Selverian, J.H.; O`Neil, D. [GTE Labs., Inc., Waltham, MA (United States)

    1992-11-01T23:59:59.000Z

    Strongly adherent coatings were deposited on reaction bonded Si{sub 3}N{sub 4} (RBSN), sintered SiC (SSC), and HIP`ed Si{sub 3}N{sub 4} (HSN) and using a newly developed chemical vapor deposition (CVD) process. Performance of the coating was assessed by oxidation, strength and contact stress testing. A new method was developed to experimentally determine the strength and Weibull modulus of thin brittle films on ceramic substrates. A significant portion of the study was devoted to numerical modeling of the coatings in order to understand the contributions of residual stress as different coating materials and thicknesses were combined. Coating designs were further analyzed by simulating the crack growth behavior in multilayer films while accounting for the interface fracture mechanics. This work has shown that the Al{sub 2}0{sub 3+}ZrO{sub 2} composite coating developed in this program can provide resistance to oxidation and contact stress. Commercial application of the composite coating has been successfully demonstrated by useof the Al{sub 2}0{sub 3+}ZrO{sub 2} composite as a protective coating on a Si{sub 3}N{sub 4} cutting tool.

  14. Power Systems Development Facility Gasification Test Campaing TC18

    SciTech Connect (OSTI)

    Southern Company Services

    2005-08-31T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

  15. Power Systems Development Facility Gasification Test Campaign TC16

    SciTech Connect (OSTI)

    Southern Company Services

    2004-08-24T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report discusses Test Campaign TC16 of the PSDF gasification process. TC16 began on July 14, 2004, lasting until August 24, 2004, for a total of 835 hours of gasification operation. The test campaign consisted of operation using Powder River Basin (PRB) subbituminous coal and high sodium lignite from the North Dakota Freedom mine. The highest gasifier operating temperature mostly varied from 1,760 to 1,850 F with PRB and 1,500 to 1,600 F with lignite. Typically, during PRB operations, the gasifier exit pressure was maintained between 215 and 225 psig using air as the gasification oxidant and between 145 and 190 psig while using oxygen as the oxidant. With lignite, the gasifier operated only in air-blown mode, and the gasifier outlet pressure ranged from 150 to 160 psig.

  16. Development of a system model for advanced small modular reactors.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01T23:59:59.000Z

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  17. Development of a Geographic Information System based modeling of a shipboard power system

    E-Print Network [OSTI]

    Rajbhandari, Ujjwal Prasad

    2001-01-01T23:59:59.000Z

    . 1 Introduction. 2. 2 Development of GIS 2. 3 GIS and The Water Industry 2. 4 GIS and The Transportation Industry, 2. 5 GIS and The Electric Utility Industry. 2. 6 GIS and The Shipboard System. 2. 7 Summary. . . . . . 5 . . . . . 7... 3. 3. 2 System Requirements 3. 3. 3 3D CADD Development. . 3. 3. 4 Database Development. . . . I 3 . . . I 3 . . 13 . . . 1 5 . . . I 7 . . . I 7 . . . I 8 . . 19 . . 19 vnt CHAPTER Page 3. 3. 5 Data Utilization. 3. 4 Summary...

  18. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    SciTech Connect (OSTI)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18T23:59:59.000Z

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

  19. Human-System Safety Methods for Development of Advanced Air Traffic Management Systems

    SciTech Connect (OSTI)

    Nelson, W.R.

    1999-05-24T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is supporting the National Aeronautics and Space Administration in the development of advanced air traffic management (ATM) systems as part of the Advanced Air Transportation Technologies program. As part of this program INEEL conducted a survey of human-system safety methods that have been applied to complex technical systems, to identify lessons learned from these applications and provide recommendations for the development of advanced ATM systems. The domains that were surveyed included offshore oil and gas, commercial nuclear power, commercial aviation, and military. The survey showed that widely different approaches are used in these industries, and that the methods used range from very high-level, qualitative approaches to very detailed quantitative methods such as human reliability analysis (HRA) and probabilistic safety assessment (PSA). In addition, the industries varied widely in how effectively they incorporate human-system safety assessment in the design, development, and testing of complex technical systems. In spite of the lack of uniformity in the approaches and methods used, it was found that methods are available that can be combined and adapted to support the development of advanced air traffic management systems.

  20. Networked VAX/LSI/CAMAC data acquisition system development

    SciTech Connect (OSTI)

    Melvin, J.D.; Clark, D.L.; Mendenhall, M.H.; Tombrello, T.A.

    1983-10-01T23:59:59.000Z

    Recent development of the Caltech data acquisition system installed in 1981, which runs on a VAX-11/750, a Peritek Q-bus network, LSI-11s, and CAMAC, is described. In this system, the DEC VMS and RT-11 operating systems are supported on the VAX ''host'' and LSI-11 ''front-end'' computers by a VMS device driver and network host program, and a bootable RT-11 device driver. Network ''utility'' and ''control'' programs provide general purpose support for communication between front-end and host software. Data acquisition software tools are provided for writing programs to run nuclear physics experiments. A system similar to Caltech's was installed at the University of Rochester in 1982. The network has been tested for speed and real-time response. After including all software overhead required by data acquisition, it was found that the system could transfer buffers and acknowledge their receipt at a net speed of 127 KB per second with a 35% load on the host computer. The network software is currently being rehosted on Ethernet hardware at Caltech in a multiple host - many front-end computer configuration. Compatibility with the current Peritek network software will be maintained.