Powered by Deep Web Technologies
Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

SSL Manufacturing Roadmap  

Broader source: Energy.gov [DOE]

Report detailing DOE Solid-State Lighting Program activities to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products.

2

2015 DOE SSL R&D Workshop LED Topic Table Questions to Consider  

Broader source: Energy.gov [DOE]

This document was distributed during the LED Topic Table portion of the DOE SSL R&D Workshop and aimed to prompt discussion on the following topics:

3

SSL R&D Workshop  

Broader source: Energy.gov [DOE]

SSL R&D Workshop – January 27-29The 2015 R&D workshop will blend discussions on SSL research, product development, and manufacturing R&D needs into one "meeting of the minds" to...

4

2014 Solid-State Lighting Manufacturing R&D Workshop Presentations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Moderator U.S. OLED Lighting Manufacturing Status and Trends John Hamer, OLEDWorks DOE-SSL Manufacturing Workshop Eric Armour, Veeco Instruments Perspectives on Domestic...

5

DOE Announces Dates for 2014 SSL Workshops | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajor Maintenance atT ADemonstrationDOE's

6

A Bold Goal: Boston Manufacturing R&D Workshop Video  

Broader source: Energy.gov [DOE]

View the video from Jim Brodrick's opening presentation at the April 2011 DOE SSL Manufacturing R&D Workshop in Boston, Massachusetts.

7

Text-Alternative Version: Boston Manufacturing R&D Workshop Video  

Broader source: Energy.gov [DOE]

Following is a text version of Jim Brodrick's welcome presentation video from the April 2011 DOE SSL Manufacturing R&D Workshop in Boston, Massachusetts.

8

clean energy manufacturing | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American...

9

Multi-Year SSL Market Development Support Plan  

SciTech Connect (OSTI)

This plan sets out a strategic, five year framework for guiding DOE's market development support activities for high-performance solid-state lighting (SSL) products for the U.S. general illumination market. The market development support activities described in this plan, which span federal fiscal years 2012 to 2016, are intended to affect the types of SSL general illumination products adopted by the market, to accelerate commercial adoption of those products, and to support appropriate application of those products to maximize energy savings. DOE has established aggressive FY16 goals for these activities, including goals for the types of products brought to market, the market adoption of those products, and the energy savings achieved through use of SSL products. These goals are for the combined effect of DOE's SSL market development support and R and D investment, as well as the leveraged activities of its partners. Goals include: (1) inducing the market introduction of SSL products achieving 140 lumens per Watt (lm/W) for warm white products, and 155 lm/W for cool white products, and (2) inducing sales of high-performance SSL products that achieve annual site electricity savings of 21 terawatt hours (0.25 quadrillion Btus primary energy) by FY16. To overcome identified market barriers and to achieve the above five year goals, DOE proposes to carry out the following strategy. DOE will implement a multi-year program to accelerate adoption of good quality, high performance SSL products that achieve significant energy savings and maintain or improve lighting quality. Relying on lessons learned from past emerging technology introductions, such as compact fluorescent lamps, and using newly developed market research, DOE will design its efforts to minimize the likelihood that the SSL market will repeat mistakes that greatly delayed market adoption of earlier emerging technology market introductions. To achieve the maximum effect per dollar invested, DOE will work closely with lighting industry organizations 'such as the Next Generation Lighting Industry Alliance, North American Illuminating Engineering Society, and the International Association of Lighting Designers' and with other government programs seeking to improve lighting energy efficiency. While DOE will work closely with these organizations and others from lighting and electric utility industry, the program will focus primarily on assisting buyers of SSL products and others acting on their behalf because satisfied buyers are essential to the success of SSL market adoption. The work product of DOE's efforts will primarily be information, of the right type, at the right time, and provided efficiently to those who can best use it. A secondary work product of DOE's program will be market opportunities, in which DOE will seek to reduce the risks and costs for manufacturers of SSL products to sell good quality, high performance products to motivated buyers. In short, DOE plans to implement a multi-year program that produces highly useful and widely available information for buyers and their agents, while producing important market opportunities for producers, avoids the mistakes of the past, and is closely coordinated with industry and government. The market needs and the overall strategy were used for deciding which types of programs and projects DOE should create, and what general form they should take. Progress toward achieving plan goals with the above program elements will be monitored and periodically reported.

Ledbetter, Marc R.

2012-05-01T23:59:59.000Z

10

SSL Manufacturing Roadmap  

Broader source: Energy.gov (indexed) [DOE]

for OLED lighting are causing apprehension amongst all of the tool makers. The market for small scale equipment suitable for R&D operations is still healthy and is being pursued...

11

SSL Manufacturing Roadmap  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT.AwardsSPEER'sPods BringDepartmentEarly 1

12

Manufacturing Innovation in the DOE  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007Naval Reactors' Cyber SecurityManufacturingManufacturing

13

EURECOM VPN SSL Documentation utilisateur Page 1 EURECOM VPN SSL  

E-Print Network [OSTI]

EURECOM VPN SSL ­ Documentation utilisateur Page 1 EURECOM VPN SSL Documentation utilisateur/SSH........................................................................................................................... 14 #12;EURECOM VPN SSL ­ Documentation utilisateur Page 2 #12;EURECOM VPN SSL ­ Documentation SSL permettant d'accéder à des ressources internes depuis l'extérieur d'Eurécom. Grâce au VPN SSL

Gesbert, David

14

DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...  

Energy Savers [EERE]

Against 4 Showerhead Manufacturers (Notice of Proposed Civil Penalty and Requests for Test Data Issued) DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

15

DOE Publishes 2014 SSL Manufacturing R&D Roadmap | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at MultipleorderNuclearThisProgram to spurEnergypublished

16

DOE Announces Selections for SSL Manufacturing R&D (Round 3) Funding  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajor MaintenanceCommittee

17

DOE Announces Selections for SSL Manufacturing R&D (Round 4) Funding  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajor MaintenanceCommitteeOpportunity |

18

Browser Interfaces and EV-SSL Certificates: Confusion, Inconsistencies and HCI Challenges  

E-Print Network [OSTI]

Browser Interfaces and EV-SSL Certificates: Confusion, Inconsistencies and HCI Challenges Jennifer (EV) SSL certificates has caused web browser manufacturers to take a new look at how they design SSL certificates rather than in- creasing trust. We perform a systematic walkthrough involving

Van Oorschot, Paul

19

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...  

Broader source: Energy.gov (indexed) [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

20

DOE Requires Manufacturer and Labeler to Cease Sale of Incandescent...  

Broader source: Energy.gov (indexed) [DOE]

Manufacturer and Labeler to Cease Sale of Incandescent Reflector Lamps DOE Requires Manufacturer and Labeler to Cease Sale of Incandescent Reflector Lamps June 24, 2010 - 2:40pm...

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2010 DOE, Li-Ion Battery Cell Manufacturing  

Broader source: Energy.gov (indexed) [DOE]

otherwise restricted information" 2010 DOE, Li-Ion Battery Cell Manufacturing Kee Eun LG Chem Ltd.Compact Power Inc. Jun 8 th 2010 Project ID ARRAVT001 "This presentation does...

22

advanced manufacturing office | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE's industrial technical assistance efforts are critical to the deployment of existing and future advanced energy efficiency technologies, as well as energy management...

23

EURECOM VPN SSL Documentation utilisateur  

E-Print Network [OSTI]

EURECOM VPN SSL Documentation utilisateur Valérie Loisel ­ Pascal Gros V 2 Octobre 2014 Table des)................................................................... 14 EURECOM VPN SSL ­ Documentation utilisateur Page 1 #12;Téléchargemetn des applications CEGID/SSH........................................................................................................................... 20 EURECOM VPN SSL ­ Documentation utilisateur Page 2 #12;Introduction Eurecom met à disposition du

Gesbert, David

24

EURECOM VPN SSL students user's guide Page 1 EURECOM VPN SSL for students  

E-Print Network [OSTI]

EURECOM VPN SSL students user's guide Page 1 EURECOM VPN SSL for students User's guide Table...................................................................................................................................5 SSL VPN usage.........................................................................................................................................17 #12;EURECOM VPN SSL students user's guide Page 2 Introduction Eurecom offers a solution for staff

Gesbert, David

25

DOE Hydrogen Program Manufacturing R&D Pre-Solicitation Meeting...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Hydrogen Program Manufacturing R&D Pre-Solicitation Meeting DOE Hydrogen Program Manufacturing R&D Pre-Solicitation Meeting This presentation by DOE's Pete Devlin was given at...

26

EURECOM VPN SSL for students User's guide  

E-Print Network [OSTI]

EURECOM VPN SSL for students User's guide Table of Contents Introduction...................................................................................................................................9 SSL VPN usage.........................................................................................................................................20 EURECOM VPN SSL students user's guide Page 1 #12;Introduction Eurecom offers a solution for staff

Gesbert, David

27

Progress of DOE Materials, Manufacturing Process R&D, and ARRA...  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Process R&D, and ARRA Battery Manufacturing Grants by Christopher D. Johnson NETL Battery Projects Manager May 10, 2011 This presentation does not contain any...

28

Sandia National Laboratories: SSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeScienceProgramsSAND 2011-5054W Copy of News /SSL

29

SSL R&D Workshop  

Broader source: Energy.gov [DOE]

We are currently in the midst of a lighting revolution comparable to the days of Edison. SSL technology is evolving at a blistering pace, and innovative new products and features continue to...

30

Reverse SSL: Improved Server Performance and DoS Resistance for SSL Kemal BICAKCI  

E-Print Network [OSTI]

1 Reverse SSL: Improved Server Performance and DoS Resistance for SSL Handshakes Kemal BICAKCI the performance and DoS resistance of SSL handshakes. In this paper, we tackle these two related problems by proposing reverse SSL, an extension in which the server is relieved from the heavy public key decryption

31

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air...  

Broader source: Energy.gov (indexed) [DOE]

Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis...

32

Progress of DOE Materials, Manufacturing Process R&D, and ARRA...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es098johnson2011o.pdf More Documents & Publications Progress of DOE Materials, Manufacturing...

33

Wireshark Lab: SSL Version: 2.0  

E-Print Network [OSTI]

Wireshark Lab: SSL Version: 2.0 © 2007 J.F. Kurose, K.W. Ross. All Rights Reserved Computer Networking: A Top- down Approach, 4 th edition. In this lab, we'll investigate the Secure Sockets Layer (SSL) protocol, focusing on the SSL records sent over a TCP connection. We'll do so by analyzing a trace

Lu, Enyue "Annie"

34

Xray Astronomy at SSL My personal perspective  

E-Print Network [OSTI]

Xray Astronomy at SSL My personal perspective Mike Lampton 29 August 2009 #12;Astronomical.Lampton 29 Aug 2009 4 The Quest · 50 years SSL; 50 years of Xray astronomy · New questions: what's out there between theory & observation ­ SSL: observations ­ Campus: theory ­ Together: stronger than either would

California at Berkeley, University of

35

DOE Institutes Enforcement Action against 4 Showerhead Manufacturers...  

Office of Environmental Management (EM)

to the Department of Energy that showerheads manufactured or distributed by these companies meet the applicable water conservation standard as required by the Energy Policy...

36

DOE and Federal Energy and Manufacturing Workforce Programs and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assistance Community College and Career Training Grant Program (TAACCCT) Energy and Manufacturing Awards and Topics List CX-100070: Categorical Exclusion Determination...

37

DOE - Office of Legacy Management -- Titanium Alloys Manufacturing...  

Office of Legacy Management (LM)

Morgan to Roth; Shipment of Zr Tetrachloride; August 22, 1949 NY.41-8 - Letter; Johnson to Titanium Alloy Manufacturing Division (Attn.: Urban); Source Material License No....

38

DOE/EIA-0515(85) Energy Information Administration Manufacturing...  

U.S. Energy Information Administration (EIA) Indexed Site

5(85) Energy Information Administration Manufacturing Energy Consumption Survey: Fuel Switching, 1985 This publication is available from the Superintendent of Documents, U.S,...

39

Solid-State Lighting Manufacturing Research and Development ...  

Broader source: Energy.gov (indexed) [DOE]

to achieve cost reduction of solid-state lighting (SSL) for general illumination through improvements in manufacturing equipment, processes, or techniques. It is anticipated that...

40

PKI s SSL mrs Crysys Lab -oktatas@crysys.hu  

E-Print Network [OSTI]

PKI és SSL mérés Crysys Lab - oktatas@crysys.hu 2008. szeptember 12. Tartalomjegyzék 1. Elméleti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Mérési környezet 2 2.1. OpenSSL környezet

Bencsáth, Boldizsár

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Presentation to DOE Fuel Cell Manufacturing Workshop 2011  

E-Print Network [OSTI]

: JP-8, diesel Fuel Cell Project Scope #12;Soldier Power Unmanned UAV Emergency Power Tactical Vehicle Automation · Production Material · QC during Manufacturing · QC for Product · BOP Hardware · BOP Performance

42

SSL Selections Descriptions v6.xls  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transparent Conductive Hole Injection Electrode for Organic Light-Emitting Diode (OLED) SSL. This project seeks to develop a cost-effective replacement for...

43

2014 SSL Market Development Workshop Presentations and Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2014 SSL Market Development Workshop Presentations and Materials 2014 SSL Market Development Workshop Presentations and Materials Download presentations from the 2014 Solid-State...

44

Correspondence: Email: korpela@ssl.berkeley.edu; Telephone: (510) 643-6538; URL: http://setiathome.ssl.berkeley.edu/~korpela  

E-Print Network [OSTI]

___________________ Correspondence: Email: korpela@ssl.berkeley.edu; Telephone: (510) 643-6538; URL: http://setiathome.ssl.berkeley.edu/~korpela The SPEAR Science Payload Eric J. Korpelaa , Jerry

Korpela, Eric J.

45

DOE/EIA-0516(85) Energy Information Administration Manufacturing...  

U.S. Energy Information Administration (EIA) Indexed Site

6(85) Energy Information Administration Manufacturing Energy Consumption Survey: Changes in Energy Efficienc y 1980-198 5 0 6 6 T ' L I A n s n u e r b i r p u T J d J T O J u o i...

46

DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises OptionDOE Hydrogen and(Notice of

47

IET Communications Resources Service Level Agreement for SSL VPN  

E-Print Network [OSTI]

IET Communications Resources Service Level Agreement for SSL VPN The purpose of this Service, at the specified price and duration, SSL (Secure Socket Layer) VPN (Virtual Private Network) service to allow departmental VPN Administrators to configure SSL VPN for their campus department on the backbone network. SSL

California at Davis, University of

48

mSSL: Extending SSL to Support Data Sharing Among Collaborative Clients Jun Li and Xun Kang  

E-Print Network [OSTI]

mSSL: Extending SSL to Support Data Sharing Among Collaborative Clients Jun Li and Xun Kang it offered? In this paper, we present a protocol, called mSSL, that provides a set of security functions and confidentiality support, mSSL provides an original design on supporting data integrity and proof of service

Li, Jun

49

Advanced Manufacturing Office in DOE Multimaterial Joining Workshop  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41AdamEnergyAdvanced DOE1 | Energy

50

DOE Institutes Enforcement Action against 4 Showerhead Manufacturers for  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese(Notice of Proposed CivilFailure to

51

SSL Splitting and Barnraising: Cooperative Caching with Authenticity Guarantees  

E-Print Network [OSTI]

SSL Splitting and Barnraising: Cooperative Caching with Authenticity Guarantees by Christopher T by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arthur C. Smith Chairman, Department Committee on Graduate Students #12;SSL Splitting and Barnraising for the degree of Master of Engineering in Electrical Engineering and Computer Science Abstract SSL splitting

Gummadi, Ramakrishna

52

This POODLE Bites: Exploiting The SSL 3.0 Fallback  

E-Print Network [OSTI]

This POODLE Bites: Exploiting The SSL 3.0 Fallback Security Advisory Bodo Möller, Thai Duong, Krzysztof Kotowicz Google September 2014 {bmoeller, thaidn, koto}@google.com Introduction SSL 3.0 [RFC remain backwardscompatible with SSL 3.0 to interoperate with legacy systems in the interest of a smooth

Moeller, Bodo

53

Browser Interfaces and Extended Validation SSL Certificates: An Empirical Study  

E-Print Network [OSTI]

Browser Interfaces and Extended Validation SSL Certificates: An Empirical Study Robert Biddle provided by SSL certificates and browser interfaces in the face of var- ious attacks. As one response, basic SSL server certificates are being demoted to second-class status in conjunction

Van Oorschot, Paul

54

Improving SSL Handshake Performance via Batching Hovav Shacham Dan Boneh  

E-Print Network [OSTI]

Improving SSL Handshake Performance via Batching Hovav Shacham Dan Boneh hovav@cs.stanford.edu dabo@cs.stanford.edu Abstract We present an algorithmic approach for speeding up SSL's performance on a web server. Our approach improves the performance of SSL's handshake protocol by up to a factor of 2.5 for 1024-bit RSA keys

Boneh, Dan

55

Manufacturing  

Office of Environmental Management (EM)

Flow of Materials through Industry Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the TechnologySystem ......

56

2007 Raj JainCSE571SWashington University in St. Louis Secure Socket Layer (SSL)Secure Socket Layer (SSL)  

E-Print Network [OSTI]

15-1 ©2007 Raj JainCSE571SWashington University in St. Louis Secure Socket Layer (SSL)Secure Socket Layer (SSL) and Transport Layerand Transport Layer Security (TLS)Security (TLS) Raj Jain Washington in St. Louis OverviewOverview History and overview of SSL/TLS Products and Implementations Datagram

Jain, Raj

57

2009 Raj JainCSE571SWashington University in St. Louis Secure Socket Layer (SSL)Secure Socket Layer (SSL)  

E-Print Network [OSTI]

15-1 ©2009 Raj JainCSE571SWashington University in St. Louis Secure Socket Layer (SSL)Secure Socket Layer (SSL) and Transport Layerand Transport Layer Security (TLS)Security (TLS) Raj Jain Washington in St. Louis OverviewOverview History and overview of SSL/TLS Products and Implementations Datagram

Jain, Raj

58

IMPLEMENTING MULTIPLE CHANNELS OVER SSL Yong Song, Victor C.M. Leung, Konstantin Beznosov  

E-Print Network [OSTI]

IMPLEMENTING MULTIPLE CHANNELS OVER SSL Yong Song, Victor C.M. Leung, Konstantin Beznosov:{yongs,vleung,beznosov}@ece.ubc.ca Keywords: Communication security, Mobile security, Multiple channels, SSL Abstract: Multiple-Channel SSL (MC-SSL) is our model and protocol for the security of client-server communication. In contrast to SSL

59

Adaptive SSL: Design, Implementation and Overhead Analysis submission for Work-in-Progress/Application Paper track.  

E-Print Network [OSTI]

Adaptive SSL: Design, Implementation and Overhead Analysis submission for Work an adaptation controller for SSL (Secure Socket Layer), called Adaptive SSL. 1 Introduction Applications adaptation of the Secure Socket Layer (SSL) protocol [3]. Adaptive SSL (ASSL) aims to provide appropriate se

Newcastle upon Tyne, University of

60

Procedure-level Authorization for Java Remote Method Invocation Using SSL Credentials  

E-Print Network [OSTI]

Procedure-level Authorization for Java Remote Method Invocation Using SSL Credentials Alexander of any thread assumptions. KEYWORDS Java, RMI, RPC, mobile code, SSL, Authorization #12;i TABLE............................................................ 2 Figure 2: The creation and registration of an SSL socket

Plotkin, Joshua B.

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Progress of DOE Materials, Manufacturing Process R&D, and ARRA...  

Broader source: Energy.gov (indexed) [DOE]

Vehicles ARRA Battery Manufacturing for Electric Drive Vehicles Presenter Christopher Johnson NETL Battery Projects Manager May 15th, 2012 2008 - Materials and Manufacturing...

62

Sandia National Laboratories: SSL Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolarCybernetics:2P DOE-SponsoredParticipationSPI SolarSPIDERSSSL

63

DOE Solid-State Lighting in Higher Ed Facilities  

SciTech Connect (OSTI)

The focus of the workshop was on higher education facilities because college and university campuses are an important market for lighting products and they use almost every kind of luminaire on the market. This workshop was seen as a chance for SSL manufacturers large and small to get the inside scoop from a group of people that specify, pay for, install, use, maintain, and dispose of lighting systems for nearly every type of application. Workshop attendees explored the barriers to SSL adoption, the applications where SSL products could work better than existing technologies, and where SSL luminaires are currently falling short. This report summarizes the Workshop activities and presentation highlights.

Miller, Naomi J.; Curry, Ku'Uipo J.

2010-07-20T23:59:59.000Z

64

Sandia National Laboratories: tSSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational SolartSSL George Wang's Invited Talk at 2013

65

Improving Secure Server Performance by Rebalancing SSL/TLS Claude Castelluccia, Einar Mykletun, Gene Tsudik  

E-Print Network [OSTI]

Improving Secure Server Performance by Re­balancing SSL/TLS Handshakes Claude Castelluccia, Einar of each SSL handshake. Since most SSL­enabled servers use RSA, the burden of performing many costly to perform commensurately less work, thus resulting in better SSL throughput. Proposed tech­ niques are based

66

Accelerating SSL with GPUs Keon Jang* Sangjin Han* Seungyeop Han Sue Moon* KyoungSoo Park**  

E-Print Network [OSTI]

Accelerating SSL with GPUs Keon Jang* Sangjin Han* Seungyeop Han Sue Moon* KyoungSoo Park@ee.kaist.ac.kr ABSTRACT SSL/TLS is a standard protocol for secure Internet communication. Despite its great success, today's SSL deployment is largely lim- ited to security-critical domains. The low adoption rate of SSL

Moon, Sue B.

67

Lecture 8: SSL and Layer 4 Security INFS 766/INFT 865  

E-Print Network [OSTI]

1 Lecture 8: SSL and Layer 4 Security INFS 766/INFT 865 Prof. Ravi Sandhu Internet Security Protocols Spring 2000 INFS 766/INFT 865 Internet Security Protocols Spring 2000 Lecture 8 SSL Layer 4 security Prof. Ravi Sandhu 2ÃShvÃThquÃ2000 SECURE SOCKETS LAYER (SSL) x layered on top of TCP x SSL

Sandhu, Ravi

68

SSL/TLS Session-Aware User Authentication Rolf Oppliger1  

E-Print Network [OSTI]

SSL/TLS Session-Aware User Authentication Revisited Rolf Oppliger1 , Ralf Hauser2 , and David Basin threat to SSL/TLS-based e-commerce applications. In [OHB06], we introduced the notion of SSL/TLS session-aware user authentication to protect SSL/TLS- based e-commerce applications against MITM attacks and we

Basin, David

69

2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop...  

Energy Savers [EERE]

2011 NRELDOE Hydrogen and Fuel Cell Manufacturing R&D Workshop Report 2011 NRELDOE Hydrogen and Fuel Cell Manufacturing R&D Workshop Report Proceedings from the August 11-12,...

70

Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast  

Broader source: Energy.gov [DOE]

In this October 8, 2009 webcast, ENERGY STAR Program Manager Richard Karney gave an overview of ENERGY STAR criteria covering SSL-based outdoor area and roadway lighting, outdoor wall packs,...

71

Solid-State Lighting R&D Workshop  

Broader source: Energy.gov [DOE]

Join DOE—and lighting industry experts representing the entire SSL supply chain—at the sixth annual SSL Manufacturing R&D Workshop.

72

A Breakthrough for Prepaid Payment: End to End Token Exchange and Management Using Secure SSL Channels Created by EAP-TLS Smart Cards  

E-Print Network [OSTI]

A Breakthrough for Prepaid Payment: End to End Token Exchange and Management Using Secure SSL SSL tunnels between smart cards, or between smart cards and SSL servers. SSL [8] [9] is the de facto

Paris-Sud XI, Université de

73

DOE Hosts Solid-State Lighting Commercial Product Testing Program...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department of Energy (DOE) hosted a workshop on October 27, 2006, to introduce the DOE SSL Commercial Product Testing Program. The workshop, held in Washington, D.C., drew over...

74

Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting  

Broader source: Energy.gov [DOE]

Below is the text-alternative version of the Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast.

75

Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30  

Broader source: Energy.gov [DOE]

Below is the text-alternative version of the ENERGY STAR® for SSL: Getting Ready for September 30 webcast.

76

SSL/TLS Session-Aware User Authentication Using a GAA Bootstrapped Key  

E-Print Network [OSTI]

SSL/TLS Session-Aware User Authentication Using a GAA Bootstrapped Key Chunhua Chen1 , Chris J.mitchell@rhul.ac.uk Abstract. Most SSL/TLS-based electronic commerce (e-commerce) ap- plications (including Internet banking a server effectively, and because user authentication methods are typi- cally decoupled from SSL

Sheldon, Nathan D.

77

Vulnerability of SSL to Chosen-Plaintext Attack Gregory V. Bard  

E-Print Network [OSTI]

Vulnerability of SSL to Chosen-Plaintext Attack Gregory V. Bard #3; May 11, 2004 Abstract The Secure Sockets Layer (SSL) protocol is widely used for securing communication over the Internet. When utilizing block ciphers for encryption, the SSL standard mandates the use of the cipher block chaining (CBC

78

Cryptographic Strength of SSL/TLS Servers: Current and Recent Practices  

E-Print Network [OSTI]

Cryptographic Strength of SSL/TLS Servers: Current and Recent Practices Homin K. Lee Department (SSL) and its variant, Transport Layer Security (TLS), are used toward ensuring server se- curity. In this paper, we characterize the cryptographic strength of public servers running SSL/TLS. We present a tool

Lee, Homin K.

79

QoS-aware Optimization Strategy for Security Ranking in SSL Protocol , Zhe Tang 1  

E-Print Network [OSTI]

QoS-aware Optimization Strategy for Security Ranking in SSL Protocol Fang Qi 1 , Zhe Tang 1 socket layer protocol (SSL) is to provide confidentiality and data integrity between two communicating entities. Since the most computationally expensive step in the SSL handshake protocol is the server's RSA

Wu, Jie

80

A Technical Comparison of IPSec and SSL AbdelNasir Alshamsi Takamichi Saito y  

E-Print Network [OSTI]

A Technical Comparison of IPSec and SSL AbdelNasir Alshamsi Takamichi Saito y Tokyo University of Technology Abstract IPSec (IP Security) and SSL (Secure Socket Layer) have been the most robust and most potential tools available for securing communications over the Inter- net. Both IPSec and SSL have

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Analysis of the SSL 3.0 protocol David Wagner Bruce Schneier  

E-Print Network [OSTI]

Analysis of the SSL 3.0 protocol David Wagner Bruce Schneier University of California, Berkeley Counterpane Systems daw@cs.berkeley.edu schneier@counterpane.com Revised November 19, 1996 Abstract The SSL analysis of the cryptographic strength of the SSL 3.0 protocol. A number of minor flaws in the protocol

Wagner, David

82

The Most Dangerous Code in the World: Validating SSL Certificates in Non-Browser Software  

E-Print Network [OSTI]

The Most Dangerous Code in the World: Validating SSL Certificates in Non-Browser Software Martin The University of Texas at Austin ABSTRACT SSL (Secure Sockets Layer) is the de facto standard for secure In- ternet communications. Security of SSL connections against an active network attacker depends

Shmatikov, Vitaly

83

Lessons Learned From Previous SSL/TLS Attacks A Brief Chronology Of Attacks And Weaknesses  

E-Print Network [OSTI]

Lessons Learned From Previous SSL/TLS Attacks A Brief Chronology Of Attacks And Weaknesses in 1994 the Secure Socket Layer (SSL) protocol (later renamed to Transport Layer Security (TLS)) evolved to the de facto standard for securing the transport layer. SSL/TLS can be used for ensuring data

84

Cost-Performance Optimization of SSL-Based Secure Distributed Infrastructures  

E-Print Network [OSTI]

Cost-Performance Optimization of SSL-Based Secure Distributed Infrastructures Stefano Bregni (SSL) protocol is one of the most viable solutions to provide the required level of confidentiality, message integrity and endpoint authentication. The two main alternatives for providing SSL security

Bregni, Stefano

85

University of Newcastle upon Tyne Adaptive SSL: Design, Implementation and Overhead Analysis  

E-Print Network [OSTI]

University of Newcastle upon Tyne COMPUTING SCIENCE Adaptive SSL: Design, Implementation NEWCASTLE UN IVERSITY OF #12;TECHNICAL REPORT SERIES No. CS-TR-1008 March, 2007 Adaptive SSL: Design-server interactions. To that end, we design and implement an adaptation controller for SSL (Secure Socket Layer

Newcastle upon Tyne, University of

86

Analysis of the SSL 3.0 protocol David Wagner Bruce Schneier  

E-Print Network [OSTI]

Analysis of the SSL 3.0 protocol David Wagner Bruce Schneier University of California, Berkeley Counterpane Systems daw@cs.berkeley.edu schneier@counterpane.com Abstract The SSL protocol is intended of the cryptographic strength of the SSL 3.0 protocol. A number of minor flaws in the protocol and several new active

Schneier, Bruce

87

SSL/TLS Session-Aware User Authentication--Or How to Effectively Thwart  

E-Print Network [OSTI]

SSL/TLS Session-Aware User Authentication--Or How to Effectively Thwart the Man-in-the-Middle Rolf@inf.ethz.ch Abstract. Man-in-the-middle attacks pose a serious threat to SSL/TLS- based electronic commerce mechanisms fail to provide protection against this type of attack, even when they run on top of SSL

Basin, David

88

FiniteState Analysis of SSL 3.0 John C. Mitchell Vitaly Shmatikov Ulrich Stern  

E-Print Network [OSTI]

Finite­State Analysis of SSL 3.0 John C. Mitchell Vitaly Shmatikov Ulrich Stern Computer Science Layer (SSL) protocol is an­ alyzed using a finite­state enumeration tool called Mur'. The analysis is presented using a sequence of incremental approximations to the SSL 3.0 hand­ shake protocol. Each

Dill, David L.

89

A CHALLENGING BUT FEASIBLE BLOCKWISE-ADAPTIVE CHOSEN-PLAINTEXT ATTACK ON SSL  

E-Print Network [OSTI]

A CHALLENGING BUT FEASIBLE BLOCKWISE-ADAPTIVE CHOSEN-PLAINTEXT ATTACK ON SSL Gregory V. Bard.bard@ieee.org Keywords: Blockwise Adaptive, Chosen Plaintext Attack (CPA), Secure Sockets Layer (SSL), Transport Layer). Abstract: This paper introduces a chosen-plaintext vulnerability in the Secure Sockets Layer (SSL

90

Cost-Performance Optimization of SSL-Based Secure Distributed Infrastructures  

E-Print Network [OSTI]

Cost-Performance Optimization of SSL-Based Secure Distributed Infrastructures S. Bregni, Senior. The Secure Socket Layer (SSL) protocol is one of the most viable solutions to provide the required level of confidentiality, message integrity and endpoint authentication. The two main alternatives for providing SSL

Bregni, Stefano

91

SSL splitting: securely serving data from untrusted Chris Lesniewski-Laas and M. Frans Kaashoek  

E-Print Network [OSTI]

SSL splitting: securely serving data from untrusted caches Chris Lesniewski-Laas and M. Frans that they proxy. SSL splitting is a new tech- nique for guaranteeing the integrity of data served from proxies without requir- ing changes to Web clients. Instead of relaying an insecure HTTP connection, an SSL

Gummadi, Ramakrishna

92

Accelerating SSL with GPUs Keon Jang* Sangjin Han* Seungyeop Han Sue Moon* KyoungSoo Park**  

E-Print Network [OSTI]

Accelerating SSL with GPUs Keon Jang* Sangjin Han* Seungyeop Han Sue Moon* KyoungSoo Park Engineering, KAIST, Korea kyoungsoo@ee.kaist.ac.kr ABSTRACT SSL/TLS is a standard protocol for secure Internet communication. Despite its great success, today's SSL deployment is largely lim- ited to security

Park, KyoungSoo

93

Experimenting At Scale With Google Chrome's SSL Warning Adrienne Porter Felt  

E-Print Network [OSTI]

Experimenting At Scale With Google Chrome's SSL Warning Adrienne Porter Felt Hazim Almuhimedi Sunny@google.comfelt, rreeder@google.com ABSTRACT Web browsers show HTTPS authentication warnings (i.e., SSL warnings) when is to decrease the number of users who click through the Google Chrome SSL warning. Prior research showed

Tomkins, Andrew

94

The order of encryption and authentication for protecting communications (Or: how secure is SSL?)  

E-Print Network [OSTI]

The order of encryption and authentication for protecting communications (Or: how secure is SSL and authentication, including the authenticate-then-encrypt method used in SSL, are not generically secure. We show with a random or pseudorandom pad). Thus, while we show the generic security of SSL to be broken, the current

95

Attacking RSA-based Sessions in SSL/TLS* Vlastimil Klma  

E-Print Network [OSTI]

Attacking RSA-based Sessions in SSL/TLS* Vlastimil Klíma , Ondej Pokorný1 and Tomás Rosa2, 1 ICZ on RSA-based sessions in SSL/TLS protocols. These protocols incorporate the PKCS#1 (v. 1.5) encoding- secret can decrypt the whole captured SSL/TLS session. We show that incorporating a version number check

96

Analysis of the SSL 3.0 protocol David Wagner Bruce Schneier  

E-Print Network [OSTI]

Analysis of the SSL 3.0 protocol David Wagner Bruce Schneier University of California, Berkeley Counterpane Systems daw@cs.berkeley.edu schneier@counterpane.com Revised April 15, 1997 Abstract The SSL analysis of the cryptographic strength of the SSL 3.0 protocol. A number of minor flaws in the protocol

Boult, Terrance E.

97

GUIDELINES ON IMPLEMENTING A SECURE SOCKETS LAYER (SSL) VIRTUAL PRIVATE NETWORK (VPN)  

E-Print Network [OSTI]

GUIDELINES ON IMPLEMENTING A SECURE SOCKETS LAYER (SSL) VIRTUAL PRIVATE NETWORK (VPN) By Sheila with the transmission of sensitive information across networks. NIST Special Publication (SP) 800-113, Guide to SSL VPNs, offers practical guidelines on implementing a Secure Sockets Layer (SSL) virtual private network (VPN

98

Analysis of the SSL 3.0 protocol David Wagner Bruce Schneier  

E-Print Network [OSTI]

Analysis of the SSL 3.0 protocol David Wagner Bruce Schneier University of California, Berkeley Counterpane Systems daw@cs.berkeley.edu schneier@counterpane.com Abstract The SSL protocol is intended of the cryptographic strength of the SSL 3.0 protocol. A number of minor aws in the protocol and several new active

Schneier, Bruce

99

SSL/TLS Session-Aware User Authentication: A Lightweight Alternative to Client-Side Certificates  

E-Print Network [OSTI]

SSL/TLS Session-Aware User Authentication: A Lightweight Alternative to Client-Side Certificates E-Mail: basin@inf.ethz.ch Abstract Many SSL/TLS-based e-commerce applications employ traditional authentication mechanisms on the client side. These mechanisms--if decoupled from SSL/TLS session establishment

Basin, David

100

SSL-VPN unter Linux (Ubuntu) mit Network Stand: 28. April 2010  

E-Print Network [OSTI]

SSL-VPN unter Linux (Ubuntu) mit Network Connect Stand: 28. April 2010 1 Vorwort Folgende@cms.hu-berlin.de #12;SSL-VPN unter Linux (Ubuntu) mit Network Connect Im Gnome die Paketverwaltung über Anwen- dungMail: oper@cms.hu-berlin.de #12;SSL-VPN unter Linux (Ubuntu) mit Network Connect 4 VPN-Verbindung aufbauen

Peters, Achim

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Vulnerability of SSL to Chosen-Plaintext Attack Gregory V. Bard  

E-Print Network [OSTI]

Vulnerability of SSL to Chosen-Plaintext Attack Gregory V. Bard May 11, 2004 Abstract The Secure Sockets Layer (SSL) protocol is widely used for securing communication over the Internet. When utilizing block ciphers for encryption, the SSL standard mandates the use of the cipher block chaining (CBC) mode

102

Analysis of the SSL 3.0 protocol David Wagner Bruce Schneier  

E-Print Network [OSTI]

Analysis of the SSL 3.0 protocol David Wagner Bruce Schneier University of California, Berkeley Counterpane Systems daw@cs.berkeley.edu schneier@counterpane.com Revised April 15, 1997 Abstract The SSL analysis of the cryptographic strength of the SSL 3.0 protocol. A number of minor aws in the protocol

Schneier, Bruce

103

Accelerating SSL using the Vector processors in IBM's Cell Broadband Engine  

E-Print Network [OSTI]

Accelerating SSL using the Vector processors in IBM's Cell Broadband Engine for Sony's Playstation and performance gains when using the vector processing capabilities for SSL and shows that big improve- ments are still possible with the hardware designed primarily for other purposes. 1 Why SSL? Despite huge gains

104

SSL splitting: securely serving data from untrusted caches Chris Lesniewski-Laas and M. Frans Kaashoek  

E-Print Network [OSTI]

SSL splitting: securely serving data from untrusted caches Chris Lesniewski-Laas and M. Frans that they proxy. SSL splitting is a new technique for guaranteeing the integrity of data served from proxies without requiring changes to Web clients. Instead of relaying an insecure HTTP connec- tion, an SSL

Gummadi, Ramakrishna

105

M.Lampton UCB SSL 2002, 2009 1 Fitting a Gaussian Function to  

E-Print Network [OSTI]

M.Lampton UCB SSL 2002, 2009 1 Fitting a Gaussian Function to Binned Data M.Lampton UCB Space Sciences Lab May 2002; revised March 2009 #12;M.Lampton UCB SSL 2002, 2009 2 Motivation · Commonly dimensional, the methods can be extended to two or more dimensions. #12;M.Lampton UCB SSL 2002, 2009 3 Model

California at Berkeley, University of

106

DOE Publishes Report on Accelerated Life Testing of SSL Luminaires...  

Broader source: Energy.gov (indexed) [DOE]

of which were attributed to solder-joint fatigue, and the other two to board-level corrosion. The findings reinforce the belief that LEDs in lighting systems are highly...

107

DOE Publishes Report on Accelerated Life Testing of SSL Luminaires |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at MultipleorderNuclearThisProgramDepartment ofLamps

108

DOE Announces Selections for SSL Core Technology Research (Round 10),  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThirdPartnershipDrillingRFI on Rare EarthProduct

109

DOE Announces Selections for SSL Core Technology (Round 6), Product  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajor MaintenanceCommittee -

110

DOE Announces Selections for SSL Core Technology Research (Round 7),  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajor MaintenanceCommittee -Product

111

DOE Announces Selections for SSL Core Technology and Product Development  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajor MaintenanceCommittee -ProductFunding

112

DOE and MEEA Host Fourth Annual SSL Market Introduction Workshop |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof EnergyAllianceDepartment of EnergyAbhai KumarDepartment

113

2015 DOE SSL R&D Workshop Agenda  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013Lamps; SupplementalRuleNatural

114

2015 DOE SSL R&D Workshop Attendee List  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013Lamps; SupplementalRuleNaturalSOLID-STATE

115

Improving Secure Server Performance by Re-balancing SSL/TLS Claude Castelluccia, Einar Mykletun, Gene Tsudik  

E-Print Network [OSTI]

Improving Secure Server Performance by Re-balancing SSL/TLS Handshakes Claude Castelluccia, Einar of each SSL handshake. Since most SSL-enabled servers use RSA, the burden of performing many costly to perform commensurately less work, thus resulting in better SSL throughput. Proposed tech- niques are based

116

The Third Annual DOE Solid-State Lighting Manufacturing R&D Workshop |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategoryAdvanced Manufacturing

117

Patent License for OpenSSL 1. Definitions  

E-Print Network [OSTI]

Patent License for OpenSSL 1. Definitions 1.1 "Licensor" means Phillip Rogaway. orOne Shields Avenue, Davis, CA 95616-8562. 1.2 "Licensed Patents" means any patent that claims priority to United States Patent Application No. 09/918,615 entitled "Method and Apparatus for Facilitating Efficient

Rogaway, Phillip

118

Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartment ofProgram(S3TEC ) |Manufacturing

119

MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL  

SciTech Connect (OSTI)

Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target of >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost performance, and reductions in operating voltage through thinner and higher uniformity active device layers. We have now installed a pilot encapsulation system at AVI for controlled, high throughput lamination encapsulation of flexible OLEDs in a novel process. Along with this, we have developed, with our materials supply partners, adhesives, barrier films and other encapsulation materials and we are showing total air product lifetimes in the 2-4 years range from a process consistent with our throughput goals of {approx}1M device per month ({approx}30,000 sq. ft. of processed OLEDs). Within the last year of the project, we have been working to introduce the manufacturing improvements made in our LEP deposition and annealing process to our commercial partners. Based on the success of this, a pilot scale-up program was begun. During this process, Add-Vision was acquired by a strategic partner, in no small part, because of the promise of future success of the technology as evidenced by our commercial partners pilot scale-up plans. Overall, the performance, manufacturing and product work in this project has been successful. Additional analysis and device work at LBL has also shown a unique adhesion change with device bias stressing which may result from active layer polymer cross-linking during bias stressing of device. It was shown that even small bias stresses, as a fraction of a full device lifetime stress period, result in measurable chemical change in the device. Further work needs to be conducted to fully understand the chemical nature of this interaction. Elucidation of this effect would enable doped OLED formulation to be engineered to suppress this effect and further extend lifetimes and reduce voltage climb.

DR. DEVIN MACKENZIE

2011-12-13T23:59:59.000Z

120

DOE and Northwest Partners Host Three-Day Market Introduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

270 attendees gathered in Portland, OR to participate in the "Voices for SSL Efficiency" Solid-State Lighting Workshop on July 9-11, 2008. The workshop, hosted by DOE, Bonneville...

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DOE and Northeast Energy Efficiency Partnerships Host Two-Day...  

Broader source: Energy.gov (indexed) [DOE]

Over 100 attendees gathered in Boston, MA to participate in the "Voices for SSL Efficiency" Solid-State Lighting Workshop on July 16-17, 2007. The workshop, hosted by DOE and...

122

DOE Hydrogen Program Manufacturing R&D Pre-Solicitation Meeting |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartment DOE ESPCofOfficeGuidePipeline

123

Manufacturing technologies  

SciTech Connect (OSTI)

The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

NONE

1995-09-01T23:59:59.000Z

124

Final Merit Review Agenda, DOE Advanced Manufacturing Office, Peer Review, May 6-7, 2014  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry Comments May 4-9,Francisco, August 20077FY04DOE

125

U.S. DOE and DOD Manufacturing Innovation Multi-Topic Workshop  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy American Indian Policy1.5Fuel andDepartmentDOE

126

Clean Energy Manufacturing Initiative Solid-State Lighting  

SciTech Connect (OSTI)

The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

2014-09-23T23:59:59.000Z

127

Clean Energy Manufacturing Initiative Solid-State Lighting  

ScienceCinema (OSTI)

The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

2014-12-03T23:59:59.000Z

128

Text-Alternative Version: SSL Luminaire Performance in the Lab: Just How Well Do They Perform?  

Broader source: Energy.gov [DOE]

Below is the text-alternative version of the SSL Luminaire Performance in the Lab: Just How Well Do They Perform webcast.

129

Text-Alternative Version: CALiPER Round 7 Testing Results and SSL Product Life Issues  

Broader source: Energy.gov [DOE]

Below is the text-alternative version of the CALiPER Round 7 Testing Results and SSL Product Life Issues webcast.

130

EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1)  

Broader source: Energy.gov [DOE]

Based on the analysis in the Environmental Assessment DOE determined that its proposed action, to award a federal grant to General Motors to establish an electric motor components manufacturing and electric drive assembly facility would result in no significant adverse impacts.

131

MANUFACTURING Manufacturing and Biomanufacturing  

E-Print Network [OSTI]

process improvements to manufacturing. In addition, the critical national need area of Manufacturing hasMANUFACTURING Manufacturing and Biomanufacturing: Materials Advances and Critical Processes NATIONAL NEED The proposed topics within "Manufacturing and Biomanufacturing: Materials Advances

Magee, Joseph W.

132

A Proof of Concept Implementation of SSL/TLS Session-Aware User Authentication (TLS-SA)  

E-Print Network [OSTI]

A Proof of Concept Implementation of SSL/TLS Session-Aware User Authentication (TLS-SA) Rolf, CH-8005 Z¨urich Abstract Most SSL/TLS-based e-commerce applications employ con- ventional mechanisms for user authentication. These mechanisms--if de- coupled from SSL/TLS session establishment

Basin, David

133

SSL Selections Descriptions v6.xls | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT.AwardsSPEER'sPodsSSL Selections

134

Harvesting SSL Certificate Data to Mitigate Web-Fraud  

E-Print Network [OSTI]

Web-fraud is one of the most unpleasant features of today's Internet. Two eminent examples of web-fraudulent activities are phishing and typosquatting. Phishing aims to elicit sensitive information from users by presenting them with mock-ups of legitimate web sites. Typosquatting is the nefarious practice of fielding web sites with names closely resembling those of legitimate and popular Internet destinations. Effects range from relatively benign (such as unwanted or unexpected ads) to downright sinister (especially, when typosquatting is combined with phishing). Prior work has assessed the risks of phishing and typosquatting and even attempted to profile and mitigate them. However, the problem remains largely unsolved. This paper presents a novel technique to detect web-fraud domains that utilize HTTPS. To achieve this, we conduct the first comprehensive study of SSL certificates for legitimate and popular domains, as opposed to those used for web-fraud. Drawing from extensive measurements, we build a classi...

Mishari, Mishari Al; Defrawy, Karim El; Tsudik, Gene

2009-01-01T23:59:59.000Z

135

Desde 1953, SSL Schwellenwerk und Steuerungstechnik Linz GmbH es un fabricante lder de traviesas de hormign pretensado para los ferrocarriles  

E-Print Network [OSTI]

Desde 1953, SSL Schwellenwerk und Steuerungstechnik Linz GmbH es un fabricante líder de traviesas de presentación, en inglés o alemán, a: SSL Schwellenwerk und Steuerungstechnik Linz GmbH, A-4030 Linz Attn. Sra. Nicole Preuer E-mail: mail@ssl-linz.at #12;

Rey Juan Carlos, Universidad

136

Crying Wolf: An Empirical Study of SSL Warning Effectiveness Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lorrie Faith Cranor  

E-Print Network [OSTI]

Crying Wolf: An Empirical Study of SSL Warning Effectiveness Joshua Sunshine, Serge Egelman, Hazim of over 400 Internet users to examine their reactions to and understanding of current SSL warn- ings. We can be improved, a better approach may be to minimize the use of SSL warnings altogether by blocking

Sadeh, Norman M.

137

Desde 1953, SSL Schwellenwerk und Steuerungstechnik Linz GmbH es un fabricante lder de traviesas de hormign pretensado para los ferrocarriles  

E-Print Network [OSTI]

Desde 1953, SSL Schwellenwerk und Steuerungstechnik Linz GmbH es un fabricante líder de traviesas presentación, en inglés o alemán, a: SSL Schwellenwerk und Steuerungstechnik Linz GmbH, A-4030 Linz Attn. Sra. Nicole Preuer E-mail: mail@ssl-linz.at #12;

Rey Juan Carlos, Universidad

138

USENIX Association NSDI '11: 8th USENIX Symposium on Networked Systems Design and Implementation 1 SSLShader: Cheap SSL Acceleration with Commodity Processors  

E-Print Network [OSTI]

SSLShader: Cheap SSL Acceleration with Commodity Processors Keon Jang+, Sangjin Han+, Seungyeop Han*, Sue. Unfortunately, today's SSL deployment is largely limited to security or privacy- critical domains. The low, and the cost of good privacy on the Internet is tightly bound to expensive hardware SSL accelerators

Moon, Sue B.

139

Prospects for U.S.-Based Manufacturing in the SSL Industry | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket37963 Vol. 79, No. 128 Thursday, JulyEnergy

140

2014 SSL Manufacturing R&D Workshop Presentations Posted | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013 issue ofOffice |4|

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DOE  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy Outlook QuarterlyDOE

142

ENERGY STAR® for SSL: Getting Ready for September 30  

Broader source: Energy.gov [DOE]

This June 26, 2008 webcast presented an overview of the DOE ENERGY STAR® criteria for solid-state luminaires, which became effective September 30, 2008. Richard Karney, DOE, discussed the...

143

A Study of the Performance of SSL on PDAs Youngsang Shin  

E-Print Network [OSTI]

being used as handheld computers. Today, their network connectivity and their usages for various tasks and comparative study of the performance of the SSL protocol for PDA and laptop clients, both in WEP secured for a laptop client, but surprisingly most of the delay comes from network latency and other PDA architecture

Gupta, Minaxi

144

Frequently Asked Questions about the CALiPER Program  

Broader source: Energy.gov [DOE]

This page addresses many of the questions manufacturers, testing laboratories, consumers, retailers, and energy efficiency program sponsors may have about the DOE SSL Commercially Available LED...

145

E-Print Network 3.0 - advanced manufacturing concepts Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technologies... process technologies, reliable measurements, and standards will advance PEM fuel cell manufacturing... and manufacturing ... Source: DOE Office of Energy...

146

Manufacturing Innovation in the DOE  

Broader source: Energy.gov (indexed) [DOE]

and stationary applications - Emerging applications, e.g. civil infrastructure, oil & gas, etc. * "Identify key opportunities in the CF supply chain where U.S. can achieve or...

147

Unlocking the Potential of Additive Manufacturing in the Fuel...  

Energy Savers [EERE]

Manufacturing in the Fuel Cells Industry Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Additive Manufacturing for Fuel Cells" held on...

148

DOE Publishes Updated SSL R&D Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at MultipleorderNuclearThisProgramDepartmentLighting |U.S.

149

DOE Releases Report on SSL Adoption in Museums | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department of Energy Secretary StevenDeployment |Support

150

New for 2015: DOE Merges SSL R&D Workshops | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2EnergyDepartment of EnergyNew YorkNew for 2015:

151

Voices for SSL Efficiency' Gather in Pasadena for Two-Day DOE Workshop |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dry storage technologies are

152

DOE Selects Nine R&D Projects to Advance SSL Technology | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartmentEnergy WasteLawrence Livermore

153

DOE Announces Four SBIR/STTR Grants for SSL Technology | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajor Maintenance atT

154

DOE Announces Selections for SSL R&D Funding Opportunity (Round 9) |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajor MaintenanceCommitteeOpportunity

155

DOE Announces Seven SBIR/STTR Grants, One Xlerator Award for SSL Technology  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajorProduct Development| Department of

156

DOE Awards Eight SBIR Grants for SSL Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergyDeveloping aClean EnergyDepartment|eight Small

157

DOE Awards Seven SBIR/STTR Phase 1 Grants for SSL Technology | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergyDeveloping aCleanDepartment of Energyof

158

DOE Wins "Best Booth" Award for Its Educational SSL Exhibit | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof EnergyAlliance |Department of

159

DOE Announces Selections for SSL R&D Funding Opportunity | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2Consolidated Edison5 by ISA -ofDATA REPORTIofSecretary of

160

DOE Announces Selections for SSL R&D Funding Opportunity | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartners withofEnergy AnnouncesAnnouncesSecretary

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Artisan Manufacturing: Order (2010-CW-0712)  

Broader source: Energy.gov [DOE]

DOE ordered Artisan Manufacturing Company, Inc., to pay a $5,000 civil penalty after finding Artisan Manufacturing had failed to certify that certain models of faucets comply with the applicable water conservation standard.

162

Goodman Manufacturing: Order (2012-CE-1509)  

Broader source: Energy.gov [DOE]

DOE ordered Goodman Manufacturing Company L.P. to pay an $8,000 civil penalty after finding Goodman Manufacturing had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

163

Goodman Manufacturing: Proposed Penalty (2011-SE-4301)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S.

164

USA Manufacturing: Order (2013-CE-5336)  

Broader source: Energy.gov [DOE]

DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

165

Refrigerator Manufacturers: Order (2013-CE-5341)  

Broader source: Energy.gov [DOE]

DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

166

* 5.6 Handshake protocol (tools.ietf.org/html/draft-ietf-tls-ssl-version3-00) enum{ hello_request(0), client_hello(1), server_hello(2), certificate(11),  

E-Print Network [OSTI]

protocol (tools.ietf.org/html/draft-ietf-tls-ssl-version3_suite; CompressionMethod compression_method; } ServerHello; nov 12, 08 15:21 Page 1/4draft-ietf-tls-ssl:21 Page 2/4draft-ietf-tls-ssl-RSA.c Printed by Jean-Guillaume Dumas mercredi novembre 12, 2008 1/2draft-ietf-tls-ssl

Dumas, Jean-Guillaume

167

The Ninth Annual DOE Solid-State Lighting Market Development Workshop  

Broader source: Energy.gov [DOE]

Nearly 200 lighting leaders from across North America gathered in Detroit from November 12–13, 2014, for the ninth annual Solid-State Lighting (SSL) Market Development Workshop, hosted by DOE. The diverse audience spanned the spectrum of SSL stakeholders, representing industry, government, efficiency organizations, utilities, municipalities, designers, specifiers, retailers, and distributors. The workshop’s purpose was to create a forum for airing issues and questions regarding today’s solid-state lighting products, and identifying strategies that will speed market adoption.

168

EERE Quality Control Workshop Final Report: Proceedings from the EERE Quality Control Workshop, in support of the DOE Clean Energy Manufacturing Initiative; Golden, Colorado, December 9-10, 2013  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Energy Efficiency & Renewable Energy (EERE) has recognized the cross-cutting, pre-competitive and enabling nature of quality control for a wide range of clean energy technologies. As such, the Fuel Cell Technologies Office, Solar Energy Technologies Office, Vehicle Technologies Office, Building Technologies Office, and Advanced Manufacturing Office decided to explore needs and potential cross-office synergies in this area by holding the EERE Quality Control Workshop, in support of the DOE Clean Energy Manufacturing Initiative. This report summarizes the purpose and scope of the workshop; reviews the current status and state-of-the-art for in-line quality control; summarizes the results from three breakout sessions; and presents conclusions and recommendations.

Not Available

2014-05-01T23:59:59.000Z

169

2015 SSL R&D WORKSHOP PRESENTATIONS - DAY 2 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013Lamps;5 Federal Energy andProjectBETHEL,5 SSL

170

2015 SSL R&D Workshop Presentations Posted | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmission |4Membership |40AlgalJUNEAU,5 SSL R&D5

171

Goodman Manufacturing: Noncompliance Determination (2011-SE-4301)  

Broader source: Energy.gov [DOE]

DOE issued a Notice of Noncompliance Determination to Goodman Manufacturing finding that model CPC180XXX3BXXXAA (CPC180*) of commercial package air conditioner does not comport with the energy conservation standards.

172

Manufacturing technology  

SciTech Connect (OSTI)

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

173

SSL Guidelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE AwardsNA-0019 Stewardship

174

A Proposed Algorithm to improve security & Efficiency of SSL-TLS servers using Batch RSA decryption  

E-Print Network [OSTI]

Today, Internet becomes the essential part of our lives. Over 90 percent of the ecommerce is developed on the Internet. A security algorithm became very necessary for producer client transactions assurance and the financial applications safety. The rsa algorithm applicability derives from algorithm properties like confidentiality, safe authentication, data safety and integrity on the internet. Thus, this kind of networks can have a more easy utilization by practical accessing from short, medium, even long distance and from different public places. Rsa encryption in the client side is relatively cheap, whereas, the corresponding decryption in the server side is expensive because its private exponent is much larger. Thus ssl tls servers become swamped to perform public key decryption operations when the simultaneous requests increase quickly .The batch rsa method is useful for such highly loaded web server .In our proposed algorithm by reducing the response time and clients tolerable waiting time an improvement...

Pateriya, R K; Shrivastava, S C; Patel, Jaideep

2009-01-01T23:59:59.000Z

175

Manufacturing High Temperature Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctoberto DOE

176

Additive Manufacturing: Implications on Research and Manufacturing  

E-Print Network [OSTI]

Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

Crawford, T. Daniel

177

Solution-Processable Transparent Conductive Hole Injection Electrode for OLED SSL  

SciTech Connect (OSTI)

An interconnected network of silver nanowires has been used as transparent anode in OLED devices. This layer was deposited by spin-coating and slot-die coating from an aqueous nanowire suspension. The sheet resistance of the film was 10ohms/sq with a transmission (including the glass substrate) of higher than 85%. The first phase of the project focused on the implementation of this nanowire layer with a hole-injection-layer (HIL) which has been developed at Plextronics and has been shown to provide good stability and efficiency in conventional OLED devices. We modified the HIL solution such that it coated reasonably well with suitable surface morphology so that actual devices can be manufactured. During the second phase we investigated the hole-injection and stability of hole-onlydevices. We determined that the use of the nanowire network as anode does not introduce an additional degradation mechanism since the observed device characteristics did not differ from those made with ITO anode. We then proceeded to make actual OLED devices with this nanowire / HIL stack and achieved device characteristics similar state-of-the-art OLED devices with a single junction. In order to gain traction with potential OLED manufacturers, we decided to contract Novaled to prepare large-area demonstrators for us. For these devices, we used an allevaporated stack, i.e. we did use Novaledâ??s HIL material instead of Plextronicsâ??. We successfully fabricated demonstrators with an area of 25cm2 with a double or triple junction stack. Minor stack optimizations were necessary to achieve efficacies and lifetime equivalent with ITO devices made with the same devices stack. Due to the reduced microcavity effect, the color of the emitted light is significantly more stable with respect to the viewing angle compared to ITO devices. This fact in conjunction with the promise of lower production cost due to the elimination of the ITO sputtering process and the direct patterning of the anode layer are the obvious advantages of this technology. The project has shown that this nanowire technology is a viable option to achieve OLED devices with good lifetime and efficiency and we are currently working with manufacturers to utilize this technology in a production setting.

None

2012-07-15T23:59:59.000Z

178

DOE Announces Webinars on Natural Gas for Biomass Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas for Biomass Technologies, Additive Manufacturing for Fuel Cells, and More DOE Announces Webinars on Natural Gas for Biomass Technologies, Additive Manufacturing for...

180

Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Crystal Structures of the Staphylococcal Toxin SSL5 in Complex With Sialyl-Lewis X Reveal a Conserved Binding Site That Shares Common Features With Viral And Bacterial Sialic Acid-Binding Proteins  

SciTech Connect (OSTI)

Staphylococcus aureus is a significant human pathogen. Among its large repertoire of secreted toxins is a group of staphylococcal superantigen-like proteins (SSLs). These are homologous to superantigens but do not have the same activity. SSL5 is shown here to bind to human granulocytes and to the cell surface receptors for human IgA (Fc alphaRI) and P-selectin [P-selectin glycoprotein ligand-1 (PSGL-1)] in a sialic acid (Sia)-dependent manner. Co-crystallization of SSL5 with the tetrasaccharide sialyl Lewis X (sLe(X)), a key determinant of PSGL-1 binding to P-selectin, led to crystal structures of the SSL5-sLe(X) complex at resolutions of 1.65 and 2.75 A for crystals at two pH values. In both structures, sLe(X) bound to a specific site on the surface of the C-terminal domain of SSL5 in a conformation identical with that bound by P-selectin. Conservation of the key carbohydrate binding residues indicates that this ability to bind human glycans is shared by a substantial subgroup of the SSLs, including SSL2, SSL3, SSL4, SSL5, SSL6, and SSL11. This indicates that the ability to target human glycans is an important property of this group of toxins. Structural comparisons also showed that the Sia binding site in SSL5 contains a substructure that is shared by other Sia binding proteins from bacteria as well as viruses and represents a common binding motif.

Baker, H.M.; Basu, I.; Chung, M.C.; Caradoc-Davies, T.; Fraser, J.D.; Baker, E.N.

2009-06-02T23:59:59.000Z

182

Green Manufacturing  

SciTech Connect (OSTI)

Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

Patten, John

2013-12-31T23:59:59.000Z

183

Manufacturing Energy and Carbon Footprints  

E-Print Network [OSTI]

Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

Brueske, S.; Lorenz, T.

2012-01-01T23:59:59.000Z

184

Stronger Manufacturers' Energy Efficiency Standards for Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing...

185

Requirements & Status for Volume Fuel Cell Manufacturing  

E-Print Network [OSTI]

Requirements & Status for Volume Fuel Cell Manufacturing DOE Hydrogen Program, Washington, DC July ­Eliminate components, parts and process steps ­Standardize core components across products ­Standardize non-core

186

Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

187

Modular Process Equipment for Low Cost Manufacturing of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

188

Manufacturing Thomas W. Eagar, Guest Editor  

E-Print Network [OSTI]

Materials Manufacturing Thomas W. Eagar, Guest Editor The bt·h.n-ior of succl'ssful manufac- tunn;imos., t·m·ironment for mate- nab manufacturing changes, so too does our ml·a~un· ol matt·rials performance~·(·vt·r. as shown by Figure 1, there are sen·ral additional dimensions to perfor- mann·. In particular, successful

Eagar, Thomas W.

189

Duracold Refrigeration Manufacturing: Order (2013-CE-5342)  

Broader source: Energy.gov [DOE]

DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

190

DOE Zero Energy Ready Home Case Study: Southern Homes, Russellville...  

Broader source: Energy.gov (indexed) [DOE]

Southern Homes, Russellville, AL DOE Zero Energy Ready Home Case Study: Southern Homes, Russellville, AL Case study of the first manufactured home built to the DOE Zero Energy...

191

DOE Hydrogen Program Manufacturing R & D  

E-Print Network [OSTI]

or significantly reduce cell stack conditioning time, thereby driving down cost as well as fuel cell assembly time Cells Membrane Electrode Assemblies (MEAs) and Stacks Current Status · Approximate cost range from $3 of alternative, lower cost approaches to fuel cell construction To Be Addressed: · Analysis of current MEA

192

DOE's Hydrogen and Fuel Cells Technologies Manufacturing  

E-Print Network [OSTI]

innovative precision fiber placement and commercial filament winding for high- pressure carbon composite tanks Conclude efforts on streamlining GDL fabrication techniques FY 2011 Appropriation = $3 M FY 2012

193

advanced manufacturing office | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss,Amine Solvent FormulationAdvanced

194

clean energy manufacturing | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscovery of θ1 DevelopmentClean Energy

195

Summit Manufacturing: Noncompliance Determination (2010-SE-0303)  

Broader source: Energy.gov [DOE]

DOE issued a Notice of Noncompliance Determination to Summit Manufacturing, Inc. finding that 4SHP13LE136P + 15001+CA042A964+TDR basic model, a split-system air conditioning heat pump with a heat pump coil, does not comport with the energy conservation standards.

196

Advanced Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings, Better Plants Clean Energy Manufacturing Initiative Combined Heat and Power Innovative Manufacturing Initiative National Network for Manufacturing Innovation...

197

Manufacturing Battle Creek  

E-Print Network [OSTI]

Computer simulation Facilities design Finite element analysis Green manufacturing Industrial materialsManufacturing Research Center Kalamazoo Battle Creek The College of Engineering and Applied Sciences The Supporting manufacturing industries by providing opportunities for collaboration with faculty

de Doncker, Elise

198

Solid-State Lighting Manufacturing Research and Development ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

anticipated that success will lead to a more rapid adoptioninstallation of high-quality SSL products resulting in a significant reduction of energy use and a corresponding...

199

Metrics for Sustainable Manufacturing  

E-Print Network [OSTI]

a system or process in maintaining a sustainable level of afor manufacturing processes to achieve truly sustainablesustainable phase of the automobile manufacturing process

Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

2008-01-01T23:59:59.000Z

200

Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

RRR Niobium Manufacturing Experience  

SciTech Connect (OSTI)

ATI Wah Chang has been manufacturing RRR niobium for more than 30 years using electron beam melting techniques. Fabricated forms include plate, sheet, foil, bar, rod and tubing. This paper provides manufacturing information.

Graham, Ronald A. [ATI Wah Chang, An Allegheny Technologies Company, Albany, Oregon 97321 (United States)

2007-08-09T23:59:59.000Z

202

Metrics for Sustainable Manufacturing  

E-Print Network [OSTI]

for implementing green manufacturing”. Trans. of NAMRI/SME,the imple- mentation of green manufacturing, where a wedgemanufacturing scope of the assessment. While it is always important in the development of green

Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

2008-01-01T23:59:59.000Z

203

Hollings Manufacturing Extension Partnership: Delivering Measurable Results to Manufacturing Clients  

E-Print Network [OSTI]

of services, from innovation strategies to process improvements to green manufacturing. MEP also worksHollings Manufacturing Extension Partnership: Delivering Measurable Results to Manufacturing Clients MEP · MANUFACTURING EXTENSION PARTNERSHIP NationalInstituteofStandardsandTechnology March2013

Perkins, Richard A.

204

Manufacturing Fuel Cell Manhattan Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctoberto DOE Fuel

205

Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that Duracold Refrigeration Manufacturing Company, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

206

Voluntary Protection Program Onsite Review, Honeywell Federal Manufacturing and Technologies- November 2008  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Honeywell Federal Manufacturing and Technologies' Kansas City Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

207

E-Print Network 3.0 - advanced manufacturing technology Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technologies... technologies; reliable measurements; and standards will advance PEM fuel cell manufacturing. Figure 3... ... Source: DOE Office of Energy Efficiency and...

208

E-Print Network 3.0 - activated carbon manufacture Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

209

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing and Materials for Low-Cost Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

210

Enabling Manufacturing Research through Interoperability  

E-Print Network [OSTI]

sustainable or environmentally benign manufacturing processes andAND SUSTAINABLE FIGURE 8: LIFE-CYCLE OF MANUFACTURING PROCESSES (

Dornfeld, David; Wright, Paul; Helu, Moneer; Vijayaraghavan, Athulan

2009-01-01T23:59:59.000Z

211

DOE Steps Lead to Significant Increase in Compliance with Energy...  

Office of Environmental Management (EM)

Department of Energy Subpoenas Compliance Data from AeroSys, Inc. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards...

212

DOE Announces Tougher Enforcement of Appliance Standards Reporting...  

Broader source: Energy.gov (indexed) [DOE]

energy and cost savings to the American public," said DOE General Counsel Scott Blake Harris. "This 30 day period will provide all manufacturers the same opportunity to submit...

213

DOE Offers $150 Million Conditional Commitment for a Loan Guarantee...  

Energy Savers [EERE]

Advanced Research Projects Agency - Energy program and a 3 million grant from DOE's Solar Energy Technology Program. The innovative manufacturing process condenses four...

214

Locating Chicago Manufacturing  

E-Print Network [OSTI]

Renaissance Council, is among the nation's leading public high schools focused on manufac- turing area's econ- omy, including how important manufacturing is to that economy, which manufac- turing

Illinois at Chicago, University of

215

Advanced Materials Manufacturing | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

existing manufacturing industries and result in creative new products. Stronger, more corrosion-resistant and lower cost steel alloys are being developed and commercialized to...

216

Manufacturing | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

217

Acoustics by additive manufacturing:.  

E-Print Network [OSTI]

??This study focuses on exploring the merging field of additive manufacturing and acoustics and introduces a new type of sound absorber which is regulating performance… (more)

Setaki, F.

2012-01-01T23:59:59.000Z

218

Additive Manufacturing: Going Mainstream  

Broader source: Energy.gov [DOE]

Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

219

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT  

E-Print Network [OSTI]

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 14, No. 4, Fall 2012, pp. 495­511 ISSN 1523 research directions, expanding upon the key points raised by Green [Green LV (2012) The vital role of operations analysis in improving healthcare delivery. Manufacturing Service Oper. Management 14

Boucherie, Richard J.

220

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT  

E-Print Network [OSTI]

;Green and Soares: Note Manufacturing & Service Operations Management 9(1), pp. 54­61, © 2007 INFORMS 55MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 9, No. 1, Winter 2007, pp. 54­61 issn 1523-Dependent Waiting Time Probabilities in M t /M/s t Queuing Systems Linda V. Green Graduate School of Business

Soares, João Luís Cardoso

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Manufactured Home Energy Audit user`s manual  

SciTech Connect (OSTI)

The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the US Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA displays a colorful, graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes.

NONE

1997-09-01T23:59:59.000Z

222

Manufacturing Renaissance: Return of manufacturing to western countries.  

E-Print Network [OSTI]

??Manufacturing Renaissance, i.e. return of manufacturing to west, has been recently observed. This paper analyzes the patterns observed within each of the four main drivers… (more)

Kianian, Babak; Larsson, Tobias

2013-01-01T23:59:59.000Z

223

Manufacturing improvements in the Photovoltaic Manufacturing Technology (PVMaT) Project  

SciTech Connect (OSTI)

The Photovoltaic Manufacturing Technology Project (PVMaT) is a government/industry research and development (R and D) partnership between the US federal government (through the US Department of Energy [DOE]) and members of the US PV industry. The goals of PVMaT are to help the US PV industry improve module manufacturing processes and equipment; accelerate manufacturing cost reductions for PV modules, balance-of-systems components, and integrated systems; increase commercial product performance and reliability; and enhance the investment opportunities for substantial scale-ups of US-based PV manufacturing plant capacities. The approach for PVMaT has been to cost-share risk taking by industry as it explores new manufacturing options and ideas for improved PV modules and other components, advances system and product integration, and develops new system designs, all of which will lead to overall reduced system life-cycle costs for reliable PV end products. The PVMaT Phase 4A module manufac turing R and D projects are just being completed, and initial results for the work directed primarily to module manufacture are reported in this paper. Fourteen new Phase 5A subcontracts have also just been awarded, and planned R and D areas for the ten focused on module manufacture are described. Finally, government funding, subcontractor cost-sharing, and a comparison of the relative efforts by PV technology throughout the PVMaT project are presented.

Witt, C.E.; Mitchell, R.L.; Thomas, H.P.; Symko, M.I. [National Renewable Energy Lab., Golden, CO (United States); King, R. [Dept. of Energy, Washington, DC (United States); Ruby, D.S. [Sandia National Labs., Albuquerque, NM (United States)

1998-08-01T23:59:59.000Z

224

Manufacturing Licenses Available | Tech Transfer | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deposition Manufacturing 201303127 Methods and Materials for Room Temperature Polymer Additive Manufacturing 201303140 Reactive Polymer Fused Deposition Manufacturing 201303151...

225

"Technology Wedges" for Implementing Green Manufacturing  

E-Print Network [OSTI]

issues in green design and manufacturing." ManufacturingFOR IMPLEMENTING GREEN MANUFACTURING David Dornfeld BerkeleyCalifornia KEYWORDS Green Manufacturing, Technology,

Dornfeld, David; Wright, Paul

2007-01-01T23:59:59.000Z

226

Low Cost Lithography Tool for High Brightness LED Manufacturing  

SciTech Connect (OSTI)

The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

Andrew Hawryluk; Emily True

2012-06-30T23:59:59.000Z

227

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration...

228

Manufacturing Innovation Topics Workshop: Engineered Nanomaterials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctoberto DOE

229

CIMplementation™: Evaluating Manufacturing Automation  

E-Print Network [OSTI]

management and labor. In the new shop, ma~? agers will be unable to succeed unless thet earn the respect and cooperation of their I subordinates. Managers need to address th~ fear and resistance of manufacturing emPlofees before and during a transition.... Managers are becoming more interested in these methods, but they should be aware that implementing them will be a slow, complex task. This technology will require changes in manufacturing organization. This paper discusses changes required...

Krakauer, J.

230

Advanced Manufacture of Reflectors  

SciTech Connect (OSTI)

The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

Angel, Roger [University of Arizona

2014-12-17T23:59:59.000Z

231

Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries  

Broader source: Energy.gov [DOE]

Presentation given by Optodot Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

232

DOE Joint Solid-State Lighting Roundtables on Science Challenges  

Broader source: Energy.gov [DOE]

Summary of an October 2014 meeting of LED experts to consider opportunities for further advancement of SSL technology through coordinated R&D actions. (20 pages, November 2014)

233

DOE Publishes Pricing and Efficacy Trend Analysis for Utility...  

Broader source: Energy.gov (indexed) [DOE]

a new report, SSL Pricing and Efficacy Trend Analysis for Utility Program Planning. The report was created in response to requests from utilities and energy efficiency...

234

Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

Not Available

2012-03-01T23:59:59.000Z

235

Material Design, Selection, and Manufacturing Methods for System Sustainment  

SciTech Connect (OSTI)

This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

David Sowder, Jim Lula, Curtis Marshall

2010-02-18T23:59:59.000Z

236

KLA-Tencor's Inspection Tool Reduces LED Manufacturing Costs  

Broader source: Energy.gov [DOE]

With the help of DOE funding, KLA-Tencor is developing an improved inspection tool for LED manufacturing that promises to significantly increase overall process yields and minimize expensive waste. The power of the inspection tool lies in optical detection techniques coupled with defect source analysis software to statistically correlate front-end geometric anomalies in the substrate to killer defects on the back end of the manufacturing line, which give rise to an undesirable or unusable end product.

237

Advanced Manufacture of Reflectors  

Broader source: Energy.gov [DOE]

The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

238

ATS materials/manufacturing  

SciTech Connect (OSTI)

The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

1997-11-01T23:59:59.000Z

239

FDA Exemption Letter, 78EL-01DOE by LSSG for GOCG Facilities  

Broader source: Energy.gov [DOE]

Food and Drug Administration response to Department of Energy's request for clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility may be considered a laser manufacturer and subject to FDA laser manufacturer requirements and other points of interpretation of the FDA Exemption Letter, 78EL-01DOE (DOE exemption or exemption) by the LSSG for GOCG facilities.

240

Soladigm DOE Final Technical Report  

SciTech Connect (OSTI)

Soladigm's research has produced a fundamental improvement in the technology for dynamic windows by successfully transitioning a low-cost, high-performance dynamic glass fabrication process from a simple 2" research prototype into a full-scale manufacturing environment capable of producing commercial dynamic insulated glass units (IGUs), and developing and optimizing the production process to meet all specifications for mass commercial production. The technology developed under this project is a revolutionary process for fabricating electrochromic glass that today exceeds DOE's 2020 performance and reliability targets at a compelling consumer price point. Before this project, we had demonstrated 2" prototypes using our deposition process that met these performance targets. The goal of this project was to prove that we could transition this lab-scale process to a scalable, "inline" manufacturing process, leveraging existing manufacturing tools capable of achieving a commercially attractive pricepoint in the near-term. Under this project we demonstrated the technical effectiveness of our manufacturing process by achieving or exceeding all of our technical and performance targets for inline fabrication of electrochromic IGUs. These performance specifications exceed DOE's 2020 performance and reliability targets. We also demonstrated the economic feasibility of our manufacturing process by reaching an initial production process that will achieve our target costs, which are compatible with mass adoption.

None

2011-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Materials/manufacturing element of the Advanced Turbine System Program  

SciTech Connect (OSTI)

One of the supporting elements of the Advanced Turbine Systems (ATS) Program is the materials/manufacturing technologies task. The objective of this element is to address critical materials issues for both industrial and utility gas turbines. DOE Oak Ridge Operations Office (ORO) will manage this element of the program, and a team from DOE-ORO and Oak Ridge National Laboratory is coordinating the planning for the materials/manufacturing effort. This paper describes that planning activity which is in the early stages.

Karnitz, M.A.; Devan, J.H.; Holcomb, R.S.; Ferber, M.K.; Harrison, R.W.

1994-08-01T23:59:59.000Z

242

SSL Workshop - Walmart  

Energy Savers [EERE]

*Timeline *Euclid *Opportunities 2 "LEDs have become an integral part of our energy efficiency model for our stores and play a key role in achieving our overall sustainability...

243

Bio-Manufacturing: A Strategic clean energy manufacturing opportunity  

Broader source: Energy.gov [DOE]

Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

244

Additive Manufacturing for Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE)

Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

245

Bolt Manufacture: Process Selection  

E-Print Network [OSTI]

file · Selective Laser Sintering (SLS) 3 D P i ti· 3-D Printing · Light Engineered Net Shaping (LENS Processes and Systems Prof. J.S. Colton © GIT 2009 20 #12;3D Printing Process (Soligen) ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 21 #12;3D Printing Head (Soligen)3D Printing

Colton, Jonathan S.

246

Manufacturing Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, SafetyWater ConservationDepartmentEnergy Manufacturing Energy6

247

Manufacturing Tech Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Tech Team Manufacturing Tech Team Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy...

248

Leveraging Manufacturing for a Sustainable Future  

E-Print Network [OSTI]

for Implementing Green Manufacturing”, NAMRI Trans. , 35,Strategies for Green Manufacturing,” Proc. 4th CIRPAnd, in specific green manufacturing? This will depend on

Dornfeld, David

2011-01-01T23:59:59.000Z

249

Sustainable Manufacturing – Greening Processes, Systems and Products  

E-Print Network [OSTI]

Strategies for Green Manufacturing, " Proceedings HighFH), Implementing green manufacturing, as the first stepASME, Evanston, IL, Green Manufacturing uk/sustainability/

Dornfeld, David

2010-01-01T23:59:59.000Z

250

Appropriate use of Green Manufacturing Frameworks  

E-Print Network [OSTI]

for Implementing Green Manufacturing,” Trans. North AmericanAppropriate use of Green Manufacturing Frameworks C. Reich-for sustainable or green manufacturing systems and products,

Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

2010-01-01T23:59:59.000Z

251

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

for implementing green manufacturing,” Trans. North AmericaStrategies for Green Manufacturing,” Proc. of the 4th CIRPAppropriate Use of Green Manufacturing Frameworks,” Proc. of

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

252

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

Operation Strategies for Green Manufacturing, Proceedings ofSymposium on Green Manufacturing and Applications (ISGMAfor implementing green manufacturing. Transactions of NAMRI/

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

253

Innovative Manufacturing Initiative Recognition Day, Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry...

254

Precision and Energy Usage for Additive Manufacturing  

E-Print Network [OSTI]

Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

2013-01-01T23:59:59.000Z

255

Leveraging Manufacturing for a Sustainable Future  

E-Print Network [OSTI]

2010): “Sustainable Manufacturing – Greening Processes,processes and systems) can play in creating a sustainablesustainable manufacturing as “the creation of manufacturing products that use materials and processes

Dornfeld, David

2011-01-01T23:59:59.000Z

256

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

D. , “Sustainable Manufacturing - Greening Processes,Avoid) Increase process efficiency Most sustainable (Improvesustainable manufacturing. 2 They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

257

Sustainable Manufacturing – Greening Processes, Systems and Products  

E-Print Network [OSTI]

mittels Sustainable Manufacturing - Greening Processes,Sustainable for manufacturing Manufacturing Cambridge, accessed processes,processes due to energy awareness and environmental consciousness create many opportunities for sustainable

Dornfeld, David

2010-01-01T23:59:59.000Z

258

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

D. , Sustainable Manufacturing – Greening Processes, Systemsor impact low Most  sustainable Increase process efficiencysustainable manufacturing [1]. They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

259

US DOE Hydrogen and Fuel Cell Technology - Composites in H2 Storage...  

Broader source: Energy.gov (indexed) [DOE]

DOE Hydrogen and Fuel Cell Technology - Composites in H 2 Storage & Delivery Fiber Reinforced Polymer Composite Manufacturing Workshop Washington, DC January 13, 2014 Scott...

260

DOE Onboarding  

Broader source: Energy.gov (indexed) [DOE]

First Six Months First Year *Continual Learning *Fraud Awareness *eOPF & ePerformance *ESS & Workflow *DOE Social Media *Networking Opportunity GETTING SETTLED ADJUSTMENT &...

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE PAGES  

Office of Scientific and Technical Information (OSTI)

a useful reference. Find out more Do you have questions about DOE PAGESBeta content, procedures, or policies? More information is available at OSTI's Public Access Policy page and...

262

Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing  

E-Print Network [OSTI]

Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel for integrated module including in-tank regulator · Developed high efficiency H2 fuel storage systems for DOE tank efficiency, the highest weight efficiency ever demonstrated, in partnership with Lawrence

263

Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative  

Energy Savers [EERE]

Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative 1 of 1 Summary: DOE will launch a collaborative effort with industry to evaluate and scope high- impact...

264

Hollings Manufacturing Extension Partnership: A Commercialization Collaborator  

E-Print Network [OSTI]

to process improvements to green manufacturing. MEP also works with partners at the state and federal levelsHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING to successfully commercialize federal technologies #12;The Manufacturing Extension Partnership

Perkins, Richard A.

265

Posted 10/18/11 MANUFACTURING ENGINEER  

E-Print Network [OSTI]

manufacturing processes in our Metal Fabrication and Assembly departments. Additional responsibilities includePosted 10/18/11 MANUFACTURING ENGINEER Kenall Manufacturing Gurnee, IL Kenall, a leading manufacturer of advanced lighting solutions for specialized environments, has exceptional opportunities

Heller, Barbara

266

Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components  

E-Print Network [OSTI]

Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies

Wisconsin at Madison, University of

267

DOE Offers Support for Innovative Manufacturing Plant That Will...  

Energy Savers [EERE]

Solar Silicon at Low Cost June 16, 2011 - 12:00am Addthis Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a 275...

268

DOE Research Grant Leads to Gas Turbine Manufacturing Improvements  

Broader source: Energy.gov [DOE]

Research sponsored by the U.S. Department of Energy's Office of Fossil Energy has led to a new licensing agreement that will improve the performance of state-of-the-art gas turbines, resulting in cleaner, more reliable and affordable energy.

269

DOE Offers Support for Innovative Manufacturing Plant That Will Produce  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at MultipleorderNuclear PlantsFirst-of-its-KindIdaho |High

270

Industrial Activities at DOE: Efficiency, Manufacturing, Process, and  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting of|of

271

Working with DOE on Clean Energy Manufacturing Innovation Institutes  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | DepartmentDeborahTanzimaJuly2015 EarthWORKING WITH

272

DOE Collects $80,000 Civil Penalty From Showerhead Manufacturer |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of1 Ingrid A.C.of EnergyLaboratory

273

DOE Requires Manufacturer and Labeler to Cease Sale of Incandescent  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOEDOEAVAILABLEDepartment ofHeld

274

DOE Warns Manufacturers Who Submitted Incomplete Certification Reports |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof EnergyAlliance |Department of EnergyValuesDepartment of

275

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContractto Host a

276

DOE - Office of Legacy Management -- American Manufacturing Co of Texas -  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home » SitesNJ 24Alexandria -TX 08

277

DOE - Office of Legacy Management -- Liberty Aircraft Manufacturing Company  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison- NYLeland Stanford University-

278

DOE - Office of Legacy Management -- Manufacturing Laboratories Inc - MA  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison- NYLelandLomaIllinois0-04

279

DOE - Office of Legacy Management -- Penn Salt Manufacturing Co Whitemarsh  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co - OH 34Pantex

280

DOE - Office of Legacy Management -- Titanium Alloys Manufacturing Co Div  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site - MO 02SuttonTennesseePlant - NYof

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE and Federal Energy and Manufacturing Workforce Programs and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment ofCaldwell andPalo Duro HomesAbhai

282

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment ofCaldwellWestern States,FYDOE's Hydrogen

283

DOE Manufacturing Pre-Solicitation Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor06/2015)09 I. Steps Taken5ofLNGDevelopment »Nuclear

284

DOE Fuel Cell Technologies Program Workshop: Manufacturing Progress and Barriers  

E-Print Network [OSTI]

· Optimized Process · DFMA · Process FMEA · Lean / Six Sigma · High quality ­ 100% inspection of key

285

Opportunities and Barriers in the Implementation of Energy Efficiency Measures in Plastic Manufacturing  

E-Print Network [OSTI]

The plastic industry in the U.S. employs approximately 9% [1] of the manufacturing work force and consumes approximately 6% [1] of the total energy used by the U.S. industries. According to the Department of Energy (DOE), manufacturers of plastic...

Kanunho, A; Yong, J. C.

2012-01-01T23:59:59.000Z

286

NREL's emulation tool helps manufacturers ensure the safety and reliability of electric vehicle batteries.  

E-Print Network [OSTI]

NREL's emulation tool helps manufacturers ensure the safety and reliability of electric vehicle internal short, the device is small compared to other shorting tools being developed by industry and does tool for battery manufacturers and other national laboratories as well as original equipment

287

Manufacturing Demonstration Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministrationManufacturing - GE Appliances, ORNL

288

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving...

289

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing...

290

DOE Zero Energy Ready Home Case Study: Southern Energy Homes...  

Energy Savers [EERE]

built to the DOE Zero Energy Ready Home standard. This manufactured home achieved a HERS score of 57 without PV. The home has been set up for side-by-side testing with an...

291

Memorandum requesting a clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility  

Broader source: Energy.gov [DOE]

Memorandum requesting a clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility may be considered a laser manufacturer and subject to FDA laser manufacturer requirements and other points of interpretation of the FDA Exemption Letter, 78EL-01DOE (DOE exemption or exemption) by the LSSG for GOCG facilities.

292

DOE Energy Challenge Project  

SciTech Connect (OSTI)

Project Objectives: 1. Promote energy efficiency concepts in undergraduate and graduate education. 2. Stimulate and interest in pulp and paper industrial processes, which promote and encourage activities in the area of manufacturing design efficiency. 3. Attract both industrial and media attention. Background and executive Summary: In 1997, the Institute of Paper Science and Technology in conjunction with the U.S. Department of Energy developed a university design competition with an orientation to the Forest Products Industry. This university design competition is in direct alignment with DOE’s interests in instilling in undergraduate education the concepts of developing energy efficient processes, minimizing waste, and providing environmental benefits and in maintaining and enhancing the economic competitiveness of the U.S. forest products industry in a global environment. The primary focus of the competition is projects, which are aligned with the existing DOE Agenda 2020 program for the industry and the lines of research being established with the colleges comprising the Pulp and Paper Education and Research Alliance (PPERA). The six design competitions were held annually for the period 1999 through 2004.

Frank Murray; Michael Schaepe

2009-04-24T23:59:59.000Z

293

Manufacturing consumption of energy 1994  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

294

Manufacturing consumption of energy 1991  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

Not Available

1994-12-01T23:59:59.000Z

295

ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...  

Energy Savers [EERE]

More Documents & Publications Sustainable Nanomaterials Workshop Advanced Manufacturing Office, U.S. Department of Energy Nanocomposite Materials for Lithium-Ion Batteries...

296

Manufacturing Spotlight: Boosting American Competitiveness  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

297

Manufacturing Demonstration Facility Technology Collaborations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from industry to assess applicability of new technologies that can reduce manufacturing energy intensity or produce new, energy-efficient products. As part of the technology...

298

Sandia National Laboratories: Manufacturing Supply Chain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos NationalMHKMeeting:StrategySSL

299

Manufactured Home Energy Audit (MHEA)Users Manual (Version 7)  

SciTech Connect (OSTI)

The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the U.S. Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA uses a relatively standard Windows graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment appliances, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. Weatherization retrofit measures are evaluated based on the predicted energy savings after installation of the measure, the measure cost, and the measure life. Finally, MHEA recommends retrofit measures that are energy and cost effective for the particular home being evaluated. MHEA evaluates each manufactured home individually and takes into account local weather conditions, retrofit measure costs, and fuel costs. The recommended package of weatherization retrofit measures is tailored to the home being evaluated. More traditional techniques apply the same package of retrofit measures to all manufactured homes, often the same set of measures that are installed into site-built homes. Effective manufactured home weatherization can be achieved only by installing measures developed specifically for manufactured homes. The unique manufactured home construction characteristics require that each of these measures is evaluated separately in order to devise a package of measures that will result in high energy and dollar savings. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes. The National Renewable Energy Laboratory originally developed MHEA for the U.S. Department of Energy Weatherization Assistance Program. Conversion to a Windows-based program with additional modifications has been performed by the Oak Ridge National Laboratory. Many energy consumption and economic calculations resemble those found in the Computerized Instrumented Residential Audit written by Lawrence Berkeley National Laboratory and the National Energy Audit written by Oak Ridge National Laboratory. The calculations are similar in structure but have been altered to more accurately represent a manufactured home's unique energy use characteristics. Most importantly, MHEA helps meet the DOE Weatherization Assistance Program goals to increase client comfort and use federal dollars wisely.

Gettings, M.B.

2003-01-27T23:59:59.000Z

300

Design for manufacturability Design verification  

E-Print Network [OSTI]

ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

Patel, Chintan

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Petrick Technology Trends Of Manufacturing  

E-Print Network [OSTI]

#12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: · that firms sophisticated modeling and simulation of both new products and production processes; · that additive

302

DOE F  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the DOE6 / 06 2 SunProgrammatic

303

DOE F  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the DOE6 / 06 2

304

DOE-0346  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State oftoDOE-0346

305

Advanced Manufacturing Office Overview  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41AdamEnergyAdvanced DOE Workshop:

306

Hollings Manufacturing Extension Partnership: A Commercialization Collaborator  

E-Print Network [OSTI]

of services, from innovation strategies to process improvements to green manufacturing. MEP also worksHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING Manufacturing Extension Partnership (MEP) works with small and mid-sized U.S. manufacturers to help them create

307

Beryllium Manufacturing Processes  

SciTech Connect (OSTI)

This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.

Goldberg, A

2006-06-30T23:59:59.000Z

308

MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS  

E-Print Network [OSTI]

MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS ADVANCES INTO MANUFACTURING PROCESSES NATIONAL NEED The proposed topic "Accelerating the Incorporation of Materials Advances into Manufacturing organizations, leading researchers from academic institutions, and others. Materials performance is often

Magee, Joseph W.

309

Opportunities and Challenges to Sustainable Manufacturing and CMP  

E-Print Network [OSTI]

for Implementing Green Manufacturing,” Trans. North AmericanBoyd, S. , LMAS Green Manufacturing Research Presentation,MANUFACTURING AND GREEN MANUFACTURING Sustainability is

Dornfeld, David

2009-01-01T23:59:59.000Z

310

U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis  

SciTech Connect (OSTI)

The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assess U.S. manufacturers’ competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers’ to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOE’s Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a customer order at the manufacturing plant; to the orders being forwarded by the manufacturing plant to the material suppliers; to the material being received at the manufacturing plant and processed through the system; to the final product being shipped to the Customer. 3. Competitiveness Scorecard: GLWN developed a Wind Industry Supply Chain Scorecard that reflects U.S. component manufacturers’ readiness to supply the next generation wind turbines, 3MW and 5MW, for land-based and offshore applications. 4. Wind Supply Chain Database & Map: Expand the current GLWN GIS Wind Supply Chain Map to include offshore elements. This is an on-line, free access, wind supply chain map that provides a platform for identifying active and emerging suppliers for the land-based and offshore wind industry, including turbine component manufacturers and wind farm construction service suppliers.

Fullenkamp, Patrick H; Holody, Diane S

2014-06-15T23:59:59.000Z

311

Additive Manufacturing Opportunities for Transportation | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Additive Manufacturing Opportunities for Transportation Mar 13 2015 10:00 AM - 11:00 AM Lonnie Love, Manufacturing Systems Research Group Transportation Science Seminar Series...

312

Clean Energy Manufacturing Initiative: Increasing American Competitive...  

Broader source: Energy.gov (indexed) [DOE]

for a Clean Energy Manufacturing Innovation Institute related to composite materials and structures. The Manufacturing Demonstration Facility at Oak Ridge National...

313

Advanced Manufacturing Initiative Improves Turbine Blade Productivity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

314

A Management Strategy for Additive Manufacturing:.  

E-Print Network [OSTI]

??The thesis is about a Management Strategy for Additive Manufacturing - how engineering change influences the NPD process through the adoption of new manufacturing technology.… (more)

Zahn, N.Z.

2014-01-01T23:59:59.000Z

315

National Electrical Manufacturers Association (NEMA) Response...  

Broader source: Energy.gov (indexed) [DOE]

Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

316

Additive Manufacturing Cluster Strategy | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Additive Manufacturing Cluster Strategy SHARE Additive Manufacturing Cluster Strategy As the nation's premier research laboratory, ORNL is one of the world's most capable resources...

317

Welcome and Advanced Manufacturing Partnership (Text Version...  

Broader source: Energy.gov (indexed) [DOE]

200 school aged students go into this manufacturing demonstration facility and make 3D printing or other manufacturing parts. Design and make parts for their robots. For their...

318

Mechanical and Manufacturing Engineering Mechatronics Engineering Minor  

E-Print Network [OSTI]

Mechanical and Manufacturing Engineering Mechatronics Engineering Minor Students pursuing a BSc in mechanical or manufacturing engineering have experience and entrepreneurship. Mechatronics is the synergistic combination of mechanical

Calgary, University of

319

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

320

Process systems engineering of continuous pharmaceutical manufacturing  

E-Print Network [OSTI]

Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

Abel, Matthew J

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Understanding Manufacturing Energy and Carbon Footprints, October...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S....

322

Manufacturing System Design Framework Manual  

E-Print Network [OSTI]

Previous Lean Aerospace Initiative research in factory operations had indicated that the greatest performance gains are realized when the manufacturing system is designed from the top down and from supplier to the customer. ...

Vaughn, Amanda

2002-01-01T23:59:59.000Z

323

Wind Energy Manufacturing Tax Incentive  

Broader source: Energy.gov [DOE]

With the passage of [http://www.arkansasenergy.org/media/261385/act736.pdf HB 2230 (2009)] in April 2009, the Arkansas Legislature expanded a tax incentive for manufacturers of windmill blades or...

324

Doing Business with DOE's Solid-State Lighting Program | Department...  

Energy Savers [EERE]

Quality Solid-State Lighting Program Overview Brochure Home About the Solid-State Lighting Program R&D Program Market-Based Programs SSL Basics Using LEDs Information Resources...

325

Manufacturing Fuel Cell Manhattan Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctoberto DOE

326

Technology Help Desk 412 624-HELP [4357  

E-Print Network [OSTI]

.pitt.edu) using the settings below effective May 2009 without first connecting to the Secure Remote Access (SSL mobile device does not support TLS, then select SSL instead. Selecting SSL will set the port to 993: If your mobile device does not support TLS, then select SSL and use port 465. · Outgoing Mail Server (SMTP

Jiang, Huiqiang

327

Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin Film PV Partnership Projects  

SciTech Connect (OSTI)

As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program initiates new cost-shared solar energy R&D under the Solar America Initiative (SAI), it is useful to analyze the experience gained from cost-shared R&D projects that have been funded through the program to date. This report summarizes lessons learned from two DOE-sponsored photovoltaic (PV) projects: the Photovoltaic Manufacturing Technology/PV Manufacturing R&D (PVMaT/PVMR&D) project and the Thin-Film PV Partnership project. During the past 10-15 years, these two projects have invested roughly $330 million of government resources in cost-shared R&D and leveraged another $190 million in private-sector PV R&D investments. Following a description of key findings and brief descriptions of the PVMaT/PVMR&D and Thin-Film PV Partnership projects, this report presents lessons learned from the projects.

Margolis, R.; Mitchell, R.; Zweibel, K.

2006-09-01T23:59:59.000Z

328

US Electric Drive Manufacturing Center  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

329

Electric Drive Component Manufacturing Facilities  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

330

Dal-Tile: Optimized Compressed Air System Improves Performance and Saves Energy at a Tile Manufacturing Plant  

SciTech Connect (OSTI)

This DOE Industrial Technologies Program case study describes the significant energy and costs savings resulting from compressed air system improvements at Dal-Tile, a Texas tile manufacturing plant.

Not Available

2005-08-01T23:59:59.000Z

331

DOE HANDBOOK  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the2.4Today,Guide forHandbook

332

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE National

333

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE

334

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE December

335

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE

336

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOESeptember

337

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOESeptember

338

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,

339

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

340

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

342

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

343

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

344

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656

345

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 U .

346

DOE-0336  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State ofto Partner36

347

DOE-0344  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State ofto

348

DOE-0400  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State

349

DOE Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOE Plans2

350

DOE-0342  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice of ScientificSolar Residence by e2DOE5, 2012

351

HOME TRENDS/ISSUES LOGISTICS MANUFACTURING SOURCING REVERSE SUPPLY CHAIN GOVT/REGULATORY RESOURCES SCDIGEST WEBSITE The Green Supply  

E-Print Network [OSTI]

HOME TRENDS/ISSUES LOGISTICS MANUFACTURING SOURCING REVERSE SUPPLY CHAIN GOVT/REGULATORY RESOURCES SCDIGEST WEBSITE The Green Supply Chain Says: The company does not plan to actually produce the pallets themselves, but rather to offer these biodegradable planks that pallet manufacturers around the world would

352

Designing a National Network for Manufacturing Innovation  

E-Print Network [OSTI]

Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction · NNMI principles · Public NMMI Design · Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material ­ e.g. lightweight, low cost carbon fiber

353

Manufacturing Energy and Carbon Footprints (2006 MECS)  

Broader source: Energy.gov [DOE]

Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

354

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network [OSTI]

to coordinate and leverage the current federal efforts focused on manufacturability issues such as low-cost of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

355

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013  

Broader source: Energy.gov [DOE]

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

356

DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department...  

Broader source: Energy.gov (indexed) [DOE]

DOE Policy on Decommissioning DOE Facilities Under CERCLA DOE Policy on Decommissioning DOE Facilities Under CERCLA In May 1995, the Department of Energy (DOE) issued a policy in...

357

The Photovoltaic Manufacturing Technology Project: Phase 1 subcontractors  

SciTech Connect (OSTI)

The Phase I portion of the Photovoltaic Manufacturing Technology (PVMaT) Project, the problem identification phase, was completed in mid-1991. This work involved competitive bidding that was open to any US firm with existing manufacturing capabilities, regardless of material or module design. In early 1991, subcontracts were awarded to 22 of approximately 40 bidders. Each subcontract was funded at a level of up to $50,000 and a duration of three months. The problems identified by the research in this phase of the program represent opportunities for industrial participants to improve their manufacturing processes, reduce manufacturing costs, increase product performance, or develop a foundation for scaling up US-based manufacturing plant capacities. Many of these opportunities have since been detailed in the approaches that these organizations suggested for Phase 2 (the problem solution phase) research and development (R&D). It is not. anticipated that any additional Phase I solicitation will be issued because Phase I was intended to help the US Department of Energy (DOE) characterize the status and needs of the US photovoltaic (PV) industry and encourage the industry to examine and prioritize required manufacturing line improvements. Phase I subcontracted research included five subcontractors working on flat-plate crystalline silicon technology, eleven working on flat-plate thin-film modules (one in thin-film crystalline silicon, six in amorphous silicon. and four in polycrystalline thin films), six working on concentrator systems, and two working on general equipment/production options. (Two of the participants each worked in two areas).

Not Available

1992-07-01T23:59:59.000Z

358

The Photovoltaic Manufacturing Technology Project: Phase 1 subcontractors  

SciTech Connect (OSTI)

The Phase I portion of the Photovoltaic Manufacturing Technology (PVMaT) Project, the problem identification phase, was completed in mid-1991. This work involved competitive bidding that was open to any US firm with existing manufacturing capabilities, regardless of material or module design. In early 1991, subcontracts were awarded to 22 of approximately 40 bidders. Each subcontract was funded at a level of up to $50,000 and a duration of three months. The problems identified by the research in this phase of the program represent opportunities for industrial participants to improve their manufacturing processes, reduce manufacturing costs, increase product performance, or develop a foundation for scaling up US-based manufacturing plant capacities. Many of these opportunities have since been detailed in the approaches that these organizations suggested for Phase 2 (the problem solution phase) research and development (R D). It is not. anticipated that any additional Phase I solicitation will be issued because Phase I was intended to help the US Department of Energy (DOE) characterize the status and needs of the US photovoltaic (PV) industry and encourage the industry to examine and prioritize required manufacturing line improvements. Phase I subcontracted research included five subcontractors working on flat-plate crystalline silicon technology, eleven working on flat-plate thin-film modules (one in thin-film crystalline silicon, six in amorphous silicon. and four in polycrystalline thin films), six working on concentrator systems, and two working on general equipment/production options. (Two of the participants each worked in two areas).

Not Available

1992-07-01T23:59:59.000Z

359

Process for manufacturing multilayer capacitors  

DOE Patents [OSTI]

The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

1996-01-01T23:59:59.000Z

360

Additive manufacturing method of producing  

E-Print Network [OSTI]

Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

Painter, Kevin

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Heat treating of manufactured components  

DOE Patents [OSTI]

An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

Ripley, Edward B. (Knoxville, TN)

2012-05-22T23:59:59.000Z

362

Systems, Inc. Manufacturing Program Manager  

E-Print Network [OSTI]

70819 #12;Advanced Energy Systems, Inc. Outline ·Introduction ·Accomplishments Phase I ·Technical Approach - Second Year ·Manufacturing Schedule Assessment -Top Level Phase II #12;Advanced Energy Systems Design and FEA of 5 cell RF Cavity, He Vessel, Power Coupler, & Cryostat -Interfaces to external piping

363

Manufacturing Metallic Parts with Designed Mesostructure  

E-Print Network [OSTI]

Additive Manufacturing Laser Engineered Net Shaping Electron Beam Melting Williams, C. B., F. M. Mistree, D Additive Manufacturing © Christopher B. Williams Electron Beam Melting Electron Beam Melting Direct Metal

364

Mechanics and Design, Manufacturing Professor Hani Naguib  

E-Print Network [OSTI]

Mechanical and Industrial Engineering Manufacturing What is Manufacturing? The transformation of materials. Apple Canada(Se12), Revenue: $5,067,109 9. CGI Group(Se12), Revenue: $4,786,857 10. Siemens Canada(Se12

365

Faculty Position in Mechanical Engineering Additive Manufacturing  

E-Print Network [OSTI]

using additive manufacturing in applications such as, but not limited to the net shape manufacture of) Promoting Well-Being, Finding Cures; (3) Building Communities, Expanding Opportunities; and (4) Harnessing

366

Montana Manufacturing Center www.mtmanufacturingcenter.com  

E-Print Network [OSTI]

Montana Manufacturing Center www.mtmanufacturingcenter.com University Technical Assistance Program and wellness industry. Commenting on the strategy, Chief Opera- tions Officer and Six Sigma Green Belt Brad achieve that. NLI offers premier manufacturing and laboratories services (www

Dyer, Bill

367

Objective assessment of manufacturing technology investments  

E-Print Network [OSTI]

Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

Rothman, Craig Jeremy

2012-01-01T23:59:59.000Z

368

Building Blocks for the Future of Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the Future of Manufacturing Building Blocks for the Future of Manufacturing Scott Smith 2011.05.04 Even though we grew up on opposite sides of the world, my colleague...

369

Mechanical and Manufacturing Engineering Petroleum Engineering Minor  

E-Print Network [OSTI]

of Chemical and Petroleum Engineering for their petroleum engineering minor. As well, mechanical engineeringMechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major

Calgary, University of

370

Benefits and Barriers of Smart Manufacturing  

E-Print Network [OSTI]

Decision makers in the industrial sector have only recently started to realize the potential of smart manufacturing to transform manufacturing. The potential gains in efficiency at the process and supply-chain level are still largely unknown...

Trombley, D.; Rogers, E.

2014-01-01T23:59:59.000Z

371

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

372

Webinar: Additive Manufacturing for Fuel Cells  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

373

Electromagnetic compatibility in semiconductor manufacturing  

SciTech Connect (OSTI)

Electromagnetic Interference (EMI) causes problems in semiconductor manufacturing facilities that range from nuisances to major disruptions of production. In many instances, these issues are addressed in a reactionary rather than proactive manner by individuals who do not have the experience or the equipment necessary to combat EMI problems in a timely, cost effective manner. This approach leads to expensive retrofits, reduced equipment availability, long recovery times, and in some cases, line yield impacts. The goal of electromagnetic compatibility (EMC) in semiconductor manufacturing is to ensure that semiconductor process, metrology, and support equipment operate as intended without being affected by electromagnetic disturbances either transmitted through air (radiated interference), or transferred into the equipment via a conductive media (conducted interference). Rather than being neglected until serious issues arise, EMC should be considered in the early stages of facility design, in order to gain the most benefit at the lowest cost.

Montoya, J.A. [Intel Corp., Hillsboro, OR (United States)

1995-12-31T23:59:59.000Z

374

SSL Basics | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1 ThisAprilOCTOBER 2-3, Public

375

Why SSL | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee onsupports high impactSince 2003, the U.S. Department of

376

DOE-FLEX: DOE's Telework Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes the requirements and responsibilities for the Departments telework program. Cancels DOE N 314.1.

2013-02-11T23:59:59.000Z

377

Manufacturing of Plutonium Tensile Specimens  

SciTech Connect (OSTI)

Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

Knapp, Cameron M [Los Alamos National Laboratory

2012-08-01T23:59:59.000Z

378

Advanced Manufacturing | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced Manufacturing

379

Manufacturing Perspective | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctobertoPerspective

380

Sustainable Manufacturing via Multi-Scale, Physics-Based Process...  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013 Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Machine Tool Design and Operation Strategies for Green Manufacturing  

E-Print Network [OSTI]

Operation Strategies for Green Manufacturing Nancy DIAZ 1 ,to implement green manufacturing in machining includingopportunities to green manufacturing exist at all levels of

2010-01-01T23:59:59.000Z

382

A Review of Engineering Research in Sustainable Manufacturing  

E-Print Network [OSTI]

SWOT Anal- ysis for Green Manufacturing Strategy Selection,”Yung, K. L. , 2010, “Green Manufacturing Using IntegratedDornfeld, D. , 2013, Green Manufacturing: Fundamentals and

2013-01-01T23:59:59.000Z

383

Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions  

E-Print Network [OSTI]

how to think about green manufacturing and sustainability.for sustainable or green manufacturing is that it is not anthe implementation of green manufacturing, where a wedge

Reich-Weiser, Corinne

2010-01-01T23:59:59.000Z

384

U.S. Advanced Manufacturing and Clean Energy Technology Challenges  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation...

385

Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)  

E-Print Network [OSTI]

Analysis May 2013 Additive Manufacturing in China: Aviationan overview of China’s additive manufacturing industry wasmilitary achievements in additive manufacturing. 2 Initial

ANDERSON, Eric

2013-01-01T23:59:59.000Z

386

A Review of Engineering Research in Sustainable Manufacturing  

E-Print Network [OSTI]

shape part, e.g. , additive manufacturing, Transactions offace operations. Additive manufacturing of metal componentsenvironmen- tal merits of additive manufacturing relative to

2013-01-01T23:59:59.000Z

387

Contact Manufacturing Demonstration Facility Craig Blue, Ph.D...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Demonstration Facility Craig Blue, Ph.D. Director, Manufacturing Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www.ornl.gov...

388

Low Temperature PEM Fuel Cell Manufacturing Needs  

E-Print Network [OSTI]

Low Temperature PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project #12; Cost drivers were identified for the following: · MEA · Plates · Balance of Plant (BOP) · Fuel Processing Manufacturing Fuel Cell Project ­ Phase 1 Note that this presentation

389

Energy Manufacturing Matthew Realff and Steven Danyluk  

E-Print Network [OSTI]

Energy Manufacturing Matthew Realff and Steven Danyluk Georgia Institute of Technology This white Foundation and held in Arlington VA, on March 24-25, 2009 on Energy Manufacturing. The workshop attendees participated in discussions and presented their views on energy manufacturing and the presentations

Das, Suman

390

8th Global Conference on Sustainable Manufacturing  

E-Print Network [OSTI]

manufacturing in the UAE · Potentials of renewables · Education for sustainability engineering · Green supply8th Global Conference on Sustainable Manufacturing Architecture for Sustainable Engineering for research institutes and industrial partners related to the area of sustainable manufacturing. It enables

Berlin,Technische Universität

391

Additive manufacturing of metallic tracks on  

E-Print Network [OSTI]

Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair (note: may require additional tooling/ set up time) · Rapid Prototyping & small scale manufacture

Painter, Kevin

392

e! Science News Semiconductor manufacturing technique holds  

E-Print Network [OSTI]

arsenide chips manufactured in multilayer stacks: light sensors, high-speed transistors and solar cellse! Science News Semiconductor manufacturing technique holds promise for solar energy Published semiconductor manufacturing method pioneered at the University of Illinois, the future of solar energy just got

Rogers, John A.

393

ICME & MGI Big Area Additive Manufacturing  

E-Print Network [OSTI]

ICME & MGI · Big Area Additive Manufacturing · Neutron Characterization for AM · Materials problems in additive manu- facturing (AM). Additive manufacturing, or three-dimensional (3-D) printing of the world's most advanced neu- tron facilities, the HFIR and SNS, to characterize additive manufactured

394

Pseudomonas fluorescens -A robust manufacturing platform  

E-Print Network [OSTI]

Pseudomonas fluorescens -A robust manufacturing platform Reprinted from July/August 2004 Speciality at efficient- ly transporting single chain antibodies and other mammalian-derived proteins. In addition production. Dowpharma, a contract manufacturing services unit of Dow Chemical, has developed a manufacturing

Lebendiker, Mario

395

Manufacturing Research & Development for Systems that will  

E-Print Network [OSTI]

focused on manufacturability issues such as low-cost, high-volume manufacturing systems, advanced to move the United States toward a future hydrogen economy. While many scientific, technical's laboratory-scale fabrication technologies to high-volume commercial manufacturing has been identified as one

396

EFFECTIVE STRUCTURAL HEALTH MONITORING WITH ADDITIVE MANUFACTURING  

E-Print Network [OSTI]

will be presented for components that can be processed by additive manufacturing (AM) or 3D printing. The origin structures. KEYWORDS : structural health monitoring methodology, 3D printing, additive manufacturing, fatigue, intelligent structure INTRODUCTION Additive manufacturing (AM), also known as 3D Printing or Rapid

Boyer, Edmond

397

Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09 BalanceStorageReviewFlow of

398

DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems  

Broader source: Energy.gov [DOE]

DOE will launch a collaborative effort with industry to evaluate and scope high-impact manufacturing R&D to improve natural gas systems efficiency and leak reduction. The goal of this effort is to establish an advanced manufacturing initiative. AMO will lead this effort.

399

NREL Manufacturing R&D Workshop NREL H2/FC Manufacturing R&D Workshop  

E-Print Network [OSTI]

&D Workshop Fuel Cell Proton Exchange Membrane (PEM) and Solid Oxide Fuel Cell (SOFC) Manufacturing Lines and driving down the cost of fuel cell manufacturing through automation. What are the key technical Membrane Electrode Assembly Manufacturing Hypothetical Fuel Cell Manufacturing Platforms August 11, 2011

400

DOE Technical Assistance Program  

Broader source: Energy.gov (indexed) [DOE]

Qualified Product List http:www.designlights.orgsolidstate.manufacturer.overview.php 42 | Interior Lighting Efficiency for Municipalities eere.energy.gov ENERGY STAR * New...

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE/EIA-0358  

U.S. Energy Information Administration (EIA) Indexed Site

58 Report on the 1980 Manufacturing Industries Energy Consumption Study and Survey of Large Combustors Energy Information Administration Washington, D.C. January 1983 ; This...

402

Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

Ulsh, M.; Wheeler, D.; Protopappas, P.

2011-08-01T23:59:59.000Z

403

Research on advanced photovoltaic manufacturing technology  

SciTech Connect (OSTI)

This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

1991-11-01T23:59:59.000Z

404

Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministrationManufacturing - GE Appliances, ORNL Low-Cost

405

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the “Delphi Kokomo, IN Corporate Technology Center” (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE’s Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the nation’s economic recovery by creating manufacturing jobs in the United States. The Delphi CTC Project would involve the construction and operation of a 10,700 square foot (ft2) utilities building containing boilers and heaters and a 70,000 ft2 engineering laboratory, as well as site improvements (roads, parking, buildings, landscaping,and lighting).

406

DOE Awards Management and Operating Contract for DOE's Strategic...  

Energy Savers [EERE]

DOE Awards Management and Operating Contract for DOE's Strategic Petroleum Reserve DOE Awards Management and Operating Contract for DOE's Strategic Petroleum Reserve September 18,...

407

THE MASTER OF ENGINEERING IN MANUFACTURING ENGINEERING PROGRAM PLANNING SHEET  

E-Print Network [OSTI]

for Manufacturing ME 526 Simulation of Physical Processes ME 535 Green Manufacturing METHE MASTER OF ENGINEERING IN MANUFACTURING ENGINEERING PROGRAM PLANNING SHEET be at the 500 level or above. 1. Core Manufacturing Requirement ­ 24 credits

408

Ohio Advanced Energy Manufacturing Center  

SciTech Connect (OSTI)

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

409

Manufacturing method of photonic crystal  

DOE Patents [OSTI]

A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

2013-01-29T23:59:59.000Z

410

Method for manufacturing magnetohydrodynamic electrodes  

DOE Patents [OSTI]

A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

Killpatrick, D.H.; Thresh, H.R.

1980-06-24T23:59:59.000Z

411

Manufacturing Initiative | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las ConchasTrail5,722,326ManhattanEnergyManufacturing

412

DOE Mentoring Program  

Broader source: Energy.gov [DOE]

The Office of Learning and Workforce Development coordinates this mentoring program for DOE Federal Employees.

413

DOE Lessons Learned  

Broader source: Energy.gov [DOE]

DOE Lessons Learned Information Services Catches the Eye of Corporations and Educational Institutions

414

2009 Annual Progress Report: DOE Hydrogen Program, November 2009 (Book)  

SciTech Connect (OSTI)

This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis.

Not Available

2009-11-01T23:59:59.000Z

415

1 | Building America eere.energy.gov DOE's Building America  

E-Print Network [OSTI]

1 | Building America eere.energy.gov DOE's Building America Low-E Storm Window Adoption Program Working Group #12;2 | Building America eere.energy.gov Pacific Northwest National Laboratory · Katie Cort, Larson Manufacturing Company Key Staff #12;3 | Building America eere.energy.gov Problem · Windows account

416

DOE-FLEX: DOE's Telework Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The directive establishes the requirements and responsibilities for the Department’s telework program. Canceled by DOE O 314.1.

2011-07-05T23:59:59.000Z

417

A feasibility study for a manufacturing technology deployment center  

SciTech Connect (OSTI)

The Automation & Robotics Research Institute (ARRI) and the Texas Engineering Extension Service (TEEX) were funded by the U.S. Department of Energy to determine the feasibility of a regional industrial technology institute to be located at the Superconducting Super Collider (SSC) Central Facility in Waxahachie, Texas. In response to this opportunity, ARRI and TEEX teamed with the DOE Kansas City Plant (managed by Allied Signal, Inc.), Los Alamos National Laboratory (managed by the University of California), Vought Aircraft Company, National Center for Manufacturing Sciences (NCMS), SSC Laboratory, KPMG Peat Marwick, Dallas County Community College, Navarro Community College, Texas Department of Commerce (TDOC), Texas Manufacturing Assistance Center (TMAC), Oklahoma Center for the Advancement of Science and Technology, Arkansas Science and Technology Authority, Louisiana Productivity Center, and the NASA Mid-Continent Technology Transfer Center (MCTTC) to develop a series of options, perform the feasibility analysis and secure industrial reviews of the selected concepts. The final report for this study is presented in three sections: Executive Summary, Business Plan, and Technical Plan. The results from the analysis of the proposed concept support the recommendation of creating a regional technology alliance formed by the states of Texas, New Mexico, Oklahoma, Arkansas and Louisiana through the conversion of the SSC Central facility into a Manufacturing Technology Deployment Center (MTDC).

Not Available

1994-10-31T23:59:59.000Z

418

Orchestrating Market Success: Seattle Market Introduction Workshop Video  

Broader source: Energy.gov [DOE]

View the video from Jim Brodrick's opening presentation at the July 2011 DOE SSL Market Introduction Workshop in Seattle, Washington.

419

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TX National Center for Manufacturing Sciences Ann Arbor, MI Nimbis Services McLean, VA Praxair Tonawanda, NY Rockwell Automation Milwaukee, WI For additional information, please...

420

Manufacturing Ecosystems and Keystone Technologies (Text Version...  

Broader source: Energy.gov (indexed) [DOE]

Culver, Special Assistant to Program Manager, Advanced Manufacturing Office (AMO) Kelly Visconti, AAAS Science & Technology Policy Fellow, AMO DR. LEO CHRISTODOULOU: I would...

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop  

Broader source: Energy.gov (indexed) [DOE]

Blue Team B (Washington II & III) - Manufacturing Process Technology Facilitators - Kelly Visconti and Steve Sikirica; Note taker - Theresa Miller Red Team (Madison Room) -...

422

Manufacturing Demonstration Facility Workshop Videos | Department...  

Broader source: Energy.gov (indexed) [DOE]

on March 12, 2012. Lauren Culver, Special Assistant to Program Manager, AMO, and Kelly Visconti, AAAS Science & Technology Policy Fellow, AMO, speaking at the Manufacturing...

423

Performance, Market and Manufacturing Constraints relevant to...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Constraints relevant to the Industrialization of Thermoelectric Devices Market pricing of thermoelectric raw materials and processing, cost of manufacture of devices and...

424

Energy & Manufacturing Workforce Training Topics List - Version...  

Broader source: Energy.gov (indexed) [DOE]

View this searchable list of the training programs in the areas of energy andor manufacturing. Information provided in this list includes: the subjects being taught, grantee,...

425

2010 Manufacturing Energy and Carbon Footprints: Definitions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Definitions and Assumptions 2010 Manufacturing Energy and Carbon Footprints: Definitions and Assumptions This 13-page document defines key terms and details assumptions and...

426

Oak Ridge National Laboratory Manufacturing Demonstration Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oak Ridge National Laboratory Manufacturing Demonstration Facility Technology Collaborations | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single...

427

Energy-Related Carbon Emissions in Manufacturing  

Reports and Publications (EIA)

Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

2000-01-01T23:59:59.000Z

428

Supplemental Comments of the Plumbing Manufacturers Instititute...  

Broader source: Energy.gov (indexed) [DOE]

Supplemental Comments of the Plumbing Manufacturers Instititute Regarding the Economic Impacts of the Proposed Definition of "Showerhead," Docket No. EERE-2010-BT-NOA-0016...

429

Renewable Energy Manufacturing Tax Credit (South Carolina)  

Broader source: Energy.gov [DOE]

South Carolina offers a ten percent income tax credit to the manufacturers of renewable energy operations* for tax years 2010 through 2015.

430

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

KEYWORDS: Life Cycle Assessment, LCA, Green manufacturing,cycle phases, Life Cycle Assessment (LCA). The followingimpact. 2.2 Life Cycle Assessment (LCA) and Related Metrics

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

431

Welcome and Advanced Manufacturing Partnership (Text Version)  

Broader source: Energy.gov [DOE]

This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

432

American Energy and Manufacturing Competitiveness Summit  

Broader source: Energy.gov [DOE]

The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

433

Clean Energy Manufacturing Initiative Midwest Regional Summit...  

Office of Environmental Management (EM)

Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Characterization of Thermo-Mechanical Behaviors of Advanced High Strength Steels (AHSS)...

434

Innovative Manufacturing Initiative Recognition Day, Advanced...  

Broader source: Energy.gov (indexed) [DOE]

infrastructure Education and training Policy EEREAMO Focus * Manufacturing in the US * GDP and employment enhancement * Energy efficiency and clean energy industry * Energy...

435

Manufacturing Barriers to High Temperature PEM Commercialization...  

Broader source: Energy.gov (indexed) [DOE]

Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011....

436

Manufacturing Ecosystems and Keystone Technologies (Text Version)  

Broader source: Energy.gov [DOE]

This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

437

Solar Manufacturing Incentive Grant (SMIG) Program  

Broader source: Energy.gov [DOE]

Created in 1995 and administered jointly by the Virginia Department of Mines, Minerals and Energy, and the Virginia Economic Development Partnership, the Solar Manufacturing Incentive Grant (SMIG)...

438

Green Manufacturing Initiative Annual Report 2010  

E-Print Network [OSTI]

Green Manufacturing Initiative Annual Report 2010 Dr. John Patten Dr. David Meade May 3, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Herman Miller Energy Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

de Doncker, Elise

439

Low Energy Ion Implantationin Semiconductor Manufacturing | U...  

Office of Science (SC) Website

Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

440

2014 Manufacturing Energy and Carbon Footprints: Definitions...  

Broader source: Energy.gov (indexed) [DOE]

and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are...

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Project Profile: Improved Large Aperture Collector Manufacturing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

feasibility demonstrations focused in three main areas: an aggressive manufacturing optimization of the collector sub-structures for lower input material costs & mechanized...

442

Manufactured caverns in carbonate rock  

DOE Patents [OSTI]

Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

2007-01-02T23:59:59.000Z

443

Wind Turbine Manufacturing Process Monitoring  

SciTech Connect (OSTI)

To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

2012-04-26T23:59:59.000Z

444

Extension of DOE Directives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The following directives are extended until 3-18-06: DOE N 205.8, Cyber Security Requirements for Wireless Devices and Information Systems, dated 2-11-04; DOE N 205.9, Certification and Accreditation Process for Information Systems Including National Security Systems, dated 02-19-04; DOE N 205.10, Cyber Security Requirements for Risk Management, dated 02-19-04; DOE N 205.11, Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems, dated 2-19-04. DOE N 205.12, Clearing, Sanitizing, and Destroying Information System Storage Media, Memory Devices, and Other Related Hardware, dated 2-19-04.

2005-03-18T23:59:59.000Z

445

A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels  

Broader source: Energy.gov [DOE]

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

446

Critical technologies research: Opportunities for DOE  

SciTech Connect (OSTI)

Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

Not Available

1992-12-01T23:59:59.000Z

447

BULLBTIN OF THE UNITED STATES F I ~COMMISSION. 197 198 BULLETIN OF TIIE UNlTEI) STATES I?ISII COMEvIlSSlON.  

E-Print Network [OSTI]

is muddy and does not have much of a. current. No dis- eases or parasites have been noticed in the catfish a continual current of Sresh mater to pass through the mass of eggs. After a week the young fisli slipped out

448

EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan  

Broader source: Energy.gov [DOE]

DOE’s Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States’ consumption of petroleum. This Proposed Action will also meaningfully assist in the nation’s economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

449

DOE Publishes CALiPER Report on Dimming, Flicker, and Power Quality...  

Energy Savers [EERE]

CALiPER Report on Lumen and Chromaticity Maintenance of LED PAR38 Lamps This year's SSL Market Introduction Workshop will take place in Portland, Oregon. | Photo courtesy of...

450

MANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED MANUFACTURING  

E-Print Network [OSTI]

and an additive process. Manufacturability indexes are calculated at the tool design stage, these indexes provide an accurate view of which areas of the tool will advantageously be machined or manufactured by an additiveMANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED

Paris-Sud XI, Université de

451

Vintage DOE: Accomplishments  

Broader source: Energy.gov [DOE]

This vintage video, from the Office of Scientific and Technical Information and the U.S. Department of Energy Office of Science, does a great job detailing DOE's accomplishments.

452

DOE-STD-1104  

Office of Environmental Management (EM)

Implementation 1 DOE-STD-1104-2014 Roll-out AU Roll-out Contacts 2 Garrett Smith, Director, Nuclear Safety Basis and Facility Design, Office of Nuclear Safety (DOE...

453

Composite Tube Trailer Design/Manufacturing Needs  

E-Print Network [OSTI]

composite tube trailers and can, therefore, address issues with: ­ Design ­ Materials ­ Manufacturing in the system ­ Lower cost of carbon fiber ($/strength) ­ Identify material with lower net cost ($/strength) ­ Identify lower cost resin system (raw material & manufacture) ­ Reduce carbon fiber safety factor

454

Biologically inspired mutual synchronization of manufacturing machines  

E-Print Network [OSTI]

Biologically inspired mutual synchronization of manufacturing machines Erjen Lefeber,a,1 , Herman machine is developed. This control system is based on a synchronization mechanism of enzymes replacing of a single turnover cycle. In manufacturing, batch machines serve several jobs simultaneously, e.g., heat

Armbruster, Dieter

455

A Global Assessment of Manufacturing: Economic  

E-Print Network [OSTI]

A Global Assessment of Manufacturing: Economic Development, Energy Use, Carbon Emissions Keywords production, materials, closed loop, China, emerging economies Abstract We present in two parts an assessment of global manufacturing. In the first part, we review economic development, pollution, and carbon

Gutowski, Timothy

456

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING  

E-Print Network [OSTI]

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers manufacturing, etc. Now that students have a background on Chemical Engineers, it is time for the activity. Blue frosting e. Green frosting f. Pink frosting g. Purple frosting h. Sprinkle sorting i. Sprinkle

Provancher, William

457

Proceedings: EPRI Manufactured Gas Plants 2003 Forum  

SciTech Connect (OSTI)

The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

None

2004-02-01T23:59:59.000Z

458

Evaluating Energy Efficiency Improvements in Manufacturing Processes  

E-Print Network [OSTI]

and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agendaEvaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices

Boyer, Edmond

459

Watfactory Virtual Manufacturing Process Varying Inputs  

E-Print Network [OSTI]

with the virtual process: · Allows quick exploration (i.e. during a short course) of process improvement ideasWatfactory Virtual Manufacturing Process Machine 1 Machine 2 Machine 3 Stream 1 Machine B Stream 2 Inputs Can be Set by Stream z19, ..., z24 The Watfactory virtual process simulates a manufacturing

Zhu, Mu

460

Advanced Manufacturing Office (Formerly Industrial Technologies Program)  

E-Print Network [OSTI]

: Manufacturing Energy and Carbon Footprint, derived from 2006 MECS #12;Management Structure and Project Execution, aqueous-based processes). Develop broadly applicable, manufacturing processes that reduce energy intensity-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Simulation Model Driven Engineering for Manufacturing Cell  

E-Print Network [OSTI]

Simulation Model Driven Engineering for Manufacturing Cell Hironori Hibino1 , Toshihiro Inukai2 Abstract. In our research, the simulation model driven engineering for manufacturing cell (SMDE on the simulation model and to extend the range of control applications and simulation applications using the PC

Paris-Sud XI, Université de

462

DOE Sustainability SPOtlight  

Broader source: Energy.gov [DOE]

Newsletter highlights the recipients of the U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) 2014 Sustainability Awards.

463

Extension of DOE Directives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Effective immediately, DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11-1-99, and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99, are extended until 9-30-06, unless sooner rescinded.

2005-09-15T23:59:59.000Z

464

Extension of DOE Directives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Notice extends the following directives until 2/16/04: DOE N 205.2, Foreign National Access to DOE Cyber Systems, and DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99-7/1/00.

2003-02-24T23:59:59.000Z

465

Extension of DOE Directives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The following directives are extended until 8-12-04. DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11/1/99. DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99.

2004-02-12T23:59:59.000Z

466

Extension of DOE Directives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The following directives are extended until 8-12-05: DOE N 205.2, Foreign National Access to DOE Cyber Security Systems, dated 11-1-99 and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99. No cancellations.

2004-08-12T23:59:59.000Z

467

Advanced Materials Manufacturing (AMM) Session  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41AdamEnergyAdvanced DOE1 |

468

DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy...  

Broader source: Energy.gov (indexed) [DOE]

Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements March 16, 2010 - 4:28pm...

469

DOE Announces Publication of Three Reports by the DOE Electricity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Publication of Three Reports by the DOE Electricity Advisory Committee DOE Announces Publication of Three Reports by the DOE Electricity Advisory Committee January 15, 2009 -...

470

DOE F 5631  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3A DOE5 DOE5 DOE FDOE3

471

DOE F 5634  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3A DOE5 DOE5 DOE1.34

472

DOE F 5634  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3A DOE5 DOE5 DOE1.342

473

DOE F 5634  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3A DOE5 DOE5 DOE1.3428

474

Integrated Manufacturing for Advanced MEAs  

SciTech Connect (OSTI)

This program addressed a two-pronged goal for developing fuel cell components: lowering of precious metal content in membrane electrode assemblies (MEAs), thereby reducing the fuel cell cost, and creating MEAs that can operate at 120oC and 25% RH whereby the system efficiency and effectiveness is greatly improved. In completing this program, we have demonstrated a significant reduction in precious metal while at the same time increasing the power output (achieved 2005 goal of 0.6g/Kw). We have also identified a technology that allows for one step fabrication of MEAs and appears to be a feasible path toward achieving DOE’s 2010 targets for precious metal and power (approaches 0.2g/Kw). Our team partner Du Pont invented a new class of polymer electrolyte membrane that has sufficient stability and conductivity to demonstrate feasibility for operation at 120 oC and low relative humidity. Through the course of this project, the public has benefited greatly from numerous presentations and publications on the technical understanding necessary to achieve these goals.

Emory S. De Castro; Yu-Min Tsou; Mark G. Roelofs; Olga Polevaya

2007-03-30T23:59:59.000Z

475

Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future  

E-Print Network [OSTI]

Growth. Every $1.00 in manufactured goods generates an additional $1.43 worth of additional economic© ATI 2006 Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future presented to thepresented to the 2006 MIT Manufacturing Summit:2006 MIT Manufacturing Summit

Brock, David

476

Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers  

SciTech Connect (OSTI)

Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

Hale, Steve

2013-09-11T23:59:59.000Z

477

Analysis of energy-efficiency investment decisions by small and medium-sized manufacturers  

SciTech Connect (OSTI)

This report highlights the results of a comprehensive analysis of investment decisions regarding energy-efficiency measures at small and medium-sized manufacturing plants. The analysis is based on the experiences of companies participating in the DOE Industrial Assessment Center (IAC) program. The IAC program is a network of university-based centers that provides energy and waste assessments to small and medium-sized manufacturing plants. The purposes of this report are to do the following: (1) Examine what the data collected reveal about patterns of implementation of recommended energy- efficiency measures, (2) Evaluate how various factors, such as the type of industry, the characteristics of the manufacturing plants, or the cost of the measures, appear to effect implementation rates, (3) Examine reasons why recommended energy-saving measures are accepted or rejected.

Woodruff, M.G.; Roop, J.M.; Seely, H.E. [Pacific Northwest National Lab., Richland, WA (United States); Muller, M.R. [Rutgers--the State Univ., New Brunswick, NJ (United States); Jones, T.W. [Alliance to Save Energy, Washington, DC (United States); Dowd, J. [USDOE, Washington, DC (United States)

1996-05-01T23:59:59.000Z

478

An overview of DOE`s wind turbine development programs  

SciTech Connect (OSTI)

The development of technologically advanced, higher efficiency wind turbines continues to be a high priority activity of the US wind industry. The United States Department of Energy (DOE) is conducting and sponsoring a range of programs aimed at assisting the wind industry with system design, development, and testing. The overall goal is to develop systems that can compete with conventional electric generation for $.05/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with fossil-fuel-based generators for $.04/kWh at 5.8 m/s sites by the year 2000. These goals will be achieved through several programs. The Value Engineered Turbine Program will promote the rapid development of US capability to manufacture wind turbines with known and well documented records of performance, cost, and reliability, to take advantage of near-term market opportunities. The Advanced Wind Turbine Program will assist US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid 1990s) and to develop a new generation of turbines for the year 2000. The collaborative Electric Power Research Institute (EPRI)/DOE Utility Wind Turbine Performance Verification Program will deploy and evaluate commercial-prototype wind turbines in typical utility operating environments, to provide a bridge between development programs currently underway and commercial purchases of utility-grade wind turbines. A number of collaborative efforts also will help develop a range of small systems optimized to work in a diesel hybrid environment to provide electricity for smaller non-grid-connected applications.

Laxson, A; Dodge, D; Flowers, L [National Renewable Energy Lab., Golden, CO (United States); Loose, R; Goldman, P [Dept. of Energy, Washington, DC (United States)

1993-09-01T23:59:59.000Z

479

MSL ENTERANCE REFERENCE AREA  

E-Print Network [OSTI]

MSL ENTERANCE LOBBY ELEV STAIRS SSL-019 REFERENCE AREA SSL-021 GROUP STUDY SSL-018 STUDY ROOM SSL-029 SSL-020 COPY ROOM SSL-022 GROUP STUDY SSL-026 STACKS SSL-023 GROUP STUDY SSL-024 GROUP STUDY SSL TBL-014 TBL-014A STAIRS SSL-007 GIS/ WORKROOM SSL-011 SSL-008 SSL-009 SSL-010 SSL-014 SSL-017 STAIRS

Aalberts, Daniel P.

480

High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell (Phosphoric Acid) Manufacturing R&D High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop...

Note: This page contains sample records for the topic "doe ssl manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION  

E-Print Network [OSTI]

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

Schumacher, Russ

482

Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)  

E-Print Network [OSTI]

application of additive manufacturing in China’s aviationAnalysis May 2013 Additive Manufacturing in China: Threats,an overview of China’s additive manufacturing industry is

ANDERSON, Eric

2013-01-01T23:59:59.000Z

483

Faculty Position in Ultra High Precision Robotics & Manufacturing  

E-Print Network [OSTI]

, manipulation and metrology systems targeting additive manufacturing; · New kinematics, quasi-perfect guidings, actuators, transmission systems, sensors and methods targeting ultra-high precision additive manufacturingFaculty Position in Ultra High Precision Robotics & Manufacturing at the Ecole Polytechnique

Candea, George

484

2012 DOE Strategic Sustainability Performance Plan | Department...  

Broader source: Energy.gov (indexed) [DOE]

DOE Strategic Sustainability Performance Plan 2012 DOE Strategic Sustainability Performance Plan The 2012 DOE Strategic Sustainability Performance Plan embodies DOE's...

485

Consortia Focused on Photovoltaic R&D, Manufacturing, and Testing: A Review of Existing Models and Structures  

SciTech Connect (OSTI)

As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program prepares to initiate a new cost-shared research and development (R&D) effort on photovoltaic (PV) manufacturing, it is useful to review the experience to date with consortia focused on PV R&D, manufacturing, and testing. Information was gathered for this report by conducting interviews and accessing Web sites of 14 U.S. consortia and four European consortia, each with either a primary focus on or an emerging interest in PV technology R&D, manufacturing, or testing. Additional input was collected from several workshops held by the DOE and National Academy of Sciences (NAS) in 2009, which examined the practical steps -- including public-private partnerships and policy support -- necessary to enhance the United States' capacity to competitively manufacture photovoltaics. This report categorizes the 18 consortia into three groups: university-led consortia, industry-led consortia, and manufacturing and testing facilities consortia. The first section summarizes the organizations within the different categories, with a particular focus on the key benefits and challenges for each grouping. The second section provides a more detailed overview of each consortium, including the origins, goals, organization, membership, funding sources, and key contacts. This survey is a useful resource for stakeholders interested in PV manufacturing R&D, but should not imply endorsement of any of these groups.

Coggeshall, C.; Margolis, R. M.

2010-03-01T23:59:59.000Z

486

A Quantitative Study of the Impact of Additive Manufacturing in the Aircraft Spare Parts Supply Chain.  

E-Print Network [OSTI]

??Additive manufacturing is a promising manufacturing technology which is finding its way into mainstream manufacturing industry. As compared to conventional manufacturing it has a number… (more)

Mokasdar, Abhiram S., M.S.

2012-01-01T23:59:59.000Z

487

E-Print Network 3.0 - automated manufacturing systems Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by delighting the customers. IIMC Manufacturing Systems & Technology Manufacturing... in manufacturing, Awareness of green production and Big R in manufacturing IIT Automation &...

488

EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing...  

Broader source: Energy.gov (indexed) [DOE]

4: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn,...

489

Celgard US Manufacturing Facilities Initiative for Lithium-ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

490

Manufacturing Metrology for c-Si Module Reliability/Durabiltiy...  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Metrology for c-Si Module ReliabilityDurabiltiy Manufacturing Metrology for c-Si Module ReliabilityDurabiltiy Presented at the PV Module Reliability Workshop,...

491

Join Us for the Clean Energy Manufacturing Initiative's Western...  

Energy Savers [EERE]

resources, as well as best practices and cutting-edge technologies, to boost energy productivity across the entire U.S. manufacturing supply chain will make our manufacturing...

492

Manufacturing R&D of PEM Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for the Hydrogen Economy Manufacturing Research & Development of PEM Fuel Cell Systems for Transportation Applications Background Material for the Manufacturing R&D Workshop to be...

493

Energy Use Loss and Opportunities Analysis: U.S. Manufacturing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining energyuselossopportunitiesanalys...

494

Letter from Plumbing Manufacturers Institute to Department of...  

Broader source: Energy.gov (indexed) [DOE]

Letter from Plumbing Manufacturers Institute to Department of Energy re: Ex Parte Communication More Documents & Publications Supplemental Comments of the Plumbing Manufacturers...

495

allergenic extract manufacturers: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tax applies to the sale of manufacturing aids such as dies, patterns, jigs and tooling used in the manufacturing process notwithstanding the fact that the property used in...

496

Wind Program Manufacturing Research Advances Processes and Reduces...  

Energy Savers [EERE]

Wind Program Manufacturing Research Advances Processes and Reduces Costs Wind Program Manufacturing Research Advances Processes and Reduces Costs March 31, 2014 - 11:22am Addthis...

497

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8,...

498

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

499

Energy Department to Work with National Association of Manufacturers...  

Office of Environmental Management (EM)

to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to Increase...

500

An exploration of materials and methods in manufacturing : shoreline membranes  

E-Print Network [OSTI]

This thesis is an investigation into the design methodologies and ideologies of manufacturing processes specifically related to automotive design. The conceptualization, prototyping, testing, and manufacturing of cars is ...

Chin, Ryan C. C., 1974-

2000-01-01T23:59:59.000Z